WorldWideScience

Sample records for strip gated imager

  1. Strip velocity measurements for gated x-ray imagers using short pulse lasers

    Science.gov (United States)

    Ross, P. W.; Cardenas, M.; Griffin, M.; Mead, A.; Silbernagel, C. T.; Bell, P.; Haque, S.

    2013-09-01

    Strip velocity measurements of gated X-ray imagers are presented using an ultra-short pulse laser. Obtaining time- resolved X-ray images of inertial confinement fusion shots presents a difficult challenge. One diagnostic developed to address this challenge is the gated X-ray imagers. The gated X-ray detectors (GXDs) developed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory use a microchannel plate (MCP) coated with a gold strip line, which serves as a photocathode. GXDs are used with an array of pinholes, which image onto various parts of the GXD image plane. As the pulse sweeps over the strip lines, it creates a time history of the event with consecutive images. In order to accurately interpret the timing of the images obtained using the GXDs, it is necessary to measure the propagation of the pulse over the strip line. The strip velocity was measured using a short pulse laser with a pulse duration of approximately 1-2 ps. The 200nm light from the laser is used to illuminate the GXD MCP. The laser pulse is split and a retroreflective mirror is used to delay one of the legs. By adjusting the distance to the mirror, one leg is temporally delayed compared to the reference leg. The retroreflective setup is calibrated using a streak camera with a 1 ns full sweep. Resolution of 0.5 mm is accomplished to achieve a temporal resolution of ~5 ps on the GXD strip line.

  2. Range gated strip proximity sensor

    Science.gov (United States)

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  3. Noise Gating Solar Images

    Science.gov (United States)

    DeForest, Craig; Seaton, Daniel B.; Darnell, John A.

    2017-08-01

    I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO

  4. Imaging of Low Compressibility Strips in the Quantum Hall Liquid

    OpenAIRE

    Finkelstein, G.; Glicofridis, P. I.; Tessmer, S. H.; Ashoori, R. C.; Melloch, M. R.

    1999-01-01

    Using Subsurface Charge Accumulation scanning microscopy we image strips of low compressibility corresponding to several integer Quantum Hall filling factors. We study in detail the strips at Landau level filling factors $\

  5. Active gated imaging in driver assistance system

    Science.gov (United States)

    Grauer, Yoav

    2014-04-01

    In this paper, we shall present the active gated imaging system (AGIS) in relation to the automotive field. AGIS is based on a fast-gated camera and pulsed illuminator, synchronized in the time domain to record images of a certain range of interest. A dedicated gated CMOS imager sensor and near infra-red (NIR) pulsed laser illuminator, is presented in this paper to provide active gated technology. In recent years, we have developed these key components and learned the system parameters, which are most beneficial to nighttime (in all weather conditions) driving in terms of field of view, illumination profile, resolution, and processing power. We shall present our approach of a camera-based advanced driver assistance systems (ADAS) named BrightEye™, which makes use of the AGIS technology in the automotive field.

  6. Active gated imaging for automotive safety applications

    Science.gov (United States)

    Grauer, Yoav; Sonn, Ezri

    2015-03-01

    The paper presents the Active Gated Imaging System (AGIS), in relation to the automotive field. AGIS is based on a fast gated-camera equipped with a unique Gated-CMOS sensor, and a pulsed Illuminator, synchronized in the time domain to record images of a certain range of interest which are then processed by computer vision real-time algorithms. In recent years we have learned the system parameters which are most beneficial to night-time driving in terms of; field of view, illumination profile, resolution and processing power. AGIS provides also day-time imaging with additional capabilities, which enhances computer vision safety applications. AGIS provides an excellent candidate for camera-based Advanced Driver Assistance Systems (ADAS) and the path for autonomous driving, in the future, based on its outstanding low/high light-level, harsh weather conditions capabilities and 3D potential growth capabilities.

  7. Digital Images of Breast Biopsies using a Silicon Strip Detector

    International Nuclear Information System (INIS)

    Montano, Luis M.; Diaz, Claudia C.; Leyva, Antonio; Cabal, Fatima; Ortiz, Carlos M.

    2006-01-01

    In our study we have used a silicon strip detector to obtain digital images of some breast tissues with micro calcifications. Some of those images will be shown and we will discuss the perspectives of using this technique as an improvement of breast cancer diagnostics

  8. Image Filtering with Field Programmable Gate Array

    Directory of Open Access Journals (Sweden)

    Arūnas Šlenderis

    2013-05-01

    Full Text Available The research examined the use of field programmable gate arrays (FPGA in image filtering. Experimental and theoretical researches were reviewed. Experiments with Cyclone III family FPGA chip with implemented NIOS II soft processor were considered. Image filtering was achieved with symmetrical and asymmetrical finite impulse response filters with convolution kernel. The system, which was implemented with 3×3 symmetrical filter, which was implemented using the hardware description language, uses 59% of logic elements of the chip and 10 multiplication elements. The system with asymmetrical filter uses the same amount of logic elements and 13 multiplication elements. Both filter systems consume approx. 545 mW of power. The system, which is designed for filter implementation in C language, uses 65% of all logical elements and consumes 729 mW of power.Article in Lithuanian

  9. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  10. Imaging of ventilation/perfusion ratio by gated regional spirometry

    International Nuclear Information System (INIS)

    Touya, J.J.; Jones, J.P.; Price, R.R.; Patton, J.A.; Erickson, J.J.; Rollo, F.D.

    1981-01-01

    Gated 133 Xe images of patients rebreathing into a closed system can provide images of the distribution of lung volumes, ventilation and specific ventilation. These have been shown to be accurate, precise, and do not require unusually sophisticated equipment or skills. A mathematical transformation is used to correct the images for lung movement, which does not alter the total number of counts in the image. Perfusion images are gated to remove motion blurring but not transformed. Ventilation/perfusion images showing the distribution of V/Q ratio are then generated from the individual ventilation and perfusion images. (author)

  11. Image quality in non-gated versus gated reconstruction of tongue motion using magnetic resonance imaging: a comparison using automated image processing

    International Nuclear Information System (INIS)

    Alvey, Christopher; Orphanidou, C.; Coleman, J.; McIntyre, A.; Golding, S.; Kochanski, G.

    2008-01-01

    The use of gated or ECG triggered MR is a well-established technique and developments in coil technology have enabled this approach to be applied to areas other than the heart. However, the image quality of gated (ECG or cine) versus non-gated or real-time has not been extensively evaluated in the mouth. We evaluate two image sequences by developing an automatic image processing technique which compares how well the image represents known anatomy. Four subjects practised experimental poly-syllabic sentences prior to MR scanning. Using a 1.5 T MR unit, we acquired comparable gated (using an artificial trigger) and non-gated sagittal images during speech. We then used an image processing algorithm to model the image grey along lines that cross the airway. Each line involved an eight parameter non-linear equation to model of proton densities, edges, and dimensions. Gated and non-gated images show similar spatial resolution, with non-gated images being slightly sharper (10% better resolution, less than 1 pixel). However, the gated sequences generated images of substantially lower inherent noise, and substantially better discrimination between air and tissue. Additionally, the gated sequences demonstrate a very much greater temporal resolution. Overall, image quality is better with gated imaging techniques, especially given their superior temporal resolution. Gated techniques are limited by the repeatability of the motions involved, and we have shown that speech to a metronome can be sufficiently repeatable to allow high-quality gated magnetic resonance imaging images. We suggest that gated sequences may be useful for evaluating other types of repetitive movement involving the joints and limb motions. (orig.)

  12. Time-gated optical imaging through turbid media using stimulated ...

    Indian Academy of Sciences (India)

    In this paper, we report the development of experimental set-up for timegated optical imaging through turbid media using stimulated Raman scattering. Our studies on the contrast of time-gated images show that for a given optical thickness, the image contrast is better for sample with lower scattering coefficient and higher ...

  13. Technical aspects of image-guided respiration-gated radiation therapy

    International Nuclear Information System (INIS)

    Jiang, Steve B.

    2006-01-01

    In this review article, we discuss various technical aspects of image-guided respiration-gated radiation therapy. We first review some basic concepts related to respiratory gating, including gating window, duty cycle, residual motion, internal/external gating, amplitude/phase gating, etc. We then discuss 2 implementations of image-guided respiration-gated treatment, i.e., the Mitsubishi/Hokkaido technique for internal gating and the MGH technique for external gating. Several existing problems related to respiratory gating, namely external gating mode (phase vs. amplitude), imaging dose for internal gating, gated treatment for lung cancer without implanted fiducial makers, as well as gated intensity-modulated radiation therapy issues, are also discussed along with potential solutions

  14. Simultaneous ECG-gated PET imaging of multiple mice

    International Nuclear Information System (INIS)

    Seidel, Jurgen; Bernardo, Marcelino L.; Wong, Karen J.; Xu, Biying; Williams, Mark R.; Kuo, Frank; Jagoda, Elaine M.; Basuli, Falguni; Li, Changhui; Griffiths, Gary L.

    2014-01-01

    Introduction: We describe and illustrate a method for creating ECG-gated PET images of the heart for each of several mice imaged at the same time. The method is intended to increase “throughput” in PET research studies of cardiac dynamics or to obtain information derived from such studies, e.g. tracer concentration in end-diastolic left ventricular blood. Methods: An imaging bed with provisions for warming, anesthetic delivery, etc., was fabricated by 3D printing to allow simultaneous PET imaging of two side-by-side mice. After electrode attachment, tracer injection and placement of the animals in the scanner field of view, ECG signals from each animal were continuously analyzed and independent trigger markers generated whenever an R-wave was detected in each signal. PET image data were acquired in “list” mode and these trigger markers were inserted into this list along with the image data. Since each mouse is in a different spatial location in the FOV, sorting of these data using trigger markers first from one animal and then the other yields two independent and correctly formed ECG-gated image sequences that reflect the dynamical properties of the heart during an “average” cardiac cycle. Results: The described method yields two independent ECG-gated image sequences that exhibit the expected properties in each animal, e.g. variation of the ventricular cavity volumes from maximum to minimum and back during the cardiac cycle in the processed animal with little or no variation in these volumes during the cardiac cycle in the unprocessed animal. Conclusion: ECG-gated image sequences for each of several animals can be created from a single list mode data collection using the described method. In principle, this method can be extended to more than two mice (or other animals) and to other forms of physiological gating, e.g. respiratory gating, when several subjects are imaged at the same time

  15. Mobile Image Ratiometry: A New Method for Instantaneous Analysis of Rapid Test Strips

    OpenAIRE

    Donald C. Cooper; Bryan Callahan; Phil Callahan; Lee Burnett

    2012-01-01

    Here we describe Mobile Image Ratiometry (MIR), a new method for the automated quantification of standardized rapid immunoassay strips using consumer-based mobile smartphone and tablet cameras. To demonstrate MIR we developed a standardized method using rapid immunotest strips directed against cocaine (COC) and its major metabolite, benzoylecgonine (BE). We performed image analysis of three brands of commercially available dye-conjugated anti-COC/BE antibody test strips in response to three d...

  16. Time-gated optical imaging through turbid media using stimulated ...

    Indian Academy of Sciences (India)

    millimeter resolution imaging without the need for ionizing radiation and associated risks [1,2]. The fundamental problem with optical imaging is that in contrast to ... intensity dependent non-linear optical gates such as the optical Kerr effect [6], dye- based optical amplifier [7] etc. Duncan et al [8] and Mahon et al [9] exploited ...

  17. GENERATION OF THE AUSTRALIAN GEOGRAPHIC REFERENCE IMAGE THROUGH LONG-STRIP ALOS PRISM ORIENTATION

    Directory of Open Access Journals (Sweden)

    M. Ravanbakhsh

    2012-07-01

    Full Text Available The Australian Geographic Reference Image (AGRI is a national satellite image mosaic that covers the vast Australian continent. Formed from 9560 ALOS PRISM images, AGRI provides a spatially correct reference image at 2.5 m resolution, with 1-pixel accuracy. The production of AGRI was made feasible by the development and implementation of a long-strip adjustment technique that facilitated a refinement in the georeferencing process of orbit and attitude parameters for orbital segments comprising 50 or more images. The strip of images is effectively treated as a single image. The ground control requirements for such full-pass georeferencing, which does not require the measurement of tie or pass points, amount to only 4–8 GCPs for the complete strip rather than 4 or more per image within the strip. Once the adjusted orbit parameters are obtained, the georeferencing and orthorectification process can revert to a fully automatic image-by-image computation. This paper first overviews AGRI and then describes the longstrip adjustment technique that made its production possible. Testing and validation are then discussed via the example of the georeferencing of a 1527 km single strip of 55 PRISM images. The testing phase verified that 1-pixel accuracy georeferencing could be achieved with the long-strip adjustment approach, and in the production of AGRI accuracy checks against 2460 checkpoints yielded an RMS discrepancy of close to 2.5 m and a 90% Circular Error (CEP90 of 5.5 m.

  18. Efficient content-based low-altitude images correlated network and strips reconstruction

    Science.gov (United States)

    He, Haiqing; You, Qi; Chen, Xiaoyong

    2017-01-01

    The manual intervention method is widely used to reconstruct strips for further aerial triangulation in low-altitude photogrammetry. Clearly the method for fully automatic photogrammetric data processing is not an expected way. In this paper, we explore a content-based approach without manual intervention or external information for strips reconstruction. Feature descriptors in the local spatial patterns are extracted by SIFT to construct vocabulary tree, in which these features are encoded in terms of TF-IDF numerical statistical algorithm to generate new representation for each low-altitude image. Then images correlated network is reconstructed by similarity measure, image matching and geometric graph theory. Finally, strips are reconstructed automatically by tracing straight lines and growing adjacent images gradually. Experimental results show that the proposed approach is highly effective in automatically rearranging strips of lowaltitude images and can provide rough relative orientation for further aerial triangulation.

  19. Gated magnetic resonance imaging of congenital cardiac malformations

    International Nuclear Information System (INIS)

    Fletcher, B.D.; Jocobstein, M.D.; Nelson, A.D.; Riemenschneider, T.A.; Alfidi, R.J.

    1984-01-01

    Magnetic resonance (MR) images of a variety of cardiac malformations in 19 patients aged 1 week to 33 years were obtained using pulse plethysmographic- or ECG-gated spin echo pulse sequences. Coronal, axial, and sagittal images displaying intracardiac structures with excellent spatial and contrast resolution were acquired during systole or diastole. It is concluded that MR will be a valuable noninvasive method of diagnosing congenital heart disease

  20. Cross strip microchannel plate imaging photon counters with high time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stonehill, Laura C [Los Alamos National Laboratory; Shirey, Robert [Los Alamos National Laboratory; Rabin, Michael W [Los Alamos National Laboratory; Thompson, David C [Los Alamos National Laboratory; Siegmund, Oswald H W [U.C. BERKELEY; Vallerga, John V [U.C. BERKELEY; Tremsin, Anton S [U.C. BERKELEY

    2010-01-01

    We have implemented cross strip readout microchannel plate detectors in 18 mm active area format including open face (UV/particle) and sealed tube (optical) configurations. These have been tested with a field programmable gate array based parallel channel electronics for event encoding which can process high input event rates (> 5 MHz) with high spatial resolution. Using small pore MCPs (6 {micro}m) operated in a pair, we achieve gains of >5 x 10{sup 5} which is sufficient to provide spatial resolution of <35 {micro}m FHWM, with self triggered event timing accuracy of {approx}2 ns for sealed tube optical sensors. A peak quantum efficiency of {approx}19% at 500 nm has been achieved with SuperGenII photocathodes that have response over the 400 nm to 900 nm range. Local area counting rates of up to >200 events/mcp pore sec{sup -1} have been attained, along with image linearity and stability to better than 50 {micro}m.

  1. Motion-gated acquisition for in vivo optical imaging

    Science.gov (United States)

    Gioux, Sylvain; Ashitate, Yoshitomo; Hutteman, Merlijn; Frangioni, John V.

    2009-11-01

    Wide-field continuous wave fluorescence imaging, fluorescence lifetime imaging, frequency domain photon migration, and spatially modulated imaging have the potential to provide quantitative measurements in vivo. However, most of these techniques have not yet been successfully translated to the clinic due to challenging environmental constraints. In many circumstances, cardiac and respiratory motion greatly impair image quality and/or quantitative processing. To address this fundamental problem, we have developed a low-cost, field-programmable gate array-based, hardware-only gating device that delivers a phase-locked acquisition window of arbitrary delay and width that is derived from an unlimited number of pseudo-periodic and nonperiodic input signals. All device features can be controlled manually or via USB serial commands. The working range of the device spans the extremes of mouse electrocardiogram (1000 beats per minute) to human respiration (4 breaths per minute), with timing resolution pig heart. This gating device should help to enable the clinical translation of promising new optical imaging technologies.

  2. ECG gated magnetic resonance imaging in cardiovascular disease

    International Nuclear Information System (INIS)

    Park, Jae Hyung; Im, Chung Kie; Han, Man Chung; Kim, Chu Wan

    1985-01-01

    Using KAIS 0.15 Tesla resistive magnetic imaging system, ECG gated magnetic resonance (MR) image of various cardiovascular disease was obtained in 10 patients. The findings of MR image of the cardiovascular disease were analysed and the results were as follows: 1. In 6 cases of acquired and congenital cardiac diseases, there were 2 cases of myocardial infarction, 1 case of mitral stenosis and 3 cases of corrected transportation of great vessels. The others were 3 cases of aortic disease and 1 case of pericardial effusion with lymphoma. 2. Myocardial thinning and left ventricular aneurysm were detected in MR images of myocardial infarction. The left atrium was well delineated and enlarged in the case of mitral stenosis. And segmental analysis was possible in the cases of corrected transposition since all cardiac structures were well delineated anatomically. 3. In aortic diseases, the findings of MR image were enlarged lumen, compressed cardiac chambers in ascending aortic aneurysm, intimal flap, enhanced false lumen in dissecting aneurysm and irregular narrowing of aorta with arterial obstruction in Takayasu's arteritis. 4. Pericardial effusion revealed a conspicuous contrast with neighboring mediastinal fat and cardiac wall due to it low signal encircling cardiac wall. 5. ECG gated MR image is an accurate non-invasive imaging modality for the diagnosis of cardiovascular disease and better results of its clinical application are expected in the future with further development in the imaging system and more clinical experiences

  3. High image quality sub 100 picosecond gated framing camera development

    International Nuclear Information System (INIS)

    Price, R.H.; Wiedwald, J.D.

    1983-01-01

    A major challenge for laser fusion is the study of the symmetry and hydrodynamic stability of imploding fuel capsules. Framed x-radiographs of 10-100 ps duration, excellent image quality, minimum geometrical distortion (< 1%), dynamic range greater than 1000, and more than 200 x 200 pixels are required for this application. Recent progress on a gated proximity focused intensifier which meets these requirements is presented

  4. Detection performance of laser range-gated imaging system

    Science.gov (United States)

    Xu, Jun; Li, Xiaofeng; Luo, Jijun; Zhang, Shengxiu; Xu, Yibin

    2010-10-01

    Laser radar is rapidly developing towards very capable sensors for number of applications such as military sensing and guidance, auto collision avoidance, robotic vision and atmospheric sensing. In this paper, the detection performance of non-scanned Laser Rang-gated (LRG) imaging system is studied. In order to compute the detection range of laser active imaging system, the range equation is derived by using laser illuminating model and considering factors which affect system imaging quality. According to the principle of laser radar and the characters of objects and the detectors in special applied setting, it mainly deduced the non-scanned laser radar range equation of the range-gated system, meanwhile, the SNR model of non-scanned LRG imaging system is set up. Then, relationship of the detection probability, the false alarm probability and the signal-to-noise ratio in the non-scanned LRG imaging system are analyzed, the influence factors of system's performance are pointed out, and the solution is proposed. The detection performance simulation software of non-scanned LRG imaging system is designed with MATLAB and the performance of the imaging system is simulated.

  5. A Portable Colloidal Gold Strip Sensor for Clenbuterol and Ractopamine Using Image Processing Technology

    Directory of Open Access Journals (Sweden)

    Yi Guo

    2013-01-01

    Full Text Available A portable colloidal golden strip sensor for detecting clenbuterol and ractopamine has been developed using image processing technology, as well as a novel strip reader has achieved innovatively with this imaging sensor. Colloidal gold strips for clenbuterol and ractopamine is used as first sensor with given biomedical immunication reaction. After three minutes the target sample dropped on, the color showing in the T line is relative to the content of objects as clenbuterol, this reader can finish many functions like automatic acquit ion of colored strip image, quantatively analysis of the color lines including the control line and test line, and data storage and transfer to computer. The system is integrated image collection, pattern recognition and real-time colloidal gold quantitative measurement. In experiment, clenbuterol and ractopamine standard substance with concentration from 0 ppb to 10 ppb is prepared and tested, the result reveals that standard solutions of clenbuterol and ractopamine have a good secondary fitting character with color degree (R2 is up to 0.99 and 0.98. Besides, through standard sample addition to the object negative substance, good recovery results are obtained up to 98 %. Above all, an optical sensor for colloidal strip measure is capable of determining the content of clenbuterol and ractopamine, it is likely to apply to quantatively identifying of similar reaction of colloidal golden strips.

  6. Evaluation of the risk of a stripping perforation with gates-glidden drills: serial versus crown-down sequences

    Directory of Open Access Journals (Sweden)

    Tauby Coutinho-Filho

    2008-03-01

    Full Text Available The aim of this study was to evaluate the remaining dentine/cementum thickness using Gates-Glidden burs in serial and crown-down sequences and to observe which of the two sequences is the safest for preparing mesial roots of molars. Thirty-six left and right human mandibular first molars were selected. Standard access cavities were made and initially explored with Flexofiles sizes 10 and 15 until the tip was visible at the apex. The teeth were embedded in a muffle specially developed for this study using a PVC tube with two parallel metal rods in its lid. Each tooth-block was sectioned 3 mm apically to the furcation using a low-speed saw with a diamond disc. The tooth-block was examined under a microscope and an initial image was captured by a digital video system with 8 X and 12 X magnifications. Finally, the tooth-blocks were reassembled in the muffle so that the canals could be instrumented. After instrumentation the area of each mesial canal as well as the smallest distance to the root furcation were measured again. The mesio-buccal canals (crown-down order and the mesio-lingual canals (serial sequence presented an average area of 0.46 ± 0.16 mm² and 0.88 ± 0.27 mm² (P < 0.01, respectively. The mean values of the smallest distance to the furcation for the mesio-buccal and mesio-lingual canals were 0.66 ± 0.19 mm and 0.39 ± 0.13 mm (P < 0.01, respectively. The remaining dentine/cementum thickness using Gates-Glidden burs was greater in the crown-down sequence than in the serial sequence.

  7. SU-C-204-06: Surface Imaging for the Set-Up of Proton Post-Mastectomy Chestwall Irradiation: Gated Images Vs Non Gated Images

    Energy Technology Data Exchange (ETDEWEB)

    Batin, E; Depauw, N; MacDonald, S; Lu, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: Historically, the set-up for proton post-mastectomy chestwall irradiation at our institution started with positioning the patient using tattoos and lasers. One or more rounds of orthogonal X-rays at gantry 0° and beamline X-ray at treatment gantry angle were then taken to finalize the set-up position. As chestwall targets are shallow and superficial, surface imaging is a promising tool for set-up and needs to be investigated Methods: The orthogonal imaging was entirely replaced by AlignRT™ (ART) images. The beamline X-Ray image is kept as a confirmation, based primarily on three opaque markers placed on skin surface instead of bony anatomy. In the first phase of the process, ART gated images were used to set-up the patient and the same specific point of the breathing curve was used every day. The moves (translations and rotations) computed for each point of the breathing curve during the first five fractions were analyzed for ten patients. During a second phase of the study, ART gated images were replaced by ART non-gated images combined with real-time monitoring. In both cases, ART images were acquired just before treatment to access the patient position compare to the non-gated CT. Results: The average difference between the maximum move and the minimum move depending on the chosen breathing curve point was less than 1.7 mm for all translations and less than 0.7° for all rotations. The average position discrepancy over the course of treatment obtained by ART non gated images combined to real-time monitoring taken before treatment to the planning CT were smaller than the average position discrepancy obtained using ART gated images. The X-Ray validation images show similar results with both ART imaging process. Conclusion: The use of ART non gated images combined with real time imaging allows positioning post-mastectomy chestwall patients in less than 3 mm / 1°.

  8. SU-C-204-06: Surface Imaging for the Set-Up of Proton Post-Mastectomy Chestwall Irradiation: Gated Images Vs Non Gated Images

    International Nuclear Information System (INIS)

    Batin, E; Depauw, N; MacDonald, S; Lu, H

    2015-01-01

    Purpose: Historically, the set-up for proton post-mastectomy chestwall irradiation at our institution started with positioning the patient using tattoos and lasers. One or more rounds of orthogonal X-rays at gantry 0° and beamline X-ray at treatment gantry angle were then taken to finalize the set-up position. As chestwall targets are shallow and superficial, surface imaging is a promising tool for set-up and needs to be investigated Methods: The orthogonal imaging was entirely replaced by AlignRT™ (ART) images. The beamline X-Ray image is kept as a confirmation, based primarily on three opaque markers placed on skin surface instead of bony anatomy. In the first phase of the process, ART gated images were used to set-up the patient and the same specific point of the breathing curve was used every day. The moves (translations and rotations) computed for each point of the breathing curve during the first five fractions were analyzed for ten patients. During a second phase of the study, ART gated images were replaced by ART non-gated images combined with real-time monitoring. In both cases, ART images were acquired just before treatment to access the patient position compare to the non-gated CT. Results: The average difference between the maximum move and the minimum move depending on the chosen breathing curve point was less than 1.7 mm for all translations and less than 0.7° for all rotations. The average position discrepancy over the course of treatment obtained by ART non gated images combined to real-time monitoring taken before treatment to the planning CT were smaller than the average position discrepancy obtained using ART gated images. The X-Ray validation images show similar results with both ART imaging process. Conclusion: The use of ART non gated images combined with real time imaging allows positioning post-mastectomy chestwall patients in less than 3 mm / 1°

  9. Range-gated imaging for near-field target identification

    Energy Technology Data Exchange (ETDEWEB)

    Yates, G.J.; Gallegos, R.A.; McDonald, T.E. [and others

    1996-12-01

    The combination of two complementary technologies developed independently at Los Alamos National Laboratory (LANL) and Sandia National Laboratory (SNL) has demonstrated feasibility of target detection and image capture in a highly light-scattering, medium. The technique uses a compact SNL developed Photoconductive Semiconductor Switch/Laser Diode Array (PCSS/LDA) for short-range (distances of 8 to 10 m) large Field-Of-View (FOV) target illumination. Generation of a time-correlated echo signal is accomplished using a photodiode. The return image signal is recorded with a high-speed shuttered Micro-Channel-Plate Image Intensifier (MCPII), declined by LANL and manufactured by Philips Photonics. The MCPII is rated using a high-frequency impedance-matching microstrip design to produce 150 to 200 ps duration optical exposures. The ultra first shuttering producer depth resolution of a few inches along the optic axis between the MCPII and the target, producing enhanced target images effectively deconvolved from noise components from the scattering medium in the FOV. The images from the MCPII are recorded with an RS-170 Charge-Coupled-Device camera and a Big Sky, Beam Code, PC-based digitizer frame grabber and analysis package. Laser pulse data were obtained by the but jitter problems and spectral mismatches between diode spectral emission wavelength and MCPII photocathode spectral sensitivity prevented the capture of fast gating imaging with this demonstration system. Continued development of the system is underway.

  10. Imaging ballistic carrier trajectories in graphene using scanning gate microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Sei; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Dou, Ziwei; Wang, Shu-Wei; Smith, Charles G.; Connolly, Malcolm R., E-mail: mrc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-12-14

    We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.

  11. Subtraction imaging of the ECG gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Tanegashima, K.; Fukui, M.; Hyodo, H.

    1987-05-01

    The subtracting manipulation of contrast-enhanced gated cardiac CT (GCCT) images was experimentally studied with TCT 60A - 30 type (Toshiba) for clinical use, thereby reducing the amount of contrast medium (CM). Initially the optimum relationship between the concentration of CM and its injected velocity was determined using the model of resected canine hearts and in actual dogs. The emphasized good-subtracted images were obtained when the difference of CT values was approximately 40 H.U. between cardiac cavity and myocardium. Such condition was feasible in the use of 25 % Diatrizoic acid and its injected velocity of 0.02 ml/kg/sec. Finally the reduction of the amount of CM by 1/3 became possible in clinical settings. The method is applicable to multi-slice GCCT in various heart diseases.

  12. The 2D-Micro Hole & Strip Plate in CF4 atmosphere aiming neutron imaging

    Science.gov (United States)

    Natal da Luz, H.; Gouvêa, A. L.; Mir, J. A.; dos Santos, J. M. F.; Veloso, J. F. C. A.

    2009-12-01

    The Micro Hole & Strip Plate (MHSP) achieves gains above 300 in tetrafluoromethane (CF4) at 2.6 bar, making it suitable for neutron detection. Over the past few years, the imaging capabilities of the MHSP have been developed, leading to the 2D-MHSP. In this device, the position coordinates are determined using the principle of resistive charge division. The GEM-side was specially patterned in strips interconnected by a resistive strip for one of the coordinates and, in the MS-side, the anode strips were also interconnected by another resistive strip. By applying a trivial center of mass algorithm it is possible to obtain both coordinates and the energy of each detected event. The ability to register position and energy for each event can be very useful for event validation in neutron detection. In this work, the performance of the 2D-MHSP in CF4 is investigated. The Modular Transfer Function (MTF) is presented, showing that position resolutions of 700μm in x and 1 mm in the y-direction are obtained with X-rays. It is also demonstrated that resolutions below the proton range (1 mm) are possible at 2.6 bar CF4, demonstrating that the MHSP can be a cost effective choice for neutron imaging.

  13. Robust skull stripping using multiple MR image contrasts insensitive to pathology.

    Science.gov (United States)

    Roy, Snehashis; Butman, John A; Pham, Dzung L

    2017-02-01

    Automatic skull-stripping or brain extraction of magnetic resonance (MR) images is often a fundamental step in many neuroimage processing pipelines. The accuracy of subsequent image processing relies on the accuracy of the skull-stripping. Although many automated stripping methods have been proposed in the past, it is still an active area of research particularly in the context of brain pathology. Most stripping methods are validated on T 1 -w MR images of normal brains, especially because high resolution T 1 -w sequences are widely acquired and ground truth manual brain mask segmentations are publicly available for normal brains. However, different MR acquisition protocols can provide complementary information about the brain tissues, which can be exploited for better distinction between brain, cerebrospinal fluid, and unwanted tissues such as skull, dura, marrow, or fat. This is especially true in the presence of pathology, where hemorrhages or other types of lesions can have similar intensities as skull in a T 1 -w image. In this paper, we propose a sparse patch based Multi-cONtrast brain STRipping method (MONSTR), 2 where non-local patch information from one or more atlases, which contain multiple MR sequences and reference delineations of brain masks, are combined to generate a target brain mask. We compared MONSTR with four state-of-the-art, publicly available methods: BEaST, SPECTRE, ROBEX, and OptiBET. We evaluated the performance of these methods on 6 datasets consisting of both healthy subjects and patients with various pathologies. Three datasets (ADNI, MRBrainS, NAMIC) are publicly available, consisting of 44 healthy volunteers and 10 patients with schizophrenia. Other three in-house datasets, comprising 87 subjects in total, consisted of patients with mild to severe traumatic brain injury, brain tumors, and various movement disorders. A combination of T 1 -w, T 2 -w were used to skull-strip these datasets. We show significant improvement in stripping

  14. HST IMAGING OF DUST STRUCTURES AND STARS IN THE RAM PRESSURE STRIPPED VIRGO SPIRALS NGC 4402 AND NGC 4522: STRIPPED FROM THE OUTSIDE IN WITH DENSE CLOUD DECOUPLING

    International Nuclear Information System (INIS)

    Abramson, A.; Kenney, J.; Crowl, H.; Tal, T.

    2016-01-01

    We describe and constrain the origins of interstellar medium (ISM) structures likely created by ongoing intracluster medium (ICM) ram pressure stripping in two Virgo Cluster spirals, NGC 4522 and NGC 4402, using Hubble Space Telescope (HST) BVI images of dust extinction and stars, as well as supplementary H i, H α , and radio continuum images. With a spatial resolution of ∼10 pc in the HST images, this is the highest-resolution study to date of the physical processes that occur during an ICM–ISM ram pressure stripping interaction, ram pressure stripping's effects on the multi-phase, multi-density ISM, and the formation and evolution of ram-pressure-stripped tails. In dust extinction, we view the leading side of NGC 4402 and the trailing side of NGC 4522, and so we see distinct types of features in both. In both galaxies, we identify some regions where dense clouds are decoupling or have decoupled and others where it appears that kiloparsec-sized sections of the ISM are moving coherently. NGC 4522 has experienced stronger, more recent pressure and has the “jellyfish” morphology characteristic of some ram-pressure-stripped galaxies. Its stripped tail extends up from the disk plane in continuous upturns of dust and stars curving up to ∼2 kpc above the disk plane. On the other side of the galaxy, there is a kinematically and morphologically distinct extraplanar arm of young, blue stars and ISM above a mostly stripped portion of the disk, and between it and the disk plane are decoupled dust clouds that have not been completely stripped. The leading side of NGC 4402 contains two kiloparsec-scale linear dust filaments with complex substructure that have partially decoupled from the surrounding ISM. NGC 4402 also contains long dust ridges, suggesting that large parts of the ISM are being pushed out at once. Both galaxies contain long ridges of polarized radio continuum emission indicating the presence of large-scale, ordered magnetic fields. We propose that

  15. Direct observation of the current distribution in thin superconducting strips using magneto-optic imaging

    International Nuclear Information System (INIS)

    Johansen, T.H.; Baziljevich, M.; Bratsberg, H.; Galperin, Y.; Lindelof, P.E.; Shen, Y.; Vase, P.

    1996-01-01

    Magneto-optic imaging was used for a detailed study of the flux and current distribution of a long thin strip of YBa 2 Cu 3 O 7-δ placed in a perpendicular external magnetic field. The inverse magnetic problem, i.e., that of deriving from a field map the underlying current distribution, is formulated and solved for the strip geometry. Applying the inversion to the magneto-optically found field map we find on a model-independent basis the current distribution across the strip to be in remarkable agreement with the profile predicted by the Bean model. The paper also presents results on the behavior of the Bi-doped YIG film with in-plane anisotropy which we use as field indicator, explaining why previous measurements of flux density profiles have displayed surprisingly large deviations from the expected behavior. copyright 1996 The American Physical Society

  16. Study on preprocessing of surface defect images of cold steel strip

    Directory of Open Access Journals (Sweden)

    Xiaoye GE

    2016-06-01

    Full Text Available The image preprocessing is an important part in the field of digital image processing, and it’s also the premise for the image detection of cold steel strip surface defects. The factors including the complicated on-site environment and the distortion of the optical system will cause image degradation, which will directly affects the feature extraction and classification of the images. Aiming at these problems, a method combining the adaptive median filter and homomorphic filter is proposed to preprocess the image. The adaptive median filter is effective for image denoising, and the Gaussian homomorphic filter can steadily remove the nonuniform illumination of images. Finally, the original and preprocessed images and their features are analyzed and compared. The results show that this method can improve the image quality effectively.

  17. Gated listmode acquisition with the QuadHIDAC animal PET to image mouse hearts

    International Nuclear Information System (INIS)

    Schaefers, K.P.; Lang, N.; Stegger, L.; Schober, O.; Schaefers, M.

    2006-01-01

    Purpose: the aim of this study was to develop ECG and respiratory gating in combination with listmode acquisition for the quadHIDAC small-animal PET scanner. Methods: ECG and respiratory gating was realized with the help of an external trigger device (BioVET) synchronized with the listmode acquisition. Listmode data of a mouse acquisition (injected with 6.5 MBq of 18 F-FDG) were sorted according to three different gating definitions: 12 cardiac gates, 8 respiratory gates and a combination of 8 cardiac and 8 respiratory gates. Images were reconstructed with filtered back-projection (ramp filter), and parameters like left ventricular wall thickness (WT), wall-to-wall separation (WS) and blood to myocardium activity ratios (BMR) were calculated. Results: cardiac gated images show improvement of all parameters (WT 2.6 mm, WS 4.1 mm, BRM 2.3) in diastole compared to ungated images (WT 3.0 mm, WS 3.4 mm, BMR 1.3). Respiratory gating had little effect on calculated parameters. Conclusion: ECG gating with the quadHIDAC can improve myocardial image quality in mice. This could have a major impact on the calculation of an image-derived input function for kinetic modelling. (orig.)

  18. Sampling Number Effects in 2D and Range Imaging of Range-gated Acquisition

    International Nuclear Information System (INIS)

    Kwon, Seong-Ouk; Park, Seung-Kyu; Baik, Sung-Hoon; Cho, Jai-Wan; Jeong, Kyung-Min

    2015-01-01

    In this paper, we analyzed the number effects of sampling images for making a 2D image and a range image from acquired RGI images. We analyzed the number effects of RGI images for making a 2D image and a range image using a RGI vision system. As the results, 2D image quality was not much depended on the number of sampling images but on how much well extract efficient RGI images. But, the number of RGI images was important for making a range image because range image quality was proportional to the number of RGI images. Image acquiring in a monitoring area of nuclear industry is an important function for safety inspection and preparing appropriate control plans. To overcome the non-visualization problem caused by airborne obstacle particles, vision systems should have extra-functions, such as active illumination lightening through disturbance airborne particles. One of these powerful active vision systems is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from raining or smoking environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and 3D images is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through airborne disturbance particles. Thus, in contrast to passive conventional vision systems, the RGI active vision technology robust for low-visibility environments

  19. Sampling Number Effects in 2D and Range Imaging of Range-gated Acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seong-Ouk; Park, Seung-Kyu; Baik, Sung-Hoon; Cho, Jai-Wan; Jeong, Kyung-Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, we analyzed the number effects of sampling images for making a 2D image and a range image from acquired RGI images. We analyzed the number effects of RGI images for making a 2D image and a range image using a RGI vision system. As the results, 2D image quality was not much depended on the number of sampling images but on how much well extract efficient RGI images. But, the number of RGI images was important for making a range image because range image quality was proportional to the number of RGI images. Image acquiring in a monitoring area of nuclear industry is an important function for safety inspection and preparing appropriate control plans. To overcome the non-visualization problem caused by airborne obstacle particles, vision systems should have extra-functions, such as active illumination lightening through disturbance airborne particles. One of these powerful active vision systems is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from raining or smoking environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and 3D images is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through airborne disturbance particles. Thus, in contrast to passive conventional vision systems, the RGI active vision technology robust for low-visibility environments.

  20. Tunable Molecular Logic Gates Designed for Imaging Released Neurotransmitters.

    Science.gov (United States)

    Klockow, Jessica L; Hettie, Kenneth S; Secor, Kristen E; Barman, Dipti N; Glass, Timothy E

    2015-08-03

    Tunable dual-analyte fluorescent molecular logic gates (ExoSensors) were designed for the purpose of imaging select vesicular primary-amine neurotransmitters that are released from secretory vesicles upon exocytosis. ExoSensors are based on the coumarin-3-aldehyde scaffold and rely on both neurotransmitter binding and the change in environmental pH associated with exocytosis to afford a unique turn-on fluorescence output. A pH-functionality was directly integrated into the fluorophore π-system of the scaffold, thereby allowing for an enhanced fluorescence output upon the release of labeled neurotransmitters. By altering the pH-sensitive unit with various electron-donating and -withdrawing sulfonamide substituents, we identified a correlation between the pKa of the pH-sensitive group and the fluorescence output from the activated fluorophore. In doing so, we achieved a twelvefold fluorescence enhancement upon evaluating the ExoSensors under conditions that mimic exocytosis. ExoSensors are aptly suited to serve as molecular imaging tools that allow for the direct visualization of only the neurotransmitters that are released from secretory vesicles upon exocytosis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 3D super resolution range-gated imaging for canopy reconstruction and measurement

    Science.gov (United States)

    Huang, Hantao; Wang, Xinwei; Sun, Liang; Lei, Pingshun; Fan, Songtao; Zhou, Yan

    2018-01-01

    In this paper, we proposed a method of canopy reconstruction and measurement based on 3D super resolution range-gated imaging. In this method, high resolution 2D intensity images are grasped by active gate imaging, and 3D images of canopy are reconstructed by triangular-range-intensity correlation algorithm at the same time. A range-gated laser imaging system(RGLIS) is established based on 808 nm diode laser and gated intensified charge-coupled device (ICCD) camera with 1392´1040 pixels. The proof experiments have been performed for potted plants located 75m away and trees located 165m away. The experiments show it that can acquire more than 1 million points per frame, and 3D imaging has the spatial resolution about 0.3mm at the distance of 75m and the distance accuracy about 10 cm. This research is beneficial for high speed acquisition of canopy structure and non-destructive canopy measurement.

  2. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI

    NARCIS (Netherlands)

    Motaal, Abdallah G.; Noorman, Nils; de Graaf, Wolter L.; Hoerr, Verena; Florack, Luc M. J.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously

  3. Cardiac tumours: non invasive detection and assessment by gated cardiac blood pool radionuclide imaging

    International Nuclear Information System (INIS)

    Pitcher, D.; Wainwright, R.; Brennand-Roper, D.; Deverall, P.; Sowton, E.; Maisey, M.

    1980-01-01

    Four patients with cardiac tumours were investigated by gated cardiac blood pool radionuclide imaging and echocardiography. Contrast angiocardiography was performed in three of the cases. Two left atrial tumours were detected by all three techniques. In one of these cases echocardiography alone showed additional mitral valve stenosis, but isotope imaging indicated tumour size more accurately. A large septal mass was detected by all three methods. In this patient echocardiography showed evidence of left ventricular outflow obstruction, confirmed at cardiac catheterisation, but gated isotope imaging provided a more detailed assessment of the abnormal cardiac anatomy. In the fourth case gated isotope imaging detected a large right ventricular tumour which had not been identified by echocardiography. Gated cardiac blood pool isotope imaging is a complementary technique to echocardiography for the non-invasive detection and assessment of cardiac tumours. (author)

  4. Imaging the Hidden Modes of Ultrathin Plasmonic Strip Antennas by Cathodoluminescence

    KAUST Repository

    Barnard, Edward S.

    2011-10-12

    We perform spectrally resolved cathodoluminescence (CL) imaging nanoscopy using a 30 keV electron beam to identify the resonant modes of an ultrathin (20 nm), laterally tapered plasmonic Ag nanostrip antenna. We resolve with deep-subwavelength resolution four antenna resonances (resonance orders m = 2-5) that are ascribed to surface plasmon polariton standing waves that are confined on the strip. We map the local density of states on the strip surface and show that it has contributions from symmetric and antisymmetric surface plasmon polariton modes, each with a very different mode index. This work illustrates the power of CL experiments that can visualize hidden modes that for symmetry reasons have been elusive in optical light scattering experiments. © 2011 American Chemical Society.

  5. Self-gating MR imaging of the fetal heart: comparison with real cardiac triggering

    International Nuclear Information System (INIS)

    Yamamura, Jin; Frisch, Michael; Ecker, Hannes; Adam, Gerhard; Wedegaertner, Ulrike; Graessner, Joachim; Hecher, Kurt

    2011-01-01

    To investigate the self-gating technique for MR imaging of the fetal heart in a sheep model. MR images of 6 fetal sheep heart were obtained at 1.5T. For self-gating MRI of the fetal heart a cine SSFP in short axis, two and four chamber view was used. Self-gated images were compared with real cardiac triggered MR images (pulse-wave triggering). MRI of the fetal heart was performed using both techniques simultaneously. Image quality was assessed and the left ventricular volume and function were measured and compared. Compared with pulse-wave triggering, the self-gating technique produced slightly inferior images with artifacts. Especially the atrial septum could not be so clearly depicted. The contraction of the fetal heart was shown in cine sequences in both techniques. The average blood volumes could be measured with both techniques with no significant difference: at end-systole 3.1 ml (SD± 0.2), at end-diastole 4.9 ml (±0.2), with ejection fractions at 38.6%, respectively 39%. Both self-gating and pulse-wave triggered cardiac MRI of the fetal heart allowed the evaluation of anatomical structures and functional information. Images obtained by self-gating technique were slightly inferior than the pulse-wave triggered MRI. (orig.)

  6. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    International Nuclear Information System (INIS)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad; Zacharapoulos, Nicholas; Pepelea, Mark; Klahr, Paul; Yu, Cedric X.

    2005-01-01

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CT scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging

  7. Influence of range-gated intensifiers on underwater imaging system SNR

    Science.gov (United States)

    Wang, Xia; Hu, Ling; Zhi, Qiang; Chen, Zhen-yue; Jin, Wei-qi

    2013-08-01

    Range-gated technology has been a hot research field in recent years due to its high effective back scattering eliminating. As a result, it can enhance the contrast between a target and its background and extent the working distance of the imaging system. The underwater imaging system is required to have the ability to image in low light level conditions, as well as the ability to eliminate the back scattering effect, which means that the receiver has to be high-speed external trigger function, high resolution, high sensitivity, low noise, higher gain dynamic range. When it comes to an intensifier, the noise characteristics directly restrict the observation effect and range of the imaging system. The background noise may decrease the image contrast and sharpness, even covering the signal making it impossible to recognize the target. So it is quite important to investigate the noise characteristics of intensifiers. SNR is an important parameter reflecting the noise features of a system. Through the use of underwater laser range-gated imaging prediction model, and according to the linear SNR system theory, the gated imaging noise performance of the present market adopted super second generation and generation Ⅲ intensifiers were theoretically analyzed. Based on the active laser underwater range-gated imaging model, the effect to the system by gated intensifiers and the relationship between the system SNR and MTF were studied. Through theoretical and simulation analysis to the image intensifier background noise and SNR, the different influence on system SNR by super second generation and generation Ⅲ ICCD was obtained. Range-gated system SNR formula was put forward, and compared the different effect influence on the system by using two kind of ICCDs was compared. According to the matlab simulation, a detailed analysis was carried out theoretically. All the work in this paper lays a theoretical foundation to further eliminating back scattering effect, improving

  8. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    Science.gov (United States)

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-04-01

    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping

  9. Hybrid ECG-gated versus non-gated 512-slice CT angiography of the aorta and coronary artery: image quality and effect of a motion correction algorithm.

    Science.gov (United States)

    Lee, Ji Won; Kim, Chang Won; Lee, Geewon; Lee, Han Cheol; Kim, Sang-Pil; Choi, Bum Sung; Jeong, Yeon Joo

    2018-02-01

    Background Using the hybrid electrocardiogram (ECG)-gated computed tomography (CT) technique, assessment of entire aorta, coronary arteries, and aortic valve can be possible using single-bolus contrast administration within a single acquisition. Purpose To compare the image quality of hybrid ECG-gated and non-gated CT angiography of the aorta and evaluate the effect of a motion correction algorithm (MCA) on coronary artery image quality in a hybrid ECG-gated aorta CT group. Material and Methods In total, 104 patients (76 men; mean age = 65.8 years) prospectively randomized into two groups (Group 1 = hybrid ECG-gated CT; Group 2 = non-gated CT) underwent wide-detector array aorta CT. Image quality, assessed using a four-point scale, was compared between the groups. Coronary artery image quality was compared between the conventional reconstruction and motion correction reconstruction subgroups in Group 1. Results Group 1 showed significant advantages over Group 2 in aortic wall, cardiac chamber, aortic valve, coronary ostia, and main coronary arteries image quality (all P ECG-gated CT significantly improved the heart and aortic wall image quality and the MCA can further improve the image quality and interpretability of coronary arteries.

  10. SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories

    Science.gov (United States)

    Zhang, M.; Collioud, A.; Charlot, P.

    2018-02-01

    We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.

  11. Varicose vein stripping

    Science.gov (United States)

    ... stripping; Venous reflux - vein stripping; Venous ulcer - veins Patient Instructions Surgical wound care - open Varicose veins - what to ask your doctor Images Circulatory system References American Family Physician. Management of varicose veins. www.aafp.org/afp/2008/ ...

  12. A digital X-ray imaging system based on silicon strip detectors working in edge-on configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bolanos, L. [CEADEN, Calle 30 502 e/ 5ta y 7ma Avenida, Playa, Ciudad Habana (Cuba); Boscardin, M. [IRST, Fondazione Bruno Kessler, Via Sommarive 18, Povo, 38100 Trento (Italy); Cabal, A.E. [CEADEN, Calle 30 502 e/ 5ta y 7ma Avenida, Playa, Ciudad Habana (Cuba); Diaz, M. [InSTEC, Ave. Salvador Allende esq. Luaces, Quinta de los Molinos, Ciudad Habana (Cuba); Grybos, P.; Maj, P. [Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Measurement and Instrumentation, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Prino, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Ramello, L. [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale, Via T. Michel 11, 15100 Alessandria (Italy)], E-mail: luciano.ramello@mfn.unipmn.it; Szczygiel, R. [Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Measurement and Instrumentation, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2009-09-21

    We present the energy resolution and imaging performance of a digital X-ray imaging system based on a 512-strip silicon strip detector (SSD) working in the edge-on configuration. The SSDs tested in the system are 300 {mu}m thick with 1 or 2-cm-long strips and 100 {mu}m pitch. To ensure a very small dead area of the SSD working in edge-on configuration, the detector is cut perpendicular to the strips at a distance of only 20 {mu}m from the end of the strips. The 512-strip silicon detector is read out by eight 64-channel integrated circuits called DEDIX [Grybos et al., IEEE Trans. Nucl. Sci. NS-54 (2007) 1207]. The DEDIX IC operates in a single photon counting mode with two independent amplitude discriminators per channel. The readout electronic channel connected to a detector with effective input capacitance of about 2 pF has an average equivalent noise charge (ENC) of about 163 el. rms and is able to count 1 Mcps of average rate of input pulses. The system consisting of 512 channels has an excellent channel-to-channel uniformity-the effective threshold spread calculated to the charge-sensitive amplifier inputs is 12 el. rms (at one sigma level). With this system a few test images of a phantom have been taken in the 10-30 keV energy range.

  13. A novel dual gating approach using joint inertial sensors: implications for cardiac PET imaging

    Science.gov (United States)

    Jafari Tadi, Mojtaba; Teuho, Jarmo; Lehtonen, Eero; Saraste, Antti; Pänkäälä, Mikko; Koivisto, Tero; Teräs, Mika

    2017-10-01

    Positron emission tomography (PET) is a non-invasive imaging technique which may be considered as the state of art for the examination of cardiac inflammation due to atherosclerosis. A fundamental limitation of PET is that cardiac and respiratory motions reduce the quality of the achieved images. Current approaches for motion compensation involve gating the PET data based on the timing of quiescent periods of cardiac and respiratory cycles. In this study, we present a novel gating method called microelectromechanical (MEMS) dual gating which relies on joint non-electrical sensors, i.e. tri-axial accelerometer and gyroscope. This approach can be used for optimized selection of quiescent phases of cardiac and respiratory cycles. Cardiomechanical activity according to echocardiography observations was investigated to confirm whether this dual sensor solution can provide accurate trigger timings for cardiac gating. Additionally, longitudinal chest motions originating from breathing were measured by accelerometric- and gyroscopic-derived respiratory (ADR and GDR) tracking. The ADR and GDR signals were evaluated against Varian real-time position management (RPM) signals in terms of amplitude and phase. Accordingly, high linear correlation and agreement were achieved between the reference electrocardiography, RPM, and measured MEMS signals. We also performed a Ge-68 phantom study to evaluate possible metal artifacts caused by the integrated read-out electronics including mechanical sensors and semiconductors. The reconstructed phantom images did not reveal any image artifacts. Thus, it was concluded that MEMS-driven dual gating can be used in PET studies without an effect on the quantitative or visual accuracy of the PET images. Finally, the applicability of MEMS dual gating for cardiac PET imaging was investigated with two atherosclerosis patients. Dual gated PET images were successfully reconstructed using only MEMS signals and both qualitative and quantitative

  14. Spatiotemporal processing of gated cardiac SPECT images using deformable mesh modeling

    International Nuclear Information System (INIS)

    Brankov, Jovan G.; Yang Yongyi; Wernick, Miles N.

    2005-01-01

    In this paper we present a spatiotemporal processing approach, based on deformable mesh modeling, for noise reduction in gated cardiac single-photon emission computed tomography images. Because of the partial volume effect (PVE), clinical cardiac-gated perfusion images exhibit a phenomenon known as brightening--the myocardium appears to become brighter as the heart wall thickens. Although brightening is an artifact, it serves as an important diagnostic feature for assessment of wall thickening in clinical practice. Our proposed processing algorithm aims to preserve this important diagnostic feature while reducing the noise level in the images. The proposed algorithm is based on the use of a deformable mesh for modeling the cardiac motion in a gated cardiac sequence, based on which the images are processed by smoothing along space-time trajectories of object points while taking into account the PVE. Our experiments demonstrate that the proposed algorithm can yield significantly more-accurate results than several existing methods

  15. Database Description - Open TG-GATEs Pathological Image Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Open TG-GATEs Pathological Image Database Database Description General information of database Database... name Open TG-GATEs Pathological Image Database Alternative name - DOI 10.18908/lsdba.nbdc00954-0...iomedical Innovation 7-6-8, Saito-asagi, Ibaraki-city, Osaka 567-0085, Japan TEL:81-72-641-9826 Email: Database... classification Toxicogenomics Database Organism Taxonomy Name: Rattus norvegi...cus Taxonomy ID: 10116 Database description On the pathological image database, over 53,000 high-resolution

  16. Feedback circuit design of an auto-gating power supply for low-light-level image intensifier

    Science.gov (United States)

    Yang, Ye; Yan, Bo; Zhi, Qiang; Ni, Xiao-bing; Li, Jun-guo; Wang, Yu; Yao, Ze

    2015-11-01

    This paper introduces the basic principle of auto-gating power supply which using a hybrid automatic brightness control scheme. By the analysis of current as image intensifier to special requirements of auto-gating power supply, a feedback circuit of the auto-gating power supply is analyzed. Find out the reason of the screen flash after the auto-gating power supply assembled image intensifier. This paper designed a feedback circuit which can shorten the response time of auto-gating power supply and improve screen slight flicker phenomenon which the human eye can distinguish under the high intensity of illumination.

  17. Nanosecond Time-Resolved Microscopic Gate-Modulation Imaging of Polycrystalline Organic Thin-Film Transistors

    Science.gov (United States)

    Matsuoka, Satoshi; Tsutsumi, Jun'ya; Matsui, Hiroyuki; Kamata, Toshihide; Hasegawa, Tatsuo

    2018-02-01

    We develop a time-resolved microscopic gate-modulation (μ GM ) imaging technique to investigate the temporal evolution of the channel current and accumulated charges in polycrystalline pentacene thin-film transistors (TFTs). A time resolution of as high as 50 ns is achieved by using a fast image-intensifier system that could amplify a series of instantaneous optical microscopic images acquired at various time intervals after the stepped gate bias is switched on. The differential images obtained by subtracting the gate-off image allows us to acquire a series of temporal μ GM images that clearly show the gradual propagation of both channel charges and leaked gate fields within the polycrystalline channel layers. The frontal positions for the propagations of both channel charges and leaked gate fields coincide at all the time intervals, demonstrating that the layered gate dielectric capacitors are successively transversely charged up along the direction of current propagation. The initial μ GM images also indicate that the electric field effect is originally concentrated around a limited area with a width of a few micrometers bordering the channel-electrode interface, and that the field intensity reaches a maximum after 200 ns and then decays. The time required for charge propagation over the whole channel region with a length of 100 μ m is estimated at about 900 ns, which is consistent with the measured field-effect mobility and the temporal-response model for organic TFTs. The effect of grain boundaries can be also visualized by comparison of the μ GM images for the transient and the steady states, which confirms that the potential barriers at the grain boundaries cause the transient shift in the accumulated charges or the transient accumulation of additional charges around the grain boundaries.

  18. Underwater range-gated laser imaging enhancement based on contrast-limited adaptive histogram equalization

    Science.gov (United States)

    Sun, Liang; Wang, Xinwei; Liu, Xiaoquan; Ren, Pengdao; Lei, Pingshun; You, Ruirong; He, Jun; Zhou, Yan; Liu, Yuliang

    2016-10-01

    Underwater range-gated laser imaging (URGLI) still has some problems like un-uniform light, low brightness and contrast. To solve the problems, a variant of adaptive histogram equalization called contrast limited adaptive histogram equalization (CLAHE) is proposed in this paper. In experiment, using the CLAHE and HE to enhance the images, and evaluate the quality of enhanced images by peak signal to noise ratio (PSNR) and contrast. The result shows that the HE gets the images over-enhanced, while the CLAHE has a good enhancement with compressing the over-enhancement and the influence of un-uniform light. The experimental results demonstrate that the CLAHE has a good result of image enhancement for target detection by underwater range-gated laser imaging system.

  19. Respiratory and cardiac motion correction in dual gated PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi; Monnier, Florian [LaTIM, INSERM, UMR 1101, Brest (France); Odille, Freedy; Felblinger, Jacques [INSERM U947, University of Nancy, Nancy (France); Lamare, Frederic [INCIA, UMR5287, CNRS, CHU Bordeaux, Bordeaux (France); Visvikis, Dimitris [LaTIM, INSERM, UMR 1101, Brest (France)

    2015-05-18

    Respiratory and cardiac motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies involve the use of double gated acquisitions which lead to low signal-to-noise ratio (SNR) and to issues concerning the combination of cardiac and respiratory frames. The objective of this work is to use a generalized reconstruction by inversion of coupled systems (GRICS) approach, previously used for PET/MR respiratory motion correction, combined with a cardiac phase signal and a reconstruction incorporated PET motion correction approach in order to reconstruct motion free images from dual gated PET acquisitions. The GRICS method consists of formulating parallel MRI in the presence of patient motion as a coupled inverse problem. Its resolution, using a fixed-point method, allows the reconstructed image to be improved using a motion model constructed from the raw MR data and two respiratory belts. GRICS obtained respiratory displacements are interpolated using the cardiac phase derived from an ECG to model simultaneous cardiac and respiratory motion. Three different volunteer datasets (4DMR acquisitions) were used for evaluation. GATE was used to simulate 4DPET datasets corresponding to the acquired 4DMR images. Simulated data were subsequently binned using 16 cardiac phases (M1) vs diastole only (M2), in combination with 8 respiratory amplitude gates. Respiratory and cardiac motion corrected PET images using either M1 or M2 were compared to respiratory only corrected images and evaluated in terms of SNR and contrast improvement. Significant visual improvements were obtained when correcting simultaneously for respiratory and cardiac motion (using 16 cardiac phase or diastole only) compared to respiratory motion only compensation. Results were confirmed by an associated increased SNR and contrast. Results indicate that using GRICS is an efficient tool for respiratory and cardiac motion correction in dual gated PET/MR imaging.

  20. The 2D-Micro Hole and Strip Plate in CF{sub 4} atmosphere aiming neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Natal da Luz, H; Gouvea, A L; Veloso, J F C A [Physics Department, University of Aveiro, Campus Universitario de Santiago, 3810 Aveiro (Portugal); Mir, J A [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxon, OX11 0QX (United Kingdom); Santos, J M F dos, E-mail: hugonluz@ua.p [Physics Department, University of Coimbra, Rua Larga, 3004 Coimbra (Portugal)

    2009-12-15

    The Micro Hole and Strip Plate (MHSP) achieves gains above 300 in tetrafluoromethane (CF{sub 4}) at 2.6 bar, making it suitable for neutron detection. Over the past few years, the imaging capabilities of the MHSP have been developed, leading to the 2D-MHSP. In this device, the position coordinates are determined using the principle of resistive charge division. The GEM-side was specially patterned in strips interconnected by a resistive strip for one of the coordinates and, in the MS-side, the anode strips were also interconnected by another resistive strip. By applying a trivial center of mass algorithm it is possible to obtain both coordinates and the energy of each detected event. The ability to register position and energy for each event can be very useful for event validation in neutron detection. In this work, the performance of the 2D-MHSP in CF{sub 4} is investigated. The Modular Transfer Function (MTF) is presented, showing that position resolutions of 700{mu}m in x and 1 mm in the y-direction are obtained with X-rays. It is also demonstrated that resolutions below the proton range (1 mm) are possible at 2.6 bar CF{sub 4}, demonstrating that the MHSP can be a cost effective choice for neutron imaging.

  1. A low-cost universal cumulative gating circuit for small and large animal clinical imaging

    Science.gov (United States)

    Gioux, Sylvain; Frangioni, John V.

    2008-02-01

    Image-assisted diagnosis and therapy is becoming more commonplace in medicine. However, most imaging techniques suffer from voluntary or involuntary motion artifacts, especially cardiac and respiratory motions, which degrade image quality. Current software solutions either induce computational overhead or reject out-of-focus images after acquisition. In this study we demonstrate a hardware-only gating circuit that accepts multiple, pseudo-periodic signals and produces a single TTL (0-5 V) imaging window of accurate phase and period. The electronic circuit Gerber files described in this article and the list of components are available online at www.frangionilab.org.

  2. Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Bliss, D.E.

    1997-02-01

    Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

  3. A compact, short-pulse laser for near-field, range-gated imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zutavern, F.J.; Helgeson, W.D.; Loubriel, G.M. [Sandia National Labs., Albuquerque, NM (United States); Yates, G.J.; Gallegos, R.A.; McDonald, T.E. [Los Alamos National Lab., NM (United States)

    1996-12-31

    This paper describes a compact laser, which produces high power, wide-angle emission for a near-field, range-gated, imaging system. The optical pulses are produced by a 100 element laser diode array (LDA) which is pulsed with a GaAs, photoconductive semiconductor switch (PCSS). The LDA generates 100 ps long, gain-switched, optical pulses at 904 nm when it is driven with 3 ns, 400 A, electrical pulses from a high gain PCSS. Gain switching is facilitated with this many lasers by using a low impedance circuit to drive an array of lasers, which are connected electrically in series. The total optical energy produced per pulse is 10 microjoules corresponding to a total peak power of 100 kW. The entire laser system, including prime power (a nine volt battery), pulse charging, PCSS, and LDA, is the size of a small, hand-held flashlight. System lifetime, which is presently limited by the high gain PCSS, is an active area of research and development. Present limitations and potential improvements will be discussed. The complete range-gated imaging system is based on complementary technologies: high speed optical gating with intensified charge coupled devices (ICCD) developed at Los Alamos National Laboratory (LANL) and high gain, PCSS-driven LDAs developed at Sandia National Laboratories (SNL). The system is designed for use in highly scattering media such as turbid water or extremely dense fog or smoke. The short optical pulses from the laser and high speed gating of the ICCD are synchronized to eliminate the back-scattered light from outside the depth of the field of view (FOV) which may be as short as a few centimeters. A high speed photodiode can be used to trigger the intensifier gate and set the range-gated FOV precisely on the target. The ICCD and other aspects of the imaging system are discussed in a separate paper.

  4. Model-based restoration using light vein for range-gated imaging systems.

    Science.gov (United States)

    Wang, Canjin; Sun, Tao; Wang, Tingfeng; Wang, Rui; Guo, Jin; Tian, Yuzhen

    2016-09-10

    The images captured by an airborne range-gated imaging system are degraded by many factors, such as light scattering, noise, defocus of the optical system, atmospheric disturbances, platform vibrations, and so on. The characteristics of low illumination, few details, and high noise make the state-of-the-art restoration method fail. In this paper, we present a restoration method especially for range-gated imaging systems. The degradation process is divided into two parts: the static part and the dynamic part. For the static part, we establish the physical model of the imaging system according to the laser transmission theory, and estimate the static point spread function (PSF). For the dynamic part, a so-called light vein feature extraction method is presented to estimate the fuzzy parameter of the atmospheric disturbance and platform movement, which make contributions to the dynamic PSF. Finally, combined with the static and dynamic PSF, an iterative updating framework is used to restore the image. Compared with the state-of-the-art methods, the proposed method can effectively suppress ringing artifacts and achieve better performance in a range-gated imaging system.

  5. Fast Vessel Detection in Gaofen-3 SAR Images with Ultrafine Strip-Map Mode.

    Science.gov (United States)

    Pan, Zongxu; Liu, Lei; Qiu, Xiaolan; Lei, Bin

    2017-07-05

    This study aims to detect vessels with lengths ranging from about 70 to 300 m, in Gaofen-3 (GF-3) SAR images with ultrafine strip-map (UFS) mode as fast as possible. Based on the analysis of the characteristics of vessels in GF-3 SAR imagery, an effective vessel detection method is proposed in this paper. Firstly, the iterative constant false alarm rate (CFAR) method is employed to detect the potential ship pixels. Secondly, the mean-shift operation is applied on each potential ship pixel to identify the candidate target region. During the mean-shift process, we maintain a selection matrix recording which pixels can be taken, and these pixels are called as the valid points of the candidate target. The l 1 norm regression is used to extract the principal axis and detect the valid points. Finally, two kinds of false alarms, the bright line and the azimuth ambiguity, are removed by comparing the valid area of the candidate target with a pre-defined value and computing the displacement between the true target and the corresponding replicas respectively. Experimental results on three GF-3 SAR images with UFS mode demonstrate the effectiveness and efficiency of the proposed method.

  6. Noise-gating to Clean Astrophysical Image Data

    Energy Technology Data Exchange (ETDEWEB)

    DeForest, C. E. [Southwest Research Institute, 1050 Walnut Street, Boulder, CO (United States)

    2017-04-01

    I present a family of algorithms to reduce noise in astrophysical images and image sequences, preserving more information from the original data than is retained by conventional techniques. The family uses locally adaptive filters (“noise gates”) in the Fourier domain to separate coherent image structure from background noise based on the statistics of local neighborhoods in the image. Processing of solar data limited by simple shot noise or by additive noise reveals image structure not easily visible in the originals, preserves photometry of observable features, and reduces shot noise by a factor of 10 or more with little to no apparent loss of resolution. This reveals faint features that were either not directly discernible or not sufficiently strongly detected for quantitative analysis. The method works best on image sequences containing related subjects, for example movies of solar evolution, but is also applicable to single images provided that there are enough pixels. The adaptive filter uses the statistical properties of noise and of local neighborhoods in the data to discriminate between coherent features and incoherent noise without reference to the specific shape or evolution of those features. The technique can potentially be modified in a straightforward way to exploit additional a priori knowledge about the functional form of the noise.

  7. The values of myocardial tomography imaging and gated cardiac blood pool imaging in detecting left ventricular aneurysm

    International Nuclear Information System (INIS)

    Zhu Mei; Pan Zhongyun; Li Jinhui

    1992-01-01

    The sensitivity and specificity of myocardial tomography imaging and gated cardiac blood-pool imaging in detecting LVA were studied in 36 normal subjects and 68 patients with myocardial infarction. The sensitivities of exercise and rest myocardial imaging in detecting LVA were 85% and 77.3% respectively. The specificity of both is 95.5%. The sensitivity of cinema display, phase analysis and left ventricular phase shift in evaluating LVA were 86.7%, 86.7%, 100% respectively. Their specificity were all 100%. It is concluded that blood pool imaging is of choice for the diagnosis of LVA, and that myocardial imaging could also demonstrate LVA during diagnosing myocardial infarction

  8. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Chen Qing; Yin, Fang-Fang; Movsas, Benjamin

    2006-01-01

    Background and purpose: To develop and evaluate a technique and procedure of using gated-CT images in combination with PET image to determine the internal target volume (ITV), which could reduce the planning target volume (PTV) with adequate target coverage. Patients and methods: A skin marker-based gating system connected to a regular single slice CT scanner was used for this study. A motion phantom with adjustable motion amplitude was used to evaluate the CT gating system. Specifically, objects of various sizes/shapes, considered as virtual tumors, were placed on the phantom to evaluate the number of phases of gated images required to determine the ITV while taking into account tumor size, shape and motion. A procedure of using gated-CT and PET images to define ITV for patients was developed and was tested in patients enrolled in an IRB approved protocol. Results: The CT gating system was capable of removing motion artifacts for target motion as large as 3-cm when it was gated at optimal phases. A phantom study showed that two gated-CT scans at the end of expiration and the end of inspiration would be sufficient to determine the ITV for tumor motion less than 1-cm, and another mid-phase scan would be required for tumors with 2-cm motion, especially for small tumors. For patients, the ITV encompassing visible tumors in all sets of gated-CT and regular spiral CT images seemed to be consistent with the target volume determined from PET images. PTV expanded from the ITV with a setup uncertainty margin had less volume than PTVs from spiral CT images with a 10-mm generalized margin or an individualized margin determined at fluoroscopy. Conclusions: A technique of determining the ITV using gated-CT images was developed and was clinically implemented successfully for fractionated stereotactic lung radiotherapy

  9. Dynamic Characterizations of an 8-frame Half-Strip High-speed X-ray Microchannel Plate Imager

    Energy Technology Data Exchange (ETDEWEB)

    Ken Moy, Ming Wu, Craig Kruschwitz, Aric Tibbits, Matt Griffin, Greg Rochau

    2008-09-05

    High-speed microchannel plate (MCP)–based imagers are critical detectors for x-ray diagnostics employed on Z-experiments at Sandia National Laboratories (SNL) to measure time-resolved x-ray spectra and to image dynamic hohlraums. A multiframe design using eight half strips in one imager permits recordings of radiation events in discrete temporal snapshots to yield a time-evolved movie. We present data using various facilities to characterize the performance of this design. These characterization studies include DC and pulsed-voltage biased measurements in both saturated and linear operational regimes using an intense, short-pulsed UV laser. Electrical probe measurements taken to characterize the shape of the HV pulse propagating across the strips help to corroborate the spatial gain dependence.

  10. Dynamic Characterizations of an 8-frame, Half-Strip, High-speed X-ray Microchannel Plate Imager

    International Nuclear Information System (INIS)

    Ken Moy; Ming Wu; Craig Kruschwitz; Aric Tibbits; Matt Griffin; Greg Rochau

    2008-01-01

    High-speed microchannel plate (MCP)-based imagers are critical detectors for x-ray diagnostics employed on Z-experiments at Sandia National Laboratories (SNL) to measure time-resolved x-ray spectra and to image dynamic hohlraums. A multiframe design using eight half strips in one imager permits recordings of radiation events in discrete temporal snapshots to yield a time-evolved movie. We present data using various facilities to characterize the performance of this design. These characterization studies include DC and pulsed-voltage biased measurements in both saturated and linear operational regimes using an intense, short-pulsed UV laser. Electrical probe measurements taken to characterize the shape of the HV pulse propagating across the strips help to corroborate the spatial gain dependence

  11. Cardiac gating with a pulse oximeter for dual-energy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shkumat, N A; Siewerdsen, J H [Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Dhanantwari, A C; Williams, D B [Ontario Cancer Institute, Princess Margaret Hospital, 610 University Ave., Toronto, Ontario, M5G 2M9 (Canada); Paul, N S [Department of Medical Imaging, University Health Network, Toronto, Ontario, M5G 2M9 (Canada); Yorkston, J; Van Metter, R [Carestream Health Inc., Rochester, NY 14650 (United States)], E-mail: jeff.siewerdsen@uhn.on.ca

    2008-11-07

    The development and evaluation of a prototype cardiac gating system for double-shot dual-energy (DE) imaging is described. By acquiring both low- and high-kVp images during the resting phase of the cardiac cycle (diastole), heart misalignment between images can be reduced, thereby decreasing the magnitude of cardiac motion artifacts. For this initial implementation, a fingertip pulse oximeter was employed to measure the peripheral pulse waveform ('plethysmogram'), offering potential logistic, cost and workflow advantages compared to an electrocardiogram. A gating method was developed that accommodates temporal delays due to physiological pulse propagation, oximeter waveform processing and the imaging system (software, filter-wheel, anti-scatter Bucky-grid and flat-panel detector). Modeling the diastolic period allowed the calculation of an implemented delay, t{sub imp}, required to trigger correctly during diastole at any patient heart rate (HR). The model suggests a triggering scheme characterized by two HR regimes, separated by a threshold, HR{sub thresh}. For rates at or below HR{sub thresh}, sufficient time exists to expose on the same heartbeat as the plethysmogram pulse [t{sub imp}(HR) = 0]. Above HR{sub thresh}, a characteristic t{sub imp}(HR) delays exposure to the subsequent heartbeat, accounting for all fixed and variable system delays. Performance was evaluated in terms of accuracy and precision of diastole-trigger coincidence and quantitative evaluation of artifact severity in gated and ungated DE images. Initial implementation indicated 85% accuracy in diastole-trigger coincidence. Through the identification of an improved HR estimation method (modified temporal smoothing of the oximeter waveform), trigger accuracy of 100% could be achieved with improved precision. To quantify the effect of the gating system on DE image quality, human observer tests were conducted to measure the magnitude of cardiac artifact under conditions of successful and

  12. Cardiac gating with a pulse oximeter for dual-energy imaging.

    Science.gov (United States)

    Shkumat, N A; Siewerdsen, J H; Dhanantwari, A C; Williams, D B; Paul, N S; Yorkston, J; Van Metter, R

    2008-11-07

    The development and evaluation of a prototype cardiac gating system for double-shot dual-energy (DE) imaging is described. By acquiring both low- and high-kVp images during the resting phase of the cardiac cycle (diastole), heart misalignment between images can be reduced, thereby decreasing the magnitude of cardiac motion artifacts. For this initial implementation, a fingertip pulse oximeter was employed to measure the peripheral pulse waveform ('plethysmogram'), offering potential logistic, cost and workflow advantages compared to an electrocardiogram. A gating method was developed that accommodates temporal delays due to physiological pulse propagation, oximeter waveform processing and the imaging system (software, filter-wheel, anti-scatter Bucky-grid and flat-panel detector). Modeling the diastolic period allowed the calculation of an implemented delay, t(imp), required to trigger correctly during diastole at any patient heart rate (HR). The model suggests a triggering scheme characterized by two HR regimes, separated by a threshold, HR(thresh). For rates at or below HR(thresh), sufficient time exists to expose on the same heartbeat as the plethysmogram pulse [t(imp)(HR) = 0]. Above HR(thresh), a characteristic t(imp)(HR) delays exposure to the subsequent heartbeat, accounting for all fixed and variable system delays. Performance was evaluated in terms of accuracy and precision of diastole-trigger coincidence and quantitative evaluation of artifact severity in gated and ungated DE images. Initial implementation indicated 85% accuracy in diastole-trigger coincidence. Through the identification of an improved HR estimation method (modified temporal smoothing of the oximeter waveform), trigger accuracy of 100% could be achieved with improved precision. To quantify the effect of the gating system on DE image quality, human observer tests were conducted to measure the magnitude of cardiac artifact under conditions of successful and unsuccessful diastolic gating

  13. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Science.gov (United States)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  14. Smartphone-Based Dual-Modality Imaging System for Quantitative Detection of Color or Fluorescent Lateral Flow Immunochromatographic Strips.

    Science.gov (United States)

    Hou, Yafei; Wang, Kan; Xiao, Kun; Qin, Weijian; Lu, Wenting; Tao, Wei; Cui, Daxiang

    2017-12-01

    Nowadays, lateral flow immunochromatographic assays are increasingly popular as a diagnostic tool for point-of-care (POC) test based on their simplicity, specificity, and sensitivity. Hence, quantitative detection and pluralistic popular application are urgently needed in medical examination. In this study, a smartphone-based dual-modality imaging system was developed for quantitative detection of color or fluorescent lateral flow test strips, which can be operated anywhere at any time. In this system, the white and ultra-violet (UV) light of optical device was designed, which was tunable with different strips, and the Sobel operator algorithm was used in the software, which could enhance the identification ability to recognize the test area from the background boundary information. Moreover, this technology based on extraction of the components from RGB format (red, green, and blue) of color strips or only red format of the fluorescent strips can obviously improve the high-signal intensity and sensitivity. Fifty samples were used to evaluate the accuracy of this system, and the ideal detection limit was calculated separately from detection of human chorionic gonadotropin (HCG) and carcinoembryonic antigen (CEA). The results indicated that smartphone-controlled dual-modality imaging system could provide various POC diagnoses, which becomes a potential technology for developing the next-generation of portable system in the near future.

  15. Smartphone-Based Dual-Modality Imaging System for Quantitative Detection of Color or Fluorescent Lateral Flow Immunochromatographic Strips

    Science.gov (United States)

    Hou, Yafei; Wang, Kan; Xiao, Kun; Qin, Weijian; Lu, Wenting; Tao, Wei; Cui, Daxiang

    2017-04-01

    Nowadays, lateral flow immunochromatographic assays are increasingly popular as a diagnostic tool for point-of-care (POC) test based on their simplicity, specificity, and sensitivity. Hence, quantitative detection and pluralistic popular application are urgently needed in medical examination. In this study, a smartphone-based dual-modality imaging system was developed for quantitative detection of color or fluorescent lateral flow test strips, which can be operated anywhere at any time. In this system, the white and ultra-violet (UV) light of optical device was designed, which was tunable with different strips, and the Sobel operator algorithm was used in the software, which could enhance the identification ability to recognize the test area from the background boundary information. Moreover, this technology based on extraction of the components from RGB format (red, green, and blue) of color strips or only red format of the fluorescent strips can obviously improve the high-signal intensity and sensitivity. Fifty samples were used to evaluate the accuracy of this system, and the ideal detection limit was calculated separately from detection of human chorionic gonadotropin (HCG) and carcinoembryonic antigen (CEA). The results indicated that smartphone-controlled dual-modality imaging system could provide various POC diagnoses, which becomes a potential technology for developing the next-generation of portable system in the near future.

  16. Theme city or gated community - images of future cities

    OpenAIRE

    Helenius-Mäki, Leena

    2002-01-01

    The future of the cities has been under discussion since the first city. It has been typical in every civilisation and era to hope for a better city. Creek philosopher Platon created image of future city where all men were equal and the city was ruled by philosophers minds. Many philosopher or later social scientist have ended up to similar "hope to be city". The form and type of the better city has depended from creators of those future city images. The creators have had their future city im...

  17. Electronic Time-Gated and Spectroscopic Near-Infrared Imaging of Lesions in Human Tissues*

    Science.gov (United States)

    Gayen, S. K.; Alrubaiee, M.; Alfano, R. R.; Koutcher, J.; Savage, H.

    2000-03-01

    Near-infrared (NIR) transillumination imaging is used to investigate normal and cancerous tissues of human breast, thyroid, and parotid gland. The time-sliced imaging arrangement uses 130-fs, 1 kHz repetition-rate, 800 nm pulses from a Ti:sapphire laser and amplifier system for sample illumination and a CCD camera coupled to a gated image intensifier for recording two-dimensional (2D) images. Images recorded with earlier temporal slices of transmitted light highlight cancerous tissues while those recorded with later slices accentuate normal fibrous tissues. The spectroscopic imaging arrangement uses 1210-1300 nm tunable output of a Cr:forsterite laser for sample illumination, a Fourier space gate to discriminate against multiple-scattered light, and a NIR area camera to record 2D images. When light is tuned to a known absorption resonance of a particular tissue type, a marked enhancement in image contrast is observed which is indicative of the diagnostic potential of spectroscopic imaging.

  18. Generation of complete electronic nuclear medicine reports including static, dynamic and gated images

    International Nuclear Information System (INIS)

    Beretta, M.; Pilon, R.; Mut, F.

    2002-01-01

    Aim: To develop a procedure for the creation of nuclear medicine reports containing static and dynamic images. The reason for implementing this technique is the lack of adequate solutions for an electronic format of nuclear medicine results allowing for rapid transmission via e-mail, specially in the case of dynamic and gated SPECT studies, since functional data is best presented in dynamic mode. Material and Methods: Clinical images were acquired in static, whole body, dynamic and gated mode, corresponding to bone studies, diuretic renogram, radionuclide cystography and gated perfusion SPECT, as well as respective time-activity curves. Image files were imported from a dedicated nuclear medicine computer system (Elscint XPert) to a Windows-based PC through a standard ethernet network with TCP-IP communications protocol, using a software developed by us which permits the conversion from the manufacturer's original format into a bitmap format (.bmp) compatible with commercially available PC software. For cardiac perfusion studies, background was subtracted prior to transferring to reduce the amount of information in the file; this was not done for other type of studies because useful data could be eliminated. Dynamic images were then processed using commercial software to create animated files and stored in .gif format. Static images were re-sized and stored in .jpg format. Original color or gray scale was always preserved. All the graphic material was then merged with a previously prepared report text using HTML format. The report also contained reference diagrams to facilitate interpretation. The whole report was then compressed into a self-extractable file, ready to be sent by electronic mail. Reception of the material was visually checked for data integrity including image quality by two experienced nuclear medicine physicians. Results: The report presented allows for simultaneous visualization of the text, diagrams and images either static, dynamic, gated or

  19. Carbon Tube Electrodes for Electrocardiography-Gated Cardiac Multimodality Imaging in Mice

    Science.gov (United States)

    Choquet, Philippe; Goetz, Christian; Aubertin, Gaelle; Hubele, Fabrice; Sannié, Sébastien; Constantinesco, André

    2011-01-01

    This report describes a simple design of noninvasive carbon tube electrodes that facilitates electrocardiography (ECG) in mice during cardiac multimodality preclinical imaging. Both forepaws and the left hindpaw, covered by conductive gel, of mice were placed into the openings of small carbon tubes. Cardiac ECG-gated single-photon emission CT, X-ray CT, and MRI were tested (n = 60) in 20 mice. For all applications, electrodes were used in a warmed multimodality imaging cell. A heart rate of 563 ± 48 bpm was recorded from anesthetized mice regardless of the imaging technique used, with acquisition times ranging from 1 to 2 h. PMID:21333165

  20. Dilation x-ray imager a new∕faster gated x-ray imager for the NIF.

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Barrios, M A; Felker, B; Smith, R F; Collins, G W; Jones, O S; Kilkenny, J D; Chung, T; Piston, K; Raman, K S; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2012-10-01

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ∼7 × 10(18) neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  1. Architecture and applications of a high resolution gated SPAD image sensor

    Science.gov (United States)

    Burri, Samuel; Maruyama, Yuki; Michalet, Xavier; Regazzoni, Francesco; Bruschini, Claudio; Charbon, Edoardo

    2014-01-01

    We present the architecture and three applications of the largest resolution image sensor based on single-photon avalanche diodes (SPADs) published to date. The sensor, fabricated in a high-voltage CMOS process, has a resolution of 512 × 128 pixels and a pitch of 24 μm. The fill-factor of 5% can be increased to 30% with the use of microlenses. For precise control of the exposure and for time-resolved imaging, we use fast global gating signals to define exposure windows as small as 4 ns. The uniformity of the gate edges location is ∼140 ps (FWHM) over the whole array, while in-pixel digital counting enables frame rates as high as 156 kfps. Currently, our camera is used as a highly sensitive sensor with high temporal resolution, for applications ranging from fluorescence lifetime measurements to fluorescence correlation spectroscopy and generation of true random numbers. PMID:25090572

  2. Research for gate drive technology based on image intensifier

    Science.gov (United States)

    Xu, Guangqiang; Liu, Baiyu; Gou, Yongsheng

    2016-03-01

    In order to improve the dynamic range and the signal-noise ratio of the image intensifier, keep the flux of the screen of image intensifier constant. In the article, introduced a design of the switching power supply and tested its performance. Firstly, used a sampling amplifier amplify the feedback current signals. The feedback signals were converted into square wave signals through a digital circuit. Then, using the MOSFET in the post stage circuit produced high voltage and high speed adjustable square pulses. The frequency of the pulse is 1 kHz, the speed of the cutting edge is 20ns and the amplitude is 200V. The photoelectron emission time of the photocathode is short when the width of the high speed pulse is narrow for strong illumination. On the contrary, the time is long when the width is wide for weak illumination. The number of photoelectron is a constant no matter what kind of the illumination. It keeps the flux reaching the phosphor screen constant.

  3. Range-Image Acquisition for Discriminated Objects in a Range-gated Robot Vision System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Kyu; Ahn, Yong-Jin; Park, Nak-Kyu; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The imaging capability of a surveillance vision system from harsh low-visibility environments such as in fire and detonation areas is a key function to monitor the safety of the facilities. 2D and range image data acquired from low-visibility environment are important data to assess the safety and prepare appropriate countermeasures. Passive vision systems, such as conventional camera and binocular stereo vision systems usually cannot acquire image information when the reflected light is highly scattered and absorbed by airborne particles such as fog. In addition, the image resolution captured through low-density airborne particles is decreased because the image is blurred and dimmed by the scattering, emission and absorption. Active vision systems, such as structured light vision and projected stereo vision are usually more robust for harsh environment than passive vision systems. However, the performance is considerably decreased in proportion to the density of the particles. The RGI system provides 2D and range image data from several RGI images and it moreover provides clear images from low-visibility fog and smoke environment by using the sum of time-sliced images. Nowadays, the Range-gated (RG) imaging is an emerging technology in the field of surveillance for security applications, especially in the visualization of invisible night and fog environment. Although RGI viewing was discovered in the 1960's, this technology is, nowadays becoming more applicable by virtue of the rapid development of optical and sensor technologies. Especially, this system can be adopted in robot-vision system by virtue of its compact portable configuration. In contrast to passive vision systems, this technology enables operation even in harsh environments like fog and smoke. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been

  4. Range-Image Acquisition for Discriminated Objects in a Range-gated Robot Vision System

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Ahn, Yong-Jin; Park, Nak-Kyu; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min

    2015-01-01

    The imaging capability of a surveillance vision system from harsh low-visibility environments such as in fire and detonation areas is a key function to monitor the safety of the facilities. 2D and range image data acquired from low-visibility environment are important data to assess the safety and prepare appropriate countermeasures. Passive vision systems, such as conventional camera and binocular stereo vision systems usually cannot acquire image information when the reflected light is highly scattered and absorbed by airborne particles such as fog. In addition, the image resolution captured through low-density airborne particles is decreased because the image is blurred and dimmed by the scattering, emission and absorption. Active vision systems, such as structured light vision and projected stereo vision are usually more robust for harsh environment than passive vision systems. However, the performance is considerably decreased in proportion to the density of the particles. The RGI system provides 2D and range image data from several RGI images and it moreover provides clear images from low-visibility fog and smoke environment by using the sum of time-sliced images. Nowadays, the Range-gated (RG) imaging is an emerging technology in the field of surveillance for security applications, especially in the visualization of invisible night and fog environment. Although RGI viewing was discovered in the 1960's, this technology is, nowadays becoming more applicable by virtue of the rapid development of optical and sensor technologies. Especially, this system can be adopted in robot-vision system by virtue of its compact portable configuration. In contrast to passive vision systems, this technology enables operation even in harsh environments like fog and smoke. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been

  5. Influence of Respiratory Gating, Image Filtering, and Animal Positioning on High-Resolution Electrocardiography-Gated Murine Cardiac Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2015-01-01

    Full Text Available Cardiac parameters obtained from single-photon emission computed tomographic (SPECT images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were injected with 99m technetium (99mTc-tetrofosmin, and each was scanned in supine and prone positions in a U-SPECT-II scanner with respiratory and electrocardiographic (ECG gating. ECG-gated SPECT images were created without applying respiratory motion correction or with two different respiratory motion correction strategies. The images were filtered with a range of three-dimensional gaussian kernels, after which end-diastolic volumes (EDVs, end-systolic volumes (ESVs, and left ventricular ejection fractions were calculated. No significant differences in the measured cardiac parameters were detected when any strategy to reduce or correct for respiratory motion was applied, whereas big differences (> 5% in EDV and ESV were found with regard to different positioning of animals. A linear relationship (p < .001 was found between the EDV or ESV and the kernel size of the gaussian filter. In short, respiratory gating did not significantly affect the cardiac parameters of mice obtained with ultra-high-resolution SPECT, whereas the position of the animals and the image filters should be the same in a comparative study with multiple scans to avoid systematic differences in measured cardiac parameters.

  6. Evaluation of factor analysis and other functional images in exercise gated blood-pool study

    International Nuclear Information System (INIS)

    Matsunari, Ichiro; Bunko, Hisashi; Nakajima, Kenichi; Taki, Junichi; Shiire, Yasushi; Hisada, Kinichi

    1990-01-01

    Factor analysis, a new method of functional imaging, has been applied to cardiovascular nuclear medicine. Because of the difficulty of its interpretation, it has not been popular as a method for detecting abnormal wall motion. The purpose of this study was to evaluate the usefulness of factor analysis in exercise gated blood-pool study in patients with ischemic heart disease. In our factor analysis, left ventricular region of interest (LVROI) was extracted to exclude the surrounding radioactivities. The new method was compared with the conventional factor analysis using whole region (whole ROI method), and the other functional images, i.e. stroke volume, ejection fraction and phase images. At first we tried 3-factor analysis of the LVROI method, which resulted in many uninterpretable factors. Whereas in 2-factor analysis no uninterpretable factors were extracted. In comparison with cine-mode display, the LVROI method with 2-factor analysis showed the best sensitivity (85%) and specificity (100%). In exercise gated blood-pool study, it became easier to detect abnormal wall motion by comparing the factor image at exercise with resting image. In conclusion, the 2-factor analysis using the LVROI method greatly improved the limitation of conventional factor analysis, and will be useful in detecting wall motion abnormality in patients with ischemic heart disase. (author)

  7. Direct imaging of viable myocardium by gated SPECT in patients with ischaemic left ventricular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Spadafora, Marco; Varrella, Paola; Spirito, Marco; Miletto, Paolo [A.O.R.N. S.G. Moscati, Department of Imaging, Avellino (Italy); Acampa, Wanda; Nappi, Carmela; Cuocolo, Alberto [University Federico II, Department of Biomorphological and Functional Sciences, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy); Mansi, Luigi [Second University, Department of Imaging, Naples (Italy); Rosato, Giuseppe [A.O.R.N. S.G. Moscati, Department of Cardiology and Heart Surgery, Avellino (Italy)

    2010-09-15

    The aim of the study was to evaluate a novel polar map of myocardial viability obtained by gated SPECT imaging to predict functional recovery after revascularization in patients with ischaemic left ventricular (LV) dysfunction. The study group comprised 17 patients (15 men, mean age 58 {+-} 9 years) with ischaemic LV dysfunction (ejection fraction {<=}40%) who underwent nitrate-enhanced gated SPECT before and 6 months after coronary revascularization. A parametric image of viable myocardium (VIA) was obtained using a semiautomated method to subtract the point-to-point motion polar map from the perfusion polar map. A parametric image of segments with functional recovery (REC) was obtained by subtracting the baseline motion polar map from the motion polar map after revascularization. Of the total 340 segments, 248 (73%) were considered viable on the basis of the VIA map. After revascularization, of 248 dysfunctional viable segments 186 (75%) showed an improvement in LV function. An increase in LV ejection fraction (from 30 {+-} 10% to 42 {+-} 11%, p < 0.01) and a decrease in end-diastolic volume (from 207 {+-} 74 ml to 174 {+-} 74 ml, p < 0.01) were observed after revascularization. Overall concordance between the VIA map and the REC map was 85%, with a k value of 0.63. Sensitivity, specificity, and positive and negative predictive values of the VIA map for predicting functional recovery were 89%, 75%, 91% and 71%, respectively. The proposed polar map of myocardial viability obtained by gated SPECT imaging accurately predicts functional recovery after coronary revascularization. Thus, a direct quantitative image of viability obtained from perfusion/function matching may be helpful for clinical decision-making in patients with ischaemic LV dysfunction. (orig.)

  8. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI.

    Science.gov (United States)

    Motaal, Abdallah G; Noorman, Nils; de Graaf, Wolter L; Hoerr, Verena; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously with the heartbeat, resulting in a randomly undersampled kt-space that facilitates compressed sensing reconstruction. The sequence was tested in 4 healthy rats and 4 rats with chronic myocardial infarction, approximately 2 months after surgery. As a control, a non-accelerated self-gated multi-slice FLASH sequence with an echo time (TE) of 2.76 ms, 4.5 signal averages, a matrix of 192 × 192, and an acquisition time of 2 min 34 s per slice was used to obtain Cine MRI with 15 frames per heartbeat. Non-accelerated UTE MRI was performed with TE = 0.29 ms, a reconstruction matrix of 192 × 192, and an acquisition time of 3 min 47 s per slice for 3.5 averages. Accelerated imaging with 2×, 4× and 5× undersampled kt-space data was performed with 1 min, 30 and 15 s acquisitions, respectively. UTE Cine images up to 5× undersampled kt-space data could be successfully reconstructed using a compressed sensing algorithm. In contrast to the FLASH Cine images, flow artifacts in the UTE images were nearly absent due to the short echo time, simplifying segmentation of the left ventricular (LV) lumen. LV functional parameters derived from the control and the accelerated Cine movies were statistically identical.

  9. 200 ps FWHM and 100 MHz repetition rate ultrafast gated camera for optical medical functional imaging

    Science.gov (United States)

    Uhring, Wilfried; Poulet, Patrick; Hanselmann, Walter; Glazenborg, René; Zint, Virginie; Nouizi, Farouk; Dubois, Benoit; Hirschi, Werner

    2012-04-01

    The paper describes the realization of a complete optical imaging device to clinical applications like brain functional imaging by time-resolved, spectroscopic diffuse optical tomography. The entire instrument is assembled in a unique setup that includes a light source, an ultrafast time-gated intensified camera and all the electronic control units. The light source is composed of four near infrared laser diodes driven by a nanosecond electrical pulse generator working in a sequential mode at a repetition rate of 100 MHz. The resulting light pulses, at four wavelengths, are less than 80 ps FWHM. They are injected in a four-furcated optical fiber ended with a frontal light distributor to obtain a uniform illumination spot directed towards the head of the patient. Photons back-scattered by the subject are detected by the intensified CCD camera; there are resolved according to their time of flight inside the head. The very core of the intensified camera system is the image intensifier tube and its associated electrical pulse generator. The ultrafast generator produces 50 V pulses, at a repetition rate of 100 MHz and a width corresponding to the 200 ps requested gate. The photocathode and the Micro-Channel-Plate of the intensifier have been specially designed to enhance the electromagnetic wave propagation and reduce the power loss and heat that are prejudicial to the quality of the image. The whole instrumentation system is controlled by an FPGA based module. The timing of the light pulses and the photocathode gating is precisely adjustable with a step of 9 ps. All the acquisition parameters are configurable via software through an USB plug and the image data are transferred to a PC via an Ethernet link. The compactness of the device makes it a perfect device for bedside clinical applications.

  10. Feasibility of self-gated isotropic radial late-phase MR imaging of the liver

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Jakob; Taron, Jana; Othman, Ahmed E.; Kuendel, Matthias; Martirosian, Petros; Ruff, Christer; Schraml, Christina; Nikolaou, Konstantin; Notohamiprodjo, Mike [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Grimm, Robert [Siemens Healthcare MR, Erlangen (Germany)

    2017-03-15

    To evaluate feasibility of a 3D-isotropic self-gated radial volumetric interpolated breath-hold examination (VIBE) for late-phase MRI of the liver. 70 patients were included and underwent liver MRI at 1.5 T. Depending on the diagnosis, either Gd-EOB-DTPA (35 patients) or gadobutrol (35 patients) were administered. During late (gadobutrol) or hepatocyte-specific phase (Gd-EOB-DTPA), a radial prototype sequence was acquired and reconstructed using (1) self-gating with 40 % acceptance (rVIBE{sub 40}); (2) with 100 % acceptance of the data (rVIBE{sub 100}) and compared to Cartesian VIBE (cVIBE). Images were assessed qualitatively (image quality, lesion conspicuity, artefacts; 5-point Likert-scale: 5 = excellent; two independent readers) and quantitatively (coefficient-of-variation (CV); contrast-ratio) in axial and coronal reformations. In eight cases only rVIBE provided diagnostic image quality. Image quality of rVIBE{sub 40} was rated significantly superior (p < 0.05) in Gd-EOB-DTPA-enhanced and coronal reformatted examinations as compared to cVIBE. Lesion conspicuity was significantly improved (p < 0.05) in coronal reformatted Gd-EOB-DTPA-enhanced rVIBE{sub 40} in comparison to cVIBE. CV was higher in rVIBE{sub 40} as compared to rVIBE{sub 100}/cVIBE (p < 0.01). Gadobutrol-enhanced rVIBE{sub 40} and cVIBE showed higher contrast-ratios than rVIBE{sub 100} (p < 0.001), whereas no differences were found in Gd-EOB-DTPA-enhanced examinations. Self-gated 3D-isotropic rVIBE provides significantly superior image quality compared to cVIBE, especially in multiplanar reformatted and Gd-EOB-DTPA-enhanced examinations. (orig.)

  11. Prediction of carotid plaque characteristics using non-gated MR imaging: correlation with endarterectomy specimens.

    Science.gov (United States)

    Narumi, S; Sasaki, M; Ohba, H; Ogasawara, K; Kobayashi, M; Hitomi, J; Mori, K; Ohura, K; Yamaguchi, M; Kudo, K; Terayama, Y

    2013-01-01

    Electrocardiographic gating, commonly used in MR carotid plaque imaging, can negatively affect intraplaque contrast if the TR is inappropriate. The present study aimed to determine whether a non-gated technique with appropriate TRs can accurately evaluate intraplaque characteristics in specimens excised by CEA. We prospectively examined 40 consecutive patients who underwent CEA (59-82 years of age) by using a 1.5T scanner. Axial T1WI with a TR of 500 ms and PDWI and T2WI with a TR of 3000 ms with a self-navigated rotating-blade scan instead of cardiac gating were obtained. Signal intensities of the plaque and adjacent muscle were measured, and the CR on T1WI, PDWI, and T2WI as well as the gray-scale median on US were correlated with the pathologic findings of the CEA specimens. On T1WI, the CRs of the carotid plaques differed significantly among groups in which the main components were histologically confirmed as fibrous tissue, lipid/necrosis, and hemorrhage (0.54-1.17, 1.16-1.53, and 1.40-2.29, respectively). The sensitivity and specificity for discriminating lipid/necrosis/hemorrhage from fibrous tissue were 96% and 100%, respectively. On T2WI, the CRs of plaques with lipid/necrosis were significantly higher than those of other groups, but the CRs on PDWI and the gray-scale median on US were not significantly different among the groups. Non-gated MR plaque imaging, particularly T1WI, can readily predict the intraplaque main components of the carotid artery with high sensitivity and specificity.

  12. Improved interpretation of gated cardiac images by use of digital filters

    International Nuclear Information System (INIS)

    Miller, T.R.; Goldman, K.J.; Epstein, D.M.; Biello, D.R.; Sampathkumaran, K.S.; Kumar, B.; Siegel, B.A.

    1984-01-01

    The authors describe a digital filter that greatly enhances the quality of gated cardiac blood-pool images. Spatial filtering is accomplished with a minimum-mean-square-error (Wiener) filter incorporating measured camera blur and Poisson noise statistics. A low-pass temporal filter is then applied to each pixel, with the cutoff frequency determined from measurements of frequency spectra in 20 patients. This filter was evaluated in routine clinical use for nearly one year and found to significantly improve chamber definition, delineate wall motion abnormalities better, and reduce noise. To quantitatively assess the effect of the filter on image interpretation, four experienced observers evaluated wall motion in a series of mathematically simulated left ventricular images. ROC analysis revealed that accuracy in assessing wall motion was significantly greater with the filtered images

  13. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P. [Univ. Bordeaux, INCIA, UMR 5287, F-33400 Talence (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Service de Médecine Nucléaire, Hôpital Pellegrin, CHU de Bordeaux, 33076 Bordeaux (France); Le Maitre, A.; Visvikis, D. [INSERM, UMR1101, LaTIM, Université de Bretagne Occidentale, 29609 Brest (France); Dawood, M.; Schäfers, K. P. [European Institute for Molecular Imaging, University of Münster, Mendelstr. 11, 48149 Münster (Germany); Rimoldi, O. E. [Vita-Salute University and Scientific Institute San Raffaele, Milan, Italy and CNR Istituto di Bioimmagini e Fisiologia Molecolare, Milan (Italy)

    2014-07-15

    Purpose: Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET) acquisitions. Methods: A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Results: Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were

  14. Spectroscopically Well-Characterized RGD Optical Probe as a Prerequisite for Lifetime-Gated Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Julia Eva Mathejczyk

    2011-11-01

    Full Text Available Labeling of RGD peptides with near-infrared fluorophores yields optical probes for noninvasive imaging of tumors overexpressing αvβ3 integrins. An important prerequisite for optimum detection sensitivity in vivo is strongly absorbing and highly emissive probes with a known fluorescence lifetime. The RGD-Cy5.5 optical probe was derived by coupling Cy5.5 to a cyclic arginine–glycine–aspartic acid–d-phenylalanine–lysine (RGDfK peptide via an aminohexanoic acid spacer. Spectroscopic properties of the probe were studied in different matrices in comparison to Cy5.5. For in vivo imaging, human glioblastoma cells were subcutaneously implanted into nude mice, and in vivo fluorescence intensity and lifetime were measured. The fluorescence quantum yield and lifetime of Cy5.5 were found to be barely affected on RGD conjugation but dramatically changed in the presence of proteins. By time domain fluorescence imaging, we demonstrated specific binding of RGD-Cy5.5 to glioblastoma xenografts in nude mice. Discrimination of unspecific fluorescence by lifetime-gated analysis further enhanced the detection sensitivity of RGD-Cy5.5-derived signals. We characterized RGD-Cy5.5 as a strongly emissive and stable probe adequate for selective targeting of αvβ3 integrins. The specificity and thus the overall detection sensitivity in vivo were optimized with lifetime gating, based on the previous determination of the probes fluorescence lifetime under application-relevant conditions.

  15. First set of gated x-ray imaging diagnostics for the Laser Megajoule facility

    International Nuclear Information System (INIS)

    Rosch, R.; Trosseille, C.; Caillaud, T.; Allouche, V.; Bourgade, J. L.; Briat, M.; Brunel, P.; Burillo, M.; Casner, A.; Depierreux, S.; Gontier, D.; Jadaud, J. P.; Le Breton, J. P.; Llavador, P.; Loupias, B.; Miquel, J. L.; Oudot, G.; Perez, S.; Raimbourg, J.; Rousseau, A.

    2016-01-01

    The Laser Megajoule (LMJ) facility located at CEA/CESTA started to operate in the early 2014 with two quadruplets (20 kJ at 351 nm) focused on target for the first experimental campaign. We present here the first set of gated x-ray imaging (GXI) diagnostics implemented on LMJ since mid-2014. This set consists of two imaging diagnostics with spatial, temporal, and broadband spectral resolution. These diagnostics will give basic measurements, during the entire life of the facility, such as position, structure, and balance of beams, but they will also be used to characterize gas filled target implosion symmetry and timing, to study x-ray radiography and hydrodynamic instabilities. The design requires a vulnerability approach, because components will operate in a harsh environment induced by neutron fluxes, gamma rays, debris, and shrapnel. Grazing incidence x-ray microscopes are fielded as far as possible away from the target to minimize potential damage and signal noise due to these sources. These imaging diagnostics incorporate microscopes with large source-to-optic distance and large size gated microchannel plate detectors. Microscopes include optics with grazing incidence mirrors, pinholes, and refractive lenses. Spatial, temporal, and spectral performances have been measured on x-ray tubes and UV lasers at CEA-DIF and at Physikalisch-Technische Bundesanstalt BESSY II synchrotron prior to be set on LMJ. GXI-1 and GXI-2 designs, metrology, and first experiments on LMJ are presented here.

  16. Time-gated fluorescence imaging of different organs in tumor-bearing mice after porphyrin administration

    Science.gov (United States)

    Cubeddu, Rinaldo; Canti, Gianfranco L.; Musolino, Mario; Pifferi, Antonio; Taroni, Paola; Valentini, Gianluca

    1994-01-01

    A time-gated fluorescence imaging technique was applied on tumor-bearing porphyrin-treated mice to study the sensitizer distribution in different organs and tissue types, and to establish whether false positives in the diagnosis of tumors (based on porphyrin fluorescence) could be generated by this localization in healthy tissues. Mice were administered 25 mg/kg body weight (b.w.) of HpD or 5 mg/kg b.w. of PII, and sacrificed 8 hr later. Time- gated fluorescence images were acquired from tumor, skin, muscle, fat, brain, heart, lung, lymph nodes, liver, bowel, spleen, and bone of both treated and untreated animals. Similar results were obtained with HpD and PII. The presence of porphyrins clearly helps the localization of the neoplastic area, which is characterized by the strongest fluorescence in delayed images. An appreciable long-living emission was observed also in bones. With the exception of the bowel, the fluorescence of other organs was weaker and, in untreated mice, short-living.

  17. Dynamic circular buffering: a technique for equilibrium gated blood pool imaging.

    Science.gov (United States)

    Vaquero, J J; Rahms, H; Green, M V; Del Pozo, F

    1996-03-01

    We have devised a software technique called "dynamic circular buffering" (DCB) with which we create a gated blood pool image sequence of the heart in real time using the best features of LIST and FRAME mode methods of acquisition/processing. The routine is based on the concept of independent "agents" acting on the timing and position data continuously written into the DCB. This approach allows efficient asynchronous operation on PC-type machines and enhanced capability on systems capable of true multiprocessing and multithreading.

  18. Gated cardiac imaging: manual calculations and observations of left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Hawkins, T.; Keavey, P.M.

    1984-01-01

    Using gamma camera imaging, the fixed region and moving region methods of calculating left ventricular ejection fraction were studied. Data were obtained from gated blood pool studies on 125 cardiac patients with myocardial infarcts of varying extent and location. Ejection fractions ranged from 10 to 76%. The left anterior oblique angulation for optimal visualisation of the ventricles showed considerable patient variation. The authors conclude that a fixed angulation cannot be recommended and that there is little to justify it. Where the septum is not seen distinctly during setting up, a larger rather than smaller angle is generally advised. (U.K.)

  19. A time-gated near-infrared spectroscopic imaging device for clinical applications.

    Science.gov (United States)

    Poulet, Patrick; Uhring, Wilfried; Hanselmann, Walter; Glazenborg, René; Nouizi, Farouk; Zint, Virginie; Hirschi, Werner

    2013-03-01

    A time-resolved, spectroscopic, diffuse optical tomography device was assembled for clinical applications like brain functional imaging. The entire instrument lies in a unique setup that includes a light source, an ultrafast time-gated intensified camera and all the electronic control units. The light source is composed of four near infrared laser diodes driven by a nanosecond electrical pulse generator working in a sequential mode at a repetition rate of 100 MHz. The light pulses are less than 80 ps FWHM. They are injected in a four-furcated optical fiber ended with a frontal light distributor to obtain a uniform illumination spot directed towards the head of the patient. Photons back-scattered by the subject are detected by the intensified CCD camera. There are resolved according to their time of flight inside the head. The photocathode is powered by an ultrafast generator producing 50 V pulses, at 100 MHz and a width corresponding to a 200 ps FWHM gate. The intensifier has been specially designed for this application. The whole instrument is controlled by an FPGA based module. All the acquisition parameters are configurable via software through an USB plug and the image data are transferred to a PC via an Ethernet link. The compactness of the device makes it a perfect device for bedside clinical applications. The instrument will be described and characterized. Preliminary data recorded on test samples will be presented.

  20. Electrocardiography-Gated Computed Tomography of the Bronchial Arteries With Iterative Image Reconstruction: Clinical Evaluation and Image Quality.

    Science.gov (United States)

    Gang, Qiangqiang; Xu, Jun; Wang, Junling; Hao, Peng; Xu, Yikai

    The aim of this study was to apply electrocardiography (ECG)-gated prospective-triggered multidetector row computed tomography angiography with iterative model reconstruction (IMR) to optimize imaging of the bronchial arteries in patients with the chief complaint of hemoptysis. This was a prospective observational study. Between August 2015 and June 2016, we enrolled 31 consecutive patients with the chief complaint of hemoptysis who were scheduled to undergo computed tomography of the bronchial artery. Patients were randomly divided into 3 groups: group A, with filtered back-projection reconstruction; group B, with iDose reconstruction; and group C, with ECG-gated prospective-triggered multidetector row computed tomography angiography with IMR. Image quality, visibility, and traceability were compared. Image quality, including signal-to-noise and contrast-to-noise ratios, visibility, and traceability, was best in group C. With the help of IMR and ECG-synchronized prospective-triggered technology, the bronchial artery anatomy can be accurately depicted in patients with massive hemoptysis.

  1. Data Analysis of the Gated-LEH X-Ray Imaging Diagnostic at the NIF

    Science.gov (United States)

    Thibodeau, Matthew; Chen, Hui

    2017-10-01

    The Gated Laser Entrance Hole (G-LEH) x-ray imaging diagnostic in use at the NIF offers a desirable combination of spatial and temporal resolution. By looking inside of NIF hohlraums with time resolution, G-LEH measures target features including LEH size and capsule size. A framework is presented for automated and systematic analysis of G-LEH images that measures several physical parameters of interest and their evolution over time. The results from these analyses enable comparisons with hohlraum models and allow model validation of LEH closure velocity and the extent of capsule blow-off. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Cardiac-gated parametric images from82Rb PET from dynamic frames and direct 4D reconstruction.

    Science.gov (United States)

    Germino, Mary; Carson, Richard E

    2018-02-01

    Cardiac perfusion PET data can be reconstructed as a dynamic sequence and kinetic modeling performed to quantify myocardial blood flow, or reconstructed as static gated images to quantify function. Parametric images from dynamic PET are conventionally not gated, to allow use of all events with lower noise. An alternative method for dynamic PET is to incorporate the kinetic model into the reconstruction algorithm itself, bypassing the generation of a time series of emission images and directly producing parametric images. So-called "direct reconstruction" can produce parametric images with lower noise than the conventional method because the noise distribution is more easily modeled in projection space than in image space. In this work, we develop direct reconstruction of cardiac-gated parametric images for 82 Rb PET with an extension of the Parametric Motion compensation OSEM List mode Algorithm for Resolution-recovery reconstruction for the one tissue model (PMOLAR-1T). PMOLAR-1T was extended to accommodate model terms to account for spillover from the left and right ventricles into the myocardium. The algorithm was evaluated on a 4D simulated 82 Rb dataset, including a perfusion defect, as well as a human 82 Rb list mode acquisition. The simulated list mode was subsampled into replicates, each with counts comparable to one gate of a gated acquisition. Parametric images were produced by the indirect (separate reconstructions and modeling) and direct methods for each of eight low-count and eight normal-count replicates of the simulated data, and each of eight cardiac gates for the human data. For the direct method, two initialization schemes were tested: uniform initialization, and initialization with the filtered iteration 1 result of the indirect method. For the human dataset, event-by-event respiratory motion compensation was included. The indirect and direct methods were compared for the simulated dataset in terms of bias and coefficient of variation as a

  3. Online full two-dimensional imaging of pulsed muon beams at J-PARC MUSE using a gated image intensifier

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T.U., E-mail: ito.takashi15@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Materials and Life Science Division, J-PARC Center, Tokai, Ibaraki 319-1195 (Japan); Toyoda, A. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Higemoto, W. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Materials and Life Science Division, J-PARC Center, Tokai, Ibaraki 319-1195 (Japan); Tajima, M.; Matsuda, Y. [Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902 (Japan); Shimomura, K. [Materials and Life Science Division, J-PARC Center, Tokai, Ibaraki 319-1195 (Japan); Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)

    2014-08-01

    A new muon beam profile monitor (MBPM) was developed to diagnose pulsed muon beams at J-PARC MUSE, mainly composed of a scintillation screen, a gated image intensifier (II), and a cooled CCD camera. The MBPM was designed to be compact so that it could be inserted into the bore of the μSR spectrometer in the D1 area and used concurrently. The spatial resolution of the MBPM was evaluated to be better than 1.4 mm, depending on the II gain. Such high-resolution muon beam profiles were obtained online for a positive muon beam with a kinetic energy of approximately 4 MeV. The contribution from the decay positrons to beam profiles was significantly reduced owing to the II gating. The linearity of the MBPM was evaluated on the basis of the number of decay positrons monitored by the μSR spectrometer. A linear response within a deviation of ±5% was confirmed over more than two orders of magnitude. In addition, a 3D imaging capability, used in vacuum, and immunity against moderate magnetic fields were demonstrated.

  4. Acquisition and automated 3-D segmentation of respiratory/cardiac-gated PET transmission images

    International Nuclear Information System (INIS)

    Reutter, B.W.; Klein, G.J.; Brennan, K.M.; Huesman, R.H.

    1996-01-01

    To evaluate the impact of respiratory motion on attenuation correction of cardiac PET data, we acquired and automatically segmented gated transmission data for a dog breathing on its own under gas anesthesia. Data were acquired for 20 min on a CTI/Siemens ECAT EXACT HR (47-slice) scanner configured for 12 gates in a static study, Two respiratory gates were obtained using data from a pneumatic bellows placed around the dog's chest, in conjunction with 6 cardiac gates from standard EKG gating. Both signals were directed to a LabVIEW-controlled Macintosh, which translated them into one of 12 gate addresses. The respiratory gating threshold was placed near end-expiration to acquire 6 cardiac-gated datasets at end-expiration and 6 cardiac-gated datasets during breaths. Breaths occurred about once every 10 sec and lasted about 1-1.5 sec. For each respiratory gate, data were summed over cardiac gates and torso and lung surfaces were segmented automatically using a differential 3-D edge detection algorithm. Three-dimensional visualizations showed that lung surfaces adjacent to the heart translated 9 mm inferiorly during breaths. Our results suggest that respiration-compensated attenuation correction is feasible with a modest amount of gated transmission data and is necessary for accurate quantitation of high-resolution gated cardiac PET data

  5. Elastic strips

    OpenAIRE

    Chubelaschwili, David; Pinkall, Ulrich

    2010-01-01

    Motivated by the problem of finding an explicit description of a developable narrow Moebius strip of minimal bending energy, which was first formulated by M. Sadowsky in 1930, we will develop the theory of elastic strips. Recently E.L. Starostin and G.H.M. van der Heijden found a numerical description for an elastic Moebius strip, but did not give an integrable solution. We derive two conservation laws, which describe the equilibrium equations of elastic strips. In applying these laws we find...

  6. Accuracy and effectiveness of self-gating signals in free-breathing three-dimensional cardiac cine magnetic resonance imaging

    Science.gov (United States)

    Li, Shuo; Wang, Lei; Zhu, Yan-Chun; Yang, Jie; Xie, Yao-Qin; Fu, Nan; Wang, Yi; Gao, Song

    2016-12-01

    Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breathing three-dimensional (3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of self-gating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed. Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic (ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers. The results demonstrate an excellent correlation (P = 0, R > 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac (H = 0, P > 0.10) and respiratory (H = 0, P > 0.44) motions. The difference between self-gating and externally monitored signals is not significant (two-tailed paired-sample t-test: H = 0, P > 0.90). The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors

  7. 3D segmentation of scintigraphic images with validation on realistic GATE simulations

    International Nuclear Information System (INIS)

    Burg, Samuel

    2011-01-01

    The objective of this thesis was to propose a new 3D segmentation method for scintigraphic imaging. The first part of the work was to simulate 3D volumes with known ground truth in order to validate a segmentation method over other. Monte-Carlo simulations were performed using the GATE software (Geant4 Application for Emission Tomography). For this, we characterized and modeled the gamma camera 'γ Imager' Biospace TM by comparing each measurement from a simulated acquisition to his real equivalent. The 'low level' segmentation tool that we have developed is based on a modeling of the levels of the image by probabilistic mixtures. Parameters estimation is done by an SEM algorithm (Stochastic Expectation Maximization). The 3D volume segmentation is achieved by an ICM algorithm (Iterative Conditional Mode). We compared the segmentation based on Gaussian and Poisson mixtures to segmentation by thresholding on the simulated volumes. This showed the relevance of the segmentations obtained using probabilistic mixtures, especially those obtained with Poisson mixtures. Those one has been used to segment real 18 FDG PET images of the brain and to compute descriptive statistics of the different tissues. In order to obtain a 'high level' segmentation method and find anatomical structures (necrotic part or active part of a tumor, for example), we proposed a process based on the point processes formalism. A feasibility study has yielded very encouraging results. (author) [fr

  8. Patterns of ventricular dysfunction in patients receiving cardiotoxic chemotherapy as assessed with gated blood pool imaging

    International Nuclear Information System (INIS)

    Spies, S.M.; Parikh, S.R.; Spies, W.G.; Zimmer, A.M.; Silverstein, E.A.

    1989-01-01

    Clinical concern over significant cardiotoxicity of commonly employed chemotherapeutic regimens is a common indication for gated blood pool imaging. The authors have undertaken a review of 102 patients referred for such evaluation during a 14-month period. Ventricular ejection fractions, cine displays, and phase analysis were performed on each patient study. Approximately one-third of the cases showed significant abnormalities in wall motion or global ejection fraction. Many abnormal cases had isolated left ventricular findings, while fewer had isolated right ventricular findings. Left ventricular wall motion abnormalities were often focal. The patterns of ventricular dysfunction in patients receiving cardiotoxic chemotherapy are diverse, and awareness of the various possibilities is important for accurate clinical assessment of these patients

  9. Development of a 2D silicon strip detector system for mammographic imaging using particle physics technology

    CERN Document Server

    Royle, G J; Speller, R D; Hall, G; Iles, G; Raymond, M; Corrin, E; Stelt, P F; Manthos, N; Triantis, F A

    2002-01-01

    2D silicon strip sensors using particle physics readout technology have been evaluated as mammographic detectors. Two different versions of the APV series of front-end electronics were used that provided different noise levels. The sensors were evaluated using a typical mammography X-ray spectrum. The spatial resolution was evaluated using line pair test patterns and the modulation transfer function (MTF) was measured using the Edge Response Function. Low contrast performance was measured using the TOR(MAX) test object. Limiting spatial resolution of 52 mu m was obtained and an MTF value of 0.1 at 16 lp/mm. The low contrast performance was estimated from 250, 500 mu m and 6 mm diameter objects and was found to be 11.5%, 7% and better than 3.8%, respectively.

  10. New respiratory gating technique for whole heart cine imaging: integration of a navigator slice in steady state free precession sequences.

    Science.gov (United States)

    Uribe, Sergio; Tejos, Cristian; Razavi, Reza; Schaeffter, Tobias

    2011-07-01

    To evaluate the performance of a slice navigator sequence integrated into a b-SSFP sequence for obtaining real time respiratory self-gated whole heart cine imaging. In this work, we present a novel and robust approach for respiratory motion detection by integrating a slice navigator sequence into a balanced steady state free precession (b-SSFP) sequence, while maintaining the steady state. The slice navigator sequence is integrated into consecutive repetition times (TRs) of a b-SSFP sequence to excite and read out a navigator slice. We performed several phantom experiments to test the performance of the slice navigator sequence. Additionally, the method was evaluated in five volunteers and compared with breathing signals obtained from conventional pencil beam navigator sequence. Finally, the navigator slice was used to obtain whole heart MR cine images. The breathing signals detected by the proposed method showed an excellent agreement with those obtained from pencil beam navigators. Moreover, the technique was capable of removing respiratory motion artifacts with minimal distortion of the steady state. Image quality comparison showed a statistical significant improvement from a quality score of 2.1 obtained by the nonrespiratory gated images, compared to a quality score of 3.4 obtained by the respiratory gated images. This novel method represents a robust approach to estimate breathing motion during SSFP imaging. The technique was successfully applied to acquire whole heart artifact-free cine images. Copyright © 2011 Wiley-Liss, Inc.

  11. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    International Nuclear Information System (INIS)

    Shan, Jaffry Syed; Abbas, Syed Haider; Lee, Jung Ryul; Kang, Dong Hoon

    2015-01-01

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm 2 with 0.5 mm interval) to 87.5% (scanning of 200x200mm 2 with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection

  12. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jaffry Syed [Hamdard University, Karachi (Pakistan); Abbas, Syed Haider; Lee, Jung Ryul [Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-12-15

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm{sup 2} with 0.5 mm interval) to 87.5% (scanning of 200x200mm{sup 2} with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

  13. Acetylcholinesterase Inhibitors Assay Using Colorimetric pH Sensitive Strips and Image Analysis by a Smartphone

    Directory of Open Access Journals (Sweden)

    Adam Kostelnik

    2017-01-01

    Full Text Available Smartphones are widely spread and their usage does not require any trained personnel. Recently, smartphones were successfully used in analytical chemistry as a simple detection tool in some applications. This paper focuses on immobilization of acetylcholinesterase (AChE onto commercially available pH strips with stabilization in the gelatin membrane. AChE degrades acetylcholine into choline and acetic acid which causes color change of acid-base indicator. Smartphone served as a tool for measurement of indicator color change from red to orange while inhibitors blocked this process. AChE inhibitors were measured with limits of detection, 149 nM and 22.3 nM for galanthamine and donepezil, respectively. Organic solvents were measured for method interferences. Measurement procedure was performed on 3D printed holder and digital photography was evaluated using red-green-blue (RGB channels. The invented assay was validated to the standard Ellman’s test and verified on murine plasma samples spiked with inhibitors. We consider that the assay is fully suitable for practical performance.

  14. Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location

    DEFF Research Database (Denmark)

    Fennema-Notestine, Christine; Ozyurt, I Burak; Clark, Camellia P

    2006-01-01

    Performance of automated methods to isolate brain from nonbrain tissues in magnetic resonance (MR) structural images may be influenced by MR signal inhomogeneities, type of MR image set, regional anatomy, and age and diagnosis of subjects studied. The present study compared the performance of four...... Extractor (BSE, Sandor and Leahy [1997] IEEE Trans Med Imag 16:41-54; Shattuck et al. [2001] Neuroimage 13:856-876) to manually stripped images. The methods were applied to uncorrected and bias-corrected datasets; Legacy and Contemporary T1-weighted image sets; and four diagnostic groups (depressed...

  15. A study of glycogen storage disease with 99Tcm-MIBI gated myocardial perfusion imaging.

    Science.gov (United States)

    Wei, L G; Gao, J Q; Liu, X M; Huang, J M; Li, X Z

    2013-12-01

    Gated myocardial perfusion imaging (G-MPI) is regularly performed using single-photon emission computed tomography. The objective of this study was to evaluate the clinical value of 99Tcm-methoxyisobutylisonitrile (MIBI) myocardial imaging in glycogen storage disease (GSD). 99Tcm-MIBI G-MPI was performed in nine patients with clinically proven GSD. QGS quantitative software was used for processing and interpretation. Left ventricular ejection fraction (LVEF), end-diastolic volume (EDV) and end-systolic volume (ESV) were automatically generated. The myocardium was divided into seven segments, 20 sub-segments and a five-point scoring system was used. Seven out of nine cases were abnormal and the positive rate of G-MPI was 77.8 %. Sixty-two sub-segments of injured myocardium were detected in 140 sub-segments of seven abnormal patients. One injured segment was observed in one patient (14.3 %), two segments were detected in two patients (28.6 %) and three or more abnormal segments were observed in four patients (57.1 %). 99Tcm-MIBI G-MPI can detect myocardial damage in GSD as a non-invasive method. It plays an important role in the clinic.

  16. 3D range-gated super-resolution imaging based on stereo matching for moving platforms and targets

    Science.gov (United States)

    Sun, Liang; Wang, Xinwei; Zhou, Yan

    2017-11-01

    3D range-gated superresolution imaging is a novel 3D reconstruction technique for target detection and recognition with good real-time performance. However, for moving targets or platforms such as airborne, shipborne, remote operated vehicle and autonomous vehicle, 3D reconstruction has a large error or failure. In order to overcome this drawback, we propose a method of stereo matching for 3D range-gated superresolution reconstruction algorithm. In experiment, the target is a doll of Mario with a height of 38cm at the location of 34m, and we obtain two successive frame images of the Mario. To confirm our method is effective, we transform the original images with translation, rotation, scale and perspective, respectively. The experimental result shows that our method has a good result of 3D reconstruction for moving targets or platforms.

  17. Two-Dimensional Spoiled Gradient-Recalled Echo Magnetic Resonance Imaging of the Liver Using Respiratory Navigator-Gating Techniques.

    Science.gov (United States)

    Inoue, Yusuke; Hata, Hirofumi; Matsunaga, Keiji; Nakajima, Ai; Komi, Shotaro; Abe, Yutaka; Miyatake, Hiroki

    We assessed the feasibility of T1-weighted 2-dimensional spoiled gradient-recalled (2D SPGR) acquisition in steady-state imaging of the liver with various respiratory navigator gating techniques. A total of 12 healthy volunteers underwent in-phase and out-of-phase 2D SPGR imaging of the liver during breath-holding and free-breathing. Four techniques for respiratory navigation, 2 conventional navigator techniques and 2 self-navigator techniques, were used for free-breathing imaging. Good navigator waveforms were obtained in conventional navigation, whereas fluctuations were evident in self navigation. All of the 4 navigator-based methods provided better images in terms of background signals and visual image quality compared with images obtained with no respiratory control. However, differences remained in comparison with breath-holding. Superiority of self-navigation to conventional navigation was not shown. Navigator-gating techniques improved 2D SPGR images of the liver acquired during free-breathing, suggesting feasibility and beneficial effects, although navigator-based images were still inferior to breath-hold images.

  18. A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Panayiotou, Maria, E-mail: maria.panayiotou@kcl.ac.uk; King, Andrew P.; Housden, R. James; Ma, YingLiang; Rhode, Kawal S. [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Cooklin, Michael; O' Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo [Department of Cardiology, Guy' s and St. Thomas' Hospitals NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2014-07-15

    Purpose: Image-guided cardiac interventions involve the use of fluoroscopic images to guide the insertion and movement of interventional devices. Cardiorespiratory gating can be useful for 3D reconstruction from multiple x-ray views and for reducing misalignments between 3D anatomical models overlaid onto fluoroscopy. Methods: The authors propose a novel and potentially clinically useful retrospective cardiorespiratory gating technique. The principal component analysis (PCA) statistical method is used in combination with other image processing operations to make our proposed masked-PCA technique suitable for cardiorespiratory gating. Unlike many previously proposed techniques, our technique is robust to varying image-content, thus it does not require specific catheters or any other optically opaque structures to be visible. Therefore, it works without any knowledge of catheter geometry. The authors demonstrate the application of our technique for the purposes of retrospective cardiorespiratory gating of normal and very low dose x-ray fluoroscopy images. Results: For normal dose x-ray images, the algorithm was validated using 28 clinical electrophysiology x-ray fluoroscopy sequences (2168 frames), from patients who underwent radiofrequency ablation (RFA) procedures for the treatment of atrial fibrillation and cardiac resynchronization therapy procedures for heart failure. The authors established end-systole, end-expiration, and end-inspiration success rates of 97.0%, 97.9%, and 97.0%, respectively. For very low dose applications, the technique was tested on ten x-ray sequences from the RFA procedures with added noise at signal to noise ratio (SNR) values of√(5)0, √(1)0, √(8), √(6), √(5), √(2), and √(1) to simulate the image quality of increasingly lower dose x-ray images. Even at the low SNR value of √(2), representing a dose reduction of more than 25 times, gating success rates of 89.1%, 88.8%, and 86.8% were established. Conclusions: The proposed

  19. Grafting polyethylenimine with quinoline derivatives for targeted imaging of intracellular Zn2+ and logic gate operations

    International Nuclear Information System (INIS)

    Pan, Yi; Shi, Yupeng; Chen, Junying; Wong, Chap-Mo; Zhang, Heng; Li, Mei-Jin; Li, Cheuk-Wing; Yi, Changqing

    2016-01-01

    In this study, a highly sensitive and selective fluorescent Zn 2+ probe which exhibited excellent biocompatibility, water solubility, and cell-membrane permeability, was facilely synthesized in a single step by grafting polyethyleneimine (PEI) with quinoline derivatives. The primary amino groups in the branched PEI can increase water solubility and cell permeability of the probe PEIQ, while quinoline derivatives can specifically recognize Zn 2+ and reduce the potential cytotoxicity of PEI. Basing on fluorescence off-on mechanism, PEIQ demonstrated excellent sensing capability towards Zn 2+ in absolute aqueous solution, where a high sensitivity with a detection limit as low as 38.1 nM, and a high selectivity over competing metal ions and potential interfering amino acids, were achieved. Inspired by these results, elementary logic operations (YES, NOT and INHIBIT) have been constructed by employing PEIQ as the gate while Zn 2+ and EDTA as chemical inputs. Together with the low cytotoxicity and good cell-permeability, the practical application of PEIQ in living cell imaging was satisfactorily demonstrated, emphasizing its wide application in fundamental biology research. - Graphical abstract: The fluorescent Zn 2+ probe, PEIQ, is facilely synthesized by grafting PEI with 8-CAAQ, and demonstrated for the pratical applications in Zn 2+ imaging and implementation of molecular logic operations within biological cells. - Highlights: • PEIQ, fluorescent Zn 2+ probe, is synthesized by grafting PEI with quinoline derivatives. • PEIQ exhibits high sensitivity and selectivity in absolute aqueous solution. • PEIQ is biocompatible, water soluble, and cell-membrane permeable. • Elementary logic operations have been demonstrated for PEIQ/Zn 2+ /EDTA system. • The practical application of PEIQ in living cell imaging is demonstrated.

  20. Feasibility of one-eighth time gated myocardial perfusion SPECT functional imaging using IQ-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Caobelli, Federico; Thackeray, James T.; Bengel, Frank M. [Medizinische Hochschule Hannover, Klinik fuer Nuklearmedizin, Hannover (Germany); Soffientini, Alberto; Pizzocaro, Claudio; Guerra, Ugo Paolo [Fondazione Poliambulanza, Department of Nuclear Medicine, Brescia (Italy)

    2015-11-15

    IQ-SPECT, an add-on to general purpose cameras based on multifocal collimation, can reduce myocardial perfusion imaging (MPI) acquisition times to one-fourth that of standard procedures (to 12 s/view). In a phantom study, a reduction of the acquisition time to one-eighth of the standard time (to 6 s/view) was demonstrated as feasible. It remains unclear whether such a reduction could be extended to clinical practice. Fifty patients with suspected or diagnosed CAD underwent a 2-day stress-rest {sup 99m}Tc-sestamibi MPI protocol. Two consecutive SPECT acquisitions (6 and 12 s/view) were performed. Electrocardiogram-gated images were reconstructed with and without attenuation correction (AC). Polar maps were generated and visually scored by two blinded observers for image quality and perfusion in 17 segments. Global and regional summed stress score (SSS), summed rest score (SRS) and summed difference score (SDS) were determined. Left ventricular volumes and ejection fraction were calculated based on automated contour detection. Image quality was scored higher with the 12 s/view acquisition, both with and without AC. Summed scores were statistically comparable between the 6 s/view and the 12 s/view acquisition, both globally and in individual coronary territories (e.g. in images with AC, SSS were 6.6 ± 8.3 and 6.2 ± 8.2 with 6 s and 12 s/view, respectively, p = 0.10; SRS were 3.9 ± 5.6 and 3.5 ± 5.3, respectively, p = 0.19; and SDS were 2.8 ± 5.7 and 2.6 ± 5.7, respectively, p = 0.59). Both acquisitions allowed MPI-based diagnosis of CAD in 25 of the 50 patients (with AC). Calculated end-diastolic volume (EDV) and end-systolic volume (ESV) were modestly higher with the 6 s/view acquisition than with the 12 s/view acquisition (EDV +4.8 ml at rest and +3.7 ml after stress, p = 0.003; ESV +4.1 ml at rest and +2.6 ml after stress, p = 0.01), whereas the ejection fraction did not differ (-1.2 % at rest, p = 0.20, and -0.9 % after stress, p = 0.27). Image quality and

  1. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyo-Min; Ding, Huanjun; Molloi, Sabee, E-mail: symolloi@uci.edu [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States); Barber, William C.; Iwanczyk, Jan S. [DxRay Inc., Northridge, California 91324 (United States)

    2014-09-15

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A{sup 109}Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm{sup 2}) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The

  2. Imaging Three-Dimensional Myocardial Mechanics Using Navigator-gated Volumetric Spiral Cine DENSE MRI

    Science.gov (United States)

    Zhong, Xiaodong; Spottiswoode, Bruce S.; Meyer, Craig H.; Kramer, Christopher M.; Epstein, Frederick H.

    2010-01-01

    A navigator-gated 3D spiral cine displacement encoding with stimulated echoes (DENSE) pulse sequence for imaging 3D myocardial mechanics was developed. In addition, previously-described 2D post-processing algorithms including phase unwrapping, tissue tracking, and strain tensor calculation for the left ventricle (LV) were extended to 3D. These 3D methods were evaluated in 5 healthy volunteers, using 2D cine DENSE and historical 3D myocardial tagging as reference standards. With an average scan time of 20.5 ± 5.7 minutes, 3D data sets with a matrix size of 128 × 128 × 22, voxel size of 2.8 × 2.8 × 5.0 mm3, and temporal resolution of 32 ms were obtained with displacement encoding in three orthogonal directions. Mean values for end-systolic mid-ventricular mid-wall radial, circumferential, and longitudinal strain were 0.33 ± 0.10, −0.17 ± 0.02, and −0.16 ± 0.02, respectively. Transmural strain gradients were detected in the radial and circumferential directions, reflecting high spatial resolution. Good agreement by linear correlation and Bland-Altman analysis was achieved when comparing normal strains measured by 2D and 3D cine DENSE. Also, the 3D strains, twist, and torsion results obtained by 3D cine DENSE were in good agreement with historical values measured by 3D myocardial tagging. PMID:20574967

  3. Dynamic arrythmia filtration for gated blood pool imaging: Validation against list - Mode technique

    International Nuclear Information System (INIS)

    Juni, J.E.; Wallis, J.; Rocchini, A.; Wu-Connolly, L.

    1985-01-01

    Normal resting heart rate variation distort the diastolic portions of time-activity curves (TACs) generated from gated blood pool (GBP) images. This alters calculated measures of diastolic function e.g. peak filling rate (PFR). The authors compared diastolic filling parameters obtained by two methods of arrythmia removal, list-mode (LM) acquisition and a new approach, dynamic arrythima filtration (DAF). LM acquisition techniques reject beats of unusual cycle length, thus reducing the TAC distortions caused by heart rate variation but is time consuming and requires large amounts of disk storage. In DAF systems data is evaluated for cycle length in real-time and accepted or rejected immediately according to preset, operator determined cycle-length criteria, thus eliminating the need for post-processing of data and for large mass data storage. The authors prospectively determined EF, time to end-systole (TES), PFR, ad TPFR on 25 GBP patients. Camera and ECG data were sent simultaneously to 2 computers. One acquired data via LM and the other by DAF. Fluctuations in heart rate during GBP acquisition may cause errors in calculation of filling parameters. Both LM and DAF remove cycles of unusual length. DAF is less time consuming and technically demanding than LM and provides results which correlate closely with those obtained by LM

  4. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, Takahiro [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Matsuura, Taeko, E-mail: matsuura@med.hokudai.ac.jp [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Ito, Yoichi M. [Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Miyamoto, Naoki [Department of Medical Physics, Hokkaido University Hospital, Sapporo (Japan); Inoue, Tetsuya [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Katoh, Norio [Department of Radiation Oncology, Hokkaido University Hospital, Sapporo (Japan); Shimizu, Shinichi [Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Department of Radiation Oncology, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Umegaki, Kikuo [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Shirato, Hiroki [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan)

    2017-01-01

    Purpose: To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). Methods and Materials: A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 <5%, V20 for the normal lung, and treatment times were evaluated. Results: Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Conclusion: Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time.

  5. micro strip gas chamber

    CERN Multimedia

    1998-01-01

    About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.

  6. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance

    International Nuclear Information System (INIS)

    Korreman, Stine S.; Juhler-Nottrup, Trine; Boyer, Arthur L.

    2008-01-01

    Purpose/objective: In radiotherapy of targets moving with respiration, beam gating is offered as a means of reducing the target motion. The purpose of this study is to evaluate the safe magnitude of margin reduction for respiratory gated beam delivery. Materials/methods: The study is based on data for 17 lung cancer patients in separate protocols at Rigshospitalet and Stanford Cancer Center. Respiratory curves for external optical markers and implanted fiducials were collected using equipment based on the RPM system (Varian Medical Systems). A total of 861 respiratory curves represented external measurements over 30 fraction treatment courses for 10 patients, and synchronous external/internal measurements in single sessions for seven patients. Variations in respiratory amplitude (simulated coaching) and external/internal phase shifts were simulated by perturbation with realistic values. Variations were described by medians and standard deviations (SDs) of position distributions of the markers. Gating windows (35% duty cycle) were retrospectively applied to the respiratory data for each session, mimicking the use of commercially available gating systems. Medians and SDs of gated data were compared to those of ungated data, to assess potential margin reductions. Results: External respiratory data collected over entire treatment courses showed SDs from 1.6 to 8.1 mm, the major part arising from baseline variations. The gated data had SDs from 1.5 to 7.7 mm, with a mean reduction of 0.3 mm (6%). Gated distributions were more skewed than ungated, and in a few cases a marginal miss of gated respiration would be found even if no margin reduction was applied. Regularization of breathing amplitude to simulate coaching did not alter these results significantly. Simulation of varying phase shifts between internal and external respiratory signals showed that the SDs of gated distributions were the same as for the ungated or smaller, but the median values were markedly shifted

  7. Optimization of imaging before pulmonary vein isolation by radiofrequency ablation: breath-held ungated versus ECG/breath-gated MRA

    Energy Technology Data Exchange (ETDEWEB)

    Allgayer, C.; Haller, S.; Bremerich, J. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Zellweger, M.J.; Sticherling, C.; Buser, P.T. [University Hospital Basel, Department of Cardiology, Basel (Switzerland); Weber, O. [University Hospital Basel, Department of Medical Physics, Basel (Switzerland)

    2008-12-15

    Isolation of the pulmonary veins has emerged as a new therapy for atrial fibrillation. Pre-procedural magnetic resonance (MR) imaging enhances safety and efficacy; moreover, it reduces radiation exposure of the patients and interventional team. The purpose of this study was to optimize the MR protocol with respect to image quality and acquisition time. In 31 patients (23-73 years), the anatomy of the pulmonary veins, left atrium and oesophagus was assessed on a 1.5-Tesla scanner with four different sequences: (1) ungated two-dimensional true fast imaging with steady precession (2D-TrueFISP), (2) ECG/breath-gated 3D-TrueFISP, (3) ungated breath-held contrast-enhanced three-dimensional turbo fast low-angle shot (CE-3D-tFLASH), and (4) ECG/breath-gated CE-3D-TrueFISP. Image quality was scored from 1 (structure not visible) to 5 (excellent visibility), and the acquisition time was monitored. The pulmonary veins and left atrium were best visualized with CE-3D-tFLASH (scores 4.50 {+-} 0.52 and 4.59 {+-} 0.43) and ECG/breath-gated CE-3D-TrueFISP (4.47 {+-} 0.49 and 4.63 {+-} 0.39). Conspicuity of the oesophagus was optimal with CE-3D-TrueFISP and 2D-TrueFISP (4.59 {+-} 0.35 and 4.19 {+-} 0.46) but poor with CE-3D-tFLASH (1.03 {+-} 0.13) (p < 0.05). Acquisition times were shorter for 2D-TrueFISP (44 {+-} 1 s) and CE-3D-tFLASH (345 {+-} 113 s) compared with ECG/breath-gated 3D-TrueFISP (634 {+-} 197 s) and ECG/breath-gated CE-3D-TrueFISP (636 {+-} 230 s) (p < 0.05). In conclusion, an MR imaging protocol comprising CE-3D-tFLASH and 2D-TrueFISP allows assessment of the pulmonary veins, left atrium and oesophagus in less than 7 min and can be recommended for pre-procedural imaging before electric isolation of pulmonary veins. (orig.)

  8. Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging

    International Nuclear Information System (INIS)

    Lazaro, D; Buvat, I; Loudos, G; Strul, D; Santin, G; Giokaris, N; Donnarieix, D; Maigne, L; Spanoudaki, V; Styliaris, S; Staelens, S; Breton, V

    2004-01-01

    Monte Carlo simulations are increasingly used in scintigraphic imaging to model imaging systems and to develop and assess tomographic reconstruction algorithms and correction methods for improved image quantitation. GATE (GEANT4 application for tomographic emission) is a new Monte Carlo simulation platform based on GEANT4 dedicated to nuclear imaging applications. This paper describes the GATE simulation of a prototype of scintillation camera dedicated to small-animal imaging and consisting of a CsI(Tl) crystal array coupled to a position-sensitive photomultiplier tube. The relevance of GATE to model the camera prototype was assessed by comparing simulated 99m Tc point spread functions, energy spectra, sensitivities, scatter fractions and image of a capillary phantom with the corresponding experimental measurements. Results showed an excellent agreement between simulated and experimental data: experimental spatial resolutions were predicted with an error less than 100 μm. The difference between experimental and simulated system sensitivities for different source-to-collimator distances was within 2%. Simulated and experimental scatter fractions in a [98-82 keV] energy window differed by less than 2% for sources located in water. Simulated and experimental energy spectra agreed very well between 40 and 180 keV. These results demonstrate the ability and flexibility of GATE for simulating original detector designs. The main weakness of GATE concerns the long computation time it requires: this issue is currently under investigation by the GEANT4 and the GATE collaborations

  9. Intraindividual comparison of image quality using retrospective and prospective respiratory gating for the acquisition of thin sliced four dimensional multidetector CT of the thorax in a porcine model.

    Science.gov (United States)

    Behzadi, Cyrus; Groth, Michael; Henes, Frank Oliver; Schwarz, Dorothee; Deibele, André; Begemann, Philipp G C; Adam, Gerhard; Regier, Marc

    2015-01-01

    To intraindividually compare image quality and anatomical depiction of the lung and mediastinum using retrospective and prospective respiratory gating techniques for the acquisition of 4D-multidetector computed tomography (MDCT) of the chest in a porcine model. Twelve trachealy intubated domestic pigs underwent 64-row MDCT of the thorax. For retrospective and prospective gating the automated respiratory frequency was adjusted to 10, 14, 18, and 22 respiratory cycles per minute. Further, free breathing MDCT scans of the lung were performed at the same respiratory settings. A breathhold scan was acquired which served as the reference standard. Three reviewers independently analyzed the MDCT data applying a 4-point-grading scale regarding the degree of artifacts observed and anatomical depiction (1, excellent, no artifacts; 4, nondiagnostic due to severe artifacts). For statistical analysis the Wilcoxon matched pairs and Chi-square test were used. Breathhold imaging allowed for the highest image quality (mean value: trachea, 1.00; bronchi, 1.10; lung parenchyma, 1.08; diaphragm, 1.00; pericardium, 1.80). Retrospective gating proved to be of superior image quality compared to prospective gating for all respiratory frequencies. With the respiratory frequency set to 14/min retrospective gating even enabled an identical image quality score as at breathhold. Performing image acquisition during continuous breathing lead to a severe decrease in image quality. High image quality can be acquired using respiratory gating techniques for 4D-MDCT of the thorax. Retrospective is superior to prospective gating and can be of an equivalent image quality as standard breathhold imaging, but at the cost of a significantly higher radiation dose.

  10. Imaging quality and effective radiation dose of prospective ECG-gated axial multidetector row computed tomography coronary angiography

    International Nuclear Information System (INIS)

    Capunay, C.; Carrascosa, P.; Vallejos, J.; Deviggiano, A.; Pollono, P.M.; Garcia, M.J.

    2011-01-01

    Objective. To determine the imaging quality and effective radiation dose (ERD) of prospective ECG-gated multidetector row computed tomography coronary angiography (PMDCTCA) compared to retrospective ECG-gating (RMDCT-CA). Materials and Methods. Forty-five PMDCT-CA scans were retrospectively reviewed for assessing imaging quality and ERD, and compared to 90 RMDCT-CA scans performed with (n=45) and without (n=45) tube current modulation, selected from our database on the basis of similar demographical characteristics. ERD was compared between all three groups. Imaging quality was assessed by two independent observers and compared to the imaging quality of the group of RMDCT-CA scans performed with tube current modulation. The interobserver variability was also determined. Results. There were no significant differences in imaging quality between the two groups. Interobserver variability was k=0.92 (95 % CI: 0.87-0.96). The ERD (mean ± SD) using PMDCT-CA was 2.88 ± 0.37 mSv compared to 10.50 ± 1.15 mSv (p [es

  11. Scanning gate imaging of quantum dots in 1D ultra-thin InAs/InP nanowires

    Science.gov (United States)

    Boyd, Erin E.; Storm, Kristian; Samuelson, Lars; Westervelt, Robert M.

    2011-05-01

    We use a scanning gate microscope (SGM) to characterize one-dimensional ultra-thin (diameter≈30 nm) InAs/InP heterostructure nanowires containing a nominally 300 nm long InAs quantum dot defined by two InP tunnel barriers. Measurements of Coulomb blockade conductance versus backgate voltage with no tip present are difficult to decipher. Using the SGM tip as a charged movable gate, we are able to identify three quantum dots along the nanowire: the grown-in quantum dot and an additional quantum dot near each metal lead. The SGM conductance images are used to disentangle information about individual quantum dots and then to characterize each quantum dot using spatially resolved energy-level spectroscopy.

  12. Scanning gate imaging of quantum dots in 1D ultra-thin InAs/InP nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Erin E; Westervelt, Robert M [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Storm, Kristian; Samuelson, Lars, E-mail: westervelt@seas.harvard.edu [Solid State Physics/the Nanometer Structure Consortium, Lund University, Box 118, S-221 00 Lund (Sweden)

    2011-05-06

    We use a scanning gate microscope (SGM) to characterize one-dimensional ultra-thin (diameter{approx}30 nm) InAs/InP heterostructure nanowires containing a nominally 300 nm long InAs quantum dot defined by two InP tunnel barriers. Measurements of Coulomb blockade conductance versus backgate voltage with no tip present are difficult to decipher. Using the SGM tip as a charged movable gate, we are able to identify three quantum dots along the nanowire: the grown-in quantum dot and an additional quantum dot near each metal lead. The SGM conductance images are used to disentangle information about individual quantum dots and then to characterize each quantum dot using spatially resolved energy-level spectroscopy.

  13. Evaluation of the geometric accuracy of surrogate-based gated VMAT using intrafraction kilovoltage x-ray images

    International Nuclear Information System (INIS)

    Li Ruijiang; Mok, Edward; Han, Bin; Koong, Albert; Xing Lei

    2012-01-01

    Purpose: To evaluate the geometric accuracy of beam targeting in external surrogate-based gated volumetric modulated arc therapy (VMAT) using kilovoltage (kV) x-ray images acquired during dose delivery. Methods: Gated VMAT treatments were delivered using a Varian TrueBeam STx Linac for both physical phantoms and patients. Multiple gold fiducial markers were implanted near the target. The reference position was created for each implanted marker, representing its correct position at the gating threshold. The gating signal was generated from the RPM system. During the treatment, kV images were acquired immediately before MV beam-on at every breathing cycle, using the on-board imaging system. All implanted markers were detected and their 3D positions were estimated using in-house developed software. The positioning error of a marker is defined as the distance of the marker from its reference position for each frame of the images. The overall error of the system is defined as the average over all markers. For the phantom study, both sinusoidal motion (1D and 3D) and real human respiratory motion was simulated for the target and surrogate. In the baseline case, the two motions were synchronized for the first treatment fraction. To assess the effects of surrogate-target correlation on the geometric accuracy, a phase shift of 5% and 10% between the two motions was introduced. For the patient study, intrafraction kV images of five stereotactic body radiotherapy (SBRT) patients were acquired for one or two fractions. Results: For the phantom study, a high geometric accuracy was achieved in the baseline case (average error: 0.8 mm in the superior-inferior or SI direction). However, the treatment delivery is prone to geometric errors if changes in the target-surrogate relation occur during the treatment: the average error was increased to 2.3 and 4.7 mm for the phase shift of 5% and 10%, respectively. Results obtained with real human respiratory curves show a similar trend

  14. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance

    DEFF Research Database (Denmark)

    Korreman, S.S.; Boyer, A.L.; Juhler-Nøttrup, Trine

    2008-01-01

    was not accounted for. CONCLUSIONS: Margins can only be reduced for respiratory gated radiotherapy, if respiratory baseline shifts and variations in external/internal motion correlation are accounted for. Gated beam delivery alone cannot facilitate margin reduction. In the worst case, margins must be increased...... measurements over 30 fraction treatment courses for 10 patients, and synchronous external/internal measurements in single sessions for seven patients. Variations in respiratory amplitude (simulated coaching) and external/internal phase shifts were simulated by perturbation with realistic values. Variations...... compared to those of ungated data, to assess potential margin reductions. RESULTS: External respiratory data collected over entire treatment courses showed SDs from 1.6 to 8.1mm, the major part arising from baseline variations. The gated data had SDs from 1.5 to 7.7mm, with a mean reduction of 0.3mm (6...

  15. Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location

    DEFF Research Database (Denmark)

    Fennema-Notestine, Christine; Ozyurt, I Burak; Clark, Camellia P

    2006-01-01

    Performance of automated methods to isolate brain from nonbrain tissues in magnetic resonance (MR) structural images may be influenced by MR signal inhomogeneities, type of MR image set, regional anatomy, and age and diagnosis of subjects studied. The present study compared the performance of four......, Alzheimer's, young and elderly control). To provide a criterion for outcome assessment, two experts manually stripped six sagittal sections for each dataset in locations where brain and nonbrain tissue are difficult to distinguish. Methods were compared on Jaccard similarity coefficients, Hausdorff...

  16. Noninvasive coronary artery imaging by multislice spiral computed tomography. A novel approach for a retrospectively ECG-gated reconstruction technique

    International Nuclear Information System (INIS)

    Sato, Yuichi; Kanmatsuse, Katsuo; Inoue Fumio

    2003-01-01

    Although the excellent spatial resolution of multislice spiral computed tomography (MSCT) enables the coronary arteries to be visualized, its limited temporal resolution results in poor image reproducibility because of cardiac motion artifact (CMA) and hence limits its widespread clinical use. A novel retrospectively electrocardiogram (ECG)-gated reconstruction method has been developed to minimize CMA. In 88 consecutive patients, the scan data were reconstructed using 2 retrospectively ECG-gated reconstruction methods. Method 1: the end of the reconstruction window (250 ms) was positioned at the peak of the P wave on ECG, which corresponded to the end of the slow filling phase during diastole immediately before atrial contraction. Method 2 (conventional method): relative retrospective gating with 50% referred to the R-R interval was performed so that the beginning of the reconstruction window (250 ms) was positioned at the halfway point between the R-R intervals of the heart cycle. The quality of the coronary artery images was evaluated according to the presence or absence of CMA. The assessment was applied to the left main coronary artery (LMCA), the left anterior descending artery (LAD, segments no.6, no.7, and no.8), the left circumflex artery (LCx, segments no.11 and no.13) and the right coronary artery (RCA, segments no.1, no.2 and no.3). The first diagonal artery (no.9-1), the obtuse marginal artery (no.12-1), the posterior descending artery (no.4-PD), the atrioventricular node branch (no.4-AV) and the first right ventricular branch (RV) were also evaluated. Of the 88 patients, 85 were eligible for image evaluation. Method 1 allowed visualization of the major coronary arteries without CMA in the majority of patients. The left coronary artery (LCA) system (segments no.5-7, no.11 and no.13) and the proximal portion of the RCA were visualized in more than 94% of patients. Artifact-free visualization of the distal portion of the LAD (segment no.8) and RCA (no.4

  17. Early myocardial damage assessment in dystrophinopathies using 99Tcm-MIBI gated myocardial perfusion imaging

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-12-01

    Full Text Available Li Zhang,1,* Zhe Liu,2,* Ke-You Hu,3 Qing-Bao Tian,3 Ling-Ge Wei,4 Zhe Zhao,5 Hong-Rui Shen,5 Jing Hu5 1Department of Cardiovascular Disorders, 2Department of Geriatrics, The Third Hospital of Hebei Medical University, 3The Public Health Department, Hebei Medical University, 4Department of Nuclear Medicine, 5Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China *Li Zhang and Zhe Liu are first coauthors of this paper Background: Early detection of muscular dystrophy (MD-associated cardiomyopathy is important because early medical treatment may slow cardiac remodeling and attenuate symptoms of cardiac dysfunction; however, no sensitive and standard diagnostic method for MD at an earlier stage has been well-recognized. Thus, the aim of this study was to test the early diagnostic value of technetium 99m-methoxyisobutylisonitrile (99Tcm-MIBI gated myocardial perfusion imaging (G-MPI for MD.Methods and results: Ninety-one patients underwent 99Tcm-MIBI G-MPI examinations when they were diagnosed with Duchenne muscular dystrophy (DMD (n=77 or Becker muscular dystrophy (BMD; n=14. 99Tcm-MIBI G-MPI examinations were repeated in 43 DMD patients who received steroid treatments for 2 years as a follow-up examination. Myocardial defects were observed in nearly every segment of the left ventricular wall in both DMD and BMD patients compared with controls, especially in the inferior walls and the apices by using 99Tcm-MIBI G-MPI. Cardiac wall movement impairment significantly correlated with age in the DMD and BMD groups (rs=0.534 [P<0.05] and rs=0.784 [P<0.05], respectively. Intermittent intravenous doses of glucocorticoids and continuation with oral steroid treatments significantly improved myocardial function in DMD patients (P<0.05, but not in BMD patients.Conclusion: 99Tcm-MIBI G-MPI is a sensitive and safe approach for early evaluation of cardiomyopathy in patients with DMD or BMD

  18. Design and performance of a respiratory amplitude gating device for PET/CT imaging.

    Science.gov (United States)

    Chang, Guoping; Chang, Tingting; Clark, John W; Mawlawi, Osama R

    2010-04-01

    Recently, the authors proposed a free-breathing amplitude gating (FBAG) technique for PET/CT scanners. The implementation of this technique required specialized hardware and software components that were specifically designed to interface with commercial respiratory gating devices to generate the necessary triggers required for the FBAG technique. The objective of this technical note is to introduce an in-house device that integrates all the necessary hardware and software components as well as tracks the patient's respiratory motion to realize amplitude gating on PET/CT scanners. The in-house device is composed of a piezoelectric transducer coupled to a data-acquisition system in order to monitor the respiratory waveform. A LABVIEW program was designed to control the data-acquisition device and inject triggers into the PET list stream whenever the detected respiratory amplitude crossed a predetermined amplitude range. A timer was also programmed to stop the scan when the accumulated time within the selected amplitude range REACHED a user-set interval. This device was tested using a volunteer and a phantom study. The results from the volunteer and phantom studies showed that the in-house device can detect similar respiratory signals as commercially available respiratory gating systems and is able to generate the necessary triggers to suppress respiratory motion artifacts. The proposed in-house device can be used to implement the FBAG technique in current PET/CT scanners.

  19. A new automated method for analysis of gated-SPECT images based on a three-dimensional heart shaped model

    DEFF Research Database (Denmark)

    Lomsky, Milan; Richter, Jens; Johansson, Lena

    2005-01-01

    A new automated method for quantification of left ventricular function from gated-single photon emission computed tomography (SPECT) images has been developed. The method for quantification of cardiac function (CAFU) is based on a heart shaped model and the active shape algorithm. The model....... In the patient group the EDV calculated using QGS and CAFU showed good agreement for large hearts and higher CAFU values compared with QGS for the smaller hearts. In the larger hearts, ESV was much larger for QGS than for CAFU both in the phantom and patient studies. In the smallest hearts there was good...

  20. Influence of gating phase selection on the image quality of coronary arteries in multidetector row computed tomography

    International Nuclear Information System (INIS)

    Laskowska, K.; Marzec, M.; Serafin, Z.; Nawrocka, E.; Lasek, W.; WWisniewska-Szmyt, J.; Kubica, J.

    2005-01-01

    Motion artifacts caused by cardiac movement disturb the imaging of coronary arteries with multidetector-row spiral computed tomography. The aim of this study was to determine the phase of the heart rate which provides the best quality of coronary artery imaging in retrospective ECG-gated CT. Although 75% is usually the best reconstruction phase, the optimal phase should be established individually for the patient, artery, segment, and type of tomograph for the best imaging quality. Forty-five cardiac CT angiograms of 26 patients were retrospectively evaluated. The examinations were performed with a 4-detector-row tomograph. ECG-gated retrospective reconstructions were relatively delayed at 0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, and 87.5% of the cardiac cycle. Selected coronary arteries of the highest diagnostic quality were estimated in the eight phases of the cardiac cycle. Only arteries of very high image quality were selected for analysis: left coronary artery trunks (44 cases, incl. 37 stented), anterior interventricular branches (36, incl. 3 stented), circumflex branches (16), right coronary rtery branches (23), and posterior interventricular branches (4). The reconstruction phase had a statistically significant impact on the quality of imaging (p < 0.0003). Depending on the case, optimal imaging was noted in various phases, except in the 12.5 % phase. The 75% phase appeared to be the best of all those examined (p < 0.05), both in the group of arteries without stents (p < 0.0006) and in those stented (p < 0.05). In some cases of repeated examinations the best phases differed within the same patient. (author)

  1. Registration and Summation of Respiratory-Gated or Breath-Hold PET Images Based on Deformation Estimation of Lung from CT Image

    Directory of Open Access Journals (Sweden)

    Hideaki Haneishi

    2016-01-01

    Full Text Available Lung motion due to respiration causes image degradation in medical imaging, especially in nuclear medicine which requires long acquisition times. We have developed a method for image correction between the respiratory-gated (RG PET images in different respiration phases or breath-hold (BH PET images in an inconsistent respiration phase. In the method, the RG or BH-PET images in different respiration phases are deformed under two criteria: similarity of the image intensity distribution and smoothness of the estimated motion vector field (MVF. However, only these criteria may cause unnatural motion estimation of lung. In this paper, assuming the use of a PET-CT scanner, we add another criterion that is the similarity for the motion direction estimated from inhalation and exhalation CT images. The proposed method was first applied to a numerical phantom XCAT with tumors and then applied to BH-PET image data for seven patients. The resultant tumor contrasts and the estimated motion vector fields were compared with those obtained by our previous method. Through those experiments we confirmed that the proposed method can provide an improved and more stable image quality for both RG and BH-PET images.

  2. Imaging and Tuning Molecular Levels at the Surface of a Gated Graphene Device

    Science.gov (United States)

    2014-01-01

    Gate-controlled tuning of the charge carrier density in graphene devices provides new opportunities to control the behavior of molecular adsorbates. We have used scanning tunneling microscopy (STM) and spectroscopy (STS) to show how the vibronic electronic levels of 1,3,5-tris(2,2-dicyanovinyl)benzene molecules adsorbed onto a graphene/BN/SiO2 device can be tuned via application of a backgate voltage. The molecules are observed to electronically decouple from the graphene layer, giving rise to well-resolved vibronic states in dI/dV spectroscopy at the single-molecule level. Density functional theory (DFT) and many-body spectral function calculations show that these states arise from molecular orbitals coupled strongly to carbon–hydrogen rocking modes. Application of a back-gate voltage allows switching between different electronic states of the molecules for fixed sample bias. PMID:24746016

  3. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance

    DEFF Research Database (Denmark)

    Korreman, S.S.; Boyer, A.L.; Juhler-Nøttrup, Trine

    2008-01-01

    PURPOSE/OBJECTIVE: In radiotherapy of targets moving with respiration, beam gating is offered as a means of reducing the target motion. The purpose of this study is to evaluate the safe magnitude of margin reduction for respiratory gated beam delivery. MATERIALS/METHODS: The study is based on data...... for 17 lung cancer patients in separate protocols at Rigshospitalet and Stanford Cancer Center. Respiratory curves for external optical markers and implanted fiducials were collected using equipment based on the RPM system (Varian Medical Systems). A total of 861 respiratory curves represented external...... measurements over 30 fraction treatment courses for 10 patients, and synchronous external/internal measurements in single sessions for seven patients. Variations in respiratory amplitude (simulated coaching) and external/internal phase shifts were simulated by perturbation with realistic values. Variations...

  4. Development of patient-controlled respiratory gating system based on visual guidance for magnetic-resonance image-guided radiation therapy.

    Science.gov (United States)

    Kim, Jung-In; Lee, Hanyoung; Wu, Hong-Gyun; Chie, Eui Kyu; Kang, Hyun-Cheol; Park, Jong Min

    2017-09-01

    The aim of this study is to develop a visual guidance patient-controlled (VG-PC) respiratory gating system for respiratory-gated magnetic-resonance image-guided radiation therapy (MR-IGRT) and to evaluate the performance of the developed system. The near-real-time cine planar MR image of a patient acquired during treatment was transmitted to a beam projector in the treatment room through an optical fiber cable. The beam projector projected the cine MR images inside the bore of the ViewRay system in order to be visible to a patient during treatment. With this visual information, patients voluntarily controlled their respiration to put the target volume into the gating boundary (gating window). The effect of the presence of the beam projector in the treatment room on the image quality of the MRI was investigated by evaluating the signal-to-noise ratio (SNR), uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity with the VG-PC gating system. To evaluate the performance of the developed system, we applied the VG-PC gating system to a total of seven patients; six patients received stereotactic ablative radiotherapy (SABR) and one patient received conventional fractionated radiation therapy. The projected cine MR images were visible even when the room light was on. No image data loss or additional time delay during delivery of image data were observed. Every indicator representing MRI quality, including SNR, uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity exhibited values higher than the tolerance levels of the manufacturer with the VG-PC gating system; therefore, the presence of the VG-PC gating system in the treatment room did not degrade the MR image quality. The average beam-off times due to respiratory gating with and without the VG-PC gating system were 830.3 ± 278.2 s and 1264.2 ± 302.1 s respectively (P = 0.005). Consequently, the total treatment times excluding

  5. SU-F-J-151: Evaluation of a Magnetic Resonance Image Gated Radiotherapy System Using a Motion Phantom and Radiochromic Film

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J; Ginn, J; O’Connell, D; Thomas, D; Agazaryan, N; Cao, M; Yang, Y; Low, D [UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: Magnetic resonance image (MRI) guided radiotherapy enables gating directly on target position for soft-tissue targets in the lung and abdomen. We present a dosimetric evaluation of a commercially-available FDA-approved MRI-guided radiotherapy system’s gating performance using a MRI-compatible respiratory motion phantom and radiochromic film. Methods: The MRI-compatible phantom was capable of one-dimensional motion. The phantom consisted of a target rod containing high-contrast target inserts which moved inside a body structure containing background contrast material. The target rod was equipped with a radiochromic film insert. Treatment plans were generated for a 3 cm diameter spherical target, and delivered to the phantom at rest and in motion with and without gating. Both sinusoidal and actual tumor trajectories (two free-breathing trajectories and one repeated-breath hold) were used. Gamma comparison at 5%/3mm was used to measure fidelity to the static target dose distribution. Results: Without gating, gamma pass rates were 24–47% depending on motion trajectory. Using our clinical standard of repeated breath holds and a gating window of 3 mm with 10% of the target allowed outside the gating boundary, the gamma pass rate was 99.6%. Relaxing the gating window to 5 mm resulted in gamma pass rate of 98.6% with repeated breath holds. For all motion trajectories gated with 3 mm margin and 10% allowed out, gamma pass rates were between 64–100% (mean:87.5%). For a 5 mm margin and 10% allowed out, gamma pass rates were between 57–98% (mean: 82.49%), significantly lower than for 3 mm by paired t-test (p=0.01). Conclusion: We validated the performance of respiratory gating based on real-time cine MRI images with the only FDA-approved MRI-guided radiotherapy system. Our results suggest that repeated breath hold gating should be used when possible for best accuracy. A 3 mm gating margin is statistically significantly more accurate than a 5 mm gating margin.

  6. Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92

  7. Photosensitive Strip RETHGEM

    CERN Document Server

    Peskov, Vladimir; Nappi, E.; Oliveira, R.; Paic, G.; Pietropaolo, F.; Picchi, P.

    2008-01-01

    An innovative photosensitive gaseous detector, consisting of a GEM like amplification structure with double layered electrodes (instead of commonly used metallic ones) coated with a CsI reflective photocathode, is described. In one of our latest designs, the inner electrode consists of a metallic grid and the outer one is made of resistive strips; the latter are manufactured by a screen printing technology on the top of the metallic strips grid The inner metallic grid is used for 2D position measurements whereas the resistive layer provides an efficient spark protected operation at high gains - close to the breakdown limit. Detectors with active areas of 10cm x10cm and 10cm x20cm were tested under various conditions including the operation in photosensitive gas mixtures containing ethylferrocene or TMAE vapors. The new technique could have many applications requiring robust and reliable large area detectors for UV visualization, as for example, in Cherenkov imaging devices.

  8. Respiratory-gated 18F-FDG PET imaging in lung cancer: effects on sensitivity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Daouk, Joel (Nuclear Medicine Dept. Amiens Univ. Hospital, Amiens (France); Medical School, Univ. of Picardy Jules Verne, Amiens (France)), email: bailly.pascal@chu-amiens.fr; Leloire, Marie (Medical School, Univ. of Picardy Jules Verne, Amiens (France)); Fin, Loic (Clinical Trial and Innovation Dept., Amiens Univ. Hospital, Amiens (France)) (and others)

    2011-07-15

    Background: Respiratory motion is known to deteriorate positron emission tomography (PET) images and may lead to potential diagnostic errors when a standardized uptake value (SUV) cut-off threshold is used to discriminate between benign and malignant lesions. Purpose: To evaluate and compare ungated and respiratory-gated 18F-fluorodeoxyglucose PET/computed tomography (CT) methods for the characterization of pulmonary nodules. Material and Methods: The list-mode acquisition during respiratory-gated PET was combined with a short breath-hold CT scan to form the CT-based images. We studied 48 lesions in 43 patients. PET images were analyzed in terms of the maximum SUV (SUV{sub max}) and the lesion location. Results: Using receiver-operating characteristic (ROC) curves, the optimal SUV cut-off thresholds for the ungated and CT-based methods were calculated to be 2.0 and 2.2, respectively. The corresponding sensitivity values were 83% and 92%, respectively, with a specificity of 67% for both methods. The two methods gave equivalent performance levels for the upper and middle lobes (sensitivity 93%, specificity 62%). They differed for the lower lobes, where the CT-based method outperformed the ungated method (sensitivity values of 90% and 70%, respectively, and a specificity of 73% with both methods) - especially for lesions smaller than 15 mm. Conclusion: The CT-based method increased sensitivity and did not diminish specificity, compared with the ungated method. It was more efficient than the ungated method for imaging the lower lobes and smallest lesions, which are most affected by respiratory motion

  9. Optimization and evaluation of multiple gating beam delivery in a synchrotron-based proton beam scanning system using a real-time imaging technique.

    Science.gov (United States)

    Yamada, Takahiro; Miyamoto, Naoki; Matsuura, Taeko; Takao, Seishin; Fujii, Yusuke; Matsuzaki, Yuka; Koyano, Hidenori; Umezawa, Masumi; Nihongi, Hideaki; Shimizu, Shinichi; Shirato, Hiroki; Umegaki, Kikuo

    2016-07-01

    To find the optimum parameter of a new beam control function installed in a synchrotron-based proton therapy system. A function enabling multiple gated irradiation in the flat top phase has been installed in a real-time-image gated proton beam therapy (RGPT) system. This function is realized by a waiting timer that monitors the elapsed time from the last gate-off signal in the flat top phase. The gated irradiation efficiency depends on the timer value, Tw. To find the optimum Tw value, gated irradiation efficiency was evaluated for each configurable Tw value. 271 gate signal data sets from 58 patients were used for the simulation. The highest mean efficiency 0.52 was obtained in TW=0.2s. The irradiation efficiency was approximately 21% higher than at TW=0s, which corresponds to ordinary synchrotron operation. The irradiation efficiency was improved in 154 (57%) of the 271 cases. The irradiation efficiency was reduced in 117 cases because the TW value was insufficient or the function introduced an unutilized wait time for the next gate-on signal in the flat top phase. In the actual treatment of a patient with a hepatic tumor at Tw=0.2s, 4.48GyE irradiation was completed within 250s. In contrast, the treatment time of ordinary synchrotron operation was estimated to be 420s. The results suggest that the multiple gated-irradiation function has potential to improve the gated irradiation efficiency and to reduce the treatment time. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J. [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Xu, J., E-mail: xujianr@hotmail.co [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China)

    2010-10-15

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 {+-} 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  11. Exercise gated planar myocardial perfusion imaging using technetium-99m sestamibi for the diagnosis of coronary artery disease: an alternative to exercise tomographic imaging

    International Nuclear Information System (INIS)

    Jamar, F.; Topcuoglu, R.; Cauwe, F.; Coster, P. de; Roelants, V.; Beckers, C.; Wijns, W.; Melin, J.A.

    1995-01-01

    This prospective study was designed to evaluate the diagnostic performance of 99m Tc-sestamibi exercise gated planar myocardial imaging by comparison with both visual and quantitative analyses of SPET. The study was conducted in 115 consecutive patients with known or suspected CAD, including 54 patients with a previous myocardial infarction (MI), referred for exercise testing prior to coronary angiography. Multi-gated planar imaging and SPET were performed after bicycle exercise. The end-diastolic (ED) and SPET images were visually scored (SVi). Myocardial uptake was quantitated on SPET slices using maximum count circumferential profiles (SQu) and defect extent was measured by comparison with gender-matched data sets obtained from 27 controls ( 50% and/or regional wall motion abnormality. The cut-off criteria for positivity of the three procedures were determined from receiver operating characteristic (ROC) curves derived from the data of patients without previous MI. The area under the ROC curves was similar for ED, SVi and SQu. This was confirmed by the analysis of sensitivity performed using the ROC curve-derived cut-off criteria, in patients with or without previous MI. SVi was more sensitive than ED in identifying the diseased vessel(s) (ED: 41% vs SVi: 80%); but ED was more specific in this respect (ED: 79% vs SVi: 61%). (orig.)

  12. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    DEFF Research Database (Denmark)

    Juhler-Nøttrup, Trine; Korreman, Stine Sofia; Pedersen, Anders N

    2008-01-01

    measured using a set-up strategy based on imaging of bony landmarks and compared to a strategy using in room lasers, skin tattoos and cupper landmarks. MATERIALS AND METHODS: During their six week treatment course of 60Gy in 2Gy fractions, ten patients underwent 3 respiratory gated CT scans. The tumours...... landmarks and 0.85 cm (+/-0.54) for matching using skin tattoos. For the mediastinal tumours the corresponding vectors and SD's were 0.55 cm (+/-0.19) and 0.72 cm (+/-0.43). The differences between the vectors were significant for the lung tumours p=0.004. The interfractional overlap of lung tumours was 80......-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. CONCLUSIONS: Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were...

  13. Integrated cardio-thoracic imaging with ECG-Gated 64-slice multidetector-row CT: initial findings in 133 patients

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Randa; Remy-Jardin, Martine; Delhaye, Damien; Khalil, Chadi; Teisseire, Antoine; Remy, Jacques [Hospital Calmette, University Center of Lille, Department of Thoracic Imaging, LILLE cedex (France); Delannoy-Deken, Valerie; Duhamel, Alain [University of Lille, Place de Verdun, Department of Medical Statistics, LILLE cedex (France)

    2006-09-15

    The purpose of this study was to investigate the possibility of assessing the underlying respiratory disease as well as cardiac function during ECG-gated CT angiography of the chest with 64-slice multidetector-row CT (MDCT). One hundred thirty-three consecutive patients in sinus rhythm with known or suspected ventricular dysfunction underwent an ECG-gated CT angiographic examination of the chest without {beta}-blockers using the following parameters: (1) collimation: 32 x 0.6 mm with z-flying focal spot for the acquisition of 64 overlapping 0.6-mm slices (Sensation 64; Siemens); rotation time: 0.33 s; pitch: 0.3; 120 kV; 200 mAs; ECG-controlled dose modulation (ECG-pulsing) and (2) 120 ml of a 35% contrast agent. Data were reconstructed: (1) to evaluate the underlying respiratory disease (1-mm thick lung and mediastinal scans reconstructed at 55% of the R-R interval; i.e., ''morphologic scans'') and (2) to determine right (RVEF) and left (LVEF) ventricular ejection fractions (short-axis systolic and diastolic images; Argus software; i.e., ''functional scans''). The mean heart rate was 73 bpm (range: 42-120) and the mean scan time was 18.11{+-}2.67 s (range: 10-27). A total of 123 examinations (92%) had both lung and mediastinal images rated as diagnostic scans, whereas 10 examinations (8%) had non-diagnostic images altered by the presence of respiratory-motion artifacts (n=4) or cyclic artifacts related to the use of a pitch value of 0.3 in patients with a very low heart rate during data acquisition (n=6). Assessment of right and left ventricular function was achievable in 124 patients (93%, 95% CI: 88-97%). For these 124 examinations, the mean RVEF was 46.10% ({+-}9.5; range: 20-72) and the mean LVEF was 58.23% ({+-}10.88; range: 20-83). In the remaining nine patients, an imprecise segmentation of the right and left ventricular cavities was considered as a limiting factor for precise calculation of end-systolic and end

  14. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro, E-mail: seisei0430@nifty.com [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556 (Japan); Weissman, Gaby, E-mail: Gaby.Weissman@medstar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Vembar, Mani, E-mail: mani.vembar@philips.com [CT Clinical Science, Philips Healthcare, c595 Miner Road, Cleveland, OH 44143 (United States); Weigold, Wm. Guy, E-mail: Guy.Weigold@MedStar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States)

    2014-08-15

    Objectives: To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage. Methods: Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment. Results: There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images. Conclusions: M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.

  15. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun; Li, Dianfu; Miao, Changqing; Zhou, Yanli; Cao, Kejiang [First Affiliated Hospital of Nanjing Medical University, Department of Cardiology, Nanjing, Jiangsu (China); Feng, Jianlin [First Affiliated Hospital of Nanjing Medical University, Department of Nuclear Medicine, Nanjing, Jiangsu (China); Lloyd, Michael S. [Emory University School of Medicine, Division of Cardiology, Atlanta, GA (United States); Chen, Ji [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States)

    2012-07-15

    The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. (orig.)

  16. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome

    International Nuclear Information System (INIS)

    Chen, Chun; Li, Dianfu; Miao, Changqing; Zhou, Yanli; Cao, Kejiang; Feng, Jianlin; Lloyd, Michael S.; Chen, Ji

    2012-01-01

    The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. (orig.)

  17. Prospective Electrocardiogram-Gated Multidetector Row Computed Tomography Coronary Angiography. Analysis of Quality Image and Radiation Dose

    International Nuclear Information System (INIS)

    Carrascosa, P.; Capunay, C.; Deviggiano, A.; Tajer, C.D.; Vallejos, J.; Goldsmit, A.; Garcia, M.J.

    2009-01-01

    Multidetector row computed tomography coronary angiography (MDCT-CA) has become a useful diagnostic tool for the direct quantification of coronary stenosis, for identifying coronary anomalies and for the assessment of coronary artery bypass grafts. Despite its clinical value has been questioned due to the effective radiation dose (ERD) received by each patient, radiation exposure is similar to other studies. However, different strategies are permanently tested in order to reduce the ERD maintaining adequate and diagnostic image quality. Objectives: To determine the image quality and effective radiation dose (ERD) of prospective electrocardiogram-gated multidetector row computed tomography coronary angiography (PMDCTCA) (the x-ray beam is turned on for only a short portion of diastole) compared to retrospective ECG gating (RMDCTCA) (the x-ray beam is turned on throughout the cardiac cycle) and a preliminary approach of its diagnostic accuracy compared to digital invasive coronary angiography (CA). Material and Methods: Fifty consecutive patients with suspected coronary artery disease and sinus rhythm were evaluated with PMDCT-CA and compared to a control group who underwent RMDCTCA. Image quality was analyzed by two reviewers. Interobserver concordance and ERD were determined. The diagnostic accuracy of PMDCT-CA compared to CA to detect coronary artery stenosis > 50% was assessed in 30 patients. Results: There were no significant differences in the image quality between both groups. Agreement between the reviewers for segment image quality scores was k = 0.92. Mean ERD was 3.5 mSv for PMDCT-CA compared to 9.7 and 12.9 mSv for RMDCT-CA with and without tube current modulation, respectively. Individual analysis including all segments showed that the sensitivity, specificity, positive predictive value and negative predictive value of PMDCT-CA for the detection of coronary stenosis were 94.74%, 81.82%, 90% and 90%, respectively. Conclusion: Our initial experience

  18. Comparison of Gated SPECT Myocardial Perfusion Imaging with Echocardiography for the Measurement of Left Ventricular Volumes and Ejection Fraction in Patients With Severe Heart Failure

    Science.gov (United States)

    Shojaeifard, Maryam; Ghaedian, Tahereh; Yaghoobi, Nahid; Malek, Hadi; Firoozabadi, Hasan; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amin, Ahmad; Azizian, Nasrin; Rastgou, Feridoon

    2015-01-01

    Background: Gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is known as a feasible tool for the measurement of left ventricular ejection fraction (EF) and volumes, which are of great importance in the management and follow-up of patients with coronary artery diseases. However, considering the technical shortcomings of SPECT in the presence of perfusion defect, the accuracy of this method in heart failure patients is still controversial. Objectives: The aim of the present study was to compare the results from gated SPECT MPI with those from echocardiography in heart failure patients to compare echocardiographically-derived left ventricular dimension and function data to those from gated SPECT MPI in heart failure patients. Patients and Methods: Forty-one patients with severely reduced left ventricular systolic function (EF ≤ 35%) who were referred for gated SPECT MPI were prospectively enrolled. Quantification of EF, end-diastolic volume (EDV), and end-systolic volume (ESV) was performed by using quantitative gated spect (QGS) (QGS, version 0.4, May 2009) and emory cardiac toolbox (ECTb) (ECTb, revision 1.0, copyright 2007) software packages. EF, EDV, and ESV were also measured with two-dimensional echocardiography within 3 days after MPI. Results: A good correlation was found between echocardiographically-derived EF, EDV, and ESV and the values derived using QGS (r = 0.67, r = 0.78, and r = 0.80 for EF, EDV, and ESV, respectively; P echocardiography. ECTb-derived EDV was also significantly higher than the EDV measured with echocardiography and QGS. The highest correlation between echocardiography and gated SPECT MPI was found for mean values of ESV different. Conclusions: Gated SPECT MPI has a good correlation with echocardiography for the measurement of left ventricular EF, EDV, and ESV in patients with severe heart failure. However, the absolute values of these functional parameters from echocardiography and gated

  19. The application of phase analysis of gated myocardial perfusion imaging to assess left ventricular mechanical dyssynchrony in cardiovascular disease

    International Nuclear Information System (INIS)

    Wang Jianfeng; Wang Yuetao

    2013-01-01

    Left ventricular mechanical dyssynchrony is closely related to the severity of cardiovascular disease, it is essential to assess left ventricular mechanical dyssynchrony accurately for early prediction of adverse cardiac events and prognosis assessment of the cardiac resynchronization therapy. As a new technology to assess left ventricular mechanical dyssynchrony, the phase analysis of gated myocardial perfusion imaging (GMPI) can get both quantitative indicators of regional myocardial perfusion, evaluation of regional myocardial viability and scar tissue, as well as quantitative analysis of left ventricular function and left ventricular mechanical synchrony, it has broad application prospects in cardiovascular disease to assess left ventricular mechanical dyssynchrony and prognosis assessment. This review mainly described the applications of GMPI phase analysis in the cardiovascular disease. (authors)

  20. Improving 4D plan quality for PBS-based liver tumour treatments by combining online image guided beam gating with rescanning

    Science.gov (United States)

    Zhang, Ye; Knopf, Antje-Christin; Weber, Damien Charles; Lomax, Antony John

    2015-10-01

    Pencil beam scanned (PBS) proton therapy has many advantages over conventional radiotherapy, but its effectiveness for treating mobile tumours remains questionable. Gating dose delivery to the breathing pattern is a well-developed method in conventional radiotherapy for mitigating tumour-motion, but its clinical efficiency for PBS proton therapy is not yet well documented. In this study, the dosimetric benefits and the treatment efficiency of beam gating for PBS proton therapy has been comprehensively evaluated. A series of dedicated 4D dose calculations (4DDC) have been performed on 9 different 4DCT(MRI) liver data sets, which give realistic 4DCT extracting motion information from 4DMRI. The value of 4DCT(MRI) is its capability of providing not only patient geometries and deformable breathing characteristics, but also includes variations in the breathing patterns between breathing cycles. In order to monitor target motion and derive a gating signal, we simulate time-resolved beams’ eye view (BEV) x-ray images as an online motion surrogate. 4DDCs have been performed using three amplitude-based gating window sizes (10/5/3 mm) with motion surrogates derived from either pre-implanted fiducial markers or the diaphragm. In addition, gating has also been simulated in combination with up to 19 times rescanning using either volumetric or layered approaches. The quality of the resulting 4DDC plans has been quantified in terms of the plan homogeneity index (HI), total treatment time and duty cycle. Results show that neither beam gating nor rescanning alone can fully retrieve the plan homogeneity of the static reference plan. Especially for variable breathing patterns, reductions of the effective duty cycle to as low as 10% have been observed with the smallest gating rescanning window (3 mm), implying that gating on its own for such cases would result in much longer treatment times. In addition, when rescanning is applied on its own, large differences between volumetric

  1. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    International Nuclear Information System (INIS)

    Juhler-Noettrup, Trine; Korreman, Stine S.; Pedersen, Anders N.; Persson, Gi tte F.; Aarup, Lasse R.; Nystroem, Haakan; Olsen, Mikael; Tarnavski, Nikolai; Sp echt, Lena

    2008-01-01

    Introduction. With the purpose of implementing gated radiotherapy for lung cancer patients, this study investigated the interfraction variations in tumour size and internal displacement over entire treatment courses. To explore the potential of image guided radiotherapy (IGRT) the variations were measured using a set-up strategy based on imaging of bony landmarks and compared to a strategy using in room lasers, skin tattoos and cupper landmarks. Materials and methods. During their six week treatment course of 60Gy in 2Gy fractions, ten patients underwent 3 respiratory gated CT scans. The tumours were contoured on each CT scan to evaluate the variations in volumes and position. The lung tumours and the mediastinal tumours were contoured separately. The positional variations were measured as 3D mobility vectors and correlated to matching of the scans using the two different strategies. Results. The tumour size was significantly reduced from the first to the last CT scan. For the lung tumours the reduction was 19%, p=0.03, and for the mediastinal tumours the reduction was 34%, p=0.0007. The mean 3D mobility vector and the SD for the lung tumours was 0.51cm (±0.21) for matching using bony landmarks and 0.85cm (±0.54) for matching using skin tattoos. For the mediastinal tumours the corresponding vectors and SD's were 0.55cm (±0.19) and 0.72cm (±0.43). The differences between the vectors were significant for the lung tumours p=0.004. The interfractional overlap of lung tumours was 80-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. Conclusions. Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were dependent on the set-up strategy. Set-up using IGRT was superior to set-up using skin tattoos

  2. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Juhler-Noettrup, Trine; Korreman, Stine S.; Pedersen, Anders N.; Persson, Gitte F.; Aarup, Lasse R.; Nystroem, Haakan; Olsen, Mikael; Tarnavski, Nikolai; Specht, Lena (Dept. of Radiation Oncology, The Finsen Centre, Copenhagen (Denmark))

    2008-08-15

    Introduction. With the purpose of implementing gated radiotherapy for lung cancer patients, this study investigated the interfraction variations in tumour size and internal displacement over entire treatment courses. To explore the potential of image guided radiotherapy (IGRT) the variations were measured using a set-up strategy based on imaging of bony landmarks and compared to a strategy using in room lasers, skin tattoos and cupper landmarks. Materials and methods. During their six week treatment course of 60Gy in 2Gy fractions, ten patients underwent 3 respiratory gated CT scans. The tumours were contoured on each CT scan to evaluate the variations in volumes and position. The lung tumours and the mediastinal tumours were contoured separately. The positional variations were measured as 3D mobility vectors and correlated to matching of the scans using the two different strategies. Results. The tumour size was significantly reduced from the first to the last CT scan. For the lung tumours the reduction was 19%, p=0.03, and for the mediastinal tumours the reduction was 34%, p=0.0007. The mean 3D mobility vector and the SD for the lung tumours was 0.51cm (+-0.21) for matching using bony landmarks and 0.85cm (+-0.54) for matching using skin tattoos. For the mediastinal tumours the corresponding vectors and SD's were 0.55cm (+-0.19) and 0.72cm (+-0.43). The differences between the vectors were significant for the lung tumours p=0.004. The interfractional overlap of lung tumours was 80-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. Conclusions. Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were dependent on the set-up strategy. Set-up using IGRT was superior to set-up using skin tattoos.

  3. Self-gated CINE MRI for combined contrast-enhanced imaging and wall-stiffness measurements of murine aortic atherosclerotic lesions

    NARCIS (Netherlands)

    den Adel, Brigit; van der Graaf, Linda M.; Strijkers, Gustav J.; Lamb, Hildo J.; Poelmann, Robert E.; van der Weerd, Louise

    2013-01-01

    High-resolution contrast-enhanced imaging of the murine atherosclerotic vessel wall is difficult due to unpredictable flow artifacts, motion of the thin artery wall and problems with flow suppression in the presence of a circulating contrast agent. We applied a 2D-FLASH retrospective-gated CINE MRI

  4. Field programmable gate array based hardware implementation of a gradient filter for edge detection in colour images with subpixel precision

    International Nuclear Information System (INIS)

    Schellhorn, M; Rosenberger, M; Correns, M; Blau, M; Goepfert, A; Rueckwardt, M; Linss, G

    2010-01-01

    Within the field of industrial image processing the use of colour cameras becomes ever more common. Increasingly the established black and white cameras are replaced by economical single-chip colour cameras with Bayer pattern. The use of the additional colour information is particularly important for recognition or inspection. Become interesting however also for the geometric metrology, if measuring tasks can be solved more robust or more exactly. However only few suitable algorithms are available, in order to detect edges with the necessary precision. All attempts require however additional computation expenditure. On the basis of a new filter for edge detection in colour images with subpixel precision, the implementation on a pre-processing hardware platform is presented. Hardware implemented filters offer the advantage that they can be used easily with existing measuring software, since after the filtering a single channel image is present, which unites the information of all colour channels. Advanced field programmable gate arrays represent an ideal platform for the parallel processing of multiple channels. The effective implementation presupposes however a high programming expenditure. On the example of the colour filter implementation, arising problems are analyzed and the chosen solution method is presented.

  5. Validity of computational hemodynamics in human arteries based on 3D time-of-flight MR angiography and 2D electrocardiogram gated phase contrast images

    Science.gov (United States)

    Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye

    2015-11-01

    In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.

  6. HARDWARE REALIZATION OF CANNY EDGE DETECTION ALGORITHM FOR UNDERWATER IMAGE SEGMENTATION USING FIELD PROGRAMMABLE GATE ARRAYS

    Directory of Open Access Journals (Sweden)

    ALEX RAJ S. M.

    2017-09-01

    Full Text Available Underwater images raise new challenges in the field of digital image processing technology in recent years because of its widespread applications. There are many tangled matters to be considered in processing of images collected from water medium due to the adverse effects imposed by the environment itself. Image segmentation is preferred as basal stage of many digital image processing techniques which distinguish multiple segments in an image and reveal the hidden crucial information required for a peculiar application. There are so many general purpose algorithms and techniques that have been developed for image segmentation. Discontinuity based segmentation are most promising approach for image segmentation, in which Canny Edge detection based segmentation is more preferred for its high level of noise immunity and ability to tackle underwater environment. Since dealing with real time underwater image segmentation algorithm, which is computationally complex enough, an efficient hardware implementation is to be considered. The FPGA based realization of the referred segmentation algorithm is presented in this paper.

  7. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file.

    Science.gov (United States)

    Shiinoki, Takehiro; Hanazawa, Hideki; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Shibuya, Keiko

    2017-02-21

    A combined system comprising the TrueBeam linear accelerator and a new real-time tumour-tracking radiotherapy system, SyncTraX, was installed at our institution. The objectives of this study are to develop a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine electronic portal image device (EPID) images and a log file and to verify this treatment in clinical cases. Respiratory-gated radiotherapy was performed using TrueBeam and the SyncTraX system. Cine EPID images and a log file were acquired for a phantom and three patients during the course of the treatment. Digitally reconstructed radiographs (DRRs) were created for each treatment beam using a planning CT set. The cine EPID images, log file, and DRRs were analysed using a developed software. For the phantom case, the accuracy of the proposed method was evaluated to verify the respiratory-gated radiotherapy. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker used as an internal surrogate were calculated to evaluate the gating accuracy and set-up uncertainty in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions. The proposed method achieved high accuracy for the phantom verification. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker were  ⩽3 mm and  ±3 mm in the SI, AP, and LR directions. We proposed a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine EPID images and a log file and showed that this treatment is performed with high accuracy in clinical cases.

  8. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file

    Science.gov (United States)

    Shiinoki, Takehiro; Hanazawa, Hideki; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Shibuya, Keiko

    2017-02-01

    A combined system comprising the TrueBeam linear accelerator and a new real-time tumour-tracking radiotherapy system, SyncTraX, was installed at our institution. The objectives of this study are to develop a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine electronic portal image device (EPID) images and a log file and to verify this treatment in clinical cases. Respiratory-gated radiotherapy was performed using TrueBeam and the SyncTraX system. Cine EPID images and a log file were acquired for a phantom and three patients during the course of the treatment. Digitally reconstructed radiographs (DRRs) were created for each treatment beam using a planning CT set. The cine EPID images, log file, and DRRs were analysed using a developed software. For the phantom case, the accuracy of the proposed method was evaluated to verify the respiratory-gated radiotherapy. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker used as an internal surrogate were calculated to evaluate the gating accuracy and set-up uncertainty in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions. The proposed method achieved high accuracy for the phantom verification. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker were  ⩽3 mm and  ±3 mm in the SI, AP, and LR directions. We proposed a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine EPID images and a log file and showed that this treatment is performed with high accuracy in clinical cases. This work was partly presented at the 58th Annual meeting of American Association of Physicists in Medicine.

  9. Field programmable gate array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo

    DEFF Research Database (Denmark)

    Thrane, Lars; Larsen, Henning Engelbrecht; Norozi, Kambiz

    2009-01-01

    We demonstrate a field programmable gate-array-based real-time optical Doppler tomography system. A complex-valued bandpass filter is used for the first time in optical coherence tomography signal processing to create the analytic signal. This method simplifies the filter design, and allows...... digital computer (CORDIC) algorithm, which is an efficient algorithm that maps well to the field programmable gate array. Flow phantom experiments, and the use of this system for in vivo imaging of cardiac dynamics in the chick embryo, are presented. We demonstrate the visualization of blood flow...

  10. SIFT-based dense pixel tracking on 0.35 T cine-MR images acquired during image-guided radiation therapy with application to gating optimization.

    Science.gov (United States)

    Mazur, Thomas R; Fischer-Valuck, Benjamin W; Wang, Yuhe; Yang, Deshan; Mutic, Sasa; Li, H Harold

    2016-01-01

    To first demonstrate the viability of applying an image processing technique for tracking regions on low-contrast cine-MR images acquired during image-guided radiation therapy, and then outline a scheme that uses tracking data for optimizing gating results in a patient-specific manner. A first-generation MR-IGRT system-treating patients since January 2014-integrates a 0.35 T MR scanner into an annular gantry consisting of three independent Co-60 sources. Obtaining adequate frame rates for capturing relevant patient motion across large fields-of-view currently requires coarse in-plane spatial resolution. This study initially (1) investigate the feasibility of rapidly tracking dense pixel correspondences across single, sagittal plane images (with both moderate signal-to-noise and spatial resolution) using a matching objective for highly descriptive vectors called scale-invariant feature transform (SIFT) descriptors associated to all pixels that describe intensity gradients in local regions around each pixel. To more accurately track features, (2) harmonic analysis was then applied to all pixel trajectories within a region-of-interest across a short training period. In particular, the procedure adjusts the motion of outlying trajectories whose relative spectral power within a frequency bandwidth consistent with respiration (or another form of periodic motion) does not exceed a threshold value that is manually specified following the training period. To evaluate the tracking reliability after applying this correction, conventional metrics-including Dice similarity coefficients (DSCs), mean tracking errors (MTEs), and Hausdorff distances (HD)-were used to compare target segmentations obtained via tracking to manually delineated segmentations. Upon confirming the viability of this descriptor-based procedure for reliably tracking features, the study (3) outlines a scheme for optimizing gating parameters-including relative target position and a tolerable margin about this

  11. SIFT-based dense pixel tracking on 0.35 T cine-MR images acquired during image-guided radiation therapy with application to gating optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, Thomas R., E-mail: tmazur@radonc.wustl.edu, E-mail: hli@radonc.wustl.edu; Fischer-Valuck, Benjamin W.; Wang, Yuhe; Yang, Deshan; Mutic, Sasa; Li, H. Harold, E-mail: tmazur@radonc.wustl.edu, E-mail: hli@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 (United States)

    2016-01-15

    Purpose: To first demonstrate the viability of applying an image processing technique for tracking regions on low-contrast cine-MR images acquired during image-guided radiation therapy, and then outline a scheme that uses tracking data for optimizing gating results in a patient-specific manner. Methods: A first-generation MR-IGRT system—treating patients since January 2014—integrates a 0.35 T MR scanner into an annular gantry consisting of three independent Co-60 sources. Obtaining adequate frame rates for capturing relevant patient motion across large fields-of-view currently requires coarse in-plane spatial resolution. This study initially (1) investigate the feasibility of rapidly tracking dense pixel correspondences across single, sagittal plane images (with both moderate signal-to-noise and spatial resolution) using a matching objective for highly descriptive vectors called scale-invariant feature transform (SIFT) descriptors associated to all pixels that describe intensity gradients in local regions around each pixel. To more accurately track features, (2) harmonic analysis was then applied to all pixel trajectories within a region-of-interest across a short training period. In particular, the procedure adjusts the motion of outlying trajectories whose relative spectral power within a frequency bandwidth consistent with respiration (or another form of periodic motion) does not exceed a threshold value that is manually specified following the training period. To evaluate the tracking reliability after applying this correction, conventional metrics—including Dice similarity coefficients (DSCs), mean tracking errors (MTEs), and Hausdorff distances (HD)—were used to compare target segmentations obtained via tracking to manually delineated segmentations. Upon confirming the viability of this descriptor-based procedure for reliably tracking features, the study (3) outlines a scheme for optimizing gating parameters—including relative target position and a

  12. Gender differences in detecting coronary artery disease with dipyridamole stress myocardial perfusion imaging using 99m-Tc sestamibi gated SPECT.

    OpenAIRE

    Majstorov, Venjamin; Pop Gjorceva, Daniela; Vaskova, Olivija; Vavlukis, Marija; Peovska, Irena; Maksimović, Jelena

    2005-01-01

    There are some specifics in the presentation of coronary artery disease (CAD) in women compared with men that may cause diagnostic pitfalls. The accuracy of noninvasive diagnostic testing in women tends to be lower than that in men. Stress myocardial perfusion imaging with 99m-Tc sestamibi gated SPECT is an accurate technique for detecting CAD. Only a few studies have compared dipyridamole stress imaging according to gender. The aim of the study was to compare the diagnostic value of dipyrida...

  13. GLOBAL IMAGE HEGEMONY: Istanbul’s Gated Communities as the New Marketing Icons

    Directory of Open Access Journals (Sweden)

    Gözde Kan Ülkü

    2013-07-01

    Full Text Available In this paper we investigated how marketing strategies of the developing consumer  society has affected housing production in Istanbul as a corollary development of globalization in Turkey. We aim to analyze marketing strategies as active agents that shape the design of emerging gated communities in Istanbul through advertising media based on the theme of ‘an ideal life style,’ in the form of TV commercials, newspaper ads, publicity brochures etc. We focus on the representation and dissemination of this elusive ‘ideal’ to the public via the advertising campaigns of these housing settlements. Therefore the cases studied in the paper concentrates on the Turkish architectural scene after 1990, when consumer culture’s most significant impacts on architectural products are observed. Marketing of a new type of suburbanization in Turkey is concomitant with the rise of a new middle class having a high purchasing power and these housing projects are marketed via life style characteristics ‘desired’ by this class.

  14. 128-slice CT angiography of the aorta without ECG-gating: efficacy of faster gantry rotation time and iterative reconstruction in terms of image quality and radiation dose

    International Nuclear Information System (INIS)

    Russo, Vincenzo; Garattoni, Monica; Buia, Francesco; Attina, Domenico; Lovato, Luigi; Zompatori, Maurizio

    2016-01-01

    To evaluate image quality and radiation dose of non ECG-gated 128-slice CT angiography of the aorta (CTAA) with fast gantry rotation time and iterative reconstruction. Four hundred and eighty patients underwent non ECG-gated CTAA. Qualitative and quantitative image quality assessments were performed. Radiation dose was assessed and compared with the dose of patients who underwent ECG-gated CTAA (n = 126) and the dose of previous CTAA performed with another CT (n = 339). Image quality (aortic root-ascending portion) was average-to-excellent in more than 94 % of cases, without any non-diagnostic scan. For proximal coronaries, image quality was average-to-excellent in more than 50 %, with only 21.5 % of non-diagnostic cases. Quantitative analysis results were also good. Mean radiation dose for thoracic CTAA was 5.6 mSv versus 20.6 mSv of ECG-gated protocol and 20.6 mSv of 16-slice CTAA scans, with an average dose reduction of 72.8 % (p < 0.001). Mean radiation dose for thoracic-abdominal CTAA was 9.7 mSv, versus 20.9 mSv of 16-slice CTAA scans, with an average dose reduction of 53.6 % (p < 0.001). Non ECG-gated 128-slice CTAA is feasible and able to provide high quality visualization of the entire aorta without significant motion artefacts, together with a considerable dose and contrast media volume reduction. (orig.)

  15. 128-slice CT angiography of the aorta without ECG-gating: efficacy of faster gantry rotation time and iterative reconstruction in terms of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Vincenzo; Garattoni, Monica; Buia, Francesco; Attina, Domenico; Lovato, Luigi; Zompatori, Maurizio [University Hospital ' ' S.Orsola' ' , Cardio-Thoracic-Vascular Department, Cardio-Thoracic Radiology Unit, Bologna (Italy)

    2016-02-15

    To evaluate image quality and radiation dose of non ECG-gated 128-slice CT angiography of the aorta (CTAA) with fast gantry rotation time and iterative reconstruction. Four hundred and eighty patients underwent non ECG-gated CTAA. Qualitative and quantitative image quality assessments were performed. Radiation dose was assessed and compared with the dose of patients who underwent ECG-gated CTAA (n = 126) and the dose of previous CTAA performed with another CT (n = 339). Image quality (aortic root-ascending portion) was average-to-excellent in more than 94 % of cases, without any non-diagnostic scan. For proximal coronaries, image quality was average-to-excellent in more than 50 %, with only 21.5 % of non-diagnostic cases. Quantitative analysis results were also good. Mean radiation dose for thoracic CTAA was 5.6 mSv versus 20.6 mSv of ECG-gated protocol and 20.6 mSv of 16-slice CTAA scans, with an average dose reduction of 72.8 % (p < 0.001). Mean radiation dose for thoracic-abdominal CTAA was 9.7 mSv, versus 20.9 mSv of 16-slice CTAA scans, with an average dose reduction of 53.6 % (p < 0.001). Non ECG-gated 128-slice CTAA is feasible and able to provide high quality visualization of the entire aorta without significant motion artefacts, together with a considerable dose and contrast media volume reduction. (orig.)

  16. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    Science.gov (United States)

    Sand, D. J.; Seth, A. C.; Crnojević, D.; Spekkens, K.; Strader, J.; Adams, E. A. K.; Caldwell, N.; Guhathakurta, P.; Kenney, J.; Randall, S.; Simon, J. D.; Toloba, E.; Willman, B.

    2017-07-01

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The color-magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ˜7-50 Myr, and is consistent with a metallicity of [Fe/H] ˜ -0.3 as previous work has measured via H II region spectroscopy. Additionally, the color-magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ˜1.‧6 (˜8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ˜7-50 Myr stellar population. The main body of AGC 226067 has a M V = -11.3 ± 0.3, or M stars = 5.4 ± 1.3 × 104 M ⊙ given the stellar population. We searched 20 deg2 of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ˜0.1 M ⊙ yr-1 in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (˜350 kpc away in projection) as it falls into the Virgo Cluster.

  17. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Sand, D. J.; Crnojević, D. [Texas Tech University, Physics and Astronomy Department, Box 41051, Lubbock, TX 79409-1051 (United States); Seth, A. C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Spekkens, K. [Royal Military College of Canada, Department of Physics, P.O. Box 17000, Station Forces, Kingston, Ontario, K7K 7B4 (Canada); Strader, J. [Center for Data Intensive and Time Domain Astronomy, Department of Physics and Astronomy, Michigan State University, 567 Wilson Road, East Lansing, MI 48824 (United States); Adams, E. A. K. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7900 AA Dwingeloo (Netherlands); Caldwell, N.; Randall, S. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Kenney, J. [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Simon, J. D. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Toloba, E. [Department of Physics, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211 (United States); Willman, B., E-mail: david.sand@ttu.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-07-10

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope . The color–magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ∼7–50 Myr, and is consistent with a metallicity of [Fe/H] ∼ −0.3 as previous work has measured via H ii region spectroscopy. Additionally, the color–magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ∼1.′6 (∼8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ∼7–50 Myr stellar population. The main body of AGC 226067 has a M {sub V} = −11.3 ± 0.3, or M {sub stars} = 5.4 ± 1.3 × 10{sup 4} M {sub ⊙} given the stellar population. We searched 20 deg{sup 2} of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ∼0.1 M {sub ⊙} yr{sup −1} in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (∼350 kpc away in projection) as it falls into the Virgo Cluster.

  18. Radionuclide imaging for assessment of myocarditis and postmyocarditic state in infant and children. Thallium-201 myocardial imaging and technetium-99m-HSA gated equilibrium ventriculography.

    Science.gov (United States)

    Saji, T; Matsuo, N; Hashiguchi, R; Sato, K; Umezawa, T; Morishita, K; Yamazaki, J; Kawamura, Y; Okuzumi, K; Yabe, Y

    1985-05-01

    T1-201 myocardial imaging and Tc-99m-HSA gated equilibrium ventriculography were performed in 1 infant and 11 children between 2 months old and 12 years old with myocarditis. The time of first evaluation was between 1 week and 13 months after the onset. Their clinical manifestations were congestive heart failure in 2 patients, pericardial effusion in 2 patients, syncope in 1 patient, convulsions in 1 patient and palpitations in 7 patients. Significant elevation of virus antibody titer was demonstrated in 6 patients. A perfusion defect was observed with T1-201 imaging in 9 of 12 patients with myocarditis. A right ventricular image was observed in 5 patients. A reduced LVEF was present in 4 patients and a reduced RVEF was found in 2 patients. Cardiac catheterization was performed in 8 patients and an endomyocardial biopsy was done in 7. The myocardial specimens revealed postmyocarditic pathological changes upon microscopic evaluation. No coronary artery obstructive or stenotic lesions were observed in these patients. T1-201 myocardial imaging is a useful non-invasive technique for evaluating the cardiac performance and myocardial damage in acute myocarditis and the postmyocarditic state. We conclude that T1-201 uptake of myocardium is dependent upon both regional coronary perfusion and the activity of myocardial cells in patients with myocarditis and in the postmyocarditic state.

  19. Linear gate

    International Nuclear Information System (INIS)

    Suwono.

    1978-01-01

    A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)

  20. Usefulness of diastolic phase index by gated cardiac blood pool imaging in patients with left ventricular hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Michihiro; Kurihara, Tadashi; Murano, Kenichi; Usami, Masahisa; Honda, Minoru

    1983-09-01

    To assess the left ventricular (LV) diastolic filling rate in patients with LV hypertrophy, we analyzed LV time activity curves obtained from gated cardiac blood pool imaging. Gated cardiac blood pool imaging with Tc-99m were obtained at rest in 20 normal subjects, 20 patients with hypertrophic cardiomyopathy (HCM) and 10 patients with hypertensive hypertrophy (HT). As systolic indices we obtained LV ejection fraction (EF) and mean first third ejection rate (1/3 ER/sub mean/). And as diastolic indices, mean filling rate during the first third of diastole (1/3 FR/sub mean/) and maximal filling rate during the whole diastole (FRmax) were calculated. LVEF and 1/3 ER/sub mean/ in patients with HT were not different significantly from normal, but those in patients with HCM were significantly greater than normal, besides 1/3 ER/sub mean/ in patients with HCM was greater than that in HT. Among diastolic phase indices, FRmax was not different significantly between 3 groups, but 1/3 FR/sub mean/ in HCM (1.47 +- 0.30 sec/sup 1/) and HT (1.34 +- 0.38 sec/sup 1/) was significantly lower than normal (2.10 +- 0.27 sec/sup 1/). Abnormal 1/3 FR/sub mean/ (<1.56 sec/sup 1/) was found in 65% of HCM and 80% of HT. Besides, in patients with HCM, 10 patients who had exertional dyspnea and anginal chest pain (NYHA Class II or III) showed significantly lower 1/3 FR/sub mean/ values than 10 patients without symptoms (1.25 +- 0.15 sec/sup 1/ vs 1.70 +- 0.25 sec/sup 1/. 1/3 FR/sub mean/ did not correlated well with LV wall thickness (summation of septal and posterior wall thickness) which was measured by ecohocardiography. But the ratio of 1/3 FR/sub mean/ to 1/3 ER/sub mean/ correlated well (r=-0.77 wall thickness in patients with LV hypertrophy. (J.P.N.).

  1. Temperature Profile of the Duracell Test Strip.

    Science.gov (United States)

    Viiri, Jouni; Kettunen, Lasse

    1996-01-01

    Presents the temperature profile of the Duracell Test Strip obtained using a Inframetrics 740 thermal imaging radiometer and ThermaGRAM95 software and compares this to the theoretical profile derived by Clark and Bonicamp. (JRH)

  2. Image Quality of Coronary Arteries on Non-electrocardiography-gated High-Pitch Dual-Source Computed Tomography in Children with Congenital Heart Disease.

    Science.gov (United States)

    Kanie, Yuichiro; Sato, Shuhei; Tada, Akihiro; Kanazawa, Susumu

    2017-10-01

    This study aimed to evaluate image quality of coronary artery imaging on non-electrocardiography (ECG)-gated high-pitch dual-source computed tomography (DSCT) in children with congenital heart disease (CHD) and to assess factors affecting image quality. We retrospectively reviewed the records of 142 children with CHD who underwent non-ECG-gated high-pitch DSCT. The subjective image quality of the proximal coronary segments was graded using a five-point scale. A score quality in all four segments and patients with at least one segment with non-diagnostic image quality. Predictors of image quality were assessed by multivariate logistic regression, including age, body weight, and heart rate. Four-hundred-fifty-seven of the 568 segments (80.5%) had diagnostic image quality. Patients with non-diagnostic segments were significantly younger (21.6 ± 25.5 months), had lower body weight (7.82 ± 5.00 kg), and a faster heart rate (123 ± 23.7 beats/min) (each p quality in all four segments (30.6 ± 20.7 months, 10.3 ± 4.00 kg, and 113 ± 21.6 beats/min, respectively; each p quality. Non-ECG-gated high-pitch DSCT provided adequate image quality of the proximal coronary segments in children with CHD. Lower body weight was a factor that led to poorer image quality of the coronary arteries.

  3. TU-AB-BRA-10: Treatment of Gastric MALT Lymphoma Utilizing a Magnetic Resonance Image-Guided Radiation Therapy (MR-IGRT) System: Evaluation of Gating Feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, T; Gach, H; Chundury, A; Fischer-Valuck, B; Huang, J; Thomas, M; Green, O [Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: To evaluate the feasibility of real-time, real-anatomy tracking and gating for gastric lymphoma patients treated with magnetic resonance image-guided radiation therapy (MR-IGRT) Methods: Over the last 2 years, 8 patients with gastric lymphoma were treated with 0.3-T, Co-60 MR-IGRT. Post-treatment analysis of real-time cine imaging in the sagittal plane during each patient’s treatment revealed significant motion of the stomach. While this motion was accounted for with generous PTV margins, the system’s capability for real-time, real-anatomy tracking could be used to reduce treatment margins by gating. However, analysis was needed for the feasibility of gating using only the single available sagittal imaging plane. While any plane may be chosen, if the stomach moves differently where it is not being observed, there may potentially be a mistreatment. To that end, imaging with healthy volunteers was done to ascertain stomach motion over 2–4 min by analyzing multiple parallel sagittal and coronal planes 0.75 cm apart. The stomach was contoured on every slice, and the mean displacement between pairs of contour centroids was used to determine the amount of overall motion. Results: The mean displacement of the centroid in the image plane was 4.3 ± 0.7 mm. The greatest observed motion was more medial with respect to the patient, and less motion laterally, which implies that gating on a plane located closer to MRI isocenter will provide the more conservative scenario as it will turn the radiation delivery off when the stomach is observed to move outside a predetermined boundary. Conclusion: The stomach was observed to move relatively uniformly throughout, with maximum extent of motion closer to where most MRI systems have the best spatial integrity (near isocenter). Analysis of possible PTV margins from the healthy volunteer study (coupled with previous patient data on interfraction volumetric stomach deformation) is pending.

  4. Characterization of galvannealed strip

    International Nuclear Information System (INIS)

    Moreas, G.; Hardy, Y.

    1999-01-01

    With the aim of enhancing coating quality control during galvannealing process, an online microscopic image acquisition sensor has been developed at CRM. In galvannealing process, the ζ phase surface density is a coating quality characteristic, and the on-line microscope, equipped with optics placed at 20 mm from the surface, grabs 250 μm x 190 μm images on which ζ crystals (approximate dimensions: 1 μm x 10 μm) can be clearly identified. On-line, the sensor is mounted in front of a roll where the strip has a stable position. The coating surface to sensor optics distance is continuously measured by an accurate triangulation sensor (1 μm repeatability) and is adjusted in such a way that, due to roll eccentricity, the image is focused at least twice per revolution. When focused, image of moving product is frozen by a short (10 ns) laser light pulse and is grabbed. The obtained image is then processed to extract ζ phase percentage and allows adjustment of process parameters to reach the desired coating characteristics. (author)

  5. Coronary artery bypass graft imaging using ECG-gated multislice computed tomography: Comparison with catheter angiography

    International Nuclear Information System (INIS)

    Moore, R.K.G.; Sampson, C.; MacDonald, S.; Moynahan, C.; Groves, D.; Chester, M.R.

    2005-01-01

    AIM: To compare the value of multislice computerized tomography (MSCT) in imaging coronary artery bypass grafts (CABGs) by direct quantitative comparison with standard invasive angiography. METHODS: Using MSCT, 50 consecutive patients who had previously undergone CABG surgery and had recently undergone invasive angiography for recurrent angina pectoris, were studied further using MSCT after intravenous injection of non-ionic contrast agent; cardiac imaging was performed during a single breath-hold. Graft anatomy was quantified, using both quantitative coronary angiography (QCA) and MSCT, by different investigators blinded to each other. Reproducibility was quantified using the standard error of the measurement expressed as a percentage in log-transformed values (CV%) and intraclass correlation (ICC). RESULTS: All 150 grafts were imaged using MSCT; only 4 patent grafts were not imaged using selective angiography. Good agreement was achieved between MSCT and QCA on assessment of proximal anastomoses (CV% 25.2, ICC 0.84), mid-vessel luminal diameter (CV% 15.5, ICC 0.91) and aneurysmal dilations (CV% 14.3). Reasonable agreement was reached on assessment of distal anastomoses (CV% 26.7, ICC 0.66) and categorization of distal run-off (ICC 0.73). Good agreement was observed for stenoses of over 50% luminal loss (CV% 8.7, ICC 0.97) but agreement on assessment of less severe lesions was poor (CV% 208.7, ICC 0.51). CONCLUSION: This study demonstrates that CABGs can be quantitatively evaluated using MSCT, and that significant lesions present in all CABG segments can be reliably identified. Agreement between MSCT and QCA for lesions of less than 50% luminal loss was poor

  6. Gate simulation of Compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine

    Science.gov (United States)

    Dubov, L. Yu; Belyaev, V. N.; Berdnikova, A. K.; Bolozdynia, A. I.; Akmalova, Yu A.; Shtotsky, Yu V.

    2017-01-01

    Computer simulations of cylindrical Compton Ar-Xe gamma camera are described in the current report. Detection efficiency of cylindrical Ar-Xe Compton camera with internal diameter of 40 cm is estimated as1-3%that is 10-100 times higher than collimated Anger’s camera. It is shown that cylindrical Compton camera can image Tc-99m radiotracer distribution with uniform spatial resolution of 20 mm through the whole field of view.

  7. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    International Nuclear Information System (INIS)

    Ozsahin, D. Uzun; Bläckberg, L.; Fakhri, G. El; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  8. Raman imaging of carrier distribution in the channel of an ionic liquid-gated transistor fabricated with regioregular poly(3-hexylthiophene)

    Science.gov (United States)

    Wada, Y.; Enokida, I.; Yamamoto, J.; Furukawa, Y.

    2018-05-01

    Raman images of carriers (positive polarons) at the channel of an ionic liquid-gated transistor (ILGT) fabricated with regioregular poly(3-hexylthiophene) (P3HT) have been measured with excitation at 785 nm. The observed spectra indicate that carriers generated are positive polarons. The intensities of the 1415 cm-1 band attributed to polarons in the P3HT channel were plotted as Raman images; they showed the carrier density distribution. When the source-drain voltage VD is lower than the source-gate voltage VG (linear region), the carrier density was uniform. When VD is nearly equal to VG (saturation region), a negative carrier density gradient from the source electrode towards the drain electrode was observed. This carrier density distribution is associated with the observed current-voltage characteristics, which is not consistent with the "pinch-off" theory of inorganic semiconductor transistors.

  9. Incremental Diagnostic Performance of Combined Parameters in the Detection of Severe Coronary Artery Disease Using Exercise Gated Myocardial Perfusion Imaging.

    Directory of Open Access Journals (Sweden)

    Chia-Ju Liu

    Full Text Available Myocardial perfusion imaging (MPI using gated single-photon emission tomography (gSPECT may underestimate the severity of coronary artery disease (CAD. This study aimed to evaluate the significance of combined parameters derived from gSPECT, as well as treadmill stress test parameters, in the detection of severe CAD.A total of 211 consecutive patients referred for exercise MPI between June 2011 and June 2013 (who received invasive coronary angiography within six months after MPI were retrospectively reviewed. Exercise MPI was performed with Bruce protocol and 201Tl injected at peak exercise. Gated SPECT was performed using a cadmium-zinc-telluride camera and processed by QPS/QGS software. Perfusion defect abnormalities such as sum stress score (SSS; sum difference score, algorithm-derived total perfusion deficits, transient ischemic dilatation ratios of end-diastolic volumes and end-systolic volumes, post-stress changes in ejection fraction, and lung/heart ratio (LHR were calculated. Treadmill parameters, including ST depression (STD at the 1st and 3rd minutes of recovery stage (1'STD and 3'STD, maximal STD corrected by heart rate increment (ST/HR, heart rate decline in 1st and 3rd minutes of recovery stage, recovery heart rate ratio (HR ratio, systolic and mean blood pressure ratios (SBP ratio and MAP ratio during recovery phase were recorded. Diagnostic performances of these parameters were analyzed with receiver operating characteristic (ROC analysis and logistic regression for detection of left main (≥ 50% or 3-vessel disease (all ≥ 70% luminal stenosis on invasive angiography.Among various MPI and treadmill parameters used for detection of severe CAD, SSS and ST/HR had the highest AUC (0.78, 0.73, p = NS and best cut-off values (SSS > 6, ST/HR > 17.39 10-2mV/bpm, respectively. By univariate logistic regression, all parameters except 1'HRR, 3'HRR, SBP and MAP ratios increased the odds ratio of severe CAD. Only increased L/H ratio, 3'STD

  10. Lateral flow strip assay

    Science.gov (United States)

    Miles, Robin R [Danville, CA; Benett, William J [Livermore, CA; Coleman, Matthew A [Oakland, CA; Pearson, Francesca S [Livermore, CA; Nasarabadi, Shanavaz L [Livermore, CA

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  11. Voltage-gated potassium channel antibody limbic encephalitis: a case illustrating the neuropsychiatric and PET/CT features with clinical and imaging follow-up.

    Science.gov (United States)

    Celliers, Liesl; Hung, Te-Jui; Al-Ogaili, Zeyad; Moschilla, Girolamo; Knezevic, Wally

    2016-12-01

    To illustrate the neuropsychiatric and imaging findings in a confirmed case of voltage-gated potassium channel antibody limbic encephalitis. Case report and review of the literature. A 64-year-old man presented with several months' history of obsessive thoughts and compulsions associated with faciobrachial dystonic seizures. He had no significant past medical and psychiatric history. Physical examinations revealed only mildly increased tone in the left upper limb. Bedside cognitive testing was normal. Positron-emission tomography showed intense symmetrical uptake in the corpus striatum. No underlying malignancy was identified on whole body imaging. Magnetic resonance imaging, lumbar puncture and electroencephalogram were normal. Serum voltage-gated potassium channel antibodies were strongly positive. The patient had a favourable response to antiepileptic drugs, oral steroids and immunotherapy. Voltage-gated potassium channel limbic encephalitis characteristically presents with neuropsychiatric symptoms and temporal lobe seizures. Positron-emission tomography-computed tomography can be a useful adjunct to the clinical and biochemical work-up. © The Royal Australian and New Zealand College of Psychiatrists 2016.

  12. The Strip Module

    DEFF Research Database (Denmark)

    Pedersen, Tommy

    1996-01-01

    When the behaviour of a ship in waves is to be predicted it is convenient to have a tool which includes different approaches to the problem.The aim of this project is to develop such a tool named the strip theory module. The strip theory module will consist of submodules dependent on the I....... At last a postprocessor will be included with facilities for statistical calculations and for plots and prints of the results.The project is divided into 7 tasks where the third is to be completed.This report has two aims. To give an introduction to the project of developing a strip theory module......-ship code available at the department. It will be structured as a general preprocessor mainly to determine the hydrodynamic mass and damping. A strip processor including three different theories: A linear frequency domain strip theory, a quadratic strip theory and a nonlinear time domain strip theory...

  13. Cardiac gated ventilation

    Science.gov (United States)

    Hanson, C. William, III; Hoffman, Eric A.

    1995-05-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. We evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50msec scan aperture. Multislice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. We observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a nonfailing model of the heart.

  14. Expected utility value of Tc-99m sestamibi rest gated myocardial perfusion SPECT imaging at the emergency room compared to troponins and non-guided hospitalization

    International Nuclear Information System (INIS)

    Merlano, S.; Rodriguez, E.; Murgueitio, R.

    2006-01-01

    The evaluation of acute chest pain at the emergency room remains a challenge. The expected utility value of the Tc- 99m sestamibi rest gated myocardial perfusion SPECT imaging (rest gated SPECT) in patients with typical or atypical chest pain and normal or non diagnostic electrocardiogram was evaluated. Three decision models were developed. In the first model; Decision Tree-A, non guided hospitalization and rest gated SPECT were analyzed. The second model; Decision Tree -B, analysed Troponins within 0-12 hrs and hospitalization, and the third model, i.e., Decision Tree -C, analyzed Troponins and rest gated SPECT. Patients and outcomes were categorised as follows: 1. High risk patients, those with positive scans who experienced adverse cardiac events (True positive); 2. Patients with positive results who did not have an acute event (False positive); 3. Negative results without an event (True negative); 4. High risk patients hospitalized who did not have acute event (False positive) and 5. Low risk patients with proven acute coronary event (False negative). We incorporated probabilities for measuring the favorable and unfavorable outcomes, using a scale of 0 to 1. Expected utilities were calculated using the software Tree Age through the roll-back method. The overall expected utility of rest gated SPECT to decide hospitalization was 0.79, while the non-guided hospitalization was 0 .45. The highest expected utility encountered was 0.91 for the decision of no hospitalization based on a negative rest perfusion scan result with a favorable outcome. When troponins and hospitalization were compared, the expected utility value observed for troponin was 0.59, greater than that of 0.47 for the symptom based hospitalization. Finally, when the two alternatives troponins and myocardial perfusion imaging were compared, the greatest expected utility value observed was with the nuclear cardiology procedure with an expected utility value of 0.81, as compared to that of 0.60 for the

  15. Magnetic resonance imaging of the coronary arteries : clinical results from three dimensional evaluation of a respiratory gated technique

    NARCIS (Netherlands)

    van Geuns, R J; de Bruin, H G; Rensing, B J; Wielopolski, P A; Hulshoff, M D; van Ooijen, P M; Oudkerk, M; de Feyter, P J

    1999-01-01

    BACKGROUND: Magnetic resonance coronary angiography is challenging because of the motion of the vessels during cardiac contraction and respiration. Additional challenges are the small calibre of the arteries and their complex three dimensional course. Respiratory gating, turboflash acquisition, and

  16. Coronary imaging quality in routine ECG-gated multidetector CT examinations of the entire thorax: preliminary experience with a 64-slice CT system in 133 patients

    International Nuclear Information System (INIS)

    Delhaye, Damien; Remy-Jardin, Martine; Salem, Randa; Teisseire, Antoine; Khalil, Chadi; Remy, Jacques; Delannoy-Deken, Valerie; Duhamel, Alain

    2007-01-01

    To evaluate image quality in the assessment of the coronary arteries during routine ECG-gated multidetector CT (MDCT) of the chest. One hundred and thirty three patients in sinus rhythm underwent an ECG-gated CT angiographic examination of the entire chest without β-blockers with a 64-slice CT system. In 127 patients (95%), it was possible to assess the coronary arteries partially or totally; coronary artery imaging failed in six patients (5%), leading to a detailed description of the coronary arteries in 127 patients. Considering ten coronary artery segments per patient, 75% of coronary segments were assessable (948/1270 segments). When the distal segments were excluded from the analysis (i.e., seven coronary segments evaluated per patient), the percentage of assessable segments was 86% (768/889 proximal and mid coronary segments) and reached 93% (474/508) when assessing proximal segments exclusively. The mean number of assessable segments was significantly higher in patients with a heart rate ≤80 bpm (n=95) than in patients with a heart rate >80 bpm (n=38) (p<0.002). Proximal and mid-coronary segments can be adequately assessed during a whole-chest ECG-gated CT angiographic examination without administration of β-blockers in patients with a heart rate below 80 bpm. (orig.)

  17. Noninvasive assessment of coronary artery disease by multislice spiral computed tomography using a new retrospectively ECG-gated image reconstruction technique. Comparison with angiographic results

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuichi; Matsumoto, Naoya; Kato, Masahiko [Nihon Univ., Tokyo (Japan). Surugadai Hospital] [and others

    2003-04-01

    The present study was designed to investigate the accuracy of multislice spiral computed tomography (MSCT) in detecting coronary artery disease, compared with coronary angiography (CAG), using a new retrospectively ECG-gated reconstruction method that reduced cardiac motion artifact. The study group comprised 54 consecutive patients undergoing MSCT and CAG. MSCT was performed using a SOMATOM Volume Zoom (4-detector-row, Siemens, Germany) with slice thickness 1.0 mm, pitch 1.5 (table feed: 1.5 mm per rotation) and gantry rotation time 500 ms. Metoprolol (20-60 mg) was administered orally prior to MSCT imaging. ECG-gated image reconstruction was performed with the reconstruction window (250 ms) positioned immediately before atrial contraction in order to reduce the cardiac motion artifact caused by the abrupt diastolic ventricular movement occurring during the rapid filling and atrial contraction periods. Following inspection of the volume rendering images, multiplanar reconstruction images and axial images of the left main coronary artery (LMCA), left anterior descending artery (LAD), left circumflex artery (LCx) and right coronary artery (RCA) were obtained and evaluated for luminal narrowing. The results were compared with those obtained by CAG. Of 216 coronary arteries, 206 (95.4%) were assessable; 10 arteries were excluded from the analysis because of severe calcification (n=4), stents (n=3) or insufficient contrast enhancement (n=3). The sensitivity to detect coronary stenoses {>=}50% was 93.5% and the specificity to define luminal narrowing <50% was 97.2%. The positive predictive value and the negative predictive value were 93.5% and 97.2%, respectively. The sensitivity was still satisfactory (80.6%) even when non-assessable arteries were included in the analysis. The new retrospectively ECG-gated reconstruction method for MSCT has excellent diagnostic accuracy in detecting significant coronary artery stenoses. (author)

  18. Verifying 4D gated radiotherapy using time-integrated electronic portal imaging: a phantom and clinical study

    Directory of Open Access Journals (Sweden)

    Slotman Ben J

    2007-08-01

    Full Text Available Abstract Background Respiration-gated radiotherapy (RGRT can decrease treatment toxicity by allowing for smaller treatment volumes for mobile tumors. RGRT is commonly performed using external surrogates of tumor motion. We describe the use of time-integrated electronic portal imaging (TI-EPI to verify the position of internal structures during RGRT delivery Methods TI-EPI portals were generated by continuously collecting exit dose data (aSi500 EPID, Portal vision, Varian Medical Systems when a respiratory motion phantom was irradiated during expiration, inspiration and free breathing phases. RGRT was delivered using the Varian RPM system, and grey value profile plots over a fixed trajectory were used to study object positions. Time-related positional information was derived by subtracting grey values from TI-EPI portals sharing the pixel matrix. TI-EPI portals were also collected in 2 patients undergoing RPM-triggered RGRT for a lung and hepatic tumor (with fiducial markers, and corresponding planning 4-dimensional CT (4DCT scans were analyzed for motion amplitude. Results Integral grey values of phantom TI-EPI portals correlated well with mean object position in all respiratory phases. Cranio-caudal motion of internal structures ranged from 17.5–20.0 mm on planning 4DCT scans. TI-EPI of bronchial images reproduced with a mean value of 5.3 mm (1 SD 3.0 mm located cranial to planned position. Mean hepatic fiducial markers reproduced with 3.2 mm (SD 2.2 mm caudal to planned position. After bony alignment to exclude set-up errors, mean displacement in the two structures was 2.8 mm and 1.4 mm, respectively, and corresponding reproducibility in anatomy improved to 1.6 mm (1 SD. Conclusion TI-EPI appears to be a promising method for verifying delivery of RGRT. The RPM system was a good indirect surrogate of internal anatomy, but use of TI-EPI allowed for a direct link between anatomy and breathing patterns.

  19. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    Energy Technology Data Exchange (ETDEWEB)

    Di Sieno, Laura, E-mail: laura.disieno@polimi.it; Dalla Mora, Alberto; Contini, Davide [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Wabnitz, Heidrun; Macdonald, Rainer [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Pifferi, Antonio [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Mazurenka, Mikhail [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Hannoversches Zentrum für Optische Technologien, Nienburger Str. 17, 30167 Hannover (Germany); Hoshi, Yoko [Department of Biomedical Optics, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Boso, Gianluca; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Becker, Wolfgang [Becker and Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Martelli, Fabrizio [Dipartimento di Fisica e Astronomia dell’Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze 50019 (Italy)

    2016-03-15

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  20. Prospective versus retrospective ECG gating for dual source CT of the coronary stent: Comparison of image quality, accuracy, and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lei, E-mail: zhaolei219@sohu.com [Beijing Anzhen Hospital of the Capital University of Medical Sciences (China); Zhang Zhaoqi; Fan Zhanming; Yang Lin; Du Jing [Beijing Anzhen Hospital of the Capital University of Medical Sciences (China)

    2011-03-15

    Objective: To compare image quality, diagnostic accuracy and radiation dose of prospective and retrospective electrocardiogram (ECG) gated dual source computed tomography (DSCT) for the evaluation of the coronary stent, using conventional coronary angiography (CA) as a standard reference. Design, setting and patients: Sixty patients (heart rates {<=}70 bpm) with previous stent implantation who were scheduled for CA were divided in two groups, receiving either prospective or retrospective ECG gated DSCT separately. Two reviewers scored coronary stent image quality and evaluated stent lumen. Results: There was no significant difference in image quality between the two groups. In the prospective group, there were 86.4% (51/59) stents with interpretable images, in the retrospective group, there were 87.5% (49/56) stents with interpretable images. Image quality was not influenced by age, body mass index or heart rate in either group, but heart rate variability had a weak impact on the image quality of the prospective group. Image noise was higher in the prospective group, but this difference reached statistical significance only by using a smooth kernel reconstruction. Per-stent based sensitivity, specificity, and positive and negative predictive value were 100%, 84.1%, 68.2%, and 100%, respectively, in the prospective CT angiography group and 94.4%, 86.8%, 77.3%, and 97.1%, respectively, in the retrospective CT angiography group. There was a significant difference in the effective radiation dose between the two groups, mean effective dose in the prospective and retrospective group was 2.2 {+-} 0.5 mSv (1.5-3.2 mSv) and 14.6 {+-} 3.3 mSv (10.0-20.4 mSv) (p < .001) respectively. Conclusions: Compared with retrospective CT angiography, prospective CT angiography has a similar performance in assessing coronary stent patency, but a lower effective dose in selected patients with regular heart rates {<=}70 bpm.

  1. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    Energy Technology Data Exchange (ETDEWEB)

    Fallahpoor, M; Abbasi, M [Tehran University of Medical Sciences, Vali-Asr Hospital, Tehran, Tehran (Iran, Islamic Republic of); Sen, A [University of Houston, Houston, TX (United States); Parach, A [Shahid Sadoughi University of Medical Sciences, Yazd, Yazd (Iran, Islamic Republic of); Kalantari, F [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  2. Scanning gate imaging of quantum dots in 1D ultra-thin InAs/InP nanowires

    OpenAIRE

    Boyd, Erin E; Storm, Kristian; Samuelson, Lars; Westervelt, Robert M.

    2011-01-01

    We use a scanning gate microscope (SGM) to characterize one-dimensional ultra-thin (diameter ≈ 30 nm) InAs/InP heterostructure nanowires containing a nominally 300 nm long InAs quantum dot defined by two InP tunnel barriers. Measurements of Coulomb blockade conductance versus backgate voltage with no tip present are difficult to decipher. Using the SGM tip as a charged movable gate, we are able to identify three quantum dots along the nanowire: the grown-in quantum dot and an additional quant...

  3. Dynamic Underground Stripping Demonstration Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; udel, K.

    1992-03-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92

  4. Comparison of Nitrate-augmented resting gated 99mTc-Sestamibi imaging with Low Dose Dobutamine SPECT for the detection of Myocardial Viability

    International Nuclear Information System (INIS)

    Parameswaran, R.V.; Dash, P.K.; Barooah, B.; Guruprasad, H.P.; Purantharan, N.

    2002-01-01

    Background: Dobutamine Echocardiography and Radionuclide imaging with Tl-201 and Technetium agents are two of the most established techniques available for the detection of viable myocardium. The purpose of this study was to evaluate the utility of Low dose Dobutamine gated Myocardial SPECT in identifying additional areas of dysfunctional, but viable myocardium when compared to nitrate-augmented rest gated SPECT with SestaMIBI. Materials and Methods: 20 patients (19 males and 1 female, with an age range of 40- 65 yrs and a mean of 52.75yrs) all with history of MI or severe LV dysfunction were included in this study. Patients with LBBB, recent revascularisation, arrhythmias etc were excluded from the study. A routine stress-rest study was initially performed on them with 99mTc-SestaMIBI and both the stress as well as resting studies was gated and the resting study was augmented with 10mg of sublingual nitrate. After the resting study was over, the patient was infused with Low dose Dobutamine(5μg/kg/min), at which time the gated acquisition was started and the infusion was continued till the acquisition got completed. In the perfusion study with SestaMIBI, all infarct segments which have uptake less than 50% as compared to the maximally perfused area was deemed non-viable Results: A 17-segment Myocardial model was used for both perfusion as well as quantification of wall motion and wall thickening. 110 akinetic/dyskinetic segments were taken up for analysis. 93 of these segments were non-viable and improvement in wall motion was seen in 17 segments (15.4%) in the nitrate-augmented SPECT. Dobutamine study showed improvement in totally in 27 segments (24.5%), 10 of which were additional segments which were non-viable in Nitrate SPECT study, apart from the 17 segments which showed improvement in the Nitrate study. In Dobutamine study, there was also improvement in wall thickening in 10 (10.7%) out of 93 segments which had showed less than 50% of MIBI uptake. Conclusion

  5. Anatomy Comic Strips

    Science.gov (United States)

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective…

  6. Science Comic Strips

    Science.gov (United States)

    Kim, Dae Hyun; Jang, Hae Gwon; Shin, Dong Sun; Kim, Sun-Ja; Yoo, Chang Young; Chung, Min Suk

    2012-01-01

    Science comic strips entitled Dr. Scifun were planned to promote science jobs and studies among professionals (scientists, graduate and undergraduate students) and children. To this end, the authors collected intriguing science stories as the basis of scenarios, and drew four-cut comic strips, first on paper and subsequently as computer files.…

  7. ALICE silicon strip module

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    This small silicon detector strip will be inserted into the inner tracking system (ITS) on the ALICE detector at CERN. This detector relies on state-of-the-art particle tracking techniques. These double-sided silicon strip modules have been designed to be as lightweight and delicate as possible as the ITS will eventually contain five square metres of these devices.

  8. Monte Carlo simulations of the dose from imaging with GE eXplore 120 micro-CT using GATE.

    Science.gov (United States)

    Bretin, Florian; Bahri, Mohamed Ali; Luxen, André; Phillips, Christophe; Plenevaux, Alain; Seret, Alain

    2015-10-01

    Small animals are increasingly used as translational models in preclinical imaging studies involving microCT, during which the subjects can be exposed to large amounts of radiation. While the radiation levels are generally sublethal, studies have shown that low-level radiation can change physiological parameters in mice. In order to rule out any influence of radiation on the outcome of such experiments, or resulting deterministic effects in the subjects, the levels of radiation involved need to be addressed. The aim of this study was to investigate the radiation dose delivered by the GE eXplore 120 microCT non-invasively using Monte Carlo simulations in GATE and to compare results to previously obtained experimental values. Tungsten X-ray spectra were simulated at 70, 80, and 97 kVp using an analytical tool and their half-value layers were simulated for spectra validation against experimentally measured values of the physical X-ray tube. A Monte Carlo model of the microCT system was set up and four protocols that are regularly applied to live animal scanning were implemented. The computed tomography dose index (CTDI) inside a PMMA phantom was derived and multiple field of view acquisitions were simulated using the PMMA phantom, a representative mouse and rat. Simulated half-value layers agreed with experimentally obtained results within a 7% error window. The CTDI ranged from 20 to 56 mGy and closely matched experimental values. Derived organ doses in mice reached 459 mGy in bones and up to 200 mGy in soft tissue organs using the highest energy protocol. Dose levels in rats were lower due to the increased mass of the animal compared to mice. The uncertainty of all dose simulations was below 14%. Monte Carlo simulations proved a valuable tool to investigate the 3D dose distribution in animals from microCT. Small animals, especially mice (due to their small volume), receive large amounts of radiation from the GE eXplore 120 microCT, which might alter physiological

  9. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    International Nuclear Information System (INIS)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-01-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The 'smart' pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients. (paper)

  10. Estimation of patient-specific imaging dose for real-time tumour monitoring in lung patients during respiratory-gated radiotherapy

    Science.gov (United States)

    Shiinoki, Takehiro; Onizuka, Ryota; Kawahara, Daisuke; Suzuki, Tatsuhiko; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Hanazawa, Hideki; Shibuya, Keiko

    2018-03-01

    Purpose: To quantify the patient-specific imaging dose for real-time tumour monitoring in the lung during respiratory-gated stereotactic body radiotherapy (SBRT) in clinical cases using SyncTraX. Methods and Materials: Ten patients who underwent respiratory-gated SBRT with SyncTraX were enrolled in this study. The imaging procedure for real-time tumour monitoring using SyncTraX was simulated using Monte Carlo. We evaluated the dosimetric effect of a real-time tumour monitoring in a critical organ at risk (OAR) and the planning target volume (PTV) over the course of treatment. The relationship between skin dose and gating efficiency was also investigated. Results: For all patients, the mean D50 to the PTV, ipsilateral lung, liver, heart, spinal cord and skin was 118.3 (21.5–175.9), 31.9 (9.5–75.4), 15.4 (1.1–31.6), 10.1 (1.3–18.1), 25.0 (1.6–101.8), and 3.6 (0.9–7.1) mGy, respectively. The mean D2 was 352.0 (26.5–935.8), 146.4 (27.3–226.7), 90.7 (3.6–255.0), 42.2 (4.8–82.7), 88.0 (15.4–248.5), and 273.5 (98.3–611.6) mGy, respectively. The D2 of the skin dose was found to increase as the gating efficiency decreased. Conclusions: The additional dose to the PTV was at most 1.9% of the prescribed dose over the course of treatment for real-time tumour monitoring. For OARs, we could confirm the high dose region, which may not be susceptible to radiation toxicity. However, to reduce the skin dose from SyncTraX, it is necessary to increase the gating efficiency.

  11. Multicolor, time-gated, soft x-ray pinhole imaging of wire array and gas puff Z pinches on the Z and Saturn pulsed power generators.

    Science.gov (United States)

    Jones, B; Coverdale, C A; Nielsen, D S; Jones, M C; Deeney, C; Serrano, J D; Nielsen-Weber, L B; Meyer, C J; Apruzese, J P; Clark, R W; Coleman, P L

    2008-10-01

    A multicolor, time-gated, soft x-ray pinhole imaging instrument is fielded as part of the core diagnostic set on the 25 MA Z machine [M. E. Savage et al., in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, New York, 2007), p. 979] for studying intense wire array and gas puff Z-pinch soft x-ray sources. Pinhole images are reflected from a planar multilayer mirror, passing 277 eV photons with Saturn generator [R. B. Spielman et al., and A. I. P. Conf, Proc. 195, 3 (1989)] for imaging a bright Li-like Ar L-shell line. Ar gas puff Z pinches show an intense K-shell emission from a zippering stagnation front with L-shell emission dominating as the plasma cools.

  12. Advanced quantitative 201-Tl gated SPECT (QGS-A) images for the assessment of left ventricular function and volumes. Comparison with two-dimensional echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Kameyama, Yasunobu; Mitsue, Noriko; Sato, Shigehiko; Kato, Kimihiko; Saito, Masaya [Seki Chuo Hospital, Gifu (Japan)

    2001-11-01

    The aim of this study was to assess the clinical significance and validity of the advanced quantitative 201-Tl and 99m-Tc gated SPECT (QGS-A) methods. We studied 79 patients (48 men, 31 women; mean age 70{+-}14 yr) with cardiomyopathy (n=4) and ischemic (n=57) or congestive heart disease (n=18). All subjects were investigated as to the correlation between values with QGS-A and UCG. Either 201-Tl (n=51) or 99m-Tc (n=28) gated SPECT was performed at rest (n=48) or stress (n=31) stage followed by UCG within one month. Gated SPECT data, including EDV, ESV, and LVEF, were quantified by using an automatic algorithm as QGS-A, whereas UCG data (EDV, ESV, and LVEF) were determined by the standard technique. A significant correlation was found between 201-Tl or 99m-Tc QGS-A and UCG with respect to EDV, ESV, and LVEF (201-Tl: r=0.761, 0.882, 0.819; 99m-Tc: r=0.515, 0.765, 0.695, respectively, all p values <0.01), regardless of the use of rest images. The mean values of EDV, ESV, and LVEF calculated by QGS-A were significantly lower than those of UCG (all p values <0.01). LV volumes and LVEF calculated by both 201-Tl and 99m-Tc QGS-A were significantly correlated with those obtained by UCG. These findings support the clinical significance and validity of 201-Tl and 99m-Tc QGS-A for simultaneously assessing both LV function and myocardial perfusion imaging. (author)

  13. Raman imaging of carrier distribution in the channel of an ionic liquid-gated transistor fabricated with regioregular poly(3-hexylthiophene).

    Science.gov (United States)

    Wada, Y; Enokida, I; Yamamoto, J; Furukawa, Y

    2018-02-02

    Raman images of carriers (positive polarons) at the channel of an ionic liquid-gated transistor (ILGT) fabricated with regioregular poly(3-hexylthiophene) (P3HT) have been measured with excitation at 785 nm. The observed spectra indicate that carriers generated are positive polarons. The intensities of the 1415 cm -1 band attributed to polarons in the P3HT channel were plotted as Raman images; they showed the carrier density distribution. When the source-drain voltage V D is lower than the source-gate voltage V G (linear region), the carrier density was uniform. When V D is nearly equal to V G (saturation region), a negative carrier density gradient from the source electrode towards the drain electrode was observed. This carrier density distribution is associated with the observed current-voltage characteristics, which is not consistent with the "pinch-off" theory of inorganic semiconductor transistors. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Abnormal intraluminal signal within the pulmonary arteries on MR imaging: Differentiation between slow blood flow and thrombus using an ECG-gated; multiphasic: Spin-echo technique

    International Nuclear Information System (INIS)

    White, R.D.; Higgins, C.B.

    1986-01-01

    The authors evaluated abnormal MR imaging signal patterns in the pulmonary arteries of 22 patients with pulmonary hypertension (n = 13), pulmonary embolus (n = 4), or both (n = 5). Using multiphasic (five or six phases; 19 patients) or standard (three patients with pulmonary embolus) ECG-gated, double spin-echo techniques, they were able to differentiate between causes of such abnormal signal patterns. The pattern of slow blood flow (abnormal signal in systole with fluctuating distribution during cardiac cycle, and intensity increasing visually from first to second echo) was noted in 89% of patients with pulmonary hypertension alone or in combination with pulmonary embolism, and was characteristic of high systolic pulmonary pressures (12 of 12 patients with pressure > 80 mm Hg, vs. 3 of 5 patients with pressure 55 mm Hg vs. 5 of 7 patients with pressures <55 mm Hg). This pattern was differentiated from that of thrombus (persistent signal with fixed distribution during cardiac cycle, and little to no visible intensity change from first to second echo), which was noted in six of seven proved embolus cases. Thus, gated multiphase MR imaging shows potential for the noninvasive visualization of pulmonary embolus and the differentiation of this entity from the slow blood flow of pulmonary hypertension

  15. Imaging analysis of heart movement for improving the respiration-gated radiotherapy in patients with left sided breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhamid, Rania; Farrag, A.; Khalifa, A. [Clinical Oncology Department, Assiut University (Egypt); Block, Andreas [Institut fuer Medizinische Strahlenphysik und Strahlenschutz, Klinikum Dortmund (Germany)

    2012-07-01

    Respiration induced heart movement during radiotherapy exposes the heart to the inevitable risks of radio-exposure, and hence radiation injury, in cases of Lt. sided breast cancer. The impact of such a risk is additionally aggravated by the use of radiotherapy in combination with cardiotoxic chemotherapeutic agents. Radio-oncologists pay special attention to the coronary arteries that might be included in this small part of the heart exposed to radiation. The aim of this study was to include the internal heart movement for improving respiration-gated radiotherapy of left sided breast cancer. For 70 patients, all females left sided breast cancer, two planning CT's in inspiration and expiration, and one free breathing scan are performed. The heart motion was analyzed with the clinic-developed software ORAT in the simulator sequence for acquiring information of the cranio-caudal amplitude of heart movements in free breathing (respiration-induced amplitude) and a 15 seconds breath-hold phase (inherent amplitude). The role of inherent heart movement varies from one patient to another which should be taken in consideration during defining the parameters of respiration-gated radiotherapy. The inherent amplitude of the heart motion is the physiological lower limit of the respiration-gating window.

  16. Comparison of image quality and radiation dose between prospectively ECG-triggered and retrospectively ECG-gated CT angiography: Establishing heart rate cut-off values in first-generation dual-source CT.

    Science.gov (United States)

    Ünal, Emre; Yıldız, A Elçin; Güler, Ezgi; Karcaaltıncaba, Muşturay; Akata, Deniz; Kılınçer, Abidin; Atlı, Eray; Topçuoğlu, Melih; Hazırolan, Tuncay

    2015-09-01

    To evaluate radiation dose and image quality of prospectively electrocardiography (ECG)-triggered and retrospectively ECG-gated coronary computed tomography (CT) angiography and to establish cut-off values of heart rates (HRs) for each technique in first-generation dual-source CT. A total of 200 consecutive patients with suspected coronary artery disease were accepted into the study. Patients were selected randomly for each technique (prospective triggering group n=99, mean age 55.85±10.74 and retrospective gating group n=101, mean age 53.38±11.58). Two independent radiologists scored coronary artery segments for image quality using a 5-point scale. Also, attenuation values of each coronary artery segment and dose-length product values were measured. For each technique, cut-off HR values were determined for the best image quality. Mean image quality scores and attenuation values were found to be higher in the prospective triggering group (pquality scores were ≤67 beats per minute (bpm) and ≤80 bpm for the prospective triggering and retrospective gating groups, respectively (pquality (pquality scores than retrospective ECG gating, particularly in patients who have an HR of less than 68 bpm. Also, a 73% radiation dose reduction can be achieved with prospective ECG triggering. In patients with higher heart rates, retrospective ECG gating is recommended.

  17. Quantum strips on surfaces

    OpenAIRE

    Krejcirik, David

    2002-01-01

    Motivated by the theory of quantum waveguides, we investigate the spectrum of the Laplacian, subject to Dirichlet boundary conditions, in a curved strip of constant width that is defined as a tubular neighbourhood of an infinite curve in a two-dimensional Riemannian manifold. Under the assumption that the strip is asymptotically straight in a suitable sense, we localise the essential spectrum and find sufficient conditions which guarantee the existence of geometrically induced bound states. I...

  18. Increasing feasibility of the field-programmable gate array implementation of an iterative image registration using a kernel-warping algorithm

    Science.gov (United States)

    Nguyen, An Hung; Guillemette, Thomas; Lambert, Andrew J.; Pickering, Mark R.; Garratt, Matthew A.

    2017-09-01

    Image registration is a fundamental image processing technique. It is used to spatially align two or more images that have been captured at different times, from different sensors, or from different viewpoints. There have been many algorithms proposed for this task. The most common of these being the well-known Lucas-Kanade (LK) and Horn-Schunck approaches. However, the main limitation of these approaches is the computational complexity required to implement the large number of iterations necessary for successful alignment of the images. Previously, a multi-pass image interpolation algorithm (MP-I2A) was developed to considerably reduce the number of iterations required for successful registration compared with the LK algorithm. This paper develops a kernel-warping algorithm (KWA), a modified version of the MP-I2A, which requires fewer iterations to successfully register two images and less memory space for the field-programmable gate array (FPGA) implementation than the MP-I2A. These reductions increase feasibility of the implementation of the proposed algorithm on FPGAs with very limited memory space and other hardware resources. A two-FPGA system rather than single FPGA system is successfully developed to implement the KWA in order to compensate insufficiency of hardware resources supported by one FPGA, and increase parallel processing ability and scalability of the system.

  19. A 65k pixel, 150k frames-per-second camera with global gating and micro-lenses suitable for fluorescence lifetime imaging

    Science.gov (United States)

    Burri, Samuel; Powolny, François; Bruschini, Claudio; Michalet, Xavier; Regazzoni, Francesco; Charbon, Edoardo

    2017-01-01

    This paper presents our work on a 65k pixel single-photon avalanche diode (SPAD) based imaging sensor realized in a 0.35μm standard CMOS process. At a resolution of 512 by 128 pixels the sensor is read out in 6.4μs to deliver over 150k monochrome frames per second. The individual pixel has a size of 24μm2 and contains the SPAD with a 12T quenching and gating circuitry along with a memory element. The gating signals are distributed across the chip through a balanced tree to minimize the signal skew between the pixels. The array of pixels is row-addressable and data is sent out of the chip on 128 lines in parallel at a frequency of 80MHz. The system is controlled by an FPGA which generates the gating and readout signals and can be used for arbitrary real-time computation on the frames from the sensor. The communication protocol between the camera and a conventional PC is USB2. The active area of the chip is 5% and can be significantly improved with the application of a micro-lens array. A micro-lens array, for use with collimated light, has been designed and its performance is reviewed in the paper. Among other high-speed phenomena the gating circuitry capable of generating illumination periods shorter than 5ns can be used for Fluorescence Lifetime Imaging (FLIM). In order to measure the lifetime of fluorophores excited by a picosecond laser, the sensor’s illumination period is synchronized with the excitation laser pulses. A histogram of the photon arrival times relative to the excitation is then constructed by counting the photons arriving during the sensitive time for several positions of the illumination window. The histogram for each pixel is transferred afterwards to a computer where software routines extract the lifetime at each location with an accuracy better than 100ps. We show results for fluorescence lifetime measurements using different fluorophores with lifetimes ranging from 150ps to 5ns. PMID:28626292

  20. A 65k pixel, 150k frames-per-second camera with global gating and micro-lenses suitable for fluorescence lifetime imaging

    Science.gov (United States)

    Burri, Samuel; Powolny, François; Bruschini, Claudio E.; Michalet, Xavier; Regazzoni, Francesco; Charbon, Edoardo

    2014-05-01

    This paper presents our work on a 65k pixel single-photon avalanche diode (SPAD) based imaging sensor realized in a 0.35μm standard CMOS process. At a resolution of 512 by 128 pixels the sensor is read out in 6.4μs to deliver over 150k monochrome frames per second. The individual pixel has a size of 24μm2 and contains the SPAD with a 12T quenching and gating circuitry along with a memory element. The gating signals are distributed across the chip through a balanced tree to minimize the signal skew between the pixels. The array of pixels is row-addressable and data is sent out of the chip on 128 lines in parallel at a frequency of 80MHz. The system is controlled by an FPGA which generates the gating and readout signals and can be used for arbitrary real-time computation on the frames from the sensor. The communication protocol between the camera and a conventional PC is USB2. The active area of the chip is 5% and can be significantly improved with the application of a micro-lens array. A micro-lens array, for use with collimated light, has been designed and its performance is reviewed in the paper. Among other high-speed phenomena the gating circuitry capable of generating illumination periods shorter than 5ns can be used for Fluorescence Lifetime Imaging (FLIM). In order to measure the lifetime of fluorophores excited by a picosecond laser, the sensor's illumination period is synchronized with the excitation laser pulses. A histogram of the photon arrival times relative to the excitation is then constructed by counting the photons arriving during the sensitive time for several positions of the illumination window. The histogram for each pixel is transferred afterwards to a computer where software routines extract the lifetime at each location with an accuracy better than 100ps. We show results for fluorescence lifetime measurements using different fluorophores with lifetimes ranging from 150ps to 5ns.

  1. Non-enhanced 3D MR angiography of the lower extremity using ECG-gated TSE imaging with non-selective refocusing pulses. Initial experience

    International Nuclear Information System (INIS)

    Lanzman, R.S.; Blondin, D.; Orzechowski, D.; Scherer, A.; Moedder, U.; Kroepil, P.; Godehardt, E.

    2010-01-01

    Purpose: To evaluate non-enhanced 3D MR angiography using turbo spin echo (TSE) imaging with non-selective refocusing pulses (NATIVE SPACE MRA) for the visualization of the arteries of the lower extremity. Materials and Methods: Three-station imaging (iliac arteries, femoral arteries, arteries of the lower leg) was performed in 8 healthy volunteers and 3 patients with peripheral artery disease (PAD) using a 1.5 T MR scanner. In 8 healthy volunteers, 4 different acquisition schemes were performed with the following imaging parameters: S 1: acquisition with every heartbeat (RR = 1), spoiler gradient of 25 % (SG = 25 %); S 2: RR = 1, SG = 0 %; S 3: RR = 2, SG = 25 %; S 4: RR = 2, SG = 0 %. The subjective image quality on a 4-point-scale (4 = excellent to 1 = not diagnostic) and relative SNR were assessed. In 3 patients with peripheral artery disease (PAD), SPACE MRA was performed for assessment of stenosis. Results: The mean subjective image quality was significantly lower for the iliac arteries compared to the femoral arteries and arteries of the lower leg (p < 0.0001). The subjective image quality for acquisition scheme S 1 was significantly lower than the image quality for S 3 and S 4 for the iliac arteries (p < 0.01), while the subjective image quality for acquisition scheme S 2 was significantly lower than S 3 and S 4 for the femoral arteries and the arteries of the lower leg (p < 0.01). The relative SNR was significantly higher for acquisition schemes S 3 and S 4 as compared to S 1 and S 2 (p < 0.0001) for all regions. SPACE MRA disclosed 7 significant stenoses in 3 PAD patients. Conclusion: ECG-gated SPACE MRA is a promising imaging technique for non-enhanced assessment of the arteries of the lower extremity. (orig.)

  2. A HOTLink/networked PC data acquisition and image reconstruction system for a high-resolution whole-body PET with respiratory or ECG-gated performance

    Science.gov (United States)

    Li, Hongdi; Xing, Tao; Liu, Yaqiang; Wang, Yu; Baghaei, H.; Uribe, J.; Ramirez, R.; Wong, Wai-Hoi

    2003-06-01

    An ultrahigh-resolution positron emission tomography (PET) camera in whole-body scanning or gated imaging study needs super computer-processing power for creating a huge sinogram as well as doing image reconstruction. A fast HOTLink serial bus attached to networked cluster personal computers (PC) has been developed for this special purpose. In general, the coincidence data from a PET camera is unidirectional; therefore, an additional daisy-chain bus using high-speed HOTLink (400 Mb/s, Cypress Semiconductor, inc.) transmitters and receivers is designed to carry the coincidence data to the entire networked (LAN) computers (PCs), the data from HOTLink are interfaced to a PC through a fast PCI I/O board (80 Mbyte/s). The overall architecture for the image acquisition and reconstruction computing system for a whole-body PET scanning is a pipeline design. One PC will acquire sinogram data for one bed position, and after completion of data acquisition that PC will begin to reconstruct the image. Meanwhile, another PC in the network will start data acquisition for the next bed position. The image results from the previous PC will be sent to a master computer for final tabulation and storage through the standard network, and then it will be free for processing a new bed position.

  3. SU-F-I-11: Software Development for 4D-CBCT Research of Real-Time-Image Gated Spot Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T; Fujii, Y; Shimizu, S; Shirato, H [Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido (Japan); Matsuura, T; Umegaki, K [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido (Japan); Takao, S; Miyamoto, N; Matsuzaki, Y [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: To acquire correct information for inside the body in patient positioning of Real-time-image Gated spot scanning Proton Therapy (RGPT), utilization of tomographic image at exhale phase of patient respiration obtained from 4-dimensional Cone beam CT (4D-CBCT) has been desired. We developed software named “Image Analysis Platform” for 4D-CBCT researches which has technique to segment projection-images based on 3D marker position in the body. The 3D marker position can be obtained by using two axes CBCT system at Hokkaido University Hospital Proton Therapy Center. Performance verification of the software was implemented. Methods: The software calculates 3D marker position retrospectively by using matching positions on pair projection-images obtained by two axes fluoroscopy mode of CBCT system. Log data of 3D marker tracking are outputted after the tracking. By linking the Log data and gantry-angle file of projection-image, all projection-images are equally segmented to spatial five-phases according to marker 3D position of SI direction and saved to specified phase folder. Segmented projection-images are used for CBCT reconstruction of each phase. As performance verification of the software, test of segmented projection-images was implemented for sample CT phantom (Catphan) image acquired by two axes fluoroscopy mode of CBCT. Dummy marker was added on the images. Motion of the marker was modeled to move in 3D space. Motion type of marker is sin4 wave function has amplitude 10.0 mm/5.0 mm/0 mm, cycle 4 s/4 s/0 s for SI/AP/RL direction. Results: The marker was tracked within 0.58 mm accuracy in 3D for all images, and it was confirmed that all projection-images were segmented and saved to each phase folder correctly. Conclusion: We developed software for 4D-CBCT research which can segment projection-image based on 3D marker position. It will be helpful to create high quality of 4D-CBCT reconstruction image for RGPT.

  4. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan); Nishibuchi, Ikuno; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Nagata, Yasushi [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan)

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung. Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.

  5. Comparison of phase dyssynchrony analysis using gated myocardial perfusion imaging with four software programs: Based on the Japanese Society of Nuclear Medicine working group normal database.

    Science.gov (United States)

    Nakajima, Kenichi; Okuda, Koichi; Matsuo, Shinro; Kiso, Keisuke; Kinuya, Seigo; Garcia, Ernest V

    2017-04-01

    Left ventricular (LV) phase dyssynchrony parameters based on gated myocardial perfusion imaging varied among software programs. The aim of this study was to determine normal ranges and factors affecting phase parameters. Normal databases were derived from the Japanese Society of Nuclear Medicine working group (n = 69). The programs were Emory Cardiac Toolbox with SyncTool (ECTb), Quantitative Gated SPECT (QGS), Heart Function View (HFV), and cardioREPO (cREPO); parameters of phase standard deviation (PSD), 95% bandwidth, and entropy were compared with parameters with ECTb as a reference. PSD (degree) was 5.3 ± 3.3 for QGS (P < .0001), 5.4 ± 2.5 for HFV (P < .0001), and 10.3 ± 3.2 for cREPO (P = n. s.) compared with 11.5 ± 5.5 for ECTb. Phase bandwidth with three programs differed significantly from ECTb. Gender differences were significant for all programs, indicating larger variation in males. After adjustment of LV volumes between genders, the difference disappeared except for QGS. The phase parameters showed wider variations in patients with the lower ejection fraction (EF) and larger LV volumes, depending on software types. Based on normal ranges of phase dyssynchrony parameters in four software programs, dependency on genders, LV volume, and EF should be considered, indicating the need for careful comparison among different software programs.

  6. Left ventricular volume measurements with free breathing respiratory self-gated 3-dimensional golden angle radial whole-heart cine imaging - Feasibility and reproducibility.

    Science.gov (United States)

    Holst, Karen; Ugander, Martin; Sigfridsson, Andreas

    2017-11-01

    To develop and evaluate a free breathing respiratory self-gated isotropic resolution technique for left ventricular (LV) volume measurements. A 3D radial trajectory with double golden-angle ordering was used for free-running data acquisition during free breathing in 9 healthy volunteers. A respiratory self-gating signal was extracted from the center of k-space and used with the electrocardiogram to bin all data into 3 respiratory and 25 cardiac phases. 3D image volumes were reconstructed and the LV endocardial border was segmented. LV volume measurements and reproducibility from 3D free breathing cine were compared to conventional 2D breath-held cine. No difference was found between 3D free breathing cine and 2D breath-held cine with regards to LV ejection fraction, stroke volume, end-systolic volume and end-diastolic volume (Pcine and 2D breath-held cine (Pcine and conventional 2D breath-held cine showed similar values and test-retest repeatability for LV volumes in healthy volunteers. 3D free breathing cine enabled retrospective sorting and arbitrary angulation of isotropic data, and could correctly measure LV volumes during free breathing acquisition. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Accelerated cardiovascular magnetic resonance of the mouse heart using self-gated parallel imaging strategies does not compromise accuracy of structural and functional measures

    Directory of Open Access Journals (Sweden)

    Dörries Carola

    2010-07-01

    Full Text Available Abstract Background Self-gated dynamic cardiovascular magnetic resonance (CMR enables non-invasive visualization of the heart and accurate assessment of cardiac function in mouse models of human disease. However, self-gated CMR requires the acquisition of large datasets to ensure accurate and artifact-free reconstruction of cardiac cines and is therefore hampered by long acquisition times putting high demands on the physiological stability of the animal. For this reason, we evaluated the feasibility of accelerating the data collection using the parallel imaging technique SENSE with respect to both anatomical definition and cardiac function quantification. Results Findings obtained from accelerated data sets were compared to fully sampled reference data. Our results revealed only minor differences in image quality of short- and long-axis cardiac cines: small anatomical structures (papillary muscles and the aortic valve and left-ventricular (LV remodeling after myocardial infarction (MI were accurately detected even for 3-fold accelerated data acquisition using a four-element phased array coil. Quantitative analysis of LV cardiac function (end-diastolic volume (EDV, end-systolic volume (ESV, stroke volume (SV, ejection fraction (EF and LV mass in healthy and infarcted animals revealed no substantial deviations from reference (fully sampled data for all investigated acceleration factors with deviations ranging from 2% to 6% in healthy animals and from 2% to 8% in infarcted mice for the highest acceleration factor of 3.0. CNR calculations performed between LV myocardial wall and LV cavity revealed a maximum CNR decrease of 50% for the 3-fold accelerated data acquisition when compared to the fully-sampled acquisition. Conclusions We have demonstrated the feasibility of accelerated self-gated retrospective CMR in mice using the parallel imaging technique SENSE. The proposed method led to considerably reduced acquisition times, while preserving high

  8. Image processing with cellular nonlinear networks implemented on field-programmable gate arrays for real-time applications in nuclear fusion.

    Science.gov (United States)

    Palazzo, S; Murari, A; Vagliasindi, G; Arena, P; Mazon, D; De Maack, A

    2010-08-01

    In the past years cameras have become increasingly common tools in scientific applications. They are now quite systematically used in magnetic confinement fusion, to the point that infrared imaging is starting to be used systematically for real-time machine protection in major devices. However, in order to guarantee that the control system can always react rapidly in case of critical situations, the time required for the processing of the images must be as predictable as possible. The approach described in this paper combines the new computational paradigm of cellular nonlinear networks (CNNs) with field-programmable gate arrays and has been tested in an application for the detection of hot spots on the plasma facing components in JET. The developed system is able to perform real-time hot spot recognition, by processing the image stream captured by JET wide angle infrared camera, with the guarantee that computational time is constant and deterministic. The statistical results obtained from a quite extensive set of examples show that this solution approximates very well an ad hoc serial software algorithm, with no false or missed alarms and an almost perfect overlapping of alarm intervals. The computational time can be reduced to a millisecond time scale for 8 bit 496560-sized images. Moreover, in our implementation, the computational time, besides being deterministic, is practically independent of the number of iterations performed by the CNN-unlike software CNN implementations.

  9. Image processing with cellular nonlinear networks implemented on field-programmable gate arrays for real-time applications in nuclear fusion

    Energy Technology Data Exchange (ETDEWEB)

    Palazzo, S.; Vagliasindi, G.; Arena, P. [Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi, Universita degli Studi di Catania, 95125 Catania (Italy); Murari, A. [Consorzio RFX-Associazione EURATOM ENEA per la Fusione, I-35127 Padova (Italy); Mazon, D. [Association EURATOM-CEA, CEA Cadarache, 13108 Saint-Paul-lez-Durance (France); De Maack, A. [Arts et Metiers Paris Tech Engineering College (ENSAM), 13100 Aix-en-Provence (France); Collaboration: JET-EFDA Contributors

    2010-08-15

    In the past years cameras have become increasingly common tools in scientific applications. They are now quite systematically used in magnetic confinement fusion, to the point that infrared imaging is starting to be used systematically for real-time machine protection in major devices. However, in order to guarantee that the control system can always react rapidly in case of critical situations, the time required for the processing of the images must be as predictable as possible. The approach described in this paper combines the new computational paradigm of cellular nonlinear networks (CNNs) with field-programmable gate arrays and has been tested in an application for the detection of hot spots on the plasma facing components in JET. The developed system is able to perform real-time hot spot recognition, by processing the image stream captured by JET wide angle infrared camera, with the guarantee that computational time is constant and deterministic. The statistical results obtained from a quite extensive set of examples show that this solution approximates very well an ad hoc serial software algorithm, with no false or missed alarms and an almost perfect overlapping of alarm intervals. The computational time can be reduced to a millisecond time scale for 8 bit 496x560-sized images. Moreover, in our implementation, the computational time, besides being deterministic, is practically independent of the number of iterations performed by the CNN - unlike software CNN implementations.

  10. Image processing with cellular nonlinear networks implemented on field-programmable gate arrays for real-time applications in nuclear fusion

    Science.gov (United States)

    Palazzo, S.; Murari, A.; Vagliasindi, G.; Arena, P.; Mazon, D.; de Maack, A.; Jet-Efda Contributors

    2010-08-01

    In the past years cameras have become increasingly common tools in scientific applications. They are now quite systematically used in magnetic confinement fusion, to the point that infrared imaging is starting to be used systematically for real-time machine protection in major devices. However, in order to guarantee that the control system can always react rapidly in case of critical situations, the time required for the processing of the images must be as predictable as possible. The approach described in this paper combines the new computational paradigm of cellular nonlinear networks (CNNs) with field-programmable gate arrays and has been tested in an application for the detection of hot spots on the plasma facing components in JET. The developed system is able to perform real-time hot spot recognition, by processing the image stream captured by JET wide angle infrared camera, with the guarantee that computational time is constant and deterministic. The statistical results obtained from a quite extensive set of examples show that this solution approximates very well an ad hoc serial software algorithm, with no false or missed alarms and an almost perfect overlapping of alarm intervals. The computational time can be reduced to a millisecond time scale for 8 bit 496×560-sized images. Moreover, in our implementation, the computational time, besides being deterministic, is practically independent of the number of iterations performed by the CNN—unlike software CNN implementations.

  11. Image processing with cellular nonlinear networks implemented on field-programmable gate arrays for real-time applications in nuclear fusion

    International Nuclear Information System (INIS)

    Palazzo, S.; Vagliasindi, G.; Arena, P.; Murari, A.; Mazon, D.; De Maack, A.

    2010-01-01

    In the past years cameras have become increasingly common tools in scientific applications. They are now quite systematically used in magnetic confinement fusion, to the point that infrared imaging is starting to be used systematically for real-time machine protection in major devices. However, in order to guarantee that the control system can always react rapidly in case of critical situations, the time required for the processing of the images must be as predictable as possible. The approach described in this paper combines the new computational paradigm of cellular nonlinear networks (CNNs) with field-programmable gate arrays and has been tested in an application for the detection of hot spots on the plasma facing components in JET. The developed system is able to perform real-time hot spot recognition, by processing the image stream captured by JET wide angle infrared camera, with the guarantee that computational time is constant and deterministic. The statistical results obtained from a quite extensive set of examples show that this solution approximates very well an ad hoc serial software algorithm, with no false or missed alarms and an almost perfect overlapping of alarm intervals. The computational time can be reduced to a millisecond time scale for 8 bit 496x560-sized images. Moreover, in our implementation, the computational time, besides being deterministic, is practically independent of the number of iterations performed by the CNN - unlike software CNN implementations.

  12. Self-gated 4D multiphase, steady-state imaging with contrast enhancement (MUSIC) using rotating cartesian K-space (ROCK): Validation in children with congenital heart disease.

    Science.gov (United States)

    Han, Fei; Zhou, Ziwu; Han, Eric; Gao, Yu; Nguyen, Kim-Lien; Finn, J Paul; Hu, Peng

    2017-08-01

    To develop and validate a cardiac-respiratory self-gating strategy for the recently proposed multiphase steady-state imaging with contrast enhancement (MUSIC) technique. The proposed SG strategy uses the ROtating Cartesian K-space (ROCK) sampling, which allows for retrospective k-space binning based on motion surrogates derived from k-space center line. The k-space bins are reconstructed using a compressed sensing algorithm. Ten pediatric patients underwent cardiac MRI for clinical reasons. The original MUSIC and 2D-CINE images were acquired as a part of the clinical protocol, followed by the ROCK-MUSIC acquisition, all under steady-state intravascular distribution of ferumoxytol. Subjective scores and image sharpness were used to compare the images of ROCK-MUSIC and original MUSIC. All scans were completed successfully without complications. The ROCK-MUSIC acquisition took 5 ± 1 min, compared to 8 ± 2 min for the original MUSIC. Image scores of ROCK-MUSIC were significantly better than original MUSIC at the ventricular outflow tracts (3.9 ± 0.3 vs. 3.3 ± 0.6, P ROCK-MUSIC in the other anatomic locations. ROCK-MUSIC provided images of equal or superior image quality compared to original MUSIC, and this was achievable with 40% savings in scan time and without the need for physiologic signal. Magn Reson Med 78:472-483, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Long-term prognostic value of Tc-99m tetrofosmin myocardial gated-SPECT imaging in asymptomatic patients after percutaneous coronary intervention.

    Science.gov (United States)

    Georgoulias, Panagiotis; Demakopoulos, Nikolaos; Tzavara, Chara; Giannakou, Stavroula; Valotassiou, Varvara; Tsougos, Ioannis; Xaplanteris, Petros; Fezoulidis, Ioannis

    2008-11-01

    To evaluate the long-term prognostic value of Tc-99m tetrofosmin myocardial gated-SPECT in asymptomatic patients after coronary artery stenting. We included 246 consecutive patients in the study. All patients underwent exercise gated-single photon emission computed tomography (SPECT) myocardial imaging 5 to 7 months after percutaneous coronary intervention (PCI) and were followed for a mean period of 8.3 years (SD = 2.9). Myocardial scintigrams were evaluated calculating the summed stress score (SSS), summed rest score, and summed difference score (SDS) indexes. Cardiovascular death and nonfatal myocardial infarction were considered hard cardiac events, whereas late revascularization (>3 months after myocardial SPECT) procedures were considered to be soft events. Cox proportional hazard models were applied to evaluate the association between several variables and the investigated outcome. During the follow-up period, hard cardiac events occurred in 32 (13%) patients (cardiac death occurred in 12 patients and nonfatal myocardial infarction in 20 patients). In addition, 60 (24.4%) patients underwent a late revascularization procedure. When multiple Cox regression analysis was implied, the factors that remained significant in the final model for soft events were SSS, SDS, and angina during exercise testing. In addition, SSS, SDS, and left ventricular dilatation were independently associated with hard cardiac events as defined from the results of multiple analysis. However, SSS and SDS were the only independent predictors for both hard and soft events. Tc-99m tetrofosmin myocardial perfusion imaging (MPI), performed 6 months post-percutaneous coronary intervention, has an independent and powerful clinical value to predict hard and soft cardiac events in asymptomatic patients after PCI.

  14. Accurate estimation of global and regional cardiac function by retrospectively gated multidetector row computed tomography. Comparison with cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Belge, Benedicte; Pasquet, Agnes; Vanoverschelde, Jean-Louis J.; Coche, Emmanuel; Gerber, Bernhard L.

    2006-01-01

    Retrospective reconstruction of ECG-gated images at different parts of the cardiac cycle allows the assessment of cardiac function by multi-detector row CT (MDCT) at the time of non-invasive coronary imaging. We compared the accuracy of such measurements by MDCT to cine magnetic resonance (MR). Forty patients underwent the assessment of global and regional cardiac function by 16-slice MDCT and cine MR. Left ventricular (LV) end-diastolic and end-systolic volumes estimated by MDCT (134±51 and 67±56 ml) were similar to those by MR (137±57 and 70±60 ml, respectively; both P=NS) and strongly correlated (r=0.92 and r=0.95, respectively; both P<0.001). Consequently, LV ejection fractions by MDCT and MR were also similar (55±21 vs. 56±21%; P=NS) and highly correlated (r=0.95; P<0.001). Regional end-diastolic and end-systolic wall thicknesses by MDCT were highly correlated (r=0.84 and r=0.92, respectively; both P<0.001), but significantly lower than by MR (8.3±1.8 vs. 8.8±1.9 mm and 12.7±3.4 vs. 13.3±3.5 mm, respectively; both P<0.001). Values of regional wall thickening by MDCT and MR were similar (54±30 vs. 51±31%; P=NS) and also correlated well (r=0.91; P<0.001). Retrospectively gated MDCT can accurately estimate LV volumes, EF and regional LV wall thickening compared to cine MR. (orig.)

  15. Prognostic significance of stress myocardial ECG-gated perfusion imaging in asymptomatic patients with diabetic chronic kidney disease on initiation of haemodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuru; Kondo, Chisato; Kobayashi, Hideki; Kusakabe, Kiyoko [Tokyo Women' s Medical University, School of Medicine, Department of Radiology, Shinjuku-ku, Tokyo (Japan); Babazono, Tetsuya [Tokyo Women' s Medical University, School of Medicine, Diabetes Centre, Shinjuku-ku, Tokyo (Japan); Nakajima, Takatomo [Tokyo Women' s Medical University, School of Medicine, Department of Cardiology, Shinjuku-ku, Tokyo (Japan)

    2009-08-15

    Diabetic patients with chronic kidney disease (CKD) frequently develop cardiac events within several years of the initiation of haemodialysis. The present study assesses the prognostic significance of stress myocardial ECG-gated perfusion imaging (MPI) in patients with diabetic CKD requiring haemodialysis. Fifty-five asymptomatic patients with diabetic stage V CKD and no history of heart disease scheduled to start haemodialysis were enrolled in this study (56{+-}11 years old; 49 with type 2 diabetes mellitus). All patients underwent {sup 201}Tl stress ECG-gated MPI 1 month before or after the initiation of haemodialysis to assess myocardial involvement. We evaluated SPECT images using 17-segment defect scores graded on a 5-point scale, summed stress score (SSS) and summed difference scores (SDS). The patients were followed up for at least 2 years (42{+-}15 months) to determine coronary intervention (CI) and heart failure (HF) as soft events and acute myocardial infarction (AMI) and all causes of deaths as hard events. The frequencies of myocardial ischaemia, resting perfusion defects, low ejection fraction and left ventricular (LV) dilatation were 24,20,29 and 49%, respectively. Ten events (18%) developed during the follow-up period including four CI, one HF, one AMI and four sudden deaths. Multivariate Cox analysis selected SDS (p=0.0011) and haemoglobin A{sub 1c} (HbA{sub 1c}) (p=0.0076) as independent prognostic indicators for all events. Myocardial ischaemia, in addition to glycaemic control, is a strong prognostic marker for asymptomatic patients with diabetic CKD who are scheduled to start haemodialysis. Stress MPI is highly recommended for the management and therapeutic stratification of such patients. (orig.)

  16. Coronary CT angiography with single-source and dual-source CT: comparison of image quality and radiation dose between prospective ECG-triggered and retrospective ECG-gated protocols.

    Science.gov (United States)

    Sabarudin, Akmal; Sun, Zhonghua; Yusof, Ahmad Khairuddin Md

    2013-09-30

    This study is conducted to investigate and compare image quality and radiation dose between prospective ECG-triggered and retrospective ECG-gated coronary CT angiography (CCTA) with the use of single-source CT (SSCT) and dual-source CT (DSCT). A total of 209 patients who underwent CCTA with suspected coronary artery disease scanned with SSCT (n=95) and DSCT (n=114) scanners using prospective ECG-triggered and retrospective ECG-gated protocols were recruited from two institutions. The image was assessed by two experienced observers, while quantitative assessment was performed by measuring the image noise, the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). Effective dose was calculated using the latest published conversion coefficient factor. A total of 2087 out of 2880 coronary artery segments were assessable, with 98.0% classified as of sufficient and 2.0% as of insufficient image quality for clinical diagnosis. There was no significant difference in overall image quality between prospective ECG-triggered and retrospective gated protocols, whether it was performed with DSCT or SSCT scanners. Prospective ECG-triggered protocol was compared in terms of radiation dose calculation between DSCT (6.5 ± 2.9 mSv) and SSCT (6.2 ± 1.0 mSv) scanners and no significant difference was noted (p=0.99). However, the effective dose was significantly lower with DSCT (18.2 ± 8.3 mSv) than with SSCT (28.3 ± 7.0 mSv) in the retrospective gated protocol. Prospective ECG-triggered CCTA reduces radiation dose significantly compared to retrospective ECG-gated CCTA, while maintaining good image quality. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Real-Time 3D Image Guidance Using a Standard LINAC: Measured Motion, Accuracy, and Precision of the First Prospective Clinical Trial of Kilovoltage Intrafraction Monitoring-Guided Gating for Prostate Cancer Radiation Therapy

    DEFF Research Database (Denmark)

    Keall, Paul J; Ng, Jin Aun; Juneja, Prabhjot

    2016-01-01

    for prostate cancer radiation therapy. In this paper we report on the measured motion accuracy and precision using real-time KIM-guided gating. METHODS AND MATERIALS: Imaging and motion information from the first 200 fractions from 6 patient prostate cancer radiation therapy volumetric modulated arc therapy...

  18. Evaluation of three-dimensional navigator-gated whole heart MR coronary angiography: The importance of systolic imaging in subjects with high heart rates

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yenwen [Department of Diagnostic Imaging, Kyoto University Graduate School of Medicine, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Tadamura, Eiji [Department of Diagnostic Imaging, Kyoto University Graduate School of Medicine, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)]. E-mail: et@kuhp.kyoto-u.ac.jp; Yamamuro, Masaki [Department of Diagnostic Imaging, Kyoto University Graduate School of Medicine, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Kanao, Shotaro [Department of Diagnostic Imaging, Kyoto University Graduate School of Medicine, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Nakayama, Kazuki [Department of Radiology, Sakazaki Clinic, 11 Nishinokyoshimoai-cho, Nakagyo-ku, Kyoto 604-8436 (Japan); Togashi, Kaori [Department of Diagnostic Imaging, Kyoto University Graduate School of Medicine, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)

    2007-01-15

    Purpose: To evaluate the influence of heart rate (HR) on magnetic resonance coronary angiography (MRCA) image quality in diastolic and systolic phases. Materials and methods: Twenty-seven healthy volunteers (9 men; 33 {+-} 9 years, HR 53-110 bpm), were evaluated with the electrocardiography and three-dimensional navigator-gating MRCA in a 1.5-T MR scanner (Avanto, Siemens) in diastolic and systolic phases (steady-state free precession; TR/TE/flip angle = 3.2 ms/1.6 ms/90{sup o}). The timing of scanning was individually adapted to the cardiac rest periods obtained in the prescanning, by visually identifying when the movement of right coronary artery was minimized during diastole and systole. Images of two phases were side-by-side compared on a four-point scale (from 1 = poor to 4 = excellent visibility; score of 3 or 4 as diagnostic). Results: Of 13 subjects with HR {<=}65 bpm (low HR group, mean 59.8 {+-} 4.9 bpm, range 53-65), the image quality scores were significantly better than that with higher heart rates (73.9 {+-} 9.0 bpm, range 68-110) in diastolic MRCA. The image quality was significantly improved during systole in high HR group. Overall, 91.3% of low HR group had MRCA image of diagnostic quality acquired at diastole, while 88.3% of high HR group had diagnostic images at systole by segmental analysis (p = NS). Conclusions: MRCA at systole offered superior quality in patients with high heart rates.

  19. EduGATE - basic examples for educative purpose using the GATE simulation platform.

    Science.gov (United States)

    Pietrzyk, Uwe; Zakhnini, Abdelhamid; Axer, Markus; Sauerzapf, Sophie; Benoit, Didier; Gaens, Michaela

    2013-02-01

    EduGATE is a collection of basic examples to introduce students to the fundamental physical aspects of medical imaging devices. It is based on the GATE platform, which has received a wide acceptance in the field of simulating medical imaging devices including SPECT, PET, CT and also applications in radiation therapy. GATE can be configured by commands, which are, for the sake of simplicity, listed in a collection of one or more macro files to set up phantoms, multiple types of sources, detection device, and acquisition parameters. The aim of the EduGATE is to use all these helpful features of GATE to provide insights into the physics of medical imaging by means of a collection of very basic and simple GATE macros in connection with analysis programs based on ROOT, a framework for data processing. A graphical user interface to define a configuration is also included. Copyright © 2012. Published by Elsevier GmbH.

  20. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  1. Selective chemical stripping

    Science.gov (United States)

    Malavallon, Olivier

    1995-04-01

    At the end of the 80's, some of the large European airlines expressed a wish for paint systems with improved strippability on their aircraft, allowing the possibility to strip down to the primer without altering it, using 'mild' chemical strippers based on methylene chloride. These improvements were initially intended to reduce costs and stripping cycle times while facilitating rapid repainting, and this without the need to change the conventionally used industrial facilities. The level of in-service performance of these paint systems was to be the same as the previous ones. Requirements related to hygiene safety and the environment were added to these initial requirements. To meet customers' expectations, Aerospatiale, within the Airbus Industry GIE, formed a work group. This group was given the task of specifying, following up the elaboration and qualifying the paint systems allowing requirements to be met, in relation with the paint suppliers and the airlines. The analysis made in this report showed the interest of transferring as far upstream as possible (to paint conception level) most of the technical constraints related to stripping. Thus, the concept retained for the paint system, allowing selective chemical stripping, is a 3-coat system with characteristics as near as possible to the previously used paints.

  2. Gated SPECT evaluation of left ventricular function using a CZT camera and a fast low-dose clinical protocol: comparison to cardiac magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Giorgetti, Assuero; Masci, Pier Giorgio; Marras, Gavino; Gimelli, Alessia; Genovesi, Dario; Lombardi, Massimo [Fondazione CNR/Regione Toscana ' ' G. Monasterio' ' , Pisa (Italy); Rustamova, Yasmine K. [Azerbaijan Medical University, Department of internal medicine Central Customs Hospital, Baku (Azerbaijan); Marzullo, Paolo [Istituto di Fisiologia Clinica del CNR, Pisa (Italy)

    2013-12-15

    CZT technology allows ultrafast low-dose myocardial scintigraphy but its accuracy in assessing left ventricular function is still to be defined. The study group comprised 55 patients (23 women, mean age 63 {+-} 9 years) referred for myocardial perfusion scintigraphy. The patients were studied at rest using a CZT camera (Discovery NM530c; GE Healthcare) and a low-dose {sup 99m}Tc-tetrofosmin clinical protocol (mean dose 264 {+-} 38 MBq). Gated SPECT imaging was performed as a 6-min list-mode acquisition, 15 min after radiotracer injection. Images were reformatted (8-frame to 16-frame) using Lister software on a Xeleris workstation (GE Healthcare) and then reconstructed with a dedicated iterative algorithm. Analysis was performed using Quantitative Gated SPECT (QGS) software. Within 2 weeks patients underwent cardiac magnetic resonance imaging (cMRI, 1.5-T unit CVi; GE Healthcare) using a 30-frame acquisition protocol and dedicated software for analysis (MASS 6.1; Medis). The ventricular volumes obtained with 8-frame QGS showed excellent correlations with the cMRI volumes (end-diastolic volume (EDV), r = 0.90; end-systolic volume (ESV), r = 0.94; p < 0.001). However, QGS significantly underestimated the ventricular volumes (mean differences: EDV, -39.5 {+-} 29 mL; ESV, -15.4 {+-} 22 mL; p < 0.001). Similarly, the ventricular volumes obtained with 16-frame QGS showed an excellent correlations with the cMRI volumes (EDV, r = 0.92; ESV, r = 0.95; p < 0.001) but with significant underestimations (mean differences: EDV, -33.2 {+-} 26 mL; ESV, -17.9 {+-} 20 mL; p < 0.001). Despite significantly lower values (47.9 {+-} 16 % vs. 51.2 {+-} 15 %, p < 0.008), 8-frame QGS mean ejection fraction (EF) was closely correlated with the cMRI values (r = 0.84, p < 0.001). The mean EF with 16-frame QGS showed the best correlation with the cMRI values (r = 0.91, p < 0.001) and was similar to the mean cMRI value (49.6 {+-} 16 %, p not significant). Regional analysis showed a good

  3. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.

    Science.gov (United States)

    Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-06-24

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  4. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array−Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique

    Directory of Open Access Journals (Sweden)

    Chen Yang

    2017-06-01

    Full Text Available With the development of satellite load technology and very large scale integrated (VLSI circuit technology, onboard real-time synthetic aperture radar (SAR imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT, which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array−application-specific integrated circuit (FPGA-ASIC hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  5. Development of floating strip micromegas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bortfeldt, Jonathan

    2014-04-28

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10{sup 34} cm{sup -2}s{sup -1} around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm{sup 2} floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm{sup 2} floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm{sup 2} floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the

  6. Assessment of cerebellar pulsation in dogs with and without Chiari-like malformation and syringomyelia using cardiac-gated cine magnetic resonance imaging.

    Science.gov (United States)

    Driver, C J; Watts, V; Bunck, A C; Van Ham, L M; Volk, H A

    2013-10-01

    Canine Chiari-like malformation (CM) is characterised by herniation of part of the cerebellum through the foramen magnum. In humans with Chiari type I malformation (CM-I), abnormal pulsation of the cerebellum during the cardiac cycle has been documented and is pivotal to theories for the pathogenesis of syringomyelia (SM). In this retrospective study, cardiac-gated cine balanced fast field echo (bFEE) magnetic resonance imaging (MRI) was used to assess pulsation of the brain in dogs and to objectively measure the degree of cerebellar pulsation with the neck in a flexed position. Overall, 17 Cavalier King Charles Spaniels (CKCS) with CM, including eight with SM and nine without SM, were compared with six small breed control dogs. Linear regions of interest were generated for the length of cerebellar herniation from each phase of the cardiac cycle and the degree of cerebellar pulsation was subsequently calculated. Age, bodyweight and angle of neck flexion were also compared. CKCS with CM and SM had significantly greater pulsation of the cerebellum than control dogs (P=0.003) and CKCS with CM only (P=0.031). There was no significant difference in age, bodyweight and angle of neck flexion between the three groups. Cardiac-gated cine bFEE MRI permitted the dynamic visualisation of cerebellar pulsation in dogs. These findings support the current theories regarding the pathogenesis of SM secondary to CM and further highlight the similarities between canine CM and human CM-I. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Brain Arteries Movement Detection With Gated Gradient Echo Sequence: Standardization, Registration and Subtraction of Serial Magnetic Resonance Images

    National Research Council Canada - National Science Library

    Ionescu, Razvan

    2001-01-01

    In order to make evident pulsing brain arteries movements associated with heart activity, intramodality MR registration and subtraction has to be used to detect small differences between serial MR brain images...

  8. Self-gated fat-suppressed cardiac cine MRI.

    Science.gov (United States)

    Ingle, R Reeve; Santos, Juan M; Overall, William R; McConnell, Michael V; Hu, Bob S; Nishimura, Dwight G

    2015-05-01

    To develop a self-gated alternating repetition time balanced steady-state free precession (ATR-SSFP) pulse sequence for fat-suppressed cardiac cine imaging. Cardiac gating is computed retrospectively using acquired magnetic resonance self-gating data, enabling cine imaging without the need for electrocardiogram (ECG) gating. Modification of the slice-select rephasing gradients of an ATR-SSFP sequence enables the acquisition of a one-dimensional self-gating readout during the unused short repetition time (TR). Self-gating readouts are acquired during every TR of segmented, breath-held cardiac scans. A template-matching algorithm is designed to compute cardiac trigger points from the self-gating signals, and these trigger points are used for retrospective cine reconstruction. The proposed approach is compared with ECG-gated ATR-SSFP and balanced steady-state free precession in 10 volunteers and five patients. The difference of ECG and self-gating trigger times has a variability of 13 ± 11 ms (mean ± SD). Qualitative reviewer scoring and ranking indicate no statistically significant differences (P > 0.05) between self-gated and ECG-gated ATR-SSFP images. Quantitative blood-myocardial border sharpness is not significantly different among self-gated ATR-SSFP ( 0.61±0.15 mm -1), ECG-gated ATR-SSFP ( 0.61±0.15 mm -1), or conventional ECG-gated balanced steady-state free precession cine MRI ( 0.59±0.15 mm -1). The proposed self-gated ATR-SSFP sequence enables fat-suppressed cardiac cine imaging at 1.5 T without the need for ECG gating and without decreasing the imaging efficiency of ATR-SSFP. © 2014 Wiley Periodicals, Inc.

  9. Cardiac-gated intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for the investigation of intracranial cerebrospinal fluid dynamics in the lateral ventricle: a feasibility study.

    Science.gov (United States)

    Surer, Eddie; Rossi, Cristina; Becker, Anton S; Finkenstaedt, Tim; Wurnig, Moritz C; Valavanis, Antonios; Winklhofer, Sebastian

    2018-04-01

    Intravoxel incoherent motion (IVIM) in diffusion-weighted magnetic resonance imaging (DW-MRI) attributes the signal attenuation to the molecular diffusion and to a faster pseudo-diffusion. Purpose of the study was to demonstrate the feasibility of IVIM for the investigation of intracranial cerebrospinal fluid (CSF) dynamics. Cardiac-gated DW-MRI images with fifteen b-values (0-1300s/mm 2 ) along three orthogonal directions (mediolateral (ML), anteroposterior (AP), and craniocaudal (CC)) were acquired during maximum systole and diastole in 10 healthy volunteers (6 males, mean age 36 ± 15 years). A pixel-wise bi-exponential fitting with an iterative nonparametric algorithm was carried out to calculate the following parameters: diffusion coefficient (D), fast diffusion coefficient (D*), and fraction of fast diffusion (f). Region of interest measurements were performed in both lateral ventricles. Comparison of IVIM parameters was performed among two cardiac cycle acquisitions and among the diffusion-encoding directions using a paired Student's t test. f significantly (p  0.05 each). The fraction of fast diffusion from IVIM is feasible to detect a direction-dependent and cardiac-dependent pulsatile CSF flow within the lateral ventricles allowing for quantitative monitoring of CSF dynamics. This technique might provide opportunities to further investigate the pathophysiology of various neurological disorders involving altered CSF dynamics.

  10. Delineation of the anatomical relationship of innominate artery and trachea by respiratory-gated MR imaging with true FISP sequence in patients with severe motor and intellectual disabilities

    International Nuclear Information System (INIS)

    Fujikawa, Yoshinao; Sato, Noriko; Sugai, Kenji; Endo, Yusaku; Matsufuji, Hiroki; Oomi, Tsuyoshi; Honzawa, Shiho; Sasaki, Masayuki

    2008-01-01

    Tracheoinnominate artery fistula is a well-known complication that arises on using a cannula. Therefore, routine examination of the anatomical relationship of the innominate artery and trachea should be carried out. We evaluated the usefulness of magnetic resonance imaging in 5 patients with severe motor and intellectual disabilities (SMID) using a combination of true-fast imaging of steady-state precession (true-FISP) sequences and two-dimensional prospective acquisition correction (2D-PACE). For all patients, the trachea and the innominate artery were identified without sedation and contrast media. In one patient, the innominate artery was observed to be pressing on the trachea. In three patients, the trachea and innominate artery were brought very close each other, and in the other patient the anatomical relationship of the trachea and surrounding structure was delineated before tracheotomy. The validity of true-FISP sequences combined with the respiratory-gated technique was confirmed useful for the patients who are difficult to lie quietly and to hold their breath voluntarily. (author)

  11. 3D absorbed dose calculation with GATE Monte Carlo simulation for the image-guided radiation therapy dedicated to the small animal

    International Nuclear Information System (INIS)

    Noblet, Caroline

    2014-01-01

    Innovating irradiators dedicated to small animal allow to mimic clinical treatments in image-guided radiation therapy. Clinical practice is scaled down to the small animal by reducing beam dimensions (from cm to mm) and energy (from MeV to keV). Millimeter medium energy beams (<300 keV) are used to treat animals. This scaling induces higher constraints than in clinical practice especially for absorbed dose calculation in animals. Due to the beam dimensions and the medium energy range, clinical dose calculation methods are not easily applicable to the preclinical practice. Monte Carlo methods are needed. To this aim, a Monte Carlo model of the XRAD225Cx preclinical irradiator has been developed with the GATE (Geant4) framework. This model was validated by comparing simulation results against measurements and results obtained with a reference Monte Carlo code in external beam radiation therapy, EGSnrc. A specific issue has been highlighted: the significant dosimetric impact of tissue segmentation in the animal CT images. Indeed, at medium energy range, thresholding based on electronic density cannot accurately take into account the heterogeneities. Materials should be defined using both the tissue elemental composition and the mass density. An original segmentation method has been developed to obtain realistic dose distributions in small animals. Finally, our Monte Carlo platform has been successfully used for several radiobiological studies with mice and rats. (author) [fr

  12. The design and validation of a magnetic resonance imaging-compatible device for obtaining mechanical properties of plantar soft tissue via gated acquisition.

    Science.gov (United States)

    Williams, Evan D; Stebbins, Michael J; Cavanagh, Peter R; Haynor, David R; Chu, Baocheng; Fassbind, Michael J; Isvilanonda, Vara; Ledoux, William R

    2015-10-01

    Changes in the mechanical properties of the plantar soft tissue in people with diabetes may contribute to the formation of plantar ulcers. Such ulcers have been shown to be in the causal pathway for lower extremity amputation. The hydraulic plantar soft tissue reducer (HyPSTER) was designed to measure in vivo, rate-dependent plantar soft tissue compressive force and three-dimensional deformations to help understand, predict, and prevent ulcer formation. These patient-specific values can then be used in an inverse finite element analysis to determine tissue moduli, and subsequently used in a foot model to show regions of high stress under a wide variety of loading conditions. The HyPSTER uses an actuator to drive a magnetic resonance imaging-compatible hydraulic loading platform. Pressure and actuator position were synchronized with gated magnetic resonance imaging acquisition. Achievable loading rates were slower than those found in normal walking because of a water-hammer effect (pressure wave ringing) in the hydraulic system when the actuator direction was changed rapidly. The subsequent verification tests were, therefore, performed at 0.2 Hz. The unloaded displacement accuracy of the system was within 0.31%. Compliance, presumably in the system's plastic components, caused a displacement loss of 5.7 mm during a 20-mm actuator test at 1354 N. This was accounted for with a target to actual calibration curve. The positional accuracy of the HyPSTER during loaded displacement verification tests from 3 to 9 mm against a silicone backstop was 95.9% with a precision of 98.7%. The HyPSTER generated minimal artifact in the magnetic resonance imaging scanner. Careful analysis of the synchronization of the HyPSTER and the magnetic resonance imaging scanner was performed. With some limitations, the HyPSTER provided key functionality in measuring dynamic, patient-specific plantar soft tissue mechanical properties. © IMechE 2015.

  13. Alcohol Saliva Strip Test

    OpenAIRE

    Thokala, Madhusudhana Rao; Dorankula, Shyam Prasad Reddy; Muddana, Keertrthi; Velidandla, Surekha Reddy

    2014-01-01

    Alcohol is a factor in many categories of injury. Alcohol intoxication is frequently associated with injuries from falls, fires, drowning, overdoses, physical and sexual abusements, occupational accidents, traffic accidents and domestic violence. In many instances, for forensic purpose, it may be necessary to establish whether the patients have consumed alcohol that would have been the reason for the injury/accidents. Combining rapidity and reliability, alcohol saliva strip test (AST) has bee...

  14. Model-based segmentation and motion analysis of the thoracic aorta from 4D ECG-gated CTA images.

    Science.gov (United States)

    Biesdorf, Andreas; Wörz, Stefan; Müller, Tobias; Weber, Tim Frederik; Heye, Tobias; Hosch, Waldemar; von Tengg-Kobligk, Hendrik; Rohr, Karl

    2011-01-01

    Pathologies of the thoracic aorta can alter the shape and motion pattern of the aorta throughout the cardiac cycle. For diagnosis and therapy planning, determination of the aortic shape and motion is important. We introduce a new approach for segmentation and motion analysis of the thoracic aorta from 4D ECG-CTA images, which combines spatial and temporal tracking, motion determination by intensity-based matching, and 3D fitting of vessel models. The approach has been successfully applied to 30 clinically relevant 4D CTA image sequences. We have also performed a quantitative evaluation of the segmentation accuracy.

  15. Evaluating the normal individual cardiac function in different imaging phases post exercise and rest by gated SPECT myocardial perfusion

    International Nuclear Information System (INIS)

    Hua, W.; Li, S.J.; Liu, J.Z.; Li, X.F.; Jin, C.R.; Hu, G.; Wang, J.

    2007-01-01

    Full text: Objectives: To evaluate the normal individual cardiac function in the different imaging phases post-exercise and rest by GSPECT. Methods: 46 normal individuals underwent exercise/rest GSPECT using 99mTc-MIBI by 2- day program. Sequential imaging was started 15, 35 and 120 minutes after exercise and rest imaging was performed the following day. The left ventricular EF and EDV, ESV values were calculated with the Cedars-Sinai program. Results: The EF values of post- exercise at 15, 35, and 120m was 64.48±7.43%, 65.02±7.66%, and 60.98±7.28% respectively, and the rest EF value was 61.46±7.23%. The post exercise EF at 15m and 35m was higher than EF at post- exercise 120m and rest, but there is a significant difference only between post exercise 35m and rest (P< 0.05), and all post exercise EF did not increase at least 5% from EF at-rest. The EDV and ESV values did not have statistically significant differences at 15, 35,120m post-exercise and rest. The heart rate at 15,35m post- exercise was higher significantly than at rest. Conclusions: The different imaging phases after exercise with 99mTc-MIBI GSPECT affects LVEF in normal individuals, the 35m post- exercise EF is highest. (author)

  16. Quantitative assessment of changes in carotid plaques during cilostazol administration using three-dimensional ultrasonography and non-gated magnetic resonance plaque imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Mao; Ohba, Hideki; Mori, Kiyofumi; Narumi, Shinsuke; Katsura, Noriyuki; Ohura, Kazumasa; Terayama, Yasuo [Iwate Medical University, Department of Neurology and Gerontology, Morioka (Japan); Sasaki, Makoto; Kudo, Kohsuke [Iwate Medical University, Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Morioka (Japan)

    2012-09-15

    Cilostazol, an antiplatelet agent, is reported to induce the regression of atherosclerotic changes. However, its effects on carotid plaques are unknown. Hence, we quantitatively investigated the changes that occur within carotid plaques during cilostazol administration using three-dimensional (3D) ultrasonography (US) and non-gated magnetic resonance (MR) plaque imaging. We prospectively examined 16 consecutive patients with carotid stenosis. 3D-US and T1-weighted MR plaque imaging were performed at baseline and 6 months after initiating cilostazol therapy (200 mg/day). We measured the volume and grayscale median (GSM) of the plaques from 3D-US data. We also calculated the contrast ratio (CR) of the carotid plaque against the adjacent muscle and areas of the intraplaque components: fibrous tissue, lipid, and hemorrhage components. The plaque volume on US decreased significantly (median at baseline and 6 months, 0.23 and 0.21 cm{sup 3}, respectively; p = 0.03). In the group exhibiting a plaque volume reduction of more than 10%, GSM on US increased significantly (24.8 and 71.5, respectively; p = 0.04) and CR on MRI decreased significantly (1.13 and 1.04, respectively; p = 0.02). In this group, in addition, the percent area of the fibrous component on MRI increased significantly (68.6% and 79.4%, respectively; p = 0.02), while those of the lipid and hemorrhagic components decreased (24.9% and 20.5%, respectively; p = 0.12) (1.0% and 0.0%, respectively; p = 0.04). There were no substantial changes in intraplaque characteristics in either US or MRI in the other group. 3D-US and MR plaque imaging can quantitatively detect changes in the size and composition of carotid plaques during cilostazol therapy. (orig.)

  17. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  18. New gate opening hours

    CERN Multimedia

    GS Department

    2009-01-01

    Please note the new opening hours of the gates as well as the intersites tunnel from the 19 May 2009: GATE A 7h - 19h GATE B 24h/24 GATE C 7h - 9h\t17h - 19h GATE D 8h - 12h\t13h - 16h GATE E 7h - 9h\t17h - 19h Prévessin 24h/24 The intersites tunnel will be opened from 7h30 to 18h non stop. GS-SEM Group Infrastructure and General Services Department

  19. Bicuspid aortic valves: Diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, David J., E-mail: david.murphy@st-vincents.ie [Department of Radiology, St Vincent' s University Hospital, Elm Park, Dublin 4 (Ireland); McEvoy, Sinead H., E-mail: s.mcevoy@st-vincents.ie [Department of Radiology, St Vincent' s University Hospital, Elm Park, Dublin 4 (Ireland); Iyengar, Sri, E-mail: sri.iyengar@nhs.net [Department of Radiology, Plymouth Hospitals NHS Trust, Plymouth Devon PL6 8DH (United Kingdom); Feuchtner, Gudrun, E-mail: Gudrun.Feuchtner@i-med.ac.at [Department of Radiology, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck (Austria); Cury, Ricardo C., E-mail: r.cury@baptisthealth.net [Department of Radiology, Baptist Cardiac and Vascular Institute, 8900 North Kendall Drive, Miami, FL 33176 (United States); Roobottom, Carl, E-mail: carl.roobottom@nhs.net [Department of Radiology, Plymouth Hospitals NHS Trust, Plymouth Devon PL6 8DH (United Kingdom); Plymouth University Peninsula Schools of Medicine and Dentistry (United Kingdom); Baumueller, Stephan, E-mail: Hatem.Alkadhi@usz.ch [Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich (Switzerland); Alkadhi, Hatem, E-mail: stephan.baumueller@usz.ch [Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich (Switzerland); Dodd, Jonathan D., E-mail: jonniedodd@gmail.com [Department of Radiology, St Vincent' s University Hospital, Elm Park, Dublin 4 (Ireland)

    2014-08-15

    Objectives: To assess the diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT for bicuspid aortic valves. Materials and methods: The standard axial chest CT scans of 20 patients with known bicuspid aortic valves were blindly, randomly analyzed for (i) the appearance of the valve cusps, (ii) the largest aortic sinus area, (iii) the longest aortic cusp length, (iv) the thickest aortic valve cusp and (v) valve calcification. A second blinded reader independently analyzed the appearance of the valve cusps. Forty-two age- and sex-matched patients with known tricuspid aortic valves were used as controls. Retrospectively ECG-gated cardiac CT multiphase reconstructions of the aortic valve were used as the gold-standard. Results: Fourteen (21%) scans were scored as unevaluable (7 bicuspid, 7 tricuspid). Of the remainder, there were 13 evaluable bicuspid valves, ten of which showed an aortic valve line sign, while the remaining three showed a normal Mercedes-Benz appearance owing to fused valve cusps. The 35 evaluable tricuspid aortic valves all showed a normal Mercedes-Benz appearance (P = 0.001). Kappa analysis = 0.62 indicating good interobserver agreement for the aortic valve cusp appearance. Aortic sinus areas, aortic cusp lengths and aortic cusp thicknesses of ≥3.8 cm{sup 2}, 3.2 cm and 1.6 mm respectively on standard axial chest CT best distinguished bicuspid from tricuspid aortic valves (P < 0.0001 for all). Of evaluable scans, the sensitivity, specificity, positive and negative predictive values of standard axial chest CT in diagnosing bicuspid aortic valves was 77% (CI 0.54–1.0), 100%, 100% and 70% respectively. Conclusion: The aortic valve is evaluable in approximately 80% of standard chest 64-slice CT scans. Bicuspid aortic valves may be diagnosed on evaluable scans with good diagnostic accuracy. An aortic valve line sign, enlarged aortic sinuses and elongated, thickened valve cusps are specific CT

  20. Electronic rumble strip

    Science.gov (United States)

    Stauffer, Donald R.; Lenz, James

    1997-02-01

    Single vehicle run-off-road accidents are responsible for significant numbers of injuries and fatalities, and significant property damage. This fact spurs interest in warning systems to alert drivers that vehicles are drifting towards the edge of the road, and that a run-off road accident is imminent. An early attempt at such a warning system is the use of machined grooves on the shoulder to create a rumble strip. Such a system only provides warning, however, as the vehicle actually leaves the traffic lane. More desirable is a system that warns in anticipation of such departure. Honeywell has under development a magnetic lateral guidance system that couples a sensitive magnetoresistive transducer with a magnetic traffic marking tape being developed by 3M. While this development was initially undertaken for use in automated highways, or for special tasks such as guiding snowplow owners, the system can provide an effective, all-weather warning system to provide alert of impending departure from the roadway. This electronic rumble strip is actually a simpler system than the baseline guidance system, and can monitor both distance from the traffic lane edge and the speed of approach to the edge with a low cost sensor.

  1. Chitosan-Gated Magnetic-Responsive Nanocarrier for Dual-Modal Optical Imaging, Switchable Drug Release, and Synergistic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Mu, Qingxin [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Revia, Richard [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Wang, Kui [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Zhou, Xuezhe [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Pauzauskie, Peter J. [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhou, Shuiqin [Department of Chemistry, The College of Staten Island, City University of New York, Staten Island NY 10314 USA; Zhang, Miqin [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA

    2017-01-25

    In this study, we present a multifunctional yet structurally simple nanocarrier that has a high drug loading capacity, releases drug in response to onset of an AC magnetic field, and can serve as a long-term imaging contrast agent and effectively kills cancer cells by synergistic action. This nanocarrier (HMMC-NC) has a spherical shell structure with a center cavity of 80 nm in diameter. The shell is comprised of two layers: an inner layer of magnetite that exhibits superparamagnetism and an outer layer of mesoporous carbon embedded with carbon dots that exhibit photoluminescence property. Thus in addition to being a drug carrier, HMMC-NC is also a contrast agent for bioimaging. The switchable drug release is enabled by the chitosan molecules attached on the nanocarrier as the switching material which turns on or off the drug release in response to the application or withdrawal of an AC magnetic field.

  2. Double-gated spectral snapshots for biomolecular fluorescence

    International Nuclear Information System (INIS)

    Nakamura, Ryosuke; Hamada, Norio; Ichida, Hideki; Tokunaga, Fumio; Kanematsu, Yasuo

    2007-01-01

    A versatile method to take femtosecond spectral snapshots of fluorescence has been developed based on a double gating technique in the combination of an optical Kerr gate and an image intensifier as an electrically driven gate set in front of a charge-coupled device detector. The application of a conventional optical-Kerr-gate method is limited to molecules with the short fluorescence lifetime up to a few hundred picoseconds, because long-lifetime fluorescence itself behaves as a source of the background signal due to insufficiency of the extinction ratio of polarizers employed for the Kerr gate. By using the image intensifier with the gate time of 200 ps, we have successfully suppressed the background signal and overcome the application limit of optical-Kerr-gate method. The system performance has been demonstrated by measuring time-resolved fluorescence spectra for laser dye solution and the riboflavin solution as a typical sample of biomolecule

  3. Thin-slice Free-breathing Pseudo-golden-angle Radial Stack-of-stars with Gating and Tracking T1-weighted Acquisition: An Efficient Gadoxetic Acid-enhanced Hepatobiliary-phase Imaging Alternative for Patients with Unstable Breath Holding.

    Science.gov (United States)

    Kajita, Kimihiro; Goshima, Satoshi; Noda, Yoshifumi; Kawada, Hiroshi; Kawai, Nobuyuki; Okuaki, Tomoyuki; Honda, Masatoshi; Matsuo, Masayuki

    2018-03-09

    To compare four free-breathing scan techniques for gadoxetic acid-enhanced hepatobiliary phase imaging with conventional breath-hold scans. Gadoxetic acid-enhanced hepatobiliary phase imaging with six image acquisition sets performed in 50 patients. Image acquisition sets included fat-suppressed 3D T 1 -weighted turbo field echo with free-breathing pseudo-golden-angle radial stack-of-stars (FBRS) acquisition, FBRS with track (FBRS T ), FBRS with gate and track (FBRS G&T ), thin-slice FBRS with gate and track (thin-slice FBRS G&T ), free-breathing Cartesian acquisition (Cartesian FB ), and breath-hold Cartesian acquisition (Cartesian BH ). Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and image quality compared to the six-image acquisition sets. Signal-to-noise ratio and CNR were significantly higher in FBRS, FBRS T , FBRS G&T , and thin-slice FBRS G&T than in Cartesian FB and Cartesian BH (P breath holding.

  4. Readout of silicon strip detectors

    CERN Document Server

    Dabrowski, W

    2003-01-01

    Various architectural and technological options of readout electronics for silicon strip detectors in vertex and tracking applications are discussed briefly. The ABCD3T ASIC for the readout of silicon strip detectors in the ATLAS semiconductor tracker is presented. The architecture of the chip, some design issues and radiation effects are discussed.

  5. The CMS Silicon Strip Tracker

    CERN Document Server

    Azzurri, P

    2005-01-01

    With over 200 square meters of sensitive Silicon and almost 10 million readout channels, the Silicon Strip Tracker of the CMS experiment at the LHC will be the largest Silicon strip detector ever built. The design, construction and expected performance of the CMS Tracker is reviewed in the following.

  6. Rapid gated Thallium-201 perfusion SPECT - clinically feasible?

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B.; Wilkinson, D.; Abatti, D.

    1998-01-01

    Full text: Standard dose energy window optimised Thallium-201 (Tl-201) SPECT has about half the counts of a standard dose from Technetium-99m Sestamibi (Tc99m-Mibi) gated perfusion SPECT. This study investigates the clinical feasibility of rapid energy window optimised Tl-201 gated perfusion SPECT (gated-TI) and compares quantitative left ventricular ejection fraction (LVEF) and visually assessed image quality for wall motion and thickening to analogous values obtained from Tc99m-Mibi gated perfusion SPECT (gated - mibi). Methods: We studied 60 patients with a rest gated Tl-201 SPECT (100 MBq, 77KeV peak, 34% window, 20 sec/projection) followed by a post stress gated Sestamibi SPECT (1GBq, 140KeV, 20% window, 20 sec/projection) separate dual isotope protocol. LVEF quantitation was performed using commercially available software (SPECTEF, General Electric). Visual grading of image quality for wall thickening and motion was performed using a three-point scale (excellent, good and poor). Results: LVEF for gated Tl-201 SPECT was 59.6 ± 12.0% (Mean ± SD). LVEF for gated Sestamibi SPECT was 60.4 ±11.4% (Mean ± SD). These were not significantly different (P=0.27, T-Test). There was good correlation (r=0.9) between gated-TI and gated-mibi LVEF values. The quality of gated-Tl images was ranked as excellent, good and poor in 12, 50 and 38% of the patients respectively. Image quality was better in gated-mibi SPECT, with ratings of 12, 62 and 26% respectively. Conclusion: Rapid gated Thallium-201 acquisition with energy window optimisation can be effectively performed on majority of patients and offers the opportunity to assess not only myocardial perfusion and function, as with Technetium based agents, but also viability using a single day one isotope protocol

  7. Bismuth-based electrochemical stripping analysis

    Science.gov (United States)

    Wang, Joseph

    2004-01-27

    Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.

  8. Probing Dense Sprays with Gated, Picosecond, Digital Particle Field Holography

    Directory of Open Access Journals (Sweden)

    James Trolinger

    2011-12-01

    Full Text Available This paper describes work that demonstrated the feasibility of producing a gated digital holography system that is capable of producing high-resolution images of three-dimensional particle and structure details deep within dense particle fields of a spray. We developed a gated picosecond digital holocamera, using optical Kerr cell gating, to demonstrate features of gated digital holography that make it an exceptional candidate for this application. The Kerr cell gate shuttered the camera after the initial burst of ballistic and snake photons had been recorded, suppressing longer path, multiple scattered illumination. By starting with a CW laser without gating and then incorporating a picosecond laser and an optical Kerr gate, we were able to assess the imaging quality of the gated holograms, and determine improvement gained by gating. We produced high quality images of 50–200 μm diameter particles, hairs and USAF resolution charts from digital holograms recorded through turbid media where more than 98% of the light was scattered from the field. The system can gate pulses as short as 3 mm in pathlength (10 ps, enabling image-improving features of the system. The experiments lead us to the conclusion that this method has an excellent capability as a diagnostics tool in dense spray combustion research.

  9. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, I.C.; Lee, Tain [Taichung Veterans General Hospital, Department of Radiology, Taichung (China); Medical College of Chung Shan Medical University, Faculty of Medicine, Taichung (China); National Yang Ming University, Department of Medicine and Institute of Clinical Medicine, Taipei (China); Chen, Min-Chi [Taichung Veterans General Hospital, Department of Radiology, Taichung (China); Fu, Yun-Ching [National Yang Ming University, Department of Medicine and Institute of Clinical Medicine, Taipei (China); Taichung Veterans General Hospital, Section of Paediatric Cardiology, Department of Paediatrics, Taichung (China); Jan, Sheng-Lin [Medical College of Chung Shan Medical University, Faculty of Medicine, Taichung (China); Taichung Veterans General Hospital, Section of Paediatric Cardiology, Department of Paediatrics, Taichung (China); Wang, Chung-Chi; Chang, Yen [Taichung Veterans General Hospital, Section of Cardiovascular Surgery, Department of Surgery, Taichung (China)

    2007-08-15

    Multidetector CT (MDCT) seems to be a promising tool for detection of neonatal coronary arteries, but whether the ECG-gated or non-ECG-gated technique should be used has not been established. To compare the detection rate and image quality of neonatal coronary arteries on MDCT using ECG-gated and non-ECG-gated techniques. Twelve neonates with complex congenital heart disease were included. The CT scan was acquired using an ECG-gated technique, and the most quiescent phase of the RR interval was selected to represent the ECG-gated images. The raw data were then reconstructed without the ECG signal to obtain non-ECG-gated images. The detection rate and image quality of nine coronary artery segments in the two sets of images were then compared. A two-tailed paired t test was used with P values <0.05 considered as statistically significant. In all coronary segments the ECG-gated technique had a better detection rate and produced images of better quality. The difference between the two techniques ranged from 25% in the left main coronary artery to 100% in the distal right coronary artery. For neonates referred for MDCT, if evaluation of coronary artery anatomy is important for the clinical management or surgical planning, the ECG-gated technique should be used because it can reliably detect the coronary arteries. (orig.)

  10. Dynamic underground stripping demonstration project

    International Nuclear Information System (INIS)

    Newmark, R.L.

    1992-04-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation techniques for rapid cleanup of localized underground spills. Called dynamic stripping to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first eight months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques. Tests then began on the contaminated site in FY 1992. This report describes the work at the Clean Site, including design and performance criteria, test results, interpretations, and conclusions. We fielded 'a wide range of new designs and techniques, some successful and some not. In this document, we focus on results and performance, lessons learned, and design and operational changes recommended for work at the contaminated site. Each section focuses on a different aspect of the work and can be considered a self-contained contribution

  11. ATLAS Strips Upgrade

    CERN Document Server

    Miñano, Mercedes

    2009-01-01

    It is foreseen to increase the luminosity of the LHC at CERN around 2020 by about an order of magnitude (SLHC). The ATLAS experiment will require a new particle tracking system for SLHC operation in order to cope with the increase in background events by about one order of magnitude at the higher luminosity. , an all silicon detector with enhanced radiation hardness is being designed. A massive R&D programme, involving many particles physics groups and several leadings manufacturers of silicon detectors for particle physics, is underway to develop silicon sensors with sufficient radiation hardness. In this framework new sensor materials like p-type silicon and the 3D technology are investigated. In parallel, the SCT commissioning experience has taught us to look into alternative module concepts, in which higher levels of integration are combined with the modularity of the SCT approach. We will report on the status of the R&D projects on radiation hard silicon strip detectors for particle physics, link...

  12. ATLAS Strip Upgrade

    CERN Document Server

    Bernabeu, J; The ATLAS collaboration

    2012-01-01

    A phased upgrade of the Large Hadron Collider (LHC) at CERN is planned. The last upgrade phase (HL-LHC) is currently foreseen in 2022-2023. It aims to increase the integrated luminosity to about ten times the original LHC design luminosity. To cope with the harsh conditions in terms of particle rates and radiation dose expected during HL-LHC operation, the ATLAS collaboration is developing technologies for a complete tracker replacement. This new detector will need to provide extreme radiation hardness and a high granularity, within the tight constraints imposed by the existing detectors and their services. An all-silicon high-granularity tracking detector is proposed. An international R&D collaboration is working on the strip layers for this new tracker. A number of large area prototype planar detectors produced on p-type wafers have been designed and fabricated for use at HL-LHC. These prototype detectors and miniature test detectors have been irradiated to a set of fluences matched to HL-LHC expectatio...

  13. Buffers and vegetative filter strips

    Science.gov (United States)

    Matthew J. Helmers; Thomas M. Isenhart; Michael G. Dosskey; Seth M. Dabney

    2008-01-01

    This chapter describes the use of buffers and vegetative filter strips relative to water quality. In particular, we primarily discuss the herbaceous components of the following NRCS Conservation Practice Standards.

  14. Efficient ozone, sulfate, and ammonium free resist stripping process

    Science.gov (United States)

    Dattilo, Davide; Dietze, Uwe

    2014-07-01

    In recent years, photomask resist strip and cleaning technology development was substantially driven by the industry's need to prevent surface haze formation through the elimination of sulfuric acid and ammonium hydroxide from these processes. As a result, conventional SPM (H2SO4 + H2O2) was replaced with Ozone water (DIO3) for resist stripping and organic removal to eliminate chemical haze formation [1, 2]. However, it has been shown that DIO3 basted strip and clean process causes oxidative degradation of photomask materials [3, 4]. Such material damage can affect optical properties of funcitional mask layers, causeing CD line-width, phase, transmission and reflection changes, adversely affecting image transfer during the Lithography process. To overcome Ozone induced surface damage, SUSS MicroTec successfully developed a highly efficient strip process, where photolysis of DIO3 is leading to highly reactive hydroxyl radical formation, as the main contribution to hydrocarbon removal without surface damage [5]. This technology has been further extended to a final clean process, which is utilizing pure DI water for residual organic material removal during final clean [6]. Recently, SUS MicroTec did also successfully release strip and clean processes which completely remove NH4OH, eliminating any chemicals known today to induce haze [7]. In this paper we show the benefits of these new technologies for highly efficient sulfate and ammonium free stripping and cleaning processes.

  15. The value of gated myocardial perfusion imaging for the evaluation of early treatment effectiveness of ischemic heart disease using Ad-HGF myocardial injection

    International Nuclear Information System (INIS)

    Feng Jianlin; Cheng Xu; Li Jianhua; Xu Zhaoqiang; Li Dianfu; Yuan Biao; Zhang Yourong; Cao Kejiang; Huang Jun

    2008-01-01

    Objective: Hepatocyte growth factor (HGF) has multipotent actions mediated by c- Mesenchymal epithelial transition factor (Met) receptor. Preclinical studies in animal models of myocardial ischemia demonstrated that treatment with HGF could benefit myocardial perfusion, cardiac remodeling, angiogenesis and myocardial function. This study used gated 99 Tc m -methoxyisobutylisonitrile (MIBI) myocardial perfusion imaging (G-MPI) to assess the early treatment effectiveness of adenovirus HGF (Ad-HGF) directly administered in ischemic heart disease (IHD) patients. Methods: Eighteen patients with IHD were divided into 3 groups receiving low dose [5 x 10 8 plaque forming unit (PFU)/site], medium (1.5 x 10 9 PFU/site) and high dose (5 x l0 9 PFU/site) of Ad-HGF. And the Ad-HGF was injected at 10 sites in each patient. Rest G-MPI was performed before and after treatment for myocardial perfusion and left ventricular function measurement. Stata 7.0 was used to analyse the data. Results: (1) After Ad-HGF, myocardial perfusion was improved in 3/6, 5/6 and 6/6 patients in low, medium and high dosage groups. The dosage of AD-HGF was closely correlated with the improvement of myocardial perfusion (χ 2 =4.34, P<0.05). (2) Left ventricular ejection fraction (LVEF) was significantly increased [(50.1 ± 6.4)% vs (58.7 ± 5.6)%, t=6.1, P<0.01], end-diastolic volume [EDV, (137.7 ± 33.2) ml vs (123.7 ± 32.7) ml] and end-systolic volume [ESV, (70.2 ± 22.4) ml vs (51.9 ± 14.9) ml] were significantly reduced. (3) The LVEFs were increased in all groups, and the LVEF improvement in the high dosage group [(8.6 ± 5.9)%] was significantly greater than the other two groups [(4.3 ± l.2)%, (6.8 ± 5.7)%]. The difference of post-treatment improvement on LVEF between the low and medium dosage groups was not significant. The dosage of Ad-HGF was closely correlated with the improvement of LVEF (r=0.67, P< 0.01). Conclusion: G-MPI is a reliable method for evaluating the early effectiveness of

  16. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation

    Science.gov (United States)

    Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea

    2015-12-01

    PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δ φ =0.3+/- 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC  =  0.66+/- 0.04 ), Positive Predictive Value (PPV  =  0.81+/- 0.06 ) and Sensitivity (Sen.  =  0.49+/- 0.05 ). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol)  =  40+/- 30 , DSC  =  0.71+/- 0.07 and PPV  =  0.90+/- 0.13 ). High accuracy in target tracking position (Δ ME) was obtained for experimental and clinical data (Δ ME{{}\\text{exp}}=0+/- 3 mm; Δ ME{{}\\text{clin}}=0.3+/- 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume

  17. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mikestikova, M., E-mail: mikestik@fzu.cz [Academy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, 18221 Prague 8 (Czech Republic); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ullan, M. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Gregor, I.M.; Tackmann, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Hauser, M.; Jakobs, K.; Kuehn, S. [Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); and others

    2016-09-21

    A radiation hard n{sup +}-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the “ATLAS ITk Strip Sensor collaboration” and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in “punch-through protection” (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×10{sup 16} n{sub eq}/cm{sup 2}, by reactor neutron fluence of 1×10{sup 15} n{sub eq}/cm{sup 2} and by gamma rays from {sup 60}Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07. - Highlights:

  18. Image-Based Phenotypic Screening with Human Primary T Cells Using One-Dimensional Imaging Cytometry with Self-Tuning Statistical-Gating Algorithms.

    Science.gov (United States)

    Wang, Steve S; Ehrlich, Daniel J

    2017-09-01

    The parallel microfluidic cytometer (PMC) is an imaging flow cytometer that operates on statistical analysis of low-pixel-count, one-dimensional (1D) line scans. It is highly efficient in data collection and operates on suspension cells. In this article, we present a supervised automated pipeline for the PMC that minimizes operator intervention by incorporating multivariate logistic regression for data scoring. We test the self-tuning statistical algorithms in a human primary T-cell activation assay in flow using nuclear factor of activated T cells (NFAT) translocation as a readout and readily achieve an average Z' of 0.55 and strictly standardized mean difference of 13 with standard phorbol myristate acetate/ionomycin induction. To implement the tests, we routinely load 4 µL samples and can readout 3000 to 9000 independent conditions from 15 mL of primary human blood (buffy coat fraction). We conclude that the new technology will support primary-cell protein-localization assays and "on-the-fly" data scoring at a sample throughput of more than 100,000 wells per day and that it is, in principle, consistent with a primary pharmaceutical screen.

  19. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jan, S; Becheva, E [DSV/I2BM/SHFJ, Commissariat a l' Energie Atomique, Orsay (France); Benoit, D; Rehfeld, N; Stute, S; Buvat, I [IMNC-UMR 8165 CNRS-Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Carlier, T [INSERM U892-Cancer Research Center, University of Nantes, Nantes (France); Cassol, F; Morel, C [Centre de physique des particules de Marseille, CNRS-IN2P3 and Universite de la Mediterranee, Aix-Marseille II, 163, avenue de Luminy, 13288 Marseille Cedex 09 (France); Descourt, P; Visvikis, D [INSERM, U650, Laboratoire du Traitement de l' Information Medicale (LaTIM), CHU Morvan, Brest (France); Frisson, T; Grevillot, L; Guigues, L; Sarrut, D; Zahra, N [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U630, INSA-Lyon, Universite Lyon 1, Centre Leon Berard (France); Maigne, L; Perrot, Y [Laboratoire de Physique Corpusculaire, 24 Avenue des Landais, 63177 Aubiere Cedex (France); Schaart, D R [Delft University of Technology, Radiation Detection and Medical Imaging, Mekelweg 15, 2629 JB Delft (Netherlands); Pietrzyk, U, E-mail: buvat@imnc.in2p3.fr [Reseach Center Juelich, Institute of Neurosciences and Medicine and Department of Physics, University of Wuppertal (Germany)

    2011-02-21

    GATE (Geant4 Application for Emission Tomography) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. Dedicated to the modelling of planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET) acquisitions, this platform is widely used to assist PET and SPECT research. A recent extension of this platform, released by the OpenGATE collaboration as GATE V6, now also enables modelling of x-ray computed tomography and radiation therapy experiments. This paper presents an overview of the main additions and improvements implemented in GATE since the publication of the initial GATE paper (Jan et al 2004 Phys. Med. Biol. 49 4543-61). This includes new models available in GATE to simulate optical and hadronic processes, novelties in modelling tracer, organ or detector motion, new options for speeding up GATE simulations, examples illustrating the use of GATE V6 in radiotherapy applications and CT simulations, and preliminary results regarding the validation of GATE V6 for radiation therapy applications. Upon completion of extensive validation studies, GATE is expected to become a valuable tool for simulations involving both radiotherapy and imaging.

  20. An efficient, FPGA-based, cluster detection algorithm implementation for a strip detector readout system in a Time Projection Chamber polarimeter

    Science.gov (United States)

    Gregory, Kyle J.; Hill, Joanne E.; Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-05-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photo- electron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  1. Determination of prospective displacement-based gate threshold for respiratory-gated radiation delivery from retrospective phase-based gate threshold selected at 4D CT simulation

    International Nuclear Information System (INIS)

    Vedam, S.; Archambault, L.; Starkschall, G.; Mohan, R.; Beddar, S.

    2007-01-01

    Four-dimensional (4D) computed tomography (CT) imaging has found increasing importance in the localization of tumor and surrounding normal structures throughout the respiratory cycle. Based on such tumor motion information, it is possible to identify the appropriate phase interval for respiratory gated treatment planning and delivery. Such a gating phase interval is determined retrospectively based on tumor motion from internal tumor displacement. However, respiratory-gated treatment is delivered prospectively based on motion determined predominantly from an external monitor. Therefore, the simulation gate threshold determined from the retrospective phase interval selected for gating at 4D CT simulation may not correspond to the delivery gate threshold that is determined from the prospective external monitor displacement at treatment delivery. The purpose of the present work is to establish a relationship between the thresholds for respiratory gating determined at CT simulation and treatment delivery, respectively. One hundred fifty external respiratory motion traces, from 90 patients, with and without audio-visual biofeedback, are analyzed. Two respiratory phase intervals, 40%-60% and 30%-70%, are chosen for respiratory gating from the 4D CT-derived tumor motion trajectory. From residual tumor displacements within each such gating phase interval, a simulation gate threshold is defined based on (a) the average and (b) the maximum respiratory displacement within the phase interval. The duty cycle for prospective gated delivery is estimated from the proportion of external monitor displacement data points within both the selected phase interval and the simulation gate threshold. The delivery gate threshold is then determined iteratively to match the above determined duty cycle. The magnitude of the difference between such gate thresholds determined at simulation and treatment delivery is quantified in each case. Phantom motion tests yielded coincidence of simulation

  2. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Science.gov (United States)

    Mikestikova, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Ullan, M.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A radiation hard n+-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the "ATLAS ITk Strip Sensor collaboration" and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in "punch-through protection" (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×1016 neq/cm2, by reactor neutron fluence of 1×1015 neq/cm2 and by gamma rays from 60Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07.

  3. Gated Treatment Delivery Verification With On-Line Megavoltage Fluoroscopy

    International Nuclear Information System (INIS)

    Tai An; Christensen, James D.; Gore, Elizabeth; Khamene, Ali; Boettger, Thomas; Li, X. Allen

    2010-01-01

    Purpose: To develop and clinically demonstrate the use of on-line real-time megavoltage (MV) fluoroscopy for gated treatment delivery verification. Methods and Materials: Megavoltage fluoroscopy (MVF) image sequences were acquired using a flat panel equipped for MV cone-beam CT in synchrony with the respiratory signal obtained from the Anzai gating device. The MVF images can be obtained immediately before or during gated treatment delivery. A prototype software tool (named RTReg4D) was developed to register MVF images with phase-sequenced digitally reconstructed radiograph images generated from the treatment planning system based on four-dimensional CT. The image registration can be used to reposition the patient before or during treatment delivery. To demonstrate the reliability and clinical usefulness, the system was first tested using a thoracic phantom and then prospectively in actual patient treatments under an institutional review board-approved protocol. Results: The quality of the MVF images for lung tumors is adequate for image registration with phase-sequenced digitally reconstructed radiographs. The MVF was found to be useful for monitoring inter- and intrafractional variations of tumor positions. With the planning target volume contour displayed on the MVF images, the system can verify whether the moving target stays within the planning target volume margin during gated delivery. Conclusions: The use of MVF images was found to be clinically effective in detecting discrepancies in tumor location before and during respiration-gated treatment delivery. The tools and process developed can be useful for gated treatment delivery verification.

  4. Step-and-shoot prospectively ECG-gated versus retrospectively ECG-gated with tube current modulation coronary CT angiography using the 128-slice MDCT: comparison of image quality and radiation dose

    International Nuclear Information System (INIS)

    Jeong, Dong Wook; Choo, Ki Seok; Baik, Seung Kug; Kim, Yong Woo; Jeon, Ung Bae; Kim, Jeong Soo; Lim, Soo Jin

    2011-01-01

    Background: Little is known regarding image quality and the required radiation dose for step-and-shoot and retrospective coronary computed tomography angiography (CCTA) with tube current modulation (TCM) in 128-slice multidetector CT (MDCT) coronary angiography. Purpose: To compare image quality and radiation dose in patients who underwent 128-slice MDCT by the step-and- shoot method with those in patients who underwent 128-slice MDCT with retrospective CCTA with TCM. Material and Methods: CCTA obtained with 128-slice MDCT was retrospectively evaluated in 160 patients. Two independent reviewers separately scored the subjective image quality of the coronary artery segments (1, excellent; 4, poor) for step-and-shoot (68, mean heart rate [HR]: 59.3±6.8) and retrospective CCTA with TCM (77, mean HR: 59.1±9.8). Interobserver variability was calculated. Effective radiation doses of both scan techniques were calculated with dose-length product. Results: There was good agreement for quality scores of coronary artery segment images between the independent reviewers (k=0.72). The number of coronary artery segments that could not be evaluated was 2.85% (27 of 947) in the step-and-shoot and 1.87% (20 of 1071) in retrospective CCTA with TCM. Image quality scores were not significantly different (P>.05). Mean patient radiation dose was 63% lower for step-and-shoot (1.94±0.70 mSv) than for retrospective CCTA with TCM (4.51±1.18 mSv) (P<0.0001). For patients who underwent step-and-shoot or retrospective CCTA with TCM, an average HR of 63.5 beats per minute was identified as the threshold for the prediction of non-diagnostic image quality for both protocols. There were no significant differences in the image quality of both methods between obese (body mass index [BMI≥25) and non-obese patients (BMI<25), but radiation doses were higher in the obesity group than in the non-obesity group for both methods. Conclusion: Both step-and-shoot and retrospective CCTA with TCM using 128

  5. A plane mirror experiment inspired by a comic strip

    Science.gov (United States)

    Lúcio Prados Ribeiro, Jair

    2016-01-01

    A comic strip about a plane mirror was used in a high school optics test, and it was perceived that a large portion of the students believed that the mirror should be larger than the object so the virtual image could be entirely visible. Inspired on the comic strip, an experimental demonstration with flat mirrors was developed, in order to readdress this topic learning. Students were encouraged to create their own investigation of the phenomenon with a simple instrumental apparatus and also suggest different experimental approaches.

  6. Optical strip waveguide: an analysis.

    Science.gov (United States)

    Ogusu, K; Kawakami, S; Nishida, S

    1979-03-15

    An analysis of the strip waveguide is presented with special emphasis on reflection and transmission of a wave obliquely incident on the side of a strip. Mode conversion and the contribution of radiation modes are taken into account in the formulation. The numerical results of the mode conversion and attenuation constant of the fundamental leaky mode are presented and compared with the results of other authors. The numerical accuracy of our analysis is also checked by two different procedures. It is found that the radiation modes have considerable effects on the waveguide characteristics.

  7. Gated community Na Krutci

    Czech Academy of Sciences Publication Activity Database

    Hnídková, Vendula

    2012-01-01

    Roč. 91, č. 12 (2012), s. 750-752 ISSN 0042-4544 Institutional support: RVO:68378033 Keywords : Gated community * Czech contemporary architecture * Kuba Pilař Subject RIV: AL - Art, Architecture , Cultural Heritage

  8. Reversible gates and circuits descriptions

    Science.gov (United States)

    Gracki, Krzystof

    2017-08-01

    This paper presents basic methods of reversible circuit description. To design reversible circuit a set of gates has to be chosen. Most popular libraries are composed of three types of gates so called CNT gates (Control, NOT and Toffoli). The gate indexing method presented in this paper is based on the CNT gates set. It introduces a uniform indexing of the gates used during synthesis process of reversible circuits. The paper is organized as follows. Section 1 recalls basic concepts of reversible logic. In Section 2 and 3 a graphical representation of the reversible gates and circuits is described. Section 4 describes proposed uniform NCT gates indexing. The presented gate indexing method provides gate numbering scheme independent of lines number of the designed circuit. The solution for a circuit consisting of smaller number of lines is a subset of solution for a larger circuit.

  9. Imaging system

    International Nuclear Information System (INIS)

    Froggatt, R.J.

    1981-01-01

    The invention provides a two dimensional imaging system in which a pattern of radiation falling on the system is detected to give electrical signals for each of a plurality of strips across the pattern. The detection is repeated for different orientations of the strips and the whole processed by compensated back projection. For a shadow x-ray system a plurality of strip x-ray detectors are rotated on a turntable. For lower frequencies the pattern may be rotated with a Dove prism and the strips condensed to suit smaller detectors with a cylindrical lens. (author)

  10. Advanced insulated gate bipolar transistor gate drive

    Science.gov (United States)

    Short, James Evans [Monongahela, PA; West, Shawn Michael [West Mifflin, PA; Fabean, Robert J [Donora, PA

    2009-08-04

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  11. The human respiratory gate

    Science.gov (United States)

    Eckberg, Dwain L.

    2003-01-01

    Respiratory activity phasically alters membrane potentials of preganglionic vagal and sympathetic motoneurones and continuously modulates their responsiveness to stimulatory inputs. The most obvious manifestation of this 'respiratory gating' is respiratory sinus arrhythmia, the rhythmic fluctuations of electrocardiographic R-R intervals observed in healthy resting humans. Phasic autonomic motoneurone firing, reflecting the throughput of the system, depends importantly on the intensity of stimulatory inputs, such that when levels of stimulation are low (as with high arterial pressure and sympathetic activity, or low arterial pressure and vagal activity), respiratory fluctuations of sympathetic or vagal firing are also low. The respiratory gate has a finite capacity, and high levels of stimulation override the ability of respiration to gate autonomic responsiveness. Autonomic throughput also depends importantly on other factors, including especially, the frequency of breathing, the rate at which the gate opens and closes. Respiratory sinus arrhythmia is small at rapid, and large at slow breathing rates. The strong correlation between systolic pressure and R-R intervals at respiratory frequencies reflects the influence of respiration on these two measures, rather than arterial baroreflex physiology. A wide range of evidence suggests that respiratory activity gates the timing of autonomic motoneurone firing, but does not influence its tonic level. I propose that the most enduring significance of respiratory gating is its use as a precisely controlled experimental tool to tease out and better understand otherwise inaccessible human autonomic neurophysiological mechanisms.

  12. Buttock Lifting with Polypropylene Strips.

    Science.gov (United States)

    Ballivian Rico, José; Esteche, Atilio; Hanke, Carlos José Ramírez; Ribeiro, Ricardo Cavalcanti

    2016-04-01

    The purpose of this study was to evaluate the results of gluteal suspension with polypropylene strips. Ninety healthy female patients between the ages of 20 and 50 years (mean, 26 years), who wished to remodel their buttocks from December 2004 to February 2013 were studied retrospectively. All 90 patients were treated with 2 strips of polypropylene on each buttock using the following procedures: 27 (30 %) patients were suspended with polypropylene strips; 63 (70 %) patients were treated with tumescent liposuction in the sacral "V", lower back, supragluteal regions, and flanks to improve buttocks contour (aspirated volume of fat from 350 to 800 cc); 16 (18 %) patients underwent fat grafting in the subcutaneous and intramuscular layers (up to 300 cc in each buttock to increase volume); 5 (6 %) patients received implants to increase volume; and 4 (4.4 %) patients underwent removal and relocation of intramuscular gluteal implants to improve esthetics. Over an 8-year period, 90 female patients underwent gluteal suspension surgeries. Good esthetic results without complications were obtained in 75 of 90 (84 %) cases. Complications occurred in 15 of 90 (16.6 %) patients, including strip removal due to postoperative pain in 1 (1.1 %) patient, and seroma in both subgluteal sulci in 3 (3.3 %) patients. The results of this study performed in 90 patients over 8 years showed that the suspension with polypropylene strips performed as a single procedure or in combination with other cosmetic methods helps to enhance and lift ptosed gluteal and paragluteal areas. This journal requires that the authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  13. Digital autoradiography using silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Overdick, M.

    1998-05-01

    Spatially resolving radiation detection systems operating in real time can be used to acquire autoradiographic images. An overview over alternatives to traditional autoradiography is given and the special features of these filmless methods are discussed. On this basis the design of a system for digital autoradiography using silicon strip detectors is presented. Special emphasis is put on the physical background of the detection process in the semiconductor and on the self-triggering read-out technique. The practical performance of the system is analyzed with respect to energy and spatial resolution. This analysis is complemented by case studies from cell biology (especially electrophoresis), botany and mineralogy. Also the results from a time-resolved autoradiographic experiment are presented. (orig.) 80 refs.

  14. Dynamic underground stripping. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    Dynamic Underground Stripping (DUS) is a combination of technologies targeted to remediate soil and ground water contaminated with organic compounds. DUS is effective both above and below the water table and is especially well suited for sites with interbedded sand and clay layers. The main technologies comprising DUS are steam injection at the periphery of a contaminated area to heat permeable subsurface areas, vaporize volatile compounds bound to the soil, and drive contaminants to centrally located vacuum extraction wells; electrical heating of less permeable sediments to vaporize contaminants and drive them into the steam zone; and underground imaging such as Electrical Resistance Tomography to delineate heated areas to ensure total cleanup and process control. A full-scale demonstration was conducted on a gasoline spill site at Lawrence Livermore National Laboratory in Livermore, California from November 1992 through December 1993

  15. Stress-induced myocardial ischemia is associated with early post-stress left ventricular mechanical dyssynchrony as assessed by phase analysis of {sup 201}Tl gated SPECT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Cheng; Shen, Thau-Yun [Show Chwan Memorial Hospital, Department of Cardiology, Changhua (China); Chang, Ming-Che [Changhua Christian Hospital, Department of Nuclear Medicine, Changhua (China); Hung, Guang-Uei [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Changhua (China); China Medical University, Department of Biomedical Imaging and Radiological Science, Taichung (China); Chen, Wan-Chen [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Changhua (China); Kao, Chia-Hung [China Medical University, Department of Biomedical Imaging and Radiological Science, Taichung (China); Chen, Ji [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States)

    2012-12-15

    In {sup 201}Tl SPECT myocardial perfusion imaging (MPI) data are acquired shortly after the stress injection to assess early post-stress left ventricle (LV) function. The purpose of this study was to use {sup 201}Tl SPECT MPI to investigate whether stress-induced myocardial ischemia is associated with LV mechanical dyssynchrony. Enrolled in the study were 75 patients who were referred for dipyridamole stress and rest {sup 201}Tl gated SPECT MPI. The early post-stress scan was started 5 min after injection, and followed by the rest scan 4 h later. The patients were divided into three groups: ischemia group (N = 25, summed stress score, SSS, {>=}5, summed rest score, SRS, <5), infarct group (N = 16, SSS {>=}5, SRS {>=}5) and normal group (N = 34, SSS <5, SRS <5). LV dyssynchrony parameters were calculated by phase analysis, and compared between the stress and rest images. In the ischemia group, LV dyssynchrony was significantly larger during stress than during rest. On the contrary, LV dyssynchrony during stress was significantly smaller than during rest in the normal and infarct groups. LV dyssynchrony during rest was significantly larger in the infarct group than in the normal and ischemia groups. There were no significant differences in LV dyssynchrony during rest between the normal and ischemia groups. Stress-induced myocardial ischemia caused dyssynchronous contraction in the ischemic region, leading to a deterioration in LV synchrony. Normal myocardium had more synchronous contraction during stress. The different dyssynchrony pattern between ischemic and normal myocardium early post-stress may aid the diagnosis of coronary artery disease using {sup 201}Tl gated SPECT MPI. (orig.)

  16. Spin gating electrical current

    Science.gov (United States)

    Ciccarelli, C.; Zârbo, L. P.; Irvine, A. C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, J.; Jungwirth, T.; Ferguson, A. J.

    2012-09-01

    The level of the chemical potential is a fundamental parameter of the electronic structure of a physical system, which consequently plays an important role in defining the properties of active electrical devices. We directly measure the chemical potential shift in the relativistic band structure of the ferromagnetic semiconductor (Ga,Mn)As, controlled by changes in its magnetic order parameter. Our device comprises a non-magnetic aluminum single electron channel capacitively coupled to the (Ga,Mn)As gate electrode. The chemical potential shifts of the gate are directly read out from the shifts in the Coulomb blockade oscillations of the single electron transistor. The experiments introduce a concept of spin gating electrical current. In our spin transistor spin manipulation is completely removed from the electrical current carrying channel.

  17. Optical parametrically gated microscopy in scattering media.

    Science.gov (United States)

    Zhao, Youbo; Adie, Steven G; Tu, Haohua; Liu, Yuan; Graf, Benedikt W; Chaney, Eric J; Marjanovic, Marina; Boppart, Stephen A

    2014-09-22

    High-resolution imaging in turbid media has been limited by the intrinsic compromise between the gating efficiency (removal of multiply-scattered light background) and signal strength in the existing optical gating techniques. This leads to shallow depths due to the weak ballistic signal, and/or degraded resolution due to the strong multiply-scattering background--the well-known trade-off between resolution and imaging depth in scattering samples. In this work, we employ a nonlinear optics based optical parametric amplifier (OPA) to address this challenge. We demonstrate that both the imaging depth and the spatial resolution in turbid media can be enhanced simultaneously by the OPA, which provides a high level of signal gain as well as an inherent nonlinear optical gate. This technology shifts the nonlinear interaction to an optical crystal placed in the detection arm (image plane), rather than in the sample, which can be used to exploit the benefits given by the high-order parametric process and the use of an intense laser field. The coherent process makes the OPA potentially useful as a general-purpose optical amplifier applicable to a wide range of optical imaging techniques.

  18. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  19. 360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.

    Science.gov (United States)

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-01-11

    360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.

  20. Nonlocal Means Denoising of Self-Gated and k-Space Sorted 4-Dimensional Magnetic Resonance Imaging Using Block-Matching and 3-Dimensional Filtering: Implications for Pancreatic Tumor Registration and Segmentation.

    Science.gov (United States)

    Jin, Jun; McKenzie, Elizabeth; Fan, Zhaoyang; Tuli, Richard; Deng, Zixin; Pang, Jianing; Fraass, Benedick; Li, Debiao; Sandler, Howard; Yang, Guang; Sheng, Ke; Gou, Shuiping; Yang, Wensha

    2016-07-01

    To denoise self-gated k-space sorted 4-dimensional magnetic resonance imaging (SG-KS-4D-MRI) by applying a nonlocal means denoising filter, block-matching and 3-dimensional filtering (BM3D), to test its impact on the accuracy of 4D image deformable registration and automated tumor segmentation for pancreatic cancer patients. Nine patients with pancreatic cancer and abdominal SG-KS-4D-MRI were included in the study. Block-matching and 3D filtering was adapted to search in the axial slices/frames adjacent to the reference image patch in the spatial and temporal domains. The patches with high similarity to the reference patch were used to collectively denoise the 4D-MRI image. The pancreas tumor was manually contoured on the first end-of-exhalation phase for both the raw and the denoised 4D-MRI. B-spline deformable registration was applied to the subsequent phases for contour propagation. The consistency of tumor volume defined by the standard deviation of gross tumor volumes from 10 breathing phases (σ_GTV), tumor motion trajectories in 3 cardinal motion planes, 4D-MRI imaging noise, and image contrast-to-noise ratio were compared between the raw and denoised groups. Block-matching and 3D filtering visually and quantitatively reduced image noise by 52% and improved image contrast-to-noise ratio by 56%, without compromising soft tissue edge definitions. Automatic tumor segmentation is statistically more consistent on the denoised 4D-MRI (σ_GTV = 0.6 cm(3)) than on the raw 4D-MRI (σ_GTV = 0.8 cm(3)). Tumor end-of-exhalation location is also more reproducible on the denoised 4D-MRI than on the raw 4D-MRI in all 3 cardinal motion planes. Block-matching and 3D filtering can significantly reduce random image noise while maintaining structural features in the SG-KS-4D-MRI datasets. In this study of pancreatic tumor segmentation, automatic segmentation of GTV in the registered image sets is shown to be more consistent on the denoised 4D-MRI than on the raw 4D

  1. Low material budget floating strip Micromegas for ion transmission radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bortfeldt, J., E-mail: jonathan.bortfeldt@cern.ch [LMU Munich, LS Schaile, Am Coulombwall 1, D-85748 Garching (Germany); Biebel, O.; Flierl, B.; Hertenberger, R.; Klitzner, F.; Lösel, Ph. [LMU Munich, LS Schaile, Am Coulombwall 1, D-85748 Garching (Germany); Magallanes, L. [LMU Munich, LS Parodi, Am Coulombwall 1, D-85748 Garching (Germany); University Hospital Heidelberg, Im Neuenheimer Feld 672, D-69120 Heidelberg (Germany); Müller, R. [LMU Munich, LS Schaile, Am Coulombwall 1, D-85748 Garching (Germany); Parodi, K. [LMU Munich, LS Parodi, Am Coulombwall 1, D-85748 Garching (Germany); Heidelberg Ion-Beam Therapy Center, Im Neuenheimer Feld 450, D-69120 Heidelberg (Germany); Schlüter, T. [LMU Munich, Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching (Germany); Voss, B. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany); Zibell, A. [JMU Würzburg, Sanderring 2, D-97070 Würzburg (Germany)

    2017-02-11

    Floating strip Micromegas are high-accuracy and discharge insensitive gaseous detectors, able to track single particles at fluxes of 7 MHz/cm{sup 2} with 100 μm resolution. We developed low-material-budget detectors with one-dimensional strip readout, suitable for tracking at highest particle rates as encountered in medical ion transmission radiography or inner tracker applications. Recently we additionally developed Kapton-based floating strip Micromegas with two-dimensional strip readout, featuring an overall thickness of 0.011 X{sub 0}. These detectors were tested in high-rate proton and carbon-ion beams at the tandem accelerator in Garching and the Heidelberg Ion-Beam Therapy Center, operated with an optimized Ne:CF{sub 4} gas mixture. By coupling the Micromegas detectors to a new scintillator based range detector, ion transmission radiographies of PMMA and tissue-equivalent phantoms were acquired. The range detector with 18 layers is read out via wavelength shifting fibers, coupled to a multi-anode photomultiplier. We present the performance of the Micromegas detectors with respect to timing and single plane track reconstruction using the μTPC method. We discuss the range resolution of the scintillator range telescope and present the image reconstruction capabilities of the combined system.

  2. Gate valve performance prediction

    International Nuclear Information System (INIS)

    Harrison, D.H.; Damerell, P.S.; Wang, J.K.; Kalsi, M.S.; Wolfe, K.J.

    1994-01-01

    The Electric Power Research Institute is carrying out a program to improve the performance prediction methods for motor-operated valves. As part of this program, an analytical method to predict the stem thrust required to stroke a gate valve has been developed and has been assessed against data from gate valve tests. The method accounts for the loads applied to the disc by fluid flow and for the detailed mechanical interaction of the stem, disc, guides, and seats. To support development of the method, two separate-effects test programs were carried out. One test program determined friction coefficients for contacts between gate valve parts by using material specimens in controlled environments. The other test program investigated the interaction of the stem, disc, guides, and seat using a special fixture with full-sized gate valve parts. The method has been assessed against flow-loop and in-plant test data. These tests include valve sizes from 3 to 18 in. and cover a considerable range of flow, temperature, and differential pressure. Stem thrust predictions for the method bound measured results. In some cases, the bounding predictions are substantially higher than the stem loads required for valve operation, as a result of the bounding nature of the friction coefficients in the method

  3. Semi-automatic segmentation of gated blood pool emission tomographic images by watersheds: application to the determination of right and left ejection fractions

    International Nuclear Information System (INIS)

    Mariano-Goulart, D.; Collet, H.; Kotzki, P.-O.; Zanca, M.; Rossi, M.

    1998-01-01

    Tomographic multi-gated blood pool scintigraphy (TMUGA) is a widely available method which permits simultaneous assessment of right and left ventricular ejection fractions. However, the widespread clinical use of this technique is impeded by the lack of segmentation methods dedicated to an automatic analysis of ventricular activities. In this study we evaluated how a watershed algorithm succeeds in providing semi-automatic segmentation of ventricular activities in order to measure right and left ejection fractions by TMUGA. The left ejection fractions of 30 patients were evaluated both with TMUGA and with planar multi-gated blood pool scintigraphy (PMUGA). Likewise, the right ejection fractions of 25 patients were evaluated with first-pass scintigraphy (FP) and with TMUGA. The watershed algorithm was applied to the reconstructed slices in order to group together the voxels whose activity came from one specific cardiac cavity. First, the results of the watershed algorithm were compared with manual drawing around left and right ventricles. Left ejection fractions evaluated by TMUGA with the watershed procedure were not significantly different (p=0.30) from manual outlines whereas a small but significant difference was found for right ejection fractions (p=0.004). Then right and left ejection fractions evaluated by TMUGA (with the semi-automatic segmentation procedure) were compared with the results obtained by FP or PMUGA. Left ventricular ejection fractions evaluated by TMUGA showed an excellent correlation with those evaluated by PMUGA (r=0.93; SEE=5.93%; slope=0.99; intercept = 4.17%). The measurements of these ejection fractions were significantly higher with TMUGA than with PMUGA (P<0.01). The interoperator variability for the measurement of left ejection fractions by TMUGA was 4.6%. Right ventricular ejection fractions evaluated by TMUGA showed a good correlation with those evaluated by FP (r = 0.81; SEE = 6.68%; slope = 1.00; intercept = 0.85%) and were not

  4. The four-gate transistor

    Science.gov (United States)

    Mojarradi, M. M.; Cristoveanu, S.; Allibert, F.; France, G.; Blalock, B.; Durfrene, B.

    2002-01-01

    The four-gate transistor or G4-FET combines MOSFET and JFET principles in a single SOI device. Experimental results reveal that each gate can modulate the drain current. Numerical simulations are presented to clarify the mechanisms of operation. The new device shows enhanced functionality, due to the combinatorial action of the four gates, and opens rather revolutionary applications.

  5. Stanford, Duke, Rice,... and Gates?

    Science.gov (United States)

    Carey, Kevin

    2009-01-01

    This article presents an open letter to Bill Gates. In his letter, the author suggests that Bill Gates should build a brand-new university, a great 21st-century institution of higher learning. This university will be unlike anything the world has ever seen. He asks Bill Gates not to stop helping existing colleges create the higher-education system…

  6. Synchrotron applications of pixel and strip detectors at Diamond Light Source

    International Nuclear Information System (INIS)

    Marchal, J.; Tartoni, N.; Nave, C.

    2009-01-01

    A wide range of position-sensitive X-ray detectors have been commissioned on the synchrotron X-ray beamlines operating at the Diamond Light Source in UK. In addition to mature technologies such as image-plates, CCD-based detectors, multi-wire and micro-strip gas detectors, more recent detectors based on semiconductor pixel or strip sensors coupled to CMOS read-out chips are also in use for routine synchrotron X-ray diffraction and scattering experiments. The performance of several commercial and developmental pixel/strip detectors for synchrotron studies are discussed with emphasis on the image quality achieved with these devices. Examples of pixel or strip detector applications at Diamond Light Source as well as the status of the commissioning of these detectors on the beamlines are presented. Finally, priorities and ideas for future developments are discussed.

  7. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  8. Diffraction by a finite strip

    Science.gov (United States)

    Williams, M. H.

    1982-01-01

    A new approach is presented to diffraction problems involving plane strip barriers or slit apertures. These are problems that display the effects of multiple interacting edges. The approach taken here provides exact, compact solutions. The theory is introduced through a series of examples that are, in fact, the 'standard' problems of the subject, diffraction of a plane oblique wave by a slit, for example. In each case, the solutions are found to depend explicitly on a single 'special' function and its Fourier transform. These fundamental functions are described, with the emphasis placed on practical computational methods. The example problems are all couched in the language of acoustics.

  9. Mechanical behaviour of a creased thin strip

    OpenAIRE

    Liu, Jie; Xu, Shanqing; Wen, Guilin; Xie, Yi Min

    2018-01-01

    In this study the mechanical behaviour of a creased thin strip under opposite-sense bending was investigated. It was found that a simple crease, which led to the increase of the second moment of area, could significantly alter the overall mechanical behaviour of a thin strip, for example the peak moment could be increased by 100 times. The crease was treated as a cylindrical segment of a small radius. Parametric studies demonstrated that the geometry of the strip could stron...

  10. Quantifiable Lateral Flow Assay Test Strips

    Science.gov (United States)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  11. Ammonia stripping of biologically treated liquid manure.

    Science.gov (United States)

    Alitalo, Anni; Kyrö, Aleksis; Aura, Erkki

    2012-01-01

    A prerequisite for efficient ammonia removal in air stripping is that the pH of the liquid to be stripped is sufficiently high. Swine manure pH is usually around 7. At pH 7 (at 20°C), only 0.4% of ammonium is in ammonia form, and it is necessary to raise the pH of swine slurry to achieve efficient ammonia removal. Because manure has a very high buffering capacity, large amounts of chemicals are needed to change the slurry pH. The present study showed that efficient air stripping of manure can be achieved with a small amount of chemicals and without strong bases like NaOH. Slurry was subjected to aerobic biological treatment to raise pH before stripping. This facilitated 8 to 32% ammonia removal without chemical treatment. The slurry was further subjected to repeated cycles of stripping with MgO and Ca(OH)(2) additions after the first and second strippings, respectively, to raise slurry pH in between the stripping cycles. After three consecutive stripping cycles, 59 to 86% of the original ammonium had been removed. It was shown that the reduction in buffer capacity of the slurry was due to ammonia and carbonate removal during the stripping cycles. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Optimizing the Stripping Procedure for LHCb

    CERN Document Server

    Richardson, Rachel

    2017-01-01

    The LHCb experiment faces a major challenge from the large amounts of data received while the LHC is running. The ability to sort this information in a useful manner is important for working groups to perform physics analyses. Both hardware and software triggers are used to decrease the data rate and then the stripping process is used to sort the data into streams and further into stripping lines. This project studies the hundreds of stripping lines to look for overlaps between them in order to make the stripping process more efficient.

  13. Potential profile in a conducting polymer strip

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Vlachopoulos, Nikolaos

    2002-01-01

    Many conjugated polymers show an appreciable difference in volume between their oxidized and reduced forms. This property can be utilized in soft electrochemically driven actuators, "artificial muscles". Several geometries have been proposed for the conversion of the volume expansion into useful...... mechanical work. In a particularly simple geometry, the length change of polymer strips is exploited. The polymer strips are connected to the driving circuit at the end of the strip that is attached to the support of the device. The other end of the strip is connected to the load. The advantage of this set...

  14. High permittivity gate dielectric materials

    CERN Document Server

    2013-01-01

    "The book comprehensively covers all the current and the emerging areas of the physics and the technology of high permittivity gate dielectric materials, including, topics such as MOSFET basics and characteristics, hafnium-based gate dielectric materials, Hf-based gate dielectric processing, metal gate electrodes, flat-band and threshold voltage tuning, channel mobility, high-k gate stack degradation and reliability, lanthanide-based high-k gate stack materials, ternary hafnia and lanthania based high-k gate stack films, crystalline high-k oxides, high mobility substrates, and parameter extraction. Each chapter begins with the basics necessary for understanding the topic, followed by a comprehensive review of the literature, and ultimately graduating to the current status of the technology and our scientific understanding and the future prospects."

  15. The 'KATOD-1' strip readout ASIC for cathode strip chamber

    International Nuclear Information System (INIS)

    Golutvin, I.A.; Gorbunov, N.V.; Karzhavin, V.Yu.; Khabarov, V.S.; Movchan, S.A.; Smolin, D.A.; Dvornikov, O.V.; Shumejko, N.M.; Chekhovskij, V.A.

    2001-01-01

    The 'KATOD-1', a 16-channels readout ASIC, has been designed to perform tests of P3 and P4 full-scale prototypes of the cathode strip chamber for the ME1/1 forward muon station of the Compact Muon Solenoid (CMS) experiment. The ASIC channel consists of two charge-sensitive preamplifiers, a three-stage shaper with cancellation, and an output driver. The ASIC is instrumented with control of gain, in the range of (-4.2 : +5.0) mV/fC, and control of output pulse-shape. The equivalent input noise is equal to 2400 e with the slope of 12 e/pF for detector capacity up to 200 pF. The peaking time is 100 ns for the chamber signal. The ASIC has been produced by a microwave Bi-jFET technology

  16. A quantum Fredkin gate.

    Science.gov (United States)

    Patel, Raj B; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C; Pryde, Geoff J

    2016-03-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently.

  17. New strips of convergence for Dirichlet series

    OpenAIRE

    Defant, Andreas

    2010-01-01

    In this article we study the interplay of the theory of classical Dirichlet series in one complex variable with recent development on monomial expansions of holomorphic functions in infinitely many variables. For a given Dirichlet series we obtain new strips of convergence in the complex plane related to Bohr’s classical strips of uniform but non absolute convergence.

  18. Hardness of approximation for strip packing

    DEFF Research Database (Denmark)

    Adamaszek, Anna Maria; Kociumaka, Tomasz; Pilipczuk, Marcin

    2017-01-01

    Strip packing is a classical packing problem, where the goal is to pack a set of rectangular objects into a strip of a given width, while minimizing the total height of the packing. The problem has multiple applications, for example, in scheduling and stock-cutting, and has been studied extensive...

  19. Mechanical behaviour of a creased thin strip

    Directory of Open Access Journals (Sweden)

    J. Liu

    2018-02-01

    Full Text Available In this study the mechanical behaviour of a creased thin strip under opposite-sense bending was investigated. It was found that a simple crease, which led to the increase of the second moment of area, could significantly alter the overall mechanical behaviour of a thin strip, for example the peak moment could be increased by 100 times. The crease was treated as a cylindrical segment of a small radius. Parametric studies demonstrated that the geometry of the strip could strongly influence its flexural behaviour. We showed that the uniform thickness and the radius of the creased segment had the greatest and the least influence on the mechanical behaviour, respectively. We further revealed that material properties could dramatically affect the overall mechanical behaviour of the creased strip by gradually changing the material from being linear elastic to elastic-perfect plastic. After the formation of the fold, the moment of the two ends of the strip differed considerably when the elasto-plastic materials were used, especially for materials with smaller tangent modulus in the plastic range. The deformation patterns of the thin strips from the finite element simulations were verified by physical models made of thin metal strips. The findings from this study provide useful information for designing origami structures for engineering applications using creased thin strips.

  20. The Data Quality Monitoring for the CMS Silicon Strip Tracker

    CERN Document Server

    Adler, V; Bainbridge, R; Benucci, L; Borgia, M A; Borrello, L; Cole, J; Cripps, N; Delmeire, E; Dero, V; Dutta, S; Giordano, D; Hammad, G H; Hashemi, H; Le Bihan, A C; Le Bourgeois, M; Palmonari, F; Pierro, A; Zito, G

    2009-01-01

    The CMS Silicon Strip Tracker (SST), consisting of more than 10 million channels, is organized in about 15,000 detector modules and it is the largest silicon strip tracker ever built for high energy physics experiments. The Data Quality Monitoring system for the Tracker has been developed within the CMS Software framework. More than 100,000 monitorable quantities need to be managed by the DQM system that organizes them in a hierarchical structure reflecting the detector arrangement in subcomponents and the various levels of data processing. Monitorable quantities computed at the level of individual detectors are processed to extract automatic quality checks and summary results that can be visualized with specialized graphical user interfaces. In view of the great complexity of the CMS Tracker detector the standard visualization tools based on histograms have been complemented with 2 and 3 dimensional graphical images of the subdetector that can show the whole detector down to single channel resolution. The fu...

  1. CMS Silicon Strip Tracker Performance

    CERN Document Server

    Agram, Jean-Laurent

    2012-01-01

    The CMS Silicon Strip Tracker (SST), consisting of 9.6 million readout channels from 15148 modules and covering an area of 198 square meters, needs to be precisely calibrated in order to correctly reconstruct the events recorded. Calibration constants are derived from different workflows, from promptly reconstructed events with particles as well as from commissioning events gathered just before the acquisition of physics runs. The performance of the SST has been carefully studied since the beginning of data taking: the noise of the detector, data integrity, signal-over-noise ratio, hit reconstruction efficiency and resolution have been all investigated with time and for different conditions. In this paper we describe the reconstruction strategies, the calibration procedures and the detector performance results from the latest CMS operation.

  2. Ultrasonic examination of JBK-75 strip material

    International Nuclear Information System (INIS)

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material [1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)], feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches [0.28 mm deep (0.011 in., about 17% of the strip thickness)] were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests

  3. 100-nm gate lithography for double-gate transistors

    Science.gov (United States)

    Krasnoperova, Azalia A.; Zhang, Ying; Babich, Inna V.; Treichler, John; Yoon, Jung H.; Guarini, Kathryn; Solomon, Paul M.

    2001-09-01

    The double gate field effect transistor (FET) is an exploratory device that promises certain performance advantages compared to traditional CMOS FETs. It can be scaled down further than the traditional devices because of the greater electrostatic control by the gates on the channel (about twice as short a channel length for the same gate oxide thickness), has steeper sub-threshold slope and about double the current for the same width. This paper presents lithographic results for double gate FET's developed at IBM's T. J. Watson Research Center. The device is built on bonded wafers with top and bottom gates self-aligned to each other. The channel is sandwiched between the top and bottom polysilicon gates and the gate length is defined using DUV lithography. An alternating phase shift mask was used to pattern gates with critical dimensions of 75 nm, 100 nm and 125 nm in photoresist. 50 nm gates in photoresist have also been patterned by 20% over-exposure of nominal 100 nm lines. No trim mask was needed because of a specific way the device was laid out. UV110 photoresist from Shipley on AR-3 antireflective layer were used. Process windows, developed and etched patterns are presented.

  4. Feasibility and diagnostic accuracy of Ecg-gated SPECT myocardial perfusion imaging by a two-hour protocol: The Myofast study;Faisabilite et precision diagnostique d'un protocole de scintigraphie myocardique synchronisee a l'ECG en deux heures: l'etude Myofast

    Energy Technology Data Exchange (ETDEWEB)

    Dunet, V.; Costo, S.; Sabatier, R.; Grollier, G.; Bouvard, G.; Agostini, D. [CHU Cote-de-Nacre, Service de medecine nucleaire, 14 - Caen (France)

    2010-04-15

    Aim of the study: To assess the feasibility of early stress and rest myocardial perfusion and function study using a fast {sup 99m}Tc-tetrofosmin gated-SPECT protocol in patients with known coronary artery disease. Materials and methods: Forty-three patients (pts) (37 M, 6 F, mean age 63.8 +- 9.8 years) underwent a {sup 99m}Tc-Tetrofosmin gated-SPECT (Axis Picker-Philips) myocardial study and a coronary angiography (C.A.) within 3 months. Images were acquired (LEHR, eight bins, 40 sec per image) after injection of {sup 99m}Tc-tetrofosmin (200 to 380 MBq) early (15 min) post-stress (36 dipyridamole, two dobutamine and five ergo-metric stress), and at rest after {sup 99m}Tc-tetrofosmin reinjection (600 to 1150 MBq), in a total time not exceeding 2 hours. Processing was performed with Q.G.S. software using the 17-segment model. Pathological study was defined as a summed difference score (SDS) greater than or equal to 4 4, a fixed defect with summed rest score greater than or equal to 4 and/or L.V. dysfunction defined as myocardial stunning (variation between stress and rest L.V.E.F. greater than or equal to 4 5%), stress L.V.E.F. less than or equal to 45% or rest L.V.E.F. less than or equal to 40%. Results were compared with C.A., and stenosis greater than or equal to 4 50% was considered as significant. Results: For 100% the quality of SPECT imaging was good or excellent. For six patients gating was impossible because of arrhythmia. The overall sensitivity, specificity and accuracy were 95%, 50%, and 91%, respectively. The concordance between gated SPECT and C.A. was moderate (kappa = 0.45, S.E. = 0.15). Interestingly, early-gated acquisition permitted to underline left ventricular dysfunction in 11 cases (30%), of whom eight had poly vascular disease. Stunning was detected in six of 37 cases (16%), of whom six had poly vascular disease. Conclusion: A one-day two-hour {sup 99m}Tc-tetrofosmin gated-SPECT protocol to assess left ventricular perfusion and function is

  5. A comparative analysis of ECG-gated steady state free precession magnetic resonance imaging versus transthoracic echocardiography for evaluation of aortic root dimensions.

    Science.gov (United States)

    Hoey, Edward T D; Pakala, Vijaya; Kassamali, Rahil H; Ganeshan, Arul

    2014-10-01

    Accurate and reproducible measurement of aortic root dimensions is essential to inform clinical decision making. Transthoracic echocardiography (TTE) is the first line test for assessment of the aortic root but has potential limitations due to its limited field of view and restricted acoustic windows. Cardiac magnetic resonance imaging (MRI) is considered the "gold standard" technique for assessment of cardiac morphology and recently MRI reference ranges for aortic root dimensions have been published. The purpose of this study was to retrospectively compare aortic root measurements obtained from TTE with those derived from cardiac MRI. Sixty-eight patients (40 males, 28 females) who had undergone both cardiac MRI and TTE imaging within a 4-month interval (mean 62 days) were included. Steady-state-free precession MRI cine imaging was performed with an acquisition plane perpendicular to the aortic root and through the true cross sectional aortic valve plane. A cusp-commissure dimension from inside wall to inside wall in end-diastole was recorded and compared with standardized TTE derived Valsalva sinus measurements. Pearson correlation coefficients and a paired t-test were used for statistical analysis. Mean aortic root dimension by TTE was 3.2±0.5 cm and MRI was 3.4±0.4 cm with a Pearson correlation coefficient of >0.7. Mean difference between TTE and MRI was 0.2±0.3 (PTTE measurement was within the normal reference range. In patients with a dilated aortic root (n=19) the mean difference was 0.2±0.4 cm (PTTE and MRI derived aortic root measurements at the Valsalva sinus level. MRI consistently measures the aortic root dimension higher than TTE which may under diagnose patients with a mildly dilated aortic root. Further investigation is required to properly integrate MRI into imaging assessment algorithms.

  6. A prospective gating method to acquire a diverse set of free-breathing CT images for model-based 4DCT

    Science.gov (United States)

    O'Connell, D.; Ruan, D.; Thomas, D. H.; Dou, T. H.; Lewis, J. H.; Santhanam, A.; Lee, P.; Low, D. A.

    2018-02-01

    Breathing motion modeling requires observation of tissues at sufficiently distinct respiratory states for proper 4D characterization. This work proposes a method to improve sampling of the breathing cycle with limited imaging dose. We designed and tested a prospective free-breathing acquisition protocol with a simulation using datasets from five patients imaged with a model-based 4DCT technique. Each dataset contained 25 free-breathing fast helical CT scans with simultaneous breathing surrogate measurements. Tissue displacements were measured using deformable image registration. A correspondence model related tissue displacement to the surrogate. Model residual was computed by comparing predicted displacements to image registration results. To determine a stopping criteria for the prospective protocol, i.e. when the breathing cycle had been sufficiently sampled, subsets of N scans where 5  ⩽  N  ⩽  9 were used to fit reduced models for each patient. A previously published metric was employed to describe the phase coverage, or ‘spread’, of the respiratory trajectories of each subset. Minimum phase coverage necessary to achieve mean model residual within 0.5 mm of the full 25-scan model was determined and used as the stopping criteria. Using the patient breathing traces, a prospective acquisition protocol was simulated. In all patients, phase coverage greater than the threshold necessary for model accuracy within 0.5 mm of the 25 scan model was achieved in six or fewer scans. The prospectively selected respiratory trajectories ranked in the (97.5  ±  4.2)th percentile among subsets of the originally sampled scans on average. Simulation results suggest that the proposed prospective method provides an effective means to sample the breathing cycle with limited free-breathing scans. One application of the method is to reduce the imaging dose of a previously published model-based 4DCT protocol to 25% of its original value while

  7. MO-FG-CAMPUS-JeP2-01: 4D-MRI with 3D Radial Sampling and Self-Gating-Based K-Space Sorting: Image Quality Improvement by Slab-Selective Excitation

    International Nuclear Information System (INIS)

    Deng, Z; Pang, J; Tuli, R; Fraass, B; Fan, Z; Yang, W; Bi, X; Hakimian, B; Li, D

    2016-01-01

    Purpose: A recent 4D MRI technique based on 3D radial sampling and self-gating-based K-space sorting has shown promising results in characterizing respiratory motion. However due to continuous acquisition and potentially drastic k-space undersampling resultant images could suffer from low blood-to-tissue contrast and streaking artifacts. In this study 3D radial sampling with slab-selective excitation (SS) was proposed in attempt to enhance blood-to-tissue contrast by exploiting the in-flow effect and to suppress the excess signal from the peripheral structures particularly in the superior-inferior direction. The feasibility of improving image quality by using this approach was investigated through a comparison with the previously developed non-selective excitation (NS) approach. Methods: Two excitation approaches SS and NS were compared in 5 cancer patients (1 lung 1 liver 2 pancreas and 1 esophagus) at 3Tesla. Image artifact was assessed in all patients on a 4-point scale (0: poor; 3: excellent). Signal-tonoise ratio (SNR) of the blood vessel (aorta) at the center of field-of-view and its nearby tissue were measured in 3 of the 5 patients (1 liver 2 pancreas) and blood-to-tissue contrast-to-noise ratio (CNR) were then determined. Results: Compared with NS the image quality of SS was visually improved with overall higher signal in all patients (2.6±0.55 vs. 3.4±0.55). SS showed an approximately 2-fold increase of SNR in the blood (aorta: 16.39±1.95 vs. 32.19±7.93) and slight increase in the surrounding tissue (liver/pancreas: 16.91±1.82 vs. 22.31±3.03). As a result the blood-totissue CNR was dramatically higher in the SS method (1.20±1.20 vs. 9.87±6.67). Conclusion: The proposed 3D radial sampling with slabselective excitation allows for reduced image artifact and improved blood SNR and blood-to-tissue CNR. The success of this technique could potentially benefit patients with cancerous tumors that have invaded the surrounding blood vessels where radiation

  8. Comparison of respiratory surrogates for gated lung radiotherapy without internal fiducials

    International Nuclear Information System (INIS)

    Korreman, S.; Mostafavi, H.; Le, Q.T.; Boyer, A.

    2006-01-01

    An investigation was carried out to compare the ability of two respiratory surrogates to mimic actual lung tumor motion during audio coaching. The investigation employed video clips acquired after patients had had fiducial markers implanted in lung tumors to be used for image-guided stereoscopic radiotherapy. The positions of the markers in the clips were measured within the video frames and used as the standard for tumor volume motion. An external marker was tracked optically during the fluoroscopic acquisitions. An image correlation technique was developed to compute a gating signal from the fluoroscopic images. The correlation gating trace was similar to the optical gating trace in the phase regions of the respiratory cycle used for gating. A cross correlation analysis and comparison of the external optical marker gating with internal fluoroscopic gating was performed. The fluoroscopic image correlation surrogate was found to be superior to the external optical surrogate in the AP-views in four out of six cases. In one of the remaining two cases, the two surrogates performed comparably, while in the last case, the external fiducial trace performed best. It was concluded that fluoroscopic gating based on correlation of native image features in the fluoroscopic images will be adequate for respiratory gating

  9. Expert Oracle GoldenGate

    CERN Document Server

    Prusinski, Ben; Chung, Richard

    2011-01-01

    Expert Oracle GoldenGate is a hands-on guide to creating and managing complex data replication environments using the latest in database replication technology from Oracle. GoldenGate is the future in replication technology from Oracle, and aims to be best-of-breed. GoldenGate supports homogeneous replication between Oracle databases. It supports heterogeneous replication involving other brands such as Microsoft SQL Server and IBM DB2 Universal Server. GoldenGate is high-speed, bidirectional, highly-parallelized, and makes only a light impact on the performance of databases involved in replica

  10. Molecular logic gate arrays.

    Science.gov (United States)

    de Silva, A Prasanna

    2011-03-01

    Chemists are now able to emulate the ideas and instruments of mathematics and computer science with molecules. The integration of molecular logic gates into small arrays has been a growth area during the last few years. The design principles underlying a collection of these cases are examined. Some of these computing molecules are applicable in medical- and biotechnologies. Cases of blood diagnostics, 'lab-on-a-molecule' systems, and molecular computational identification of small objects are included. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Prototype Strip Barrel Modules for the ATLAS ITk Strip Detector

    CERN Document Server

    Sawyer, Craig; The ATLAS collaboration

    2017-01-01

    The module design for the Phase II Upgrade of the new ATLAS Inner Tracker (ITk) detector at the LHC employs integrated low mass assembly using single-sided flexible circuits with readout ASICs and a powering circuit incorporating control and monitoring of HV, LV and temperature on the module. Both readout and powering circuits are glued directly onto the silicon sensor surface resulting in a fully integrated, extremely low radiation length module which simultaneously reduces the material requirements of the local support structure by allowing a reduced width stave structure to be employed. Such a module concept has now been fully demonstrated using so-called ABC130 and HCC130 ASICs fabricated in 130nm CMOS technology to readout ATLAS12 n+-in-p silicon strip sensors. Low voltage powering for these demonstrator modules has been realised by utilising a DCDC powerboard based around the CERN FEAST ASIC. This powerboard incorporates an HV multiplexing switch based on a Panasonic GaN transistor. Control and monitori...

  12. Aeroelastic deformation of a perforated strip

    Science.gov (United States)

    Guttag, M.; Karimi, H. H.; Falcón, C.; Reis, P. M.

    2018-01-01

    We perform a combined experimental and numerical investigation into the static deformation of perforated elastic strips under uniform aerodynamic loading at high-Reynolds-number conditions. The static shape of the porous strips, clamped either horizontally or vertically, is quantified as they are deformed by wind loading, induced by a horizontal flow. The experimental profiles are compared to numerical simulations using a reduced model that takes into account the normal drag force on the deformed surface. For both configurations (vertical and horizontal clamping), we compute the drag coefficient of the strip, by fitting the experimental data to the model, and find that it decreases as a function of porosity. Surprisingly, we find that, for every value of porosity, the drag coefficients for the horizontal configuration are larger than those of the vertical configuration. For all data in both configurations, with the exception of the continuous strip clamped vertically, a linear relation is found between the porosity and drag. Making use of this linearity, we can rescale the drag coefficient in a way that it becomes constant as a function of the Cauchy number, which relates the force due to fluid loading on the elastic strip to its bending rigidity, independently of the material properties and porosity of the strip and the flow speed. Our findings on flexible strips are contrasted to previous work on rigid perforated plates. These results highlight some open questions regarding the usage of reduced models to describe the deformation of flexible structures subjected to aerodynamic loading.

  13. Utility of Electrocardiography (ECG)-Gated Computed Tomography (CT) for Preoperative Evaluations of Thymic Epithelial Tumors.

    Science.gov (United States)

    Ozawa, Yoshiyuki; Hara, Masaki; Nakagawa, Motoo; Shibamoto, Yuta

    2016-01-01

    Preoperative evaluation of invasion to the adjacent organs is important for the thymic epithelial tumors on CT. The purpose of our study was to evaluate the utility of electrocardiography (ECG)-gated CT for assessing thymic epithelial tumors with regard to the motion artifacts produced and the preoperative diagnostic accuracy of the technique. Forty thymic epithelial tumors (36 thymomas and 4 thymic carcinomas) were examined with ECG-gated contrast-enhanced CT using a dual source scanner. The scan delay after the contrast media injection was 30 s for the non-ECG-gated CT and 100 s for the ECG-gated CT. Two radiologists blindly evaluated both the non-ECG-gated and ECG-gated CT images for motion artifacts and determined whether the tumors had invaded adjacent structures (mediastinal fat, superior vena cava, brachiocephalic veins, aorta, pulmonary artery, pericardium, or lungs) on each image. Motion artifacts were evaluated using a 3-grade scale. Surgical and pathological findings were used as a reference standard for tumor invasion. Motion artifacts were significantly reduced for all structures by ECG gating ( p =0.0089 for the lungs and p ECG-gated CT and ECG-gated CT demonstrated 79% and 95% accuracy, respectively, during assessments of pericardial invasion ( p =0.03). ECG-gated CT reduced the severity of motion artifacts and might be useful for preoperative assessment whether thymic epithelial tumors have invaded adjacent structures.

  14. Gate Simulation of a Gamma Camera

    International Nuclear Information System (INIS)

    Abidi, Sana; Mlaouhi, Zohra

    2008-01-01

    Medical imaging is a very important diagnostic because it allows for an exploration of the internal human body. The nuclear imaging is an imaging technique used in the nuclear medicine. It is to determine the distribution in the body of a radiotracers by detecting the radiation it emits using a detection device. Two methods are commonly used: Single Photon Emission Computed Tomography (SPECT) and the Positrons Emission Tomography (PET). In this work we are interested on modelling of a gamma camera. This simulation is based on Monte-Carlo language and in particular Gate simulator (Geant4 Application Tomographic Emission). We have simulated a clinical gamma camera called GAEDE (GKS-1) and then we validate these simulations by experiments. The purpose of this work is to monitor the performance of these gamma camera and the optimization of the detector performance and the the improvement of the images quality. (Author)

  15. Free-Breathing Cardiac MR with a Fixed Navigator Efficiency Using Adaptive Gating Window Size

    Science.gov (United States)

    Moghari, Mehdi H.; Chan, Raymond H.; Hong-Zohlman, Susie N.; Shaw, Jaime L.; Goepfert, Lois A.; Kissinger, Kraig V.; Goddu, Beth; Josephson, Mark E.; Manning, Warren J.; Nezafat, Reza

    2012-01-01

    A respiratory navigator with a fixed acceptance gating window is commonly used to reduce respiratory motion artifacts in cardiac MR. This approach prolongs the scan time and occasionally yields an incomplete dataset due to respiratory drifts. To address this issue, we propose an adaptive gating window approach in which the size and position of the gating window are changed adaptively during the acquisition based on the individual’s breathing pattern. The adaptive gating window tracks the breathing pattern of the subject throughout the scan and adapts the size and position of the gating window such that the gating efficiency is always fixed at a constant value. To investigate the image quality and acquisition time, free breathing cardiac MRI, including both targeted coronary MRI and late gadolinium enhancement (LGE) imaging, was performed in 67 subjects using the proposed navigator technique. Targeted coronary MRI was acquired from eleven healthy adult subjects using both the conventional and proposed adaptive gating window techniques. Fifty-six patients referred for cardiac MRI were also imaged using LGE with the proposed adaptive gating window technique. Subjective and objective image assessments were used to evaluate the proposed method. The results demonstrate that the proposed technique allows free-breathing cardiac MRI in a relatively fixed time without compromising imaging quality due to respiratory motion artifacts. PMID:22367715

  16. A video strip chart program

    International Nuclear Information System (INIS)

    Jones, N.L.

    1994-01-01

    A strip chart recorder has been utilized for trend analysis of the Oak Ridge National Laboratory EN tandem since 1987. At the EN, the author could not afford the nice eight channel thermal pen recorder that was used at the 25 URC. He had to suffice with two channel fiber tip or capillary pen type recorders retrieved from salvage and maintained with parts from other salvaged recorders. After cycling through several machines that eventually became completely unserviceable, a search for a new thermal recorder was begun. As much as he hates to write computer code, he decided to try his hand at getting an old data acquisition unit, that had been retrieved several years ago from salvage, to meet his needs. A BASIC language compiler was used because time was not available to learn a more advanced language. While attempting to increase acquisition and scroll speed on the 6 MHz 80286 that the code was first developed on, it became apparent that scrolling only the first small portion of the screen at high speed and then averaging that region and histogramming the average provided both the speed necessary for capturing fairly short duration events, and a trend record without use of back scrolling and disk storage routines. This turned out to be quite sufficient

  17. The Panda Strip Asic: Pasta

    Science.gov (United States)

    Lai, A.

    2018-01-01

    PASTA is the 64 channel front-end chip, designed in a 110 nm CMOS technology to read out the strip sensors of the Micro Vertex Detector (MVD) of the PANDA experiment. This chip provides high resolution timestamp and deposited charge information by means of the time-over-threshold technique. Its working principle is based on a predecessor, the TOFPET ASIC, that was designed for medical applications. A general restructuring of the architecture was needed, in order to meet the specific requirements imposed by the physics programme of PANDA, especially in terms of radiation tolerance, spatial constraints, and readout in absence of a first level hardware trigger. The first revision of PASTA is currently under evaluation at the Forschungszentrum Jülich, where a data acquisition system dedicated to the MVD prototypes has been developed. This paper describes the main aspect of the chip design, gives an overview of the data acquisition system used for the verification, and shows the first results regarding the performance of PASTA.

  18. Works close to gate B

    CERN Document Server

    GS Department

    2011-01-01

    In connection to the TRAM project, drainage works will be carried out close to gate B until the end of next week. In order to avoid access problems, if arriving by car, please use gates A and E. Department of General Infrastructure Services (GS) GS-SE Group

  19. Penn State DOE GATE Program

    Energy Technology Data Exchange (ETDEWEB)

    Anstrom, Joel

    2012-08-31

    The Graduate Automotive Technology Education (GATE) Program at The Pennsylvania State University (Penn State) was established in October 1998 pursuant to an award from the U.S. Department of Energy (U.S. DOE). The focus area of the Penn State GATE Program is advanced energy storage systems for electric and hybrid vehicles.

  20. Multi detector computed tomography (MDCT) of the aortic root; ECG-gated verses non-ECG-gated examinations

    International Nuclear Information System (INIS)

    Kristiansen, Joanna; Guenther, Anne; Aalokken, Trond Mogens; Andersen, Rune

    2011-01-01

    Purpose: Motion artifacts may degrade a conventional CT examination of the ascending aorta and hinder accurate diagnosis. We quantitatively compared retrospectively electrocardiographic (ECG) -gated multi detector computed tomography (MDCT) with non-ECG-gated MDCT in order to demonstrate whether or not one of the methods should be preferred. Method: The study included seventeen patients with surgically reconstructed aortic root and reimplanted coronary arteries. All patients had undergone both non-gated MDCT and retrospectively ECG-gated MDCT employing a stringently modulated tube current with single phase image reconstruction. The incidence of motion artifacts in the left main coronary artery (LM), proximal right coronary artery (RCA), and aortic root and ascending aorta were rated using a four point scale. The effective dose for each scan was calculated and normalized to a 15 cm scan length. Statistical analysis of motion artifacts and radiation dose was performed using Wilcoxon matched pairs signed rank sum test. Results: A significant reduction in motion artifacts was found in all three vessels in images from the retrospectively ECG-gated scans (LM: P = 0.005, RCA: P = 0.015, aorta: P = 0.003). The mean normalized effective radiation dose was 3.69 mSv (±1.03) for the non-ECG-gated scans and 16.37 mSv (±2.53) for the ECG-gated scans. Conclusion: Retrospective ECG-gating with single phase reconstruction significantly reduces the incidence of motion artifacts in the aortic root and the proximal portion of the coronary arteries but at the expense of a fourfold increase in radiation dose.

  1. Prevention of Stripping under Chip Seals

    Science.gov (United States)

    2017-10-01

    Eighteen chip-sealed roadways in eight cities and counties in Minnesota were evaluated both in the field (for condition surveys and density tests) and in the laboratory (for permeability, stripping, tensile-strength ratio, asphalt film thickness, and...

  2. Buffer Strips for Riparian Zone Management

    National Research Council Canada - National Science Library

    1991-01-01

    This study provides a review of technical literature concerning the width of riparian buffer strips needed to protect water quality and maintain other important values provided by riparian ecosystem...

  3. GATE: Improving the computational efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Staelens, S. [UGent-ELIS, St-Pietersnieuwstraat, 41, B-9000 Gent (Belgium)]. E-mail: steven.staelens@ugent.be; De Beenhouwer, J. [UGent-ELIS, St-Pietersnieuwstraat, 41, B-9000 Gent (Belgium); Kruecker, D. [Institute of Medicine-Forschungszemtrum Juelich, D-52425 Juelich (Germany); Maigne, L. [Departement de Curietherapie-Radiotherapie, Centre Jean Perrin, F-63000 Clermont-Ferrand (France); Rannou, F. [Departamento de Ingenieria Informatica, Universidad de Santiago de Chile, Santiago (Chile); Ferrer, L. [INSERM U601, CHU Nantes, F-44093 Nantes (France); D' Asseler, Y. [UGent-ELIS, St-Pietersnieuwstraat, 41, B-9000 Gent (Belgium); Buvat, I. [INSERM U678 UPMC, CHU Pitie-Salpetriere, F-75634 Paris (France); Lemahieu, I. [UGent-ELIS, St-Pietersnieuwstraat, 41, B-9000 Gent (Belgium)

    2006-12-20

    GATE is a software dedicated to Monte Carlo simulations in Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET). An important disadvantage of those simulations is the fundamental burden of computation time. This manuscript describes three different techniques in order to improve the efficiency of those simulations. Firstly, the implementation of variance reduction techniques (VRTs), more specifically the incorporation of geometrical importance sampling, is discussed. After this, the newly designed cluster version of the GATE software is described. The experiments have shown that GATE simulations scale very well on a cluster of homogeneous computers. Finally, an elaboration on the deployment of GATE on the Enabling Grids for E-Science in Europe (EGEE) grid will conclude the description of efficiency enhancement efforts. The three aforementioned methods improve the efficiency of GATE to a large extent and make realistic patient-specific overnight Monte Carlo simulations achievable.

  4. GATE: Improving the computational efficiency

    International Nuclear Information System (INIS)

    Staelens, S.; De Beenhouwer, J.; Kruecker, D.; Maigne, L.; Rannou, F.; Ferrer, L.; D'Asseler, Y.; Buvat, I.; Lemahieu, I.

    2006-01-01

    GATE is a software dedicated to Monte Carlo simulations in Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET). An important disadvantage of those simulations is the fundamental burden of computation time. This manuscript describes three different techniques in order to improve the efficiency of those simulations. Firstly, the implementation of variance reduction techniques (VRTs), more specifically the incorporation of geometrical importance sampling, is discussed. After this, the newly designed cluster version of the GATE software is described. The experiments have shown that GATE simulations scale very well on a cluster of homogeneous computers. Finally, an elaboration on the deployment of GATE on the Enabling Grids for E-Science in Europe (EGEE) grid will conclude the description of efficiency enhancement efforts. The three aforementioned methods improve the efficiency of GATE to a large extent and make realistic patient-specific overnight Monte Carlo simulations achievable

  5. Evaluating the Whitening and Microstructural Effects of a Novel Whitening Strip on Porcelain and Composite Dental Materials.

    Science.gov (United States)

    Takesh, Thair; Sargsyan, Anik; Lee, Matthew; Anbarani, Afarin; Ho, Jessica; Wilder-Smith, Petra

    2017-08-01

    The aim of this project was to evaluate the effects of 2 different whitening strips on color, microstructure and roughness of tea stained porcelain and composite surfaces. 54 porcelain and 72 composite chips served as samples for timed application of over-the-counter (OTC) test or control dental whitening strips. Chips were divided randomly into three groups of 18 porcelain and 24 composite chips each. Of these groups, 1 porcelain and 1 composite set served as controls. The remaining 2 groups were randomized to treatment with either Oral Essentials ® Whitening Strips or Crest ® 3D White Whitestrips™. Sample surface structure was examined by light microscopy, profilometry and Scanning Electron Microscopy (SEM). Additionally, a reflectance spectrophotometer was used to assess color changes in the porcelain and composite samples over 24 hours of whitening. Data points were analyzed at each time point using ANOVA. In the light microscopy and SEM images, no discrete physical defects were observed in any of the samples at any time points. However, high-resolution SEM images showed an appearance of increased surface roughness in all composite samples. Using profilometry, significantly increased post-whitening roughness was documented in the composite samples exposed to the control bleaching strips. Composite samples underwent a significant and equivalent shift in color following exposure to Crest ® 3D White Whitestrips™ and Oral Essentials ® Whitening Strips. A novel commercial tooth whitening strip demonstrated a comparable beaching effect to a widely used OTC whitening strip. Neither whitening strip caused physical defects in the sample surfaces. However, the control strip caused roughening of the composite samples whereas the test strip did not.

  6. Deuteron stripping reactions using dirac phenomenology

    Science.gov (United States)

    Hawk, E. A.; McNeil, J. A.

    2001-04-01

    In this work deuteron stripping reactions are studied using the distorted wave born approximation employing dirac phenomenological potentials. In 1982 Shepard and Rost performed zero-range dirac phenomenological stripping calculations and found a dramatic reduction in the predicted cross sections when compared with similar nonrelativistic calculations. We extend the earlier work by including full finite range effects as well as the deuteron's internal D-state. Results will be compared with traditional nonrelativistic approaches and experimental data at low energy.

  7. The charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Boehringer, T.; Hubbeling, L.; Weilhammer, P.; Kemmer, J.; Koetz, U.; Riebesell, M.; Belau, E.; Klanner, R.; Lutz, G.; Neugebauer, E.; Seebrunner, H.J.; Wylie, A.

    1983-02-01

    The charge collection in silicon detectors has been studied, by measuring the response to high-energy particles of a 20μm pitch strip detector as a function of applied voltage and magnetic field. The results are well described by a simple model. The model is used to predict the spatial resolution of silicon strip detectors and to propose a detector with optimized spatial resolution. (orig.)

  8. Properties isotropy of magnesium alloy strip workpieces

    OpenAIRE

    Р. Кавалла; В. Ю. Бажин

    2016-01-01

    The paper discusses the issue of obtaining high quality cast workpieces of magnesium alloys produced by strip roll-casting. Producing strips of magnesium alloys by combining the processes of casting and rolling when liquid melt is fed continuously to fast rolls is quite promising and economic. In the process of sheet stamping considerable losses of metal occur on festoons formed due to anisotropy of properties of foil workpiece, as defined by the macro- and microstructure and modes of rolling...

  9. 33 CFR 157.128 - Stripping system.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Stripping system. 157.128 Section... Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.128 Stripping system. (a) Each tank vessel having a COW system under § 157.10(e), § 157.10a(a)(2), or § 157.10c(b)(2...

  10. Quantitative comparison of 3 enamel-stripping devices in vitro: how precisely can we strip teeth?

    Science.gov (United States)

    Johner, Alexander Marc; Pandis, Nikolaos; Dudic, Alexander; Kiliaridis, Stavros

    2013-04-01

    In this in-vitro study, we aimed to investigate the predictability of the expected amount of stripping using 3 common stripping devices on premolars. One hundred eighty extracted premolars were mounted and aligned in silicone. Tooth mobility was tested with Periotest (Medizintechnik Gulden, Modautal, Germany) (8.3 ± 2.8 units). The selected methods for interproximal enamel reduction were hand-pulled strips (Horico, Hapf Ringleb & Company, Berlin, Germany), oscillating segmental disks (O-drive-OD 30; KaVo Dental, Biberach, Germany), and motor-driven abrasive strips (Orthofile; SDC Switzerland, Lugano-Grancia, Switzerland). With each device, the operator intended to strip 0.1, 0.2, 0.3, or 0.4 mm on the mesial side of 15 teeth. The teeth were scanned before and after stripping with a 3-dimensional laser scanner. Superposition and measurement of stripped enamel on the most mesial point of the tooth were conducted with Viewbox software (dHal Software, Kifissia, Greece). The Wilcoxon signed rank test and the Kruskal-Wallis test were applied; statistical significance was set at alpha ≤ 0.05. Large variations between the intended and the actual amounts of stripped enamel, and between stripping procedures, were observed. Significant differences were found at 0.1 mm of intended stripping (P ≤ 0.05) for the hand-pulled method and at 0.4 mm of intended stripping (P ≤ 0.001 to P = 0.05) for all methods. For all scenarios of enamel reduction, the actual amount of stripping was less than the predetermined and expected amount of stripping. The Kruskal-Wallis analysis showed no significant differences between the 3 methods. There were variations in the stripped amounts of enamel, and the stripping technique did not appear to be a significant predictor of the actual amount of enamel reduction. In most cases, actual stripping was less than the intended amount of enamel reduction. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights

  11. Gated equilibrium bloodpool scintigraphy

    International Nuclear Information System (INIS)

    Reinders Folmer, S.C.C.

    1981-01-01

    This thesis deals with the clinical applications of gated equilibrium bloodpool scintigraphy, performed with either a gamma camera or a portable detector system, the nuclear stethoscope. The main goal has been to define the value and limitations of noninvasive measurements of left ventricular ejection fraction as a parameter of cardiac performance in various disease states, both for diagnostic purposes as well as during follow-up after medical or surgical intervention. Secondly, it was attempted to extend the use of the equilibrium bloodpool techniques beyond the calculation of ejection fraction alone by considering the feasibility to determine ventricular volumes and by including the possibility of quantifying valvular regurgitation. In both cases, it has been tried to broaden the perspective of the observations by comparing them with results of other, invasive and non-invasive, procedures, in particular cardiac catheterization, M-mode echocardiography and myocardial perfusion scintigraphy. (Auth.)

  12. Picosecond optical MCPI-based imagers

    Science.gov (United States)

    Buckles, Robert A.; Guyton, Robert L.; Ross, Patrick W.

    2012-10-01

    We present the desired performance specifications for an advanced optical imager, which borrows practical concepts in high-speed microchannel plate (MCP) intensified x-ray stripline imagers and time-dilation techniques. With a four-fold speed improvement in state-of-the-art high-voltage impulse drivers, and novel atomic-layer deposition MCPs, we tender a design capable of 5 ps optical gating without the use of magnetic field confinement of the photoelectrons. We analyze the electron dispersion effects in the MCP and their implications for gating pulses shorter than the MCP transit time. We present a wideband design printed-circuit version of the Series Transmission Line Transformer (STLT) that makes use of 50-ohm coaxial 1.0 mm (110 GHz) and 1.85 mm (65 GHz) hermetically sealed vacuum feedthroughs and low-dispersion Teflon/Kapton circuit materials without the use of any vias. The STLT matches impedance at all interfaces with a 16:1 impedance (4:1 voltage) reduction, and delivers a dispersion-limited sharp impulse to the MCP strip. A comparison of microstrip design calculations is given, showing variances between method of moments, empirical codes, and finite element methods for broad, low-impedance traces. Prototype performance measurements are forthcoming.

  13. Gated viewing and high-accuracy three-dimensional laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a fast and high-accuracy three-dimensional (3-D) imaging laser radar that can achieve better than 1 mm range accuracy for half a million pixels in less than 1 s. Our technique is based on range-gating segmentation. We combine the advantages of gated viewing with our new fast...

  14. Predictive and prognostic values of transient ischemic dilatation of left ventricular cavity for coronary artery disease and impact of various managements on clinical outcome using technetium-99m sestamibi gated myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Zaman, M.U.; Fatima, N.; Samad, A.; Ishaq, M.; Wali, A.; Rehman, K.; Bano, J.

    2011-01-01

    Transient ischemic dilatation (TID) of left ventricular (LV) cavity during stress gated myocardial perfusion imaging (GMPI) is known as a predictor of severe coronary artery disease (CAD) and signifies worse prognosis. To assess predictive and prognostic value of TID of LV cavity using GMPI and clinical outcome in patients treated conservatively or with revascularization. 189 patients out of 2689 were recruited (M:F 127/62, mean age 56±9 years) whose same-day stress GMPI revealed TID ratio (>1.22) with no (sum stress score, SSS 2). Coronary angiography (CA) was performed within 3 months in 125/189 cases who were followed for mean period of 18±4 months for fatal or non-fatal myocardial infraction (MI). CA was positive in 121/125 patients with TID for significant CAD (left anterior descending (LAD) =11, multi vessel disease =110 patients, positive predictive value 95%) and negative for obstructive disease in 4/125 (false-positive cases). 41/121 underwent revascularization within 2 months of CA (Intervention group), and remaining 80/121 were managed conservatively (Non-Intervention group). Overall event rate was 20% (4/16%: fatal/non-fatal MIs). Kaplan-Meier survival curves revealed event-free survival in Intervention and Non-Intervention groups for fatal MI 98/96% (P=0.758), and for non-fatal MI, it was 97/58%, respectively (P=0.042). We conclude that TID is a reliable predictor of multi vessel CAD and is associated with high incidence of non-fatal MIs than fatal MIs. Revascularization (percutaneous coronary intervention (PCI)/coronary artery bypass graft (CABG)) rather than medical treatment should be considered in patients with TID for better clinical outcome. (author)

  15. Monte Carlo simulation of tomography techniques using the platform Gate

    International Nuclear Information System (INIS)

    Barbouchi, Asma

    2007-01-01

    Simulations play a key role in functional imaging, with applications ranging from scanner design, scatter correction, protocol optimisation. GATE (Geant4 for Application Tomography Emission) is a platform for Monte Carlo Simulation. It is based on Geant4 to generate and track particles, to model geometry and physics process. Explicit modelling of time includes detector motion, time of flight, tracer kinetics. Interfaces to voxellised models and image reconstruction packages improve the integration of GATE in the global modelling cycle. In this work Monte Carlo simulations are used to understand and optimise the gamma camera's performances. We study the effect of the distance between source and collimator, the diameter of the holes and the thick of the collimator on the spatial resolution, energy resolution and efficiency of the gamma camera. We also study the reduction of simulation's time and implement a model of left ventricle in GATE. (Author). 7 refs

  16. Cluster computing software for GATE simulations

    International Nuclear Information System (INIS)

    Beenhouwer, Jan de; Staelens, Steven; Kruecker, Dirk; Ferrer, Ludovic; D'Asseler, Yves; Lemahieu, Ignace; Rannou, Fernando R.

    2007-01-01

    Geometry and tracking (GEANT4) is a Monte Carlo package designed for high energy physics experiments. It is used as the basis layer for Monte Carlo simulations of nuclear medicine acquisition systems in GEANT4 Application for Tomographic Emission (GATE). GATE allows the user to realistically model experiments using accurate physics models and time synchronization for detector movement through a script language contained in a macro file. The downside of this high accuracy is long computation time. This paper describes a platform independent computing approach for running GATE simulations on a cluster of computers in order to reduce the overall simulation time. Our software automatically creates fully resolved, nonparametrized macros accompanied with an on-the-fly generated cluster specific submit file used to launch the simulations. The scalability of GATE simulations on a cluster is investigated for two imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT). Due to a higher sensitivity, PET simulations are characterized by relatively high data output rates that create rather large output files. SPECT simulations, on the other hand, have lower data output rates but require a long collimator setup time. Both of these characteristics hamper scalability as a function of the number of CPUs. The scalability of PET simulations is improved here by the development of a fast output merger. The scalability of SPECT simulations is improved by greatly reducing the collimator setup time. Accordingly, these two new developments result in higher scalability for both PET and SPECT simulations and reduce the computation time to more practical values

  17. Ultrafast, high precision gated integrator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.

    1995-01-01

    An ultrafast, high precision gated integrator has been developed by introducing new design approaches that overcome the problems associated with earlier gated integrator circuits. The very high speed is evidenced by the output settling time of less than 50 ns and 20 MHz input pulse rate. The very high precision is demonstrated by the total output offset error of less than 0.2mV and the output droop rate of less than 10{mu}V/{mu}s. This paper describes the theory of this new gated integrator circuit operation. The completed circuit test results are presented.

  18. Gated intracoronary thallium-201 scintigraphy: feasibility and potential clinical advantages

    International Nuclear Information System (INIS)

    Siegel, M.E.; Chen, D.C.; Lee, K.; Rasmussen, D.; Colletti, P.; Thom, P.; Rahimtoola, S.H.

    1989-01-01

    Visualization of ventricular walls with true global motion and myocardial thickening is not possible with use of present scintigraphic techniques. When thallium 201 (201TI) is injected intravenously (IV), only about 5% reaches the myocardium. However, if 201TI is injected intracoronarily, 100% reaches, and approximately 88% localizes in, the myocardium, which results in higher count rates than when given IV, permitting acceptable acquisition times for gated true wall motion studies. The authors describe a new technique using intracoronary (IC) 201TI to acquire high count rate, high contrast, and short acquisition time in gated true wall motion studies. Thirteen patients were studied at rest with gated IC thallium. Six of these patients also had resting IV 201TI myocardial studies. After routine coronary angiography, 0.75 mCi of 201TI was injected into each coronary artery. Multiple sequential one-minute gated studies were obtained in LAO and RAO projections, followed by sequential five-minute images for two hours to determine 201TI redistribution kinetics. Regions of interest over segments of left and right ventricles and background permitted definition of temporal and spatial distributions. Three one-minute gated studies were summed with a total count of 2,100 K for a three-minute acquisition. Myocardium-to-background ratios were as high as 13:1 with a mean of 11.4:1 in the IC study compared with 2.3:1 in the IV studies. Washout half-time in normal myocardium was 95 +/- 5 min. The detectability and size of perfusion defects were different on gated diastolic and systolic, nongated, and IV studies. Questionable defects seen on nongated studies or after IV administration were easily noted on gated diastolic images

  19. The relevance of electrostatics for scanning-gate microscopy

    Science.gov (United States)

    Schnez, S.; Güttinger, J.; Stampfer, C.; Ensslin, K.; Ihn, T.

    2011-05-01

    Scanning-probe techniques have been developed to extract local information from a given physical system. In particular, conductance maps obtained by means of scanning-gate microscopy (SGM), where a conducting tip of an atomic-force microscope is used as a local and movable gate, seem to present an intuitive picture of the underlying physical processes. Here, we argue that the interpretation of such images is complex and not very intuitive under certain circumstances: scanning a graphene quantum dot (QD) in the Coulomb-blockaded regime, we observe an apparent shift of features in scanning-gate images as a function of gate voltages, which cannot be a real shift of the physical system. Furthermore, we demonstrate the appearance of more than one set of Coulomb rings arising from the graphene QD. We attribute these effects to screening between the metallic tip and the gates. Our results are relevant for SGM on any kind of nanostructure, but are of particular importance for nanostructures that are not covered with a dielectric, e.g. graphene or carbon nanotube structures.

  20. Cradle-to-gate life-cycle inventory of U.S. wood products production: CORRIM phase I and phase II products

    Science.gov (United States)

    Maureen E. Puettmann; Richard Bergman; Steve Hubbard; Leonard Johnson; Bruce Lippke; Elaine Oneil; Francis G. Wagner

    2010-01-01

    This article documents cradle-to-gate life-cycle inventories for softwood lumber, hardwood lumber, and solid-strip hardwood flooring manufacturing from the Inland Northwest and the Northeast–North Central regions of the US. Environmental impacts were measured based on emissions to air and water, solid waste, energy consumption, and resource use. The manufacturing stage...

  1. 49 CFR 234.223 - Gate arm.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Gate arm. 234.223 Section 234.223 Transportation... Maintenance Standards § 234.223 Gate arm. Each gate arm, when in the downward position, shall extend across... clearly viewed by approaching highway users. Each gate arm shall start its downward motion not less than...

  2. Demonstration of a Quantum Nondemolition Sum Gate

    DEFF Research Database (Denmark)

    Yoshikawa, J.; Miwa, Y.; Huck, Alexander

    2008-01-01

    The sum gate is the canonical two-mode gate for universal quantum computation based on continuous quantum variables. It represents the natural analogue to a qubit C-NOT gate. In addition, the continuous-variable gate describes a quantum nondemolition (QND) interaction between the quadrature...

  3. Reversible logic gates on Physarum Polycephalum

    International Nuclear Information System (INIS)

    Schumann, Andrew

    2015-01-01

    In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum

  4. Properties isotropy of magnesium alloy strip workpieces

    Directory of Open Access Journals (Sweden)

    Р. Кавалла

    2016-12-01

    Full Text Available The paper discusses the issue of obtaining high quality cast workpieces of magnesium alloys produced by strip roll-casting. Producing strips of magnesium alloys by combining the processes of casting and rolling when liquid melt is fed continuously to fast rolls is quite promising and economic. In the process of sheet stamping considerable losses of metal occur on festoons formed due to anisotropy of properties of foil workpiece, as defined by the macro- and microstructure and modes of rolling and annealing. The principal causes of anisotropic mechanical properties of metal strips produced by the combined casting and rolling technique are the character of distribution of intermetallic compounds in the strip, orientation of phases of metal defects and the residual tensions. One of the tasks in increasing the output of fit products during stamping operations consists in minimizing the amount of defects. To lower the level of anisotropy in mechanical properties various ways of treating the melt during casting are suggested. Designing the technology of producing strips of magnesium alloys opens a possibility of using them in automobile industry to manufacture light-weight body elements instead of those made of steel.

  5. Superconducting nano-strip particle detectors

    International Nuclear Information System (INIS)

    Cristiano, R; Ejrnaes, M; Casaburi, A; Zen, N; Ohkubo, M

    2015-01-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2–5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications. (paper)

  6. Area specific stripping factors for AGS. A method for extracting stripping factors from survey data

    International Nuclear Information System (INIS)

    Aage, H.K.; Korsbech, U.

    2006-04-01

    In order to use Airborne Gamma-ray Spectrometry (AGS) for contamination mapping, for source search etc. one must to be able to eliminate the contribution to the spectra from natural radioactivity. This in general is done by a stripping technique. The parameters for performing a stripping have until recently been measured by recording gamma spectra at special calibration sites (pads). This may be cumbersome and the parameters may not be correct when used at low gamma energies for environmental spectra. During 2000-2001 DTU tested with success a new technique for Carborne Gamma-ray Spectrometry (CGS) where the spectra from the surveyed area (or from a similar area) were used for calculating the stripping parameters. It was possible to calculate usable stripping ratios for a number of low energy windows - and weak source signals not detectable by other means were discovered with the ASS technique. In this report it is shown that the ASS technique also works for AGS data, and it has been used for recent Danish AGS tests with point sources. (Check of calibration of AGS parameters.) By using the ASS technique with the Boden data (Barents Rescue) an exercise source was detected that has not been detected by any of the teams during the exercise. The ASS technique therefore seems to be better for search for radiation anomalies than any other method known presently. The experiences also tell that although the stripping can be performed correctly at any altitude there is a variation of the stripping parameters with altitude that has not yet been quite understood. However, even with the oddly variations the stripping worked as expected. It was also observed that one might calculate a single common set of usable stripping factors for all altitudes from the entire data set i.e. some average a, b and c values. When those stripping factors were used the stripping technique still worked well. (au)

  7. Area specific stripping factors for AGS. A method for extracting stripping factors from survey data

    Energy Technology Data Exchange (ETDEWEB)

    Aage, H.K.; Korsbech, U. [Technical Univ. of Denmark (Denmark)

    2006-04-15

    In order to use Airborne Gamma-ray Spectrometry (AGS) for contamination mapping, for source search etc. one must to be able to eliminate the contribution to the spectra from natural radioactivity. This in general is done by a stripping technique. The parameters for performing a stripping have until recently been measured by recording gamma spectra at special calibration sites (pads). This may be cumbersome and the parameters may not be correct when used at low gamma energies for environmental spectra. During 2000-2001 DTU tested with success a new technique for Carborne Gamma-ray Spectrometry (CGS) where the spectra from the surveyed area (or from a similar area) were used for calculating the stripping parameters. It was possible to calculate usable stripping ratios for a number of low energy windows - and weak source signals not detectable by other means were discovered with the ASS technique. In this report it is shown that the ASS technique also works for AGS data, and it has been used for recent Danish AGS tests with point sources. (Check of calibration of AGS parameters.) By using the ASS technique with the Boden data (Barents Rescue) an exercise source was detected that has not been detected by any of the teams during the exercise. The ASS technique therefore seems to be better for search for radiation anomalies than any other method known presently. The experiences also tell that although the stripping can be performed correctly at any altitude there is a variation of the stripping parameters with altitude that has not yet been quite understood. However, even with the oddly variations the stripping worked as expected. It was also observed that one might calculate a single common set of usable stripping factors for all altitudes from the entire data set i.e. some average a, b and c values. When those stripping factors were used the stripping technique still worked well. (au)

  8. Ram pressure stripping versus tidal interactions in the Abell clusters A85 and A496

    Science.gov (United States)

    Durret, F.; Bravo-Alfaro, H.; Venkatapathy, Y.; Mayya, Y. D.; Lobo, C.; van Gorkom, J. H.; Lopez-Gutierrez, M.

    2017-12-01

    We have undertaken a multi-wavelength survey of several nearby clusters of galaxies to compare the effects of ram pressure stripping to those of gravitational interactions and their role in galaxy evolution. We present here preliminary results for Abell 85 and Abell 496, based on optical, near infrared and HI imaging, as well as X-ray temperature maps.

  9. ECG-gated Versus Non-ECG-gated High-pitch Dual-source CT for Whole Body CT Angiography (CTA).

    Science.gov (United States)

    Beeres, Martin; Wichmann, Julian L; Frellesen, Claudia; Bucher, Andreas M; Albrecht, Moritz; Scholtz, Jan-Erik; Nour-Eldin, Nour-Eldin A; Gruber-Rouh, Tatjana; Lee, Clara; Vogl, Thomas J; Lehnert, Thomas

    2016-02-01

    To investigate motion artifacts, image quality, and practical differences in electrocardiographic (ECG)-gated versus non-ECG-gated high-pitch dual-source computed tomography angiography (CTA) of the whole aorta. Two groups, each including 40 patients, underwent either ECG-gated or non-ECG-gated high-pitch dual-source CTA of the whole aorta. The aortic annulus, aortic valve, coronary ostia, and the presence of motion artifacts of the thoracic aorta as well as vascular contrast down to the femoral arteries were independently assessed by two readers. Additional objective parameters including image noise and signal-to-noise ratio were analyzed. Subjective and objective scoring revealed no presence of motional artifacts regardless of whether the ECG-gated or the non-ECG-gated protocol was used (P > 0.1). Image acquisition parameters (examination length, examination duration, radiation dose) were comparable between the two groups without significant differences. The aortic annulus, aortic valve, and coronary ostia were reliably evaluable in all patients. Vascular contrast was rated excellent in both groups. High-pitch dual-source CTA of the whole aorta is a robust and dose-efficient examination strategy for the evaluation of aortic pathologies whether or not ECG gating is used. Copyright © 2015 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  10. Bill Gates vil redde Folkeskolen

    DEFF Research Database (Denmark)

    Fejerskov, Adam Moe

    2014-01-01

    Det amerikanske uddannelsessystem bliver for tiden udsat for hård kritik, ledt an af Microsoft stifteren Bill Gates. Gates har indtil videre brugt 3 mia. kroner på at skabe opbakning til tiltag som præstationslønning af lærere og strømlining af pensum på tværs af alle skoler i landet...

  11. Latest design of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Kurzhofer, U.; Stolte, J.; Weyand, M.

    1996-12-01

    Babcock Sempell, one of the most important valve manufacturers in Europe, has delivered valves for the nuclear power industry since the beginning of the peaceful application of nuclear power in the 1960s. The latest innovation by Babcock Sempell is a gate valve that meets all recent technical requirements of the nuclear power technology. At the moment in the United States, Germany, Sweden, and many other countries, motor-operated gate and globe valves are judged very critically. Besides the absolute control of the so-called {open_quotes}trip failure,{close_quotes} the integrity of all valve parts submitted to operational forces must be maintained. In case of failure of the limit and torque switches, all valve designs have been tested with respect to the quality of guidance of the gate. The guidances (i.e., guides) shall avoid a tilting of the gate during the closing procedure. The gate valve newly designed by Babcock Sempell fulfills all these characteristic criteria. In addition, the valve has cobalt-free seat hardfacing, the suitability of which has been proven by friction tests as well as full-scale blowdown tests at the GAP of Siemens in Karlstein, West Germany. Babcock Sempell was to deliver more than 30 gate valves of this type for 5 Swedish nuclear power stations by autumn 1995. In the presentation, the author will report on the testing performed, qualifications, and sizing criteria which led to the new technical design.

  12. Analysis of 'Coma strip' galaxy redshift catalog

    International Nuclear Information System (INIS)

    Klypin, A.A.; Karachentsev, I.D.; Lebedev, V.S.

    1990-01-01

    We present results of the analysis of a galaxy redshift catalog made at the 6-m telescope by Karachentsev and Kopylov (1990. Mon. Not. R. astr. Soc., 243, 390). The catalog covers a long narrow strip on the sky (10 arcmin by 63 0 ) and lists 283 galaxies up to limiting blue magnitude m B = 17.6. The strip goes through the core of Coma cluster and this is called the 'Coma strip' catalog. The catalog is almost two times deeper than the CfA redshift survey and creates the possibility of studying the galaxy distribution on scales of 100-250 Mpc. Due to the small number of galaxies in the catalog, we were able to estimate only very general and stable parameters of the distribution. (author)

  13. Accuracy of electrocardiographic-gated versus nongated volumetric intravascular ultrasound measurements of coronary arterial narrowing

    DEFF Research Database (Denmark)

    Jensen, Lisette Okkels; Thayssen, Per

    2007-01-01

    Intravascular ultrasound (IVUS) allows precise measurements of plaque plus media (P+M) volume and neointimal hyperplasia after coronary artery stenting. Conventional IVUS volumetric analysis is performed mostly without electrocardiographically gated acquisition, and the IVUS images are selected...

  14. Silicon two-coordinate detector with separable pad-strip readout

    International Nuclear Information System (INIS)

    Barabash, L.S.; Babukh, A.V.; Frolov, V.N.; Kazarinov, M.Yu.; Popov, A.A.; Sandukovskij, V.G.; Chalyshev, V.V.

    1996-01-01

    The characteristics of resistive layer Si microstrip detector with two versions of the readout system are presented. One version used the usual single coordinate strip system of 1 mm pitch. The second version used a two coordinate pad-strip system of 3.6 mm pitch ('chess board'). The registration precision of the detector was studied with a UV laser. The two-dimensional imaging ability of the detector with α-particles and with an 241 Am γ-source is shown. 5 refs., 9 figs

  15. Wokker. Notes on a Surrealist comic strip

    Directory of Open Access Journals (Sweden)

    Roger Sabin

    2012-05-01

    Full Text Available This essay explores the creation and development of a British comic strip, Wokker (1971-1999, and its connections with the surrealist movement. Although the strip is remarkable for its content and formalist properties, it remains obscure both because of its publishing circumstances, and because it does not fit easily into a history of comics. Rather it can be argued that its conceptual roots can be traced to the artistic ferment that happened in Paris in the 1920s (with Breton as a key reference point, and that it represents a very English, and late-flowering, example of the surrealist idea.

  16. slice of LEP beamtube with getter strip

    CERN Multimedia

    1989-01-01

    A section of the LEP beam pipe. This is the chamber in which LEP's counter-rotating electron and positron beams travel. It is made of lead-clad aluminium. The beams circulate in the oval cross-section part of the chamber. In the rectangular cross-section part, LEP's innovative getter-strip vacuum pump is installed. After heating to purify the surface of the getter, the strip acts like molecular sticky tape, trapping any stray molecules left behind after the accelerator's traditional vacuum pumps have done their job.

  17. Spray Rolling Aluminum Strip for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

    2005-02-01

    Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

  18. Silicon strip detectors for the LHCb experiment

    OpenAIRE

    Steinkamp, O

    2005-01-01

    The LHCb experiment is a single-arm magnetic spectrometer. Silicon micro-strip detectors are employed in a significant fraction of the tracking system. The Vertex Locator consists of 21 detector stations that operate inside the LHC beam pipe and are separated from the beam vacuum by a thin aluminium foil. The Silicon Tracker is a large-surface silicon micro-strip detector that covers the full acceptance of the experiment in a single tracking station upstream of the spectrometer magnet and the...

  19. CMS Silicon Strip Tracker Operation and Performance

    CERN Document Server

    Boudoul, Gaelle

    2011-01-01

    The Silicon Strip Tracker (SST) of the CMS experiment is, with 9.6 million readout channels, the largest strip tracker ever built. In order to correctly interpret and reconstruct the events recorded it needs to be precisely calibrated, thus ensuring that it fully contributes to the physics research program of the CMS experiment. In 2009 and 2010, the performance of the SST has been carefully studied using cosmic muons and tracks from proton-proton collisions at centre-of-mass energies of 900 GeV, 2.36 TeV and 7 TeV. In this paper, we present some results of the detector performance.

  20. Test strip and method for its use

    International Nuclear Information System (INIS)

    1981-01-01

    A test strip device is described which is useful in performing binding assays involving antigens, antibodies, hormones, vitamins, metabolites or pharmacological agents. The device is capable of application to analytical methods in which a set of sequential test reactions is involved and in which a minute sample size may be used. This test strip is particularly useful in radioimmunoassays. The use of the device is illustrated in radioimmunoassays for 1) thyroxine in serum, 2) the triiodothyronine binding capacity of serum and 3) folic acid and its analogues in serum. (U.K.)

  1. Respiratory gating of cardiac PET data in list-mode acquisition.

    Science.gov (United States)

    Livieratos, Lefteris; Rajappan, Kim; Stegger, Lars; Schafers, Klaus; Bailey, Dale L; Camici, Paolo G

    2006-05-01

    Respiratory motion has been identified as a source of artefacts in most medical imaging modalities. This paper reports on respiratory gating as a means to eliminate motion-related inaccuracies in PET imaging. Respiratory gating was implemented in list mode with physiological signal recorded every millisecond together with the PET data. Respiration was monitored with an inductive respiration monitor using an elasticised belt around the patient's chest. Simultaneous ECG gating can be maintained independently by encoding ECG trigger signal into the list-mode data. Respiratory gating is performed in an off-line workstation with gating parameters defined retrospectively. The technique was applied on a preliminary set of patient data with C(15)O. Motion was visually observed in the cine displays of the sagittal and coronal views of the reconstructed respiratory gated images. Significant changes in the cranial-caudal position of the heart could be observed. The centroid of the cardiac blood pool showed an excursion of 4.5-16.5 mm (mean 8.5+/-4.8 mm) in the cranial-caudal direction, with more limited excursion of 1.1-7.0 mm (mean 2.5+/-2.2 mm) in the horizontal direction and 1.3-3.7 mm (mean 2.4+/-0.9 mm) in the vertical direction. These preliminary data show that the extent of motion involved in respiration is comparable to myocardial wall thickness, and respiratory gating may be considered in order to reduce this effect in the reconstructed images.

  2. Photon gating in four-dimensional ultrafast electron microscopy.

    Science.gov (United States)

    Hassan, Mohammed T; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H

    2015-10-20

    Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon-electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a "single" light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a "second" optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM.

  3. Thickness and marking quality of different occlusal contact registration strips

    Directory of Open Access Journals (Sweden)

    Maria Fernanda de Souza Mauá Serapião TOLEDO

    2014-12-01

    Full Text Available Objectives Evaluate the thickness and the marking quality of different occlusal contact registration strips (OCRS and a possible correlation between them. Material and Methods The following OCRS were selected: Accufilm II, BK20, BK21, BK22, BK23, BK28, and BK31. The thickness was measured in three points of the OCRS with an electronic measuring device (TESA, and the mean was calculated. To produce the marks on the strips, composite resin specimens were adapted to a universal testing machine (Versat 2000 with 40 kgf load cell at a speed of 1.0 mm/min. The mark images were photographed with a stereoscopic microscope (Stemi SV11 and processed and analyzed by the 550-Leica Qwin® analyzer. Results Values (μm found in the 1st and 2nd thickness measurements were: Accufilm II - 16.4 and 14.2; BK20 - 10.0 and 8.1; BK21 - 9.5 and 8.0; BK22 - 9.7 and 8.7; BK23 - 9.8 and 7.9; BK28 - 12.8 and 10.0; and BK31 - 8.4 and 8.0, respectively. The mean (mm2 values found in the mark areas were: Accufilm II - 0.078; BK20 - 0.035; BK21 - 0.045; BK22 - 0.012; BK23 - 0.022; BK28 - 0.024; and BK31 - 0.024. The results were submitted to the Kruskal-Wallis (p<0.05 and Pearson’s correlation tests. Conclusions Only in the 2nd measurement, the OCRS thickness observed was similar to the value indicated by the manufacturers; the Accufilm II and the BK28 strips showed the better marks; and no correlation was found between the thickness and the marking area.

  4. Free-Breathing Phase Contrast MRI with Near 100% Respiratory Navigator Efficiency using k-space Dependent Respiratory Gating

    Science.gov (United States)

    Akçakaya, Mehmet; Gulaka, Praveen; Basha, Tamer A.; Ngo, Long H.; Manning, Warren J.; Nezafat, Reza

    2013-01-01

    Purpose To investigate the efficacy of a novel respiratory motion scheme, where only the center of k-space is gated using respiratory navigators, versus a fully respiratory-gated acquisition for 3D flow imaging. Methods 3D flow images were acquired axially using a GRE sequence in a volume covering the ascending and descending aorta, and the pulmonary artery bifurcation in 12 healthy subjects (33.2±15.8 years; 5 men). For respiratory motion compensation, two gating & tracking strategies were used with a 7mm gating window: 1) All of k-space acquired within the gating window (fully-gated), 2) Central k-space acquired within the gating window, and the remainder of k-space acquired without any gating (center-gated). Each scan was repeated twice. Stroke volume, mean flow, peak velocity and signal-to-noise-ratio measurements were performed both on the ascending and the descending aorta for all acquisitions, which were compared using a linear mixed-effects model and Bland-Altman analysis. Results There were no statistical differences between the fully-gated and center-gated strategies for the quantification of stroke volume, peak velocity and mean flow, as well as the signal-to-noise-ratio measurements. Furthermore, the proposed center-gated strategy had significantly shorter acquisition time compared to the fully-gated strategy (13:19±3:02 vs. 19:35±5:02, P<0.001). Conclusions The proposed novel center-gated strategy for 3D flow MRI allows for markedly shorter acquisition time without any systematic variation in quantitative flow measurements in this small group of healthy volunteers. PMID:23900942

  5. The clinical implementation of respiratory-gated intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Keall, Paul; Vedam, Sastry; George, Rohini; Bartee, Chris; Siebers, Jeffrey; Lerma, Fritz; Weiss, Elisabeth; Chung, Theodore

    2006-01-01

    The clinical use of respiratory-gated radiotherapy and the application of intensity-modulated radiotherapy (IMRT) are 2 relatively new innovations to the treatment of lung cancer. Respiratory gating can reduce the deleterious effects of intrafraction motion, and IMRT can concurrently increase tumor dose homogeneity and reduce dose to critical structures including the lungs, spinal cord, esophagus, and heart. The aim of this work is to describe the clinical implementation of respiratory-gated IMRT for the treatment of non-small cell lung cancer. Documented clinical procedures were developed to include a tumor motion study, gated CT imaging, IMRT treatment planning, and gated IMRT delivery. Treatment planning procedures for respiratory-gated IMRT including beam arrangements and dose-volume constraints were developed. Quality assurance procedures were designed to quantify both the dosimetric and positional accuracy of respiratory-gated IMRT, including film dosimetry dose measurements and Monte Carlo dose calculations for verification and validation of individual patient treatments. Respiratory-gated IMRT is accepted by both treatment staff and patients. The dosimetric and positional quality assurance test results indicate that respiratory-gated IMRT can be delivered accurately. If carefully implemented, respiratory-gated IMRT is a practical alternative to conventional thoracic radiotherapy. For mobile tumors, respiratory-gated radiotherapy is used as the standard of care at our institution. Due to the increased workload, the choice of IMRT is taken on a case-by-case basis, with approximately half of the non-small cell lung cancer patients receiving respiratory-gated IMRT. We are currently evaluating whether superior tumor coverage and limited normal tissue dosing will lead to improvements in local control and survival in non-small cell lung cancer

  6. KRITIK SOSIAL DALAM KOMIK STRIP PAK BEI

    Directory of Open Access Journals (Sweden)

    Yudhi Novriansyah

    2016-08-01

    Full Text Available This research aimed to do interpret the marking which flange social criticism and know laboring ideology in story of Comic Strip Pak Bei. Research based on theory of structural semiotic according to Ferdinand De Saussure. Using analysis of Syntagmatic as first level of meaning to the text network and also picture, and analysis of Paradigmatic as second level of meaning or implicit meaning (connota-tion, myth, ideology Analysis done to six Comic choice edition of Strip Pak Bei period of November 2004 - Februari 2005 which tend to flange social criticism. At band of syntagmatic, result of research indicate that story theme lifted from social problems that happened in major society. The fact clear progressively when connected by Intertextual with information and texts which have preexisted. At band of Paradigmatic, social criticism tend to emerge dimly, is not transparent. Because of Comic Strip Pak Bei expand in the middle of Java cultural domination that developing myth of criticize as action menacing compatibility and orderliness of society. Story of Comic Strip Pak Bei also confirm dominant ideology in Java society culture, namely ideology of Patriarkhi and Feudalism which still go into effect until now. This prove ideology idea according to Louis Althusser which not again opposition between class, but have been owned and practiced by all social class.

  7. Trees for strip-mined lands

    Science.gov (United States)

    George Hart; William R. Byrnes

    1960-01-01

    Open-pit or strip mining has become an important method of mining bituminous coal in Pennsylvania. In 1958 some 19.5 million tons of soft coal - 29 percent of the total bituminous production in the State - were produced by this method.

  8. Asset Stripping in a Mature Market Economy

    DEFF Research Database (Denmark)

    Klarskov Jeppesen, Kim; Møller, Ulrik Gorm

    2011-01-01

    Purpose – The purpose of this paper is to document a Danish fraud scheme, in which a large number of limited companies were stripped of their assets leaving them with nothing but tax debt, eventually causing the Danish Tax and Customs Administration to lose large sums. Furthermore, the purpose is...... the social supervisory system of a mature market economy. Originality/value – The paper contributes to the knowledge about asset stripping by documenting and analysing the phenomenon in a mature market economy context.......Purpose – The purpose of this paper is to document a Danish fraud scheme, in which a large number of limited companies were stripped of their assets leaving them with nothing but tax debt, eventually causing the Danish Tax and Customs Administration to lose large sums. Furthermore, the purpose...... is to analyse why the asset-stripping schemes occurred in a mature market economy with a strong corporate governance system and a low level of corruption. Design/methodology/approach – The research is conducted as a longitudinal single case study based on documentary research. Findings – The Danish case...

  9. Linear sweep anodic stripping voltammetry: Determination of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 6. Linear sweep anodic stripping voltammetry: Determination of Chromium (VI) using synthesized gold nanoparticles modified screen-printed electrode. Salamatu Aliyu Tukur Nor Azah Yusof Reza Hajian. Regular Articles Volume 127 Issue 6 June 2015 pp ...

  10. Comic Strips to Accompany Science Museum Exhibits

    Science.gov (United States)

    Chung, Beom Sun; Park, Eun-mi; Kim, Sang-Hee; Cho, Sook-kyoung; Chung, Min Suk

    2016-01-01

    Science museums make the effort to create exhibits with amusing explanations. However, existing explanation signs with lengthy text are not appealing, and as such, visitors do not pay attention to them. In contrast, conspicuous comic strips composed of simple drawings and humors can attract science museum visitors. This study attempted to reveal…

  11. Nanoscale Test Strips for Multiplexed Blood Analysis

    Science.gov (United States)

    Chan, Eugene

    2015-01-01

    A critical component of the DNA Medicine Institute's Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor are nanoscale test strips, or nanostrips, that enable multiplexed blood analysis. Nanostrips are conceptually similar to the standard urinalysis test strip, but the strips are shrunk down a billionfold to the microscale. Each nanostrip can have several sensor pads that fluoresce in response to different targets in a sample. The strips carry identification tags that permit differentiation of a specific panel from hundreds of other nanostrip panels during a single measurement session. In Phase I of the project, the company fabricated, tested, and demonstrated functional parathyroid hormone and vitamin D nanostrips for bone metabolism, and thrombin aptamer and immunoglobulin G antibody nanostrips. In Phase II, numerous nanostrips were developed to address key space flight-based medical needs: assessment of bone metabolism, immune response, cardiac status, liver metabolism, and lipid profiles. This unique approach holds genuine promise for space-based portable biodiagnostics and for point-of-care (POC) health monitoring and diagnostics here on Earth.

  12. Sensory gating in primary insomnia.

    Science.gov (United States)

    Hairston, Ilana S; Talbot, Lisa S; Eidelman, Polina; Gruber, June; Harvey, Allison G

    2010-06-01

    Although previous research indicates that sleep architecture is largely intact in primary insomnia (PI), the spectral content of the sleeping electroencephalographic trace and measures of brain metabolism suggest that individuals with PI are physiologically more aroused than good sleepers. Such observations imply that individuals with PI may not experience the full deactivation of sensory and cognitive processing, resulting in reduced filtering of external sensory information during sleep. To test this hypothesis, gating of sensory information during sleep was tested in participants with primary insomnia (n = 18) and good sleepers (n = 20). Sensory gating was operationally defined as (i) the difference in magnitude of evoked response potentials elicited by pairs of clicks presented during Wake and Stage II sleep, and (ii) the number of K complexes evoked by the same auditory stimulus. During wake the groups did not differ in magnitude of sensory gating. During sleep, sensory gating of the N350 component was attenuated and completely diminished in participants with insomnia. P450, which occurred only during sleep, was strongly gated in good sleepers, and less so in participants with insomnia. Additionally, participants with insomnia showed no stimulus-related increase in K complexes. Thus, PI is potentially associated with impaired capacity to filter out external sensory information, especially during sleep. The potential of using stimulus-evoked K complexes as a biomarker for primary insomnia is discussed.

  13. Ductility of reinforced concrete columns confined with stapled strips

    International Nuclear Information System (INIS)

    Tahir, M.F.; Khan, Q.U.Z.; Shabbir, F.; Sharif, M.B.; Ijaz, N.

    2015-01-01

    Response of three 150x150x450mm short reinforced concrete (RC) columns confined with different types of confining steel was investigated. Standard stirrups, strips and stapled strips, each having same cross-sectional area, were employed as confining steel around four comer column bars. Experimental work was aimed at probing into the affect of stapled strip confinement on post elastic behavior and ductility level under cyclic axial load. Ductility ratios, strength enhancement factor and core concrete strengths were compared to study the affect of confinement. Results indicate that strength enhancement in RC columns due to strip and stapled strip confinement was not remarkable as compared to stirrup confined column. It was found that as compared to stirrup confined column, stapled strip confinement enhanced the ductility of RC column by 183% and observed axial capacity of stapled strip confined columns was 41 % higher than the strip confined columns. (author)

  14. Laboratory testing of Alcoscan saliva-alcohol test strips

    Science.gov (United States)

    1986-10-01

    This report describes a laboratory evaluation of Alcoscan saliva-alcohol test strips. The objectives of this work were: (1) to determine the precision and accuracy of the Alcoscan strips; and (2) to determine what effect extreme ambient temperatures ...

  15. Dual Strip-Excited Dielectric Resonator Antenna with Parasitic Strips for Radiation Pattern Reconfigurability

    Directory of Open Access Journals (Sweden)

    M. Kamran Saleem

    2014-01-01

    Full Text Available A novel pattern reconfigurable antenna concept utilizing rectangular dielectric resonator antenna (DRA placed over dielectric substrate backed by a ground plane is presented. A dual strip excitation scheme is utilized and both excitation strips are connected together by means of a 50 Ω microstrip feed network placed over the substrate. The four vertical metallic parasitic strips are placed at corner of DRA each having a corresponding ground pad to provide a short/open circuit between the parasitic strip and antenna ground plane, through which a shift of 90° in antenna radiation pattern in elevation plane is achieved. A fractional bandwidth of approximately 40% at center frequency of 1.6 GHz is achieved. The DRA peak realized gain in whole frequency band of operation is found to be above 4 dB. The antenna configuration along with simulation and measured results are presented.

  16. Parallel superconducting strip-line detectors: reset behaviour in the single-strip switch regime

    International Nuclear Information System (INIS)

    Casaburi, A; Heath, R M; Tanner, M G; Hadfield, R H; Cristiano, R; Ejrnaes, M; Nappi, C

    2014-01-01

    Superconducting strip-line detectors (SSLDs) are an important emerging technology for the detection of single molecules in time-of-flight mass spectrometry (TOF-MS). We present an experimental investigation of a SSLD laid out in a parallel configuration, designed to address selected single strip-lines operating in the single-strip switch regime. Fast laser pulses were tightly focused onto the device, allowing controllable nucleation of a resistive region at a specific location and study of the subsequent device response dynamics. We observed that in this regime, although the strip-line returns to the superconducting state after triggering, no effective recovery of the bias current occurs, in qualitative agreement with a phenomenological circuit simulation that we performed. Moreover, from theoretical considerations and by looking at the experimental pulse amplitude distribution histogram, we have the first confirmation of the fact that the phenomenological London model governs the current redistribution in these large area devices also after detection events. (paper)

  17. Parallel superconducting strip-line detectors: reset behaviour in the single-strip switch regime

    Science.gov (United States)

    Casaburi, A.; Heath, R. M.; Tanner, M. G.; Cristiano, R.; Ejrnaes, M.; Nappi, C.; Hadfield, R. H.

    2014-04-01

    Superconducting strip-line detectors (SSLDs) are an important emerging technology for the detection of single molecules in time-of-flight mass spectrometry (TOF-MS). We present an experimental investigation of a SSLD laid out in a parallel configuration, designed to address selected single strip-lines operating in the single-strip switch regime. Fast laser pulses were tightly focused onto the device, allowing controllable nucleation of a resistive region at a specific location and study of the subsequent device response dynamics. We observed that in this regime, although the strip-line returns to the superconducting state after triggering, no effective recovery of the bias current occurs, in qualitative agreement with a phenomenological circuit simulation that we performed. Moreover, from theoretical considerations and by looking at the experimental pulse amplitude distribution histogram, we have the first confirmation of the fact that the phenomenological London model governs the current redistribution in these large area devices also after detection events.

  18. New opening hours of the gates

    CERN Multimedia

    GS Department

    2009-01-01

    Please note the new opening hours of the gates as well as the intersites tunnel from the 19 May 2009: GATE A 7h - 19h GATE B 24h/24 GATE C 7h - 9h\t17h - 19h GATE D 8h - 12h\t13h - 16h GATE E 7h - 9h\t17h - 19h Prévessin 24h/24 The intersites tunnel will be opened from 7h30 to 18h non stop. GS-SEM Group Infrastructure and General Services Department

  19. Development of a Compact Range-gated Vision System to Monitor Structures in Low-visibility Environments

    International Nuclear Information System (INIS)

    Ahn, Yong-Jin; Park, Seung-Kyu; Baik, Sung-Hoon; Kim, Dong-Lyul; Choi, Young-Soo; Jeong, Kyung-Min

    2015-01-01

    Image acquisition in disaster area or radiation area of nuclear industry is an important function for safety inspection and preparing appropriate damage control plans. So, automatic vision system to monitor structures and facilities in blurred smoking environments such as the places of a fire and detonation is essential. Vision systems can't acquire an image when the illumination light is blocked by disturbance materials, such as smoke, fog and dust. To overcome the imaging distortion caused by obstacle materials, robust vision systems should have extra-functions, such as active illumination through disturbance materials. One of active vision system is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from the blurred and darken light environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and range image data is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through disturbance materials, such as smoke particles and dust particles. In contrast to passive conventional vision systems, the RGI active vision technology enables operation even in harsh environments like low-visibility smoky environment. In this paper, a compact range-gated vision system is developed to monitor structures in low-visibility environment. The system consists of illumination light, a range-gating camera and a control computer. Visualization experiments are carried out in low-visibility foggy environment to see imaging capability

  20. Electrical results of double-sided silicon strip modules for the ATLAS Upgrade Strip Tracker

    CERN Document Server

    Gonzalez-Sevilla, S; The ATLAS collaboration; Cadoux, F; Clark, A; Ferrere, D; Ikegami, Y; Hara, K; La Marra, D; Pelleriti, G; Pohl, M; Takubo, Y; Terada, S; Unno, Y; Weber, M

    2012-01-01

    A double-sided silicon strip module has been designed for the short-strip barrel region of the future ATLAS inner tracker for the High Luminosity LHC. University of Geneva and KEK have produced first module prototypes with common components and similar assembly procedures and jigs. This note reports on the electrical performance of the modules tested. The data acquisition system is described. Results from individual and combined module readout are shown.

  1. Testbeam evaluation of silicon strip modules for ATLAS Phase - II Strip Tracker Upgrade

    CERN Document Server

    Blue, Andrew; The ATLAS collaboration; Ai, Xiaocong; Allport, Phillip; Arling, Jan-Hendrik; Atkin, Ryan Justin; Bruni, Lucrezia Stella; Carli, Ina; Casse, Gianluigi; Chen, Liejian; Chisholm, Andrew; Cormier, Kyle James Read; Cunningham, William Reilly; Dervan, Paul; Diez Cornell, Sergio; Dolezal, Zdenek; Dopke, Jens; Dreyer, Etienne; Dreyling-Eschweiler, Jan Linus Roderik; Escobar, Carlos; Fabiani, Veronica; Fadeyev, Vitaliy; Fernandez Tejero, Javier; Fleta Corral, Maria Celeste; Gallop, Bruce; Garcia-Argos, Carlos; Greenall, Ashley; Gregor, Ingrid-Maria; Greig, Graham George; Guescini, Francesco; Hara, Kazuhiko; Hauser, Marc Manuel; Huang, Yanping; Hunter, Robert Francis Holub; Keller, John; Klein, Christoph; Kodys, Peter; Koffas, Thomas; Kotek, Zdenek; Kroll, Jiri; Kuehn, Susanne; Lee, Steven Juhyung; Liu, Yi; Lohwasser, Kristin; Meszarosova, Lucia; Mikestikova, Marcela; Mi\\~nano Moya, Mercedes; Mori, Riccardo; Moser, Brian; Nikolopoulos, Konstantinos; Peschke, Richard; Pezzullo, Giuseppe; Phillips, Peter William; Poley, Anne-luise; Queitsch-Maitland, Michaela; Ravotti, Federico; Rodriguez Rodriguez, Daniel

    2018-01-01

    The planned HL-LHC (High Luminosity LHC) is being designed to maximise the physics potential of the LHC with 10 years of operation at instantaneous luminosities of \\mbox{$7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$}. A consequence of this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron equivalences to over $1x10^{15}$ 1 MeV neutron equivalent per $cm^{2}$ in the ATLAS Strips system. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II test beam facility to investigate the detailed performance of a strip module with both 2.5cm and 5cm length strips before irradiation. The DURANTA telescope was used to obtain a pointing...

  2. Conveyorized Photoresist Stripping Replacement for Flex Circuit Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Megan Donahue

    2009-02-24

    A replacement conveyorized photoresist stripping system was characterized to replace the ASI photoresist stripping system. This system uses the qualified ADF-25c chemistry for the fabrication of flex circuits, while the ASI uses the qualified potassium hydroxide chemistry. The stripping process removes photoresist, which is used to protect the copper traces being formed during the etch process.

  3. 7 CFR 29.6128 - Straight Stripped (X Group).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists of..., and tolerances X1 Fine Quality Straight Stripped. Heavy, ripe, firm, semielastic, normal strength and...

  4. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to indicate...

  5. Respiratory gating in cardiac PET

    DEFF Research Database (Denmark)

    Lassen, Martin Lyngby; Rasmussen, Thomas; Christensen, Thomas E

    2017-01-01

    BACKGROUND: Respiratory motion due to breathing during cardiac positron emission tomography (PET) results in spatial blurring and erroneous tracer quantification. Respiratory gating might represent a solution by dividing the PET coincidence dataset into smaller respiratory phase subsets. The aim...... stress (82)RB-PET. Respiratory rates and depths were measured by a respiratory gating system in addition to registering actual respiratory rates. Patients undergoing adenosine stress showed a decrease in measured respiratory rate from initial to later scan phase measurements [12.4 (±5.7) vs 5.6 (±4.......7) min(-1), P PET...

  6. 3-D cardiac MRI in free-breathing newborns and infants: when is respiratory gating necessary?

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Achim [University Hospital of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); University Hospital of Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Krumm, Patrick; Schaefer, Juergen F.; Kramer, Ulrich [University Hospital of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Hornung, Andreas; Sieverding, Ludger [University Hospital of Tuebingen, Department of Pediatric Cardiology, Tuebingen (Germany)

    2015-09-15

    Newborns and small infants have shallow breathing. To suggest criteria for when respiratory gating is necessary during cardiac MRI in newborns and infants. One-hundred ten data sets of newborns and infants with (n = 92, mean age: 1.9 ± 1.7 [SD] years) and without (n = 18, mean age: 1.6 ± 1.8 [SD] years) navigator gating were analysed retrospectively. The respiratory motion of the right hemidiaphragm was recorded and correlated to age, weight, body surface area and qualitative image quality on a 4-point score. Quantitative image quality assessment was performed (sharpness of the delineation of the ventricular septal wall) as well as a matched-pair comparison between navigator-gated and non-gated data sets. No significant differences were found in overall image quality or in the sharpness of the ventricular septal wall between gated and non-gated scans. A navigator acceptance of >80% was frequently found in patients ages <12 months, body surface area <0.40 m{sup 2}, body weight <10 kg and a size of <80 cm. Sequences without respiratory gating may be used in newborns and small infants, in particular if age <12 months, body surface area <0.40 m{sup 2}, body weight <10 kg and height <80 cm. (orig.)

  7. Physical and clinical evaluation of new high-strip-density radiographic grids

    International Nuclear Information System (INIS)

    Doi, K.; Frank, P.H.; Chan, H.P.; Vyborny, C.J.; Makino, S.; Iida, N.; Carlin, M.

    1983-01-01

    The imaging performance of new high-strip-density (HSD) grids having 57 lines/cm was compared with that of conventional low-strip-density (LSD) grids having 33 or 40 lines/cm. The unique advantage of HSD grids is that, under most standard radiographic conditions, the grid lines are not noticeable on the final image, even if the grid is stationary. This is due to the combined effect of the high fundamental spatial frequency of HSD grids, the modulation transfer function of screen-film systems and of the human visual system, and scattered radiation. Monte Carlo simulation studies, phantom images, and clinical evaluation indicate that HSD grids can provide contrast improvement factors and Bucky factors that are comparable to or slightly better than those obtained with LSD grids. Therefore, it may now be possible to eliminate moving Bucky trays from radiographic tables and fluoroscopic devices

  8. Respiratory gating in cardiac PET: Effects of adenosine and dipyridamole.

    Science.gov (United States)

    Lassen, Martin Lyngby; Rasmussen, Thomas; Christensen, Thomas E; Kjær, Andreas; Hasbak, Philip

    2017-12-01

    Respiratory motion due to breathing during cardiac positron emission tomography (PET) results in spatial blurring and erroneous tracer quantification. Respiratory gating might represent a solution by dividing the PET coincidence dataset into smaller respiratory phase subsets. The aim of our study was to compare the resulting imaging quality by the use of a time-based respiratory gating system in two groups administered either adenosine or dipyridamole as the pharmacological stress agent. Forty-eight patients were randomized to adenosine or dipyridamole cardiac stress 82 RB-PET. Respiratory rates and depths were measured by a respiratory gating system in addition to registering actual respiratory rates. Patients undergoing adenosine stress showed a decrease in measured respiratory rate from initial to later scan phase measurements [12.4 (±5.7) vs 5.6 (±4.7) min -1 , P PET, a dipyridamole stress protocol is recommended as it, compared to adenosine, causes a more uniform respiration and results in a higher frequency of successful respiratory gating and thereby superior imaging quality.

  9. Bird community response to filter strips in Maryland

    Science.gov (United States)

    Blank, P.J.; Dively, G.P.; Gill, D.E.; Rewa, C.A.

    2011-01-01

    Filter strips are strips of herbaceous vegetation planted along agricultural field margins adjacent to streams or wetlands and are designed to intercept sediment, nutrients, and agrichemicals. Roughly 16,000 ha of filter strips have been established in Maryland through the United States Department of Agriculture's Conservation Reserve Enhancement Program. Filter strips often represent the only uncultivated herbaceous areas on farmland in Maryland and therefore may be important habitat for early-successional bird species. Most filter strips in Maryland are planted to either native warm-season grasses or cool-season grasses and range in width from 10.7 m to 91.4 m. From 2004 to 2007 we studied the breeding and wintering bird communities in filter strips adjacent to wooded edges and non-buffered field edges and the effect that grass type and width of filter strips had on bird community composition. We used 5 bird community metrics (total bird density, species richness, scrub-shrub bird density, grassland bird density, and total avian conservation value), species-specific densities, nest densities, and nest survival estimates to assess the habitat value of filter strips for birds. Breeding and wintering bird community metrics were greater in filter strips than in non-buffered field edges but did not differ between cool-season and warm-season grass filter strips. Most breeding bird community metrics were negatively related to the percent cover of orchardgrass (Dactylis glomerata) in ???1 yr. Breeding bird density was greater in narrow (60 m) filter strips. Our results suggest that narrow filter strips adjacent to wooded edges can provide habitat for many bird species but that wide filter strips provide better habitat for grassland birds, particularly obligate grassland species. If bird conservation is an objective, avoid planting orchardgrass in filter strips and reduce or eliminate orchardgrass from filter strips through management practices. Copyright ?? 2011 The

  10. Robust logic gates and realistic quantum computation

    International Nuclear Information System (INIS)

    Xiao Li; Jones, Jonathan A.

    2006-01-01

    The composite rotation approach has been used to develop a range of robust quantum logic gates, including single qubit gates and two qubit gates, which are resistant to systematic errors in their implementation. Single qubit gates based on the BB1 family of composite rotations have been experimentally demonstrated in a variety of systems, but little study has been made of their application in extended computations, and there has been no experimental study of the corresponding robust two qubit gates to date. Here we describe an application of robust gates to nuclear magnetic resonance studies of approximate quantum counting. We find that the BB1 family of robust gates is indeed useful, but that the related NB1, PB1, B4, and P4 families of tailored logic gates are less useful than initially expected

  11. Diagnostic accuracy of 256-row multidetector CT coronary angiography with prospective ECG-gating combined with fourth-generation iterative reconstruction algorithm in the assessment of coronary artery bypass: evaluation of dose reduction and image quality.

    Science.gov (United States)

    Ippolito, Davide; Fior, Davide; Franzesi, Cammillo Talei; Riva, Luca; Casiraghi, Alessandra; Sironi, Sandro

    2017-12-01

    Effective radiation dose in coronary CT angiography (CTCA) for coronary artery bypass graft (CABG) evaluation is remarkably high because of long scan lengths. Prospective electrocardiographic gating with iterative reconstruction can reduce effective radiation dose. To evaluate the diagnostic performance of low-kV CT angiography protocol with prospective ecg-gating technique and iterative reconstruction (IR) algorithm in follow-up of CABG patients compared with standard retrospective protocol. Seventy-four non-obese patients with known coronary disease treated with artery bypass grafting were prospectively enrolled. All the patients underwent 256 MDCT (Brilliance iCT, Philips) CTCA using low-dose protocol (100 kV; 800 mAs; rotation time: 0.275 s) combined with prospective ECG-triggering acquisition and fourth-generation IR technique (iDose 4 ; Philips); all the lengths of the bypass graft were included in the evaluation. A control group of 42 similar patients was evaluated with a standard retrospective ECG-gated CTCA (100 kV; 800 mAs).On both CT examinations, ROIs were placed to calculate standard deviation of pixel values and intra-vessel density. Diagnostic quality was also evaluated using a 4-point quality scale. Despite the statistically significant reduction of radiation dose evaluated with DLP (study group mean DLP: 274 mGy cm; control group mean DLP: 1224 mGy cm; P value development of high-speed MDCT scans combined with modern IR allows an accurate evaluation of CABG with prospective ECG-gating protocols in a single breath hold, obtaining a significant reduction in radiation dose.

  12. Gating Technology for Vertically Parted Green Sand Moulds

    DEFF Research Database (Denmark)

    Larsen, Per

    Gating technology for vertically parted green sand moulds. Literature study of different ways of designing gating systems.......Gating technology for vertically parted green sand moulds. Literature study of different ways of designing gating systems....

  13. Dynamic gating window for compensation of baseline shift in respiratory-gated radiation therapy

    International Nuclear Information System (INIS)

    Pepin, Eric W.; Wu Huanmei; Shirato, Hiroki

    2011-01-01

    Purpose: To analyze and evaluate the necessity and use of dynamic gating techniques for compensation of baseline shift during respiratory-gated radiation therapy of lung tumors. Methods: Motion tracking data from 30 lung tumors over 592 treatment fractions were analyzed for baseline shift. The finite state model (FSM) was used to identify the end-of-exhale (EOE) breathing phase throughout each treatment fraction. Using duty cycle as an evaluation metric, several methods of end-of-exhale dynamic gating were compared: An a posteriori ideal gating window, a predictive trend-line-based gating window, and a predictive weighted point-based gating window. These methods were evaluated for each of several gating window types: Superior/inferior (SI) gating, anterior/posterior beam, lateral beam, and 3D gating. Results: In the absence of dynamic gating techniques, SI gating gave a 39.6% duty cycle. The ideal SI gating window yielded a 41.5% duty cycle. The weight-based method of dynamic SI gating yielded a duty cycle of 36.2%. The trend-line-based method yielded a duty cycle of 34.0%. Conclusions: Dynamic gating was not broadly beneficial due to a breakdown of the FSM's ability to identify the EOE phase. When the EOE phase was well defined, dynamic gating showed an improvement over static-window gating.

  14. Bill Gates eyes healthcare market.

    Science.gov (United States)

    Dunbar, C

    1995-02-01

    The entrepreneurial spirit is still top in Bill Gates' mind as he look toward healthcare and other growth industries. Microsoft's CEO has not intention of going the way of other large technology companies that became obsolete before they could compete today.

  15. Ammonia recovery from anaerobically digested cattle manure by steam stripping.

    Science.gov (United States)

    Zeng, L; Mangan, C; Li, X

    2006-01-01

    Ammonia recovery from anaerobically digested cattle manure effluents through steam stripping was studied at a stripping tower temperature of 98-99 degrees C and a steam-water ratio approximately 56-72 g/L. The digested manure effluents were first treated by microfiltration and then the permeate was used as feed in steam stripping. The stripping performance was evaluated under different feed pH values, ammonia concentrations and temperatures. The increase of the initial feed pH does not significantly improve ammonia stripping efficiency due to the fact that the stripped effluent pH is increased during steam stripping. This suggests that steam stripping of anaerobically digested manure effluents for ammonia recovery may not need pre-raised pH. In contrast, the pH value of the synthetic ammonia wastewater containing NH4Cl dramatically decreases after steam stripping. Increasing the feed temperature slightly improves ammonia stripping efficiency, but reduces the concentration of the recovered ammonia in the condensate due to an increased condensate volume at a higher feed temperature. Therefore, the feed temperature should be controlled at an optimum point that can compromise the condensate ammonia concentration and the ammonia stripping efficiency. Experimental results indicate that recovery of ammonia from anaerobically digested cattle manure effluents as NH4OH is technically feasible.

  16. Dual deflectable beam strip engine development.

    Science.gov (United States)

    Dulgeroff, C. R.; Zuccaro, D. E.; Kami, S.; Schnelker, D. E.; Ward, J. W.

    1972-01-01

    This paper describes a dual beam thruster that has been designed, constructed, and tested. The system is suitable for two-axes attitude control and is comprised of two orthogonal strips, each capable of producing 0.30 mlb thrust and beam deflections of more than plus or minus 20 deg. The nominal specific impulse for the thruster is 5000 sec, and the thrust level from each strip can be varied from 0 to 100%. Neutralizer filaments that were developed and life tested over 2000 hours producing more than 40 mA of electron emission per watt of input power are also discussed. The system power required for clean ionizers is approximately 200 W.

  17. Nuclear reactor spring strip grid spacer

    International Nuclear Information System (INIS)

    Patterson, J.F.; Flora, B.S.

    1980-01-01

    An improved and novel grid spacer was developed for use in nuclear reactor fuel assemblies. It is comprised of a series of intersecting support strips and a peripheral support band attached to the ends of the support strips. Each of the openings into which the fuel element is inserted has a number of protruding dimples and springs extending in different directions. The dimples coact with the springs to secure the fuel rods in the openings. Compared with previous designs, this design gives more positive alignment of the support stips while allowing greater flexibility to counterbalance the effects of thermal expansion. The springs are arranged in alternating directions so that the reaction forces tend to counterbalance each other, which in turn minimizes the reaction loads on the supporting structure. (D.N.)

  18. L-strip proximity fed ga

    Directory of Open Access Journals (Sweden)

    Ashish Singh

    2014-03-01

    Full Text Available In this article, the analysis of dualband L-strip fed compact semi-circular disk microstrip patch antenna has been presented using circuit theory concept. The antenna parameters such as return loss, VSWR and radiation pattern are calculated. The effect of geometric dimensions of the proposed antenna such as length of vertical and horizontal portion of L-strip is investigated. It is found that antenna resonate at two distinct modes i.e. 1.3 GHz and 6.13 GHz for lower and upper resonance frequencies respectively. The bandwidth of the proposed antenna at lower resonance frequency is 6.61% (simulated and 10.64% (theoretical whereas at upper resonance frequency, it is 6.02% (simulated and 9.06 % (theoretical. The theoretical results are compared with IE3D simulation results as well as experimental results and they are in close agreement.

  19. Strip-till seeder for sugar beets

    Directory of Open Access Journals (Sweden)

    Peter Schulze Lammers

    2014-06-01

    Full Text Available Strip-till save costs by reducing tillage on the area of sugar beet rows only. The seeding system is characterized by a deep loosening of soil with a tine combined with a share and by following tools generating fine-grained soil as seed bed. In cooperation with the Kverneland company group Soest/Germany a strip tiller combined with precision seeder was designed and tested in field experiments. Tilling and seeding was performed in one path on fields with straw and mustard mulch. Even the plant development was slower as compared to conventional sawn sugar beets the yield was on equivalent level. Further field experiments are planned to attest constant yield, cost and energy efficiency of the seeding system.

  20. Continuous liquid sheet generator for ion stripping

    International Nuclear Information System (INIS)

    Gavin, B.; Batson, P.; Leemann, B.; Rude, B.

    1984-10-01

    Many of the technical problems of generating a large thin liquid sheet from 0.02 to 0.20 μm thick (3 to 40 μgm/cm 2 ) have been solved. It is shown that this perennial sheet is stable and consonant in dimension. Several ion beam species from the SuperHILAC have been used for evaluation; at 0.11 MeV/n. In one of three modes this sheet serves as an equivalent substitute for a carbon foil. The second mode is characterized by a solid-like charge state distribution but with a varying fraction of unstripped ions. The third mode gives stripping performance akin to a vapor stripping medium. 9 references, 7 figures

  1. Strengthening Bridges with Prestressed CFRP Strips

    Science.gov (United States)

    Siwowski, Tomasz; Żółtowski, Piotr

    2012-06-01

    Limitation of bridge's carrying bearing capacity due to aging and deterioration is a common problem faced by road administration and drivers. Rehabilitation of bridges including strengthening may be applied in order to maintain or upgrade existing bridge parameters. The case studies of strengthening of two small bridges with high modulus prestressed CFRP strips have been presented in the paper. The first one - reinforced concrete slab bridge - and the other - composite steel-concrete girder bridge - have been successfully upgraded with quite new technology. In both cases the additional CFRP reinforcement let increasing of bridge carrying capacity from 15 till 40 metric tons. The CFRP strip prestressing system named Neoxe Prestressing System (NPS), developed by multi-disciplinary team and tested at full scale in Rzeszow University of Technology, has been also described in the paper.

  2. The extent of the stop coannihilation strip

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); CERN, Theory Division, Geneva 23 (Switzerland); Olive, Keith A. [University of Minnesota, School of Physics and Astronomy, Minneapolis, MN (United States); University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States); Zheng, Jiaming [University of Minnesota, School of Physics and Astronomy, Minneapolis, MN (United States)

    2014-07-15

    Many supersymmetric models such as the constrained minimal supersymmetric extension of the Standard Model (CMSSM) feature a strip in parameter space where the lightest neutralino χ is identified as the lightest supersymmetric particle, the lighter stop squark t{sub 1} is the next-to-lightest supersymmetric particle (NLSP), and the relic χ cold darkmatter density is brought into the range allowed by astrophysics and cosmology by coannihilation with the lighter stop squark t{sub 1} NLSP. We calculate the stop coannihilation strip in the CMSSM, incorporating Sommerfeld enhancement effects, and we explore the relevant phenomenological constraints and phenomenological signatures. In particular, we show that the t{sub 1} may weigh several TeV, and its lifetime may be in the nanosecond range, features that are more general than the specific CMSSM scenarios that we study in this paper. (orig.)

  3. Antenna with distributed strip and integrated electronic components

    Science.gov (United States)

    Rodenbeck, Christopher T [Albuquerque, NM; Payne, Jason A [Albuquerque, NM; Ottesen, Cory W [Albuquerque, NM

    2008-08-05

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.

  4. Gate induced drain leakage reduction with analysis of gate fringing field effect on high-κ/metal gate CMOS technology

    Science.gov (United States)

    Jang, Esan; Shin, Sunhae; Jung, Jae Won; Rok Kim, Kyung

    2015-06-01

    We suggest the optimum permittivity for a high-κ/metal gate (HKMG) CMOS structure based on the trade-off characteristics between the fringing field induced barrier lowering (FIBL) and gate induced drain leakage (GIDL). By adopting the high-κ gate dielectric, the GIDL from the band-to-band tunneling at the interface of gate and lightly doped drain (LDD) is suppressed with wide tunneling width owing to the enhanced fringing field, while the FIBL effects is degenerated as the previous reports. These two effects from the gate fringing field are studied extensively to manage the leakage current of HKMG for low power applications.

  5. ``Gate-to-gate`` BJT obtained from the double-gate input JFET to reset charge preamplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Fazzi, A. [Politecnico di Milano (Italy). Dipartimento di Ingegneria Nucleare; Rehak, P. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    1996-08-01

    A novel charge restoration mechanism to reset charge sensitive preamplifiers is presented. The ``gate-to-gate`` Bipolar Junction Transistor transversal to the input JFET with independent top and bottom gates is exploited as a ``reset transistor`` embodied in the preamplifier input device. The p-n junction between the bottom gate and the channel is forward-biased by a proper feedback loop supplying the necessary restoration current to the input node capacitance through the top gate-channel reversed-biased junction. The continuous reset mode is here analysed with reference to the DC stability, the pulse response and the noise behaviour. Experimental results are reported. (orig.).

  6. Cathode readout with stripped resistive drift tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Novikov, E.A.; Peshekhonov, V.D.; Shafranov, M.D.; Zhiltsov, V.E.

    1995-01-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented. (orig.)

  7. Neutralization of H- beams by magnetic stripping

    International Nuclear Information System (INIS)

    Jason, A.J.; Hudgings, D.W.; van Dyck, O.B.

    1981-01-01

    The stability of H - beams passing through strong magnetic fields has been relevant to accelerator transport problems and, recently, to neutral beam preparation techniques. The H - electron detachment rate was measured as a function of rest-frame electric field and provides parameters for a theoretical lifetime expression. The limitations imposed on H - transport by magnetic stripping, and neutral-beam preparation in emittance growth, magnetic fields, and beam energies are discussed. Application techniques are also briefly discussed

  8. Ram pressure stripping of tilted galaxies

    Czech Academy of Sciences Publication Activity Database

    Jáchym, Pavel; Köppen, J.; Palouš, Jan; Combes, F.

    2009-01-01

    Roč. 500, č. 2 (2009), s. 693-703 ISSN 0004-6361 R&D Projects: GA MŠk(CZ) LC06014; GA ČR GP205/08/P556 Institutional research plan: CEZ:AV0Z10030501 Keywords : interstellar medium * clusters of galaxies * gas stripping Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009

  9. SU-F-T-634: Feasibility Study of Respiratory Gated RapidArc SBRT Using a 6MV FFF Photon Beam

    International Nuclear Information System (INIS)

    Dou, K; Safaraz, M; Rodgers, J; Jacobs, M; Laser, B

    2016-01-01

    Purpose: To conduct a feasibility study on retrospective respiratory gating and marker tracking for lung stereotactic body radiotherapy (SBRT) with a gated RapidArc delivery using a 6MV flattened filter free photon mode. Methods: A CIRS dynamic thorax phantom Model 008A with different inserts was used for treatment planning and respiratory gating. 4D CT had a free breathing simulation followed by a respiration gated, ten phased CT using a Philips Brilliance CT with a Varian RPM respiratory gating system. The internal target volume was created from the ten phase gated CT images, followed by exporting to a Varian Eclipse TPS v11 for treatment planning on the free breath images. Both MIP and AIP were also generated for comparison of planning and target motion tracking. The planned dose was delivered with a 6MV FFF photon beam from a Varian TrueBeam accelerator. Gated target motion was also verified by tracking the implanted makers during delivery using continuous kV imaging in addition to CBCT, kV and MV localization and verification. Results: Gating was studied in three situations of lower, normal, and faster breathing at a respiratory cycle of 5, 15 and 25 breaths per minute, respectively. 4D treatment planning was performed at a normal breathing of 15 breaths per minute. The gated patterns obtained using the TrueBeam IR camera were compared with the planned ones while gating operation was added prior to delivery . Gating was realized only when the measured respiratory patterns matched to the planned ones. The gated target motion was verified within the tolerance by kV and MV imaging. Either free breathing CT or averaged CT images were studied to be good for image guidance to align the target. Conclusion: Gated RapidArc SBRT delivered with a 6MV FFF photon beam is realized using a dynamic lung phantom.

  10. SU-F-T-634: Feasibility Study of Respiratory Gated RapidArc SBRT Using a 6MV FFF Photon Beam

    Energy Technology Data Exchange (ETDEWEB)

    Dou, K; Safaraz, M; Rodgers, J [RadAmerica, MedStar Health, Baltimore, MD (United States); Jacobs, M; Laser, B [Mercy Medical Center Radiation Oncology, Baltimore, MD (United States)

    2016-06-15

    Purpose: To conduct a feasibility study on retrospective respiratory gating and marker tracking for lung stereotactic body radiotherapy (SBRT) with a gated RapidArc delivery using a 6MV flattened filter free photon mode. Methods: A CIRS dynamic thorax phantom Model 008A with different inserts was used for treatment planning and respiratory gating. 4D CT had a free breathing simulation followed by a respiration gated, ten phased CT using a Philips Brilliance CT with a Varian RPM respiratory gating system. The internal target volume was created from the ten phase gated CT images, followed by exporting to a Varian Eclipse TPS v11 for treatment planning on the free breath images. Both MIP and AIP were also generated for comparison of planning and target motion tracking. The planned dose was delivered with a 6MV FFF photon beam from a Varian TrueBeam accelerator. Gated target motion was also verified by tracking the implanted makers during delivery using continuous kV imaging in addition to CBCT, kV and MV localization and verification. Results: Gating was studied in three situations of lower, normal, and faster breathing at a respiratory cycle of 5, 15 and 25 breaths per minute, respectively. 4D treatment planning was performed at a normal breathing of 15 breaths per minute. The gated patterns obtained using the TrueBeam IR camera were compared with the planned ones while gating operation was added prior to delivery . Gating was realized only when the measured respiratory patterns matched to the planned ones. The gated target motion was verified within the tolerance by kV and MV imaging. Either free breathing CT or averaged CT images were studied to be good for image guidance to align the target. Conclusion: Gated RapidArc SBRT delivered with a 6MV FFF photon beam is realized using a dynamic lung phantom.

  11. CLOSED-LOOP STRIPPING ANALYSIS (CLSA) OF ...

    Science.gov (United States)

    Synthetic musk compounds have been found in surface water, fish tissues, and human breast milk. Current techniques for separating these compounds from fish tissues require tedious sample clean-upprocedures A simple method for the deterrnination of these compounds in fish tissues has been developed. Closed-loop stripping of saponified fish tissues in a I -L Wheaton purge-and-trap vessel is used to strip compounds with high vapor pressures such as synthetic musks from the matrix onto a solid sorbent (Abselut Nexus). This technique is useful for screening biological tissues that contain lipids for musk compounds. Analytes are desorbed from the sorbent trap sequentially with polar and nonpolar solvents, concentrated, and directly analyzed by high resolution gas chromatography coupled to a mass spectrometer operating in the selected ion monitoring mode. In this paper, we analyzed two homogenized samples of whole fish tissues with spiked synthetic musk compounds using closed-loop stripping analysis (CLSA) and pressurized liquid extraction (PLE). The analytes were not recovered quantitatively but the extraction yield was sufficiently reproducible for at least semi-quantitative purposes (screening). The method was less expensive to implement and required significantly less sample preparation than the PLE technique. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water,

  12. Deuteron stripping reactions with Tabakin potential

    International Nuclear Information System (INIS)

    Osman, A.

    1976-05-01

    Deuteron stripping reactions are considered. Due to the strong repulsion between nucleons at very short distances, we have investigated the nuclear short-range correlations. The neutron proton nuclear potential in the deuteron is taken as a short-range repulsive core surrounded by a long-range attractive potential. The neutron-proton potential is taken as the Tabakin separable potential to take into account the short-range correlations. The differential cross-sections for deuteron stripping reactions have been calculated in two different cases by taking Yamaguchi or Breit et al type parameters for the Tabakin potential used. The angular distributions for different (d,p) stripping reactions on the different target nuclei 28 Si, 32 , 34 S, 36 Ar, 40 , 48 Ca, 50 , 52 , 54 Cr have been calculated using the DWBA calculations. Our present theoretical calculations for the angular distributions of the different reactions cosidered have been fitted to the experimental data, where good agreement is obtained. The extracted spectroscopic factors from the present work are found to be more reliable

  13. Non-ECG-gated CT pulmonary angiography and the prediction of right ventricular dysfunction in patients suspected of pulmonary embolism

    DEFF Research Database (Denmark)

    Gutte, Henrik; Mortensen, Jann; Mørk, Mette Louise

    2017-01-01

    angiography (CTPA) could predict RVD in patients suspected of PE using ECG-gated cardiac CT angiography as reference. METHODS: Consecutive patients suspected of PE were referred to a ventilation/perfusion single-photon emission tomography (V/Q-SPECT) as first-line imaging procedure. Patients had a V/Q-SPECT/CT......, a CTPA and an ECG-gated cardiac CT angiography performed the same day. RESULTS: A total of 71 patients were available for analysis. Seventeen patients (24%) had RVD. The non-ECG-gated dimensions of left and right ventricle and the major vessels were correlated with ECG-gated cardiac dimensions. The size...

  14. Noise analysis due to strip resistance in the ATLAS SCT silicon strip module

    International Nuclear Information System (INIS)

    Kipnis, I.

    1996-08-01

    The module is made out of four 6 cm x 6 cm single sided Si microstrip detectors. Two detectors are butt glued to form a 12 cm long mechanical unit and strips of the two detectors are electrically connected to form 12 cm long strips. The butt gluing is followed by a back to back attachment. The module in this note is the Rφ module where the electronics is oriented parallel to the strip direction and bonded directly to the strips. This module concept provides the maximum signal-to-noise ratio, particularly when the front-end electronics is placed near the middle rather than at the end. From the noise analysis, it is concluded that the worst-case ΔENC (far-end injection) between end- and center-tapped modules will be 120 to 210 el. rms (9 to 15%) for a non-irradiated detector and 75 to 130 el. rms (5 to 9%) for an irradiated detector, for a metal strip resistance of 10 to 20 Ω/cm

  15. Prospective gated chest tomosynthesis using CNT X-ray source array

    Science.gov (United States)

    Shan, Jing; Burk, Laurel; Wu, Gongting; Lee, Yueh Z.; Heath, Michael D.; Wang, Xiaohui; Foos, David; Lu, Jianping; Zhou, Otto

    2015-03-01

    Chest tomosynthesis is a low-dose 3-D imaging modality that has been shown to have comparable sensitivity as CT in detecting lung nodules and other lung pathologies. We have recently demonstrated the feasibility of stationary chest tomosynthesis (s-DCT) using a distributed CNT X-ray source array. The technology allows acquisition of tomographic projections without moving the X-ray source. The electronically controlled CNT x-ray source also enables physiologically gated imaging, which will minimize image blur due to the patient's respiration motion. In this paper, we investigate the feasibility of prospective gated chest tomosynthesis using a bench-top s-DCT system with a CNT source array, a high- speed at panel detector and realistic patient respiratory signals captured using a pressure sensor. Tomosynthesis images of inflated pig lungs placed inside an anthropomorphic chest phantom were acquired at different respiration rate, with and without gating for image quality comparison. Metal beads of 2 mm diameter were placed on the pig lung for quantitative measure of the image quality. Without gating, the beads were blurred to 3:75 mm during a 3 s tomosynthesis acquisition. When gated to the end of the inhalation and exhalation phase the detected bead size reduced to 2:25 mm, much closer to the actual bead size. With gating the observed airway edges are sharper and there are more visible structural details in the lung. Our results demonstrated the feasibility of prospective gating in the s-DCT, which substantially reduces image blur associated with lung motion.

  16. Images

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  17. Near-field nano-imager

    Science.gov (United States)

    Liu, Boyang (Inventor); Ho, Seng-Tiong (Inventor)

    2010-01-01

    An imaging device. In one embodiment, the imaging device includes a plurality of first electrode strips in parallel to each other along a first direction x, wherein each first electrode strip has an elongated body with a first surface and an opposite, second surface and a thickness n.sub.1. The imaging device also includes a plurality of second electrode strips in parallel to each other along a second direction y that is substantially perpendicular to the first direction x, wherein each second electrode strip has an elongated body with a first surface and an opposite, second surface and a thickness n.sub.2. The plurality of second electrode strips are positioned apart from the plurality of first electrode strips along a third direction z that is substantially perpendicular to the first direction x and the second direction y such that the plurality of first electrode strips and the plurality of second electrode strips are crossing each other accordingly to form a corresponding number of crossing points. And at each crossing point, a semiconductor component is filled between the second surface of a corresponding first electrode strip and the first surface of a corresponding second electrode strip to form an addressable pixel.

  18. Video-coaching as biofeedback tool to improve gated treatments. Possibilities and limitations

    International Nuclear Information System (INIS)

    Cossmann, Peter H.

    2012-01-01

    For respiratory gated radiotherapy the manufacturers of linear accelerators offer dedicated gating technologies. The video-based Varian RPM Gating system (Varian Medical Systems, Palo Alto/CA, USA) includes in a standard configuration a support tool for regular breathing called audiocoaching. As this approach has limitations regarding direct control of the patient's breathing due to a missing feedback, we designed an additional tool offering videocoaching. In order to evaluate the impact of this additional functionality, we measured parameters defining the image quality of 4D-CT data as well as the treatment duration which is mainly influenced by the patient's limited ability to achieve a stable breathing pattern. (orig.)

  19. The effects of tumor motion on planning and delivery of respiratory-gated IMRT

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D.; Agazaryan, Nzhde; Solberg, Timothy D.

    2003-01-01

    The purpose of this study is to investigate the effects of object motion on the planning and delivery of IMRT. Two phantoms containing objects were imaged using CT under a variety of motion conditions. The effects of object motion on axial CT acquisition with and without gating were assessed qualitatively and quantitatively. Measurements of effective slice width and position for the CT scans were made. Mutual information image fusion was adapted for use as a quantitative measure of object deformation in CT images. IMRT plans were generated on the CT scans of the moving and gated object images. These plans were delivered with motion, with and without gating, and the delivery error between the moving deliveries and a nonmoving delivery was assessed using a scalable vector-based index. Motion during CT acquisition produces motion artifact, object deformation, and object mispositioning, which can be substantially reduced with gating. Objects that vary in cross section in the direction of motion exhibit the most deformation in CT images. Mutual information provides a useful quantitative estimate of object deformation. The delivery of IMRT in the presence of target motion significantly alters the delivered dose distribution in relation to the planned distribution. The utilization of gating for IMRT treatment, including imaging, planning, and delivery, significantly reduces the errors introduced by object motion

  20. Coronary endothelial function assessment using self-gated cardiac cine MRI and k-t sparse SENSE.

    Science.gov (United States)

    Yerly, Jérôme; Ginami, Giulia; Nordio, Giovanna; Coristine, Andrew J; Coppo, Simone; Monney, Pierre; Stuber, Matthias

    2016-11-01

    Electrocardiogram (ECG)-gated cine MRI, paired with isometric handgrip exercise, can be used to accurately, reproducibly, and noninvasively measure coronary endothelial function (CEF). Obtaining a reliable ECG signal at higher field strengths, however, can be challenging due to rapid gradient switching and an increased heart rate under stress. To address these limitations, we present a self-gated cardiac cine MRI framework for CEF measurements that operates without ECG signal. Cross-sectional slices of the right coronary artery (RCA) were acquired using a two-dimensional golden angle radial trajectory. This sampling approach, combined with the k-t sparse SENSE algorithm, allows for the reconstruction of both real-time images for self-gating signal calculations and retrospectively reordered self-gated cine images. CEF measurements were quantitatively compared using both the self-gated and the standard ECG-gated approach. Self-gated cine images with high-quality, temporal, and spatial resolution were reconstructed for 18 healthy volunteers. CEF as measured in self-gated images was in good agreement (R 2  = 0.60) with that measured by its standard ECG-gated counterpart. High spatial and temporal resolution cross-sectional cine images of the RCA can be obtained without ECG signal. The coronary vasomotor response to handgrip exercise compares favorably with that obtained with the standard ECG-gated method. Magn Reson Med 76:1443-1454, 2015. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  1. Time-gated energy-selected cold neutron radiography

    CERN Document Server

    McDonald, T E; Claytor, T N; Farnum, E H; Greene, G L; Morris, C

    1999-01-01

    A technique is under development at the Los Alamos Neutron Science Center (LANSCE), Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) for producing neutron radiography using only a narrow energy range of cold neutrons. The technique, referred to as time-gated energy-selected (TGES) neutron radiography, employs the pulsed neutron source at the Lujan Center with time of flight to obtain a neutron pulse having an energy distribution that is a function of the arrival time at the imager. The radiograph is formed on a short persistence scintillator and a gated, intensified, cooled CCD camera is employed to record the images, which are produced at the specific neutron energy range determined by the camera gate. The technique has been used to achieve a degree of material discrimination in radiographic images. For some materials, such as beryllium and carbon, at energies above the Bragg cutoff the neutron scattering cross section is relatively high while at energies below the Bragg cutoff the scattering cross ...

  2. Development of colloidal gold immunochromatographic strips for detection of Riemerella anatipestifer.

    Directory of Open Access Journals (Sweden)

    Wanwan Hou

    Full Text Available Riemerella anatipestifer is one of the most important bacterial pathogen of ducks and causes a contagious septicemia. R. anatipestifer infection causes serositis syndromes similar to other bacterial infections in ducks, including infection by Escherichia coli, Salmonella enterica and Pasteurella multocida. Clinically differentiating R. anatipestifer infections from other bacterial pathogen infections is usually difficult. In this study, MAb 1G2F10, a monoclonal antibody against R. anatipestifer GroEL, was used to develop a colloidal gold immunochromatographic strip. Colloidal gold particles were prepared by chemical synthesis to an average diameter of 20 ± 5.26 nm by transmission electron microscope imaging. MAb 1G2F10 was conjugated to colloidal gold particles and the formation of antibody-colloidal gold conjugates was monitored by UV/Vis spectroscopy. Immunochromatographic strips were assembled in regular sequence through different accessories sticked on PVC plate. Strips specifically detected R. anatipestifer within 10 min, but did not detect E. coli, S. enterica and P. multocida. The detection limit for R. anatipestifer was 1 × 10(6 colony forming units, which was 500 times higher than a conventional agglutination test. Accuracy was 100% match to multiplex PCR. Assay stability and reproducibility were excellent after storage at 4°C for 6 months. The immunochromatographic strips prepared in this study offer a specific, sensitive, and rapid detection method for R. anatipestifer, which is of great importance for the prevention and control of R. anatipestifer infections.

  3. You're a good structure, Charlie Brown: the distribution of narrative categories in comic strips.

    Science.gov (United States)

    Cohn, Neil

    2014-01-01

    Cohn's (2013) theory of "Visual Narrative Grammar" argues that sequential images take on categorical roles in a narrative structure, which organizes them into hierarchic constituents analogous to the organization of syntactic categories in sentences. This theory proposes that narrative categories, like syntactic categories, can be identified through diagnostic tests that reveal tendencies for their distribution throughout a sequence. This paper describes four experiments testing these diagnostics to provide support for the validity of these narrative categories. In Experiment 1, participants reconstructed unordered panels of a comic strip into an order that makes sense. Experiment 2 measured viewing times to panels in sequences where the order of panels was reversed. In Experiment 3, participants again reconstructed strips but also deleted a panel from the sequence. Finally, in Experiment 4 participants identified where a panel had been deleted from a comic strip and rated that strip's coherence. Overall, categories had consistent distributional tendencies within experiments and complementary tendencies across experiments. These results point toward an interaction between categorical roles and a global narrative structure. © 2014 Cognitive Science Society, Inc.

  4. Voltage-gated Proton Channels

    Science.gov (United States)

    DeCoursey, Thomas E.

    2014-01-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance ~103 smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn2+ (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H+ for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens. PMID:23798303

  5. Design and characterization of integrated front-end transistors in a micro-strip detector technology

    International Nuclear Information System (INIS)

    Simi, G.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Manghisoni, M.; Morganti, M.; U. Pignatel, G.; Ratti, L.; Re, V.; Rizzo, G.; Speziali, V.; Zorzi, N.

    2002-01-01

    We present the developments in a research program aimed at the realization of silicon micro-strip detectors with front-end electronics integrated in a high resistivity substrate to be used in high-energy physics, space and medical/industrial imaging applications. We report on the fabrication process developed at IRST (Trento, Italy), the characterization of the basic wafer parameters and measurements of the relevant working characteristics of the integrated transistors and related test structures

  6. Cardiac pathologies incidentally detected with non-gated chest CT; Inzidentelle Pathologien des Herzens im Thorax-CT

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Axel; Kroepil, P.; Lanzman, R.S.; Moedder, U. [Inst. fuer Radiologie, Universitaetsklinikum Duesseldorf, Heinrich-Heine-Univ. (Germany); Choy, G.; Abbara, S. [Cardiovascular Imaging Section, Massachusetts General Hospital, Harvard Medical School (United States)

    2009-12-15

    Cardiac imaging using electrocardiogram-gated multi-detector computed tomography (MDCT) permits noninvasive diagnosis of congenital and acquired cardiac pathologies and has thus become increasingly important in the last years. Several studies investigated the incidence and relevance of incidental extracardiac structures within the lungs, mediastinum, chest wall, and abdomen with gated coronary CT. This resulted in the general acceptance of the review of extracardiac structures as a routine component of coronary CT interpretation. On the other hand radiologists tend to neglect pericardial and cardiac pathologies in non-gated chest CT, which is primarily performed for the evaluation of the respiratory system or for tumor staging. Since the introduction of multi-detector spiral CT technology, the incidental detection of cardiac and pericardial findings has become possible using non-gated chest CT. This article reviews the imaging appearances and differential diagnostic considerations of incidental cardiac entities that may be encountered in non-gated chest CT. (orig.)

  7. Integrated USB based readout interface for silicon strip detectors of the ATLAS SCT module

    Science.gov (United States)

    Masek, P.; Linhart, V.; Granja, C.; Pospisil, S.; Husak, M.

    2011-12-01

    An integrated portable USB based readout interface for the ATLAS semiconductor trackers (SCT) has been built. The ATLAS SCT modules are large area silicon strip detectors designed for tracking of high-energy charged particles resulting in collisions on Large Hadron Collider (LHC) in CERN. These modules can be also used on small accelerators for medical or industry applications where a compact and configurable readout interface would be useful. A complete custom made PC-host software tool was written for Windows platform for control and DAQ with build-in online visualization. The new constructed interface provides integrated power, control and DAQ and configurable communication between the detector module and the controlling PC. The interface is based on the Field Programmable Gate Array (FPGA) and the high speed USB 2.0 standard. This design permits to operate the modules under high particle fluence while minimizing the dead time of the whole detection system. Utilization of the programmable device simplifies the operation and permits future expansion of the functionality without any hardware changes. The device includes the high voltage source for detector bias up to 500 V and it is equipped with number of devices for monitoring the operation and conditions of measurement (temperature, humidity, voltage). These features are particularly useful as the strip detector must be operated in a well controlled environment. The operation of the interface will be demonstrated on data measured with different particles from radiation sources.

  8. High pressure water jet cutting and stripping

    Science.gov (United States)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  9. The CMS Si-Strip Tracker

    CERN Document Server

    Sguazzoni, Giacomo

    2004-01-01

    The Compact Muon Solenoid (CMS) experiment at LHC features the largest Silicon Strip Tracker (SST) ever build. This device is immersed in a 4T magnetic field and, in conjunction with a Pixel system, it allows the momentum of the charged particles to be measured and the heavy-flavour final states to be tagged despite the hostile radiation environment. The impact of operating conditions and physics requirements on the SST layout and design choices is discussed and the expected performances are reviewed. The SST collaboration is now facing the production of the ~15000 modules and their assembly into the SST substructures. A status is given.

  10. The CMS Si-strip Tracker

    CERN Document Server

    Sguazzoni, Giacomo

    2004-01-01

    The Compact Muon Solenoid (CMS) experiment at LHC features the largest Silicon Strip Tracker (SST) ever build. This device is immersed in a 4T magnetic field and, in conjunction with a Pixel system, it allows the momentum of the charged particles to be measured and the heavy-flavour final states to be tagged despite the hostile radiation environment. The impact of operating conditions and physics requirements on the SST layout and design choices is discussed and the expected performances are reviewed. The SST collaboration is now facing the production of the ~15000 modules and their assembly into the SST substructures. A status is given.

  11. Tritium stripping by a catalytic exchange stripper

    International Nuclear Information System (INIS)

    Heung, L.K.; Gibson, G.W.; Ortman, M.S.

    1991-01-01

    A catalytic exchange process for stripping elemental tritium from gas streams has been demonstrated. The process uses a catalyzed isotopic exchange reaction between tritium in the gas phase and protium or deuterium in the solid phase on alumina. The reaction is catalyzed by platinum deposited on the alumina. The process has been tested with both tritium and deuterium. Decontamination factors (ration of inlet and outlet tritium concentrations) as high as 1000 have been achieved, depending on inlet concentration. The test results and some demonstrated applications are presented

  12. Comparative study of corneal strip extensometry and inflation tests

    OpenAIRE

    Elsheikh, Ahmed; Anderson, Kevin

    2005-01-01

    Strip extensometry tests are usually considered less reliable than trephinate inflation tests in studying corneal biomechanics. In spite of the evident simplicity of strip extensometry tests, several earlier studies preferred inflation tests in determining the constitutive relationship of the cornea and its other material properties, such as Young's modulus and the hysteresis behaviour. In this research, the deficiencies of the strip tests are discussed and a mathematical procedure presented ...

  13. DEVELOPMENT OF DEFORMATION STRIPS WHILE STRETCHING OF CYLINDRICAL SAMPLES

    Directory of Open Access Journals (Sweden)

    Y. V. Vasilevich

    2011-01-01

    Full Text Available Deformation strips have been experimentally revealed and described while stretching of cylindrical samples by means of computer thermography. It has been established that temperature of shift strip surface grows smoothly up to the stage of crack origin in material defect. Sharp growth of surface temperature occurs when tensile stresses reach tensile strength. Change in surface temperature occurs wavy after destruction (while cooling the sample. Processes of material destruction origin and development  characterize temperature changes in deformation strips.

  14. Reference Range of Functional Data of Gated Myocardial Perfusion SPECT by Quantitative Gated SPECT of Cedars-Sinai and 4D-MSPECT of Michigan University

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Kim, Moo Hyun; Kim, Young Dae [College of Medicine, Univ. of Donga, Pusan (Korea, Republic of)

    2003-07-01

    Various programs have been developed for gating of myocardial perfusion SPECT. Among the those program, the most popular program is the Quantitative Gated SPECT (QGS)? developed by Cedars-Sinai hospital and most recently released program is 4D-MSPECT? developed by university of Michigan. It is important to know the reference range of the functional data of gated myocardial perfusion SPECT because it is necessary to determine abnormality of individual patient and echocardiographic data is different from those of gated SPECT. Tc-99m MIBI gated myocardial perfusion SPECT image was reconstructed by dual head gamma camera (Siemens, BCAM, esoft) as routine procedure and analyzed using QGS? and 4D-MSPECT? program. All patients (M: F=9: 18, Age 69{+-}9 yrs) showed normal myocardial perfusion. The patients with following characteristics were excluded: previous angina or MI history, ECG change with Q wave or ST-T change, diabetes melitius, hypercholesterolemia, typical chest pain, hypertension and cardiomyopathy. Pre-test likelihood of all patients was low. (1) In stress gated SPECT by QGS?, EDV was 73{+-}25 ml, ESV 25{+-}14 ml, EF 67{+-}11 % and area of first frame of gating 106.4{+-}21cm{sup 2}. In rest gated SPECT, EDV was 76{+-}26 ml, ESV 27{+-}15 ml, EF 66{+-}12 and area of first frame of gating 108{+-}20cm{sup 2}. (2) In stress gated SPECT by 4D-MSPECT?, EDV was 76{+-}28 ml, ESV 23{+-}16 ml, EF 72{+-}11 %, mass 115{+-}24 g and ungated volume 42{+-}15 ml. In rest gated SPECT, EDV was 75{+-}27 ml, ESV 23{+-}12 ml, EF 71{+-}9%, mass 113{+-}25g and ungate dvolume 42{+-}15 ml, (3) s-EDV, s-EF, r-ESV and r-EF were significantly different between QGS? and 4D-MSPECT? (each p=0.016, p<0.001. p=0.003 and p=0.001). We determined the normal reference range of functional parameters by QGS? and 4D-MSPECT? program to diagnose individually the abnormality of patients. And the reference ranges have to adopted to be patients by each specific gating program.

  15. Influencing factors of Gate's method to measure of glomerular filtration rate

    International Nuclear Information System (INIS)

    Wu Ha; Shi Hongcheng

    2009-01-01

    Glomerular filtration rate (GFR) is an important criterion to estimate renal function. 99 Tc m - diethylenetrimainepentaacetic acid renal dynamic imaging is one of method to measure GFR that it have the characteristics of simple and accurate. But the Gate's method may be influenced by many factors such as dose of imaging agent, outlined of regions of interest, kidney depth, and so on. (authors)

  16. Calculation of the contrast of the calcification in digital mammography system: Gate validation

    Directory of Open Access Journals (Sweden)

    Dooman Arefan

    2018-01-01

    Discussion: According to the SEM rate reported in this research for calculating the contrast of the aluminum foils in the mammography system based on simulation and practical methods, the capability of the Gate tool for simulating digital mammography system and the images created in it from the viewpoint of image contrast can be confirmed.

  17. Absolute quantitation of left ventricular wall and cavity parameters using ECG-gated PET

    DEFF Research Database (Denmark)

    Freiberg, Jacob; Hove, Jens D; Kofoed, Klaus F

    2004-01-01

    in a heart phantom and in healthy subjects. Twelve healthy men aged 64 +/- 8 years were studied by use of cine magnetic resonance imaging (MRI) and ECG-gated FDG-PET during euglycemic glucose-insulin clamp. At increasing image noise levels, the estimated cavity volume of the heart phantom was within 2 m...

  18. Stability of barotropic vortex strip on a rotating sphere.

    Science.gov (United States)

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  19. Strip type radiation detector and method of making same

    International Nuclear Information System (INIS)

    Jantsch, O.; Feigt, I.; Willig, W.R.

    1976-01-01

    An improved strip detector and a method for making such a detector in which a high resistivity N conduction semiconductor body has electrode strips formed thereon by diffusion is described. The strips are formed so as to be covered by an oxide layer at the surface point of the PN junction and in which the opposite side of the semiconductor body then has a substantial amount of material etched away to form a thin semiconductor upon which strip electrodes which are perpendicular to the electrodes on the first side are then placed

  20. Strip defect recognition in electrical tests of silicon microstrip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Valentan, Manfred, E-mail: valentan@mpp.mpg.de

    2017-02-11

    This contribution describes the measurement procedure and data analysis of AC-coupled double-sided silicon microstrip sensors with polysilicon resistor biasing. The most thorough test of a strip sensor is an electrical measurement of all strips of the sensor; the measured observables include e.g. the strip's current and the coupling capacitance. These measurements are performed to find defective strips, e.g. broken capacitors (pinholes) or implant shorts between two adjacent strips. When a strip has a defect, its observables will show a deviation from the “typical value”. To recognize and quantify certain defects, it is necessary to determine these typical values, i.e. the values the observables would have without the defect. As a novel approach, local least-median-of-squares linear fits are applied to determine these “would-be” values of the observables. A least-median-of-squares fit is robust against outliers, i.e. it ignores the observable values of defective strips. Knowing the typical values allows to recognize, distinguish and quantify a whole range of strip defects. This contribution explains how the various defects appear in the data and in which order the defects can be recognized. The method has been used to find strip defects on 30 double-sided trapezoidal microstrip sensors for the Belle II Silicon Vertex Detector, which have been measured at the Institute of High Energy Physics, Vienna (Austria).

  1. Stability of barotropic vortex strip on a rotating sphere

    Science.gov (United States)

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  2. Pavement Stripping in Saudi Arabia: Prediction and Prevention

    Directory of Open Access Journals (Sweden)

    H.I. Al-Abdul Wahhab

    2004-12-01

    Full Text Available Pavement weathering or stripping is a major distress in highway networks in arid regions. Using the Saudi Arabian road network as a case study area, seventeen road test sections were selected, out of which eight were stripped and nine were non-stripped. Aggregates from quarries used to build these sections were also collected and subjected to detailed physical and chemical tests to evaluate the ability of these tests to distinguish between stripped and non-stripped sections. The modified Lottman test was used to distinguish between compacted mixes. In addition, the Swedish Rolling Bottle test, was also found to be effective in being able to distinguish between different asphalt-aggregates for stripping potential. Eleven anti-stripping liquid additives, lime and cement, in addition to two polymers, were evaluated for their ability to reduce/eliminate stripping potential of stripping-prone aggregates. It was found that EE-2 Polymer, Portland cement, and their combination were effective with all aggregate sources.

  3. Evaluation of principal component analysis based data driven respiratory gating for positron emission tomography.

    Science.gov (United States)

    Walker, Matthew D; Bradley, Kevin M; McGowan, Daniel R

    2018-02-08

    Respiratory motion can degrade PET image quality and lead to inaccurate quantification of lesion uptake. Such motion can be mitigated via respiratory gating. Our objective was to evaluate a data driven gating (DDG) technique that is being developed commercially for clinical PET/CT. A data driven respiratory gating algorithm based on principal component analysis (PCA) was applied to phantom and FDG patient data. An anthropomorphic phantom and a NEMA IEC Body phantom were filled with 18F, placed on a respiratory motion platform, and imaged using a PET/CT scanner. Motion waveforms were measured using an infra-red camera (the Real-time Position Management™ system (RPM)) and also extracted from the PET data using the DDG algorithm. The waveforms were compared via calculation of Pearson's correlation coefficients. PET data were reconstructed using quiescent period gating (QPG) and compared via measurement of recovery percentage and background variability. Data driven gating had similar performance to the external gating system, with correlation coefficients in excess of 0.97. Phantom and patient images were visually clearer with improved contrast when QPG was applied as compared to no motion compensation. Recovery coefficients in the phantoms were not significantly different between DDG- and RPM-based QPG, but were significantly higher than those found for no motion compensation (p<0.05). A PCA-based DDG algorithm was evaluated and found to provide a reliable respiratory gating signal in anthropomorphic phantom studies and in example patients. Advances in knowledge: The prototype commercial DDG algorithm may enable reliable respiratory gating in routine clinical PET-CT.

  4. Nonstationary temporal Wiener filtering of gated blood pool studies

    International Nuclear Information System (INIS)

    King, M.A.; Miller, T.R.; Doherty, P.W.; Bianco, J.A.

    1985-01-01

    Temporal filtering of dynamic images can significantly improve the image quality of gated blood pool (GBP) studies and serves as a necessary preprocessing step in the formation of cardiac functional images based on derivatives of pixel time activity curves. Generally, either linear combination of the frames, or a simple frequency domain low pass filter have been employed. The work described in this paper introduces the Wiener temporal filter which adjusts to match the temporal characteristic of the image at each pixel. For temporal data degraded by signal-dependent Poisson noise, the frequency domain form of the filter is presented. Use of nonstationary temporal Wiener filtering was found to improve the quality of cines formed from GBP studies and yielded better separation of cardiac from non-cardiac regions in functional images the peak ejection and filling rates

  5. Solute diffusion through stripped mouse duodenum.

    Science.gov (United States)

    Takeuchi, T; Ham, M; Mizumori, M; Guth, P H; Engel, E; Kaunitz, J D; Akiba, Y

    2007-12-01

    We measured villous cell intracellular pH (pH(i)) and solute diffusion between the bathing media and the epithelial cells in stripped, chambered mouse duodenum. Apical perfusion of a high CO2 solution rapidly acidified the upper villous cells with recovery after its removal. Apical zoniporide (ZP) enhanced CO(2)-induced acidification. Serosal ZP, dimethylamiloride (DMA) or stilbene anion transport inhibitors failed to alter CO(2)-induced acidification, whereas serosal high CO(2) buffer acidified the upper villous cells. Serosal 5-hydroxytryptamine rapidly acidified the upper villous cells. All serosally-perfused fluorescent compounds stained the crypt area, but not the villi or villous cells. In contrast, intravenous carboxyfluorescein quickly diffused into the interstitial space of the entire mucosa, and mucosally perfused fluorescent compound rapidly penetrated the epithelial cell layer. In muscle-stripped duodenum mounted in a small-aperture perfusion chamber, serosal solutes can readily diffuse only to the crypt cell region, whereas access to the villous epithelial cells is diffusion-limited. In contrast, rapid villous cell responses to serosally applied solutes are best explained by neural reflexes. Limited viability of the villous cells and impaired structural stability of the villi further limit long-term, villous cell functional studies of mucosal preparations mounted in small aperture diffusion chambers.

  6. Cognitive mechanisms associated with auditory sensory gating

    Science.gov (United States)

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  7. A registration based approach for 4D cardiac micro-CT using combined prospective and retrospective gating.

    Science.gov (United States)

    Badea, Cristian T; Schreibmann, Eduard; Fox, Tim

    2008-04-01

    Recent advances in murine cardiac studies with three-dimensional cone beam micro-computed tomography (CT) have used either prospective or retrospective gating technique. While prospective gating ensures the best image quality and the highest resolution, it involves longer sampling times and higher radiation dose. Sampling is faster and the radiation dose can be reduced with retrospective gating but the image quality is affected by the limited number of projections with an irregular angular distribution which complicate the reconstruction process, causing significant streaking artifacts. This work involves both prospective and retrospective gating in sampling. Deformable registration is used between a high quality image set acquired with prospective gating with the multiple data sets during the cardiac cycle obtained using retrospective gating. Tests were conducted on a four-dimensional (4D) cardiac mouse phantom and after optimization, the method was applied to in vivo cardiac micro-CT data. Results indicate that, by using our method, the sampling time can be reduced by a factor of 2.5 and the radiation dose can be reduced 35% compared to the prospective sampling while the image quality can be maintained. In conclusion, we proposed a novel solution to 4D cine cardiac micro-CT based on a combined prospective with retrospective gating in sampling and deformable registration post reconstruction that mixed the advantages of both strategies.

  8. MCP gated x-ray framing camera

    Science.gov (United States)

    Cai, Houzhi; Liu, Jinyuan; Niu, Lihong; Liao, Hua; Zhou, Junlan

    2009-11-01

    A four-frame gated microchannel plate (MCP) camera is described in this article. Each frame photocathode coated with gold on the MCP is part of a transmission line with open circuit end driven by the gating electrical pulse. The gating pulse is 230 ps in width and 2.5 kV in amplitude. The camera is tested by illuminating its photocathode with ultraviolet laser pulses, 266 nm in wavelength, which shows exposure time as short as 80 ps.

  9. Gating-ML: XML-based gating descriptions in flow cytometry.

    Science.gov (United States)

    Spidlen, Josef; Leif, Robert C; Moore, Wayne; Roederer, Mario; Brinkman, Ryan R

    2008-12-01

    The lack of software interoperability with respect to gating due to lack of a standardized mechanism for data exchange has traditionally been a bottleneck, preventing reproducibility of flow cytometry (FCM) data analysis and the usage of multiple analytical tools. To facilitate interoperability among FCM data analysis tools, members of the International Society for the Advancement of Cytometry (ISAC) Data Standards Task Force (DSTF) have developed an XML-based mechanism to formally describe gates (Gating-ML). Gating-ML, an open specification for encoding gating, data transformations and compensation, has been adopted by the ISAC DSTF as a Candidate Recommendation. Gating-ML can facilitate exchange of gating descriptions the same way that FCS facilitated for exchange of raw FCM data. Its adoption will open new collaborative opportunities as well as possibilities for advanced analyses and methods development. The ISAC DSTF is satisfied that the standard addresses the requirements for a gating exchange standard.

  10. Evaluation of silicon micro strip detectors with large read-out pitch

    International Nuclear Information System (INIS)

    Senyo, K.; Yamamura, K.; Tsuboyama, T.; Avrillon, S.; Asano, Y.; Bozek, A.; Natkaniec, Z.; Palka, H.; Rozanska, M.; Rybicki, K.

    1996-01-01

    For the development of the silicon micro-strip detector with the pitch of the readout strips as large as 250 μm on the ohmic side, we made samples with different structures. Charge collection was evaluated to optimize the width of implant strips, aluminum read-out strips, and/or the read-out scheme among strips. (orig.)

  11. Feasibility of epicardial adipose tissue quantification in non-ECG-gated low-radiation-dose CT: comparison with prospectively ECG-gated cardiac CT

    International Nuclear Information System (INIS)

    Simon-Yarza, Isabel; Viteri-Ramirez, Guillermo; Saiz-Mendiguren, Ramon; Slon-Roblero, Pedro J.; Paramo, Maria; Bastarrika, Gorka

    2012-01-01

    Background: Epicardial adipose tissue (EAT) is an important indicator of cardiovascular risk. This parameter is generally assessed on ECG-gated computed tomography (CT) images. Purpose: To evaluate feasibility and reliability of EAT quantification on non-gated thoracic low-radiation-dose CT examinations with respect to prospectively ECG-gated cardiac CT acquisition. Material and Methods: Sixty consecutive asymptomatic smokers (47 men; mean age 64 ± 9.8 years) underwent low-dose CT of the chest and prospectively ECG-gated cardiac CT acquisitions (64-slice dual-source CT). The two examinations were reconstructed with the same range, field of view, slice thickness, and convolution algorithm. Two independent observers blindly quantified EAT volume using commercially available software. Data were compared with paired sample Student t-test, concordance correlation coefficients (CCC), and Bland-Altman plots. Results: No statistically significant difference was observed for EAT volume quantification with low-dose-CT (141.7 ± 58.3 mL) with respect to ECG-gated CT (142.7 ± 57.9 mL). Estimation of CCC showed almost perfect concordance between the two techniques for EAT-volume assessment (CCC, 0.99; mean difference, 0.98 ± 5.1 mL). Inter-observer agreement for EAT volume estimation was CCC: 0.96 for low-dose-CT examinations and 0.95 for ECG-gated CT. Conclusion: Non-gated low-dose CT allows quantifying EAT with almost the same concordance and reliability as using dedicated prospectively ECG-gated cardiac CT acquisition protocols

  12. Instant Oracle GoldenGate

    CERN Document Server

    Bruzzese, Tony

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. Get the job done and learn as you go. A how-To book with practical recipes accompanied with rich screenshots for easy comprehension.This is a Packt Instant How-to guide, which provides concise and clear recipes for performing the core task of replication using Oracle GoldenGate.The book is aimed at DBAs from any of popular RDBMS systems such as Oracle, SQL Server, Teradata, Sybase, and so on. The level of detail provides quick applicability to beginners and a handy review for more a

  13. Time complexity and gate complexity

    International Nuclear Information System (INIS)

    Koike, Tatsuhiko; Okudaira, Yosuke

    2010-01-01

    We formulate and investigate the simplest version of time-optimal quantum computation theory (TO-QCT), where the computation time is defined by the physical one and the Hamiltonian contains only one- and two-qubit interactions. This version of TO-QCT is also considered as optimality by sub-Riemannian geodesic length. The work has two aims: One is to develop a TO-QCT itself based on a physically natural concept of time, and the other is to pursue the possibility of using TO-QCT as a tool to estimate the complexity in conventional gate-optimal quantum computation theory (GO-QCT). In particular, we investigate to what extent is true the following statement: Time complexity is polynomial in the number of qubits if and only if gate complexity is also. In the analysis, we relate TO-QCT and optimal control theory (OCT) through fidelity-optimal computation theory (FO-QCT); FO-QCT is equivalent to TO-QCT in the limit of unit optimal fidelity, while it is formally similar to OCT. We then develop an efficient numerical scheme for FO-QCT by modifying Krotov's method in OCT, which has a monotonic convergence property. We implemented the scheme and obtained solutions of FO-QCT and of TO-QCT for the quantum Fourier transform and a unitary operator that does not have an apparent symmetry. The former has a polynomial gate complexity and the latter is expected to have an exponential one which is based on the fact that a series of generic unitary operators has an exponential gate complexity. The time complexity for the former is found to be linear in the number of qubits, which is understood naturally by the existence of an upper bound. The time complexity for the latter is exponential in the number of qubits. Thus, both the targets seem to be examples satisfyng the preceding statement. The typical characteristics of the optimal Hamiltonians are symmetry under time reversal and constancy of one-qubit operation, which are mathematically shown to hold in fairly general situations.

  14. Passive breath gating equipment for cone beam CT-guided RapidArc gastric cancer treatments.

    Science.gov (United States)

    Hu, Weigang; Li, Guichao; Ye, Jinsong; Wang, Jiazhou; Peng, Jiayuan; Gong, Min; Yu, Xiaoli; Studentski, Matthew T; Xiao, Ying; Zhang, Zhen

    2015-01-01

    To report preliminary results of passive breath gating (PBG) equipment for cone-beam CT image-guided gated RapidArc gastric cancer treatments. Home-developed PBG equipment integrated with the real-time position management system (RPM) for passive patient breath hold was used in CT simulation, online partial breath hold (PBH) CBCT acquisition, and breath-hold gating (BHG) RapidArc delivery. The treatment was discontinuously delivered with beam on during BH and beam off for free breathing (FB). Pretreatment verification PBH CBCT was obtained with the PBG-RPM system. Additionally, the reproducibility of the gating accuracy was evaluated. A total of 375 fractions of breath-hold gating RapidArc treatments were successfully delivered and 233 PBH CBCTs were available for analysis. The PBH CBCT images were acquired with 2-3 breath holds and 1-2 FB breaks. The imaging time was the same for PBH CBCT and conventional FB CBCT (60s). Compared to FB CBCT, the motion artifacts seen in PBH CBCT images were remarkably reduced. The average BHG RapidArc delivery time was 103 s for one 270-degree arc and 269 s for two full arcs. The PBG-RPM based PBH CBCT verification and BHG RapidArc delivery was successfully implemented clinically. The BHG RapidArc treatment was accomplished using a conventional RapidArc machine with high delivery efficiency. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Automatic cardiac gating of small-animal PET from list-mode data

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L.; Udias, J.M. [Universidad Complutense de Madrid Univ. (Spain). Grupo de Fisica Nuclear; Vaquero, J.J.; Desco, M. [Universidad Carlos III de Madrid (Spain). Dept. de Bioingenieria e Ingenieria Aeroespacial; Cusso, L. [Hospital General Universitario Gregorio Maranon, Madrid (Spain). Unidad de Medicina y Cirugia Experimental

    2011-07-01

    This work presents a method to obtain automatically the cardiac gating signal in a PET study of rats, by employing the variation with time of the counts in the cardiac region, that can be extracted from list-mode data. In an initial step, the cardiac region is identified in the image space by backward-projecting a small fraction of the acquired data and studying the variation with time of the counts in each voxel inside said region, with frequencies within 2 and 8 Hz. The region obtained corresponds accurately to the left-ventricle of the heart of the rat. In a second step, the lines-of-response (LORs) connected with this region are found by forward-projecting this region. The time variation of the number of counts in these LORs contains the cardiac motion information that we want to extract. This variation of counts with time is band-pass filtered to reduce noise, and the time signal so obtained is used to create the gating