WorldWideScience

Sample records for strip gated imager

  1. Noise Gating Solar Images

    Science.gov (United States)

    DeForest, Craig; Seaton, Daniel B.; Darnell, John A.

    2017-08-01

    I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO

  2. A novel optical gating method for laser gated imaging

    Science.gov (United States)

    Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer

    2013-06-01

    For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.

  3. High speed gated x-ray imagers

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Bell, P.; Hanks, R.; Power, G.; Turner, R.E.; Wiedwald, J.

    1988-01-01

    Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs

  4. Active gated imaging in driver assistance system

    Science.gov (United States)

    Grauer, Yoav

    2014-04-01

    In this paper, we shall present the active gated imaging system (AGIS) in relation to the automotive field. AGIS is based on a fast-gated camera and pulsed illuminator, synchronized in the time domain to record images of a certain range of interest. A dedicated gated CMOS imager sensor and near infra-red (NIR) pulsed laser illuminator, is presented in this paper to provide active gated technology. In recent years, we have developed these key components and learned the system parameters, which are most beneficial to nighttime (in all weather conditions) driving in terms of field of view, illumination profile, resolution, and processing power. We shall present our approach of a camera-based advanced driver assistance systems (ADAS) named BrightEye™, which makes use of the AGIS technology in the automotive field.

  5. Active gated imaging for automotive safety applications

    Science.gov (United States)

    Grauer, Yoav; Sonn, Ezri

    2015-03-01

    The paper presents the Active Gated Imaging System (AGIS), in relation to the automotive field. AGIS is based on a fast gated-camera equipped with a unique Gated-CMOS sensor, and a pulsed Illuminator, synchronized in the time domain to record images of a certain range of interest which are then processed by computer vision real-time algorithms. In recent years we have learned the system parameters which are most beneficial to night-time driving in terms of; field of view, illumination profile, resolution and processing power. AGIS provides also day-time imaging with additional capabilities, which enhances computer vision safety applications. AGIS provides an excellent candidate for camera-based Advanced Driver Assistance Systems (ADAS) and the path for autonomous driving, in the future, based on its outstanding low/high light-level, harsh weather conditions capabilities and 3D potential growth capabilities.

  6. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Roy, Jayanta; Bhattacharyya, Bhaswati

    2013-01-01

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of ±1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time (∼20× for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position (±1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  7. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati [National Centre for Radio Astrophysics, Pune 411007 (India)

    2013-03-10

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of {+-}1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time ({approx}20 Multiplication-Sign for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position ({+-}1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  8. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  9. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  10. Imaging of ventilation/perfusion ratio by gated regional spirometry

    International Nuclear Information System (INIS)

    Touya, J.J.; Jones, J.P.; Price, R.R.; Patton, J.A.; Erickson, J.J.; Rollo, F.D.

    1981-01-01

    Gated 133 Xe images of patients rebreathing into a closed system can provide images of the distribution of lung volumes, ventilation and specific ventilation. These have been shown to be accurate, precise, and do not require unusually sophisticated equipment or skills. A mathematical transformation is used to correct the images for lung movement, which does not alter the total number of counts in the image. Perfusion images are gated to remove motion blurring but not transformed. Ventilation/perfusion images showing the distribution of V/Q ratio are then generated from the individual ventilation and perfusion images. (author)

  11. Image quality in non-gated versus gated reconstruction of tongue motion using magnetic resonance imaging: a comparison using automated image processing

    Energy Technology Data Exchange (ETDEWEB)

    Alvey, Christopher; Orphanidou, C.; Coleman, J.; McIntyre, A.; Golding, S.; Kochanski, G. [University of Oxford, Oxford (United Kingdom)

    2008-11-15

    The use of gated or ECG triggered MR is a well-established technique and developments in coil technology have enabled this approach to be applied to areas other than the heart. However, the image quality of gated (ECG or cine) versus non-gated or real-time has not been extensively evaluated in the mouth. We evaluate two image sequences by developing an automatic image processing technique which compares how well the image represents known anatomy. Four subjects practised experimental poly-syllabic sentences prior to MR scanning. Using a 1.5 T MR unit, we acquired comparable gated (using an artificial trigger) and non-gated sagittal images during speech. We then used an image processing algorithm to model the image grey along lines that cross the airway. Each line involved an eight parameter non-linear equation to model of proton densities, edges, and dimensions. Gated and non-gated images show similar spatial resolution, with non-gated images being slightly sharper (10% better resolution, less than 1 pixel). However, the gated sequences generated images of substantially lower inherent noise, and substantially better discrimination between air and tissue. Additionally, the gated sequences demonstrate a very much greater temporal resolution. Overall, image quality is better with gated imaging techniques, especially given their superior temporal resolution. Gated techniques are limited by the repeatability of the motions involved, and we have shown that speech to a metronome can be sufficiently repeatable to allow high-quality gated magnetic resonance imaging images. We suggest that gated sequences may be useful for evaluating other types of repetitive movement involving the joints and limb motions. (orig.)

  12. Image quality in non-gated versus gated reconstruction of tongue motion using magnetic resonance imaging: a comparison using automated image processing

    International Nuclear Information System (INIS)

    Alvey, Christopher; Orphanidou, C.; Coleman, J.; McIntyre, A.; Golding, S.; Kochanski, G.

    2008-01-01

    The use of gated or ECG triggered MR is a well-established technique and developments in coil technology have enabled this approach to be applied to areas other than the heart. However, the image quality of gated (ECG or cine) versus non-gated or real-time has not been extensively evaluated in the mouth. We evaluate two image sequences by developing an automatic image processing technique which compares how well the image represents known anatomy. Four subjects practised experimental poly-syllabic sentences prior to MR scanning. Using a 1.5 T MR unit, we acquired comparable gated (using an artificial trigger) and non-gated sagittal images during speech. We then used an image processing algorithm to model the image grey along lines that cross the airway. Each line involved an eight parameter non-linear equation to model of proton densities, edges, and dimensions. Gated and non-gated images show similar spatial resolution, with non-gated images being slightly sharper (10% better resolution, less than 1 pixel). However, the gated sequences generated images of substantially lower inherent noise, and substantially better discrimination between air and tissue. Additionally, the gated sequences demonstrate a very much greater temporal resolution. Overall, image quality is better with gated imaging techniques, especially given their superior temporal resolution. Gated techniques are limited by the repeatability of the motions involved, and we have shown that speech to a metronome can be sufficiently repeatable to allow high-quality gated magnetic resonance imaging images. We suggest that gated sequences may be useful for evaluating other types of repetitive movement involving the joints and limb motions. (orig.)

  13. ECG-gated myocardial imaging with 201Tl

    International Nuclear Information System (INIS)

    Baehre, M.

    1980-01-01

    ECG-gated myocardial scintigraphy by means of 201 TI was performed in 11 patients. Good scintigrams could be gained by using long imaging times, but there was no additional information when compared with static images. Disadvantages were long imaging time, higher technical expenditure, and the smaller number of projections. Furthermore, there is no possibility of performing myocardial imaging under stress. (orig.) [de

  14. Mobile Image Ratiometry: A New Method for Instantaneous Analysis of Rapid Test Strips

    OpenAIRE

    Donald C. Cooper; Bryan Callahan; Phil Callahan; Lee Burnett

    2012-01-01

    Here we describe Mobile Image Ratiometry (MIR), a new method for the automated quantification of standardized rapid immunoassay strips using consumer-based mobile smartphone and tablet cameras. To demonstrate MIR we developed a standardized method using rapid immunotest strips directed against cocaine (COC) and its major metabolite, benzoylecgonine (BE). We performed image analysis of three brands of commercially available dye-conjugated anti-COC/BE antibody test strips in response to three d...

  15. Four-frame gated optical imager with 120-ps resolution

    International Nuclear Information System (INIS)

    Young, P.E.; Hares, J.D.; Kilkenny, J.D.; Phillion, D.W.; Campbell, E.M.

    1988-04-01

    In this paper we describe the operation and applications of a framing camera capable of four separate two-dimensional images with each frame having a 120-ps gate width. Fast gating of a single frame is accomplished by using a wafer image intensifier tube in which the cathode is capacitively coupled to an external electrode placed outside of the photocathode of the tube. This electrode is then pulsed relative to the microchannel plate by a narrow (120 ps), high-voltage pulse. Multiple frames are obtained by using multiple gated tubes which share a single bias supply and pulser with relative gate times selected by the cable lengths between the tubes and the pulser. A beamsplitter system has been constructed which produces a separate image for each tube from a single scene. Applications of the framing camera to inertial confinement fusion experiments are discussed

  16. Simultaneous ECG-gated PET imaging of multiple mice

    International Nuclear Information System (INIS)

    Seidel, Jurgen; Bernardo, Marcelino L.; Wong, Karen J.; Xu, Biying; Williams, Mark R.; Kuo, Frank; Jagoda, Elaine M.; Basuli, Falguni; Li, Changhui; Griffiths, Gary L.

    2014-01-01

    Introduction: We describe and illustrate a method for creating ECG-gated PET images of the heart for each of several mice imaged at the same time. The method is intended to increase “throughput” in PET research studies of cardiac dynamics or to obtain information derived from such studies, e.g. tracer concentration in end-diastolic left ventricular blood. Methods: An imaging bed with provisions for warming, anesthetic delivery, etc., was fabricated by 3D printing to allow simultaneous PET imaging of two side-by-side mice. After electrode attachment, tracer injection and placement of the animals in the scanner field of view, ECG signals from each animal were continuously analyzed and independent trigger markers generated whenever an R-wave was detected in each signal. PET image data were acquired in “list” mode and these trigger markers were inserted into this list along with the image data. Since each mouse is in a different spatial location in the FOV, sorting of these data using trigger markers first from one animal and then the other yields two independent and correctly formed ECG-gated image sequences that reflect the dynamical properties of the heart during an “average” cardiac cycle. Results: The described method yields two independent ECG-gated image sequences that exhibit the expected properties in each animal, e.g. variation of the ventricular cavity volumes from maximum to minimum and back during the cardiac cycle in the processed animal with little or no variation in these volumes during the cardiac cycle in the unprocessed animal. Conclusion: ECG-gated image sequences for each of several animals can be created from a single list mode data collection using the described method. In principle, this method can be extended to more than two mice (or other animals) and to other forms of physiological gating, e.g. respiratory gating, when several subjects are imaged at the same time

  17. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    Science.gov (United States)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  18. Gated magnetic resonance imaging of congenital cardiac malformations

    International Nuclear Information System (INIS)

    Fletcher, B.D.; Jocobstein, M.D.; Nelson, A.D.; Riemenschneider, T.A.; Alfidi, R.J.

    1984-01-01

    Magnetic resonance (MR) images of a variety of cardiac malformations in 19 patients aged 1 week to 33 years were obtained using pulse plethysmographic- or ECG-gated spin echo pulse sequences. Coronal, axial, and sagittal images displaying intracardiac structures with excellent spatial and contrast resolution were acquired during systole or diastole. It is concluded that MR will be a valuable noninvasive method of diagnosing congenital heart disease

  19. Range-Gated Laser Stroboscopic Imaging for Night Remote Surveillance

    International Nuclear Information System (INIS)

    Xin-Wei, Wang; Yan, Zhou; Song-Tao, Fan; Jun, He; Yu-Liang, Liu

    2010-01-01

    For night remote surveillance, we present a method, the range-gated laser stroboscopic imaging(RGLSI), which uses a new kind of time delay integration mode to integrate target signals so that night remote surveillance can be realized by a low-energy illuminated laser. The time delay integration in this method has no influence on the video frame rate. Compared with the traditional range-gated laser imaging, RGLSI can reduce scintillation and target speckle effects and significantly improve the image signal-to-noise ratio analyzed. Even under low light level and low visibility conditions, the RGLSI system can effectively work. In a preliminary experiment, we have detected and recognized a railway bridge one kilometer away under a visibility of six kilometers, when the effective illuminated energy is 29.5 μJ

  20. Advancements of floating strip Micromegas detectors for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Klitzner, Felix; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard [LS Schaile, LMU Muenchen (Germany); Magallanes, Lorena [LS Parodi, LMU Muenchen (Germany); Universitaetsklinikum Heidelberg (Germany); Parodi, Katia [LS Parodi, LMU Muenchen (Germany); Heidelberger Ionenstrahl Therapiezentrum (Germany); Voss, Bernd [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    2016-07-01

    Floating strip Micromegas have proven to be high-rate capable tracking detectors with excellent spatial and temporal resolution for particle fluxes up to 7 MHz/cm{sup 2}. To further increase the high-rate capability a Ne:CF{sub 4} 86:14 vol.% gas mixture has been used as detector gas. We present results from measurements with a seven detector system consisting of six low material budget floating strip Micromegas, a GEM detector and a scintillator based particle range telescope. The gaseous and the scintillation detectors were read out with APV25 frontend boards, allowing for single strip readout with pulse height and timing information. A two-dimensional readout anode for floating strip Micromegas has been tested for the first time. The Micromegas detectors were operated with minimal additional drift field, which significantly improves the timing resolution and also the spatial resolution for inclined tracks. We discuss the detector performance in high-rate carbon and proton beams at the Heidelberg Ion Beam Therapy Center (HIT) and present radiographies of phantoms, acquired with the system.

  1. A Portable Colloidal Gold Strip Sensor for Clenbuterol and Ractopamine Using Image Processing Technology

    Directory of Open Access Journals (Sweden)

    Yi Guo

    2013-01-01

    Full Text Available A portable colloidal golden strip sensor for detecting clenbuterol and ractopamine has been developed using image processing technology, as well as a novel strip reader has achieved innovatively with this imaging sensor. Colloidal gold strips for clenbuterol and ractopamine is used as first sensor with given biomedical immunication reaction. After three minutes the target sample dropped on, the color showing in the T line is relative to the content of objects as clenbuterol, this reader can finish many functions like automatic acquit ion of colored strip image, quantatively analysis of the color lines including the control line and test line, and data storage and transfer to computer. The system is integrated image collection, pattern recognition and real-time colloidal gold quantitative measurement. In experiment, clenbuterol and ractopamine standard substance with concentration from 0 ppb to 10 ppb is prepared and tested, the result reveals that standard solutions of clenbuterol and ractopamine have a good secondary fitting character with color degree (R2 is up to 0.99 and 0.98. Besides, through standard sample addition to the object negative substance, good recovery results are obtained up to 98 %. Above all, an optical sensor for colloidal strip measure is capable of determining the content of clenbuterol and ractopamine, it is likely to apply to quantatively identifying of similar reaction of colloidal golden strips.

  2. ECG gated magnetic resonance imaging in cardiovascular disease

    International Nuclear Information System (INIS)

    Park, Jae Hyung; Im, Chung Kie; Han, Man Chung; Kim, Chu Wan

    1985-01-01

    Using KAIS 0.15 Tesla resistive magnetic imaging system, ECG gated magnetic resonance (MR) image of various cardiovascular disease was obtained in 10 patients. The findings of MR image of the cardiovascular disease were analysed and the results were as follows: 1. In 6 cases of acquired and congenital cardiac diseases, there were 2 cases of myocardial infarction, 1 case of mitral stenosis and 3 cases of corrected transportation of great vessels. The others were 3 cases of aortic disease and 1 case of pericardial effusion with lymphoma. 2. Myocardial thinning and left ventricular aneurysm were detected in MR images of myocardial infarction. The left atrium was well delineated and enlarged in the case of mitral stenosis. And segmental analysis was possible in the cases of corrected transposition since all cardiac structures were well delineated anatomically. 3. In aortic diseases, the findings of MR image were enlarged lumen, compressed cardiac chambers in ascending aortic aneurysm, intimal flap, enhanced false lumen in dissecting aneurysm and irregular narrowing of aorta with arterial obstruction in Takayasu's arteritis. 4. Pericardial effusion revealed a conspicuous contrast with neighboring mediastinal fat and cardiac wall due to it low signal encircling cardiac wall. 5. ECG gated MR image is an accurate non-invasive imaging modality for the diagnosis of cardiovascular disease and better results of its clinical application are expected in the future with further development in the imaging system and more clinical experiences

  3. High image quality sub 100 picosecond gated framing camera development

    International Nuclear Information System (INIS)

    Price, R.H.; Wiedwald, J.D.

    1983-01-01

    A major challenge for laser fusion is the study of the symmetry and hydrodynamic stability of imploding fuel capsules. Framed x-radiographs of 10-100 ps duration, excellent image quality, minimum geometrical distortion (< 1%), dynamic range greater than 1000, and more than 200 x 200 pixels are required for this application. Recent progress on a gated proximity focused intensifier which meets these requirements is presented

  4. Developments of optical fast-gated imaging systems

    International Nuclear Information System (INIS)

    Koehler, H.A.; Kotecki, D.

    1984-08-01

    Several fast-gated imaging systems to measure ultra-fast single-transient data have been developed for time-resolved imaging of pulsed radiation sources. These systems were designed to achieve image recording times of 1 to 3 ms and dynamic ranges of >200:1 to produce large two-dimensional images (greater than or equal to 10 4 spatial points) of 1 to 2 ns exposure and small two-dimensional images (less than or equal to 200 spatial points) of less than or equal to 0.5 ns exposure. Both MCP intensified solid-state two-dimensional framing cameras and streak camera/solid-state camera systems were used; the framing camera system provides snap shots with high spatial resolution whereas the streak camera system provides for limited spatial points each with high temporal resolution. Applications of these systems include electron-beam, x-ray, gamma-ray, and neutron diagnostics. This report reviews the characteristics of the major components of fast-gated imaging systems developed at Lawrence Livermore National Laboratory. System performances are described in view of major experiments, and the diagnostic requirements of new experiments in atomic physics (x-ray lasers) and nuclear physics (fusion) are indicated

  5. Evaluation of the risk of a stripping perforation with gates-glidden drills: serial versus crown-down sequences

    Directory of Open Access Journals (Sweden)

    Tauby Coutinho-Filho

    2008-03-01

    Full Text Available The aim of this study was to evaluate the remaining dentine/cementum thickness using Gates-Glidden burs in serial and crown-down sequences and to observe which of the two sequences is the safest for preparing mesial roots of molars. Thirty-six left and right human mandibular first molars were selected. Standard access cavities were made and initially explored with Flexofiles sizes 10 and 15 until the tip was visible at the apex. The teeth were embedded in a muffle specially developed for this study using a PVC tube with two parallel metal rods in its lid. Each tooth-block was sectioned 3 mm apically to the furcation using a low-speed saw with a diamond disc. The tooth-block was examined under a microscope and an initial image was captured by a digital video system with 8 X and 12 X magnifications. Finally, the tooth-blocks were reassembled in the muffle so that the canals could be instrumented. After instrumentation the area of each mesial canal as well as the smallest distance to the root furcation were measured again. The mesio-buccal canals (crown-down order and the mesio-lingual canals (serial sequence presented an average area of 0.46 ± 0.16 mm² and 0.88 ± 0.27 mm² (P < 0.01, respectively. The mean values of the smallest distance to the furcation for the mesio-buccal and mesio-lingual canals were 0.66 ± 0.19 mm and 0.39 ± 0.13 mm (P < 0.01, respectively. The remaining dentine/cementum thickness using Gates-Glidden burs was greater in the crown-down sequence than in the serial sequence.

  6. Research on range-gated laser active imaging seeker

    Science.gov (United States)

    You, Mu; Wang, PengHui; Tan, DongJie

    2013-09-01

    Compared with other imaging methods such as millimeter wave imaging, infrared imaging and visible light imaging, laser imaging provides both a 2-D array of reflected intensity data as well as 2-D array of range data, which is the most important data for use in autonomous target acquisition .In terms of application, it can be widely used in military fields such as radar, guidance and fuse. In this paper, we present a laser active imaging seeker system based on range-gated laser transmitter and sensor technology .The seeker system presented here consist of two important part, one is laser image system, which uses a negative lens to diverge the light from a pulse laser to flood illuminate a target, return light is collected by a camera lens, each laser pulse triggers the camera delay and shutter. The other is stabilization gimbals, which is designed to be a rotatable structure both in azimuth and elevation angles. The laser image system consists of transmitter and receiver. The transmitter is based on diode pumped solid-state lasers that are passively Q-switched at 532nm wavelength. A visible wavelength was chosen because the receiver uses a Gen III image intensifier tube with a spectral sensitivity limited to wavelengths less than 900nm.The receiver is image intensifier tube's micro channel plate coupled into high sensitivity charge coupled device camera. The image has been taken at range over one kilometer and can be taken at much longer range in better weather. Image frame frequency can be changed according to requirement of guidance with modifiable range gate, The instantaneous field of views of the system was found to be 2×2 deg. Since completion of system integration, the seeker system has gone through a series of tests both in the lab and in the outdoor field. Two different kinds of buildings have been chosen as target, which is located at range from 200m up to 1000m.To simulate dynamic process of range change between missile and target, the seeker system has

  7. SU-C-204-06: Surface Imaging for the Set-Up of Proton Post-Mastectomy Chestwall Irradiation: Gated Images Vs Non Gated Images

    International Nuclear Information System (INIS)

    Batin, E; Depauw, N; MacDonald, S; Lu, H

    2015-01-01

    Purpose: Historically, the set-up for proton post-mastectomy chestwall irradiation at our institution started with positioning the patient using tattoos and lasers. One or more rounds of orthogonal X-rays at gantry 0° and beamline X-ray at treatment gantry angle were then taken to finalize the set-up position. As chestwall targets are shallow and superficial, surface imaging is a promising tool for set-up and needs to be investigated Methods: The orthogonal imaging was entirely replaced by AlignRT™ (ART) images. The beamline X-Ray image is kept as a confirmation, based primarily on three opaque markers placed on skin surface instead of bony anatomy. In the first phase of the process, ART gated images were used to set-up the patient and the same specific point of the breathing curve was used every day. The moves (translations and rotations) computed for each point of the breathing curve during the first five fractions were analyzed for ten patients. During a second phase of the study, ART gated images were replaced by ART non-gated images combined with real-time monitoring. In both cases, ART images were acquired just before treatment to access the patient position compare to the non-gated CT. Results: The average difference between the maximum move and the minimum move depending on the chosen breathing curve point was less than 1.7 mm for all translations and less than 0.7° for all rotations. The average position discrepancy over the course of treatment obtained by ART non gated images combined to real-time monitoring taken before treatment to the planning CT were smaller than the average position discrepancy obtained using ART gated images. The X-Ray validation images show similar results with both ART imaging process. Conclusion: The use of ART non gated images combined with real time imaging allows positioning post-mastectomy chestwall patients in less than 3 mm / 1°

  8. SU-C-204-06: Surface Imaging for the Set-Up of Proton Post-Mastectomy Chestwall Irradiation: Gated Images Vs Non Gated Images

    Energy Technology Data Exchange (ETDEWEB)

    Batin, E; Depauw, N; MacDonald, S; Lu, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: Historically, the set-up for proton post-mastectomy chestwall irradiation at our institution started with positioning the patient using tattoos and lasers. One or more rounds of orthogonal X-rays at gantry 0° and beamline X-ray at treatment gantry angle were then taken to finalize the set-up position. As chestwall targets are shallow and superficial, surface imaging is a promising tool for set-up and needs to be investigated Methods: The orthogonal imaging was entirely replaced by AlignRT™ (ART) images. The beamline X-Ray image is kept as a confirmation, based primarily on three opaque markers placed on skin surface instead of bony anatomy. In the first phase of the process, ART gated images were used to set-up the patient and the same specific point of the breathing curve was used every day. The moves (translations and rotations) computed for each point of the breathing curve during the first five fractions were analyzed for ten patients. During a second phase of the study, ART gated images were replaced by ART non-gated images combined with real-time monitoring. In both cases, ART images were acquired just before treatment to access the patient position compare to the non-gated CT. Results: The average difference between the maximum move and the minimum move depending on the chosen breathing curve point was less than 1.7 mm for all translations and less than 0.7° for all rotations. The average position discrepancy over the course of treatment obtained by ART non gated images combined to real-time monitoring taken before treatment to the planning CT were smaller than the average position discrepancy obtained using ART gated images. The X-Ray validation images show similar results with both ART imaging process. Conclusion: The use of ART non gated images combined with real time imaging allows positioning post-mastectomy chestwall patients in less than 3 mm / 1°.

  9. Robust skull stripping using multiple MR image contrasts insensitive to pathology.

    Science.gov (United States)

    Roy, Snehashis; Butman, John A; Pham, Dzung L

    2017-02-01

    Automatic skull-stripping or brain extraction of magnetic resonance (MR) images is often a fundamental step in many neuroimage processing pipelines. The accuracy of subsequent image processing relies on the accuracy of the skull-stripping. Although many automated stripping methods have been proposed in the past, it is still an active area of research particularly in the context of brain pathology. Most stripping methods are validated on T 1 -w MR images of normal brains, especially because high resolution T 1 -w sequences are widely acquired and ground truth manual brain mask segmentations are publicly available for normal brains. However, different MR acquisition protocols can provide complementary information about the brain tissues, which can be exploited for better distinction between brain, cerebrospinal fluid, and unwanted tissues such as skull, dura, marrow, or fat. This is especially true in the presence of pathology, where hemorrhages or other types of lesions can have similar intensities as skull in a T 1 -w image. In this paper, we propose a sparse patch based Multi-cONtrast brain STRipping method (MONSTR), 2 where non-local patch information from one or more atlases, which contain multiple MR sequences and reference delineations of brain masks, are combined to generate a target brain mask. We compared MONSTR with four state-of-the-art, publicly available methods: BEaST, SPECTRE, ROBEX, and OptiBET. We evaluated the performance of these methods on 6 datasets consisting of both healthy subjects and patients with various pathologies. Three datasets (ADNI, MRBrainS, NAMIC) are publicly available, consisting of 44 healthy volunteers and 10 patients with schizophrenia. Other three in-house datasets, comprising 87 subjects in total, consisted of patients with mild to severe traumatic brain injury, brain tumors, and various movement disorders. A combination of T 1 -w, T 2 -w were used to skull-strip these datasets. We show significant improvement in stripping

  10. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging

    International Nuclear Information System (INIS)

    Dunsby, C; French, P M W

    2003-01-01

    This article aims to review the panoply of techniques for realising optical imaging through turbid media such as biological tissue. It begins by briefly discussing optical scattering and outlines the various approaches that have been developed to image through scattering media including spatial filtering, time-gated imaging and coherence-based techniques. The discussion includes scanning and wide-field techniques and concentrates on techniques to discriminate in favour of unscattered ballistic light although imaging with scattered light is briefly reviewed. Wide-field coherence-gated imaging techniques are discussed in some detail with particular emphasis placed on techniques to achieve real-time high-resolution three-dimensional imaging including through turbid media, providing rapid whole-field acquisition and high depth and transverse spatial resolution images. (topical review)

  11. HST IMAGING OF DUST STRUCTURES AND STARS IN THE RAM PRESSURE STRIPPED VIRGO SPIRALS NGC 4402 AND NGC 4522: STRIPPED FROM THE OUTSIDE IN WITH DENSE CLOUD DECOUPLING

    International Nuclear Information System (INIS)

    Abramson, A.; Kenney, J.; Crowl, H.; Tal, T.

    2016-01-01

    We describe and constrain the origins of interstellar medium (ISM) structures likely created by ongoing intracluster medium (ICM) ram pressure stripping in two Virgo Cluster spirals, NGC 4522 and NGC 4402, using Hubble Space Telescope (HST) BVI images of dust extinction and stars, as well as supplementary H i, H α , and radio continuum images. With a spatial resolution of ∼10 pc in the HST images, this is the highest-resolution study to date of the physical processes that occur during an ICM–ISM ram pressure stripping interaction, ram pressure stripping's effects on the multi-phase, multi-density ISM, and the formation and evolution of ram-pressure-stripped tails. In dust extinction, we view the leading side of NGC 4402 and the trailing side of NGC 4522, and so we see distinct types of features in both. In both galaxies, we identify some regions where dense clouds are decoupling or have decoupled and others where it appears that kiloparsec-sized sections of the ISM are moving coherently. NGC 4522 has experienced stronger, more recent pressure and has the “jellyfish” morphology characteristic of some ram-pressure-stripped galaxies. Its stripped tail extends up from the disk plane in continuous upturns of dust and stars curving up to ∼2 kpc above the disk plane. On the other side of the galaxy, there is a kinematically and morphologically distinct extraplanar arm of young, blue stars and ISM above a mostly stripped portion of the disk, and between it and the disk plane are decoupled dust clouds that have not been completely stripped. The leading side of NGC 4402 contains two kiloparsec-scale linear dust filaments with complex substructure that have partially decoupled from the surrounding ISM. NGC 4402 also contains long dust ridges, suggesting that large parts of the ISM are being pushed out at once. Both galaxies contain long ridges of polarized radio continuum emission indicating the presence of large-scale, ordered magnetic fields. We propose that

  12. Direct observation of the current distribution in thin superconducting strips using magneto-optic imaging

    International Nuclear Information System (INIS)

    Johansen, T.H.; Baziljevich, M.; Bratsberg, H.; Galperin, Y.; Lindelof, P.E.; Shen, Y.; Vase, P.

    1996-01-01

    Magneto-optic imaging was used for a detailed study of the flux and current distribution of a long thin strip of YBa 2 Cu 3 O 7-δ placed in a perpendicular external magnetic field. The inverse magnetic problem, i.e., that of deriving from a field map the underlying current distribution, is formulated and solved for the strip geometry. Applying the inversion to the magneto-optically found field map we find on a model-independent basis the current distribution across the strip to be in remarkable agreement with the profile predicted by the Bean model. The paper also presents results on the behavior of the Bi-doped YIG film with in-plane anisotropy which we use as field indicator, explaining why previous measurements of flux density profiles have displayed surprisingly large deviations from the expected behavior. copyright 1996 The American Physical Society

  13. Particle image velocimetry investigation of flow over unsteady airfoil with trailing-edge strip

    Energy Technology Data Exchange (ETDEWEB)

    Gerontakos, P.; Lee, T. [McGill University, Montreal, QC (Canada)

    2008-04-15

    The flow over a flapped NACA 0012 airfoil, oscillated slightly through the static-stall angle, was investigated by using particle image velocimetry, and was supplemented by surface pressure and dynamic-load measurements. A significant increase in the dynamic lift force and nose-down pitching moment was observed. The most pronounced flow phenomenon was the formation and detachment of an energetic leading-edge vortex compared to the no-flapped airfoil. The details of the underlying physical mechanisms responsible for the various light-stall flow processes were provided via the instantaneous velocity and vorticity fields measurements. In contrast to the Gurney flap, the inverted trailing-edge strip led to an improved negative damping while a reduced lift force. The addition of an inverted strip always led to the appearance of a Karman-type vortex shedding street immediately downstream of the strip over the entire oscillation cycle. (orig.)

  14. Subtraction imaging of the ECG gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Tanegashima, K.; Fukui, M.; Hyodo, H.

    1987-05-01

    The subtracting manipulation of contrast-enhanced gated cardiac CT (GCCT) images was experimentally studied with TCT 60A - 30 type (Toshiba) for clinical use, thereby reducing the amount of contrast medium (CM). Initially the optimum relationship between the concentration of CM and its injected velocity was determined using the model of resected canine hearts and in actual dogs. The emphasized good-subtracted images were obtained when the difference of CT values was approximately 40 H.U. between cardiac cavity and myocardium. Such condition was feasible in the use of 25 % Diatrizoic acid and its injected velocity of 0.02 ml/kg/sec. Finally the reduction of the amount of CM by 1/3 became possible in clinical settings. The method is applicable to multi-slice GCCT in various heart diseases.

  15. Imaging ballistic carrier trajectories in graphene using scanning gate microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Sei; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Dou, Ziwei; Wang, Shu-Wei; Smith, Charles G.; Connolly, Malcolm R., E-mail: mrc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-12-14

    We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.

  16. Partial flip angle spin-echo imaging to obtain T1 weighted images with electrocardiographic gating

    International Nuclear Information System (INIS)

    Kawamitsu, Hideaki; Sugimura, Kazuro; Kasai, Toshifumi; Kimino, Katsuji

    1993-01-01

    ECG-gated spin-echo (SE) imaging can reduce physiologic motion artifact. However, it does not provide strong T 1 -weighted images, because the repetition time (TR) depends on heart rate (HR). For odd-echo SE imaging, T 1 contrast can be maximized by using a smaller flip angle (FA) of initial excitation RF pulses. We investigated the usefulness of partial FA SE imaging in order to obtain more T 1 -dependent contrast with ECG gating and determined the optimal FA at each heart rate. In computer simulation and phantom study, the predicted image contrast and signal-to-noise ratio (SNR) obtained for each FA (0∼180deg) and each HR (55∼90 beats per minute (bpm)) were compared with those obtained with conventional T 1 -weighted SE imaging (TR=500 ms, TE=20 ms, FA=90deg). The optimal FA was decreased by reducing HR. The FA needed to obtain T 1 -dependent contrast identical to that with T 1 -weighted SE imaging was 43deg at a HR of 65 bpm, 53deg at 70 bpm, 60deg at 75 bpm. This predicted FA were in excellent agreement with that obtained with clinical evaluation. The predicted SNR was decreased by reducing FA. The SNR of partial FA SE imaging at HR of 65 bpm (FA=43deg) was 80% of that with conventional T 1 -weighted SE imaging. However, this imaging method presented no marked clinical problem. ECG-gated partial FA SE imaging provides better T 1 -dependent contrast than conventional ECG-gated SE imaging, especially for Gd-DTPA enhanced imaging. (author)

  17. Image-guided adaptive gating of lung cancer radiotherapy: a computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, Michalis; Rottmann, Joerg; Park, Sang-June; Berbeco, Ross I [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Nishioka, Seiko [Department of Radiology, NTT Hospital, Sapporo (Japan); Shirato, Hiroki, E-mail: maristophanous@lroc.harvard.ed [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan)

    2010-08-07

    The purpose of this study is to investigate the effect that image-guided adaptation of the gating window during treatment could have on the residual tumor motion, by simulating different gated radiotherapy techniques. There are three separate components of this simulation: (1) the 'Hokkaido Data', which are previously measured 3D data of lung tumor motion tracks and the corresponding 1D respiratory signals obtained during the entire ungated radiotherapy treatments of eight patients, (2) the respiratory gating protocol at our institution and the imaging performed under that protocol and (3) the actual simulation in which the Hokkaido Data are used to select tumor position information that could have been collected based on the imaging performed under our gating protocol. We simulated treatments with a fixed gating window and a gating window that is updated during treatment. The patient data were divided into different fractions, each with continuous acquisitions longer than 2 min. In accordance to the imaging performed under our gating protocol, we assume that we have tumor position information for the first 15 s of treatment, obtained from kV fluoroscopy, and for the rest of the fractions the tumor position is only available during the beam-on time from MV imaging. The gating window was set according to the information obtained from the first 15 s such that the residual motion was less than 3 mm. For the fixed gating window technique the gate remained the same for the entire treatment, while for the adaptive technique the range of the tumor motion during beam-on time was measured and used to adapt the gating window to keep the residual motion below 3 mm. The algorithm used to adapt the gating window is described. The residual tumor motion inside the gating window was reduced on average by 24% for the patients with regular breathing patterns and the difference was statistically significant (p-value = 0.01). The magnitude of the residual tumor motion

  18. Dynamic and gated PET. Quantitative imaging of the heart revisited

    International Nuclear Information System (INIS)

    Nekolla, S.G.

    2005-01-01

    This short overview focuses on the basic implementation as well as applications of cardiac PET studies acquired in dynamic and ECG triggered modes. Both acquisition modes are well suited for quantitative analysis and the advantages of such an approach are discussed. An outlook on the measurement of respiratory triggered studies and the new challenges this data presents is provided. In the context of modern PET/CT tomographs with the combination of high sensitivity and morphologic resolution, the promise of list mode acquisition is investigated. The before mentioned acquisition modes are ideal candidates for this technology the utility of which in a clinical setting is briefly discussed. The retrospective generation of dynamic and gated image data (and any combinations) is greatly facilitated with this approach. Finally, a novel presentation mode for the wealth of quantitative information generated by these systems is presented. (orig.)

  19. Value of CSF gating for T2-weighted images of the temporal lobes and brain stem

    International Nuclear Information System (INIS)

    Enzmann, D.R.; O'Donohue, J.; Griffin, C.; Rubin, J.B.; Drace, J.; Wright, A.

    1987-01-01

    Ungated and CSF-gated long TR, long TE MR images of the temporal lobes, basal ganglia, and brain stem in health and disease were quantitatively compared. Twenty-five pair of images were evaluated for the following three parameters: signal-to-noise ratio (S/N), object contrast, and resolving power. Ungated sequences were performed in the same fashion as gated sequences for TR (TR = 2,000 msec, TE = 80 msec for ungated sequences; TR = 1,500-1,800 msec, TE = 80 msec for CSF-gated sequences). In both normal and pathologic brain tissue, the CSF-gated image was superior to the ungated image in object contrast and resolving power and equivalent in S/N. The major benefit of CSF gating was elimination of phase shift images arising from the basal cisterns and the third ventricle

  20. Gated listmode acquisition with the QuadHIDAC animal PET to image mouse hearts

    International Nuclear Information System (INIS)

    Schaefers, K.P.; Lang, N.; Stegger, L.; Schober, O.; Schaefers, M.

    2006-01-01

    Purpose: the aim of this study was to develop ECG and respiratory gating in combination with listmode acquisition for the quadHIDAC small-animal PET scanner. Methods: ECG and respiratory gating was realized with the help of an external trigger device (BioVET) synchronized with the listmode acquisition. Listmode data of a mouse acquisition (injected with 6.5 MBq of 18 F-FDG) were sorted according to three different gating definitions: 12 cardiac gates, 8 respiratory gates and a combination of 8 cardiac and 8 respiratory gates. Images were reconstructed with filtered back-projection (ramp filter), and parameters like left ventricular wall thickness (WT), wall-to-wall separation (WS) and blood to myocardium activity ratios (BMR) were calculated. Results: cardiac gated images show improvement of all parameters (WT 2.6 mm, WS 4.1 mm, BRM 2.3) in diastole compared to ungated images (WT 3.0 mm, WS 3.4 mm, BMR 1.3). Respiratory gating had little effect on calculated parameters. Conclusion: ECG gating with the quadHIDAC can improve myocardial image quality in mice. This could have a major impact on the calculation of an image-derived input function for kinetic modelling. (orig.)

  1. Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect

    International Nuclear Information System (INIS)

    Symes, D. R.; Wegner, U.; Ahlswede, H.-C.; Streeter, M. J. V.; Gallegos, P. L.; Divall, E. J.; Rajeev, P. P.; Neely, D.; Smith, R. A.

    2010-01-01

    Optical imaging is a versatile diagnostic for investigations of plasmas generated under intense laser irradiation. Electro-optic gating techniques operating on the >100 ps timescale are commonly used to reduce the amount of light detected from self-emission of hot plasma or improve the temporal resolution of the detector. The use of an optical Kerr gate enables a superior dynamic range and temporal resolution compared to electronically gated devices. The application of this method for enhanced imaging of laser produced plasmas with gate time ∼100 fs is demonstrated, and the possibility to produce a sub-10 fs, high dynamic range 'all optical' streak camera is discussed.

  2. Effects of electrocardiogram gating on CT pulmonary angiography image quality

    International Nuclear Information System (INIS)

    Ardley, Nicholas D.; Lau, Ken K.; Troupis, John M.; Buchan, Kevin; Paul, Eldho

    2014-01-01

    Pulmonary embolism (PE) is the third most common cause of death from cardiovascular disease. Computed-tomographic pulmonary angiography (CTPA) is an accurate and safe test for diagnosing PE. The aim of this retrospective analysis was to evaluate the effects on image quality (IQ) of electrocardiogram (ECG) gating during CTPA. Fifty consecutive patients presenting for CTPA were included in the study. A single acquisition was performed, resulting in two reconstructions: one at 75% of the R–R interval and the other without ECG influence. IQ evaluation was undertaken by two radiologists, focusing on respiratory and cardiac motion, image noise, low-contrast resolution, vessel and lung clarity, contrast media opacification and artefacts. Various regions of the lungs and vasculature were evaluated, and IQ scores were statistically compared. For the ECG-tagged reconstructions, IQ was noted to be better overall with regard to vessel clarity (P<0.05) and cardiac motion (P<0.05), while lung clarity was better only in the left lower zone (P<0.05). IQ was better with regard to image noise (P<0.05) and low-contrast resolution (P<0.05) in the non-ECG-tagged reconstructions. No statistical IQ difference between the two types of reconstruction was noted with regard to respiratory motion, contrast media opacification or presence of artefacts. The two types of reconstruction provide complementary information for evaluating CTPA results.

  3. Automatic tumour volume delineation in respiratory-gated PET images

    International Nuclear Information System (INIS)

    Gubbi, Jayavardhana; Palaniswami, Marimuthu; Kanakatte, Aparna; Mani, Nallasamy; Kron, Tomas; Binns, David; Srinivasan, Bala

    2011-01-01

    Positron emission tomography (PET) is a state-of-the-art functional imaging technique used in the accurate detection of cancer. The main problem with the tumours present in the lungs is that they are non-stationary during each respiratory cycle. Tumours in the lungs can get displaced up to 2.5 cm during respiration. Accurate detection of the tumour enables avoiding the addition of extra margin around the tumour that is usually used during radiotherapy treatment planning. This paper presents a novel method to detect and track tumour in respiratory-gated PET images. The approach followed to achieve this task is to automatically delineate the tumour from the first frame using support vector machines. The resulting volume and position information from the first frame is used in tracking its motion in the subsequent frames with the help of level set (LS) deformable model. An excellent accuracy of 97% is obtained using wavelets and support vector machines. The volume calculated as a result of the machine learning (ML) stage is used as a constraint for deformable models and the tumour is tracked in the remaining seven phases of the respiratory cycle. As a result, the complete information about tumour movement during each respiratory cycle is available in relatively short time. The combination of the LS and ML approach accurately delineated the tumour volume from all frames, thereby providing a scope of using PET images towards planning an accurate and effective radiotherapy treatment for lung cancer.

  4. Sampling Number Effects in 2D and Range Imaging of Range-gated Acquisition

    International Nuclear Information System (INIS)

    Kwon, Seong-Ouk; Park, Seung-Kyu; Baik, Sung-Hoon; Cho, Jai-Wan; Jeong, Kyung-Min

    2015-01-01

    In this paper, we analyzed the number effects of sampling images for making a 2D image and a range image from acquired RGI images. We analyzed the number effects of RGI images for making a 2D image and a range image using a RGI vision system. As the results, 2D image quality was not much depended on the number of sampling images but on how much well extract efficient RGI images. But, the number of RGI images was important for making a range image because range image quality was proportional to the number of RGI images. Image acquiring in a monitoring area of nuclear industry is an important function for safety inspection and preparing appropriate control plans. To overcome the non-visualization problem caused by airborne obstacle particles, vision systems should have extra-functions, such as active illumination lightening through disturbance airborne particles. One of these powerful active vision systems is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from raining or smoking environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and 3D images is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through airborne disturbance particles. Thus, in contrast to passive conventional vision systems, the RGI active vision technology robust for low-visibility environments

  5. Sampling Number Effects in 2D and Range Imaging of Range-gated Acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seong-Ouk; Park, Seung-Kyu; Baik, Sung-Hoon; Cho, Jai-Wan; Jeong, Kyung-Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, we analyzed the number effects of sampling images for making a 2D image and a range image from acquired RGI images. We analyzed the number effects of RGI images for making a 2D image and a range image using a RGI vision system. As the results, 2D image quality was not much depended on the number of sampling images but on how much well extract efficient RGI images. But, the number of RGI images was important for making a range image because range image quality was proportional to the number of RGI images. Image acquiring in a monitoring area of nuclear industry is an important function for safety inspection and preparing appropriate control plans. To overcome the non-visualization problem caused by airborne obstacle particles, vision systems should have extra-functions, such as active illumination lightening through disturbance airborne particles. One of these powerful active vision systems is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from raining or smoking environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and 3D images is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through airborne disturbance particles. Thus, in contrast to passive conventional vision systems, the RGI active vision technology robust for low-visibility environments.

  6. Clinical evaluation of left ventricular wall thickness by combined technique with gated planer 201Tl image and gated cardiac pool image

    International Nuclear Information System (INIS)

    Nakai, Kenji; Katsuragawa, Shigehiko; Takahashi, Tsuneo; Matsushita, Kazuo; Kawamura, Akiyoshi

    1983-01-01

    To evaluate the left ventricular (LV) wall thickness, combined technique with gated planer 201-Thallium image and gated cardiac pool image was applied to 6 patients with hypertrophic cardiomyopathy (HCM) and 4 patients with secondary hypertrophy due to hypertension (HHD) proven by electrocardiography and ultrasonic-echocardiography. Scintigraphic pattern of hypertrophy on reconstructed planer 201 Tl image showed diffuse or asymmetrical apical hypertrophy in HHD, asymmetrical septal hypertrophy in HCM. It was very interesting that abnormal perfusion was shown in 201 Tl image, despite symmetrical hypertrophy in echocardiography. This techniques provided useful information for evaluating the LV wall thickness and cardiac performance. (author)

  7. Clinical evaluation of left ventricular wall thickness by combined technique with gated planer /sup 201/Tl image and gated cardiac pool image

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Kenji; Katsuragawa, Shigehiko; Takahashi, Tsuneo; Matsushita, Kazuo; Kawamura, Akiyoshi

    1983-11-01

    To evaluate the left ventricular (LV) wall thickness, a combined technique with gated planer 201-thallium image and gated cardiac pool image was applied to 6 patients with hypertrophic cardiomyopathy (HCM) and 4 patients with secondary hypertrophy due to hypertension (HHD) proven by electrocardiography and ultrasonic-echocardiography. Scintigraphic pattern of hypertrophy on reconstructed planer /sup 201/Tl image showed diffuse or asymmetrical apical hypertrophy in HHD, asymmetrical septal hypertrophy in HCM. It was very interesting that abnormal perfusion was shown in /sup 201/Tl image, despite symmetrical hypertrophy in echocardiography. This techniques provided useful information for evaluating the LV wall thickness and cardiac performance.

  8. Tunable Molecular Logic Gates Designed for Imaging Released Neurotransmitters.

    Science.gov (United States)

    Klockow, Jessica L; Hettie, Kenneth S; Secor, Kristen E; Barman, Dipti N; Glass, Timothy E

    2015-08-03

    Tunable dual-analyte fluorescent molecular logic gates (ExoSensors) were designed for the purpose of imaging select vesicular primary-amine neurotransmitters that are released from secretory vesicles upon exocytosis. ExoSensors are based on the coumarin-3-aldehyde scaffold and rely on both neurotransmitter binding and the change in environmental pH associated with exocytosis to afford a unique turn-on fluorescence output. A pH-functionality was directly integrated into the fluorophore π-system of the scaffold, thereby allowing for an enhanced fluorescence output upon the release of labeled neurotransmitters. By altering the pH-sensitive unit with various electron-donating and -withdrawing sulfonamide substituents, we identified a correlation between the pKa of the pH-sensitive group and the fluorescence output from the activated fluorophore. In doing so, we achieved a twelvefold fluorescence enhancement upon evaluating the ExoSensors under conditions that mimic exocytosis. ExoSensors are aptly suited to serve as molecular imaging tools that allow for the direct visualization of only the neurotransmitters that are released from secretory vesicles upon exocytosis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Imaging escape gated MPWC for hard X-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; La Padula, C.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Barbareschi, L.; Perotti, F.; Villa, G.

    1983-11-15

    A scientific forward step in the hard X-ray and soft gamma-ray astronomy will only be possible with the use of a new generation of space borne instruments. Their main characteristics have to be the two-dimensional imaging capability over a large collecting area and the fine spectral resolution in order to discriminate between the weak signal coming from cosmic sources to be detected and the strong background induced by cosmic rays, in the space environment, on the detector. To reach this goal we have developed a new hard X-ray position sensitive proportional counter operating with the escape gate technique in the range 15-150 keV, to be used together with a pseudo-random coded mask in order to obtain sky images. The detector is a high pressure (5 bar) xenon-argon-isobutane filled chamber with a spatial resolution of 30x2 mm and a spectral resolution of 5% at 60 keV on the sensitive area of 3000 cm/sup 2/.

  10. Imaging the Hidden Modes of Ultrathin Plasmonic Strip Antennas by Cathodoluminescence

    KAUST Repository

    Barnard, Edward S.

    2011-10-12

    We perform spectrally resolved cathodoluminescence (CL) imaging nanoscopy using a 30 keV electron beam to identify the resonant modes of an ultrathin (20 nm), laterally tapered plasmonic Ag nanostrip antenna. We resolve with deep-subwavelength resolution four antenna resonances (resonance orders m = 2-5) that are ascribed to surface plasmon polariton standing waves that are confined on the strip. We map the local density of states on the strip surface and show that it has contributions from symmetric and antisymmetric surface plasmon polariton modes, each with a very different mode index. This work illustrates the power of CL experiments that can visualize hidden modes that for symmetry reasons have been elusive in optical light scattering experiments. © 2011 American Chemical Society.

  11. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI

    NARCIS (Netherlands)

    Motaal, Abdallah G.; Noorman, Nils; de Graaf, Wolter L.; Hoerr, Verena; Florack, Luc M. J.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously

  12. Time-gated ballistic imaging using a large aperture switching beam.

    Science.gov (United States)

    Mathieu, Florian; Reddemann, Manuel A; Palmer, Johannes; Kneer, Reinhold

    2014-03-24

    Ballistic imaging commonly denotes the formation of line-of-sight shadowgraphs through turbid media by suppression of multiply scattered photons. The technique relies on a femtosecond laser acting as light source for the images and as switch for an optical Kerr gate that separates ballistic photons from multiply scattered ones. The achievable image resolution is one major limitation for the investigation of small objects. In this study, practical influences on the optical Kerr gate and image quality are discussed theoretically and experimentally applying a switching beam with large aperture (D = 19 mm). It is shown how switching pulse energy and synchronization of switching and imaging pulse in the Kerr cell influence the gate's transmission. Image quality of ballistic imaging and standard shadowgraphy is evaluated and compared, showing that the present ballistic imaging setup is advantageous for optical densities in the range of 8 ballistic imaging setup into a schlieren-type system with an optical schlieren edge.

  13. Cardiac tumours: non invasive detection and assessment by gated cardiac blood pool radionuclide imaging

    International Nuclear Information System (INIS)

    Pitcher, D.; Wainwright, R.; Brennand-Roper, D.; Deverall, P.; Sowton, E.; Maisey, M.

    1980-01-01

    Four patients with cardiac tumours were investigated by gated cardiac blood pool radionuclide imaging and echocardiography. Contrast angiocardiography was performed in three of the cases. Two left atrial tumours were detected by all three techniques. In one of these cases echocardiography alone showed additional mitral valve stenosis, but isotope imaging indicated tumour size more accurately. A large septal mass was detected by all three methods. In this patient echocardiography showed evidence of left ventricular outflow obstruction, confirmed at cardiac catheterisation, but gated isotope imaging provided a more detailed assessment of the abnormal cardiac anatomy. In the fourth case gated isotope imaging detected a large right ventricular tumour which had not been identified by echocardiography. Gated cardiac blood pool isotope imaging is a complementary technique to echocardiography for the non-invasive detection and assessment of cardiac tumours. (author)

  14. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    Science.gov (United States)

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-04-01

    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping

  15. SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories

    Science.gov (United States)

    Zhang, M.; Collioud, A.; Charlot, P.

    2018-02-01

    We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.

  16. SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy

    International Nuclear Information System (INIS)

    Suzuki, J; Okuda, T; Sakaino, S; Yokota, N

    2015-01-01

    Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determine the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However

  17. SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, J; Okuda, T [Toyota memorial hospital, Toyota, Aichi (Japan); Sakaino, S; Yokota, N [Suzukake central hospital, Hamamatsu, Shizuoka (Japan)

    2015-06-15

    Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determine the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However

  18. Varicose vein stripping

    Science.gov (United States)

    ... stripping; Venous reflux - vein stripping; Venous ulcer - veins Patient Instructions Surgical wound care - open Varicose veins - what to ask your doctor Images Circulatory system References American Family Physician. Management of varicose veins. www.aafp.org/afp/2008/ ...

  19. Self-gating MR imaging of the fetal heart: comparison with real cardiac triggering

    International Nuclear Information System (INIS)

    Yamamura, Jin; Frisch, Michael; Ecker, Hannes; Adam, Gerhard; Wedegaertner, Ulrike; Graessner, Joachim; Hecher, Kurt

    2011-01-01

    To investigate the self-gating technique for MR imaging of the fetal heart in a sheep model. MR images of 6 fetal sheep heart were obtained at 1.5T. For self-gating MRI of the fetal heart a cine SSFP in short axis, two and four chamber view was used. Self-gated images were compared with real cardiac triggered MR images (pulse-wave triggering). MRI of the fetal heart was performed using both techniques simultaneously. Image quality was assessed and the left ventricular volume and function were measured and compared. Compared with pulse-wave triggering, the self-gating technique produced slightly inferior images with artifacts. Especially the atrial septum could not be so clearly depicted. The contraction of the fetal heart was shown in cine sequences in both techniques. The average blood volumes could be measured with both techniques with no significant difference: at end-systole 3.1 ml (SD± 0.2), at end-diastole 4.9 ml (±0.2), with ejection fractions at 38.6%, respectively 39%. Both self-gating and pulse-wave triggered cardiac MRI of the fetal heart allowed the evaluation of anatomical structures and functional information. Images obtained by self-gating technique were slightly inferior than the pulse-wave triggered MRI. (orig.)

  20. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    International Nuclear Information System (INIS)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad; Zacharapoulos, Nicholas; Pepelea, Mark; Klahr, Paul; Yu, Cedric X.

    2005-01-01

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CT scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging

  1. Influence of range-gated intensifiers on underwater imaging system SNR

    Science.gov (United States)

    Wang, Xia; Hu, Ling; Zhi, Qiang; Chen, Zhen-yue; Jin, Wei-qi

    2013-08-01

    Range-gated technology has been a hot research field in recent years due to its high effective back scattering eliminating. As a result, it can enhance the contrast between a target and its background and extent the working distance of the imaging system. The underwater imaging system is required to have the ability to image in low light level conditions, as well as the ability to eliminate the back scattering effect, which means that the receiver has to be high-speed external trigger function, high resolution, high sensitivity, low noise, higher gain dynamic range. When it comes to an intensifier, the noise characteristics directly restrict the observation effect and range of the imaging system. The background noise may decrease the image contrast and sharpness, even covering the signal making it impossible to recognize the target. So it is quite important to investigate the noise characteristics of intensifiers. SNR is an important parameter reflecting the noise features of a system. Through the use of underwater laser range-gated imaging prediction model, and according to the linear SNR system theory, the gated imaging noise performance of the present market adopted super second generation and generation Ⅲ intensifiers were theoretically analyzed. Based on the active laser underwater range-gated imaging model, the effect to the system by gated intensifiers and the relationship between the system SNR and MTF were studied. Through theoretical and simulation analysis to the image intensifier background noise and SNR, the different influence on system SNR by super second generation and generation Ⅲ ICCD was obtained. Range-gated system SNR formula was put forward, and compared the different effect influence on the system by using two kind of ICCDs was compared. According to the matlab simulation, a detailed analysis was carried out theoretically. All the work in this paper lays a theoretical foundation to further eliminating back scattering effect, improving

  2. A digital X-ray imaging system based on silicon strip detectors working in edge-on configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bolanos, L. [CEADEN, Calle 30 502 e/ 5ta y 7ma Avenida, Playa, Ciudad Habana (Cuba); Boscardin, M. [IRST, Fondazione Bruno Kessler, Via Sommarive 18, Povo, 38100 Trento (Italy); Cabal, A.E. [CEADEN, Calle 30 502 e/ 5ta y 7ma Avenida, Playa, Ciudad Habana (Cuba); Diaz, M. [InSTEC, Ave. Salvador Allende esq. Luaces, Quinta de los Molinos, Ciudad Habana (Cuba); Grybos, P.; Maj, P. [Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Measurement and Instrumentation, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Prino, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Ramello, L. [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale, Via T. Michel 11, 15100 Alessandria (Italy)], E-mail: luciano.ramello@mfn.unipmn.it; Szczygiel, R. [Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Measurement and Instrumentation, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2009-09-21

    We present the energy resolution and imaging performance of a digital X-ray imaging system based on a 512-strip silicon strip detector (SSD) working in the edge-on configuration. The SSDs tested in the system are 300 {mu}m thick with 1 or 2-cm-long strips and 100 {mu}m pitch. To ensure a very small dead area of the SSD working in edge-on configuration, the detector is cut perpendicular to the strips at a distance of only 20 {mu}m from the end of the strips. The 512-strip silicon detector is read out by eight 64-channel integrated circuits called DEDIX [Grybos et al., IEEE Trans. Nucl. Sci. NS-54 (2007) 1207]. The DEDIX IC operates in a single photon counting mode with two independent amplitude discriminators per channel. The readout electronic channel connected to a detector with effective input capacitance of about 2 pF has an average equivalent noise charge (ENC) of about 163 el. rms and is able to count 1 Mcps of average rate of input pulses. The system consisting of 512 channels has an excellent channel-to-channel uniformity-the effective threshold spread calculated to the charge-sensitive amplifier inputs is 12 el. rms (at one sigma level). With this system a few test images of a phantom have been taken in the 10-30 keV energy range.

  3. Hybrid ECG-gated versus non-gated 512-slice CT angiography of the aorta and coronary artery: image quality and effect of a motion correction algorithm.

    Science.gov (United States)

    Lee, Ji Won; Kim, Chang Won; Lee, Geewon; Lee, Han Cheol; Kim, Sang-Pil; Choi, Bum Sung; Jeong, Yeon Joo

    2018-02-01

    Background Using the hybrid electrocardiogram (ECG)-gated computed tomography (CT) technique, assessment of entire aorta, coronary arteries, and aortic valve can be possible using single-bolus contrast administration within a single acquisition. Purpose To compare the image quality of hybrid ECG-gated and non-gated CT angiography of the aorta and evaluate the effect of a motion correction algorithm (MCA) on coronary artery image quality in a hybrid ECG-gated aorta CT group. Material and Methods In total, 104 patients (76 men; mean age = 65.8 years) prospectively randomized into two groups (Group 1 = hybrid ECG-gated CT; Group 2 = non-gated CT) underwent wide-detector array aorta CT. Image quality, assessed using a four-point scale, was compared between the groups. Coronary artery image quality was compared between the conventional reconstruction and motion correction reconstruction subgroups in Group 1. Results Group 1 showed significant advantages over Group 2 in aortic wall, cardiac chamber, aortic valve, coronary ostia, and main coronary arteries image quality (all P ECG-gated CT significantly improved the heart and aortic wall image quality and the MCA can further improve the image quality and interpretability of coronary arteries.

  4. Magnetic imaging and machine vision NDT for the on-line inspection of stainless steel strips

    International Nuclear Information System (INIS)

    Ricci, M; Ficola, A; Fravolini, M L; Battaglini, L; Palazzi, A; Burrascano, P; Valigi, P; Appolloni, L; Cervo, S; Rocchi, C

    2013-01-01

    An on-line inspection system for stainless steel strips has been developed on an annealing and pickling line at the Acciai Speciali Terni S.p.A. steel mill. Besides a machine vision apparatus, the system contextually exploits a magnetic imaging system designed and realized for the specific application. The main goal of the research is represented by the fusion of the information provided by the two apparatuses that can improve the detection and classification tasks by enlarging the set of detectable defects. In this paper, the development, the calibration and the characteristics of the magnetic imaging apparatus are detailed and experimental results obtained both in laboratory and in situ are reported. A comparative analysis of the performances of the two devices is also reported based on preliminary results and some conclusions and perspectives are drawn. (paper)

  5. Cardiac magnetic resonance: is phonocardiogram gating reliable in velocity-encoded phase contrast imaging?

    International Nuclear Information System (INIS)

    Nassenstein, Kai; Schlosser, Thomas; Orzada, Stephan; Ladd, Mark E.; Maderwald, Stefan; Haering, Lars; Czylwik, Andreas; Jensen, Christoph; Bruder, Oliver

    2012-01-01

    To assess the diagnostic accuracy of phonocardiogram (PCG) gated velocity-encoded phase contrast magnetic resonance imaging (MRI). Flow quantification above the aortic valve was performed in 68 patients by acquiring a retrospectively PCG- and a retrospectively ECG-gated velocity-encoded GE-sequence at 1.5 T. Peak velocity (PV), average velocity (AV), forward volume (FV), reverse volume (RV), net forward volume (NFV), as well as the regurgitant fraction (RF) were assessed for both datasets, as well as for the PCG-gated datasets after compensation for the PCG trigger delay. PCG-gated image acquisition was feasible in 64 patients, ECG-gated in all patients. PCG-gated flow quantification overestimated PV (Δ 3.8 ± 14.1 cm/s; P = 0.037) and underestimated FV (Δ -4.9 ± 15.7 ml; P = 0.015) and NFV (Δ -4.5 ± 16.5 ml; P = 0.033) compared with ECG-gated imaging. After compensation for the PCG trigger delay, differences were only observed for PV (Δ 3.8 ± 14.1 cm/s; P = 0.037). Wide limits of agreement between PCG- and ECG-gated flow quantification were observed for all variables (PV: -23.9 to 31.4 cm/s; AV: -4.5 to 3.9 cm/s; FV: -35.6 to 25.9 ml; RV: -8.0 to 7.2 ml; NFV: -36.8 to 27.8 ml; RF: -10.4 to 10.2 %). The present study demonstrates that PCG gating in its current form is not reliable enough for flow quantification based on velocity-encoded phase contrast gradient echo (GE) sequences. (orig.)

  6. Diagnostic value of rest and stress gated 82Rb PET myocardial perfusion imaging using quantitative software

    International Nuclear Information System (INIS)

    Shi Hongcheng; Gu Yusen; Liu Wenguan; Zhu Weimin; Halkar, R.K.; Santana, C.A.; Feng Yusheng

    2008-01-01

    Objective: Gated myocardial perfusion imaging (MPI) is regularly performed using SPECT. More recently, gated 82 Rb MPI has been used to assess left ventricular myocardial perfusion and function with new generation PET scanners. The objective of this study was to evaluate the value of rest and stress gated 82 Rb PET myocardial perfusion imaging and to determine whether the quantitative technique in- creased the confidence level of the interpreters. Methods: Thirty-two patients underwent rest and adenosine stress gated 82 Pb PET MPI. Emory Cardiac Toolbox quantitative software was used for processing and inter-predation. Left ventricular ejection fraction (LVEF), end-diastolic, end-systolic and transient ischemia dilation ratio were automatically generated. Three interpreters (nuclear medicine doctors) independently reviewed the studies. Visual scoring (1-5 scales: excellent, good, unsure, poor, uninterpretable) was used to assess the overall quality of the gated images and the added confidence level of interpretation. Visual assessment of the LVEF was compared to the automatically generated LVEF. Comparison between the visual assessment and software generated was graded on a 1- 5 scales (helpful, probably helpful, unsure, probably not helpful, definitely not helpful). The analysed items were divided into two groups (favorable group and negative group). The percentage and 95% confidence intervals of each group were calculated. Results: A total of 192 gated studies were evaluated (64 gated x 3 interpreters ). The overall quality of the gated images was good [excellent 40.1% (77/192), good 43.2% (83/192), unsure 3.1% (6/192), poor 13.6% (26/192), uninterpretable 0]. The 95% confidence intervals of good and excellent quality range from 78.1% to 88.6%. The interpreter's agreed with the automated LVEF on 85.4% of the gated images [agree 76.6% (147/192), probably agree 8.8% (17/192), unsure 3.1% (6/192), probably disagree 8.8% (17/192), disagree 2.6% (5/192)]. And its 95

  7. Spatiotemporal processing of gated cardiac SPECT images using deformable mesh modeling

    International Nuclear Information System (INIS)

    Brankov, Jovan G.; Yang Yongyi; Wernick, Miles N.

    2005-01-01

    In this paper we present a spatiotemporal processing approach, based on deformable mesh modeling, for noise reduction in gated cardiac single-photon emission computed tomography images. Because of the partial volume effect (PVE), clinical cardiac-gated perfusion images exhibit a phenomenon known as brightening--the myocardium appears to become brighter as the heart wall thickens. Although brightening is an artifact, it serves as an important diagnostic feature for assessment of wall thickening in clinical practice. Our proposed processing algorithm aims to preserve this important diagnostic feature while reducing the noise level in the images. The proposed algorithm is based on the use of a deformable mesh for modeling the cardiac motion in a gated cardiac sequence, based on which the images are processed by smoothing along space-time trajectories of object points while taking into account the PVE. Our experiments demonstrate that the proposed algorithm can yield significantly more-accurate results than several existing methods

  8. Measurement of left ventricular ejection fraction from gated technetium-99m sestamibi myocardial images

    International Nuclear Information System (INIS)

    Boonyaprapa, S.; Ekmahachai, M.; Thanachaikun, N.; Jaiprasert, W.; Sukthomya, V.; Poramatikul, N.

    1995-01-01

    Sixty patients underwent SPET imaging with MIBI. Immediately after SPET acquisition ECG-gated 99m Tc-MIBI perfusion images were acquired using 24 planar images per R-R interval. A new method for measurement of LVEF from the ECG-gated 99m Tc-MIBI perfusion images was developed. To validate the method, LVEF derived from MIBI perfusion images was compared with that from conventional radionuclide ventriculography in all 60 patients. Forty patients had evidence of myocardial infarction and 20 had normal perfusion on MIBI imaging. There was no statistically significant difference between LVEF computed from 99m Tc-MIBI perfusion images and that from radionuclide ventriculography (r=0.7062, P 99m Tc-MIBI perfusion images can be obtained at the same time as assessment of myocardial perfusion and in the same orientation and metabolism of the myocardium, thereby permitting more accurate and realistic prognosis and diagnosis in patients with coronary artery disease. (orig.)

  9. Nanosecond Time-Resolved Microscopic Gate-Modulation Imaging of Polycrystalline Organic Thin-Film Transistors

    Science.gov (United States)

    Matsuoka, Satoshi; Tsutsumi, Jun'ya; Matsui, Hiroyuki; Kamata, Toshihide; Hasegawa, Tatsuo

    2018-02-01

    We develop a time-resolved microscopic gate-modulation (μ GM ) imaging technique to investigate the temporal evolution of the channel current and accumulated charges in polycrystalline pentacene thin-film transistors (TFTs). A time resolution of as high as 50 ns is achieved by using a fast image-intensifier system that could amplify a series of instantaneous optical microscopic images acquired at various time intervals after the stepped gate bias is switched on. The differential images obtained by subtracting the gate-off image allows us to acquire a series of temporal μ GM images that clearly show the gradual propagation of both channel charges and leaked gate fields within the polycrystalline channel layers. The frontal positions for the propagations of both channel charges and leaked gate fields coincide at all the time intervals, demonstrating that the layered gate dielectric capacitors are successively transversely charged up along the direction of current propagation. The initial μ GM images also indicate that the electric field effect is originally concentrated around a limited area with a width of a few micrometers bordering the channel-electrode interface, and that the field intensity reaches a maximum after 200 ns and then decays. The time required for charge propagation over the whole channel region with a length of 100 μ m is estimated at about 900 ns, which is consistent with the measured field-effect mobility and the temporal-response model for organic TFTs. The effect of grain boundaries can be also visualized by comparison of the μ GM images for the transient and the steady states, which confirms that the potential barriers at the grain boundaries cause the transient shift in the accumulated charges or the transient accumulation of additional charges around the grain boundaries.

  10. Gated x-ray detector for the National Ignition Facility

    International Nuclear Information System (INIS)

    Oertel, John A.; Aragonez, Robert; Archuleta, Tom; Barnes, Cris; Casper, Larry; Fatherley, Valerie; Heinrichs, Todd; King, Robert; Landers, Doug; Lopez, Frank; Sanchez, Phillip; Sandoval, George; Schrank, Lou; Walsh, Peter; Bell, Perry; Brown, Matt; Costa, Robert; Holder, Joe; Montelongo, Sam; Pederson, Neal

    2006-01-01

    Two new gated x-ray imaging cameras have recently been designed, constructed, and delivered to the National Ignition Facility in Livermore, CA. These gated x-Ray detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significantly different from earlier generations of gated x-ray images due, in part, to an innovative impedance matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring, and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution, and no detectable impedance reflections

  11. Angle-independent measure of motion for image-based gating in 3D coronary angiography

    International Nuclear Information System (INIS)

    Lehmann, Glen C.; Holdsworth, David W.; Drangova, Maria

    2006-01-01

    The role of three-dimensional (3D) image guidance for interventional procedures and minimally invasive surgeries is increasing for the treatment of vascular disease. Currently, most interventional procedures are guided by two-dimensional x-ray angiography, but computed rotational angiography has the potential to provide 3D geometric information about the coronary arteries. The creation of 3D angiographic images of the coronary arteries requires synchronization of data acquisition with respect to the cardiac cycle, in order to minimize motion artifacts. This can be achieved by inferring the extent of motion from a patient's electrocardiogram (ECG) signal. However, a direct measurement of motion (from the 2D angiograms) has the potential to improve the 3D angiographic images by ensuring that only projections acquired during periods of minimal motion are included in the reconstruction. This paper presents an image-based metric for measuring the extent of motion in 2D x-ray angiographic images. Adaptive histogram equalization was applied to projection images to increase the sharpness of coronary arteries and the superior-inferior component of the weighted centroid (SIC) was measured. The SIC constitutes an image-based metric that can be used to track vessel motion, independent of apparent motion induced by the rotational acquisition. To evaluate the technique, six consecutive patients scheduled for routine coronary angiography procedures were studied. We compared the end of the SIC rest period (ρ) to R-waves (R) detected in the patient's ECG and found a mean difference of 14±80 ms. Two simultaneous angular positions were acquired and ρ was detected for each position. There was no statistically significant difference (P=0.79) between ρ in the two simultaneously acquired angular positions. Thus we have shown the SIC to be independent of view angle, which is critical for rotational angiography. A preliminary image-based gating strategy that employed the SIC was

  12. In Vivo Respiratory-Gated Micro-CT Imaging in Small-Animal Oncology Models

    Directory of Open Access Journals (Sweden)

    Dawn Cavanaugh

    2004-01-01

    Full Text Available Micro-computed tomography (micro-CT is becoming an accepted research tool for the noninvasive examination of laboratory animals such as mice and rats, but to date, in vivo scanning has largely been limited to the evaluation of skeletal tissues. We use a commercially available micro-CT device to perform respiratory gated in vivo acquisitions suitable for thoracic imaging. The instrument is described, along with the scan protocol and animal preparation techniques. Preliminary results confirm that lung tumors as small as 1 mm in diameter are visible in vivo with these methods. Radiation dose was evaluated using several approaches, and was found to be approximately 0.15 Gy for this respiratory-gated micro-CT imaging protocol. The combination of high-resolution CT imaging and respiratory-gated acquisitions appears well-suited to serial in vivo scanning.

  13. Catheter-based time-gated near-infrared fluorescence/OCT imaging system

    Science.gov (United States)

    Lu, Yuankang; Abran, Maxime; Cloutier, Guy; Lesage, Frédéric

    2018-02-01

    We developed a new dual-modality intravascular imaging system based on fast time-gated fluorescence intensity imaging and spectral domain optical coherence tomography (SD-OCT) for the purpose of interventional detection of atherosclerosis. A pulsed supercontinuum laser was used for fluorescence and OCT imaging. A double-clad fiber (DCF)- based side-firing catheter was designed and fabricated to have a 23 μm spot size at a 2.2 mm working distance for OCT imaging. Its single-mode core is used for OCT, while its inner cladding transports fluorescence excitation light and collects fluorescent photons. The combination of OCT and fluorescence imaging was achieved by using a DCF coupler. For fluorescence detection, we used a time-gated technique with a novel single-photon avalanche diode (SPAD) working in an ultra-fast gating mode. A custom-made delay chip was integrated in the system to adjust the delay between the excitation laser pulse and the SPAD gate-ON window. This technique allowed to detect fluorescent photons of interest while rejecting most of the background photons, thus leading to a significantly improved signal to noise ratio (SNR). Experiments were carried out in turbid media mimicking tissue with an indocyanine green (ICG) inclusion (1 mM and 100 μM) to compare the time-gated technique and the conventional continuous detection technique. The gating technique increased twofold depth sensitivity, and tenfold SNR at large distances. The dual-modality imaging capacity of our system was also validated with a silicone-based tissue-mimicking phantom.

  14. Database Description - Open TG-GATEs Pathological Image Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Open TG-GATEs Pathological Image Database Database Description General information of database Database... name Open TG-GATEs Pathological Image Database Alternative name - DOI 10.18908/lsdba.nbdc00954-0...iomedical Innovation 7-6-8, Saito-asagi, Ibaraki-city, Osaka 567-0085, Japan TEL:81-72-641-9826 Email: Database... classification Toxicogenomics Database Organism Taxonomy Name: Rattus norvegi... Article title: Author name(s): Journal: External Links: Original website information Database

  15. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles.

    Science.gov (United States)

    Gu, Luo; Hall, David J; Qin, Zhengtao; Anglin, Emily; Joo, Jinmyoung; Mooney, David J; Howell, Stephen B; Sailor, Michael J

    2013-01-01

    Fluorescence imaging is one of the most versatile and widely used visualization methods in biomedical research. However, tissue autofluorescence is a major obstacle confounding interpretation of in vivo fluorescence images. The unusually long emission lifetime (5-13 μs) of photoluminescent porous silicon nanoparticles can allow the time-gated imaging of tissues in vivo, completely eliminating shorter-lived (50-fold in vitro and by >20-fold in vivo when imaging porous silicon nanoparticles. Time-gated imaging of porous silicon nanoparticles accumulated in a human ovarian cancer xenograft following intravenous injection is demonstrated in a live mouse. The potential for multiplexing of images in the time domain by using separate porous silicon nanoparticles engineered with different excited state lifetimes is discussed.

  16. Respiratory and cardiac motion correction in dual gated PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi; Monnier, Florian [LaTIM, INSERM, UMR 1101, Brest (France); Odille, Freedy; Felblinger, Jacques [INSERM U947, University of Nancy, Nancy (France); Lamare, Frederic [INCIA, UMR5287, CNRS, CHU Bordeaux, Bordeaux (France); Visvikis, Dimitris [LaTIM, INSERM, UMR 1101, Brest (France)

    2015-05-18

    Respiratory and cardiac motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies involve the use of double gated acquisitions which lead to low signal-to-noise ratio (SNR) and to issues concerning the combination of cardiac and respiratory frames. The objective of this work is to use a generalized reconstruction by inversion of coupled systems (GRICS) approach, previously used for PET/MR respiratory motion correction, combined with a cardiac phase signal and a reconstruction incorporated PET motion correction approach in order to reconstruct motion free images from dual gated PET acquisitions. The GRICS method consists of formulating parallel MRI in the presence of patient motion as a coupled inverse problem. Its resolution, using a fixed-point method, allows the reconstructed image to be improved using a motion model constructed from the raw MR data and two respiratory belts. GRICS obtained respiratory displacements are interpolated using the cardiac phase derived from an ECG to model simultaneous cardiac and respiratory motion. Three different volunteer datasets (4DMR acquisitions) were used for evaluation. GATE was used to simulate 4DPET datasets corresponding to the acquired 4DMR images. Simulated data were subsequently binned using 16 cardiac phases (M1) vs diastole only (M2), in combination with 8 respiratory amplitude gates. Respiratory and cardiac motion corrected PET images using either M1 or M2 were compared to respiratory only corrected images and evaluated in terms of SNR and contrast improvement. Significant visual improvements were obtained when correcting simultaneously for respiratory and cardiac motion (using 16 cardiac phase or diastole only) compared to respiratory motion only compensation. Results were confirmed by an associated increased SNR and contrast. Results indicate that using GRICS is an efficient tool for respiratory and cardiac motion correction in dual gated PET/MR imaging.

  17. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality : a digital phantom study

    NARCIS (Netherlands)

    Bernatowicz, K; Keall, P; Mishra, P; Knopf, A; Lomax, A; Kipritidis, J

    PURPOSE: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on

  18. Evaluation of multi-gated myocardial perfusion imaging in various heart diseases

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Uehara, Toshitake; Kozuka, Takahiro

    1980-01-01

    Multi-gated myocardial perfusion imaging were studied in a hundred cases of various heart diseases. In normal cases, ED ES images showed thinning and thickening of wall motion respectively to compare with static images. In the myocardial infarction cases, the dynamic changes of wall motion was decreased at infarcted areas in all cases. In congestive cardiomyopathy, the change of wall motion is smaller than normal cases in all cases, while in hypertrophic cardiomyopathy, the change is not so hyperdynamic to compare with normal cases and by multi-gated images, asymmetric hypertrophy was clearly detected in HCM than static images. In conclusion, these methods were useful to detect the myocardial contraction stage in various heart diseases. (author)

  19. Comparative study of image quality and radiation dose between prospective and retrospective ECG gating technique in coronary artery imaging with 64-slice spiral CT

    International Nuclear Information System (INIS)

    Liu Jianxin; Liu Jian; Dou Yanbin; Wang Jichen; Sun Hongyue

    2009-01-01

    Objective: To compare the image quality and radiation dose between prospective ECG-trigering and retrospective ECG gating technique in coronary artery imaging. Methods: 33 patients suspected coronary artery disease were included in this study and divided into experimental group (prospective ECG-triggering coronary artery imaging, heart rate 0.05). The mean DLP of experimental group (234.4 mGy · cm) was DLP of control group (974.4 mGy · cm) 24.1%. The mean effective dose of prospective ECG gating coronary artery imaging was 3.2 mSv. Effective dose reduced 76.47 %. Conclusions: Prospective ECG gating coronary artery imaging can obtain the similar image quality compared with prospective ECG gating coronary artery imaging but the effective dose reduced 76.47 %. Prospective ECG gating coronary artery imaging has clinical value to peoples who are able to not accept high radiation dose and with low heart rate. (authors)

  20. Microscopic gate-modulation imaging of charge and field distribution in polycrystalline organic transistors

    Science.gov (United States)

    Matsuoka, Satoshi; Tsutsumi, Jun'ya; Kamata, Toshihide; Hasegawa, Tatsuo

    2018-04-01

    In this work, a high-resolution microscopic gate-modulation imaging (μ-GMI) technique is successfully developed to visualize inhomogeneous charge and electric field distributions in operating organic thin-film transistors (TFTs). We conduct highly sensitive and diffraction-limit gate-modulation sensing for acquiring difference images of semiconducting channels between at gate-on and gate-off states that are biased at an alternate frequency of 15 Hz. As a result, we observe unexpectedly inhomogeneous distribution of positive and negative local gate-modulation (GM) signals at a probe photon energy of 1.85 eV in polycrystalline pentacene TFTs. Spectroscopic analyses based on a series of μ-GMI at various photon energies reveal that two distinct effects appear, simultaneously, within the polycrystalline pentacene channel layers: Negative GM signals at 1.85 eV originate from the second-derivative-like GM spectrum which is caused by the effect of charge accumulation, whereas positive GM signals originate from the first-derivative-like GM spectrum caused by the effect of leaked gate fields. Comparisons with polycrystalline morphologies indicate that grain centers are predominated by areas with high leaked gate fields due to the low charge density, whereas grain edges are predominantly high-charge-density areas with a certain spatial extension as associated with the concentrated carrier traps. Consequently, it is reasonably understood that larger grains lead to higher device mobility, but with greater inhomogeneity in charge distribution. These findings provide a clue to understand and improve device characteristics of polycrystalline TFTs.

  1. A low-cost universal cumulative gating circuit for small and large animal clinical imaging

    Science.gov (United States)

    Gioux, Sylvain; Frangioni, John V.

    2008-02-01

    Image-assisted diagnosis and therapy is becoming more commonplace in medicine. However, most imaging techniques suffer from voluntary or involuntary motion artifacts, especially cardiac and respiratory motions, which degrade image quality. Current software solutions either induce computational overhead or reject out-of-focus images after acquisition. In this study we demonstrate a hardware-only gating circuit that accepts multiple, pseudo-periodic signals and produces a single TTL (0-5 V) imaging window of accurate phase and period. The electronic circuit Gerber files described in this article and the list of components are available online at www.frangionilab.org.

  2. Dynamic Characterizations of an 8-frame, Half-Strip, High-speed X-ray Microchannel Plate Imager

    International Nuclear Information System (INIS)

    Ken Moy; Ming Wu; Craig Kruschwitz; Aric Tibbits; Matt Griffin; Greg Rochau

    2008-01-01

    High-speed microchannel plate (MCP)-based imagers are critical detectors for x-ray diagnostics employed on Z-experiments at Sandia National Laboratories (SNL) to measure time-resolved x-ray spectra and to image dynamic hohlraums. A multiframe design using eight half strips in one imager permits recordings of radiation events in discrete temporal snapshots to yield a time-evolved movie. We present data using various facilities to characterize the performance of this design. These characterization studies include DC and pulsed-voltage biased measurements in both saturated and linear operational regimes using an intense, short-pulsed UV laser. Electrical probe measurements taken to characterize the shape of the HV pulse propagating across the strips help to corroborate the spatial gain dependence

  3. Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging

    International Nuclear Information System (INIS)

    Ford, E.C.; Mageras, G.S.; Yorke, E.; Rosenzweig, K.E.; Wagman, R.; Ling, C.C.

    2002-01-01

    Purpose: To evaluate the effectiveness of a commercial system in reducing respiration-induced treatment uncertainty by gating the radiation delivery. Methods and Materials: The gating system considered here measures respiration from the position of a reflective marker on the patient's chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device. Results: The gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8±1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6±1.7 mm. With no gating, this intrafraction excursion became 6.9±2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0±3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was

  4. Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Bliss, D.E.

    1997-02-01

    Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

  5. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    Science.gov (United States)

    Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.

    2014-03-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  6. Prognostic value of gated 201Tl myocardial perfusion SPECT imaging in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Li Zicheng; Chen Xiaoming; Xu Hao

    2006-01-01

    Objective: To study the prognostic value of gated 201 Tl myocardial perfusion SPECT imaging in patients with coronary artery disease and assessment of therapy strategy for the individual patient. Methods: Eighty-four patients underwent rest and exercise stress 201 Tl gated myocardial perfusion SPECT imaging and were followed up for (32.92 ± 16.77) months. Images were studied using 17 segments and 1 to 4 scoring. Global summed stress score (SSS), summed rest score (SRS) and summed difference score (SDS=SSS-SRS) were also calculated. Post-stress and rest ejection fraction (EF) were automatically measured. Results: Nine cardiac events occurred (3.90% per year). SSS, SDS, SRS and EF were the independent predictors of cardiac events (P 201 Tl myocardial perfusion SPECT imaging can provide prognostic assessment for the patients with coronary artery disease and guide in selection of therapeutic strategy. Among all of the indices SSS is the best predictors of cardiac events. (authors)

  7. Model-based restoration using light vein for range-gated imaging systems.

    Science.gov (United States)

    Wang, Canjin; Sun, Tao; Wang, Tingfeng; Wang, Rui; Guo, Jin; Tian, Yuzhen

    2016-09-10

    The images captured by an airborne range-gated imaging system are degraded by many factors, such as light scattering, noise, defocus of the optical system, atmospheric disturbances, platform vibrations, and so on. The characteristics of low illumination, few details, and high noise make the state-of-the-art restoration method fail. In this paper, we present a restoration method especially for range-gated imaging systems. The degradation process is divided into two parts: the static part and the dynamic part. For the static part, we establish the physical model of the imaging system according to the laser transmission theory, and estimate the static point spread function (PSF). For the dynamic part, a so-called light vein feature extraction method is presented to estimate the fuzzy parameter of the atmospheric disturbance and platform movement, which make contributions to the dynamic PSF. Finally, combined with the static and dynamic PSF, an iterative updating framework is used to restore the image. Compared with the state-of-the-art methods, the proposed method can effectively suppress ringing artifacts and achieve better performance in a range-gated imaging system.

  8. The values of myocardial tomography imaging and gated cardiac blood pool imaging in detecting left ventricular aneurysm

    International Nuclear Information System (INIS)

    Zhu Mei; Pan Zhongyun; Li Jinhui

    1992-01-01

    The sensitivity and specificity of myocardial tomography imaging and gated cardiac blood-pool imaging in detecting LVA were studied in 36 normal subjects and 68 patients with myocardial infarction. The sensitivities of exercise and rest myocardial imaging in detecting LVA were 85% and 77.3% respectively. The specificity of both is 95.5%. The sensitivity of cinema display, phase analysis and left ventricular phase shift in evaluating LVA were 86.7%, 86.7%, 100% respectively. Their specificity were all 100%. It is concluded that blood pool imaging is of choice for the diagnosis of LVA, and that myocardial imaging could also demonstrate LVA during diagnosing myocardial infarction

  9. Noise-gating to Clean Astrophysical Image Data

    International Nuclear Information System (INIS)

    DeForest, C. E.

    2017-01-01

    I present a family of algorithms to reduce noise in astrophysical images and image sequences, preserving more information from the original data than is retained by conventional techniques. The family uses locally adaptive filters (“noise gates”) in the Fourier domain to separate coherent image structure from background noise based on the statistics of local neighborhoods in the image. Processing of solar data limited by simple shot noise or by additive noise reveals image structure not easily visible in the originals, preserves photometry of observable features, and reduces shot noise by a factor of 10 or more with little to no apparent loss of resolution. This reveals faint features that were either not directly discernible or not sufficiently strongly detected for quantitative analysis. The method works best on image sequences containing related subjects, for example movies of solar evolution, but is also applicable to single images provided that there are enough pixels. The adaptive filter uses the statistical properties of noise and of local neighborhoods in the data to discriminate between coherent features and incoherent noise without reference to the specific shape or evolution of those features. The technique can potentially be modified in a straightforward way to exploit additional a priori knowledge about the functional form of the noise.

  10. Noise-gating to Clean Astrophysical Image Data

    Energy Technology Data Exchange (ETDEWEB)

    DeForest, C. E. [Southwest Research Institute, 1050 Walnut Street, Boulder, CO (United States)

    2017-04-01

    I present a family of algorithms to reduce noise in astrophysical images and image sequences, preserving more information from the original data than is retained by conventional techniques. The family uses locally adaptive filters (“noise gates”) in the Fourier domain to separate coherent image structure from background noise based on the statistics of local neighborhoods in the image. Processing of solar data limited by simple shot noise or by additive noise reveals image structure not easily visible in the originals, preserves photometry of observable features, and reduces shot noise by a factor of 10 or more with little to no apparent loss of resolution. This reveals faint features that were either not directly discernible or not sufficiently strongly detected for quantitative analysis. The method works best on image sequences containing related subjects, for example movies of solar evolution, but is also applicable to single images provided that there are enough pixels. The adaptive filter uses the statistical properties of noise and of local neighborhoods in the data to discriminate between coherent features and incoherent noise without reference to the specific shape or evolution of those features. The technique can potentially be modified in a straightforward way to exploit additional a priori knowledge about the functional form of the noise.

  11. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Chen Qing; Yin, Fang-Fang; Movsas, Benjamin

    2006-01-01

    Background and purpose: To develop and evaluate a technique and procedure of using gated-CT images in combination with PET image to determine the internal target volume (ITV), which could reduce the planning target volume (PTV) with adequate target coverage. Patients and methods: A skin marker-based gating system connected to a regular single slice CT scanner was used for this study. A motion phantom with adjustable motion amplitude was used to evaluate the CT gating system. Specifically, objects of various sizes/shapes, considered as virtual tumors, were placed on the phantom to evaluate the number of phases of gated images required to determine the ITV while taking into account tumor size, shape and motion. A procedure of using gated-CT and PET images to define ITV for patients was developed and was tested in patients enrolled in an IRB approved protocol. Results: The CT gating system was capable of removing motion artifacts for target motion as large as 3-cm when it was gated at optimal phases. A phantom study showed that two gated-CT scans at the end of expiration and the end of inspiration would be sufficient to determine the ITV for tumor motion less than 1-cm, and another mid-phase scan would be required for tumors with 2-cm motion, especially for small tumors. For patients, the ITV encompassing visible tumors in all sets of gated-CT and regular spiral CT images seemed to be consistent with the target volume determined from PET images. PTV expanded from the ITV with a setup uncertainty margin had less volume than PTVs from spiral CT images with a 10-mm generalized margin or an individualized margin determined at fluoroscopy. Conclusions: A technique of determining the ITV using gated-CT images was developed and was clinically implemented successfully for fractionated stereotactic lung radiotherapy

  12. Low flip angle spin-echo MR imaging to obtain better Gd-DTPA enhanced imaging with ECG gating

    International Nuclear Information System (INIS)

    Sugimura, Kazuro; Kawamitsu, Hideaki; Yoshikawa, Kazuaki; Kasai, Toshifumi; Yuasa, Koji; Ishida, Tetsuya

    1992-01-01

    ECG-gated spin-echo imaging (ECG-SE) can reduce physiological motion artifact. However, ECG-SE does not provide strong T1-weighted images because repetition time (TR) depends on heart rate (HR). We investigated the usefulness of low flip angle spin-echo imaging (LFSE) in obtaining more T1-dependent contrast with ECG gating. In computer simulation, the predicted image contrast and single-to-noise ratio (SNR) obtained for each flip angle (0-180deg) and each TR (300 msec-1200 msec) were compared with those obtained by conventional T1-weighted spin-echo imaging (CSE: TR=500 msec, TE=20 msec). In clinical evaluation, tissue contrast [contrast index (CI): (SI of lesion-SI of muslce) 2* 100/SI of muscle] obtained by CSE and LFSE were compared in 17 patients. At a TR of 1,000 msec, T1-dependent contrast increased with decreasing flip angle and that at 38deg was identical to that with T1-weighted spin-echo. SNR increased with the flip angle until 100deg, and that at 53deg was identical to that with T1-weighted spin-echo. CI on LFSE (74.0±52.0) was significantly higher than CI on CSE (40.9±35.9). ECG-gated LFSE imaging provides better T1-dependent contrast than conventional ECG-SE. This method was especially useful for Gd-DTPA enhanced MR imaging. (author)

  13. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Science.gov (United States)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  14. Theme city or gated community - images of future cities

    OpenAIRE

    Helenius-Mäki, Leena

    2002-01-01

    The future of the cities has been under discussion since the first city. It has been typical in every civilisation and era to hope for a better city. Creek philosopher Platon created image of future city where all men were equal and the city was ruled by philosophers minds. Many philosopher or later social scientist have ended up to similar "hope to be city". The form and type of the better city has depended from creators of those future city images. The creators have had their future city im...

  15. Generation of complete electronic nuclear medicine reports including static, dynamic and gated images

    International Nuclear Information System (INIS)

    Beretta, M.; Pilon, R.; Mut, F.

    2002-01-01

    Aim: To develop a procedure for the creation of nuclear medicine reports containing static and dynamic images. The reason for implementing this technique is the lack of adequate solutions for an electronic format of nuclear medicine results allowing for rapid transmission via e-mail, specially in the case of dynamic and gated SPECT studies, since functional data is best presented in dynamic mode. Material and Methods: Clinical images were acquired in static, whole body, dynamic and gated mode, corresponding to bone studies, diuretic renogram, radionuclide cystography and gated perfusion SPECT, as well as respective time-activity curves. Image files were imported from a dedicated nuclear medicine computer system (Elscint XPert) to a Windows-based PC through a standard ethernet network with TCP-IP communications protocol, using a software developed by us which permits the conversion from the manufacturer's original format into a bitmap format (.bmp) compatible with commercially available PC software. For cardiac perfusion studies, background was subtracted prior to transferring to reduce the amount of information in the file; this was not done for other type of studies because useful data could be eliminated. Dynamic images were then processed using commercial software to create animated files and stored in .gif format. Static images were re-sized and stored in .jpg format. Original color or gray scale was always preserved. All the graphic material was then merged with a previously prepared report text using HTML format. The report also contained reference diagrams to facilitate interpretation. The whole report was then compressed into a self-extractable file, ready to be sent by electronic mail. Reception of the material was visually checked for data integrity including image quality by two experienced nuclear medicine physicians. Results: The report presented allows for simultaneous visualization of the text, diagrams and images either static, dynamic, gated or

  16. Estimation of organ motion for gated PET imaging in small animal using artificial tumor

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Yu, Jung Woo; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    The image quality is lowered by reducing of contrast and signal due to breathing and heart motion when acquire Positron Emission Tomography (PET) image of small animal tumor. Therefore motion correction is required for betterment of quantitative estimation of tumor. The gated PET using external monitoring device is commonly used for motion correction. But that method has limitation by reason of detection from the outside. Therefore, we had devised the in-vivo motion assessment. In-vivo motion has been demonstrated in lung, liver and abdomen region of rats by coated molecular sieve. In PET image analysis, count and SNR were drawn in the target region. The motion compensation PET image for optimal gate number was confirmed by FWHM. Artificial motion evaluation of tumor using molecular sieve suggests possibility of motion correction modeling without external monitoring devices because it estimates real internal motion of lung, liver, and abdomen. The purpose of this study was to assess the optimal gates number for each region and to improve quantitative estimation of tumor

  17. Pulse-dilation enhanced gated optical imager with 5 ps resolution (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hilsabeck, T. J.; Kilkenny, J. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom); Bell, P. M.; Koch, J. A.; Celliers, P. M.; Bradley, D. K.; McCarville, T.; Pivovaroff, M.; Soufli, R.; Bionta, R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2010-10-15

    A 5 ps gated framing camera was demonstrated using the pulse-dilation of a drifting electron signal. The pulse-dilation is achieved by accelerating a photoelectron derived information pulse with a time varying potential [R. D. Prosser, J. Phys. E 9, 57 (1976)]. The temporal dependence of the accelerating potential causes a birth time dependent axial velocity dispersion that spreads the pulse as it transits a drift region. The expanded pulse is then imaged with a conventional gated microchannel plate based framing camera and the effective gating time of the combined instrument is reduced over that of the framing camera alone. In the drift region, electron image defocusing in the transverse or image plane is prevented with a large axial magnetic field. Details of the unique issues associated with rf excited photocathodes were investigated numerically and a prototype instrument based on this principle was recently constructed. Temporal resolution of the instrument was measured with a frequency tripled femtosecond laser operating at 266 nm. The system demonstrated 20x temporal magnification and the results are presented here. X-ray image formation strategies and photometric calculations for inertial confinement fusion implosion experiments are also examined.

  18. Study on super-resolution three-dimensional range-gated imaging technology

    Science.gov (United States)

    Guo, Huichao; Sun, Huayan; Wang, Shuai; Fan, Youchen; Li, Yuanmiao

    2018-04-01

    Range-gated three dimensional imaging technology is a hotspot in recent years, because of the advantages of high spatial resolution, high range accuracy, long range, and simultaneous reflection of target reflectivity information. Based on the study of the principle of intensity-related method, this paper has carried out theoretical analysis and experimental research. The experimental system adopts the high power pulsed semiconductor laser as light source, gated ICCD as the imaging device, can realize the imaging depth and distance flexible adjustment to achieve different work mode. The imaging experiment of small imaging depth is carried out aiming at building 500m away, and 26 group images were obtained with distance step 1.5m. In this paper, the calculation method of 3D point cloud based on triangle method is analyzed, and 15m depth slice of the target 3D point cloud are obtained by using two frame images, the distance precision is better than 0.5m. The influence of signal to noise ratio, illumination uniformity and image brightness on distance accuracy are analyzed. Based on the comparison with the time-slicing method, a method for improving the linearity of point cloud is proposed.

  19. Dilation x-ray imager a new∕faster gated x-ray imager for the NIF.

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Barrios, M A; Felker, B; Smith, R F; Collins, G W; Jones, O S; Kilkenny, J D; Chung, T; Piston, K; Raman, K S; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2012-10-01

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ∼7 × 10(18) neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  20. Dilation x-ray imager a new/faster gated x-ray imager for the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Barrios, M. A.; Felker, B.; Smith, R. F.; Collins, G. W.; Jones, O. S.; Piston, K.; Raman, K. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2012-10-15

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for {approx}7 Multiplication-Sign 10{sup 18} neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  1. Depth-resolved ballistic imaging in a low-depth-of-field optical Kerr gated imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yipeng; Tan, Wenjiang, E-mail: tanwenjiang@mail.xjtu.edu.cn; Si, Jinhai; Ren, YuHu; Xu, Shichao; Hou, Xun [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xianning-xilu 28, Xi' an 710049 (China); Tong, Junyi [Departments of Applied Physics, Xi' an University of Technology, Xi' an 710048 (China)

    2016-09-07

    We demonstrate depth-resolved imaging in a ballistic imaging system, in which a heterodyned femtosecond optical Kerr gate is introduced to extract useful imaging photons for detecting an object hidden in turbid media and a compound lens is proposed to ensure both the depth-resolved imaging capability and the long working distance. Two objects of about 15-μm widths hidden in a polystyrene-sphere suspension have been successfully imaged with approximately 600-μm depth resolution. Modulation-transfer-function curves with the object in and away from the object plane have also been measured to confirm the depth-resolved imaging capability of the low-depth-of-field (low-DOF) ballistic imaging system. This imaging approach shows potential for application in research of the internal structure of highly scattering fuel spray.

  2. Application of ultra-fast high-resolution gated-image intensifiers to laser fusion studies

    International Nuclear Information System (INIS)

    Lieber, A.J.; Benjamin, R.F.; Sutphin, H.D.; McCall, G.H.

    1975-01-01

    Gated-image intensifiers for fast framing have found high utility in laser-target interaction studies. X-ray pinhole camera photographs which can record asymmetries of laser-target interactions have been instrumental in further system design. High-resolution high-speed x-ray images of laser irradiated targets are formed using pinhole optics and electronically amplified by proximity focused channelplate intensifiers before being recorded on film. Spectral resolution is obtained by filtering. In these applications shutter duration is determined by source duration. Electronic gating serves to reduce background thereby enhancing signal-to-noise ratio. Cameras are used to view the self light of the interaction but may also be used for shadowgraphs. Sources for shadowgraphs may be sequenced to obtain a series of pictures with effective rates of 10 10 frame/s. Multiple aperatures have been used to obtain stereo x-ray views, yielding three dimensional information about the interactions. (author)

  3. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging

    International Nuclear Information System (INIS)

    DeVore, M. S.; Stich, D. G.; Keller, A. M.; Phipps, M. E.; Hollingsworth, J. A.; Goodwin, P. M.; Werner, J. H.; Cleyrat, C.; Lidke, D. S.; Wilson, B. S.

    2015-01-01

    We describe recent upgrades to a 3D tracking microscope to include simultaneous Nipkow spinning disk imaging and time-gated single-particle tracking (SPT). Simultaneous 3D molecular tracking and spinning disk imaging enable the visualization of cellular structures and proteins around a given fluorescently labeled target molecule. The addition of photon time-gating to the SPT hardware improves signal to noise by discriminating against Raman scattering and short-lived fluorescence. In contrast to camera-based SPT, single-photon arrival times are recorded, enabling time-resolved spectroscopy (e.g., measurement of fluorescence lifetimes and photon correlations) to be performed during single molecule/particle tracking experiments

  4. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, M. S.; Stich, D. G.; Keller, A. M.; Phipps, M. E.; Hollingsworth, J. A.; Goodwin, P. M.; Werner, J. H., E-mail: jwerner@lanl.gov [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop G755, Los Alamos, New Mexico 87545 (United States); Cleyrat, C.; Lidke, D. S.; Wilson, B. S. [Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2015-12-15

    We describe recent upgrades to a 3D tracking microscope to include simultaneous Nipkow spinning disk imaging and time-gated single-particle tracking (SPT). Simultaneous 3D molecular tracking and spinning disk imaging enable the visualization of cellular structures and proteins around a given fluorescently labeled target molecule. The addition of photon time-gating to the SPT hardware improves signal to noise by discriminating against Raman scattering and short-lived fluorescence. In contrast to camera-based SPT, single-photon arrival times are recorded, enabling time-resolved spectroscopy (e.g., measurement of fluorescence lifetimes and photon correlations) to be performed during single molecule/particle tracking experiments.

  5. Pulse wave as an alternate signal for data synchronization during gated myocardial perfusion SPECT imaging.

    Science.gov (United States)

    Lang, Otto; Trojanova, Helena; Balon, Helena R; Kunikova, Ivana; Bilwachs, Milos; Penicka, Martin; Kaminek, Milan; Myslivecek, Miroslav

    2011-09-01

    Proper identification of the cardiac cycle is essential for gated SPECT myocardial perfusion imaging. We have developed an alternate method of ECG for gating, that is, using the peripheral pulse wave (PW) as the triggering signal for gated SPECT acquisition. The aim of this study is to compare the use of this method of gating with the standard ECG trigger. We tested the PW triggering by comparing it with the ECG trigger. We evaluated 33 patients (25 males, 8 females), average age of 61 years (39-80) referred for stress myocardial perfusion imaging. Data from all patients were acquired twice and were processed by CEqual and QGS software. We compared the left ventricular ejection fraction (LVEF), end-diastolic and end-systolic volumes (EDV, ESV). Paired t test and Pearson correlation coefficient were used for comparison. The mean LVEF, EDV, and ESV calculated with the ECG trigger were 0.52, 120, and 64, respectively, those with the pulse-wave trigger were 0.48, 126, and 71, respectively. Mean paired difference for LVEF was -0.034 (P<0.001), for EDV 5.9 (P=0.012), and for ESV 7.9 (P<0.001). Pearson correlation coefficient for LVEF was 0.955, for EDV 0.987, and for ESV 0.991 (P<0.001 for all correlations). Triggering of gated-data acquisition by the PW is feasible. Quantitative parameters of cardiac function correlate highly with those obtained from the ECG trigger and the absolute differences are not clinically significant across a wide range of values.

  6. Dilation x-ray imager a new/faster gated x-ray imager for the NIF [DIXI (Dilation x-ray imager) a new/faster gated x-ray imager for the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hilsabeck, T. J.; Bell, P. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ayers, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Felker, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Collins, G. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Chung, T. [General Atomics, San Diego, CA (United States); Piston, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Raman, K. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sammuli, B. [General Atomics, San Diego, CA (United States); Hares, J. D. [Kentech Instruments Ltd., Wallingford, Oxfordshire (United Kingdom); Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire (United Kingdom)

    2012-07-19

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ~7 1018 neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for DIXI, which utilizes pulse-dilation technology [1] to achieve x-ray imaging with temporal gate times below 10 ps. Lastly, the measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  7. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    International Nuclear Information System (INIS)

    Lee, D; Keall, P; Kim, T; Greer, P B; Arm, J

    2014-01-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This study demonstrated that audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  8. Simple and versatile modifications allowing time gated spectral acquisition, imaging and lifetime profiling on conventional wide-field microscopes

    International Nuclear Information System (INIS)

    Pal, Robert; Beeby, Andrew

    2014-01-01

    An inverted microscope has been adapted to allow time-gated imaging and spectroscopy to be carried out on samples containing responsive lanthanide probes. The adaptation employs readily available components, including a pulsed light source, time-gated camera, spectrometer and photon counting detector, allowing imaging, emission spectroscopy and lifetime measurements. Each component is controlled by a suite of software written in LabVIEW and is powered via conventional USB ports. (technical note)

  9. Accuracy and effectiveness of self-gating signals in free-breathing three-dimensional cardiac cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Shuo; Gao Song; Wang Lei; Zhu Yan-Chun; Yang Jie; Xie Yao-Qin; Fu Nan; Wang Yi

    2016-01-01

    Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breathing three-dimensional (3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of self-gating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed.Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic (ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers.The results demonstrate an excellent correlation ( P = 0, R > 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac ( H = 0, P > 0.10) and respiratory ( H = 0, P > 0.44) motions. The difference between self-gating and externally monitored signals is not significant (two-tailed paired-sample t-test: H = 0, P > 0.90).The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors

  10. Range-Image Acquisition for Discriminated Objects in a Range-gated Robot Vision System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Kyu; Ahn, Yong-Jin; Park, Nak-Kyu; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The imaging capability of a surveillance vision system from harsh low-visibility environments such as in fire and detonation areas is a key function to monitor the safety of the facilities. 2D and range image data acquired from low-visibility environment are important data to assess the safety and prepare appropriate countermeasures. Passive vision systems, such as conventional camera and binocular stereo vision systems usually cannot acquire image information when the reflected light is highly scattered and absorbed by airborne particles such as fog. In addition, the image resolution captured through low-density airborne particles is decreased because the image is blurred and dimmed by the scattering, emission and absorption. Active vision systems, such as structured light vision and projected stereo vision are usually more robust for harsh environment than passive vision systems. However, the performance is considerably decreased in proportion to the density of the particles. The RGI system provides 2D and range image data from several RGI images and it moreover provides clear images from low-visibility fog and smoke environment by using the sum of time-sliced images. Nowadays, the Range-gated (RG) imaging is an emerging technology in the field of surveillance for security applications, especially in the visualization of invisible night and fog environment. Although RGI viewing was discovered in the 1960's, this technology is, nowadays becoming more applicable by virtue of the rapid development of optical and sensor technologies. Especially, this system can be adopted in robot-vision system by virtue of its compact portable configuration. In contrast to passive vision systems, this technology enables operation even in harsh environments like fog and smoke. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been

  11. Range-Image Acquisition for Discriminated Objects in a Range-gated Robot Vision System

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Ahn, Yong-Jin; Park, Nak-Kyu; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min

    2015-01-01

    The imaging capability of a surveillance vision system from harsh low-visibility environments such as in fire and detonation areas is a key function to monitor the safety of the facilities. 2D and range image data acquired from low-visibility environment are important data to assess the safety and prepare appropriate countermeasures. Passive vision systems, such as conventional camera and binocular stereo vision systems usually cannot acquire image information when the reflected light is highly scattered and absorbed by airborne particles such as fog. In addition, the image resolution captured through low-density airborne particles is decreased because the image is blurred and dimmed by the scattering, emission and absorption. Active vision systems, such as structured light vision and projected stereo vision are usually more robust for harsh environment than passive vision systems. However, the performance is considerably decreased in proportion to the density of the particles. The RGI system provides 2D and range image data from several RGI images and it moreover provides clear images from low-visibility fog and smoke environment by using the sum of time-sliced images. Nowadays, the Range-gated (RG) imaging is an emerging technology in the field of surveillance for security applications, especially in the visualization of invisible night and fog environment. Although RGI viewing was discovered in the 1960's, this technology is, nowadays becoming more applicable by virtue of the rapid development of optical and sensor technologies. Especially, this system can be adopted in robot-vision system by virtue of its compact portable configuration. In contrast to passive vision systems, this technology enables operation even in harsh environments like fog and smoke. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been

  12. Improved method of in vivo respiratory-gated micro-CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Erin B; Panda, Kunal; Bankson, James A; Brown, Ellana; Cody, Dianna D [Department of Imaging Physics, Unit 56, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States)

    2004-09-07

    The presence of motion artifacts is a typical problem in thoracic imaging. However, synchronizing the respiratory cycle with computed tomography (CT) image acquisition can reduce these artifacts. We currently employ a method of in vivo respiratory-gated micro-CT imaging for small laboratory animals (mice). This procedure involves the use of a ventilator that controls the respiratory cycle of the animal and provides a digital output signal that is used to trigger data acquisition. After inspection of the default respiratory trigger timing, we hypothesized that image quality could be improved by moving the data-acquisition window to a portion of the cycle with less respiratory motion. For this reason, we developed a simple delay circuit to adjust the timing of the ventilator signal that initiates micro-CT data acquisition. This delay circuit decreases motion artifacts and substantially improves image quality.

  13. Improved method of in vivo respiratory-gated micro-CT imaging

    International Nuclear Information System (INIS)

    Walters, Erin B; Panda, Kunal; Bankson, James A; Brown, Ellana; Cody, Dianna D

    2004-01-01

    The presence of motion artifacts is a typical problem in thoracic imaging. However, synchronizing the respiratory cycle with computed tomography (CT) image acquisition can reduce these artifacts. We currently employ a method of in vivo respiratory-gated micro-CT imaging for small laboratory animals (mice). This procedure involves the use of a ventilator that controls the respiratory cycle of the animal and provides a digital output signal that is used to trigger data acquisition. After inspection of the default respiratory trigger timing, we hypothesized that image quality could be improved by moving the data-acquisition window to a portion of the cycle with less respiratory motion. For this reason, we developed a simple delay circuit to adjust the timing of the ventilator signal that initiates micro-CT data acquisition. This delay circuit decreases motion artifacts and substantially improves image quality

  14. Radiography imaging by 64 and 128 micro-strips crystalline detectors at different X-ray energies

    International Nuclear Information System (INIS)

    Leyva, A.; Cabal, A.; Montano, L. M.; Fontaine, M.; Mora, R. de la; Padilla, F.

    2006-01-01

    This paper summarizes some results obtained in the evaluation of the performance of position sensitive detectors in track reconstruction in particle physics experiments. Crystalline silicon micro-strips detectors with 64 and 128 channels and 100 μm pitch were used to obtain radiographic digital images of different objects. The more relevant figures for spectrometry applications were measured and reported. Two-dimensional images were obtained by scanning the object with a collimated beam using different source-target-detector positioning and three sources of X-rays (8.04, 18.55 and 22.16 keV). The counts acquired by each strip correspond to a particular collimator position during the scan, thus serving to reconstruct the image of the exposed to X-ray object and to reveal its internal structure. The use of some techniques for image processing allow the further improvement of the radiography quality. The preliminary results obtained using in-house made and accreditation mammography phantoms allow to infer that such detectors can be successfully introduced in the digital mammography practice. (Author)

  15. Influence of Respiratory Gating, Image Filtering, and Animal Positioning on High-Resolution Electrocardiography-Gated Murine Cardiac Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2015-01-01

    Full Text Available Cardiac parameters obtained from single-photon emission computed tomographic (SPECT images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were injected with 99m technetium (99mTc-tetrofosmin, and each was scanned in supine and prone positions in a U-SPECT-II scanner with respiratory and electrocardiographic (ECG gating. ECG-gated SPECT images were created without applying respiratory motion correction or with two different respiratory motion correction strategies. The images were filtered with a range of three-dimensional gaussian kernels, after which end-diastolic volumes (EDVs, end-systolic volumes (ESVs, and left ventricular ejection fractions were calculated. No significant differences in the measured cardiac parameters were detected when any strategy to reduce or correct for respiratory motion was applied, whereas big differences (> 5% in EDV and ESV were found with regard to different positioning of animals. A linear relationship (p < .001 was found between the EDV or ESV and the kernel size of the gaussian filter. In short, respiratory gating did not significantly affect the cardiac parameters of mice obtained with ultra-high-resolution SPECT, whereas the position of the animals and the image filters should be the same in a comparative study with multiple scans to avoid systematic differences in measured cardiac parameters.

  16. Left ventricular functional parameters by gated SPECT myocardial perfusion imaging in a Latin American country.

    Science.gov (United States)

    Kapitan, Miguel; Beltran, Alvaro; Beretta, Mario; Mut, Fernando

    2018-04-01

    There is paucity of data on left ventricular (LV) functional parameters using gated SPECT myocardial perfusion imaging (MPI) from the Latin American region. This study provides detailed information in low-risk patients both at rest and during exercise. We studied 90 patients (50 men) with a very low likelihood of coronary artery disease. Gated-SPECT MPI was performed with Tc-99m MIBI using a 2-day protocol, with 16 frames/R-R cycle. The LV ejection fraction and volumes were not different between the rest and post-stress images. LVEF was 68 ± 7% post-stress and 70 ± 7% at rest in women, and 62 ± 7% and 63 ± 7%, respectively, in men (P = .19, .26). LV volumes were larger in men than women (P stress. Transient ischemic dilatation was similar, with upper limits of 1.20 and 1.19 in women and men, respectively (P = NS). These data could prove helpful for the interpretation of gated SPECT MPI data in Latin America using identical protocol as used in this study.

  17. GATE simulation of a LYSO-based SPECT imager: Validation and detector optimization

    International Nuclear Information System (INIS)

    Li, Suying; Zhang, Qiushi; Xie, Zhaoheng; Liu, Qi; Xu, Baixuan; Yang, Kun; Li, Changhui; Ren, Qiushi

    2015-01-01

    This paper presents a small animal SPECT system that is based on cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal, position sensitive photomultiplier tubes (PSPMTs) and parallel hole collimator. Spatial resolution test and animal experiment were performed to demonstrate the imaging performance of the detector. Preliminary results indicated a spatial resolution of 2.5 mm at FWHM that cannot meet our design requirement. Therefore, we simulated this gamma camera using GATE (GEANT 4 Application for Tomographic Emission) aiming to make detector spatial resolution less than 2 mm. First, the GATE simulation process was validated through comparison between simulated and experimental data. This also indicates the accuracy and effectiveness of GATE simulation for LYSO-based gamma camera. Then the different detector sampling methods (crystal size with 1.5, and 1 mm) and collimator design (collimator height with 30, 34.8, 38, and 43 mm) were studied to figure out an optimized parameter set. Detector sensitivity changes were also focused on with different parameters set that generated different spatial resolution results. Tradeoff curves of spatial resolution and sensitivity were plotted to determine the optimal collimator height with different sampling methods. Simulation results show that scintillation crystal size of 1 mm and collimator height of 38 mm, which can generate a spatial resolution of ∼1.8 mm and sensitivity of ∼0.065 cps/kBq, can be an ideal configuration for our SPECT imager design

  18. Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location

    DEFF Research Database (Denmark)

    Fennema-Notestine, Christine; Ozyurt, I Burak; Clark, Camellia P

    2006-01-01

    Extractor (BSE, Sandor and Leahy [1997] IEEE Trans Med Imag 16:41-54; Shattuck et al. [2001] Neuroimage 13:856-876) to manually stripped images. The methods were applied to uncorrected and bias-corrected datasets; Legacy and Contemporary T1-weighted image sets; and four diagnostic groups (depressed...... distances, and an Expectation-Maximization algorithm. Methods tended to perform better on contemporary datasets; bias correction did not significantly improve method performance. Mesial sections were most difficult for all methods. Although AD image sets were most difficult to strip, HWA and BSE were more...

  19. 200 ps FWHM and 100 MHz repetition rate ultrafast gated camera for optical medical functional imaging

    Science.gov (United States)

    Uhring, Wilfried; Poulet, Patrick; Hanselmann, Walter; Glazenborg, René; Zint, Virginie; Nouizi, Farouk; Dubois, Benoit; Hirschi, Werner

    2012-04-01

    The paper describes the realization of a complete optical imaging device to clinical applications like brain functional imaging by time-resolved, spectroscopic diffuse optical tomography. The entire instrument is assembled in a unique setup that includes a light source, an ultrafast time-gated intensified camera and all the electronic control units. The light source is composed of four near infrared laser diodes driven by a nanosecond electrical pulse generator working in a sequential mode at a repetition rate of 100 MHz. The resulting light pulses, at four wavelengths, are less than 80 ps FWHM. They are injected in a four-furcated optical fiber ended with a frontal light distributor to obtain a uniform illumination spot directed towards the head of the patient. Photons back-scattered by the subject are detected by the intensified CCD camera; there are resolved according to their time of flight inside the head. The very core of the intensified camera system is the image intensifier tube and its associated electrical pulse generator. The ultrafast generator produces 50 V pulses, at a repetition rate of 100 MHz and a width corresponding to the 200 ps requested gate. The photocathode and the Micro-Channel-Plate of the intensifier have been specially designed to enhance the electromagnetic wave propagation and reduce the power loss and heat that are prejudicial to the quality of the image. The whole instrumentation system is controlled by an FPGA based module. The timing of the light pulses and the photocathode gating is precisely adjustable with a step of 9 ps. All the acquisition parameters are configurable via software through an USB plug and the image data are transferred to a PC via an Ethernet link. The compactness of the device makes it a perfect device for bedside clinical applications.

  20. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    Science.gov (United States)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.

  1. Feasibility of self-gated isotropic radial late-phase MR imaging of the liver

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Jakob; Taron, Jana; Othman, Ahmed E.; Kuendel, Matthias; Martirosian, Petros; Ruff, Christer; Schraml, Christina; Nikolaou, Konstantin; Notohamiprodjo, Mike [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Grimm, Robert [Siemens Healthcare MR, Erlangen (Germany)

    2017-03-15

    To evaluate feasibility of a 3D-isotropic self-gated radial volumetric interpolated breath-hold examination (VIBE) for late-phase MRI of the liver. 70 patients were included and underwent liver MRI at 1.5 T. Depending on the diagnosis, either Gd-EOB-DTPA (35 patients) or gadobutrol (35 patients) were administered. During late (gadobutrol) or hepatocyte-specific phase (Gd-EOB-DTPA), a radial prototype sequence was acquired and reconstructed using (1) self-gating with 40 % acceptance (rVIBE{sub 40}); (2) with 100 % acceptance of the data (rVIBE{sub 100}) and compared to Cartesian VIBE (cVIBE). Images were assessed qualitatively (image quality, lesion conspicuity, artefacts; 5-point Likert-scale: 5 = excellent; two independent readers) and quantitatively (coefficient-of-variation (CV); contrast-ratio) in axial and coronal reformations. In eight cases only rVIBE provided diagnostic image quality. Image quality of rVIBE{sub 40} was rated significantly superior (p < 0.05) in Gd-EOB-DTPA-enhanced and coronal reformatted examinations as compared to cVIBE. Lesion conspicuity was significantly improved (p < 0.05) in coronal reformatted Gd-EOB-DTPA-enhanced rVIBE{sub 40} in comparison to cVIBE. CV was higher in rVIBE{sub 40} as compared to rVIBE{sub 100}/cVIBE (p < 0.01). Gadobutrol-enhanced rVIBE{sub 40} and cVIBE showed higher contrast-ratios than rVIBE{sub 100} (p < 0.001), whereas no differences were found in Gd-EOB-DTPA-enhanced examinations. Self-gated 3D-isotropic rVIBE provides significantly superior image quality compared to cVIBE, especially in multiplanar reformatted and Gd-EOB-DTPA-enhanced examinations. (orig.)

  2. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI.

    Science.gov (United States)

    Motaal, Abdallah G; Noorman, Nils; de Graaf, Wolter L; Hoerr, Verena; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously with the heartbeat, resulting in a randomly undersampled kt-space that facilitates compressed sensing reconstruction. The sequence was tested in 4 healthy rats and 4 rats with chronic myocardial infarction, approximately 2 months after surgery. As a control, a non-accelerated self-gated multi-slice FLASH sequence with an echo time (TE) of 2.76 ms, 4.5 signal averages, a matrix of 192 × 192, and an acquisition time of 2 min 34 s per slice was used to obtain Cine MRI with 15 frames per heartbeat. Non-accelerated UTE MRI was performed with TE = 0.29 ms, a reconstruction matrix of 192 × 192, and an acquisition time of 3 min 47 s per slice for 3.5 averages. Accelerated imaging with 2×, 4× and 5× undersampled kt-space data was performed with 1 min, 30 and 15 s acquisitions, respectively. UTE Cine images up to 5× undersampled kt-space data could be successfully reconstructed using a compressed sensing algorithm. In contrast to the FLASH Cine images, flow artifacts in the UTE images were nearly absent due to the short echo time, simplifying segmentation of the left ventricular (LV) lumen. LV functional parameters derived from the control and the accelerated Cine movies were statistically identical.

  3. Feasibility of self-gated isotropic radial late-phase MR imaging of the liver

    International Nuclear Information System (INIS)

    Weiss, Jakob; Taron, Jana; Othman, Ahmed E.; Kuendel, Matthias; Martirosian, Petros; Ruff, Christer; Schraml, Christina; Nikolaou, Konstantin; Notohamiprodjo, Mike; Grimm, Robert

    2017-01-01

    To evaluate feasibility of a 3D-isotropic self-gated radial volumetric interpolated breath-hold examination (VIBE) for late-phase MRI of the liver. 70 patients were included and underwent liver MRI at 1.5 T. Depending on the diagnosis, either Gd-EOB-DTPA (35 patients) or gadobutrol (35 patients) were administered. During late (gadobutrol) or hepatocyte-specific phase (Gd-EOB-DTPA), a radial prototype sequence was acquired and reconstructed using (1) self-gating with 40 % acceptance (rVIBE_4_0); (2) with 100 % acceptance of the data (rVIBE_1_0_0) and compared to Cartesian VIBE (cVIBE). Images were assessed qualitatively (image quality, lesion conspicuity, artefacts; 5-point Likert-scale: 5 = excellent; two independent readers) and quantitatively (coefficient-of-variation (CV); contrast-ratio) in axial and coronal reformations. In eight cases only rVIBE provided diagnostic image quality. Image quality of rVIBE_4_0 was rated significantly superior (p < 0.05) in Gd-EOB-DTPA-enhanced and coronal reformatted examinations as compared to cVIBE. Lesion conspicuity was significantly improved (p < 0.05) in coronal reformatted Gd-EOB-DTPA-enhanced rVIBE_4_0 in comparison to cVIBE. CV was higher in rVIBE_4_0 as compared to rVIBE_1_0_0/cVIBE (p < 0.01). Gadobutrol-enhanced rVIBE_4_0 and cVIBE showed higher contrast-ratios than rVIBE_1_0_0 (p < 0.001), whereas no differences were found in Gd-EOB-DTPA-enhanced examinations. Self-gated 3D-isotropic rVIBE provides significantly superior image quality compared to cVIBE, especially in multiplanar reformatted and Gd-EOB-DTPA-enhanced examinations. (orig.)

  4. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    Science.gov (United States)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  5. Optical imaging through turbid media with a degenerate four wave mixing correlation time gate

    International Nuclear Information System (INIS)

    Sappey, A.D.

    1994-01-01

    A novel method for detection of ballistic light and rejection of unwanted diffusive light to image structures inside highly scattering media is demonstrated. Degenerate four wave mixing (DFWM) of a doubled YAG laser in Rhodamine 6G is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore lost memory of the structures inside the scattering medium. We present preliminary results that determine the nature of the DFWM grating, confirm the coherence time of the laser, prove the phase-conjugate nature of the signal beam, and determine the dependence of the signal (reflectivity) on dye concentration and laser intensity. Finally, we have obtained images of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye. These imaging experiments demonstrate the utility of DFWM for imaging through turbid media. Based on our results, the use of DFWM as an ultrafast time gate for the detection of ballistic light in optical mammography appears to hold great promise for improving the current state of the art

  6. Assessment of left ventricular performance by ECG-gated SPECT. Comparison with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tadamura, Eiji; Inubushi, Masayuki; Kubo, Shigeto; Matsumoto, Keiichi; Yokoyama, Hiroshi; Fujita, Toru; Konishi, Junji [Kyoto Univ. (Japan). Faculty of Medicine

    1999-10-01

    In the measurement of a left ventricular volume, MIBI-QGS was compared with MRI. Because it became clear by the experiment using phantom that a volume calculated with QGS was smaller than the actual volume, data of clinical study were corrected. Subjects were 20 patients with coronary artery disease. Fourteen patients had anamnesis of myocardial infarct. ECG-gated SPECT was performed one hour after intravenous injection of MIBI (600 MBq) in rest. End diastolic volume (EDV), end systolic volume (ESV) and ejection fraction (EF) were calculated using QGS. Cine-MR image was obtained by using MR system of 1.5 Tesla within 1 week after SPECT. A condition was as follows; segmented k-space gradient echo with view sharing, TR=11 ms, TE=1.4 ms, flip angle 20 degree, field of view 32 cm, matrix 256 x 196, 8 lines per segment. LVEF, ESV and EF were analysed by Bland-Altman method, and the difference between MIBI-gated-SPECT and MRI was no problem. Horizontal dislocation image and vertical major axis dislocation image were provided. Minor axis crossing images of 10-12 slice were also filmed in order to cover all left ventricles. As a result, availability of MIBI-QGS became clear. Some factors which produces the measurement error are examined. (K.H.)

  7. Spirometrically gated /sup 133/Xe ventilation imaging and phase analysis for assessment of regional lung function

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tomio (Kanto Teishin Hospital, Tokyo (Japan))

    1984-10-01

    The purpose of this study is to develop the technique of performing spirometrically gated /sup 133/Xe ventilation imaging and to evaluate its clinical usefulness for the assessment of regional ventilatory function in various lung diseases. Patients rebreathed /sup 133/Xe gas through the system with constant rates signaled by a metronome. The trigger signals from the patients were recorded in a minicomputer for 60 respiratory cycles simultaneously with posterior lung images. Functional images (phase analysis images) indicating phase and amplitude of regional ventilation were constructed by the first harmonic Fourier analysis. Materials included 13 normal volunteers and patients with COPD (24), lung cancer (5), pulmonary embolism (4) and others (20). In normal controls, phase analysis images before respiratory motion correction revealed gradual decrease in amplitude from base to apex with uniform phase distribution. The amplitude and phase distribution after respiratory motion correction became even more uniform. In patients with COPD, phase analysis images showed asymmetrical and irregular amplitude distribution with non-uniform phase distribution. The standard deviation (S.D.) of phase histogram correlated well with FEVsub(1.0)% (r=0.71, p < 0.001) and down slope of flow-volume curve (r=0.55, p < 0.001), and less prominently with %VC (r=0.42, p < 0.01). Mean S.D. in patients with COPD (12.3 +- 6.5 degree, mean+-1 s.d.) was significantly larger than in normal controls (6.3 +- 1.5). Amplitude profile curve analysis revealed 83% sensitivity for the detection of abnormal spirometric respiratory function test. Data aquisition and processing of present method are rapid and easy to perform. The phase analysis of the gated ventilation images should prove useful in the clinical evaluation of patients with uneven ventilation such as COPD.

  8. Spirometrically gated 133Xe ventilation imaging and phase analysis for assessment of regional lung function

    International Nuclear Information System (INIS)

    Inoue, Tomio

    1984-01-01

    The purpose of this study is to develop the technique of performing spirometrically gated 133 Xe ventilation imaging and to evaluate its clinical usefulness for the assessmentof regional ventilatory function in various lung diseases. Patients rebreathe d 133 Xe gas through the system with constant rates signaled by a metronom. The trigger signals from the patients were recorded in a minicomputer for 60 respiratory cycles simultaneously with posterior lung images. Functional images (phase analysis images) indicating phase and amplitude of regional ventilation were constructed by the first harmonic Fourier analysis. Materials included 13 normal volunteers and patients with COPD (24), lung cancer (5), pulmonary embolism (4) and others (20). In normal controls, phase analysis images before respiratory motion correction revealed gradual decrease in amplitude from base to apex with uniform phase distribution. The amplitude and phase distribution after respiratory motion correction became even more uniform. In patients with COPD, phase analysis images showed asymmetrical and irregular amplitude distribution with non-uniform phase distribution. The standard deviation (S.D.) of phase histogram correlated well with FEVsub(1.0)% (r=0.71, p<0.001) and down slope of flowvolume curve (r=0.55, p<0.001), and less prominently with %VC (r=0.42, p<0.01). Mean S.D. in patients with COPD (12.3+-6.5 degree, mean+-1 s.d.) was significantly larger than in normal controls (6.3+-1.5). Amplitude profile curve analysis revealed 83% sensitivity for the detection of abnormal spirometric respiratory function test. Data aquisition and processing of present method are rapid and easy to perform. The phase analysis of the gated ventilation images should prove useful in the clinical evaluation of patients with uneven ventilation such as COPD. (J.P.N.)

  9. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P. [Univ. Bordeaux, INCIA, UMR 5287, F-33400 Talence (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Service de Médecine Nucléaire, Hôpital Pellegrin, CHU de Bordeaux, 33076 Bordeaux (France); Le Maitre, A.; Visvikis, D. [INSERM, UMR1101, LaTIM, Université de Bretagne Occidentale, 29609 Brest (France); Dawood, M.; Schäfers, K. P. [European Institute for Molecular Imaging, University of Münster, Mendelstr. 11, 48149 Münster (Germany); Rimoldi, O. E. [Vita-Salute University and Scientific Institute San Raffaele, Milan, Italy and CNR Istituto di Bioimmagini e Fisiologia Molecolare, Milan (Italy)

    2014-07-15

    Purpose: Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET) acquisitions. Methods: A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Results: Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were

  10. First set of gated x-ray imaging diagnostics for the Laser Megajoule facility

    Energy Technology Data Exchange (ETDEWEB)

    Rosch, R.; Trosseille, C.; Caillaud, T.; Allouche, V.; Bourgade, J. L.; Briat, M.; Brunel, P.; Burillo, M.; Casner, A.; Depierreux, S.; Gontier, D.; Jadaud, J. P.; Le Breton, J. P.; Llavador, P.; Loupias, B.; Miquel, J. L.; Oudot, G.; Perez, S.; Raimbourg, J.; Rousseau, A. [CEA-DAM Ile de France, Bruyères-le-Châtel, 91297 Arpajon Cedex (France); and others

    2016-03-15

    The Laser Megajoule (LMJ) facility located at CEA/CESTA started to operate in the early 2014 with two quadruplets (20 kJ at 351 nm) focused on target for the first experimental campaign. We present here the first set of gated x-ray imaging (GXI) diagnostics implemented on LMJ since mid-2014. This set consists of two imaging diagnostics with spatial, temporal, and broadband spectral resolution. These diagnostics will give basic measurements, during the entire life of the facility, such as position, structure, and balance of beams, but they will also be used to characterize gas filled target implosion symmetry and timing, to study x-ray radiography and hydrodynamic instabilities. The design requires a vulnerability approach, because components will operate in a harsh environment induced by neutron fluxes, gamma rays, debris, and shrapnel. Grazing incidence x-ray microscopes are fielded as far as possible away from the target to minimize potential damage and signal noise due to these sources. These imaging diagnostics incorporate microscopes with large source-to-optic distance and large size gated microchannel plate detectors. Microscopes include optics with grazing incidence mirrors, pinholes, and refractive lenses. Spatial, temporal, and spectral performances have been measured on x-ray tubes and UV lasers at CEA-DIF and at Physikalisch-Technische Bundesanstalt BESSY II synchrotron prior to be set on LMJ. GXI-1 and GXI-2 designs, metrology, and first experiments on LMJ are presented here.

  11. Gated cardiac imaging: manual calculations and observations of left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Hawkins, T.; Keavey, P.M.

    1984-01-01

    Using gamma camera imaging, the fixed region and moving region methods of calculating left ventricular ejection fraction were studied. Data were obtained from gated blood pool studies on 125 cardiac patients with myocardial infarcts of varying extent and location. Ejection fractions ranged from 10 to 76%. The left anterior oblique angulation for optimal visualisation of the ventricles showed considerable patient variation. The authors conclude that a fixed angulation cannot be recommended and that there is little to justify it. Where the septum is not seen distinctly during setting up, a larger rather than smaller angle is generally advised. (U.K.)

  12. Dynamic circular buffering: a technique for equilibrium gated blood pool imaging.

    Science.gov (United States)

    Vaquero, J J; Rahms, H; Green, M V; Del Pozo, F

    1996-03-01

    We have devised a software technique called "dynamic circular buffering" (DCB) with which we create a gated blood pool image sequence of the heart in real time using the best features of LIST and FRAME mode methods of acquisition/processing. The routine is based on the concept of independent "agents" acting on the timing and position data continuously written into the DCB. This approach allows efficient asynchronous operation on PC-type machines and enhanced capability on systems capable of true multiprocessing and multithreading.

  13. Evaluating the pacemaker effect with the pump parameter of gated blood-pool imaging

    International Nuclear Information System (INIS)

    Cheng Muhua

    1995-01-01

    13 normal controls and 27 patients with ventricular pacemaker had undergone planar gated blood-pool imaging in different conditions. Result shows: (1) Pump parameters can successfully reflect therapeutic effect of pacemaker among them EMP is the most valuable parameter for evaluating the cardiac pumping effect. (2) After implantation of the ventricular pacemaker, the LVEF did not increase, but the CO and EMP was significantly increased. (3) Compared with right ventricular demand pacemaker, the rate-responsive ventricular pacemaker give better hemodynamic benefit at exercise condition. (4) Through restrained cardiac pacemaker the functional change was analyzed on or off pace, and monitoring the cardiac function itself after the pacemaker was implanted

  14. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: A digital phantom study

    International Nuclear Information System (INIS)

    Bernatowicz, K.; Knopf, A.; Lomax, A.; Keall, P.; Kipritidis, J.; Mishra, P.

    2015-01-01

    Purpose: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Methods: Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) “conventional” 4D CT that uses a constant imaging and couch-shift frequency, (ii) “beam paused” 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) “respiratory-gated” 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm 3 spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Results: Averaged

  15. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: A digital phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Bernatowicz, K., E-mail: kingab@student.ethz.ch; Knopf, A.; Lomax, A. [Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI 5232, Switzerland and Department of Physics, ETH Zürich, Zürich 8092 (Switzerland); Keall, P.; Kipritidis, J., E-mail: john.kipritidis@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006 (Australia); Mishra, P. [Brigham and Womens Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-01-15

    Purpose: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Methods: Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) “conventional” 4D CT that uses a constant imaging and couch-shift frequency, (ii) “beam paused” 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) “respiratory-gated” 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm{sup 3} spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Results

  16. Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

    Science.gov (United States)

    Mostafa, Sheikh Shanawaz; Sousa, L. Natércia; Ferreira, Nuno Fábio; Sousa, Ricardo M.; Santos, Joao; Wäny, Martin; Morgado-Dias, F.

    2017-01-01

    Endoscopy is an imaging procedure used for diagnosis as well as for some surgical purposes. The camera used for the endoscopy should be small and able to produce a good quality image or video, to reduce discomfort of the patients, and to increase the efficiency of the medical team. To achieve these fundamental goals, a small endoscopy camera with a footprint of 1 mm×1 mm×1.65 mm is used. Due to the physical properties of the sensors and human vision system limitations, different image-processing algorithms, such as noise reduction, demosaicking, and gamma correction, among others, are needed to faithfully reproduce the image or video. A full image-processing pipeline is implemented using a field-programmable gate array (FPGA) to accomplish a high frame rate of 60 fps with minimum processing delay. Along with this, a viewer has also been developed to display and control the image-processing pipeline. The control and data transfer are done by a USB 3.0 end point in the computer. The full developed system achieves real-time processing of the image and fits in a Xilinx Spartan-6LX150 FPGA.

  17. Strip interpolation in silicon and germanium strip detectors

    International Nuclear Information System (INIS)

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM

  18. A time-gated near-infrared spectroscopic imaging device for clinical applications.

    Science.gov (United States)

    Poulet, Patrick; Uhring, Wilfried; Hanselmann, Walter; Glazenborg, René; Nouizi, Farouk; Zint, Virginie; Hirschi, Werner

    2013-03-01

    A time-resolved, spectroscopic, diffuse optical tomography device was assembled for clinical applications like brain functional imaging. The entire instrument lies in a unique setup that includes a light source, an ultrafast time-gated intensified camera and all the electronic control units. The light source is composed of four near infrared laser diodes driven by a nanosecond electrical pulse generator working in a sequential mode at a repetition rate of 100 MHz. The light pulses are less than 80 ps FWHM. They are injected in a four-furcated optical fiber ended with a frontal light distributor to obtain a uniform illumination spot directed towards the head of the patient. Photons back-scattered by the subject are detected by the intensified CCD camera. There are resolved according to their time of flight inside the head. The photocathode is powered by an ultrafast generator producing 50 V pulses, at 100 MHz and a width corresponding to a 200 ps FWHM gate. The intensifier has been specially designed for this application. The whole instrument is controlled by an FPGA based module. All the acquisition parameters are configurable via software through an USB plug and the image data are transferred to a PC via an Ethernet link. The compactness of the device makes it a perfect device for bedside clinical applications. The instrument will be described and characterized. Preliminary data recorded on test samples will be presented.

  19. Image Captioning with Word Gate and Adaptive Self-Critical Learning

    Directory of Open Access Journals (Sweden)

    Xinxin Zhu

    2018-06-01

    Full Text Available Although the policy-gradient methods for reinforcement learning have shown significant improvement in image captioning, how to achieve high performance during the reinforcement optimizing process is still not a simple task. There are at least two difficulties: (1 The large size of vocabulary leads to a large action space, which makes it difficult for the model to accurately predict the current word. (2 The large variance of gradient estimation in reinforcement learning usually causes severe instabilities in the training process. In this paper, we propose two innovations to boost the performance of self-critical sequence training (SCST. First, we modify the standard long short-term memory (LSTMbased decoder by introducing a gate function to reduce the search scope of the vocabulary for any given image, which is termed the word gate decoder. Second, instead of only considering current maximum actions greedily, we propose a stabilized gradient estimation method whose gradient variance is controlled by the difference between the sampling reward from the current model and the expectation of the historical reward. We conducted extensive experiments, and results showed that our method could accelerate the training process and increase the prediction accuracy. Our method was validated on MS COCO datasets and yielded state-of-the-art performance.

  20. Investigations of new cardiac functional imaging using Fourier analysis of gated blood-pool study

    International Nuclear Information System (INIS)

    Maeda, H.; Takeda, K.; Nakagawa, T.; Yamaguchi, N.; Taguchi, M.; Konishi, T.; Hamada, M.

    1982-01-01

    A new cardiac functional imaging, using temporal Fourier analysis of 28-frame gated cardiac blood-pool studies, was developed. A time-activity curve of each pixel was approximated by its Fourier series. Approximation by the sum for terms to the 3rd frequency of its Fourier series was considered to be most reasonable because of having the least aberration due to statistical fluctuation and close agreement between the global left ventricular curve and the regional fitted curves in normal subjects. To evaluate the ventricular systolic and diastolic performances, 9 parameters were analyzed from thus fitted curves on a pixel-by-pixel basis and displayed on a colour CRT in 64x64 matrix form. In patients with hypertrophic obstructive cardiomyopathy and other cardiac lesions, detailed information on the regional ventricular systolic and diastolic performances was clearly visualized by this method, which was difficult to obtain from the usual functional images of phase and amplitude at the fundamental frequency alone

  1. Data Analysis of the Gated-LEH X-Ray Imaging Diagnostic at the NIF

    Science.gov (United States)

    Thibodeau, Matthew; Chen, Hui

    2017-10-01

    The Gated Laser Entrance Hole (G-LEH) x-ray imaging diagnostic in use at the NIF offers a desirable combination of spatial and temporal resolution. By looking inside of NIF hohlraums with time resolution, G-LEH measures target features including LEH size and capsule size. A framework is presented for automated and systematic analysis of G-LEH images that measures several physical parameters of interest and their evolution over time. The results from these analyses enable comparisons with hohlraum models and allow model validation of LEH closure velocity and the extent of capsule blow-off. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Cardiac-gated parametric images from 82 Rb PET from dynamic frames and direct 4D reconstruction.

    Science.gov (United States)

    Germino, Mary; Carson, Richard E

    2018-02-01

    Cardiac perfusion PET data can be reconstructed as a dynamic sequence and kinetic modeling performed to quantify myocardial blood flow, or reconstructed as static gated images to quantify function. Parametric images from dynamic PET are conventionally not gated, to allow use of all events with lower noise. An alternative method for dynamic PET is to incorporate the kinetic model into the reconstruction algorithm itself, bypassing the generation of a time series of emission images and directly producing parametric images. So-called "direct reconstruction" can produce parametric images with lower noise than the conventional method because the noise distribution is more easily modeled in projection space than in image space. In this work, we develop direct reconstruction of cardiac-gated parametric images for 82 Rb PET with an extension of the Parametric Motion compensation OSEM List mode Algorithm for Resolution-recovery reconstruction for the one tissue model (PMOLAR-1T). PMOLAR-1T was extended to accommodate model terms to account for spillover from the left and right ventricles into the myocardium. The algorithm was evaluated on a 4D simulated 82 Rb dataset, including a perfusion defect, as well as a human 82 Rb list mode acquisition. The simulated list mode was subsampled into replicates, each with counts comparable to one gate of a gated acquisition. Parametric images were produced by the indirect (separate reconstructions and modeling) and direct methods for each of eight low-count and eight normal-count replicates of the simulated data, and each of eight cardiac gates for the human data. For the direct method, two initialization schemes were tested: uniform initialization, and initialization with the filtered iteration 1 result of the indirect method. For the human dataset, event-by-event respiratory motion compensation was included. The indirect and direct methods were compared for the simulated dataset in terms of bias and coefficient of variation as a

  3. Comparison of cardiac gating and refocusing pulses for correction of cerebrospinal fluid pulsation artifacts in MR images

    International Nuclear Information System (INIS)

    Modic, M.T.; Haacke, E.M.; Lenz, G.W.; Masaryk, T.; Kaufman, B.; Ross, J.S.

    1986-01-01

    This study compared cardiac gating and additional refocusing gradient pulses in combination or alone for correction of cerebrospinal fluid (CSF) pulsation artifacts in both normal volunteers and in patients with suspected spinal pathology. Refocusing pulses or cardiac gating when used alone produced a decrease in ghosting artifacts on sagittal images and reduced the nonuniformity of the CSF signal on axial images. There is improved thin-section T2 imaging of the cord with long TEs and as few as one excitation. The refocusing pulses reduced ghosting artifacts also from respiratory motion and enhanced the CSF signal with shorter TRs leading to increased CSF contrast. When used together, the results were significantly better than either alone. Refocusing schemes can be used with any TR, do not require gating, and are now routinely employed at the authors' institution

  4. Comparison of 16-frame and 8-frame gated SPET imaging for determination of left ventricular volumes and ejection fraction

    International Nuclear Information System (INIS)

    Navare, Sachin M.; Liu, Yi-Hwa; Wackers, Frans J.T.

    2003-01-01

    Electrocardiographic (ECG) gated single-photon emission tomography (SPET) allows for simultaneous assessment of myocardial perfusion and left ventricular (LV) function. Presently 8-frame per cardiac cycle ECG gating of SPET images is standard. The aim of this study was to compare the effect of 8-frame and 16-frame gated SPET on measurements of LV volumes and to evaluate the effects of the presence of myocardial perfusion defects and of radiotracer dose administered on the calculation of LV volumes. A total of 86 patients underwent technetium-99m SPET myocardial perfusion imaging using 16-frame per cardiac cycle acquisition. Eight-frame gated SPET images were generated by summation of contiguous frames. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated from the 16-frame and 8-frame data sets. The patients were divided into groups according to the administered dose of the radiotracer and the size of the perfusion defect. Results. Sixteen frame per cardiac cycle acquisition resulted in significantly larger EDV (122±72 ml vs 115±68 ml, P<0.0001), smaller ESV (64±58.6 ml vs 67.6±59.5 ml, P<0.0001), and higher LVEF (55.3%±18% vs 49%±17.4%, P<0.0001) as compared to 8-frame SPET imaging. This effect was seen regardless of whether a high or a low dose was administered and whether or not significant perfusion defects were present. This study shows that EDV, ESV and LVEF determined by 16-frame gated SPET are significantly different from those determined by 8-frame gated SPET. The radiotracer dose and perfusion defects do not affect estimation of LV parameters by 16-frame gated SPET. (orig.)

  5. Acquisition and automated 3-D segmentation of respiratory/cardiac-gated PET transmission images

    International Nuclear Information System (INIS)

    Reutter, B.W.; Klein, G.J.; Brennan, K.M.; Huesman, R.H.

    1996-01-01

    To evaluate the impact of respiratory motion on attenuation correction of cardiac PET data, we acquired and automatically segmented gated transmission data for a dog breathing on its own under gas anesthesia. Data were acquired for 20 min on a CTI/Siemens ECAT EXACT HR (47-slice) scanner configured for 12 gates in a static study, Two respiratory gates were obtained using data from a pneumatic bellows placed around the dog's chest, in conjunction with 6 cardiac gates from standard EKG gating. Both signals were directed to a LabVIEW-controlled Macintosh, which translated them into one of 12 gate addresses. The respiratory gating threshold was placed near end-expiration to acquire 6 cardiac-gated datasets at end-expiration and 6 cardiac-gated datasets during breaths. Breaths occurred about once every 10 sec and lasted about 1-1.5 sec. For each respiratory gate, data were summed over cardiac gates and torso and lung surfaces were segmented automatically using a differential 3-D edge detection algorithm. Three-dimensional visualizations showed that lung surfaces adjacent to the heart translated 9 mm inferiorly during breaths. Our results suggest that respiration-compensated attenuation correction is feasible with a modest amount of gated transmission data and is necessary for accurate quantitation of high-resolution gated cardiac PET data

  6. Accuracy and effectiveness of self-gating signals in free-breathing three-dimensional cardiac cine magnetic resonance imaging

    Science.gov (United States)

    Li, Shuo; Wang, Lei; Zhu, Yan-Chun; Yang, Jie; Xie, Yao-Qin; Fu, Nan; Wang, Yi; Gao, Song

    2016-12-01

    Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breathing three-dimensional (3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of self-gating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed. Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic (ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers. The results demonstrate an excellent correlation (P = 0, R > 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac (H = 0, P > 0.10) and respiratory (H = 0, P > 0.44) motions. The difference between self-gating and externally monitored signals is not significant (two-tailed paired-sample t-test: H = 0, P > 0.90). The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors

  7. CSF flow: Correlation between signal void and CSF velocity measured by gated velocity phase-encoded MR imaging

    International Nuclear Information System (INIS)

    Mark, A.S.; Feinberg, D.A.

    1986-01-01

    The direction of the cerebrospinal fluid (CSF) flow in the foramen of Monro (FOM) and aqueduct was determined in 15 normal volunteers (5 of whom had also been studied with gated spin-echo sequences) using a cardiac-gated Fourier transform velocity imaging technique (VMR). The VMR showed that the periodic pattern of flow void seen in the aqueduct and FOM on the gated spin-echo images was due to antegrade CSF flow from the lateral ventricles into the third ventricle and aqueduct during systole and retrograde flow from the aqueduct into the third ventricle and lateral ventricles during late diastole. These findings could not be explained if the CSF pulsations originated in the third ventricle, as had been previously proposed, and suggest the lateral ventricles play an important role in the pulsatile motion of CSF

  8. 3D segmentation of scintigraphic images with validation on realistic GATE simulations

    International Nuclear Information System (INIS)

    Burg, Samuel

    2011-01-01

    The objective of this thesis was to propose a new 3D segmentation method for scintigraphic imaging. The first part of the work was to simulate 3D volumes with known ground truth in order to validate a segmentation method over other. Monte-Carlo simulations were performed using the GATE software (Geant4 Application for Emission Tomography). For this, we characterized and modeled the gamma camera 'γ Imager' Biospace"T"M by comparing each measurement from a simulated acquisition to his real equivalent. The 'low level' segmentation tool that we have developed is based on a modeling of the levels of the image by probabilistic mixtures. Parameters estimation is done by an SEM algorithm (Stochastic Expectation Maximization). The 3D volume segmentation is achieved by an ICM algorithm (Iterative Conditional Mode). We compared the segmentation based on Gaussian and Poisson mixtures to segmentation by thresholding on the simulated volumes. This showed the relevance of the segmentations obtained using probabilistic mixtures, especially those obtained with Poisson mixtures. Those one has been used to segment real "1"8FDG PET images of the brain and to compute descriptive statistics of the different tissues. In order to obtain a 'high level' segmentation method and find anatomical structures (necrotic part or active part of a tumor, for example), we proposed a process based on the point processes formalism. A feasibility study has yielded very encouraging results. (author) [fr

  9. Quantitative evaluations of left ventricular function obtained by electrocardiographically-gated magnetic resonance imaging

    International Nuclear Information System (INIS)

    Takeda, Tohru; Iida, Kaname; Sugishita, Yasuro; Anno, Izumi; Akisada, Masayoshi; Matsuda, Mitsuo; Akatsuka, Takao; Koseki, Susumu.

    1989-01-01

    Using electrocardiographically-gated magnetic resonance imaging, regional cardiac function was evaluated in 12 normal volunteers and in 10 cases of old myocardial infarction. The optimal short axis of the left ventricle was selected at the chordae tendineae level. The left ventricle was divided into 12 segments using a computer-aided system, and percentile shortening fraction (%SF) and percentile wall thickening (%WT) were calculated in each segment by the fixed coordinate method. In the normal volunteers, heterogeneity of both %FS and %WT was observed, ranging from 25±13% and 37±13%, respectively in the septal segment, to 49±13% and 60±21%, respectively in the posterior segment. In the cases of myocardial infarction, decreased %FS and %WT were detected at the affected regions. The abnormal regions revealed by %WT tended to be narrower than those revealed by %FS. Thus the MR technique at the optimal axis may be useful for quantitative evaluations of regional cardiac function. (author)

  10. Patterns of ventricular dysfunction in patients receiving cardiotoxic chemotherapy as assessed with gated blood pool imaging

    International Nuclear Information System (INIS)

    Spies, S.M.; Parikh, S.R.; Spies, W.G.; Zimmer, A.M.; Silverstein, E.A.

    1989-01-01

    Clinical concern over significant cardiotoxicity of commonly employed chemotherapeutic regimens is a common indication for gated blood pool imaging. The authors have undertaken a review of 102 patients referred for such evaluation during a 14-month period. Ventricular ejection fractions, cine displays, and phase analysis were performed on each patient study. Approximately one-third of the cases showed significant abnormalities in wall motion or global ejection fraction. Many abnormal cases had isolated left ventricular findings, while fewer had isolated right ventricular findings. Left ventricular wall motion abnormalities were often focal. The patterns of ventricular dysfunction in patients receiving cardiotoxic chemotherapy are diverse, and awareness of the various possibilities is important for accurate clinical assessment of these patients

  11. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jaffry Syed [Hamdard University, Karachi (Pakistan); Abbas, Syed Haider; Lee, Jung Ryul [Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-12-15

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm{sup 2} with 0.5 mm interval) to 87.5% (scanning of 200x200mm{sup 2} with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

  12. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    International Nuclear Information System (INIS)

    Shan, Jaffry Syed; Abbas, Syed Haider; Lee, Jung Ryul; Kang, Dong Hoon

    2015-01-01

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm 2 with 0.5 mm interval) to 87.5% (scanning of 200x200mm 2 with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection

  13. Assessment of regional lung functional impairment with co-registered respiratory-gated ventilation/perfusion SPET-CT images: initial experiences

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Zaki, Mohammed; Yamashita, Tomio; Seto, Aska; Matsumoto, Tsuneo; Matsunaga, Naofumi

    2004-01-01

    In this study, respiratory-gated ventilation and perfusion single-photon emission tomography (SPET) were used to define regional functional impairment and to obtain reliable co-registration with computed tomography (CT) images in various lung diseases. Using a triple-headed SPET unit and a physiological synchroniser, gated perfusion SPET was performed in a total of 78 patients with different pulmonary diseases, including metastatic nodules (n=15); in 34 of these patients, it was performed in combination with gated technetium-99m Technegas SPET. Projection data were acquired using 60 stops over 120 for each detector. Gated end-inspiration and ungated images were reconstructed from 1/8 data centered at peak inspiration for each regular respiratory cycle and full respiratory cycle data, respectively. Gated images were registered with tidal inspiration CT images using automated three-dimensional (3D) registration software. Registration mismatch was assessed by measuring 3D distance of the centroid of the nine selected round perfusion-defective nodules. Gated SPET images were completed within 29 min, and increased the number of visible ventilation and perfusion defects by 9.7% and 17.2%, respectively, as compared with ungated images; furthermore, lesion-to-normal lung contrast was significantly higher on gated SPET images. In the nine round perfusion-defective nodules, gated images yielded a significantly better SPET-CT match compared with ungated images (4.9±3.1 mm vs 19.0±9.1 mm, P<0.001). The co-registered SPET-CT images allowed accurate perception of the location and extent of each ventilation/perfusion defect on the underlying CT anatomy, and characterised the pathophysiology of the various diseases. By reducing respiratory motion effects and enhancing perfusion/ventilation defect clarity, gated SPET can provide reliable co-registered images with CT images to accurately characterise regional functional impairment in various lung diseases. (orig.)

  14. Prospective electrocardiogram-gated axial 64-detector computed tomographic angiography vs retrospective gated helical technique to assess coronary artery bypass graft anastomosis. Comparison of image quality and patient radiation dose

    International Nuclear Information System (INIS)

    Machida, Haruhiko; Masukawa, Ai; Tanaka, Isao; Fukui, Rika; Suzuki, Kazufumi; Ueno, Eiko; Kodera, Kojiro; Nakano, Kiyoharu; Shen, Y.

    2010-01-01

    In the present study the effective dose and image quality at distal anastomoses were retrospectively compared between prospective electrocardiogram (ECG)-gated axial and retrospective ECG-gated helical techniques on 64-detector computed tomographic (CT) angiography following coronary artery bypass graft surgery. Following bypass surgery, 52 patients with a heart rate <65 beats/min underwent CT angiography: 26 patients each with prospective and retrospective ECG gating techniques. The effective dose was compared between the 2 groups using a 4-point scale (4, excellent; 1, poor) to grade the quality of curved multiplanar reformation images at distal anastomoses. Patient characteristics of the 2 groups were well matched, and the same CT scan parameters were used for both, except for the interval between surgery and CT examination, tube current, and image noise index. Image quality scores did not differ significantly (3.26±0.95 vs 3.35±0.87; P=0.63), but the effective dose was significantly lower in the prospective (7.3±1.8 mSv) than in the retrospective gating group (23.6±4.5 mSv) (P<0.0001). Following bypass surgery, 64-detector CT angiography using prospective ECG gating is superior to retrospective gating in limiting the radiation dose and maintaining the image quality of distal anastomoses. (author)

  15. A new method for measuring temporal resolution in electrocardiogram-gated reconstruction image with area-detector computed tomography

    International Nuclear Information System (INIS)

    Kaneko, Takeshi; Takagi, Masachika; Kato, Ryohei; Anno, Hirofumi; Kobayashi, Masanao; Yoshimi, Satoshi; Sanda, Yoshihiro; Katada, Kazuhiro

    2012-01-01

    The purpose of this study was to design and construct a phantom for using motion artifact in the electrocardiogram (ECG)-gated reconstruction image. In addition, the temporal resolution under various conditions was estimated. A stepping motor was used to move the phantom over an arc in a reciprocating manner. The program for controlling the stepping motor permitted the stationary period and the heart rate to be adjusted as desired. Images of the phantom were obtained using a 320-row area-detector computed tomography (ADCT) system under various conditions using the ECG-gated reconstruction method. For estimation, the reconstruction phase was continuously changed and the motion artifacts were quantitatively assessed. The temporal resolution was calculated from the number of motion-free images. Changes in the temporal resolution according to heart rate, rotation time, the number of reconstruction segments and acquisition position in z-axis were also investigated. The measured temporal resolution of ECG-gated half reconstruction is 180 ms, which is in good agreement with the nominal temporal resolution of 175 ms. The measured temporal resolution of ECG-gated segmental reconstruction is in good agreement with the nominal temporal resolution in most cases. The estimated temporal resolution improved to approach the nominal temporal resolution as the number of reconstruction segments was increased. Temporal resolution in changing acquisition position is equal. This study shows that we could design a new phantom for estimating temporal resolution. (author)

  16. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    Science.gov (United States)

    Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution

  17. An imaging escape gated MPWC for hard X-ray astronomy

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; La Padula, C.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Barbareschi, L.; Perotti, F.; Villa, G.; Butler, R.C.; Di Cocco, G.; Spada, G.; Charalambous, P.; Dean, A.J.; Stephen, J.B.

    1983-01-01

    A scientific forward step in the hard X-ray and soft gamma-ray astronomy will only be possible with the use of a new generation of space borne instruments. Their main characteristics have to be the two-dimensional imaging capability over a large collecting area and the fine spectral resolution in order to discriminate between the weak signal coming from cosmic sources to be detected and the strong background induced by cosmic rays, in the space environment, on the detector. To reach this goal we have developed a new hard X-ray position sensitive proportional counter operating with the escape gate technique in the range 15-150 keV, to be used together with a pseudo-random coded mask in order to obtain sky images. The detector is a high pressure (5 bar) xenon-argon-isobutane filled chamber with a spatial resolution of 30x2 mm and a spectral resolution of 5% at 60 keV on the sensitive area of 3000 cm 2 . (orig.)

  18. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity.

    Science.gov (United States)

    Zhang, Fan; Niu, Hanben

    2016-06-29

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 10⁷ when illuminated by a 405-nm diode laser and 1/1.4 × 10⁴ when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e(-) rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena.

  19. Fast Gated EPR Imaging of the Beating Heart: Spatiotemporally-Resolved 3D Imaging of Free Radical Distribution during the Cardiac Cycle

    Science.gov (United States)

    Chen, Zhiyu; Reyes, Levy A.; Johnson, David H.; Velayutham, Murugesan; Yang, Changjun; Samouilov, Alexandre; Zweier, Jay L.

    2012-01-01

    In vivo or ex vivo electron paramagnetic resonance imaging (EPRI) is a powerful technique for determining the spatial distribution of free radicals and other paramagnetic species in living organs and tissues. However, applications of EPRI have been limited by long projection acquisition times and the consequent fact that rapid gated EPRI was not possible. Hence in vivo EPRI typically provided only time-averaged information. In order to achieve direct gated EPRI, a fast EPR acquisition scheme was developed to decrease EPR projection acquisition time down to 10 – 20 ms, along with corresponding software and instrumentation to achieve fast gated EPRI of the isolated beating heart with submillimeter spatial resolution in as little as 2 to 3 minutes. Reconstructed images display temporal and spatial variations of the free radical distribution, anatomical structure, and contractile function within the rat heart during the cardiac cycle. PMID:22473660

  20. 3D range-gated super-resolution imaging based on stereo matching for moving platforms and targets

    Science.gov (United States)

    Sun, Liang; Wang, Xinwei; Zhou, Yan

    2017-11-01

    3D range-gated superresolution imaging is a novel 3D reconstruction technique for target detection and recognition with good real-time performance. However, for moving targets or platforms such as airborne, shipborne, remote operated vehicle and autonomous vehicle, 3D reconstruction has a large error or failure. In order to overcome this drawback, we propose a method of stereo matching for 3D range-gated superresolution reconstruction algorithm. In experiment, the target is a doll of Mario with a height of 38cm at the location of 34m, and we obtain two successive frame images of the Mario. To confirm our method is effective, we transform the original images with translation, rotation, scale and perspective, respectively. The experimental result shows that our method has a good result of 3D reconstruction for moving targets or platforms.

  1. Reproducibility of image quality for moving objects using respiratory-gated computed tomography. A study using a phantom model

    International Nuclear Information System (INIS)

    Fukumitsu, Nobuyoshi; Ishida, Masaya; Terunuma, Toshiyuki

    2012-01-01

    To investigate the reproducibility of computed tomography (CT) imaging quality in respiratory-gated radiation treatment planning is essential in radiotherapy of movable tumors. Seven series of regular and six series of irregular respiratory motions were performed using a thorax dynamic phantom. For the regular respiratory motions, the respiratory cycle was changed from 2.5 to 4 s and the amplitude was changed from 4 to 10 mm. For the irregular respiratory motions, a cycle of 2.5 to 4 or an amplitude of 4 to 10 mm was added to the base data (id est (i.e.) 3.5-s cycle, 6-mm amplitude) every three cycles. Images of the object were acquired six times using respiratory-gated data acquisition. The volume of the object was calculated and the reproducibility of the volume was decided based on the variety. The registered image of the object was added and the reproducibility of the shape was decided based on the degree of overlap of objects. The variety in the volumes and shapes differed significantly as the respiratory cycle changed according to regular respiratory motions. In irregular respiratory motion, shape reproducibility was further inferior, and the percentage of overlap among the six images was 35.26% in the 2.5- and 3.5-s cycle mixed group. Amplitude changes did not produce significant differences in the variety of the volumes and shapes. Respiratory cycle changes reduced the reproducibility of the image quality in respiratory-gated CT. (author)

  2. micro strip gas chamber

    CERN Multimedia

    1998-01-01

    About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.

  3. A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Panayiotou, Maria, E-mail: maria.panayiotou@kcl.ac.uk; King, Andrew P.; Housden, R. James; Ma, YingLiang; Rhode, Kawal S. [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Cooklin, Michael; O' Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo [Department of Cardiology, Guy' s and St. Thomas' Hospitals NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2014-07-15

    Purpose: Image-guided cardiac interventions involve the use of fluoroscopic images to guide the insertion and movement of interventional devices. Cardiorespiratory gating can be useful for 3D reconstruction from multiple x-ray views and for reducing misalignments between 3D anatomical models overlaid onto fluoroscopy. Methods: The authors propose a novel and potentially clinically useful retrospective cardiorespiratory gating technique. The principal component analysis (PCA) statistical method is used in combination with other image processing operations to make our proposed masked-PCA technique suitable for cardiorespiratory gating. Unlike many previously proposed techniques, our technique is robust to varying image-content, thus it does not require specific catheters or any other optically opaque structures to be visible. Therefore, it works without any knowledge of catheter geometry. The authors demonstrate the application of our technique for the purposes of retrospective cardiorespiratory gating of normal and very low dose x-ray fluoroscopy images. Results: For normal dose x-ray images, the algorithm was validated using 28 clinical electrophysiology x-ray fluoroscopy sequences (2168 frames), from patients who underwent radiofrequency ablation (RFA) procedures for the treatment of atrial fibrillation and cardiac resynchronization therapy procedures for heart failure. The authors established end-systole, end-expiration, and end-inspiration success rates of 97.0%, 97.9%, and 97.0%, respectively. For very low dose applications, the technique was tested on ten x-ray sequences from the RFA procedures with added noise at signal to noise ratio (SNR) values of√(5)0, √(1)0, √(8), √(6), √(5), √(2), and √(1) to simulate the image quality of increasingly lower dose x-ray images. Even at the low SNR value of √(2), representing a dose reduction of more than 25 times, gating success rates of 89.1%, 88.8%, and 86.8% were established. Conclusions: The proposed

  4. Detection of myocardial ischemia of hypertrophic cardiomyopathy with gated 99Tcm-MIBI myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Jia Peng; Guo Wanhua; Du Minghua; Gao Ling

    2010-01-01

    Objective: To evaluate the value of gated 99 Tc m -methoxyisobutylisonitrile (MIBI) myocardial perfusion imaging in detection of myocardial ischemia in hypertrophic cardiomyopathy. Methods: Sixty-nine patients with clinically proven hypertrophic cardiomyopathy were divided into 2 groups using coronary angiogram as 'gold standard': positive group (n=19, narrowing ≥ 50%) and negative group (n=50, narrowing 99 Tc m -MIBI myocardial perfusion imaging was performed and positive in all 69 patients (41 males, 28 females, aged 35-75 years). Comparative analysis between the two groups was carried out using t-test. Results: In the positive group, reversible and irreversible perfusion defects were detected in 9 and 10 patients, respectively. Left ventricular ejection fraction (LVEF) increased to (69.1 ± 2.8)% in 8 patients and decreased to (42.8 ± 2.1)% in 11 patients. In the negative group, reversible and irreversible perfusion defects were found in 37 and 13 patients, respectively. LVEF increased to (70.8 ± 4.0)% in 38 patients and decreased to (48.9 ± 2.7)% in 12 patients. The values of ischemic area, severity and extent of perfusion defect, and LVEF were significantly different between the two groups (t=9.28, 16.51, 2.65; P 99 Tc m -MIBI myocardial perfusion imaging is valuable in assessing patients with hypertrophic cardiomyopathy. Detection for the presence or absence of coexisting coronary artery disease and myocardial ischemia has an important prognostic indication and management indication for these patients. (authors)

  5. Grafting polyethylenimine with quinoline derivatives for targeted imaging of intracellular Zn2+ and logic gate operations

    International Nuclear Information System (INIS)

    Pan, Yi; Shi, Yupeng; Chen, Junying; Wong, Chap-Mo; Zhang, Heng; Li, Mei-Jin; Li, Cheuk-Wing; Yi, Changqing

    2016-01-01

    In this study, a highly sensitive and selective fluorescent Zn 2+ probe which exhibited excellent biocompatibility, water solubility, and cell-membrane permeability, was facilely synthesized in a single step by grafting polyethyleneimine (PEI) with quinoline derivatives. The primary amino groups in the branched PEI can increase water solubility and cell permeability of the probe PEIQ, while quinoline derivatives can specifically recognize Zn 2+ and reduce the potential cytotoxicity of PEI. Basing on fluorescence off-on mechanism, PEIQ demonstrated excellent sensing capability towards Zn 2+ in absolute aqueous solution, where a high sensitivity with a detection limit as low as 38.1 nM, and a high selectivity over competing metal ions and potential interfering amino acids, were achieved. Inspired by these results, elementary logic operations (YES, NOT and INHIBIT) have been constructed by employing PEIQ as the gate while Zn 2+ and EDTA as chemical inputs. Together with the low cytotoxicity and good cell-permeability, the practical application of PEIQ in living cell imaging was satisfactorily demonstrated, emphasizing its wide application in fundamental biology research. - Graphical abstract: The fluorescent Zn 2+ probe, PEIQ, is facilely synthesized by grafting PEI with 8-CAAQ, and demonstrated for the pratical applications in Zn 2+ imaging and implementation of molecular logic operations within biological cells. - Highlights: • PEIQ, fluorescent Zn 2+ probe, is synthesized by grafting PEI with quinoline derivatives. • PEIQ exhibits high sensitivity and selectivity in absolute aqueous solution. • PEIQ is biocompatible, water soluble, and cell-membrane permeable. • Elementary logic operations have been demonstrated for PEIQ/Zn 2+ /EDTA system. • The practical application of PEIQ in living cell imaging is demonstrated.

  6. The clinical use of myocardial gated SPECT imaging with 99TcmN-NOEt

    International Nuclear Information System (INIS)

    Li Sijin; Hu Guang; Liu Jianzhong; Tian Mei; Li Xianfeng; Zhang Wanchun; Wang Jin

    2002-01-01

    Objective: To evaluate the clinical value of 99 Tc m N-NOEt myocardial perfusion imaging comparing with 99 Tc m -MIBI. Methods: Twenty patients (pts) were divided into 2 groups. Group 1 (G1), left ventricular ejection fraction (LVEF) ≥ 50%, 13 pts, the mean age was (49.9 +- 14.7) years. Group 2 (G2), LVEF 0.05 vs G1). All the pst underwent gated SPECT imaging at 30 and 120 min after injection of 925 MBq 99 Tc m N-NOEt at rest, and the heart to lung (H/L) activity ratio was calculated. Of the 6 pts in G2 and 1 pt in G1 underwent the 99 Tc m -MIBI imaging within 3 days to the former imaging at 120 min after 99 Tc m -MIBI injection under the same condition as at 99 Tc m N-NOEt imaging. The left ventricles of the 7 pts were divided into 63 segments with 9 segments for each, and the four-point scoring system was used to evaluate the tracer uptake in the segments. Results: The H/L ratio was 1.47 +- 0.47 and 1.59 +- 0.53 (P > 0.50) respectively in G1 and was 0.72 +- 0.11 and 0.89 +- 0.11 (P 99 Tc m N-NOEt and 99 Tc m -MIBI for the presence of defects was 93.65%, Kappa +- s = 0.87 +- 0.12. The mean score was 2.0 +- 0.84 (MIBI) and 2.38 +- 0.84 (NOEt) respectively (P > 0.05). Conclusions: 1) If the lung uptake of 99 Tc m N-NOET showed higher, it suggested that the left ventricular function was poor. 2) The results of LVEF, EDV and ESV were accordant between MIBI and NOEt. 3) The extent and intensity of myocardial defect with NOEt imaging was more severe than that with MIBI

  7. Feasibility of one-eighth time gated myocardial perfusion SPECT functional imaging using IQ-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Caobelli, Federico; Thackeray, James T.; Bengel, Frank M. [Medizinische Hochschule Hannover, Klinik fuer Nuklearmedizin, Hannover (Germany); Soffientini, Alberto; Pizzocaro, Claudio; Guerra, Ugo Paolo [Fondazione Poliambulanza, Department of Nuclear Medicine, Brescia (Italy)

    2015-11-15

    IQ-SPECT, an add-on to general purpose cameras based on multifocal collimation, can reduce myocardial perfusion imaging (MPI) acquisition times to one-fourth that of standard procedures (to 12 s/view). In a phantom study, a reduction of the acquisition time to one-eighth of the standard time (to 6 s/view) was demonstrated as feasible. It remains unclear whether such a reduction could be extended to clinical practice. Fifty patients with suspected or diagnosed CAD underwent a 2-day stress-rest {sup 99m}Tc-sestamibi MPI protocol. Two consecutive SPECT acquisitions (6 and 12 s/view) were performed. Electrocardiogram-gated images were reconstructed with and without attenuation correction (AC). Polar maps were generated and visually scored by two blinded observers for image quality and perfusion in 17 segments. Global and regional summed stress score (SSS), summed rest score (SRS) and summed difference score (SDS) were determined. Left ventricular volumes and ejection fraction were calculated based on automated contour detection. Image quality was scored higher with the 12 s/view acquisition, both with and without AC. Summed scores were statistically comparable between the 6 s/view and the 12 s/view acquisition, both globally and in individual coronary territories (e.g. in images with AC, SSS were 6.6 ± 8.3 and 6.2 ± 8.2 with 6 s and 12 s/view, respectively, p = 0.10; SRS were 3.9 ± 5.6 and 3.5 ± 5.3, respectively, p = 0.19; and SDS were 2.8 ± 5.7 and 2.6 ± 5.7, respectively, p = 0.59). Both acquisitions allowed MPI-based diagnosis of CAD in 25 of the 50 patients (with AC). Calculated end-diastolic volume (EDV) and end-systolic volume (ESV) were modestly higher with the 6 s/view acquisition than with the 12 s/view acquisition (EDV +4.8 ml at rest and +3.7 ml after stress, p = 0.003; ESV +4.1 ml at rest and +2.6 ml after stress, p = 0.01), whereas the ejection fraction did not differ (-1.2 % at rest, p = 0.20, and -0.9 % after stress, p = 0.27). Image quality and

  8. Imaging Three-Dimensional Myocardial Mechanics Using Navigator-gated Volumetric Spiral Cine DENSE MRI

    Science.gov (United States)

    Zhong, Xiaodong; Spottiswoode, Bruce S.; Meyer, Craig H.; Kramer, Christopher M.; Epstein, Frederick H.

    2010-01-01

    A navigator-gated 3D spiral cine displacement encoding with stimulated echoes (DENSE) pulse sequence for imaging 3D myocardial mechanics was developed. In addition, previously-described 2D post-processing algorithms including phase unwrapping, tissue tracking, and strain tensor calculation for the left ventricle (LV) were extended to 3D. These 3D methods were evaluated in 5 healthy volunteers, using 2D cine DENSE and historical 3D myocardial tagging as reference standards. With an average scan time of 20.5 ± 5.7 minutes, 3D data sets with a matrix size of 128 × 128 × 22, voxel size of 2.8 × 2.8 × 5.0 mm3, and temporal resolution of 32 ms were obtained with displacement encoding in three orthogonal directions. Mean values for end-systolic mid-ventricular mid-wall radial, circumferential, and longitudinal strain were 0.33 ± 0.10, −0.17 ± 0.02, and −0.16 ± 0.02, respectively. Transmural strain gradients were detected in the radial and circumferential directions, reflecting high spatial resolution. Good agreement by linear correlation and Bland-Altman analysis was achieved when comparing normal strains measured by 2D and 3D cine DENSE. Also, the 3D strains, twist, and torsion results obtained by 3D cine DENSE were in good agreement with historical values measured by 3D myocardial tagging. PMID:20574967

  9. Dynamic arrythmia filtration for gated blood pool imaging: Validation against list - Mode technique

    International Nuclear Information System (INIS)

    Juni, J.E.; Wallis, J.; Rocchini, A.; Wu-Connolly, L.

    1985-01-01

    Normal resting heart rate variation distort the diastolic portions of time-activity curves (TACs) generated from gated blood pool (GBP) images. This alters calculated measures of diastolic function e.g. peak filling rate (PFR). The authors compared diastolic filling parameters obtained by two methods of arrythmia removal, list-mode (LM) acquisition and a new approach, dynamic arrythima filtration (DAF). LM acquisition techniques reject beats of unusual cycle length, thus reducing the TAC distortions caused by heart rate variation but is time consuming and requires large amounts of disk storage. In DAF systems data is evaluated for cycle length in real-time and accepted or rejected immediately according to preset, operator determined cycle-length criteria, thus eliminating the need for post-processing of data and for large mass data storage. The authors prospectively determined EF, time to end-systole (TES), PFR, ad TPFR on 25 GBP patients. Camera and ECG data were sent simultaneously to 2 computers. One acquired data via LM and the other by DAF. Fluctuations in heart rate during GBP acquisition may cause errors in calculation of filling parameters. Both LM and DAF remove cycles of unusual length. DAF is less time consuming and technically demanding than LM and provides results which correlate closely with those obtained by LM

  10. Left ventricular synchrony assessed by phase analysis of gated myocardial perfusion SPECT imaging in healthy subjects

    International Nuclear Information System (INIS)

    Wang Yuetao; Wang Jianfeng; Yang Minfu; Niu Rong

    2013-01-01

    Objective: To investigate the value of Cedars-Sinai quantitative gated SPECT (QGS) phase analysis for left ventricular synchrony assessment in healthy subjects. Methods: Seventy-four healthy subjects (41 males, 33 females,average age: (60±13) years) underwent both rest and exercise 99 Tc m -MIBI G-MPI. QGS software was used to analyze the reconstructed rest gated SPECT images automatically, and then the parameters of left ventricular synchrony including phase bandwidth (BW) and phase standard deviation (SD) were obtained. The influences of gender and age (age<60 years, n=36; age ≥ 60 years, n=38) on left ventricular systolic synchronicity were analyzed. The phase angle for original segmental contraction was measured to determine the onset of the ventricular contraction using 17-segment model. Forty healthy subjects were selected by simple random sampling method to evaluate the intra-observer and interobserver repeatability of QGS phase analysis software. Two-sample t test and linear correlation analysis were used to analyze the data. Results: The BW and SD of left ventricular in healthy subjects were (37.22 ±11.71)°, (11.84±5.39)° respectively. Comparisons between male and female for BW and SD yielded no statistical significance (BW: (36.00±9.70)°, (38.73±13.84)°; SD: (11.88±5.56)°, (11.79±5.26)°; t=0.96 and-0.07, both P>0.05); whereas the older subjects (age≥60 years) had larger BW than the others (age<60 years ; (39.95± 12.65)°, (34.33± 10.00)°; t=-2.11, P<0.05) and no statistical significance was shown for SD between the two age groups ((11.18±4.31)°, (12.54±6.33)°; t=1.08, P>0.05). Of the 74 subjects, the mechanical activation started from the ventricular base to apex in 54 subjects (73%), and from apex to base in only 20 subjects (27%). High repeatability of phase analysis was observed for both intra-observer and inter-observer (r=0.867-0.906, all P<0.001). Conclusions: Good left ventricular segmental synchrony is shown in healthy

  11. Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images

    International Nuclear Information System (INIS)

    Ju, Sang Gyu; Hong, Chae Seon; Park, Hee Chul; Ahn, Jong Ho; Shin, Eun Hyuk; Shin, Jung Suk; Kim, Jin Sung; Han, Young Yih; Lim, Do Hoon; Choi, Doo Ho

    2010-01-01

    In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimensional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Medians of inter

  12. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, Takahiro [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Matsuura, Taeko, E-mail: matsuura@med.hokudai.ac.jp [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Ito, Yoichi M. [Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Miyamoto, Naoki [Department of Medical Physics, Hokkaido University Hospital, Sapporo (Japan); Inoue, Tetsuya [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Katoh, Norio [Department of Radiation Oncology, Hokkaido University Hospital, Sapporo (Japan); Shimizu, Shinichi [Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Department of Radiation Oncology, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Umegaki, Kikuo [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Shirato, Hiroki [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan)

    2017-01-01

    Purpose: To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). Methods and Materials: A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 <5%, V20 for the normal lung, and treatment times were evaluated. Results: Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Conclusion: Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time.

  13. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study.

    Science.gov (United States)

    Kanehira, Takahiro; Matsuura, Taeko; Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki; Ito, Yoichi M; Miyamoto, Naoki; Inoue, Tetsuya; Katoh, Norio; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2017-01-01

    To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 lung, and treatment times were evaluated. Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Stripping Voltammetry

    Science.gov (United States)

    Lovrić, Milivoj

    Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact

  15. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance

    International Nuclear Information System (INIS)

    Korreman, Stine S.; Juhler-Nottrup, Trine; Boyer, Arthur L.

    2008-01-01

    Purpose/objective: In radiotherapy of targets moving with respiration, beam gating is offered as a means of reducing the target motion. The purpose of this study is to evaluate the safe magnitude of margin reduction for respiratory gated beam delivery. Materials/methods: The study is based on data for 17 lung cancer patients in separate protocols at Rigshospitalet and Stanford Cancer Center. Respiratory curves for external optical markers and implanted fiducials were collected using equipment based on the RPM system (Varian Medical Systems). A total of 861 respiratory curves represented external measurements over 30 fraction treatment courses for 10 patients, and synchronous external/internal measurements in single sessions for seven patients. Variations in respiratory amplitude (simulated coaching) and external/internal phase shifts were simulated by perturbation with realistic values. Variations were described by medians and standard deviations (SDs) of position distributions of the markers. Gating windows (35% duty cycle) were retrospectively applied to the respiratory data for each session, mimicking the use of commercially available gating systems. Medians and SDs of gated data were compared to those of ungated data, to assess potential margin reductions. Results: External respiratory data collected over entire treatment courses showed SDs from 1.6 to 8.1 mm, the major part arising from baseline variations. The gated data had SDs from 1.5 to 7.7 mm, with a mean reduction of 0.3 mm (6%). Gated distributions were more skewed than ungated, and in a few cases a marginal miss of gated respiration would be found even if no margin reduction was applied. Regularization of breathing amplitude to simulate coaching did not alter these results significantly. Simulation of varying phase shifts between internal and external respiratory signals showed that the SDs of gated distributions were the same as for the ungated or smaller, but the median values were markedly shifted

  16. Optimization of imaging before pulmonary vein isolation by radiofrequency ablation: breath-held ungated versus ECG/breath-gated MRA

    Energy Technology Data Exchange (ETDEWEB)

    Allgayer, C.; Haller, S.; Bremerich, J. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Zellweger, M.J.; Sticherling, C.; Buser, P.T. [University Hospital Basel, Department of Cardiology, Basel (Switzerland); Weber, O. [University Hospital Basel, Department of Medical Physics, Basel (Switzerland)

    2008-12-15

    Isolation of the pulmonary veins has emerged as a new therapy for atrial fibrillation. Pre-procedural magnetic resonance (MR) imaging enhances safety and efficacy; moreover, it reduces radiation exposure of the patients and interventional team. The purpose of this study was to optimize the MR protocol with respect to image quality and acquisition time. In 31 patients (23-73 years), the anatomy of the pulmonary veins, left atrium and oesophagus was assessed on a 1.5-Tesla scanner with four different sequences: (1) ungated two-dimensional true fast imaging with steady precession (2D-TrueFISP), (2) ECG/breath-gated 3D-TrueFISP, (3) ungated breath-held contrast-enhanced three-dimensional turbo fast low-angle shot (CE-3D-tFLASH), and (4) ECG/breath-gated CE-3D-TrueFISP. Image quality was scored from 1 (structure not visible) to 5 (excellent visibility), and the acquisition time was monitored. The pulmonary veins and left atrium were best visualized with CE-3D-tFLASH (scores 4.50 {+-} 0.52 and 4.59 {+-} 0.43) and ECG/breath-gated CE-3D-TrueFISP (4.47 {+-} 0.49 and 4.63 {+-} 0.39). Conspicuity of the oesophagus was optimal with CE-3D-TrueFISP and 2D-TrueFISP (4.59 {+-} 0.35 and 4.19 {+-} 0.46) but poor with CE-3D-tFLASH (1.03 {+-} 0.13) (p < 0.05). Acquisition times were shorter for 2D-TrueFISP (44 {+-} 1 s) and CE-3D-tFLASH (345 {+-} 113 s) compared with ECG/breath-gated 3D-TrueFISP (634 {+-} 197 s) and ECG/breath-gated CE-3D-TrueFISP (636 {+-} 230 s) (p < 0.05). In conclusion, an MR imaging protocol comprising CE-3D-tFLASH and 2D-TrueFISP allows assessment of the pulmonary veins, left atrium and oesophagus in less than 7 min and can be recommended for pre-procedural imaging before electric isolation of pulmonary veins. (orig.)

  17. Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging

    International Nuclear Information System (INIS)

    Lazaro, D; Buvat, I; Loudos, G; Strul, D; Santin, G; Giokaris, N; Donnarieix, D; Maigne, L; Spanoudaki, V; Styliaris, S; Staelens, S; Breton, V

    2004-01-01

    Monte Carlo simulations are increasingly used in scintigraphic imaging to model imaging systems and to develop and assess tomographic reconstruction algorithms and correction methods for improved image quantitation. GATE (GEANT4 application for tomographic emission) is a new Monte Carlo simulation platform based on GEANT4 dedicated to nuclear imaging applications. This paper describes the GATE simulation of a prototype of scintillation camera dedicated to small-animal imaging and consisting of a CsI(Tl) crystal array coupled to a position-sensitive photomultiplier tube. The relevance of GATE to model the camera prototype was assessed by comparing simulated 99m Tc point spread functions, energy spectra, sensitivities, scatter fractions and image of a capillary phantom with the corresponding experimental measurements. Results showed an excellent agreement between simulated and experimental data: experimental spatial resolutions were predicted with an error less than 100 μm. The difference between experimental and simulated system sensitivities for different source-to-collimator distances was within 2%. Simulated and experimental scatter fractions in a [98-82 keV] energy window differed by less than 2% for sources located in water. Simulated and experimental energy spectra agreed very well between 40 and 180 keV. These results demonstrate the ability and flexibility of GATE for simulating original detector designs. The main weakness of GATE concerns the long computation time it requires: this issue is currently under investigation by the GEANT4 and the GATE collaborations

  18. A clinical study of gated simultaneous rest 201Tl/stress 99Tcm-sestamibi dual isotope myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Tang Anwu; Qiao Shuixian; Luo Yaowu; Liang Xiaolin

    2002-01-01

    Objective: To investigate a modified gated radionuclide myocardial tomography in methodology for raising the sensitivity and efficiency of detecting myocardial ischemia. Methods: One hundred and three patients were involved and divided into two groups: coronary artery disease (CAD) patient 37, non-CAD patient 66. 201 Tl 111 MBq was injected intravenously 5 min before stress, the patient exercised with ergometer following the modified Bruce protocol, and was injected 99 Tc m -sestamibi at the peak of stress. 45 min later, the simultaneous dual energy peak gated acquisition was then performed. Stress ( 99 Tc m -sestamibi) and rest ( 201 Tl) images were reconstructed. Results: Positive findings were seen in 35/37 (94.6%) in CAD group and 7/66 (10.6%) in non-CAD, respectively; LVEF, EDV and ESV of two groups were (52.33+-16.26)%, (70.45+-28.12) mL, (33.35 +- 18.86) mL and (61.76 +- 9.38)%, (60.45 +- 18.18) mL, (23.30 +- 11.09) mL, respectively. Conclusion: The simultaneous stress ( 99 Tc m -sestamibi) and rest ( 201 Tl) gated myocardial imaging is an efficient and practical protocol for the study of myocardial perfusion and the diagnosis of ischemia

  19. Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location

    DEFF Research Database (Denmark)

    Fennema-Notestine, Christine; Ozyurt, I Burak; Clark, Camellia P

    2006-01-01

    Performance of automated methods to isolate brain from nonbrain tissues in magnetic resonance (MR) structural images may be influenced by MR signal inhomogeneities, type of MR image set, regional anatomy, and age and diagnosis of subjects studied. The present study compared the performance of four...... methods: Brain Extraction Tool (BET; Smith [2002]: Hum Brain Mapp 17:143-155); 3dIntracranial (Ward [1999] Milwaukee: Biophysics Research Institute, Medical College of Wisconsin; in AFNI); a Hybrid Watershed algorithm (HWA, Segonne et al. [2004] Neuroimage 22:1060-1075; in FreeSurfer); and Brain Surface...... Extractor (BSE, Sandor and Leahy [1997] IEEE Trans Med Imag 16:41-54; Shattuck et al. [2001] Neuroimage 13:856-876) to manually stripped images. The methods were applied to uncorrected and bias-corrected datasets; Legacy and Contemporary T1-weighted image sets; and four diagnostic groups (depressed...

  20. Imaging quality and effective radiation dose of prospective ECG-gated axial multidetector row computed tomography coronary angiography

    International Nuclear Information System (INIS)

    Capunay, C.; Carrascosa, P.; Vallejos, J.; Deviggiano, A.; Pollono, P.M.; Garcia, M.J.

    2011-01-01

    Objective. To determine the imaging quality and effective radiation dose (ERD) of prospective ECG-gated multidetector row computed tomography coronary angiography (PMDCTCA) compared to retrospective ECG-gating (RMDCT-CA). Materials and Methods. Forty-five PMDCT-CA scans were retrospectively reviewed for assessing imaging quality and ERD, and compared to 90 RMDCT-CA scans performed with (n=45) and without (n=45) tube current modulation, selected from our database on the basis of similar demographical characteristics. ERD was compared between all three groups. Imaging quality was assessed by two independent observers and compared to the imaging quality of the group of RMDCT-CA scans performed with tube current modulation. The interobserver variability was also determined. Results. There were no significant differences in imaging quality between the two groups. Interobserver variability was k=0.92 (95 % CI: 0.87-0.96). The ERD (mean ± SD) using PMDCT-CA was 2.88 ± 0.37 mSv compared to 10.50 ± 1.15 mSv (p [es

  1. Evaluation of the geometric accuracy of surrogate-based gated VMAT using intrafraction kilovoltage x-ray images

    International Nuclear Information System (INIS)

    Li Ruijiang; Mok, Edward; Han, Bin; Koong, Albert; Xing Lei

    2012-01-01

    Purpose: To evaluate the geometric accuracy of beam targeting in external surrogate-based gated volumetric modulated arc therapy (VMAT) using kilovoltage (kV) x-ray images acquired during dose delivery. Methods: Gated VMAT treatments were delivered using a Varian TrueBeam STx Linac for both physical phantoms and patients. Multiple gold fiducial markers were implanted near the target. The reference position was created for each implanted marker, representing its correct position at the gating threshold. The gating signal was generated from the RPM system. During the treatment, kV images were acquired immediately before MV beam-on at every breathing cycle, using the on-board imaging system. All implanted markers were detected and their 3D positions were estimated using in-house developed software. The positioning error of a marker is defined as the distance of the marker from its reference position for each frame of the images. The overall error of the system is defined as the average over all markers. For the phantom study, both sinusoidal motion (1D and 3D) and real human respiratory motion was simulated for the target and surrogate. In the baseline case, the two motions were synchronized for the first treatment fraction. To assess the effects of surrogate-target correlation on the geometric accuracy, a phase shift of 5% and 10% between the two motions was introduced. For the patient study, intrafraction kV images of five stereotactic body radiotherapy (SBRT) patients were acquired for one or two fractions. Results: For the phantom study, a high geometric accuracy was achieved in the baseline case (average error: 0.8 mm in the superior-inferior or SI direction). However, the treatment delivery is prone to geometric errors if changes in the target-surrogate relation occur during the treatment: the average error was increased to 2.3 and 4.7 mm for the phase shift of 5% and 10%, respectively. Results obtained with real human respiratory curves show a similar trend

  2. Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: results of the multicentre SPAG (SPECT Attenuation Correction vs Gated) study

    International Nuclear Information System (INIS)

    Genovesi, Dario; Giorgetti, Assuero; Gimelli, Alessia; Kusch, Annette; D'Aragona Tagliavia, Irene; Casagranda, Mirta; Marzullo, Paolo; Cannizzaro, Giorgio; Giubbini, Raffaele; Bertagna, Francesco; Fagioli, Giorgio; Rossi, Massimiliano; Romeo, Annadina; Bertolaccini, Pietro; Bonini, Rita

    2011-01-01

    In clinical myocardial single photon emission computed tomography (SPECT), attenuation artefacts may cause a loss of specificity in the identification of diseased vessels that can be corrected by means of gated SPECT (GSPECT) acquisition or CT attenuation correction (AC). The purpose of this multicentre study was to assess the impact of GSPECT and AC on the diagnostic performance of myocardial scintigraphy, according to patient's sex, body mass index (BMI) and site of coronary artery disease (CAD). We studied a group of 104 patients who underwent coronary angiography within 1 month before or after the SPECT study. Patients with a BMI > 27 were considered ''overweight''. Attenuation-corrected and standard GSPECT early images were randomly interpreted by three readers blinded to the clinical data. In the whole group, GSPECT and AC showed a diagnostic accuracy of 86.5% (sensitivity 82%, specificity 93%) and 77% (sensitivity 75.4%, specificity 81.4%), respectively (p < 0.05). In women, when anterior ischaemia was matched with CAD, AC failed to show any increase in specificity (AC 63.6% vs GSPECT 63.6%) with evident loss of sensitivity (AC 72.7% vs GSPECT 90.9%). AC significantly improved SPECT specificity in the identification of right CAD in overweight men (AC 100% vs GSPECT 66.7%, p <0.05). AC improved specificity in the evaluation of right CAD in overweight men. In the other evaluable subgroups specificity was not significantly affected while sensitivity was frequently reduced. (orig.)

  3. Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: results of the multicentre SPAG (SPECT Attenuation Correction vs Gated) study

    Energy Technology Data Exchange (ETDEWEB)

    Genovesi, Dario; Giorgetti, Assuero; Gimelli, Alessia; Kusch, Annette; D' Aragona Tagliavia, Irene; Casagranda, Mirta; Marzullo, Paolo [Fondazione CNR-Regione Toscana ' ' G. Monasterio' ' , Nuclear Medicine, Pisa (Italy); Cannizzaro, Giorgio [A.O.V. Cervello, Nuclear Medicine, Palermo (Italy); Giubbini, Raffaele; Bertagna, Francesco [Spedali Civili, Nuclear Medicine, Brescia (Italy); Fagioli, Giorgio; Rossi, Massimiliano; Romeo, Annadina [Ospedale Maggiore, Nuclear Medicine, Bologna (Italy); Bertolaccini, Pietro; Bonini, Rita [Ospedale SS Giacomo e Cristoforo, Nuclear Medicine, Massa (Italy)

    2011-10-15

    In clinical myocardial single photon emission computed tomography (SPECT), attenuation artefacts may cause a loss of specificity in the identification of diseased vessels that can be corrected by means of gated SPECT (GSPECT) acquisition or CT attenuation correction (AC). The purpose of this multicentre study was to assess the impact of GSPECT and AC on the diagnostic performance of myocardial scintigraphy, according to patient's sex, body mass index (BMI) and site of coronary artery disease (CAD). We studied a group of 104 patients who underwent coronary angiography within 1 month before or after the SPECT study. Patients with a BMI > 27 were considered ''overweight''. Attenuation-corrected and standard GSPECT early images were randomly interpreted by three readers blinded to the clinical data. In the whole group, GSPECT and AC showed a diagnostic accuracy of 86.5% (sensitivity 82%, specificity 93%) and 77% (sensitivity 75.4%, specificity 81.4%), respectively (p < 0.05). In women, when anterior ischaemia was matched with CAD, AC failed to show any increase in specificity (AC 63.6% vs GSPECT 63.6%) with evident loss of sensitivity (AC 72.7% vs GSPECT 90.9%). AC significantly improved SPECT specificity in the identification of right CAD in overweight men (AC 100% vs GSPECT 66.7%, p <0.05). AC improved specificity in the evaluation of right CAD in overweight men. In the other evaluable subgroups specificity was not significantly affected while sensitivity was frequently reduced. (orig.)

  4. Dual gated PET/CT imaging of small targets of the heart: method description and testing with a dynamic heart phantom.

    Science.gov (United States)

    Kokki, Tommi; Sipilä, Hannu T; Teräs, Mika; Noponen, Tommi; Durand-Schaefer, Nicolas; Klén, Riku; Knuuti, Juhani

    2010-01-01

    In PET imaging respiratory and cardiac contraction motions interfere the imaging of heart. The aim was to develop and evaluate dual gating method for improving the detection of small targets of the heart. The method utilizes two independent triggers which are sent periodically into list mode data based on respiratory and ECG cycles. An algorithm for generating dual gated segments from list mode data was developed. The test measurements showed that rotational and axial movements of point source can be separated spatially to different segments with well-defined borders. The effect of dual gating on detection of small moving targets was tested with a moving heart phantom. Dual gated images showed 51% elimination (3.6 mm out of 7.0 mm) of contraction motion of hot spot (diameter 3 mm) and 70% elimination (14 mm out of 20 mm) of respiratory motion. Averaged activity value of hot spot increases by 89% when comparing to non-gated images. Patient study of suspected cardiac sarcoidosis shows sharper spatial myocardial uptake profile and improved detection of small myocardial structures such as papillary muscles. The dual gating method improves detection of small moving targets in a phantom and it is feasible in clinical situations.

  5. Noninvasive coronary artery imaging by multislice spiral computed tomography. A novel approach for a retrospectively ECG-gated reconstruction technique

    International Nuclear Information System (INIS)

    Sato, Yuichi; Kanmatsuse, Katsuo; Inoue Fumio

    2003-01-01

    Although the excellent spatial resolution of multislice spiral computed tomography (MSCT) enables the coronary arteries to be visualized, its limited temporal resolution results in poor image reproducibility because of cardiac motion artifact (CMA) and hence limits its widespread clinical use. A novel retrospectively electrocardiogram (ECG)-gated reconstruction method has been developed to minimize CMA. In 88 consecutive patients, the scan data were reconstructed using 2 retrospectively ECG-gated reconstruction methods. Method 1: the end of the reconstruction window (250 ms) was positioned at the peak of the P wave on ECG, which corresponded to the end of the slow filling phase during diastole immediately before atrial contraction. Method 2 (conventional method): relative retrospective gating with 50% referred to the R-R interval was performed so that the beginning of the reconstruction window (250 ms) was positioned at the halfway point between the R-R intervals of the heart cycle. The quality of the coronary artery images was evaluated according to the presence or absence of CMA. The assessment was applied to the left main coronary artery (LMCA), the left anterior descending artery (LAD, segments no.6, no.7, and no.8), the left circumflex artery (LCx, segments no.11 and no.13) and the right coronary artery (RCA, segments no.1, no.2 and no.3). The first diagonal artery (no.9-1), the obtuse marginal artery (no.12-1), the posterior descending artery (no.4-PD), the atrioventricular node branch (no.4-AV) and the first right ventricular branch (RV) were also evaluated. Of the 88 patients, 85 were eligible for image evaluation. Method 1 allowed visualization of the major coronary arteries without CMA in the majority of patients. The left coronary artery (LCA) system (segments no.5-7, no.11 and no.13) and the proximal portion of the RCA were visualized in more than 94% of patients. Artifact-free visualization of the distal portion of the LAD (segment no.8) and RCA (no.4

  6. Early myocardial damage assessment in dystrophinopathies using 99Tcm-MIBI gated myocardial perfusion imaging

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-12-01

    Full Text Available Li Zhang,1,* Zhe Liu,2,* Ke-You Hu,3 Qing-Bao Tian,3 Ling-Ge Wei,4 Zhe Zhao,5 Hong-Rui Shen,5 Jing Hu5 1Department of Cardiovascular Disorders, 2Department of Geriatrics, The Third Hospital of Hebei Medical University, 3The Public Health Department, Hebei Medical University, 4Department of Nuclear Medicine, 5Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China *Li Zhang and Zhe Liu are first coauthors of this paper Background: Early detection of muscular dystrophy (MD-associated cardiomyopathy is important because early medical treatment may slow cardiac remodeling and attenuate symptoms of cardiac dysfunction; however, no sensitive and standard diagnostic method for MD at an earlier stage has been well-recognized. Thus, the aim of this study was to test the early diagnostic value of technetium 99m-methoxyisobutylisonitrile (99Tcm-MIBI gated myocardial perfusion imaging (G-MPI for MD.Methods and results: Ninety-one patients underwent 99Tcm-MIBI G-MPI examinations when they were diagnosed with Duchenne muscular dystrophy (DMD (n=77 or Becker muscular dystrophy (BMD; n=14. 99Tcm-MIBI G-MPI examinations were repeated in 43 DMD patients who received steroid treatments for 2 years as a follow-up examination. Myocardial defects were observed in nearly every segment of the left ventricular wall in both DMD and BMD patients compared with controls, especially in the inferior walls and the apices by using 99Tcm-MIBI G-MPI. Cardiac wall movement impairment significantly correlated with age in the DMD and BMD groups (rs=0.534 [P<0.05] and rs=0.784 [P<0.05], respectively. Intermittent intravenous doses of glucocorticoids and continuation with oral steroid treatments significantly improved myocardial function in DMD patients (P<0.05, but not in BMD patients.Conclusion: 99Tcm-MIBI G-MPI is a sensitive and safe approach for early evaluation of cardiomyopathy in patients with DMD or BMD

  7. Determination of single-kidney glomerular filtration rate (GFR) with CT urography versus renal dynamic imaging Gates method

    Energy Technology Data Exchange (ETDEWEB)

    You, Shan [Hebei North University, Department of Graduate, Zhangjiakou City, Hebei Province (China); Ma, XianWu; Zhang, ChangZhu; Li, Qiang [Qiqihar Chinese Medicine Hospital, Department of Radiology, Qigihar City, Heilongjiang Province (China); Shi, WenWei; Zhang, Jing; Yuan, XiaoDong [The 309th Hospital of Chinese People' s Liberation Army, Department of Radiology, Beijing (China)

    2018-03-15

    To present a single-kidney CT-GFR measurement and compare it with the renal dynamic imaging Gates-GFR. Thirty-six patients with hydronephrosis referred for CT urography and 99mTc-DTPA renal dynamic imaging were prospectively included. Informed consent was obtained from all patients. The CT urography protocol included non-contrast, nephrographic, and excretory phase imaging. The total CT-GFR was calculated by dividing the CT number increments of the total urinary system between the nephrographic and excretory phase by the products of iodine concentration in the aorta and the elapsed time, then multiplied by (1- Haematocrit). The total CT-GFR was then split into single-kidney CT-GFR by a left and right kidney proportionality factor. The results were compared with single-kidney Gates-GFR by using paired t-test, correlation analysis, and Bland-Altman plots. Paired difference between single-kidney CT-GFR (45.02 ± 13.91) and single-kidney Gates-GFR (51.21 ± 14.76) was 6.19 ± 5.63 ml/min, p<0.001, demonstrating 12.1% systematic underestimation with ±11.03 ml/min (±21.5%) measurement deviation. A good correlation was revealed between both measurements (r=0.87, p<0.001). The proposed single-kidney CT-GFR correlates and agrees well with the reference standard despite a systematic underestimation, therefore it could be a one-stop-shop for evaluating urinary tract morphology and split renal function. (orig.)

  8. Determination of single-kidney glomerular filtration rate (GFR) with CT urography versus renal dynamic imaging Gates method

    International Nuclear Information System (INIS)

    You, Shan; Ma, XianWu; Zhang, ChangZhu; Li, Qiang; Shi, WenWei; Zhang, Jing; Yuan, XiaoDong

    2018-01-01

    To present a single-kidney CT-GFR measurement and compare it with the renal dynamic imaging Gates-GFR. Thirty-six patients with hydronephrosis referred for CT urography and 99mTc-DTPA renal dynamic imaging were prospectively included. Informed consent was obtained from all patients. The CT urography protocol included non-contrast, nephrographic, and excretory phase imaging. The total CT-GFR was calculated by dividing the CT number increments of the total urinary system between the nephrographic and excretory phase by the products of iodine concentration in the aorta and the elapsed time, then multiplied by (1- Haematocrit). The total CT-GFR was then split into single-kidney CT-GFR by a left and right kidney proportionality factor. The results were compared with single-kidney Gates-GFR by using paired t-test, correlation analysis, and Bland-Altman plots. Paired difference between single-kidney CT-GFR (45.02 ± 13.91) and single-kidney Gates-GFR (51.21 ± 14.76) was 6.19 ± 5.63 ml/min, p<0.001, demonstrating 12.1% systematic underestimation with ±11.03 ml/min (±21.5%) measurement deviation. A good correlation was revealed between both measurements (r=0.87, p<0.001). The proposed single-kidney CT-GFR correlates and agrees well with the reference standard despite a systematic underestimation, therefore it could be a one-stop-shop for evaluating urinary tract morphology and split renal function. (orig.)

  9. Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92

  10. Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2007-01-01

    This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images. The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis. This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P<0.0001). A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis. (author)

  11. [Image fusion of gated-SPECT and CT angiography in coronary artery disease. Importance of anatomic-functional correlation].

    Science.gov (United States)

    Nazarena Pizzi, M; Aguadé Bruix, S; Cuéllar Calabria, H; Aliaga, V; Candell Riera, J

    2010-01-01

    A 77-year old patient was admitted for acute coronary syndrome without ST elevation. His risk was stratified using the myocardial perfusion gated SPECT, mild inferior ischemia being observed. Thus, medical therapy was optimized and the patient was discharged. He continued with exertional dyspnea so a coronary CT angiography was performed. It revealed severe lesions in the proximal RCA. SPECT-CT fusion images correlated the myocardial perfusion defect with a posterior descending artery from the RCA, in a co-dominant coronary area. Subsequently, cardiac catheterism was indicated for his treatment. The current use of image fusion studies is limited to patients in whom it is difficult to attribute a perfusion defect to a specific coronary artery. In our patient, the fusion images helped to distinguish between the RCA and the circumflex artery as the culprit artery of ischemia. Copyright © 2010 Elsevier España, S.L. y SEMNIM. All rights reserved.

  12. Photosensitive Strip RETHGEM

    CERN Document Server

    Peskov, Vladimir; Nappi, E.; Oliveira, R.; Paic, G.; Pietropaolo, F.; Picchi, P.

    2008-01-01

    An innovative photosensitive gaseous detector, consisting of a GEM like amplification structure with double layered electrodes (instead of commonly used metallic ones) coated with a CsI reflective photocathode, is described. In one of our latest designs, the inner electrode consists of a metallic grid and the outer one is made of resistive strips; the latter are manufactured by a screen printing technology on the top of the metallic strips grid The inner metallic grid is used for 2D position measurements whereas the resistive layer provides an efficient spark protected operation at high gains - close to the breakdown limit. Detectors with active areas of 10cm x10cm and 10cm x20cm were tested under various conditions including the operation in photosensitive gas mixtures containing ethylferrocene or TMAE vapors. The new technique could have many applications requiring robust and reliable large area detectors for UV visualization, as for example, in Cherenkov imaging devices.

  13. Influence of gating phase selection on the image quality of coronary arteries in multidetector row computed tomography

    International Nuclear Information System (INIS)

    Laskowska, K.; Marzec, M.; Serafin, Z.; Nawrocka, E.; Lasek, W.; WWisniewska-Szmyt, J.; Kubica, J.

    2005-01-01

    Motion artifacts caused by cardiac movement disturb the imaging of coronary arteries with multidetector-row spiral computed tomography. The aim of this study was to determine the phase of the heart rate which provides the best quality of coronary artery imaging in retrospective ECG-gated CT. Although 75% is usually the best reconstruction phase, the optimal phase should be established individually for the patient, artery, segment, and type of tomograph for the best imaging quality. Forty-five cardiac CT angiograms of 26 patients were retrospectively evaluated. The examinations were performed with a 4-detector-row tomograph. ECG-gated retrospective reconstructions were relatively delayed at 0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, and 87.5% of the cardiac cycle. Selected coronary arteries of the highest diagnostic quality were estimated in the eight phases of the cardiac cycle. Only arteries of very high image quality were selected for analysis: left coronary artery trunks (44 cases, incl. 37 stented), anterior interventricular branches (36, incl. 3 stented), circumflex branches (16), right coronary rtery branches (23), and posterior interventricular branches (4). The reconstruction phase had a statistically significant impact on the quality of imaging (p < 0.0003). Depending on the case, optimal imaging was noted in various phases, except in the 12.5 % phase. The 75% phase appeared to be the best of all those examined (p < 0.05), both in the group of arteries without stents (p < 0.0006) and in those stented (p < 0.05). In some cases of repeated examinations the best phases differed within the same patient. (author)

  14. Registration and Summation of Respiratory-Gated or Breath-Hold PET Images Based on Deformation Estimation of Lung from CT Image

    Directory of Open Access Journals (Sweden)

    Hideaki Haneishi

    2016-01-01

    Full Text Available Lung motion due to respiration causes image degradation in medical imaging, especially in nuclear medicine which requires long acquisition times. We have developed a method for image correction between the respiratory-gated (RG PET images in different respiration phases or breath-hold (BH PET images in an inconsistent respiration phase. In the method, the RG or BH-PET images in different respiration phases are deformed under two criteria: similarity of the image intensity distribution and smoothness of the estimated motion vector field (MVF. However, only these criteria may cause unnatural motion estimation of lung. In this paper, assuming the use of a PET-CT scanner, we add another criterion that is the similarity for the motion direction estimated from inhalation and exhalation CT images. The proposed method was first applied to a numerical phantom XCAT with tumors and then applied to BH-PET image data for seven patients. The resultant tumor contrasts and the estimated motion vector fields were compared with those obtained by our previous method. Through those experiments we confirmed that the proposed method can provide an improved and more stable image quality for both RG and BH-PET images.

  15. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance

    DEFF Research Database (Denmark)

    Korreman, S.S.; Boyer, A.L.; Juhler-Nøttrup, Trine

    2008-01-01

    PURPOSE/OBJECTIVE: In radiotherapy of targets moving with respiration, beam gating is offered as a means of reducing the target motion. The purpose of this study is to evaluate the safe magnitude of margin reduction for respiratory gated beam delivery. MATERIALS/METHODS: The study is based on data...... for 17 lung cancer patients in separate protocols at Rigshospitalet and Stanford Cancer Center. Respiratory curves for external optical markers and implanted fiducials were collected using equipment based on the RPM system (Varian Medical Systems). A total of 861 respiratory curves represented external...... measurements over 30 fraction treatment courses for 10 patients, and synchronous external/internal measurements in single sessions for seven patients. Variations in respiratory amplitude (simulated coaching) and external/internal phase shifts were simulated by perturbation with realistic values. Variations...

  16. Time-gated scintillator imaging for real-time optical surface dosimetry in total skin electron therapy

    Science.gov (United States)

    Bruza, Petr; Gollub, Sarah L.; Andreozzi, Jacqueline M.; Tendler, Irwin I.; Williams, Benjamin B.; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2018-05-01

    The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR  ≈  470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle  <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.

  17. Gated single-photon emission tomography imaging protocol to evaluate myocardial stunning after exercise

    International Nuclear Information System (INIS)

    Hashimoto, Jun; Kubo, Atsushi; Iwasaki, Ryuichiro; Iwanaga, Shiro; Mitamura, Hideo; Ogawa, Satoshi; Kosuda, Shigeru

    1999-01-01

    This study was designed to apply ECG-gating to stress myocardial perfusion single-photon emission tomography (SPET) for the evaluation of myocardial stunning after exercise. Technetium-99m sestamibi was selected as the perfusion agent and a rest/exercise 1-day protocol was employed. Fourteen patients without coronary stenosis and 33 patients with coronary stenosis were enrolled in the study. We carried out three data acquisitions with ECG-gating: a 15-min data acquisition starting 30 min after the rest injection (AC1), a 5-min acquisition starting 5 min after the stress injection (AC2) and a 15-min acquisition starting 20 min after the stress injection (AC3). Calculation of left ventricular ejection fraction (LVEF) values was performed by means of automatic determination of the endocardial surface for all gating intervals in the cardiac cycle. Measured global EF values in 14 patients without coronary stenosis were 52.3%±7.6% (AC1), 60.6%±8.9% (AC2) and 55.6%±5.6% (AC3), and those in 11 patients with severe ischaemia were 53.6%±8.0% (AC1), 45.6%±12.1% (AC2) and 49.7%±10.7%. The magnitude of the depression of post-stress LVEF relative to the rest LVEF correlated with the severity of ischaemia (r=0.594, P=0.002), and segments manifesting post-stress functional depression were associated with ischaemic segments showing reversible perfusion defects. Stress myocardial perfusion SPET with ECG-gating is a feasible method for the evaluation of myocardial stunning as well as exercise-induced ischaemia. (orig.)

  18. A two-centre comparison of left ventricular ejection fraction measured by gated blood pool imaging

    International Nuclear Information System (INIS)

    Shuter, B.; Skelton, P.; Goodier, C.; Hutton, B.; Barben, S.; Patterson, H.

    1984-01-01

    This study demonstrates the variability that can exist between two centres where different techniques are used for gated cardiac analysis. Significant statistical differences were demonstrated despite both methods being adequately validated with low interobserver variation within each centre. These differences were largely due to problems in the definition of the atrio-ventricular boundary at end-systole. Despite statistical variations, the clinical status of at least 90% of patients was judged the same at the two centres

  19. Development of patient-controlled respiratory gating system based on visual guidance for magnetic-resonance image-guided radiation therapy.

    Science.gov (United States)

    Kim, Jung-In; Lee, Hanyoung; Wu, Hong-Gyun; Chie, Eui Kyu; Kang, Hyun-Cheol; Park, Jong Min

    2017-09-01

    The aim of this study is to develop a visual guidance patient-controlled (VG-PC) respiratory gating system for respiratory-gated magnetic-resonance image-guided radiation therapy (MR-IGRT) and to evaluate the performance of the developed system. The near-real-time cine planar MR image of a patient acquired during treatment was transmitted to a beam projector in the treatment room through an optical fiber cable. The beam projector projected the cine MR images inside the bore of the ViewRay system in order to be visible to a patient during treatment. With this visual information, patients voluntarily controlled their respiration to put the target volume into the gating boundary (gating window). The effect of the presence of the beam projector in the treatment room on the image quality of the MRI was investigated by evaluating the signal-to-noise ratio (SNR), uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity with the VG-PC gating system. To evaluate the performance of the developed system, we applied the VG-PC gating system to a total of seven patients; six patients received stereotactic ablative radiotherapy (SABR) and one patient received conventional fractionated radiation therapy. The projected cine MR images were visible even when the room light was on. No image data loss or additional time delay during delivery of image data were observed. Every indicator representing MRI quality, including SNR, uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity exhibited values higher than the tolerance levels of the manufacturer with the VG-PC gating system; therefore, the presence of the VG-PC gating system in the treatment room did not degrade the MR image quality. The average beam-off times due to respiratory gating with and without the VG-PC gating system were 830.3 ± 278.2 s and 1264.2 ± 302.1 s respectively (P = 0.005). Consequently, the total treatment times excluding

  20. HUBBLE SPACE TELESCOPE AND HI IMAGING OF STRONG RAM PRESSURE STRIPPING IN THE COMA SPIRAL NGC 4921: DENSE CLOUD DECOUPLING AND EVIDENCE FOR MAGNETIC BINDING IN THE ISM

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, Jeffrey D. P.; Abramson, Anne [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Bravo-Alfaro, Hector, E-mail: jeff.kenney@yale.edu [Institut d’Astrophysique de Paris, CNRS/UPMC, 98bis, Boulevard Arago F-75014, Paris (France)

    2015-08-15

    Remarkable dust extinction features in the deep Hubble Space Telescope (HST) V and I images of the face-on Coma cluster spiral galaxy NGC 4921 show in unprecedented ways how ram pressure strips the ISM from the disk of a spiral galaxy. New VLA HI maps show a truncated and highly asymmetric HI disk with a compressed HI distribution in the NW, providing evidence for ram pressure acting from the NW. Where the HI distribution is truncated in the NW region, HST images show a well-defined, continuous front of dust that extends over 90° and 20 kpc. This dust front separates the dusty from dust-free regions of the galaxy, and we interpret it as galaxy ISM swept up near the leading side of the ICM–ISM interaction. We identify and characterize 100 pc–1 kpc scale substructure within this dust front caused by ram pressure, including head–tail filaments, C-shaped filaments, and long smooth dust fronts. The morphology of these features strongly suggests that dense gas clouds partially decouple from surrounding lower density gas during stripping, but decoupling is inhibited, possibly by magnetic fields that link and bind distant parts of the ISM.

  1. SU-F-J-151: Evaluation of a Magnetic Resonance Image Gated Radiotherapy System Using a Motion Phantom and Radiochromic Film

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J; Ginn, J; O’Connell, D; Thomas, D; Agazaryan, N; Cao, M; Yang, Y; Low, D [UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: Magnetic resonance image (MRI) guided radiotherapy enables gating directly on target position for soft-tissue targets in the lung and abdomen. We present a dosimetric evaluation of a commercially-available FDA-approved MRI-guided radiotherapy system’s gating performance using a MRI-compatible respiratory motion phantom and radiochromic film. Methods: The MRI-compatible phantom was capable of one-dimensional motion. The phantom consisted of a target rod containing high-contrast target inserts which moved inside a body structure containing background contrast material. The target rod was equipped with a radiochromic film insert. Treatment plans were generated for a 3 cm diameter spherical target, and delivered to the phantom at rest and in motion with and without gating. Both sinusoidal and actual tumor trajectories (two free-breathing trajectories and one repeated-breath hold) were used. Gamma comparison at 5%/3mm was used to measure fidelity to the static target dose distribution. Results: Without gating, gamma pass rates were 24–47% depending on motion trajectory. Using our clinical standard of repeated breath holds and a gating window of 3 mm with 10% of the target allowed outside the gating boundary, the gamma pass rate was 99.6%. Relaxing the gating window to 5 mm resulted in gamma pass rate of 98.6% with repeated breath holds. For all motion trajectories gated with 3 mm margin and 10% allowed out, gamma pass rates were between 64–100% (mean:87.5%). For a 5 mm margin and 10% allowed out, gamma pass rates were between 57–98% (mean: 82.49%), significantly lower than for 3 mm by paired t-test (p=0.01). Conclusion: We validated the performance of respiratory gating based on real-time cine MRI images with the only FDA-approved MRI-guided radiotherapy system. Our results suggest that repeated breath hold gating should be used when possible for best accuracy. A 3 mm gating margin is statistically significantly more accurate than a 5 mm gating margin.

  2. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Krieger, Thomas; Richter, Anne; Baier, Kurt; Wilbert, Juergen; Sweeney, Reinhart A.; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the potential of image-guidance, gating and real-time tumor tracking to improve accuracy in pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Safety margins for compensation of inter- and intra-fractional uncertainties of the target position were calculated based on SBRT treatments of 43 patients with pre- and post-treatment cone-beam CT imaging. Safety margins for compensation of breathing motion were evaluated for 17 pulmonary tumors using respiratory correlated CT, model-based segmentation of 4D-CT images and voxel-based dose accumulation; the target in the mid-ventilation position was the reference. Results: Because of large inter-fractional base-line shifts of the tumor, stereotactic patient positioning and image-guidance based on the bony anatomy required safety margins of 12 mm and 9 mm, respectively. Four-dimensional image-guidance targeting the tumor itself and intra-fractional tumor tracking reduced margins to <5 mm and <3 mm, respectively. Additional safety margins are required to compensate for breathing motion. A quadratic relationship between tumor motion and margins for motion compensation was observed: safety margins of 2.4 mm and 6 mm were calculated for compensation of 10 mm and 20 mm motion amplitudes in cranio-caudal direction, respectively. Conclusion: Four-dimensional image-guidance with pre-treatment verification of the target position and online correction of errors reduced safety margins most effectively in pulmonary SBRT.

  3. Clinical evaluation of cardiovascular disease by gated-MRI (magnetic resonance imaging) in the operating field of 0.35 and 1.5 Tesla

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Naito, Hiroaki; Yamada, Yukinori; Kozuka, Takahiro

    1985-01-01

    To evaluate the clinical usefulness of magnetic resonance imaging (MRI) in the cardiovascular disease, 21 patients were examined using 0.35 and 1.5 Tesla superconductive type (Magnetom, Siemens). In our study, all patients were performed using ECG-gated MRI. Therefore, the cardiac chambers were discriminated clearly from the myocardial wall compared to non-gated MRI. Gated-MRI was performed in 6 normal persons in the operating field at 0.35 and 1.5 Tesla. The image of the latter showed superior than that of the former because of high S/N ratio. In myocardial infarction, infarct area was demonstrated as the wall thinning in 4 of 5 patients. Hypertrophic cardiomyopathy showed thickened left ventricle associated with its narrowed cavity in 7 patients. In the remaining such as congenital and valvular heart disease, global and regional cardiac morphology were assessed noninvasively by gated MRI. In addition, gated MRI was also applied to the diagnosis of peripheral vascular diseases. In dissecting aneurysm, double channels with an intimal flap in the aorta were clearly visualized. And in the aortitis syndrome, aortic dilatation and stenosis were also assessed noninvasively. In conclusion, gated MRI in diagnosing various abnormalities of cardiovascular disease was confirmed. (author)

  4. A radial sampling strategy for uniform k-space coverage with retrospective respiratory gating in 3D ultrashort-echo-time lung imaging.

    Science.gov (United States)

    Park, Jinil; Shin, Taehoon; Yoon, Soon Ho; Goo, Jin Mo; Park, Jang-Yeon

    2016-05-01

    The purpose of this work was to develop a 3D radial-sampling strategy which maintains uniform k-space sample density after retrospective respiratory gating, and demonstrate its feasibility in free-breathing ultrashort-echo-time lung MRI. A multi-shot, interleaved 3D radial sampling function was designed by segmenting a single-shot trajectory of projection views such that each interleaf samples k-space in an incoherent fashion. An optimal segmentation factor for the interleaved acquisition was derived based on an approximate model of respiratory patterns such that radial interleaves are evenly accepted during the retrospective gating. The optimality of the proposed sampling scheme was tested by numerical simulations and phantom experiments using human respiratory waveforms. Retrospectively, respiratory-gated, free-breathing lung MRI with the proposed sampling strategy was performed in healthy subjects. The simulation yielded the most uniform k-space sample density with the optimal segmentation factor, as evidenced by the smallest standard deviation of the number of neighboring samples as well as minimal side-lobe energy in the point spread function. The optimality of the proposed scheme was also confirmed by minimal image artifacts in phantom images. Human lung images showed that the proposed sampling scheme significantly reduced streak and ring artifacts compared with the conventional retrospective respiratory gating while suppressing motion-related blurring compared with full sampling without respiratory gating. In conclusion, the proposed 3D radial-sampling scheme can effectively suppress the image artifacts due to non-uniform k-space sample density in retrospectively respiratory-gated lung MRI by uniformly distributing gated radial views across the k-space. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Automatic construction of 3D-ASM intensity models by simulating image acquisition: application to myocardial gated SPECT studies.

    Science.gov (United States)

    Tobon-Gomez, Catalina; Butakoff, Constantine; Aguade, Santiago; Sukno, Federico; Moragas, Gloria; Frangi, Alejandro F

    2008-11-01

    Active shape models bear a great promise for model-based medical image analysis. Their practical use, though, is undermined due to the need to train such models on large image databases. Automatic building of point distribution models (PDMs) has been successfully addressed and a number of autolandmarking techniques are currently available. However, the need for strategies to automatically build intensity models around each landmark has been largely overlooked in the literature. This work demonstrates the potential of creating intensity models automatically by simulating image generation. We show that it is possible to reuse a 3D PDM built from computed tomography (CT) to segment gated single photon emission computed tomography (gSPECT) studies. Training is performed on a realistic virtual population where image acquisition and formation have been modeled using the SIMIND Monte Carlo simulator and ASPIRE image reconstruction software, respectively. The dataset comprised 208 digital phantoms (4D-NCAT) and 20 clinical studies. The evaluation is accomplished by comparing point-to-surface and volume errors against a proper gold standard. Results show that gSPECT studies can be successfully segmented by models trained under this scheme with subvoxel accuracy. The accuracy in estimated LV function parameters, such as end diastolic volume, end systolic volume, and ejection fraction, ranged from 90.0% to 94.5% for the virtual population and from 87.0% to 89.5% for the clinical population.

  6. Cardiac MRI: evaluation of phonocardiogram-gated cine imaging for the assessment of global und regional left ventricular function in clinical routine

    International Nuclear Information System (INIS)

    Nassenstein, Kai; Schlosser, Thomas; Orzada, Stephan; Haering, Lars; Czylwik, Andreas; Zenge, Michael; Mueller, Edgar; Eberle, Holger; Bruder, Oliver; Ladd, Mark E.; Maderwald, Stefan

    2012-01-01

    To validate a phonocardiogram (PCG)-gated cine imaging approach for the assessment of left ventricular (LV) function. In this prospective study, cine MR imaging of the LV was performed twice in 79 patients by using retrospectively PCG- and retrospectively ECG-gated cine SSFP sequences at 1.5 T. End-diastolic volumes (EDV), end-systolic volumes (ESV), stroke volumes (SV), ejection fraction (EF), muscle mass (MM), as well as regional wall motion were assessed. Subgroup analyses were performed for patients with valvular defects and for patients with dysrhythmia. PCG-gated imaging was feasible in 75 (95%) patients, ECG-gating in all patients. Excellent correlations were observed for all volumetric parameters (r > 0.98 for all variables analysed). No significant differences were observed for EDV (-0.24 ± 3.14 mL, P = 0.5133), ESV (-0.04 ± 2.36 mL, P = 0.8951), SV (-0.20 ± 3.41 mL, P = 0.6083), EF (-0.16 ± 1.98%, P = 0.4910), or MM (0.31 ± 4.2 g, P = 0.7067) for the entire study cohort, nor for either of the subgroups. PCG- and ECG-gated cine imaging revealed similar results for regional wall motion analyses (115 vs. 119 segments with wall motion abnormalities, P = 0.3652). The present study demonstrates that PCG-gated cine imaging enables accurate assessment of global and regional LV function in the vast majority of patients in clinical routine. (orig.)

  7. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    International Nuclear Information System (INIS)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J.; Xu, J.

    2010-01-01

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 ± 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  8. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J. [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Xu, J., E-mail: xujianr@hotmail.co [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China)

    2010-10-15

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 {+-} 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  9. Performance of CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    International Nuclear Information System (INIS)

    Mayer, M.; Boykin, D.V.; Drake, A.

    1996-01-01

    We report γ-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for γ-ray astronomy measurements in the range of 20-200 keV. The prototype is a 1.5 mm thick, 64 x 64 orthogonal stripe CdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from 8 x 8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (∼ 0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals, and the photon detection efficiency. We also present a technique for determining the location of the event in the third dimension (depth). We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that cathode signal - as well as the anode signal - arises more strongly from the conduction electrons rather than the holes

  10. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro, E-mail: seisei0430@nifty.com [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556 (Japan); Weissman, Gaby, E-mail: Gaby.Weissman@medstar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Vembar, Mani, E-mail: mani.vembar@philips.com [CT Clinical Science, Philips Healthcare, c595 Miner Road, Cleveland, OH 44143 (United States); Weigold, Wm. Guy, E-mail: Guy.Weigold@MedStar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States)

    2014-08-15

    Objectives: To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage. Methods: Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment. Results: There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images. Conclusions: M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.

  11. Integrated cardio-thoracic imaging with ECG-Gated 64-slice multidetector-row CT: initial findings in 133 patients

    International Nuclear Information System (INIS)

    Salem, Randa; Remy-Jardin, Martine; Delhaye, Damien; Khalil, Chadi; Teisseire, Antoine; Remy, Jacques; Delannoy-Deken, Valerie; Duhamel, Alain

    2006-01-01

    The purpose of this study was to investigate the possibility of assessing the underlying respiratory disease as well as cardiac function during ECG-gated CT angiography of the chest with 64-slice multidetector-row CT (MDCT). One hundred thirty-three consecutive patients in sinus rhythm with known or suspected ventricular dysfunction underwent an ECG-gated CT angiographic examination of the chest without β-blockers using the following parameters: (1) collimation: 32 x 0.6 mm with z-flying focal spot for the acquisition of 64 overlapping 0.6-mm slices (Sensation 64; Siemens); rotation time: 0.33 s; pitch: 0.3; 120 kV; 200 mAs; ECG-controlled dose modulation (ECG-pulsing) and (2) 120 ml of a 35% contrast agent. Data were reconstructed: (1) to evaluate the underlying respiratory disease (1-mm thick lung and mediastinal scans reconstructed at 55% of the R-R interval; i.e., ''morphologic scans'') and (2) to determine right (RVEF) and left (LVEF) ventricular ejection fractions (short-axis systolic and diastolic images; Argus software; i.e., ''functional scans''). The mean heart rate was 73 bpm (range: 42-120) and the mean scan time was 18.11±2.67 s (range: 10-27). A total of 123 examinations (92%) had both lung and mediastinal images rated as diagnostic scans, whereas 10 examinations (8%) had non-diagnostic images altered by the presence of respiratory-motion artifacts (n=4) or cyclic artifacts related to the use of a pitch value of 0.3 in patients with a very low heart rate during data acquisition (n=6). Assessment of right and left ventricular function was achievable in 124 patients (93%, 95% CI: 88-97%). For these 124 examinations, the mean RVEF was 46.10% (±9.5; range: 20-72) and the mean LVEF was 58.23% (±10.88; range: 20-83). In the remaining nine patients, an imprecise segmentation of the right and left ventricular cavities was considered as a limiting factor for precise calculation of end-systolic and end-diastolic ventricular volumes. The mean (±SD) DLP

  12. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome

    International Nuclear Information System (INIS)

    Chen, Chun; Li, Dianfu; Miao, Changqing; Zhou, Yanli; Cao, Kejiang; Feng, Jianlin; Lloyd, Michael S.; Chen, Ji

    2012-01-01

    The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. (orig.)

  13. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun; Li, Dianfu; Miao, Changqing; Zhou, Yanli; Cao, Kejiang [First Affiliated Hospital of Nanjing Medical University, Department of Cardiology, Nanjing, Jiangsu (China); Feng, Jianlin [First Affiliated Hospital of Nanjing Medical University, Department of Nuclear Medicine, Nanjing, Jiangsu (China); Lloyd, Michael S. [Emory University School of Medicine, Division of Cardiology, Atlanta, GA (United States); Chen, Ji [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States)

    2012-07-15

    The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. (orig.)

  14. Prospective Electrocardiogram-Gated Multidetector Row Computed Tomography Coronary Angiography. Analysis of Quality Image and Radiation Dose

    International Nuclear Information System (INIS)

    Carrascosa, P.; Capunay, C.; Deviggiano, A.; Tajer, C.D.; Vallejos, J.; Goldsmit, A.; Garcia, M.J.

    2009-01-01

    Multidetector row computed tomography coronary angiography (MDCT-CA) has become a useful diagnostic tool for the direct quantification of coronary stenosis, for identifying coronary anomalies and for the assessment of coronary artery bypass grafts. Despite its clinical value has been questioned due to the effective radiation dose (ERD) received by each patient, radiation exposure is similar to other studies. However, different strategies are permanently tested in order to reduce the ERD maintaining adequate and diagnostic image quality. Objectives: To determine the image quality and effective radiation dose (ERD) of prospective electrocardiogram-gated multidetector row computed tomography coronary angiography (PMDCTCA) (the x-ray beam is turned on for only a short portion of diastole) compared to retrospective ECG gating (RMDCTCA) (the x-ray beam is turned on throughout the cardiac cycle) and a preliminary approach of its diagnostic accuracy compared to digital invasive coronary angiography (CA). Material and Methods: Fifty consecutive patients with suspected coronary artery disease and sinus rhythm were evaluated with PMDCT-CA and compared to a control group who underwent RMDCTCA. Image quality was analyzed by two reviewers. Interobserver concordance and ERD were determined. The diagnostic accuracy of PMDCT-CA compared to CA to detect coronary artery stenosis > 50% was assessed in 30 patients. Results: There were no significant differences in the image quality between both groups. Agreement between the reviewers for segment image quality scores was k = 0.92. Mean ERD was 3.5 mSv for PMDCT-CA compared to 9.7 and 12.9 mSv for RMDCT-CA with and without tube current modulation, respectively. Individual analysis including all segments showed that the sensitivity, specificity, positive predictive value and negative predictive value of PMDCT-CA for the detection of coronary stenosis were 94.74%, 81.82%, 90% and 90%, respectively. Conclusion: Our initial experience

  15. The Impact of Optimal Respiratory Gating and Image Noise on Evaluation of Intratumor Heterogeneity on 18F-FDG PET Imaging of Lung Cancer.

    Science.gov (United States)

    Grootjans, Willem; Tixier, Florent; van der Vos, Charlotte S; Vriens, Dennis; Le Rest, Catherine C; Bussink, Johan; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Visvikis, Dimitris; Visser, Eric P

    2016-11-01

    Accurate measurement of intratumor heterogeneity using parameters of texture on PET images is essential for precise characterization of cancer lesions. In this study, we investigated the influence of respiratory motion and varying noise levels on quantification of textural parameters in patients with lung cancer. We used an optimal-respiratory-gating algorithm on the list-mode data of 60 lung cancer patients who underwent 18 F-FDG PET. The images were reconstructed using a duty cycle of 35% (percentage of the total acquired PET data). In addition, nongated images of varying statistical quality (using 35% and 100% of the PET data) were reconstructed to investigate the effects of image noise. Several global image-derived indices and textural parameters (entropy, high-intensity emphasis, zone percentage, and dissimilarity) that have been associated with patient outcome were calculated. The clinical impact of optimal respiratory gating and image noise on assessment of intratumor heterogeneity was evaluated using Cox regression models, with overall survival as the outcome measure. The threshold for statistical significance was adjusted for multiple comparisons using Bonferroni correction. In the lower lung lobes, respiratory motion significantly affected quantification of intratumor heterogeneity for all textural parameters (P 0.007). The mean increase in entropy, dissimilarity, zone percentage, and high-intensity emphasis was 1.3% ± 1.5% (P = 0.02), 11.6% ± 11.8% (P = 0.006), 2.3% ± 2.2% (P = 0.002), and 16.8% ± 17.2% (P = 0.006), respectively. No significant differences were observed for lesions in the upper lung lobes (P > 0.007). Differences in the statistical quality of the PET images affected the textural parameters less than respiratory motion, with no significant difference observed. The median follow-up time was 35 mo (range, 7-39 mo). In multivariate analysis for overall survival, total lesion glycolysis and high-intensity emphasis were the two most

  16. Comparison of Gated SPECT Myocardial Perfusion Imaging with Echocardiography for the Measurement of Left Ventricular Volumes and Ejection Fraction in Patients With Severe Heart Failure

    Science.gov (United States)

    Shojaeifard, Maryam; Ghaedian, Tahereh; Yaghoobi, Nahid; Malek, Hadi; Firoozabadi, Hasan; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amin, Ahmad; Azizian, Nasrin; Rastgou, Feridoon

    2015-01-01

    Background: Gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is known as a feasible tool for the measurement of left ventricular ejection fraction (EF) and volumes, which are of great importance in the management and follow-up of patients with coronary artery diseases. However, considering the technical shortcomings of SPECT in the presence of perfusion defect, the accuracy of this method in heart failure patients is still controversial. Objectives: The aim of the present study was to compare the results from gated SPECT MPI with those from echocardiography in heart failure patients to compare echocardiographically-derived left ventricular dimension and function data to those from gated SPECT MPI in heart failure patients. Patients and Methods: Forty-one patients with severely reduced left ventricular systolic function (EF ≤ 35%) who were referred for gated SPECT MPI were prospectively enrolled. Quantification of EF, end-diastolic volume (EDV), and end-systolic volume (ESV) was performed by using quantitative gated spect (QGS) (QGS, version 0.4, May 2009) and emory cardiac toolbox (ECTb) (ECTb, revision 1.0, copyright 2007) software packages. EF, EDV, and ESV were also measured with two-dimensional echocardiography within 3 days after MPI. Results: A good correlation was found between echocardiographically-derived EF, EDV, and ESV and the values derived using QGS (r = 0.67, r = 0.78, and r = 0.80 for EF, EDV, and ESV, respectively; P echocardiography. ECTb-derived EDV was also significantly higher than the EDV measured with echocardiography and QGS. The highest correlation between echocardiography and gated SPECT MPI was found for mean values of ESV different. Conclusions: Gated SPECT MPI has a good correlation with echocardiography for the measurement of left ventricular EF, EDV, and ESV in patients with severe heart failure. However, the absolute values of these functional parameters from echocardiography and gated

  17. The application of phase analysis of gated myocardial perfusion imaging to assess left ventricular mechanical dyssynchrony in cardiovascular disease

    International Nuclear Information System (INIS)

    Wang Jianfeng; Wang Yuetao

    2013-01-01

    Left ventricular mechanical dyssynchrony is closely related to the severity of cardiovascular disease, it is essential to assess left ventricular mechanical dyssynchrony accurately for early prediction of adverse cardiac events and prognosis assessment of the cardiac resynchronization therapy. As a new technology to assess left ventricular mechanical dyssynchrony, the phase analysis of gated myocardial perfusion imaging (GMPI) can get both quantitative indicators of regional myocardial perfusion, evaluation of regional myocardial viability and scar tissue, as well as quantitative analysis of left ventricular function and left ventricular mechanical synchrony, it has broad application prospects in cardiovascular disease to assess left ventricular mechanical dyssynchrony and prognosis assessment. This review mainly described the applications of GMPI phase analysis in the cardiovascular disease. (authors)

  18. A new automated method for analysis of gated-SPECT images based on a three-dimensional heart shaped model

    DEFF Research Database (Denmark)

    Lomsky, Milan; Richter, Jens; Johansson, Lena

    2005-01-01

    A new automated method for quantification of left ventricular function from gated-single photon emission computed tomography (SPECT) images has been developed. The method for quantification of cardiac function (CAFU) is based on a heart shaped model and the active shape algorithm. The model....... The maximal differences between the CAFU estimations and the true left ventricular volumes of the digital phantoms were 11 ml for the end-diastolic volume (EDV), 3 ml for the end-systolic volume (ESV) and 3% for the ejection fraction (EF). The largest differences were seen in the smallest heart....... In the patient group the EDV calculated using QGS and CAFU showed good agreement for large hearts and higher CAFU values compared with QGS for the smaller hearts. In the larger hearts, ESV was much larger for QGS than for CAFU both in the phantom and patient studies. In the smallest hearts there was good...

  19. Ventricular Geometry From Non-contrast Non-ECG-gated CT Scans: An Imaging Marker of Cardiopulmonary Disease in Smokers.

    Science.gov (United States)

    Rahaghi, Farbod N; Vegas-Sanchez-Ferrero, Gonzalo; Minhas, Jasleen K; Come, Carolyn E; De La Bruere, Isaac; Wells, James M; González, Germán; Bhatt, Surya P; Fenster, Brett E; Diaz, Alejandro A; Kohli, Puja; Ross, James C; Lynch, David A; Dransfield, Mark T; Bowler, Russel P; Ledesma-Carbayo, Maria J; San José Estépar, Raúl; Washko, George R

    2017-05-01

    Imaging-based assessment of cardiovascular structure and function provides clinically relevant information in smokers. Non-cardiac-gated thoracic computed tomographic (CT) scanning is increasingly leveraged for clinical care and lung cancer screening. We sought to determine if more comprehensive measures of ventricular geometry could be obtained from CT using an atlas-based surface model of the heart. Subcohorts of 24 subjects with cardiac magnetic resonance imaging (MRI) and 262 subjects with echocardiography were identified from COPDGene, a longitudinal observational study of smokers. A surface model of the heart was manually initialized, and then automatically optimized to fit the epicardium for each CT. Estimates of right and left ventricular (RV and LV) volume and free-wall curvature were then calculated and compared to structural and functional metrics obtained from MRI and echocardiograms. CT measures of RV dimension and curvature correlated with similar measures obtained using MRI. RV and LV volume obtained from CT inversely correlated with echocardiogram-based estimates of RV systolic pressure using tricuspid regurgitation jet velocity and LV ejection fraction respectively. Patients with evidence of RV or LV dysfunction on echocardiogram had larger RV and LV dimensions on CT. Logistic regression models based on demographics and ventricular measures from CT had an area under the curve of >0.7 for the prediction of elevated right ventricular systolic pressure and ventricular failure. These data suggest that non-cardiac-gated, non-contrast-enhanced thoracic CT scanning may provide insight into cardiac structure and function in smokers. Copyright © 2017. Published by Elsevier Inc.

  20. Improving 4D plan quality for PBS-based liver tumour treatments by combining online image guided beam gating with rescanning

    Science.gov (United States)

    Zhang, Ye; Knopf, Antje-Christin; Weber, Damien Charles; Lomax, Antony John

    2015-10-01

    Pencil beam scanned (PBS) proton therapy has many advantages over conventional radiotherapy, but its effectiveness for treating mobile tumours remains questionable. Gating dose delivery to the breathing pattern is a well-developed method in conventional radiotherapy for mitigating tumour-motion, but its clinical efficiency for PBS proton therapy is not yet well documented. In this study, the dosimetric benefits and the treatment efficiency of beam gating for PBS proton therapy has been comprehensively evaluated. A series of dedicated 4D dose calculations (4DDC) have been performed on 9 different 4DCT(MRI) liver data sets, which give realistic 4DCT extracting motion information from 4DMRI. The value of 4DCT(MRI) is its capability of providing not only patient geometries and deformable breathing characteristics, but also includes variations in the breathing patterns between breathing cycles. In order to monitor target motion and derive a gating signal, we simulate time-resolved beams’ eye view (BEV) x-ray images as an online motion surrogate. 4DDCs have been performed using three amplitude-based gating window sizes (10/5/3 mm) with motion surrogates derived from either pre-implanted fiducial markers or the diaphragm. In addition, gating has also been simulated in combination with up to 19 times rescanning using either volumetric or layered approaches. The quality of the resulting 4DDC plans has been quantified in terms of the plan homogeneity index (HI), total treatment time and duty cycle. Results show that neither beam gating nor rescanning alone can fully retrieve the plan homogeneity of the static reference plan. Especially for variable breathing patterns, reductions of the effective duty cycle to as low as 10% have been observed with the smallest gating rescanning window (3 mm), implying that gating on its own for such cases would result in much longer treatment times. In addition, when rescanning is applied on its own, large differences between volumetric

  1. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Juhler-Noettrup, Trine; Korreman, Stine S.; Pedersen, Anders N.; Persson, Gitte F.; Aarup, Lasse R.; Nystroem, Haakan; Olsen, Mikael; Tarnavski, Nikolai; Specht, Lena (Dept. of Radiation Oncology, The Finsen Centre, Copenhagen (Denmark))

    2008-08-15

    Introduction. With the purpose of implementing gated radiotherapy for lung cancer patients, this study investigated the interfraction variations in tumour size and internal displacement over entire treatment courses. To explore the potential of image guided radiotherapy (IGRT) the variations were measured using a set-up strategy based on imaging of bony landmarks and compared to a strategy using in room lasers, skin tattoos and cupper landmarks. Materials and methods. During their six week treatment course of 60Gy in 2Gy fractions, ten patients underwent 3 respiratory gated CT scans. The tumours were contoured on each CT scan to evaluate the variations in volumes and position. The lung tumours and the mediastinal tumours were contoured separately. The positional variations were measured as 3D mobility vectors and correlated to matching of the scans using the two different strategies. Results. The tumour size was significantly reduced from the first to the last CT scan. For the lung tumours the reduction was 19%, p=0.03, and for the mediastinal tumours the reduction was 34%, p=0.0007. The mean 3D mobility vector and the SD for the lung tumours was 0.51cm (+-0.21) for matching using bony landmarks and 0.85cm (+-0.54) for matching using skin tattoos. For the mediastinal tumours the corresponding vectors and SD's were 0.55cm (+-0.19) and 0.72cm (+-0.43). The differences between the vectors were significant for the lung tumours p=0.004. The interfractional overlap of lung tumours was 80-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. Conclusions. Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were dependent on the set-up strategy. Set-up using IGRT was superior to set-up using skin tattoos.

  2. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    International Nuclear Information System (INIS)

    Juhler-Noettrup, Trine; Korreman, Stine S.; Pedersen, Anders N.; Persson, Gi tte F.; Aarup, Lasse R.; Nystroem, Haakan; Olsen, Mikael; Tarnavski, Nikolai; Sp echt, Lena

    2008-01-01

    Introduction. With the purpose of implementing gated radiotherapy for lung cancer patients, this study investigated the interfraction variations in tumour size and internal displacement over entire treatment courses. To explore the potential of image guided radiotherapy (IGRT) the variations were measured using a set-up strategy based on imaging of bony landmarks and compared to a strategy using in room lasers, skin tattoos and cupper landmarks. Materials and methods. During their six week treatment course of 60Gy in 2Gy fractions, ten patients underwent 3 respiratory gated CT scans. The tumours were contoured on each CT scan to evaluate the variations in volumes and position. The lung tumours and the mediastinal tumours were contoured separately. The positional variations were measured as 3D mobility vectors and correlated to matching of the scans using the two different strategies. Results. The tumour size was significantly reduced from the first to the last CT scan. For the lung tumours the reduction was 19%, p=0.03, and for the mediastinal tumours the reduction was 34%, p=0.0007. The mean 3D mobility vector and the SD for the lung tumours was 0.51cm (±0.21) for matching using bony landmarks and 0.85cm (±0.54) for matching using skin tattoos. For the mediastinal tumours the corresponding vectors and SD's were 0.55cm (±0.19) and 0.72cm (±0.43). The differences between the vectors were significant for the lung tumours p=0.004. The interfractional overlap of lung tumours was 80-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. Conclusions. Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were dependent on the set-up strategy. Set-up using IGRT was superior to set-up using skin tattoos

  3. A 3-stage gated UV-photon gaseous detector with optical imaging

    International Nuclear Information System (INIS)

    Breskin, A.; Chechik, R.; Sauvage, D.

    1989-03-01

    UV-photons are detected by a low pressure photosensitive multistep gaseous detector. Photoelectrons are multiplied in two charge amplification stages. A third, light amplification stage operating in a scintillation mode, provides light yields >5.10 7 visible photons per single photoelectron avalanche, in Argon-C 2 H 6 -TMAE gas mixture. We present results on absolute photon yields in various TMAE gas mixtures, at low gas pressure and at low charge gains. We describe the operation mechanism and some basic properties of the gated 3-stage detectors, such as stability of operation at high background rates and localization resolutions particularly at large TMAE concentration and high temperature operation conditions. Further applications are discussed. (authors)

  4. Self-gated CINE MRI for combined contrast-enhanced imaging and wall-stiffness measurements of murine aortic atherosclerotic lesions

    NARCIS (Netherlands)

    den Adel, Brigit; van der Graaf, Linda M.; Strijkers, Gustav J.; Lamb, Hildo J.; Poelmann, Robert E.; van der Weerd, Louise

    2013-01-01

    High-resolution contrast-enhanced imaging of the murine atherosclerotic vessel wall is difficult due to unpredictable flow artifacts, motion of the thin artery wall and problems with flow suppression in the presence of a circulating contrast agent. We applied a 2D-FLASH retrospective-gated CINE MRI

  5. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Sand, D. J.; Crnojević, D. [Texas Tech University, Physics and Astronomy Department, Box 41051, Lubbock, TX 79409-1051 (United States); Seth, A. C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Spekkens, K. [Royal Military College of Canada, Department of Physics, P.O. Box 17000, Station Forces, Kingston, Ontario, K7K 7B4 (Canada); Strader, J. [Center for Data Intensive and Time Domain Astronomy, Department of Physics and Astronomy, Michigan State University, 567 Wilson Road, East Lansing, MI 48824 (United States); Adams, E. A. K. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7900 AA Dwingeloo (Netherlands); Caldwell, N.; Randall, S. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Kenney, J. [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Simon, J. D. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Toloba, E. [Department of Physics, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211 (United States); Willman, B., E-mail: david.sand@ttu.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-07-10

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope . The color–magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ∼7–50 Myr, and is consistent with a metallicity of [Fe/H] ∼ −0.3 as previous work has measured via H ii region spectroscopy. Additionally, the color–magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ∼1.′6 (∼8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ∼7–50 Myr stellar population. The main body of AGC 226067 has a M {sub V} = −11.3 ± 0.3, or M {sub stars} = 5.4 ± 1.3 × 10{sup 4} M {sub ⊙} given the stellar population. We searched 20 deg{sup 2} of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ∼0.1 M {sub ⊙} yr{sup −1} in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (∼350 kpc away in projection) as it falls into the Virgo Cluster.

  6. Field programmable gate array based hardware implementation of a gradient filter for edge detection in colour images with subpixel precision

    International Nuclear Information System (INIS)

    Schellhorn, M; Rosenberger, M; Correns, M; Blau, M; Goepfert, A; Rueckwardt, M; Linss, G

    2010-01-01

    Within the field of industrial image processing the use of colour cameras becomes ever more common. Increasingly the established black and white cameras are replaced by economical single-chip colour cameras with Bayer pattern. The use of the additional colour information is particularly important for recognition or inspection. Become interesting however also for the geometric metrology, if measuring tasks can be solved more robust or more exactly. However only few suitable algorithms are available, in order to detect edges with the necessary precision. All attempts require however additional computation expenditure. On the basis of a new filter for edge detection in colour images with subpixel precision, the implementation on a pre-processing hardware platform is presented. Hardware implemented filters offer the advantage that they can be used easily with existing measuring software, since after the filtering a single channel image is present, which unites the information of all colour channels. Advanced field programmable gate arrays represent an ideal platform for the parallel processing of multiple channels. The effective implementation presupposes however a high programming expenditure. On the example of the colour filter implementation, arising problems are analyzed and the chosen solution method is presented.

  7. Validity of computational hemodynamics in human arteries based on 3D time-of-flight MR angiography and 2D electrocardiogram gated phase contrast images

    Science.gov (United States)

    Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye

    2015-11-01

    In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.

  8. HARDWARE REALIZATION OF CANNY EDGE DETECTION ALGORITHM FOR UNDERWATER IMAGE SEGMENTATION USING FIELD PROGRAMMABLE GATE ARRAYS

    Directory of Open Access Journals (Sweden)

    ALEX RAJ S. M.

    2017-09-01

    Full Text Available Underwater images raise new challenges in the field of digital image processing technology in recent years because of its widespread applications. There are many tangled matters to be considered in processing of images collected from water medium due to the adverse effects imposed by the environment itself. Image segmentation is preferred as basal stage of many digital image processing techniques which distinguish multiple segments in an image and reveal the hidden crucial information required for a peculiar application. There are so many general purpose algorithms and techniques that have been developed for image segmentation. Discontinuity based segmentation are most promising approach for image segmentation, in which Canny Edge detection based segmentation is more preferred for its high level of noise immunity and ability to tackle underwater environment. Since dealing with real time underwater image segmentation algorithm, which is computationally complex enough, an efficient hardware implementation is to be considered. The FPGA based realization of the referred segmentation algorithm is presented in this paper.

  9. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file

    Science.gov (United States)

    Shiinoki, Takehiro; Hanazawa, Hideki; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Shibuya, Keiko

    2017-02-01

    A combined system comprising the TrueBeam linear accelerator and a new real-time tumour-tracking radiotherapy system, SyncTraX, was installed at our institution. The objectives of this study are to develop a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine electronic portal image device (EPID) images and a log file and to verify this treatment in clinical cases. Respiratory-gated radiotherapy was performed using TrueBeam and the SyncTraX system. Cine EPID images and a log file were acquired for a phantom and three patients during the course of the treatment. Digitally reconstructed radiographs (DRRs) were created for each treatment beam using a planning CT set. The cine EPID images, log file, and DRRs were analysed using a developed software. For the phantom case, the accuracy of the proposed method was evaluated to verify the respiratory-gated radiotherapy. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker used as an internal surrogate were calculated to evaluate the gating accuracy and set-up uncertainty in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions. The proposed method achieved high accuracy for the phantom verification. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker were  ⩽3 mm and  ±3 mm in the SI, AP, and LR directions. We proposed a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine EPID images and a log file and showed that this treatment is performed with high accuracy in clinical cases. This work was partly presented at the 58th Annual meeting of American Association of Physicists in Medicine.

  10. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file.

    Science.gov (United States)

    Shiinoki, Takehiro; Hanazawa, Hideki; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Shibuya, Keiko

    2017-02-21

    A combined system comprising the TrueBeam linear accelerator and a new real-time tumour-tracking radiotherapy system, SyncTraX, was installed at our institution. The objectives of this study are to develop a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine electronic portal image device (EPID) images and a log file and to verify this treatment in clinical cases. Respiratory-gated radiotherapy was performed using TrueBeam and the SyncTraX system. Cine EPID images and a log file were acquired for a phantom and three patients during the course of the treatment. Digitally reconstructed radiographs (DRRs) were created for each treatment beam using a planning CT set. The cine EPID images, log file, and DRRs were analysed using a developed software. For the phantom case, the accuracy of the proposed method was evaluated to verify the respiratory-gated radiotherapy. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker used as an internal surrogate were calculated to evaluate the gating accuracy and set-up uncertainty in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions. The proposed method achieved high accuracy for the phantom verification. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker were  ⩽3 mm and  ±3 mm in the SI, AP, and LR directions. We proposed a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine EPID images and a log file and showed that this treatment is performed with high accuracy in clinical cases.

  11. SIFT-based dense pixel tracking on 0.35 T cine-MR images acquired during image-guided radiation therapy with application to gating optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, Thomas R., E-mail: tmazur@radonc.wustl.edu, E-mail: hli@radonc.wustl.edu; Fischer-Valuck, Benjamin W.; Wang, Yuhe; Yang, Deshan; Mutic, Sasa; Li, H. Harold, E-mail: tmazur@radonc.wustl.edu, E-mail: hli@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 (United States)

    2016-01-15

    Purpose: To first demonstrate the viability of applying an image processing technique for tracking regions on low-contrast cine-MR images acquired during image-guided radiation therapy, and then outline a scheme that uses tracking data for optimizing gating results in a patient-specific manner. Methods: A first-generation MR-IGRT system—treating patients since January 2014—integrates a 0.35 T MR scanner into an annular gantry consisting of three independent Co-60 sources. Obtaining adequate frame rates for capturing relevant patient motion across large fields-of-view currently requires coarse in-plane spatial resolution. This study initially (1) investigate the feasibility of rapidly tracking dense pixel correspondences across single, sagittal plane images (with both moderate signal-to-noise and spatial resolution) using a matching objective for highly descriptive vectors called scale-invariant feature transform (SIFT) descriptors associated to all pixels that describe intensity gradients in local regions around each pixel. To more accurately track features, (2) harmonic analysis was then applied to all pixel trajectories within a region-of-interest across a short training period. In particular, the procedure adjusts the motion of outlying trajectories whose relative spectral power within a frequency bandwidth consistent with respiration (or another form of periodic motion) does not exceed a threshold value that is manually specified following the training period. To evaluate the tracking reliability after applying this correction, conventional metrics—including Dice similarity coefficients (DSCs), mean tracking errors (MTEs), and Hausdorff distances (HD)—were used to compare target segmentations obtained via tracking to manually delineated segmentations. Upon confirming the viability of this descriptor-based procedure for reliably tracking features, the study (3) outlines a scheme for optimizing gating parameters—including relative target position and a

  12. GLOBAL IMAGE HEGEMONY: Istanbul’s Gated Communities as the New Marketing Icons

    Directory of Open Access Journals (Sweden)

    Gözde Kan Ülkü

    2013-07-01

    Full Text Available In this paper we investigated how marketing strategies of the developing consumer  society has affected housing production in Istanbul as a corollary development of globalization in Turkey. We aim to analyze marketing strategies as active agents that shape the design of emerging gated communities in Istanbul through advertising media based on the theme of ‘an ideal life style,’ in the form of TV commercials, newspaper ads, publicity brochures etc. We focus on the representation and dissemination of this elusive ‘ideal’ to the public via the advertising campaigns of these housing settlements. Therefore the cases studied in the paper concentrates on the Turkish architectural scene after 1990, when consumer culture’s most significant impacts on architectural products are observed. Marketing of a new type of suburbanization in Turkey is concomitant with the rise of a new middle class having a high purchasing power and these housing projects are marketed via life style characteristics ‘desired’ by this class.

  13. Current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation measurement

    International Nuclear Information System (INIS)

    Katsuno, Takashi; Ishikawa, Tsuyoshi; Ueda, Hiroyuki; Uesugi, Tsutomu; Manaka, Takaaki; Iwamoto, Mitsumasa

    2014-01-01

    Two-dimensional current collapse imaging of a Schottky gate AlGaN/GaN high electron mobility transistor device was achieved by optical electric field-induced second-harmonic generation (EFISHG) measurements. EFISHG measurements can detect the electric field produced by carriers trapped in the on-state of the device, which leads to current collapse. Immediately after (e.g., 1, 100, or 800 μs) the completion of drain-stress voltage (200 V) in the off-state, the second-harmonic (SH) signals appeared within 2 μm from the gate edge on the drain electrode. The SH signal intensity became weak with time, which suggests that the trapped carriers are emitted from the trap sites. The SH signal location supports the well-known virtual gate model for current collapse.

  14. 128-slice CT angiography of the aorta without ECG-gating: efficacy of faster gantry rotation time and iterative reconstruction in terms of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Vincenzo; Garattoni, Monica; Buia, Francesco; Attina, Domenico; Lovato, Luigi; Zompatori, Maurizio [University Hospital ' ' S.Orsola' ' , Cardio-Thoracic-Vascular Department, Cardio-Thoracic Radiology Unit, Bologna (Italy)

    2016-02-15

    To evaluate image quality and radiation dose of non ECG-gated 128-slice CT angiography of the aorta (CTAA) with fast gantry rotation time and iterative reconstruction. Four hundred and eighty patients underwent non ECG-gated CTAA. Qualitative and quantitative image quality assessments were performed. Radiation dose was assessed and compared with the dose of patients who underwent ECG-gated CTAA (n = 126) and the dose of previous CTAA performed with another CT (n = 339). Image quality (aortic root-ascending portion) was average-to-excellent in more than 94 % of cases, without any non-diagnostic scan. For proximal coronaries, image quality was average-to-excellent in more than 50 %, with only 21.5 % of non-diagnostic cases. Quantitative analysis results were also good. Mean radiation dose for thoracic CTAA was 5.6 mSv versus 20.6 mSv of ECG-gated protocol and 20.6 mSv of 16-slice CTAA scans, with an average dose reduction of 72.8 % (p < 0.001). Mean radiation dose for thoracic-abdominal CTAA was 9.7 mSv, versus 20.9 mSv of 16-slice CTAA scans, with an average dose reduction of 53.6 % (p < 0.001). Non ECG-gated 128-slice CTAA is feasible and able to provide high quality visualization of the entire aorta without significant motion artefacts, together with a considerable dose and contrast media volume reduction. (orig.)

  15. 128-slice CT angiography of the aorta without ECG-gating: efficacy of faster gantry rotation time and iterative reconstruction in terms of image quality and radiation dose

    International Nuclear Information System (INIS)

    Russo, Vincenzo; Garattoni, Monica; Buia, Francesco; Attina, Domenico; Lovato, Luigi; Zompatori, Maurizio

    2016-01-01

    To evaluate image quality and radiation dose of non ECG-gated 128-slice CT angiography of the aorta (CTAA) with fast gantry rotation time and iterative reconstruction. Four hundred and eighty patients underwent non ECG-gated CTAA. Qualitative and quantitative image quality assessments were performed. Radiation dose was assessed and compared with the dose of patients who underwent ECG-gated CTAA (n = 126) and the dose of previous CTAA performed with another CT (n = 339). Image quality (aortic root-ascending portion) was average-to-excellent in more than 94 % of cases, without any non-diagnostic scan. For proximal coronaries, image quality was average-to-excellent in more than 50 %, with only 21.5 % of non-diagnostic cases. Quantitative analysis results were also good. Mean radiation dose for thoracic CTAA was 5.6 mSv versus 20.6 mSv of ECG-gated protocol and 20.6 mSv of 16-slice CTAA scans, with an average dose reduction of 72.8 % (p < 0.001). Mean radiation dose for thoracic-abdominal CTAA was 9.7 mSv, versus 20.9 mSv of 16-slice CTAA scans, with an average dose reduction of 53.6 % (p < 0.001). Non ECG-gated 128-slice CTAA is feasible and able to provide high quality visualization of the entire aorta without significant motion artefacts, together with a considerable dose and contrast media volume reduction. (orig.)

  16. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome.

    Science.gov (United States)

    Chen, Chun; Li, Dianfu; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S; Chen, Ji

    2012-07-01

    The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4%) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI.

  17. Characterization of galvannealed strip

    International Nuclear Information System (INIS)

    Moreas, G.; Hardy, Y.

    1999-01-01

    With the aim of enhancing coating quality control during galvannealing process, an online microscopic image acquisition sensor has been developed at CRM. In galvannealing process, the ζ phase surface density is a coating quality characteristic, and the on-line microscope, equipped with optics placed at 20 mm from the surface, grabs 250 μm x 190 μm images on which ζ crystals (approximate dimensions: 1 μm x 10 μm) can be clearly identified. On-line, the sensor is mounted in front of a roll where the strip has a stable position. The coating surface to sensor optics distance is continuously measured by an accurate triangulation sensor (1 μm repeatability) and is adjusted in such a way that, due to roll eccentricity, the image is focused at least twice per revolution. When focused, image of moving product is frozen by a short (10 ns) laser light pulse and is grabbed. The obtained image is then processed to extract ζ phase percentage and allows adjustment of process parameters to reach the desired coating characteristics. (author)

  18. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    Science.gov (United States)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  19. Digital Tomosynthesis for Respiratory Gated Liver Treatment: Clinical Feasibility for Daily Image Guidance

    International Nuclear Information System (INIS)

    Wu, Q. Jackie; Meyer, Jeffrey; Fuller, Jessica; Godfrey, Devon; Wang Zhiheng; Zhang Junan; Yin Fangfang

    2011-01-01

    Purpose: Breath-hold (BH) treatment minimizes internal target volumes (ITV) when treating sites prone to motion. Digital tomosynthesis (DTS) imaging has advantages over cone-beam CT (CBCT) for BH imaging: BH-DTS scan can be completed during a single breath-hold, whereas BH-CBCT is usually acquired by parsing the gantry rotation into multiple BH segments. This study evaluates the localization accuracy of DTS for BH treatment of liver tumors. Methods: Both planning CT and on-board DTS/CBCT images were acquired under BH, using the planning CT BH window as reference. Onboard imaging data sets included two independent DTS orientations (coronal and sagittal), and CBCT images. Soft tissue target positioning was measured by each imaging modality and translated into couch shifts. Performance of the two DTS orientations was evaluated by comparing target positioning with the CBCT benchmark, determined by two observers. Results: Image data sets were collected from thirty-eight treatment fractions (14 patients). Mean differences between the two DTS methods and the CBCT method were <1 mm in all directions (except the lateral direction with sagittal-DTS: 1.2 mm); the standard deviation was in the range of 2.1-3.5 mm for all techniques. The Pearson correlation showed good interobserver agreement for the coronal-DTS (0.72-0.78). The interobserver agreement for the sagittal-DTS was good for the in-plane directions (0.70-0.82), but poor in the out-of-plane direction (lateral, 0.26). Conclusions: BH-DTS may be a simpler alternative to BH-CBCT for onboard soft tissue localization of the liver, although the precision of DTS localization appears to be somewhat lower because of the presence of subtle out-of-plane blur.

  20. Phase resolved and coherence gated en face reflection imaging of multilayered embryonal carcinoma cells

    Science.gov (United States)

    Yamauchi, Toyohiko; Fukami, Tadashi; Iwai, Hidenao; Yamashita, Yutaka

    2012-03-01

    Embryonal carcinoma (EC) cells, which are cell lines derived from teratocarcinomas, have characteristics in common with stem cells and differentiate into many kinds of functional cells. Similar to embryonic stem (ES) cells, undifferentiated EC cells form multi-layered spheroids. In order to visualize the three-dimensional structure of multilayered EC cells without labeling, we employed full-field interference microscopy with the aid of a low-coherence quantitative phase microscope, which is a reflection-type interference microscope employing the digital holographic technique with a low-coherent light source. Owing to the low-coherency of the light-source (halogen lamp), only the light reflected from reflective surface at a specific sectioning height generates an interference image on the CCD camera. P19CL6 EC cells, derived from mouse teratocarcinomas, formed spheroids that are about 50 to 200 micrometers in diameter. Since the height of each cell is around 10 micrometers, it is assumed that each spheroid has 5 to 20 cell layers. The P19CL6 spheroids were imaged in an upright configuration and the horizontally sectioned reflection images of the sample were obtained by sequentially and vertically scanning the zero-path-length height. Our results show the threedimensional structure of the spheroids, in which plasma and nuclear membranes were distinguishably imaged. The results imply that our technique is further capable of imaging induced pluripotent stem (iPS) cells for the assessment of cell properties including their pluripotency.

  1. Detection and evaluation of left atrial myxoma by gated radionuclide imaging

    International Nuclear Information System (INIS)

    Sugihara, Hiroki; Adachi, Haruhiko; Nakagawa, Hiroaki

    1985-01-01

    Radionuclide imaging plays an important role in diagnosising left atrial myxoma (LAM). We discussed diagnostic value of Fourier analysis with phase image and evaluated left ventricular filling function using indices such as 1/3 Filling Fraction, Rapid Filling Fraction and Peak Filling Rate derived from left ventricular volume curve. Equillibrium radionuclide angiocardiography was performed in 6 LAM patients. Phase delay in the basal portion of the left ventricle was shown in 5 of 6 LAM patients, and standard deviation of left ventricular phase was larger than these of controls. Left ventricular filling disturbance was suggested in 5 of 6 LAM patients. After surgical remove of myxoma phase delay was disappeared and standard deviation was normalized. And left ventricular filling was improved. We concluded that the phase image of Fourier analysis revealed a left atrial mass prolapsing in the left ventricule during the diastole, and that diastolic indices were useful for left ventricular filling disturbance due to LAM. (author)

  2. Grafting polyethylenimine with quinoline derivatives for targeted imaging of intracellular Zn{sup 2+} and logic gate operations

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yi; Shi, Yupeng; Chen, Junying; Wong, Chap-Mo; Zhang, Heng [Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Engineering, Sun Yat-Sen University, Guangzhou (China); Li, Mei-Jin [Key Laboratory of Analysis and Detection Technology for Food Safety, Ministry of Education and Fujian Province, Department of Chemistry, Fuzhou University, Fuzhou (China); Li, Cheuk-Wing [Institute of Chinese Medical Sciences, University of Macau (China); Yi, Changqing, E-mail: yichq@mail.sysu.edu.cn [Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Engineering, Sun Yat-Sen University, Guangzhou (China); Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen (China)

    2016-12-01

    In this study, a highly sensitive and selective fluorescent Zn{sup 2+} probe which exhibited excellent biocompatibility, water solubility, and cell-membrane permeability, was facilely synthesized in a single step by grafting polyethyleneimine (PEI) with quinoline derivatives. The primary amino groups in the branched PEI can increase water solubility and cell permeability of the probe PEIQ, while quinoline derivatives can specifically recognize Zn{sup 2+} and reduce the potential cytotoxicity of PEI. Basing on fluorescence off-on mechanism, PEIQ demonstrated excellent sensing capability towards Zn{sup 2+} in absolute aqueous solution, where a high sensitivity with a detection limit as low as 38.1 nM, and a high selectivity over competing metal ions and potential interfering amino acids, were achieved. Inspired by these results, elementary logic operations (YES, NOT and INHIBIT) have been constructed by employing PEIQ as the gate while Zn{sup 2+} and EDTA as chemical inputs. Together with the low cytotoxicity and good cell-permeability, the practical application of PEIQ in living cell imaging was satisfactorily demonstrated, emphasizing its wide application in fundamental biology research. - Graphical abstract: The fluorescent Zn{sup 2+} probe, PEIQ, is facilely synthesized by grafting PEI with 8-CAAQ, and demonstrated for the pratical applications in Zn{sup 2+} imaging and implementation of molecular logic operations within biological cells. - Highlights: • PEIQ, fluorescent Zn{sup 2+} probe, is synthesized by grafting PEI with quinoline derivatives. • PEIQ exhibits high sensitivity and selectivity in absolute aqueous solution. • PEIQ is biocompatible, water soluble, and cell-membrane permeable. • Elementary logic operations have been demonstrated for PEIQ/Zn{sup 2+}/EDTA system. • The practical application of PEIQ in living cell imaging is demonstrated.

  3. TU-AB-BRA-10: Treatment of Gastric MALT Lymphoma Utilizing a Magnetic Resonance Image-Guided Radiation Therapy (MR-IGRT) System: Evaluation of Gating Feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, T; Gach, H; Chundury, A; Fischer-Valuck, B; Huang, J; Thomas, M; Green, O [Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: To evaluate the feasibility of real-time, real-anatomy tracking and gating for gastric lymphoma patients treated with magnetic resonance image-guided radiation therapy (MR-IGRT) Methods: Over the last 2 years, 8 patients with gastric lymphoma were treated with 0.3-T, Co-60 MR-IGRT. Post-treatment analysis of real-time cine imaging in the sagittal plane during each patient’s treatment revealed significant motion of the stomach. While this motion was accounted for with generous PTV margins, the system’s capability for real-time, real-anatomy tracking could be used to reduce treatment margins by gating. However, analysis was needed for the feasibility of gating using only the single available sagittal imaging plane. While any plane may be chosen, if the stomach moves differently where it is not being observed, there may potentially be a mistreatment. To that end, imaging with healthy volunteers was done to ascertain stomach motion over 2–4 min by analyzing multiple parallel sagittal and coronal planes 0.75 cm apart. The stomach was contoured on every slice, and the mean displacement between pairs of contour centroids was used to determine the amount of overall motion. Results: The mean displacement of the centroid in the image plane was 4.3 ± 0.7 mm. The greatest observed motion was more medial with respect to the patient, and less motion laterally, which implies that gating on a plane located closer to MRI isocenter will provide the more conservative scenario as it will turn the radiation delivery off when the stomach is observed to move outside a predetermined boundary. Conclusion: The stomach was observed to move relatively uniformly throughout, with maximum extent of motion closer to where most MRI systems have the best spatial integrity (near isocenter). Analysis of possible PTV margins from the healthy volunteer study (coupled with previous patient data on interfraction volumetric stomach deformation) is pending.

  4. Linear gate

    International Nuclear Information System (INIS)

    Suwono.

    1978-01-01

    A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)

  5. Avalanche transistor pulser for fast-gated operation of micro-channel plate image-intensifiers

    International Nuclear Information System (INIS)

    Lundy, A.; Parker, J.R.; Lunsford, J.S.; Martin, A.D.

    1977-01-01

    Transistors operated in the avalanche mode are employed to generate a 1000 volt 10 to 30 nsec wide pulse with less than 4 nsec rise and fall times. This pulse is resistively attenuated to approximately equal to 270 volts and drives the image intensifier tube which is a load of approximately equal to 200 pf. To reduce stray inductance and capacitance, transistor chips were assembled on a thick-film hybrid substrate. Circuit parameters, operating conditions, and coupling to the microchannel plate image-intensifier (MCPI 2 ) tube are described. To provide dc operating voltages and control of transient voltages on the MCPI 2 tube a resistance-capacitance network has been developed which (a) places the MCPI 2 output phosphor at ground, (b) provides programmable gains in ''f-stop'' steps, and (c) minimizes voltage transients on the MCPI 2 tube

  6. Coronary artery bypass graft imaging using ECG-gated multislice computed tomography: Comparison with catheter angiography

    International Nuclear Information System (INIS)

    Moore, R.K.G.; Sampson, C.; MacDonald, S.; Moynahan, C.; Groves, D.; Chester, M.R.

    2005-01-01

    AIM: To compare the value of multislice computerized tomography (MSCT) in imaging coronary artery bypass grafts (CABGs) by direct quantitative comparison with standard invasive angiography. METHODS: Using MSCT, 50 consecutive patients who had previously undergone CABG surgery and had recently undergone invasive angiography for recurrent angina pectoris, were studied further using MSCT after intravenous injection of non-ionic contrast agent; cardiac imaging was performed during a single breath-hold. Graft anatomy was quantified, using both quantitative coronary angiography (QCA) and MSCT, by different investigators blinded to each other. Reproducibility was quantified using the standard error of the measurement expressed as a percentage in log-transformed values (CV%) and intraclass correlation (ICC). RESULTS: All 150 grafts were imaged using MSCT; only 4 patent grafts were not imaged using selective angiography. Good agreement was achieved between MSCT and QCA on assessment of proximal anastomoses (CV% 25.2, ICC 0.84), mid-vessel luminal diameter (CV% 15.5, ICC 0.91) and aneurysmal dilations (CV% 14.3). Reasonable agreement was reached on assessment of distal anastomoses (CV% 26.7, ICC 0.66) and categorization of distal run-off (ICC 0.73). Good agreement was observed for stenoses of over 50% luminal loss (CV% 8.7, ICC 0.97) but agreement on assessment of less severe lesions was poor (CV% 208.7, ICC 0.51). CONCLUSION: This study demonstrates that CABGs can be quantitatively evaluated using MSCT, and that significant lesions present in all CABG segments can be reliably identified. Agreement between MSCT and QCA for lesions of less than 50% luminal loss was poor

  7. Coronary artery bypass graft imaging using ECG-gated multislice computed tomography: Comparison with catheter angiography

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.K.G. [Cardiothoracic Centre, Liverpool (United Kingdom)]. E-mail: moore@roger.go-legend.net; Sampson, C. [Cardiothoracic Centre, Liverpool (United Kingdom); MacDonald, S. [Cardiothoracic Centre, Liverpool (United Kingdom); Moynahan, C. [Cardiothoracic Centre, Liverpool (United Kingdom); Groves, D. [National Refractory Angina Centre, Liverpool (United Kingdom); Chester, M.R. [National Refractory Angina Centre, Liverpool (United Kingdom)

    2005-09-01

    AIM: To compare the value of multislice computerized tomography (MSCT) in imaging coronary artery bypass grafts (CABGs) by direct quantitative comparison with standard invasive angiography. METHODS: Using MSCT, 50 consecutive patients who had previously undergone CABG surgery and had recently undergone invasive angiography for recurrent angina pectoris, were studied further using MSCT after intravenous injection of non-ionic contrast agent; cardiac imaging was performed during a single breath-hold. Graft anatomy was quantified, using both quantitative coronary angiography (QCA) and MSCT, by different investigators blinded to each other. Reproducibility was quantified using the standard error of the measurement expressed as a percentage in log-transformed values (CV%) and intraclass correlation (ICC). RESULTS: All 150 grafts were imaged using MSCT; only 4 patent grafts were not imaged using selective angiography. Good agreement was achieved between MSCT and QCA on assessment of proximal anastomoses (CV% 25.2, ICC 0.84), mid-vessel luminal diameter (CV% 15.5, ICC 0.91) and aneurysmal dilations (CV% 14.3). Reasonable agreement was reached on assessment of distal anastomoses (CV% 26.7, ICC 0.66) and categorization of distal run-off (ICC 0.73). Good agreement was observed for stenoses of over 50% luminal loss (CV% 8.7, ICC 0.97) but agreement on assessment of less severe lesions was poor (CV% 208.7, ICC 0.51). CONCLUSION: This study demonstrates that CABGs can be quantitatively evaluated using MSCT, and that significant lesions present in all CABG segments can be reliably identified. Agreement between MSCT and QCA for lesions of less than 50% luminal loss was poor.

  8. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    International Nuclear Information System (INIS)

    Ozsahin, D. Uzun; Bläckberg, L.; Fakhri, G. El; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  9. Influence of transfer gate design and bias on the radiation hardness of pinned photodiode CMOS image sensors

    International Nuclear Information System (INIS)

    Goiffon, V.; Estribeau, M.; Cervantes, P.; Molina, R.; Magnan, P.; Gaillardin, M.

    2014-01-01

    The effects of Cobalt 60 gamma-ray irradiation on pinned photodiode (PPD) CMOS image sensors (CIS) are investigated by comparing the total ionizing dose (TID) response of several transfer gate (TG) and PPD designs manufactured using a 180 nm CIS process. The TID induced variations of charge transfer efficiency (CTE), pinning voltage, equilibrium full well capacity (EFWC), full well capacity (FWC) and dark current measured on the different pixel designs lead to the conclusion that only three degradation sources are responsible for all the observed radiation effects: the pre-metal dielectric (PMD) positive trapped charge, the TG sidewall spacer positive trapped charge and, with less influence, the TG channel shallow trench isolation (STI) trapped charge. The different FWC evolutions with TID presented here are in very good agreement with a recently proposed analytical model. This work also demonstrates that the peripheral STI is not responsible for the observed degradations and thus that the enclosed layout TG design does not improve the radiation hardness of PPD CIS. The results of this study also lead to the conclusion that the TG OFF voltage bias during irradiation has no influence on the radiation effects. Alternative design and process solutions to improve the radiation hardness of PPD CIS are discussed. (authors)

  10. Raman imaging of carrier distribution in the channel of an ionic liquid-gated transistor fabricated with regioregular poly(3-hexylthiophene)

    Science.gov (United States)

    Wada, Y.; Enokida, I.; Yamamoto, J.; Furukawa, Y.

    2018-05-01

    Raman images of carriers (positive polarons) at the channel of an ionic liquid-gated transistor (ILGT) fabricated with regioregular poly(3-hexylthiophene) (P3HT) have been measured with excitation at 785 nm. The observed spectra indicate that carriers generated are positive polarons. The intensities of the 1415 cm-1 band attributed to polarons in the P3HT channel were plotted as Raman images; they showed the carrier density distribution. When the source-drain voltage VD is lower than the source-gate voltage VG (linear region), the carrier density was uniform. When VD is nearly equal to VG (saturation region), a negative carrier density gradient from the source electrode towards the drain electrode was observed. This carrier density distribution is associated with the observed current-voltage characteristics, which is not consistent with the "pinch-off" theory of inorganic semiconductor transistors.

  11. Gated blood pool imaging in the diagnosis and management of arrhythmia

    International Nuclear Information System (INIS)

    Yamamoto, Shuhei; Kawai, Naoki; Okada, Mitsuhiro; Matsushima, Hideo; Kato, Rinya; Sotobata, Iwao; Tanahashi, Yoshibumi.

    1985-01-01

    The usefulness of multigated cardiac blood pool imaging in evaluating left ventricular function and ventricular activation was studied in patients with cardiac arrhythmias. Subjects consisted of 12 patients with the Wolff-Parkinson-White (WPW) syndrome; 20 with ventricular premature contractions (VPC); 21 with various modes of artificial pacemakers; and two normal controls. 1. Phase analysis was useful in localizing the bypass tract in patients with the WPW syndrome. In four patients with the WPW syndrome and five with VVI pacing, the phase difference between the posterolateral wall of the left ventricle (LV) and the right ventricular apex correlated significantly with the activation time difference between these two regions as assessed by endocardial electrograms (r = 0.94, p < 0.001). 2. Images of VPC were obtained using the bad beat rejection program in an ADAC computer system. The origin of VPCs evaluated by phase image coincided with results of standard 12-lead electrograms. 3. The LV ejection fraction (LVEF) decreased significantly (p < 0.001) after the injection of lidocaine (-3.7 %) or disopyramide (-6.2 %). The percent reduction in LVEF was significantly greater with disopyramide than with lidocaine (-15.1 vs -11.2 %). There was a significant correlation between the percent reduction in LVEF and the disopyramide plasma concentrations (r = -0.62, p < 0.001). 4. The influence of the pacing mode and exercise on LV function was studied in 21 patients with artificial pacemakers. In the VDD and DDD modes, end-diastolic volume (EDV) and cardiac output (CO) decreased after converting to VVI mode. CO increased markedly to approximately 250 % of the control value in the VDD and DDD, and moderately in the VVI and AAI modes during ergometer exercise. (J.P.N.)

  12. Incremental Diagnostic Performance of Combined Parameters in the Detection of Severe Coronary Artery Disease Using Exercise Gated Myocardial Perfusion Imaging.

    Directory of Open Access Journals (Sweden)

    Chia-Ju Liu

    Full Text Available Myocardial perfusion imaging (MPI using gated single-photon emission tomography (gSPECT may underestimate the severity of coronary artery disease (CAD. This study aimed to evaluate the significance of combined parameters derived from gSPECT, as well as treadmill stress test parameters, in the detection of severe CAD.A total of 211 consecutive patients referred for exercise MPI between June 2011 and June 2013 (who received invasive coronary angiography within six months after MPI were retrospectively reviewed. Exercise MPI was performed with Bruce protocol and 201Tl injected at peak exercise. Gated SPECT was performed using a cadmium-zinc-telluride camera and processed by QPS/QGS software. Perfusion defect abnormalities such as sum stress score (SSS; sum difference score, algorithm-derived total perfusion deficits, transient ischemic dilatation ratios of end-diastolic volumes and end-systolic volumes, post-stress changes in ejection fraction, and lung/heart ratio (LHR were calculated. Treadmill parameters, including ST depression (STD at the 1st and 3rd minutes of recovery stage (1'STD and 3'STD, maximal STD corrected by heart rate increment (ST/HR, heart rate decline in 1st and 3rd minutes of recovery stage, recovery heart rate ratio (HR ratio, systolic and mean blood pressure ratios (SBP ratio and MAP ratio during recovery phase were recorded. Diagnostic performances of these parameters were analyzed with receiver operating characteristic (ROC analysis and logistic regression for detection of left main (≥ 50% or 3-vessel disease (all ≥ 70% luminal stenosis on invasive angiography.Among various MPI and treadmill parameters used for detection of severe CAD, SSS and ST/HR had the highest AUC (0.78, 0.73, p = NS and best cut-off values (SSS > 6, ST/HR > 17.39 10-2mV/bpm, respectively. By univariate logistic regression, all parameters except 1'HRR, 3'HRR, SBP and MAP ratios increased the odds ratio of severe CAD. Only increased L/H ratio, 3'STD

  13. Transfusion and blood donation in comic strips.

    Science.gov (United States)

    Lefrère, Jean-Jacques; Danic, Bruno

    2013-07-01

    The representation of blood transfusion and donation of blood in the comic strip has never been studied. The comic strip, which is a relatively recent art, emerged in the 19th century before becoming a mass medium during the 20th century. We have sought, by calling on collectors and using the resources of Internet, comic strips devoted, wholly or in part, to the themes of transfusion and blood donation. We present some of them here in chronologic order, indicating the title, country of origin, year of publication, and names of authors. The theme of the superhero using transfusion to transmit his virtues or his powers is repeated throughout the 20th century in North American comic strips. More recently, comic strips have been conceived from the outset with a promotional aim. They perpetuate positive images and are directed toward a young readership, wielding humor to reduce the fear of venipuncture. Few comic strips denounce the abuse of the commercialization of products derived from the human body. The image of transfusion and blood donation given by the comic strips is not to be underestimated because their readership is primarily children, some of whom will become blood donors. Furthermore, if some readers are transfused during their lives, the impact of a memory more or less conscious of these childhood readings may resurface, both in hopes and in fears. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Volume and planar gated cardiac magnetic resonance imaging: a correlative study of normal anatomy with Thallium-201 SPECT and cadaver sections

    International Nuclear Information System (INIS)

    Go, R.T.; MacIntyre, W.J.; Yeung, H.N.

    1984-01-01

    Magnetic resonance (MR) gated cardiac imaging was performed in ten subjects using a prototype 0.15-T resistive magnet imaging system. Volume and planar imaging techniques utilizing saturation recovery, proton TI-weighted relaxation time pulse sequences produced images of the heart and great vessels with exquisite anatomic detail that showed excellent correlation with cadaver sections of the heart. The left ventricular myocardial segments also showed excellent correlation with cadaver sections of the heart. The left ventricular myocardial segments also showed excellent correlation with the thallium-201 cardiac single photon emission computed tomography images. Volume acquisition allowed postprocessing selection of tomographic sections in various orientations to optimize visualization of a particular structure of interest. The excellent spatial and contrast resolution afforded by MR volume imaging, which does not involve the use of ionizing radiation and iodinated contrast material, should assure it a significant role in the diagnostic assessment of the cardiovascular system

  15. Highly sensitive and area-efficient CMOS image sensor using a PMOSFET-type photodetector with a built-in transfer gate

    Science.gov (United States)

    Seo, Sang-Ho; Kim, Kyoung-Do; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung

    2007-02-01

    In this paper, a new CMOS image sensor is presented, which uses a PMOSFET-type photodetector with a transfer gate that has a high and variable sensitivity. The proposed CMOS image sensor has been fabricated using a 0.35 μm 2-poly 4- metal standard CMOS technology and is composed of a 256 × 256 array of 7.05 × 7.10 μm pixels. The unit pixel has a configuration of a pseudo 3-transistor active pixel sensor (APS) with the PMOSFET-type photodetector with a transfer gate, which has a function of conventional 4-transistor APS. The generated photocurrent is controlled by the transfer gate of the PMOSFET-type photodetector. The maximum responsivity of the photodetector is larger than 1.0 × 10 3 A/W without any optical lens. Fabricated 256 × 256 CMOS image sensor exhibits a good response to low-level illumination as low as 5 lux.

  16. Magnetic resonance imaging of the coronary arteries : clinical results from three dimensional evaluation of a respiratory gated technique

    NARCIS (Netherlands)

    van Geuns, R J; de Bruin, H G; Rensing, B J; Wielopolski, P A; Hulshoff, M D; van Ooijen, P M; Oudkerk, M; de Feyter, P J

    1999-01-01

    BACKGROUND: Magnetic resonance coronary angiography is challenging because of the motion of the vessels during cardiac contraction and respiration. Additional challenges are the small calibre of the arteries and their complex three dimensional course. Respiratory gating, turboflash acquisition, and

  17. Cardiac gated ventilation

    International Nuclear Information System (INIS)

    Hanson, C.W. III; Hoffman, E.A.

    1995-01-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart

  18. Visualization of hypertrophied papillary muscle mimicking left ventricular mass on gated blood pool and T1-201 myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Bunko, H.; Nakajima, K.; Tonami, N.; Asanoi, H.; Hisada, K.

    1981-01-01

    A sixty-year old man with acute myocardial infarction was incidentally found to have a hypertrophied anterolateral papillary muscle (ALPPM) of the left ventricle on gated blood pool (GBP) and T1-201 myocardial perfusion images. Hypertrophy of the ALPPM was visualized as a movable defect in the lateral basal area on GBP imaging throughout the cardiac cycle and on the TI-201 study as a radionuclide accumulating structure, consistent with the defect in the GBP. A combination of these findings may suggest the presence of a hypertrophied papillary muscle of the left ventricle

  19. An automated wide-field time-gated optically sectioning fluorescence lifetime imaging multiwell plate reader for high-content analysis of protein-protein interactions

    Science.gov (United States)

    Alibhai, Dominic; Kumar, Sunil; Kelly, Douglas; Warren, Sean; Alexandrov, Yuriy; Munro, Ian; McGinty, James; Talbot, Clifford; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Dunsby, Chris; French, Paul M. W.

    2011-03-01

    We describe an optically-sectioned FLIM multiwell plate reader that combines Nipkow microscopy with wide-field time-gated FLIM, and its application to high content analysis of FRET. The system acquires sectioned FLIM images in fluorescent protein. It has been applied to study the formation of immature HIV virus like particles (VLPs) in live cells by monitoring Gag-Gag protein interactions using FLIM FRET of HIV-1 Gag transfected with CFP or YFP. VLP formation results in FRET between closely packed Gag proteins, as confirmed by our FLIM analysis that includes automatic image segmentation.

  20. Comparison of early thallium-201 scintigraphy and gated blood pool imaging for predicting mortality in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Becker, L.C.; Silverman, K.J.; Bulkley, B.H.; Kallman, C.H.; Mellits, E.D.; Weisfeldt, M.

    1983-01-01

    The extent of abnormality in early thallium-201 and gated cardiac blood pool scintigrams has been reported to be useful for predicting mortality in patients with acute myocardial infarction (AMI). To compare the two techniques, 91 patients admitted consecutively with evident or strongly suspected AMI underwent both imaging studies within 15 hours of the onset of symptoms. Patients with pulmonary edema or shock were excluded. AMI developed in 84% of patients, and 6-month mortality for the entire group was 16%. A thallium defect score of 7.0 or greater identified a subgroup of 14 patients with 64% 6-month mortality rate. Similarly, a left ventricular ejection fraction of 35% or less identified a high-risk subgroup of 10 patients with a 6-month mortality of 60%. Mortality in the remaining patients was 8% for thallium score less than 7 and 11% for ejection fraction greater than 35%. The mortality rate was highest among patients who had concordant high-risk scintigrams (five of six, 83%), lowest in those with concordant low-risk studies (five of 64, 8%) and intermediate in those with discordant results (four of 11, 36%). Of a number of clinical variables, only the appearance of Q waves, peak creatine kinase greater than 1000 IU/I, and history of infarction were significantly associated with mortality. High-risk thallium or blood pool scintigraphic results were significantly more predictive and a thallium score of 7 or greater was more sensitive for detecting nonsurvivors than ejection fraction 35% or less at a similar level of specificity

  1. Left ventricular diastolic dyssynchrony assessed with phase analysis of gated myocardial perfusion SPECT: a comparison with tissue Doppler imaging

    International Nuclear Information System (INIS)

    Boogers, Mark J.; Veltman, Caroline E.; Chen, Ji; Garcia, Ernest V.; Bommel, Rutger J. van; Mooyaart, Eline A.Q.; Wall, Ernst E. van der; Schalij, Martin J.; Bax, Jeroen J.; Delgado, Victoria; Younis, Imad Al; Hiel, Bernies van der; Dibbets-Schneider, Petra

    2011-01-01

    The aim of the current study was to evaluate the feasibility of phase analysis on gated myocardial perfusion SPECT (GMPS) for the assessment of left ventricular (LV) diastolic dyssynchrony in a head-to-head comparison with tissue Doppler imaging (TDI). The population consisted of patients with end-stage heart failure of New York Heart Association functional class III or IV with a reduced LV ejection fraction of ≤35%. LV diastolic dyssynchrony was calculated using TDI as the maximal time delay between early peak diastolic velocities of two opposing left ventricle walls (diastolic mechanical delay). Significant LV diastolic dyssynchrony was defined as a diastolic mechanical delay of >55 ms on TDI. Furthermore, phase analysis on GMPS was performed to evaluate LV diastolic dyssynchrony; diastolic phase standard deviation (SD) and histogram bandwidth (HBW) were used as markers of LV diastolic dyssynchrony. A total of 150 patients (114 men, mean age 66.0 ± 10.4 years) with end-stage heart failure were enrolled. Both diastolic phase SD (r = 0.81, p 55 ms) showed significantly larger diastolic phase SD (68.1 ± 13.4 vs. 40.7 ± 14.0 , p < 0.01) and diastolic HBW (230.6 ± 54.3 vs. 129.0 ± 55.6 , p < 0.01) as compared to patients without LV diastolic dyssynchrony on TDI (≤55 ms). Finally, phase analysis on GMPS showed a good intra- and interobserver reproducibility for the determination of diastolic phase SD (ICC 0.97 and 0.88) and diastolic HBW (ICC 0.98 and 0.93). Phase analysis on GMPS showed good correlations with TDI for the assessment of LV diastolic dyssynchrony. (orig.)

  2. Coronary imaging quality in routine ECG-gated multidetector CT examinations of the entire thorax: preliminary experience with a 64-slice CT system in 133 patients

    International Nuclear Information System (INIS)

    Delhaye, Damien; Remy-Jardin, Martine; Salem, Randa; Teisseire, Antoine; Khalil, Chadi; Remy, Jacques; Delannoy-Deken, Valerie; Duhamel, Alain

    2007-01-01

    To evaluate image quality in the assessment of the coronary arteries during routine ECG-gated multidetector CT (MDCT) of the chest. One hundred and thirty three patients in sinus rhythm underwent an ECG-gated CT angiographic examination of the entire chest without β-blockers with a 64-slice CT system. In 127 patients (95%), it was possible to assess the coronary arteries partially or totally; coronary artery imaging failed in six patients (5%), leading to a detailed description of the coronary arteries in 127 patients. Considering ten coronary artery segments per patient, 75% of coronary segments were assessable (948/1270 segments). When the distal segments were excluded from the analysis (i.e., seven coronary segments evaluated per patient), the percentage of assessable segments was 86% (768/889 proximal and mid coronary segments) and reached 93% (474/508) when assessing proximal segments exclusively. The mean number of assessable segments was significantly higher in patients with a heart rate ≤80 bpm (n=95) than in patients with a heart rate >80 bpm (n=38) (p<0.002). Proximal and mid-coronary segments can be adequately assessed during a whole-chest ECG-gated CT angiographic examination without administration of β-blockers in patients with a heart rate below 80 bpm. (orig.)

  3. Resting electrocardiogram and stress myocardial perfusion imaging in the determination of left ventricular systolic function: an assessment enhancing the performance of gated SPET.

    Science.gov (United States)

    Moralidis, Efstratios; Spyridonidis, Tryfon; Arsos, Georgios; Skeberis, Vassilios; Anagnostopoulos, Constantinos; Gavrielidis, Stavros

    2010-01-01

    This study aimed to determine systolic dysfunction and estimate resting left ventricular ejection fraction (LVEF) from information collected during routine evaluation of patients with suspected or known coronary heart disease. This approach was then compared to gated single photon emission tomography (SPET). Patients having undergone stress (201)Tl myocardial perfusion imaging followed by equilibrium radionuclide angiography (ERNA) were separated into derivation (n=954) and validation (n=309) groups. Logistic regression analysis was used to develop scoring systems, containing clinical, electrocardiographic (ECG) and scintigraphic data, for the discrimination of an ERNA-LVEFstatistic (mean+/-2SD) provided values of 0.001+/-0.176, 0.071+/-0.196 and 0.040+/-0.152, respectively. The average LVEF was a better discriminator of systolic dysfunction than gated SPET-LVEF in receiver operating characteristic (ROC) analysis and identified more patients (89%) with a stress myocardial perfusion imaging variables. This model provides reliable LVEF estimations, comparable to those from (201)Tl gated SPET, and can enhance the clinical performance of the latter.

  4. Dynamic Underground Stripping Demonstration Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; udel, K.

    1992-03-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92

  5. Noninvasive assessment of coronary artery disease by multislice spiral computed tomography using a new retrospectively ECG-gated image reconstruction technique. Comparison with angiographic results

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuichi; Matsumoto, Naoya; Kato, Masahiko [Nihon Univ., Tokyo (Japan). Surugadai Hospital] [and others

    2003-04-01

    The present study was designed to investigate the accuracy of multislice spiral computed tomography (MSCT) in detecting coronary artery disease, compared with coronary angiography (CAG), using a new retrospectively ECG-gated reconstruction method that reduced cardiac motion artifact. The study group comprised 54 consecutive patients undergoing MSCT and CAG. MSCT was performed using a SOMATOM Volume Zoom (4-detector-row, Siemens, Germany) with slice thickness 1.0 mm, pitch 1.5 (table feed: 1.5 mm per rotation) and gantry rotation time 500 ms. Metoprolol (20-60 mg) was administered orally prior to MSCT imaging. ECG-gated image reconstruction was performed with the reconstruction window (250 ms) positioned immediately before atrial contraction in order to reduce the cardiac motion artifact caused by the abrupt diastolic ventricular movement occurring during the rapid filling and atrial contraction periods. Following inspection of the volume rendering images, multiplanar reconstruction images and axial images of the left main coronary artery (LMCA), left anterior descending artery (LAD), left circumflex artery (LCx) and right coronary artery (RCA) were obtained and evaluated for luminal narrowing. The results were compared with those obtained by CAG. Of 216 coronary arteries, 206 (95.4%) were assessable; 10 arteries were excluded from the analysis because of severe calcification (n=4), stents (n=3) or insufficient contrast enhancement (n=3). The sensitivity to detect coronary stenoses {>=}50% was 93.5% and the specificity to define luminal narrowing <50% was 97.2%. The positive predictive value and the negative predictive value were 93.5% and 97.2%, respectively. The sensitivity was still satisfactory (80.6%) even when non-assessable arteries were included in the analysis. The new retrospectively ECG-gated reconstruction method for MSCT has excellent diagnostic accuracy in detecting significant coronary artery stenoses. (author)

  6. The Strip Module

    DEFF Research Database (Denmark)

    Pedersen, Tommy

    1996-01-01

    When the behaviour of a ship in waves is to be predicted it is convenient to have a tool which includes different approaches to the problem.The aim of this project is to develop such a tool named the strip theory module. The strip theory module will consist of submodules dependent on the I...

  7. Science Comic Strips

    Science.gov (United States)

    Kim, Dae Hyun; Jang, Hae Gwon; Shin, Dong Sun; Kim, Sun-Ja; Yoo, Chang Young; Chung, Min Suk

    2012-01-01

    Science comic strips entitled Dr. Scifun were planned to promote science jobs and studies among professionals (scientists, graduate and undergraduate students) and children. To this end, the authors collected intriguing science stories as the basis of scenarios, and drew four-cut comic strips, first on paper and subsequently as computer files.…

  8. Anatomy Comic Strips

    Science.gov (United States)

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective…

  9. Verifying 4D gated radiotherapy using time-integrated electronic portal imaging: a phantom and clinical study

    Directory of Open Access Journals (Sweden)

    Slotman Ben J

    2007-08-01

    Full Text Available Abstract Background Respiration-gated radiotherapy (RGRT can decrease treatment toxicity by allowing for smaller treatment volumes for mobile tumors. RGRT is commonly performed using external surrogates of tumor motion. We describe the use of time-integrated electronic portal imaging (TI-EPI to verify the position of internal structures during RGRT delivery Methods TI-EPI portals were generated by continuously collecting exit dose data (aSi500 EPID, Portal vision, Varian Medical Systems when a respiratory motion phantom was irradiated during expiration, inspiration and free breathing phases. RGRT was delivered using the Varian RPM system, and grey value profile plots over a fixed trajectory were used to study object positions. Time-related positional information was derived by subtracting grey values from TI-EPI portals sharing the pixel matrix. TI-EPI portals were also collected in 2 patients undergoing RPM-triggered RGRT for a lung and hepatic tumor (with fiducial markers, and corresponding planning 4-dimensional CT (4DCT scans were analyzed for motion amplitude. Results Integral grey values of phantom TI-EPI portals correlated well with mean object position in all respiratory phases. Cranio-caudal motion of internal structures ranged from 17.5–20.0 mm on planning 4DCT scans. TI-EPI of bronchial images reproduced with a mean value of 5.3 mm (1 SD 3.0 mm located cranial to planned position. Mean hepatic fiducial markers reproduced with 3.2 mm (SD 2.2 mm caudal to planned position. After bony alignment to exclude set-up errors, mean displacement in the two structures was 2.8 mm and 1.4 mm, respectively, and corresponding reproducibility in anatomy improved to 1.6 mm (1 SD. Conclusion TI-EPI appears to be a promising method for verifying delivery of RGRT. The RPM system was a good indirect surrogate of internal anatomy, but use of TI-EPI allowed for a direct link between anatomy and breathing patterns.

  10. The value of regional wall motion abnormalities on gated mycardiac perfusion imaging in perfusion imaging in predicting angiographic stenoses of coronary artery

    International Nuclear Information System (INIS)

    Yao Lixin; Liu Binbin

    2007-01-01

    Objective: To determine the possible level of angiographic stenoses of coronary artery at which reversible regional wall motion abnormalities (RWMA) are present on 99m Tc-sestamibi ( 99m Tc-MIBI)-gated myocardial perfusion imaging (MPI). Methods: ninty patients undergoing coronary angiography MPI within two weeks were recruited. A five grades and nine segments marking system was introduced to assess the RWMA and thickening of left ventricles. Results: The sensitivity of reversible RWMA for detecting ≥75% angiographic stenoses was 64%,with a specificity of 95% and positive predictive value of 97%. The presence of reversible RWMA was able to stratify patients with severe angiographic stenoses of 75% or more from those less than 75% with high positive predictive value. A good correlation was noted between the presence of reversible RWMA and the coronary artery jeopardy score. Multivariate analysis showed that the post-stress RWMA and reversible RWMA scores and positive dipyridamole-stress exercise electrocardiogram(ECG) were significant predictors of angiographic severity. Conclusions: Reversible RWMA, as shown by dipyridamole stress 99m Tc-MIBI MPI, is a significant predictor of angiographic disease with very high specificity and adds incremental value to MPI for the assessment of angiographic severity. (authors)

  11. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    Energy Technology Data Exchange (ETDEWEB)

    Di Sieno, Laura, E-mail: laura.disieno@polimi.it; Dalla Mora, Alberto; Contini, Davide [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Wabnitz, Heidrun; Macdonald, Rainer [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Pifferi, Antonio [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Mazurenka, Mikhail [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Hannoversches Zentrum für Optische Technologien, Nienburger Str. 17, 30167 Hannover (Germany); Hoshi, Yoko [Department of Biomedical Optics, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Boso, Gianluca; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Becker, Wolfgang [Becker and Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Martelli, Fabrizio [Dipartimento di Fisica e Astronomia dell’Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze 50019 (Italy)

    2016-03-15

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  12. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    International Nuclear Information System (INIS)

    Di Sieno, Laura; Dalla Mora, Alberto; Contini, Davide; Wabnitz, Heidrun; Macdonald, Rainer; Pifferi, Antonio; Mazurenka, Mikhail; Hoshi, Yoko; Boso, Gianluca; Tosi, Alberto; Becker, Wolfgang; Martelli, Fabrizio

    2016-01-01

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  13. Prospective versus retrospective ECG gating for dual source CT of the coronary stent: Comparison of image quality, accuracy, and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lei, E-mail: zhaolei219@sohu.com [Beijing Anzhen Hospital of the Capital University of Medical Sciences (China); Zhang Zhaoqi; Fan Zhanming; Yang Lin; Du Jing [Beijing Anzhen Hospital of the Capital University of Medical Sciences (China)

    2011-03-15

    Objective: To compare image quality, diagnostic accuracy and radiation dose of prospective and retrospective electrocardiogram (ECG) gated dual source computed tomography (DSCT) for the evaluation of the coronary stent, using conventional coronary angiography (CA) as a standard reference. Design, setting and patients: Sixty patients (heart rates {<=}70 bpm) with previous stent implantation who were scheduled for CA were divided in two groups, receiving either prospective or retrospective ECG gated DSCT separately. Two reviewers scored coronary stent image quality and evaluated stent lumen. Results: There was no significant difference in image quality between the two groups. In the prospective group, there were 86.4% (51/59) stents with interpretable images, in the retrospective group, there were 87.5% (49/56) stents with interpretable images. Image quality was not influenced by age, body mass index or heart rate in either group, but heart rate variability had a weak impact on the image quality of the prospective group. Image noise was higher in the prospective group, but this difference reached statistical significance only by using a smooth kernel reconstruction. Per-stent based sensitivity, specificity, and positive and negative predictive value were 100%, 84.1%, 68.2%, and 100%, respectively, in the prospective CT angiography group and 94.4%, 86.8%, 77.3%, and 97.1%, respectively, in the retrospective CT angiography group. There was a significant difference in the effective radiation dose between the two groups, mean effective dose in the prospective and retrospective group was 2.2 {+-} 0.5 mSv (1.5-3.2 mSv) and 14.6 {+-} 3.3 mSv (10.0-20.4 mSv) (p < .001) respectively. Conclusions: Compared with retrospective CT angiography, prospective CT angiography has a similar performance in assessing coronary stent patency, but a lower effective dose in selected patients with regular heart rates {<=}70 bpm.

  14. Electrocardiographic gating in positron emission computed tomography

    International Nuclear Information System (INIS)

    Hoffman, E.J.; Phelps, M.E.; Wisenberg, G.; Schelbert, H.R.; Kuhl, D.E.

    1979-01-01

    Electrocardiographic (ECG) synchronized multiple gated data acquisition was employed with positron emission computed tomography (ECT) to obtain images of myocardial blood pool and myocardium. The feasibility and requirements of multiple gated data acquisition in positron ECT were investigated for 13NH3, ( 18 F)-2-fluoro-2-D-deoxyglucose, and ( 11 C)-carboxyhemoglobin. Examples are shown in which image detail is enhanced and image interpretation is facilitated when ECG gating is employed in the data collection. Analysis of count rate data from a series of volunteers indicates that multiple, statistically adequate images can be obtained under a multiple gated data collection format without an increase in administered dose

  15. Comparison of Nitrate-augmented resting gated 99mTc-Sestamibi imaging with Low Dose Dobutamine SPECT for the detection of Myocardial Viability

    International Nuclear Information System (INIS)

    Parameswaran, R.V.; Dash, P.K.; Barooah, B.; Guruprasad, H.P.; Purantharan, N.

    2002-01-01

    Background: Dobutamine Echocardiography and Radionuclide imaging with Tl-201 and Technetium agents are two of the most established techniques available for the detection of viable myocardium. The purpose of this study was to evaluate the utility of Low dose Dobutamine gated Myocardial SPECT in identifying additional areas of dysfunctional, but viable myocardium when compared to nitrate-augmented rest gated SPECT with SestaMIBI. Materials and Methods: 20 patients (19 males and 1 female, with an age range of 40- 65 yrs and a mean of 52.75yrs) all with history of MI or severe LV dysfunction were included in this study. Patients with LBBB, recent revascularisation, arrhythmias etc were excluded from the study. A routine stress-rest study was initially performed on them with 99mTc-SestaMIBI and both the stress as well as resting studies was gated and the resting study was augmented with 10mg of sublingual nitrate. After the resting study was over, the patient was infused with Low dose Dobutamine(5μg/kg/min), at which time the gated acquisition was started and the infusion was continued till the acquisition got completed. In the perfusion study with SestaMIBI, all infarct segments which have uptake less than 50% as compared to the maximally perfused area was deemed non-viable Results: A 17-segment Myocardial model was used for both perfusion as well as quantification of wall motion and wall thickening. 110 akinetic/dyskinetic segments were taken up for analysis. 93 of these segments were non-viable and improvement in wall motion was seen in 17 segments (15.4%) in the nitrate-augmented SPECT. Dobutamine study showed improvement in totally in 27 segments (24.5%), 10 of which were additional segments which were non-viable in Nitrate SPECT study, apart from the 17 segments which showed improvement in the Nitrate study. In Dobutamine study, there was also improvement in wall thickening in 10 (10.7%) out of 93 segments which had showed less than 50% of MIBI uptake. Conclusion

  16. The Honeycomb Strip Chamber

    International Nuclear Information System (INIS)

    Graaf, Harry van der; Buskens, Joop; Rewiersma, Paul; Koenig, Adriaan; Wijnen, Thei

    1991-06-01

    The Honeycomb Strip Chamber (HSC) is a new position sensitive detector. It consists of a stack of folded foils, forming a rigid honeycomb structure. In the centre of each hexagonal cell a wire is strung. Conducting strips on the foils, perpendicular to the wires, pick up the induced avalanche charge. Test results of a prototype show that processing the signals form three adjacent strips nearest to the track gives a spatial resolution better than 64 μm for perpendicular incident tracks. The chamber performance is only slightly affected by a magnetic field. (author). 25 refs.; 21 figs

  17. Monte Carlo simulations of the dose from imaging with GE eXplore 120 micro-CT using GATE

    Energy Technology Data Exchange (ETDEWEB)

    Bretin, Florian; Bahri, Mohamed Ali; Luxen, André; Phillips, Christophe; Plenevaux, Alain; Seret, Alain, E-mail: aseret@ulg.ac.be [Cyclotron Research Centre, University of Liège, Sart Tilman B30, Liège 4000 (Belgium)

    2015-10-15

    Purpose: Small animals are increasingly used as translational models in preclinical imaging studies involving microCT, during which the subjects can be exposed to large amounts of radiation. While the radiation levels are generally sublethal, studies have shown that low-level radiation can change physiological parameters in mice. In order to rule out any influence of radiation on the outcome of such experiments, or resulting deterministic effects in the subjects, the levels of radiation involved need to be addressed. The aim of this study was to investigate the radiation dose delivered by the GE eXplore 120 microCT non-invasively using Monte Carlo simulations in GATE and to compare results to previously obtained experimental values. Methods: Tungsten X-ray spectra were simulated at 70, 80, and 97 kVp using an analytical tool and their half-value layers were simulated for spectra validation against experimentally measured values of the physical X-ray tube. A Monte Carlo model of the microCT system was set up and four protocols that are regularly applied to live animal scanning were implemented. The computed tomography dose index (CTDI) inside a PMMA phantom was derived and multiple field of view acquisitions were simulated using the PMMA phantom, a representative mouse and rat. Results: Simulated half-value layers agreed with experimentally obtained results within a 7% error window. The CTDI ranged from 20 to 56 mGy and closely matched experimental values. Derived organ doses in mice reached 459 mGy in bones and up to 200 mGy in soft tissue organs using the highest energy protocol. Dose levels in rats were lower due to the increased mass of the animal compared to mice. The uncertainty of all dose simulations was below 14%. Conclusions: Monte Carlo simulations proved a valuable tool to investigate the 3D dose distribution in animals from microCT. Small animals, especially mice (due to their small volume), receive large amounts of radiation from the GE eXplore 120

  18. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    Science.gov (United States)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-06-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The "smart" pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients.

  19. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    International Nuclear Information System (INIS)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-01-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The 'smart' pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients. (paper)

  20. Estimation of patient-specific imaging dose for real-time tumour monitoring in lung patients during respiratory-gated radiotherapy

    Science.gov (United States)

    Shiinoki, Takehiro; Onizuka, Ryota; Kawahara, Daisuke; Suzuki, Tatsuhiko; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Hanazawa, Hideki; Shibuya, Keiko

    2018-03-01

    Purpose: To quantify the patient-specific imaging dose for real-time tumour monitoring in the lung during respiratory-gated stereotactic body radiotherapy (SBRT) in clinical cases using SyncTraX. Methods and Materials: Ten patients who underwent respiratory-gated SBRT with SyncTraX were enrolled in this study. The imaging procedure for real-time tumour monitoring using SyncTraX was simulated using Monte Carlo. We evaluated the dosimetric effect of a real-time tumour monitoring in a critical organ at risk (OAR) and the planning target volume (PTV) over the course of treatment. The relationship between skin dose and gating efficiency was also investigated. Results: For all patients, the mean D50 to the PTV, ipsilateral lung, liver, heart, spinal cord and skin was 118.3 (21.5–175.9), 31.9 (9.5–75.4), 15.4 (1.1–31.6), 10.1 (1.3–18.1), 25.0 (1.6–101.8), and 3.6 (0.9–7.1) mGy, respectively. The mean D2 was 352.0 (26.5–935.8), 146.4 (27.3–226.7), 90.7 (3.6–255.0), 42.2 (4.8–82.7), 88.0 (15.4–248.5), and 273.5 (98.3–611.6) mGy, respectively. The D2 of the skin dose was found to increase as the gating efficiency decreased. Conclusions: The additional dose to the PTV was at most 1.9% of the prescribed dose over the course of treatment for real-time tumour monitoring. For OARs, we could confirm the high dose region, which may not be susceptible to radiation toxicity. However, to reduce the skin dose from SyncTraX, it is necessary to increase the gating efficiency.

  1. Intrinsic respiratory gating in small-animal CT

    International Nuclear Information System (INIS)

    Bartling, Soenke H.; Dinkel, Julien; Kauczor, Hans-Ulrich; Stiller, Wolfram; Semmler, Wolfhard; Grasruck, Michael; Madisch, Ijad; Gupta, Rajiv; Kiessling, Fabian

    2008-01-01

    Gating in small-animal CT imaging can compensate artefacts caused by physiological motion during scanning. However, all published gating approaches for small animals rely on additional hardware to derive the gating signals. In contrast, in this study a novel method of intrinsic respiratory gating of rodents was developed and tested for mice (n=5), rats (n=5) and rabbits (n=2) in a flat-panel cone-beam CT system. In a consensus read image quality was compared with that of non-gated and retrospective extrinsically gated scans performed using a pneumatic cushion. In comparison to non-gated images, image quality improved significantly using intrinsic and extrinsic gating. Delineation of diaphragm and lung structure improved in all animals. Image quality of intrinsically gated CT was judged to be equivalent to extrinsically gated ones. Additionally 4D datasets were calculated using both gating methods. Values for expiratory, inspiratory and tidal lung volumes determined with the two gating methods were comparable and correlated well with values known from the literature. We could show that intrinsic respiratory gating in rodents makes additional gating hardware and preparatory efforts superfluous. This method improves image quality and allows derivation of functional data. Therefore it bears the potential to find wide applications in small-animal CT imaging. (orig.)

  2. Clinical usefulness of T1-201 myocardial scintigraphy and diastolic phase index by gated cardiac blood pool imaging in patients with hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    Ohmine, Hiromi; Nishimura, Tsunehiko; Hayashida, Kohhei; Uehara, Toshiisa; Kozuka, Takahiro

    1984-01-01

    Tl-201 myocardial scintigraphy and gated cardiac blood pool imaging with Tc-99m were performed at rest in 24 hypertrophic cardiomyopathy (HCM) and 11 normal subjects. Based on visual analysis of Tl-201 myocardial scintigraphies, patients with HCM were subdivided into the following four groups; type I: non-obstructive, type II: obstructive, type III: asymmetric septal hypertrophy, type IV: apical hypertrophy. Characteristic myocardial hypertrophy of each group was also confirmed from the profile curves of circumferential analysis. First third filling fraction (1/3 FF) and mean first third filling rate (1/3 FRm) were obtained from gated cardiac blood pool imaging. As compaired with the normal subjects, 1/3 FF was not so sensitive for the detection of left ventricular hypertrophy. Mean+-S.D. of 1.3 FRm were 1.96+-0.56/sec (normal group), 1.30+-0.44/sec (typ e I), 1.18+-0.63/sec (type II), 1.17+-0.14/sec (type III), and 1.26+-0.03/sec (type IV). We considered that 1/3 FRm was a useful diastolic phase index in the diagnosis of HCM. (author)

  3. Abnormal intraluminal signal within the pulmonary arteries on MR imaging: Differentiation between slow blood flow and thrombus using an ECG-gated; multiphasic: Spin-echo technique

    International Nuclear Information System (INIS)

    White, R.D.; Higgins, C.B.

    1986-01-01

    The authors evaluated abnormal MR imaging signal patterns in the pulmonary arteries of 22 patients with pulmonary hypertension (n = 13), pulmonary embolus (n = 4), or both (n = 5). Using multiphasic (five or six phases; 19 patients) or standard (three patients with pulmonary embolus) ECG-gated, double spin-echo techniques, they were able to differentiate between causes of such abnormal signal patterns. The pattern of slow blood flow (abnormal signal in systole with fluctuating distribution during cardiac cycle, and intensity increasing visually from first to second echo) was noted in 89% of patients with pulmonary hypertension alone or in combination with pulmonary embolism, and was characteristic of high systolic pulmonary pressures (12 of 12 patients with pressure > 80 mm Hg, vs. 3 of 5 patients with pressure 55 mm Hg vs. 5 of 7 patients with pressures <55 mm Hg). This pattern was differentiated from that of thrombus (persistent signal with fixed distribution during cardiac cycle, and little to no visible intensity change from first to second echo), which was noted in six of seven proved embolus cases. Thus, gated multiphase MR imaging shows potential for the noninvasive visualization of pulmonary embolus and the differentiation of this entity from the slow blood flow of pulmonary hypertension

  4. Imaging analysis of heart movement for improving the respiration-gated radiotherapy in patients with left sided breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhamid, Rania; Farrag, A.; Khalifa, A. [Clinical Oncology Department, Assiut University (Egypt); Block, Andreas [Institut fuer Medizinische Strahlenphysik und Strahlenschutz, Klinikum Dortmund (Germany)

    2012-07-01

    Respiration induced heart movement during radiotherapy exposes the heart to the inevitable risks of radio-exposure, and hence radiation injury, in cases of Lt. sided breast cancer. The impact of such a risk is additionally aggravated by the use of radiotherapy in combination with cardiotoxic chemotherapeutic agents. Radio-oncologists pay special attention to the coronary arteries that might be included in this small part of the heart exposed to radiation. The aim of this study was to include the internal heart movement for improving respiration-gated radiotherapy of left sided breast cancer. For 70 patients, all females left sided breast cancer, two planning CT's in inspiration and expiration, and one free breathing scan are performed. The heart motion was analyzed with the clinic-developed software ORAT in the simulator sequence for acquiring information of the cranio-caudal amplitude of heart movements in free breathing (respiration-induced amplitude) and a 15 seconds breath-hold phase (inherent amplitude). The role of inherent heart movement varies from one patient to another which should be taken in consideration during defining the parameters of respiration-gated radiotherapy. The inherent amplitude of the heart motion is the physiological lower limit of the respiration-gating window.

  5. Increasing feasibility of the field-programmable gate array implementation of an iterative image registration using a kernel-warping algorithm

    Science.gov (United States)

    Nguyen, An Hung; Guillemette, Thomas; Lambert, Andrew J.; Pickering, Mark R.; Garratt, Matthew A.

    2017-09-01

    Image registration is a fundamental image processing technique. It is used to spatially align two or more images that have been captured at different times, from different sensors, or from different viewpoints. There have been many algorithms proposed for this task. The most common of these being the well-known Lucas-Kanade (LK) and Horn-Schunck approaches. However, the main limitation of these approaches is the computational complexity required to implement the large number of iterations necessary for successful alignment of the images. Previously, a multi-pass image interpolation algorithm (MP-I2A) was developed to considerably reduce the number of iterations required for successful registration compared with the LK algorithm. This paper develops a kernel-warping algorithm (KWA), a modified version of the MP-I2A, which requires fewer iterations to successfully register two images and less memory space for the field-programmable gate array (FPGA) implementation than the MP-I2A. These reductions increase feasibility of the implementation of the proposed algorithm on FPGAs with very limited memory space and other hardware resources. A two-FPGA system rather than single FPGA system is successfully developed to implement the KWA in order to compensate insufficiency of hardware resources supported by one FPGA, and increase parallel processing ability and scalability of the system.

  6. Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system.

    Science.gov (United States)

    Mariampillai, Adrian; Standish, Beau A; Munce, Nigel R; Randall, Cristina; Liu, George; Jiang, James Y; Cable, Alex E; Vitkin, I A; Yang, Victor X D

    2007-02-19

    We report a Doppler optical cardiogram gating technique for increasing the effective frame rate of Doppler optical coherence tomography (DOCT) when imaging periodic motion as found in the cardiovascular system of embryos. This was accomplished with a Thorlabs swept-source DOCT system that simultaneously acquired and displayed structural and Doppler images at 12 frames per second (fps). The gating technique allowed for ultra-high speed visualization of the blood flow pattern in the developing hearts of African clawed frog embryos (Xenopus laevis) at up to 1000 fps. In addition, four-dimensional (three spatial dimensions + temporal) Doppler imaging at 45 fps was demonstrated using this gating technique, producing detailed visualization of the complex cardiac motion and hemodynamics in a beating heart.

  7. Non-enhanced 3D MR angiography of the lower extremity using ECG-gated TSE imaging with non-selective refocusing pulses. Initial experience

    International Nuclear Information System (INIS)

    Lanzman, R.S.; Blondin, D.; Orzechowski, D.; Scherer, A.; Moedder, U.; Kroepil, P.; Godehardt, E.

    2010-01-01

    Purpose: To evaluate non-enhanced 3D MR angiography using turbo spin echo (TSE) imaging with non-selective refocusing pulses (NATIVE SPACE MRA) for the visualization of the arteries of the lower extremity. Materials and Methods: Three-station imaging (iliac arteries, femoral arteries, arteries of the lower leg) was performed in 8 healthy volunteers and 3 patients with peripheral artery disease (PAD) using a 1.5 T MR scanner. In 8 healthy volunteers, 4 different acquisition schemes were performed with the following imaging parameters: S 1: acquisition with every heartbeat (RR = 1), spoiler gradient of 25 % (SG = 25 %); S 2: RR = 1, SG = 0 %; S 3: RR = 2, SG = 25 %; S 4: RR = 2, SG = 0 %. The subjective image quality on a 4-point-scale (4 = excellent to 1 = not diagnostic) and relative SNR were assessed. In 3 patients with peripheral artery disease (PAD), SPACE MRA was performed for assessment of stenosis. Results: The mean subjective image quality was significantly lower for the iliac arteries compared to the femoral arteries and arteries of the lower leg (p < 0.0001). The subjective image quality for acquisition scheme S 1 was significantly lower than the image quality for S 3 and S 4 for the iliac arteries (p < 0.01), while the subjective image quality for acquisition scheme S 2 was significantly lower than S 3 and S 4 for the femoral arteries and the arteries of the lower leg (p < 0.01). The relative SNR was significantly higher for acquisition schemes S 3 and S 4 as compared to S 1 and S 2 (p < 0.0001) for all regions. SPACE MRA disclosed 7 significant stenoses in 3 PAD patients. Conclusion: ECG-gated SPACE MRA is a promising imaging technique for non-enhanced assessment of the arteries of the lower extremity. (orig.)

  8. Comparison of prospective electrocardiography-gating high-pitch mode and without electrocardiography-synchronization high-pitch mode acquisition for the image quality and radiation doses of the aortic using dual-source CT

    International Nuclear Information System (INIS)

    Li Jian; Huan Yi; Zhao Hongliang; Wang Ying; Liu Ying; Wei Mengqi; Shi Mingguo; Zheng Minwen

    2013-01-01

    Objective: To evaluate the application of prospective ECG-gating Flash spiral scan mode dual-source CT in aortography, and compare it's image quality and radiation dose with without ECG-synchronization high-pitch spiral scanning mode. Methods: Fifty consecutive patients (Group A) with suspected aortic dissection or after operations for the aortic dissection were scanned with prospective ECG-gated high-pitch scan and another 50 consecutive patients (Group B) were analyzed by non-ECG-gated high-pitch scan. Image quality of the aortic was assessed by two independent readers. Image noise was measured, radiation dose estimates were calculated. The imaging quality of the aortic and the radiation dose were compared with Mann-whitney U and t test. Results: The average image quality score [(1.18 ± 0.40) in group A and (1.23 ± 0.31) in group B] showed no significant difference between group A and group B (U = 1.20, P = 0.23). The mean radiation dose of group A was lower than that of group B [(1.49 ± 0.38) mSv in group A, (2.79 ± 0.54) mSv in group B, t = 13.677, P < 0.05]. Conclusion: Prospective ECG-gated dual source CT Flash spiral scanning with low radiation dose and good image quality in the aortic dissection with high value of clinical application. (authors)

  9. Imaged-guided liver stereotactic body radiotherapy using VMAT and real-time adaptive tumor gating. Concerns about technique and preliminary clinical results.

    Science.gov (United States)

    Llacer-Moscardo, Carmen; Riou, Olivier; Azria, David; Bedos, Ludovic; Ailleres, Norbert; Quenet, Francois; Rouanet, Philippe; Ychou, Marc; Fenoglietto, Pascal

    2017-01-01

    Motion management is a major challenge in abdominal SBRT. We present our study of SBRT for liver tumors using intrafraction motion review (IMR) allowing simultaneous KV information and MV delivery to synchronize the beam during gated RapidArc treatment. Between May 2012 and March 2015, 41 patients were treated by liver SBRT using gated RapidArc technique in a Varian Novalis Truebeam STx linear accelerator. PTV was created by expanding 5 mm from the ITV. Dose prescription ranged from 40 to 50 Gy in 5-10 fractions. The prescribed dose and fractionation were chosen depending on hepatic function and dosimetric results. Thirty-four patients with a minimal follow-up of six months were analyzed for local control and toxicity. Accuracy for tumor repositioning was evaluated for the first ten patients. With a median follow-up of 13 months, the treatment was well tolerated and no patient presented RILD, perforation or gastrointestinal bleeding. Acute toxicity was found in 3 patients with G1 abdominal pain, 2 with G1 nausea, 10 with G1 asthenia and 1 with G2 asthenia. 6 patients presented asymptomatic transitory perturbation of liver enzymes. In-field local control was 90.3% with 7 complete responses, 14 partial responses and 7 stabilisations. 3 patients evolved "in field". 12 patients had an intrahepatic progression "out of field". Mean intrafraction deviation of fiducials in the craneo-caudal direction was 0.91 mm (0-6 mm). The clinical tolerance and oncological outcomes were favorable when using image-guided liver SBRT with real-time adaptive tumor gating.

  10. SU-F-I-11: Software Development for 4D-CBCT Research of Real-Time-Image Gated Spot Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T; Fujii, Y; Shimizu, S; Shirato, H [Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido (Japan); Matsuura, T; Umegaki, K [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido (Japan); Takao, S; Miyamoto, N; Matsuzaki, Y [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: To acquire correct information for inside the body in patient positioning of Real-time-image Gated spot scanning Proton Therapy (RGPT), utilization of tomographic image at exhale phase of patient respiration obtained from 4-dimensional Cone beam CT (4D-CBCT) has been desired. We developed software named “Image Analysis Platform” for 4D-CBCT researches which has technique to segment projection-images based on 3D marker position in the body. The 3D marker position can be obtained by using two axes CBCT system at Hokkaido University Hospital Proton Therapy Center. Performance verification of the software was implemented. Methods: The software calculates 3D marker position retrospectively by using matching positions on pair projection-images obtained by two axes fluoroscopy mode of CBCT system. Log data of 3D marker tracking are outputted after the tracking. By linking the Log data and gantry-angle file of projection-image, all projection-images are equally segmented to spatial five-phases according to marker 3D position of SI direction and saved to specified phase folder. Segmented projection-images are used for CBCT reconstruction of each phase. As performance verification of the software, test of segmented projection-images was implemented for sample CT phantom (Catphan) image acquired by two axes fluoroscopy mode of CBCT. Dummy marker was added on the images. Motion of the marker was modeled to move in 3D space. Motion type of marker is sin4 wave function has amplitude 10.0 mm/5.0 mm/0 mm, cycle 4 s/4 s/0 s for SI/AP/RL direction. Results: The marker was tracked within 0.58 mm accuracy in 3D for all images, and it was confirmed that all projection-images were segmented and saved to each phase folder correctly. Conclusion: We developed software for 4D-CBCT research which can segment projection-image based on 3D marker position. It will be helpful to create high quality of 4D-CBCT reconstruction image for RGPT.

  11. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    DEFF Research Database (Denmark)

    Juhler-Nøttrup, Trine; Korreman, Stine Sofia; Pedersen, Anders N

    2008-01-01

    were contoured on each CT scan to evaluate the variations in volumes and position. The lung tumours and the mediastinal tumours were contoured separately. The positional variations were measured as 3D mobility vectors and correlated to matching of the scans using the two different strategies. RESULTS......-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. CONCLUSIONS: Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were...

  12. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan); Nishibuchi, Ikuno; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Nagata, Yasushi [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan)

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung. Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.

  13. Identification and Assessment of Paradoxical Ventricular Wall Motion Using ECG Gated Blood Pool Scan - Comparison of cine Loop , Phase Analysis and Paradox Image -

    International Nuclear Information System (INIS)

    Lee, Jae Tae; Kim, Gwang Weon; Lee, Kyu Bo; Chung, Byung Chun; Whang, Kee Suk; Chae, Sung Chul; Paek, Wee Hyun; Cheon, Jae Eun; Lee, Hyong Woo; Chung, Jin Hong

    1990-01-01

    Sixty-four patients with paradoxical ventricular wall motion noticed both in angiocardiography or 2-dimensional echocardiography were assessed by ECG gated blood pool scan (GBPS). Endless cine loop image, phase and amplitude images and paradox image obtained by visual inspection of each cardiac beat or Fourier transformation of acquired raw data were investigated to determine the incremental value of GBPS with these processing methods for identification of paradoxical ventricular wall motion. The results were as follows:1) Paradoxical wall motions were observed on interventricular septum in 34 cases, left ventricular free wall in 26 and right ventricular wall in 24. Underlying heart diseases were is chemic (23 cases) valvular(9), congenital heart disease (12), cardiomyopathy (5), pericardial effusion(5), post cardiac surgery(3), corpulmonale (2), endocarditis (l) and right ventricular tumor(l). 2) Left ventricular ejection fractions of patients with paradoxical left ventricular wall motion were significantly lower than those with paradoxical septal motion (p <0.005). 3) The sensitivity of each processing methods for detecting paradoxical wall motion was 76.9% by phase analysis, 74.6% by endless cine loop mapping and 68.4% by paradox image manipulation respectively. Paradoxial motions visualized only in phase, paradox or both images were appeared as hypokinesia or akinesia in cine loop image. 4) All events could be identified by at least one of above three processing methods, however only 34 cases (48.4%) showed the paradoxical motions in all of the three images. By these findings, we concluded that simultaneous inspection of all above three processing methods-endless cine loop, phase analysis and paradox image is necessary for accurate identification and assessment of paradoxical ventricular wall motion when performing GBPS.

  14. Identification and Assessment of Paradoxical Ventricular Wall Motion Using ECG Gated Blood Pool Scan - Comparison of cine Loop , Phase Analysis and Paradox Image -

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Tae; Kim, Gwang Weon; Lee, Kyu Bo; Chung, Byung Chun; Whang, Kee Suk; Chae, Sung Chul; Paek, Wee Hyun; Cheon, Jae Eun [Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Lee, Hyong Woo; Chung, Jin Hong [Yeongnam National University College of Medicine, Daegu (Korea, Republic of)

    1990-07-15

    Sixty-four patients with paradoxical ventricular wall motion noticed both in angiocardiography or 2-dimensional echocardiography were assessed by ECG gated blood pool scan (GBPS). Endless cine loop image, phase and amplitude images and paradox image obtained by visual inspection of each cardiac beat or Fourier transformation of acquired raw data were investigated to determine the incremental value of GBPS with these processing methods for identification of paradoxical ventricular wall motion. The results were as follows:1) Paradoxical wall motions were observed on interventricular septum in 34 cases, left ventricular free wall in 26 and right ventricular wall in 24. Underlying heart diseases were is chemic (23 cases) valvular(9), congenital heart disease (12), cardiomyopathy (5), pericardial effusion(5), post cardiac surgery(3), corpulmonale (2), endocarditis (l) and right ventricular tumor(l). 2) Left ventricular ejection fractions of patients with paradoxical left ventricular wall motion were significantly lower than those with paradoxical septal motion (p <0.005). 3) The sensitivity of each processing methods for detecting paradoxical wall motion was 76.9% by phase analysis, 74.6% by endless cine loop mapping and 68.4% by paradox image manipulation respectively. Paradoxial motions visualized only in phase, paradox or both images were appeared as hypokinesia or akinesia in cine loop image. 4) All events could be identified by at least one of above three processing methods, however only 34 cases (48.4%) showed the paradoxical motions in all of the three images. By these findings, we concluded that simultaneous inspection of all above three processing methods-endless cine loop, phase analysis and paradox image is necessary for accurate identification and assessment of paradoxical ventricular wall motion when performing GBPS.

  15. Left ventricular volume measurements with free breathing respiratory self-gated 3-dimensional golden angle radial whole-heart cine imaging - Feasibility and reproducibility.

    Science.gov (United States)

    Holst, Karen; Ugander, Martin; Sigfridsson, Andreas

    2017-11-01

    To develop and evaluate a free breathing respiratory self-gated isotropic resolution technique for left ventricular (LV) volume measurements. A 3D radial trajectory with double golden-angle ordering was used for free-running data acquisition during free breathing in 9 healthy volunteers. A respiratory self-gating signal was extracted from the center of k-space and used with the electrocardiogram to bin all data into 3 respiratory and 25 cardiac phases. 3D image volumes were reconstructed and the LV endocardial border was segmented. LV volume measurements and reproducibility from 3D free breathing cine were compared to conventional 2D breath-held cine. No difference was found between 3D free breathing cine and 2D breath-held cine with regards to LV ejection fraction, stroke volume, end-systolic volume and end-diastolic volume (Pcine and 2D breath-held cine (Pcine and conventional 2D breath-held cine showed similar values and test-retest repeatability for LV volumes in healthy volunteers. 3D free breathing cine enabled retrospective sorting and arbitrary angulation of isotropic data, and could correctly measure LV volumes during free breathing acquisition. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Accelerated cardiovascular magnetic resonance of the mouse heart using self-gated parallel imaging strategies does not compromise accuracy of structural and functional measures

    Directory of Open Access Journals (Sweden)

    Dörries Carola

    2010-07-01

    Full Text Available Abstract Background Self-gated dynamic cardiovascular magnetic resonance (CMR enables non-invasive visualization of the heart and accurate assessment of cardiac function in mouse models of human disease. However, self-gated CMR requires the acquisition of large datasets to ensure accurate and artifact-free reconstruction of cardiac cines and is therefore hampered by long acquisition times putting high demands on the physiological stability of the animal. For this reason, we evaluated the feasibility of accelerating the data collection using the parallel imaging technique SENSE with respect to both anatomical definition and cardiac function quantification. Results Findings obtained from accelerated data sets were compared to fully sampled reference data. Our results revealed only minor differences in image quality of short- and long-axis cardiac cines: small anatomical structures (papillary muscles and the aortic valve and left-ventricular (LV remodeling after myocardial infarction (MI were accurately detected even for 3-fold accelerated data acquisition using a four-element phased array coil. Quantitative analysis of LV cardiac function (end-diastolic volume (EDV, end-systolic volume (ESV, stroke volume (SV, ejection fraction (EF and LV mass in healthy and infarcted animals revealed no substantial deviations from reference (fully sampled data for all investigated acceleration factors with deviations ranging from 2% to 6% in healthy animals and from 2% to 8% in infarcted mice for the highest acceleration factor of 3.0. CNR calculations performed between LV myocardial wall and LV cavity revealed a maximum CNR decrease of 50% for the 3-fold accelerated data acquisition when compared to the fully-sampled acquisition. Conclusions We have demonstrated the feasibility of accelerated self-gated retrospective CMR in mice using the parallel imaging technique SENSE. The proposed method led to considerably reduced acquisition times, while preserving high

  17. TH-CD-209-11: Simulation Study of Real-Time-Image Gating On Spot Scanning Proton Therapy for Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, T; Inoue, T; Katoh, N [Department of Radiation Oncology, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Matsuura, T; Umegaki, K [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido (Japan); Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan); Takao, S; Matsuzaki, Y; Fujii, Y; Fujii, T; Miyamoto, N [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Shimizu, S; Shirato, H [Department of Radiation Oncology, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: To study the impact of a real-time-image gating on spot scanning proton therapy for lung tumors and to examine the suitable size of the gating window (GW). Methods: We investigated a real-time-image gated proton therapy (RGPT), in which two fluoroscopic units monitor a gold sphere fiducial in real-time, and the proton beam is irradiated only when the marker enters within the pre-assigned GW. We designed 5 treatment plans for 7 lung cancer patients: RGPT with a GW of ±1, 2, 5, and 8 mm and free-breathing proton therapy (FBPT) using the end-exhale and average images of 4-dimensional (4D) CT, respectively. 70 Gy(RBE)/10fr was prescribed to 99% of the targets. The time-series data of the three-dimensional marker positions (RTRT data) were grouped into 10 phases to associate with the phases of 4DCT. The 4D dose distributions were calculated using the plan information, RTRT Data, 4DCT, and modeled accelerator pattern. The dose distribution in each respiratory phase was deformed into the end-exhale CT. The D99 and D5-95 of CTV (with a criteria of D99>95% and D5-95<5%), V20 of Lung-GTV, and treatment times were evaluated. Results: GWs ≤ ±2 mm satisfied the criteria of CTV in all cases, whereas GWs ≥ ±5 mm did not satisfy the criteria in some cases. The V20 was reduced by more than 18.9% (relative to FBPT) for GW ≤ ±2 mm, but equaled or even surpassed the FBPT for GWs ≥ ±5 mm. The irradiation times for the ±1, 2, 5, and 8 mm GWs and FBPT were 372.4±208.3, 215.2±51.5, 180.9±31.6, 178.4±21.2, and 140.1±15.2 s, respectively. The GW of ±1 mm caused large variation in irradiation time among the patients. Conclusion: In RGPT for lung cancer, the most suitable GW, in terms of good dose preservation without prolonging the therapeutic beam delivery, is ±2 mm.

  18. Selective chemical stripping

    Science.gov (United States)

    Malavallon, Olivier

    1995-04-01

    At the end of the 80's, some of the large European airlines expressed a wish for paint systems with improved strippability on their aircraft, allowing the possibility to strip down to the primer without altering it, using 'mild' chemical strippers based on methylene chloride. These improvements were initially intended to reduce costs and stripping cycle times while facilitating rapid repainting, and this without the need to change the conventionally used industrial facilities. The level of in-service performance of these paint systems was to be the same as the previous ones. Requirements related to hygiene safety and the environment were added to these initial requirements. To meet customers' expectations, Aerospatiale, within the Airbus Industry GIE, formed a work group. This group was given the task of specifying, following up the elaboration and qualifying the paint systems allowing requirements to be met, in relation with the paint suppliers and the airlines. The analysis made in this report showed the interest of transferring as far upstream as possible (to paint conception level) most of the technical constraints related to stripping. Thus, the concept retained for the paint system, allowing selective chemical stripping, is a 3-coat system with characteristics as near as possible to the previously used paints.

  19. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  20. Experimental investigation of bright spots in broadband, gated x-ray images of ignition-scale implosions on the National Ignition Facility

    International Nuclear Information System (INIS)

    Barrios, M. A.; Suter, L. J.; Glenn, S.; Benedetti, L. R.; Bradley, D. K.; Collins, G. W.; Hammel, B. A.; Izumi, N.; Ma, T.; Scott, H.; Smalyuk, V. A.; Regan, S. P.; Epstein, R.; Kyrala, G. A.

    2013-01-01

    Bright spots in the hot spot intensity profile of gated x-ray images of ignition-scale implosions at the National Ignition Facility [G. H. Miller et al., Opt. Eng. 443, (2004)] are observed. X-ray images of cryogenically layered deuterium-tritium (DT) and tritium-hydrogen-deuterium (THD) ice capsules, and gas filled plastic shell capsules (Symcap) were recorded along the hohlraum symmetry axis. Heterogeneous mixing of ablator material and fuel into the hot spot (i.e., hot-spot mix) by hydrodynamic instabilities causes the bright spots. Hot-spot mix increases the radiative cooling of the hot spot. Fourier analysis of the x-ray images is used to quantify the evolution of bright spots in both x- and k-space. Bright spot images were azimuthally binned to characterize bright spot location relative to known isolated defects on the capsule surface. A strong correlation is observed between bright spot location and the fill tube for both Symcap and cryogenically layered DT and THD ice targets, indicating the fill tube is a significant seed for the ablation front instability causing hot-spot mix. The fill tube is the predominant seed for Symcaps, while other capsule non-uniformities are dominant seeds for the cryogenically layered DT and THD ice targets. A comparison of the bright spot power observed for Si- and Ge-doped ablator targets shows heterogeneous mix in Symcap targets is mostly material from the doped ablator layer

  1. Image processing with cellular nonlinear networks implemented on field-programmable gate arrays for real-time applications in nuclear fusion

    International Nuclear Information System (INIS)

    Palazzo, S.; Vagliasindi, G.; Arena, P.; Murari, A.; Mazon, D.; De Maack, A.

    2010-01-01

    In the past years cameras have become increasingly common tools in scientific applications. They are now quite systematically used in magnetic confinement fusion, to the point that infrared imaging is starting to be used systematically for real-time machine protection in major devices. However, in order to guarantee that the control system can always react rapidly in case of critical situations, the time required for the processing of the images must be as predictable as possible. The approach described in this paper combines the new computational paradigm of cellular nonlinear networks (CNNs) with field-programmable gate arrays and has been tested in an application for the detection of hot spots on the plasma facing components in JET. The developed system is able to perform real-time hot spot recognition, by processing the image stream captured by JET wide angle infrared camera, with the guarantee that computational time is constant and deterministic. The statistical results obtained from a quite extensive set of examples show that this solution approximates very well an ad hoc serial software algorithm, with no false or missed alarms and an almost perfect overlapping of alarm intervals. The computational time can be reduced to a millisecond time scale for 8 bit 496x560-sized images. Moreover, in our implementation, the computational time, besides being deterministic, is practically independent of the number of iterations performed by the CNN - unlike software CNN implementations.

  2. Self-gated 4D multiphase, steady-state imaging with contrast enhancement (MUSIC) using rotating cartesian K-space (ROCK): Validation in children with congenital heart disease.

    Science.gov (United States)

    Han, Fei; Zhou, Ziwu; Han, Eric; Gao, Yu; Nguyen, Kim-Lien; Finn, J Paul; Hu, Peng

    2017-08-01

    To develop and validate a cardiac-respiratory self-gating strategy for the recently proposed multiphase steady-state imaging with contrast enhancement (MUSIC) technique. The proposed SG strategy uses the ROtating Cartesian K-space (ROCK) sampling, which allows for retrospective k-space binning based on motion surrogates derived from k-space center line. The k-space bins are reconstructed using a compressed sensing algorithm. Ten pediatric patients underwent cardiac MRI for clinical reasons. The original MUSIC and 2D-CINE images were acquired as a part of the clinical protocol, followed by the ROCK-MUSIC acquisition, all under steady-state intravascular distribution of ferumoxytol. Subjective scores and image sharpness were used to compare the images of ROCK-MUSIC and original MUSIC. All scans were completed successfully without complications. The ROCK-MUSIC acquisition took 5 ± 1 min, compared to 8 ± 2 min for the original MUSIC. Image scores of ROCK-MUSIC were significantly better than original MUSIC at the ventricular outflow tracts (3.9 ± 0.3 vs. 3.3 ± 0.6, P ROCK-MUSIC in the other anatomic locations. ROCK-MUSIC provided images of equal or superior image quality compared to original MUSIC, and this was achievable with 40% savings in scan time and without the need for physiologic signal. Magn Reson Med 78:472-483, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Comparison of transaxial source images and 3-plane, thin-slab maximal intensity projection images for the diagnosis of coronary artery stenosis with using ECG-gated cardiac CT

    International Nuclear Information System (INIS)

    Choi, Jin Woo; Seo, Joon Beom; Do, Kyung Hyun

    2006-01-01

    We wanted to compare the transaxial source images with the optimized three plane, thin-slab maximum intensity projection (MIP) images from electrocardiographic (ECG)-gated cardiac CT for their ability to detect hemodynamically significant stenosis (HSS), and we did this by means of performing a receiver operating characteristic (ROC) analysis. Twenty-eight patients with a heart rate less than 66 beats per minute and who were undergoing both retrospective ECG-gated cardiac CT and conventional coronary angiography were included in this study. The contrast-enhanced CT scans were obtained with a collimation of 16 x 0.75-mm and a rotation time of 420 msec. The tranaxial images were reconstructed at the mid-diastolic phase with a 1-mm slice thickness and a 0.5-mm increment. Using the transaxial images, the slab MIP images were created with a 4-mm thickness and a 2-mm increment, and they covered the entire heart in the horizontal long axis (4 chamber view), in the vertical long axis (2 chamber view) and in the short axis. The transaxial images and MIP images were independently evaluated for their ability to detect HSS. Conventional coronary angiograms of the same study group served as the standard of reference. Four radiologists were requested to rank each image with using a five-point scale (1 = definitely negative, 2 = probably negative, 3 = indeterminate, 4 = probably positive, and 5 definitely positive) for the presence of HSS; the data were then interpreted using ROC analysis. There was no statistical difference in the area under the ROC curve between transaxial images and MIP images for the detection of HSS (0.8375 and 0.8708, respectively; ρ > 0.05). The mean reading time for the transaxial source images and the MIP images was 116 and 126.5 minutes, respectively. The diagnostic performance of the MIP images for detecting HSS of the coronary arteries is acceptable and this technique's ability to detect HSS is comparable to that of the transaxial source images

  4. Receiver operating characteristics of diagnostic efficacy of resting left ventricular performance (evaluating with a non-imaging ECG gated scintillation detector - nuclear stethoscope)

    International Nuclear Information System (INIS)

    Kotlyarov, E.V.; Reba, R.C.; Lindsay, J.

    1983-01-01

    Receiver operating characteristic (ROC) analysis of left ventricular performance at rest was applied to evaluate diagnostic utility of non-imaging nuclear detector (''Nuclear Stethoscope''), for screening patients with coronary artery disease (CAD). Thirty-one patients without CAD and normal rest and stress radionuclide ventriculography (MUGA) were used as a control group. Another 62 patients with abnormal left ventricular reserve and segmental wall motion abnormalities at rest were also studied. All 93 patients were studied with the Nuclear Stethoscope (30 minutes after conventional MUGA testing) both in beat-to-beat and gated equilibrium modes. ROC analysis showed that along with ejection fraction, stroke and end-diastolic volumes, evaluation of the left ventricular filling phase has a great potential for the identification of patients with a segmental wall motion abnormality and, therefore, significant CAD

  5. Automatic extraction of left ventricular mass and volumes using parametric images from non-ECG-gated 15O-water PET/CT

    DEFF Research Database (Denmark)

    Nordström, J; Harms, Hans; Lubberink, Mark

    of the present study was to investigate the feasibility of measuring LV geometry using dynamic 15O-water PET/CT without ECG-gating. Methods: Parametric images of MBF, perfusable tissue fraction (PTF) and LV blood pool were generated automatically using kinetic modelling. Segmentation of the LV wall using PTF......Introduction: 15O-water positron emission tomography (PET) is considered the gold standard for non-invasive quantification of myocardial blood flow (MBF). It has been shown to identify patients with significant coronary artery disease (CAD) with high accuracy. Hypertrophy with or without dilatation...... combined to measure stroke volume (SV=EDV-ESV) and ejection fraction (EF=SV/EDV). Accuracy was determined by comparing PET to cardiac magnetic resonance (CMR) in 30 asymptomatic patients with high grade LV regurgitation (group A). Precision was determined as inter-observer variation in group...

  6. Development of floating strip micromegas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bortfeldt, Jonathan

    2014-04-28

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10{sup 34} cm{sup -2}s{sup -1} around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm{sup 2} floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm{sup 2} floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm{sup 2} floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the

  7. Development of floating strip micromegas detectors

    International Nuclear Information System (INIS)

    Bortfeldt, Jonathan

    2014-01-01

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10 34 cm -2 s -1 around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm 2 floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm 2 floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm 2 floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the track inclination in a single

  8. Accurate estimation of global and regional cardiac function by retrospectively gated multidetector row computed tomography. Comparison with cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Belge, Benedicte; Pasquet, Agnes; Vanoverschelde, Jean-Louis J.; Coche, Emmanuel; Gerber, Bernhard L.

    2006-01-01

    Retrospective reconstruction of ECG-gated images at different parts of the cardiac cycle allows the assessment of cardiac function by multi-detector row CT (MDCT) at the time of non-invasive coronary imaging. We compared the accuracy of such measurements by MDCT to cine magnetic resonance (MR). Forty patients underwent the assessment of global and regional cardiac function by 16-slice MDCT and cine MR. Left ventricular (LV) end-diastolic and end-systolic volumes estimated by MDCT (134±51 and 67±56 ml) were similar to those by MR (137±57 and 70±60 ml, respectively; both P=NS) and strongly correlated (r=0.92 and r=0.95, respectively; both P<0.001). Consequently, LV ejection fractions by MDCT and MR were also similar (55±21 vs. 56±21%; P=NS) and highly correlated (r=0.95; P<0.001). Regional end-diastolic and end-systolic wall thicknesses by MDCT were highly correlated (r=0.84 and r=0.92, respectively; both P<0.001), but significantly lower than by MR (8.3±1.8 vs. 8.8±1.9 mm and 12.7±3.4 vs. 13.3±3.5 mm, respectively; both P<0.001). Values of regional wall thickening by MDCT and MR were similar (54±30 vs. 51±31%; P=NS) and also correlated well (r=0.91; P<0.001). Retrospectively gated MDCT can accurately estimate LV volumes, EF and regional LV wall thickening compared to cine MR. (orig.)

  9. Diagnostic value of early post-exercise 99Tcm-MIBI ECG-gated myocardial perfusion imaging in severe coronary artery disease

    International Nuclear Information System (INIS)

    Li Dianfu; Huang Jun; Feng Jianlin; Cheng Xu; Li Xinli; Cao Kejiang

    2005-01-01

    Objective: To study and compare the diagnostic value in severe coronary artery disease (CAD) of 99 Tc m -methoxyisobutylisonitrile (MIBI) electrocardiogram (ECG)-gated early post-exercise myocardial perfusion imaging (G-MPI) with that of non-ECG-gated myocardial perfusion imaging (NG-MPI). Methods: Two hundred and fifteen suspected CAD patients had undergone G-MPI and coronary artery angiography (CAG) within one month were enrolled and distributed into three-vessel and non-three-vessel CAD groups according to CAG results (≥70%); the diagnostic values in severe CAD of G-MPI and NG-MPI were gained and compared to determine which one of the two protocols would be superior in identification of severe three-vessel CAD. Results: When the ≥70% diameter stenosis CAG was the diagnostic standard of severe CAD, the sensitivity of G-MPI and NG-MPI in the diagnosis of severe CAD were 95.3% (143/150) and 90.7% (136/150, χ 2 =2.509, P=0.113), but when the comparison specifically pinpointed to severe three-vessel CAD, there was significant difference between G-MPI [100%(51/51)] and NG-MPI [92.2% (47/51), χ 2 =4.163, P=0.041]. Diagnostic specificity of G-MPI was 80.0% and that of NG-MPI was 72.3% (χ 2 =1.059, P=0.303). Conclusions: The incremental diagnostic sensitivity of G-MPI adding to the NG-MPI in the diagnosis of severe CAD was mainly from the three-vessel subgroup patients. Exercise stress G-MPI has better diagnostic value in severe three-vessel CAD patients than NG-MPI. (authors)

  10. Prognostic significance of stress myocardial ECG-gated perfusion imaging in asymptomatic patients with diabetic chronic kidney disease on initiation of haemodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuru; Kondo, Chisato; Kobayashi, Hideki; Kusakabe, Kiyoko [Tokyo Women' s Medical University, School of Medicine, Department of Radiology, Shinjuku-ku, Tokyo (Japan); Babazono, Tetsuya [Tokyo Women' s Medical University, School of Medicine, Diabetes Centre, Shinjuku-ku, Tokyo (Japan); Nakajima, Takatomo [Tokyo Women' s Medical University, School of Medicine, Department of Cardiology, Shinjuku-ku, Tokyo (Japan)

    2009-08-15

    Diabetic patients with chronic kidney disease (CKD) frequently develop cardiac events within several years of the initiation of haemodialysis. The present study assesses the prognostic significance of stress myocardial ECG-gated perfusion imaging (MPI) in patients with diabetic CKD requiring haemodialysis. Fifty-five asymptomatic patients with diabetic stage V CKD and no history of heart disease scheduled to start haemodialysis were enrolled in this study (56{+-}11 years old; 49 with type 2 diabetes mellitus). All patients underwent {sup 201}Tl stress ECG-gated MPI 1 month before or after the initiation of haemodialysis to assess myocardial involvement. We evaluated SPECT images using 17-segment defect scores graded on a 5-point scale, summed stress score (SSS) and summed difference scores (SDS). The patients were followed up for at least 2 years (42{+-}15 months) to determine coronary intervention (CI) and heart failure (HF) as soft events and acute myocardial infarction (AMI) and all causes of deaths as hard events. The frequencies of myocardial ischaemia, resting perfusion defects, low ejection fraction and left ventricular (LV) dilatation were 24,20,29 and 49%, respectively. Ten events (18%) developed during the follow-up period including four CI, one HF, one AMI and four sudden deaths. Multivariate Cox analysis selected SDS (p=0.0011) and haemoglobin A{sub 1c} (HbA{sub 1c}) (p=0.0076) as independent prognostic indicators for all events. Myocardial ischaemia, in addition to glycaemic control, is a strong prognostic marker for asymptomatic patients with diabetic CKD who are scheduled to start haemodialysis. Stress MPI is highly recommended for the management and therapeutic stratification of such patients. (orig.)

  11. A new data acquisition and imaging system for nuclear microscopy based on a Field Programmable Gate Array card

    International Nuclear Information System (INIS)

    Bettiol, A.A.; Udalagama, C.; Watt, F.

    2009-01-01

    The introduction of the new Field Programmable Gate Array (FPGA) cards by National Instruments has made it possible for the first time to develop reconfigurable custom data acquisition hardware easily with the LabVIEW programming environment. Data acquisition issues such as precise timing for scanning and operating system latencies can now be easily overcome using this new technology because the data acquisition software is embedded in the FPGA chip on the card. In this paper we present the first results of the new data acquisition system developed at the Centre for Ion Beam Applications (CIBA), National University of Singapore using the new National Instruments cards in conjunction with rack mountable Wilkinson type ADCs.

  12. Evaluation of three-dimensional navigator-gated whole heart MR coronary angiography: The importance of systolic imaging in subjects with high heart rates

    International Nuclear Information System (INIS)

    Wu Yenwen; Tadamura, Eiji; Yamamuro, Masaki; Kanao, Shotaro; Nakayama, Kazuki; Togashi, Kaori

    2007-01-01

    Purpose: To evaluate the influence of heart rate (HR) on magnetic resonance coronary angiography (MRCA) image quality in diastolic and systolic phases. Materials and methods: Twenty-seven healthy volunteers (9 men; 33 ± 9 years, HR 53-110 bpm), were evaluated with the electrocardiography and three-dimensional navigator-gating MRCA in a 1.5-T MR scanner (Avanto, Siemens) in diastolic and systolic phases (steady-state free precession; TR/TE/flip angle = 3.2 ms/1.6 ms/90 o ). The timing of scanning was individually adapted to the cardiac rest periods obtained in the prescanning, by visually identifying when the movement of right coronary artery was minimized during diastole and systole. Images of two phases were side-by-side compared on a four-point scale (from 1 = poor to 4 = excellent visibility; score of 3 or 4 as diagnostic). Results: Of 13 subjects with HR ≤65 bpm (low HR group, mean 59.8 ± 4.9 bpm, range 53-65), the image quality scores were significantly better than that with higher heart rates (73.9 ± 9.0 bpm, range 68-110) in diastolic MRCA. The image quality was significantly improved during systole in high HR group. Overall, 91.3% of low HR group had MRCA image of diagnostic quality acquired at diastole, while 88.3% of high HR group had diagnostic images at systole by segmental analysis (p = NS). Conclusions: MRCA at systole offered superior quality in patients with high heart rates

  13. Evaluation of a New Motion-correction Algorithm Using On-rigid Registration in Respiratory-gated PET/CT Images of Liver Tumors.

    Science.gov (United States)

    Wagatsuma, Kei; Osawa, Tatsufumi; Yokokawa, Naoki; Miwa, Kenta; Oda, Keiichi; Kudo, Yoshiro; Unno, Yasushi; Ito, Kimiteru; Ishii, Kenji

    2016-01-01

    The present study aimed to determine the qualitative and quantitative accuracy of the Q.Freeze algorithm in PET/CT images of liver tumors. A body phantom and hot spheres representing liver tumors contained 5.3 and 21.2 kBq/mL of a solution containing 18 F radioactivity, respectively. The phantoms were moved in the superior-inferior direction at a motion displacement of 20 mm. Conventional respiratory-gated (RG) and Q.Freeze images were sorted into 6, 10, and 13 phase-groups. The SUV ave was calculated from the background of the body phantom, and the SUV max was determined from the hot spheres of the liver tumors. Three patients with four liver tumors were also clinically assessed by whole-body and RG PET. The RG and Q.Freeze images derived from the clinical study were also sorted into 6, 10 and 13 phase-groups. Liver signal-to-noise ratio (SNR) and SUV max were determined from the RG and Q.Freeze clinical images. The SUV ave of Q.Freeze images was the same as those derived from the body phantom using RG. The liver SNR improved with Q.Freeze, and the SUVs max was not overestimated when Q.Freeze was applied in both the phantom and clinical studies. Q.Freeze did not degrade the liver SNR and SUV max even though the phase number was larger. Q.Freeze delivered qualitative and quantitative motion correction than conventional RG imaging even in 10-phase groups.

  14. Real-Time 3D Image Guidance Using a Standard LINAC: Measured Motion, Accuracy, and Precision of the First Prospective Clinical Trial of Kilovoltage Intrafraction Monitoring-Guided Gating for Prostate Cancer Radiation Therapy

    DEFF Research Database (Denmark)

    Keall, Paul J; Ng, Jin Aun; Juneja, Prabhjot

    2016-01-01

    for prostate cancer radiation therapy. In this paper we report on the measured motion accuracy and precision using real-time KIM-guided gating. METHODS AND MATERIALS: Imaging and motion information from the first 200 fractions from 6 patient prostate cancer radiation therapy volumetric modulated arc therapy...... treatments were analyzed. A 3-mm/5-second action threshold was used to trigger a gating event where the beam is paused and the couch position adjusted to realign the prostate to the treatment isocenter. To quantify the in vivo accuracy and precision, KIM was compared with simultaneously acquired k...

  15. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.

    Science.gov (United States)

    Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-06-24

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  16. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array−Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique

    Directory of Open Access Journals (Sweden)

    Chen Yang

    2017-06-01

    Full Text Available With the development of satellite load technology and very large scale integrated (VLSI circuit technology, onboard real-time synthetic aperture radar (SAR imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT, which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array−application-specific integrated circuit (FPGA-ASIC hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  17. Gated SPECT evaluation of left ventricular function using a CZT camera and a fast low-dose clinical protocol: comparison to cardiac magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Giorgetti, Assuero; Masci, Pier Giorgio; Marras, Gavino; Gimelli, Alessia; Genovesi, Dario; Lombardi, Massimo [Fondazione CNR/Regione Toscana ' ' G. Monasterio' ' , Pisa (Italy); Rustamova, Yasmine K. [Azerbaijan Medical University, Department of internal medicine Central Customs Hospital, Baku (Azerbaijan); Marzullo, Paolo [Istituto di Fisiologia Clinica del CNR, Pisa (Italy)

    2013-12-15

    CZT technology allows ultrafast low-dose myocardial scintigraphy but its accuracy in assessing left ventricular function is still to be defined. The study group comprised 55 patients (23 women, mean age 63 {+-} 9 years) referred for myocardial perfusion scintigraphy. The patients were studied at rest using a CZT camera (Discovery NM530c; GE Healthcare) and a low-dose {sup 99m}Tc-tetrofosmin clinical protocol (mean dose 264 {+-} 38 MBq). Gated SPECT imaging was performed as a 6-min list-mode acquisition, 15 min after radiotracer injection. Images were reformatted (8-frame to 16-frame) using Lister software on a Xeleris workstation (GE Healthcare) and then reconstructed with a dedicated iterative algorithm. Analysis was performed using Quantitative Gated SPECT (QGS) software. Within 2 weeks patients underwent cardiac magnetic resonance imaging (cMRI, 1.5-T unit CVi; GE Healthcare) using a 30-frame acquisition protocol and dedicated software for analysis (MASS 6.1; Medis). The ventricular volumes obtained with 8-frame QGS showed excellent correlations with the cMRI volumes (end-diastolic volume (EDV), r = 0.90; end-systolic volume (ESV), r = 0.94; p < 0.001). However, QGS significantly underestimated the ventricular volumes (mean differences: EDV, -39.5 {+-} 29 mL; ESV, -15.4 {+-} 22 mL; p < 0.001). Similarly, the ventricular volumes obtained with 16-frame QGS showed an excellent correlations with the cMRI volumes (EDV, r = 0.92; ESV, r = 0.95; p < 0.001) but with significant underestimations (mean differences: EDV, -33.2 {+-} 26 mL; ESV, -17.9 {+-} 20 mL; p < 0.001). Despite significantly lower values (47.9 {+-} 16 % vs. 51.2 {+-} 15 %, p < 0.008), 8-frame QGS mean ejection fraction (EF) was closely correlated with the cMRI values (r = 0.84, p < 0.001). The mean EF with 16-frame QGS showed the best correlation with the cMRI values (r = 0.91, p < 0.001) and was similar to the mean cMRI value (49.6 {+-} 16 %, p not significant). Regional analysis showed a good

  18. The role of quantitative Tc-99m-MIBI gated SPECT/F-18-FDG PET imaging in the monitoring of intracoronary bone marrow cell transplantation

    International Nuclear Information System (INIS)

    Kaminek, M.; Myslivecek, M.

    2006-01-01

    A lot of unresolved questions still exist concerning the exact mechanism of the beneficial effects of bone marrow cell (BMC) transplantation for myocardial regeneration. The aim of this communication is to report the cases of patients with and without post-transplantation left ventricular function improvement. To this study we included consecutive patients with irreversible damage after a first acute ST-elevation myocardial infarction treated by coronary angioplasty with stent implantation. The irreversible damage was identified by dobutamine echocardiography and confirmed by rest gated Tc-99m-MIBI gated SPECT and in the majority of patients by F-18-FDG PET imaging as well. Using 4D-MSPECT software, we quantified MIBI/FDG uptake and gated SPECT left ventricular ejection fraction, end-diastolic/end-systolic volumes (LVEF, EDV/ESV) before BMC therapy and 3 months later. The results obtained in the initial group of patients in this study (27 patients in the BMC treated group, 16 patients in the control group) have been published previously [Eur J Nucl Med 2005; 32 (Suppl 1 ): S46]. Among the BMC group, we identified 13 responders to therapy with average LVEF improvement from 43.3%± 11% to 51.4%± 10.4% and EDV/ESV improvement from 145 ml/84 ml to 133 ml/67 ml. The remaining 14 patients were non-responders to therapy with no significant change in LVEF (39.1%±8.1% versus 39.8% ± 7.4%), the EDV/ESV increased from 166 ml/105 ml to 188 ml/116 ml. Responders to the cell therapy had prevailing MIBI uptake in the range of 31-50% of maximum in the infarction territory. On the other hand, non-responders to BMC therapy had prevailing MIBI uptake in the range of 0-30% of maximum. Two cases are presented in this report. Further studies with a larger cohort of patients would be helpful to evaluate our findings. We observed strong interindividual differences in the effectiveness of the cell therapy. Prevailing residual MIBI uptake in the range of 31-50% of maximum was in the

  19. Four-dimensional MAP-RBI-EM image reconstruction method with a 4D motion prior for 4D gated myocardial perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek-Soo; Tsui, Benjamin M.W. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Radiology; Gullberg, Grant T. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2011-07-01

    We evaluated and proposed here a 4D maximum a posteriori rescaled-block iterative (MAP-RBI)-EM image reconstruction method with a motion prior to improve the accuracy of 4D gated myocardial perfusion (GMP) SPECT images. We hypothesized that a 4D motion prior which resembles the global motion of the true 4D motion of the heart will improve the accuracy of the reconstructed images with regional myocardial motion defect. Normal heart model in the 4D XCAT (eXtended CArdiac-Torso) phantom is used as the prior in the 4D MAP-RBI-EM algorithm where a Gaussian-shaped distribution is used as the derivative of potential function (DPF) that determines the smoothing strength and range of the prior in the algorithm. The mean and width of the DPF equal to the expected difference between the reconstructed image and the motion prior, and smoothing range, respectively. To evaluate the algorithm, we used simulated projection data from a typical clinical {sup 99m}Tc Sestamibi GMP SPECT study using the 4D XCAT phantom. The noise-free projection data were generated using an analytical projector that included the effects of attenuation, collimator-detector response and scatter (ADS) and Poisson noise was added to generated noisy projection data. The projection datasets were reconstructed using the modified 4D MAP-RBI-EM with various iterations, prior weights, and sigma values as well as with ADS correction. The results showed that the 4D reconstructed image estimates looked more like the motion prior with sharper edges as the weight of prior increased. It also demonstrated that edge preservation of the myocardium in the GMP SPECT images could be controlled by a proper motion prior. The Gaussian-shaped DPF allowed stronger and weaker smoothing force for smaller and larger difference of neighboring voxel values, respectively, depending on its parameter values. We concluded the 4D MAP-RBI-EM algorithm with the general motion prior can be used to provide 4D GMP SPECT images with improved

  20. The design and validation of a magnetic resonance imaging-compatible device for obtaining mechanical properties of plantar soft tissue via gated acquisition.

    Science.gov (United States)

    Williams, Evan D; Stebbins, Michael J; Cavanagh, Peter R; Haynor, David R; Chu, Baocheng; Fassbind, Michael J; Isvilanonda, Vara; Ledoux, William R

    2015-10-01

    Changes in the mechanical properties of the plantar soft tissue in people with diabetes may contribute to the formation of plantar ulcers. Such ulcers have been shown to be in the causal pathway for lower extremity amputation. The hydraulic plantar soft tissue reducer (HyPSTER) was designed to measure in vivo, rate-dependent plantar soft tissue compressive force and three-dimensional deformations to help understand, predict, and prevent ulcer formation. These patient-specific values can then be used in an inverse finite element analysis to determine tissue moduli, and subsequently used in a foot model to show regions of high stress under a wide variety of loading conditions. The HyPSTER uses an actuator to drive a magnetic resonance imaging-compatible hydraulic loading platform. Pressure and actuator position were synchronized with gated magnetic resonance imaging acquisition. Achievable loading rates were slower than those found in normal walking because of a water-hammer effect (pressure wave ringing) in the hydraulic system when the actuator direction was changed rapidly. The subsequent verification tests were, therefore, performed at 0.2 Hz. The unloaded displacement accuracy of the system was within 0.31%. Compliance, presumably in the system's plastic components, caused a displacement loss of 5.7 mm during a 20-mm actuator test at 1354 N. This was accounted for with a target to actual calibration curve. The positional accuracy of the HyPSTER during loaded displacement verification tests from 3 to 9 mm against a silicone backstop was 95.9% with a precision of 98.7%. The HyPSTER generated minimal artifact in the magnetic resonance imaging scanner. Careful analysis of the synchronization of the HyPSTER and the magnetic resonance imaging scanner was performed. With some limitations, the HyPSTER provided key functionality in measuring dynamic, patient-specific plantar soft tissue mechanical properties. © IMechE 2015.

  1. A preliminary study of patient-specific mechanical properties of diabetic and healthy plantar soft tissue from gated magnetic resonance imaging.

    Science.gov (United States)

    Williams, Evan D; Stebbins, Michael J; Cavanagh, Peter R; Haynor, David R; Chu, Baocheng; Fassbind, Michael J; Isvilanonda, Vara; Ledoux, William R

    2017-07-01

    Foot loading rate, load magnitude, and the presence of diseases such as diabetes can all affect the mechanical properties of the plantar soft tissues of the human foot. The hydraulic plantar soft tissue reducer instrument was designed to gain insight into which variables are the most significant in determining these properties. It was used with gated magnetic resonance imaging to capture three-dimensional images of feet under dynamic loading conditions. Custom electronics controlled by LabVIEW software simultaneously recorded system pressure, which was then translated to applied force values based on calibration curves. Data were collected for two subjects, one without diabetes (Subject A) and one with diabetes (Subject B). For a 0.2-Hz loading rate, and strains 0.16, 0.18, 0.20, and 0.22, Subject A's average tangential heel pad stiffness was 10 N/mm and Subject B's was 24 N/mm. Maximum test loads were approximately 200 N. Loading rate and load magnitude limitations (both were lower than physiologic values) will continue to be addressed in the next version of the instrument. However, the current hydraulic plantar soft tissue reducer did produce a data set for healthy versus diabetic tissue stiffness that agrees with previous trends. These data are also being used to improve finite element analysis models of the foot as part of a related project.

  2. Delineation of the anatomical relationship of innominate artery and trachea by respiratory-gated MR imaging with true FISP sequence in patients with severe motor and intellectual disabilities

    International Nuclear Information System (INIS)

    Fujikawa, Yoshinao; Sato, Noriko; Sugai, Kenji; Endo, Yusaku; Matsufuji, Hiroki; Oomi, Tsuyoshi; Honzawa, Shiho; Sasaki, Masayuki

    2008-01-01

    Tracheoinnominate artery fistula is a well-known complication that arises on using a cannula. Therefore, routine examination of the anatomical relationship of the innominate artery and trachea should be carried out. We evaluated the usefulness of magnetic resonance imaging in 5 patients with severe motor and intellectual disabilities (SMID) using a combination of true-fast imaging of steady-state precession (true-FISP) sequences and two-dimensional prospective acquisition correction (2D-PACE). For all patients, the trachea and the innominate artery were identified without sedation and contrast media. In one patient, the innominate artery was observed to be pressing on the trachea. In three patients, the trachea and innominate artery were brought very close each other, and in the other patient the anatomical relationship of the trachea and surrounding structure was delineated before tracheotomy. The validity of true-FISP sequences combined with the respiratory-gated technique was confirmed useful for the patients who are difficult to lie quietly and to hold their breath voluntarily. (author)

  3. Self-gated fat-suppressed cardiac cine MRI.

    Science.gov (United States)

    Ingle, R Reeve; Santos, Juan M; Overall, William R; McConnell, Michael V; Hu, Bob S; Nishimura, Dwight G

    2015-05-01

    To develop a self-gated alternating repetition time balanced steady-state free precession (ATR-SSFP) pulse sequence for fat-suppressed cardiac cine imaging. Cardiac gating is computed retrospectively using acquired magnetic resonance self-gating data, enabling cine imaging without the need for electrocardiogram (ECG) gating. Modification of the slice-select rephasing gradients of an ATR-SSFP sequence enables the acquisition of a one-dimensional self-gating readout during the unused short repetition time (TR). Self-gating readouts are acquired during every TR of segmented, breath-held cardiac scans. A template-matching algorithm is designed to compute cardiac trigger points from the self-gating signals, and these trigger points are used for retrospective cine reconstruction. The proposed approach is compared with ECG-gated ATR-SSFP and balanced steady-state free precession in 10 volunteers and five patients. The difference of ECG and self-gating trigger times has a variability of 13 ± 11 ms (mean ± SD). Qualitative reviewer scoring and ranking indicate no statistically significant differences (P > 0.05) between self-gated and ECG-gated ATR-SSFP images. Quantitative blood-myocardial border sharpness is not significantly different among self-gated ATR-SSFP ( 0.61±0.15 mm -1), ECG-gated ATR-SSFP ( 0.61±0.15 mm -1), or conventional ECG-gated balanced steady-state free precession cine MRI ( 0.59±0.15 mm -1). The proposed self-gated ATR-SSFP sequence enables fat-suppressed cardiac cine imaging at 1.5 T without the need for ECG gating and without decreasing the imaging efficiency of ATR-SSFP. © 2014 Wiley Periodicals, Inc.

  4. Low-dose ECG-gated 64-slices helical CT angiography of the chest: evaluation of image quality in 105 patients

    International Nuclear Information System (INIS)

    D'Agostino, A.G.; Remy-Jardin, M.; Khalil, C.; Remy, J.; Delannoy-Deken, V.; Duhamel, A.; Flohr, T.

    2006-01-01

    The purpose of this study was to evaluate image quality of low-dose electrocardiogram (ECG)-gated multislice helical computed tomography (CT) angiograms of the chest. One hundred and five consecutive patients with a regular sinus rhythm (72 men; 33 women) underwent ECG-gated CT angiographic examination of the chest without administration of beta blockers using the following parameters: (a) collimation 32 x 0.6 mm with z-flying focal spot for the acquisition of 64 overlapping 0.6-mm slices, rotation time 0.33 s, pitch 0.3; (b) 120 kV, 200 mAs; (c) use of two dose modulation systems, including adjustment of the mAs setting to the patient's size and anatomical shape and an ECG-controlled tube current. Subjective and objective image quality was evaluated by two radiologists in consensus on 3-mm-thick scans reconstructed at 55% of the response rate (RR) interval. The population and protocol characteristics included: (a) a mean [±standard deviation (SD)] body mass index (BMI) of 24.47 (±4.64); (b) a mean (±SD) heart rate of 72.04 (±15.76) bpm; (c) a mean (±SD) scanning time of 18.3 (±2.73) s; (d) a mean (±SD) dose-length product (DLP) value of 260.57 (±83.67) mGy/cm; (e) an estimated average effective dose of 4.95 (±1.59) mSv. Subjective noise was depicted in a total of nine examinations (8.5%), always rated as mild. Objective noise was assessed by measuring the standard deviation of pixel values in a homogeneous region of interest within the trachea and descending aorta; SD was 15.91 HU in the trachea and 22.16 HU in the descending aorta, with no significant difference in the mean value of the standard deviations between the four categories of BMI except for obese patients, who had a higher mean SD within the aorta. Interpolation artefacts were depicted in 22 patients, with a mean heart rate significantly lower than that of patients without interpolation artifacts, rated as mild in 11 patients and severe in 11 patients. The severity of interpolation artefacts

  5. Strip casting apparatus and method

    Science.gov (United States)

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  6. Quantitative assessment of changes in carotid plaques during cilostazol administration using three-dimensional ultrasonography and non-gated magnetic resonance plaque imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Mao; Ohba, Hideki; Mori, Kiyofumi; Narumi, Shinsuke; Katsura, Noriyuki; Ohura, Kazumasa; Terayama, Yasuo [Iwate Medical University, Department of Neurology and Gerontology, Morioka (Japan); Sasaki, Makoto; Kudo, Kohsuke [Iwate Medical University, Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Morioka (Japan)

    2012-09-15

    Cilostazol, an antiplatelet agent, is reported to induce the regression of atherosclerotic changes. However, its effects on carotid plaques are unknown. Hence, we quantitatively investigated the changes that occur within carotid plaques during cilostazol administration using three-dimensional (3D) ultrasonography (US) and non-gated magnetic resonance (MR) plaque imaging. We prospectively examined 16 consecutive patients with carotid stenosis. 3D-US and T1-weighted MR plaque imaging were performed at baseline and 6 months after initiating cilostazol therapy (200 mg/day). We measured the volume and grayscale median (GSM) of the plaques from 3D-US data. We also calculated the contrast ratio (CR) of the carotid plaque against the adjacent muscle and areas of the intraplaque components: fibrous tissue, lipid, and hemorrhage components. The plaque volume on US decreased significantly (median at baseline and 6 months, 0.23 and 0.21 cm{sup 3}, respectively; p = 0.03). In the group exhibiting a plaque volume reduction of more than 10%, GSM on US increased significantly (24.8 and 71.5, respectively; p = 0.04) and CR on MRI decreased significantly (1.13 and 1.04, respectively; p = 0.02). In this group, in addition, the percent area of the fibrous component on MRI increased significantly (68.6% and 79.4%, respectively; p = 0.02), while those of the lipid and hemorrhagic components decreased (24.9% and 20.5%, respectively; p = 0.12) (1.0% and 0.0%, respectively; p = 0.04). There were no substantial changes in intraplaque characteristics in either US or MRI in the other group. 3D-US and MR plaque imaging can quantitatively detect changes in the size and composition of carotid plaques during cilostazol therapy. (orig.)

  7. Evaluating the normal individual cardiac function in different imaging phases post exercise and rest by gated SPECT myocardial perfusion

    International Nuclear Information System (INIS)

    Hua, W.; Li, S.J.; Liu, J.Z.; Li, X.F.; Jin, C.R.; Hu, G.; Wang, J.

    2007-01-01

    Full text: Objectives: To evaluate the normal individual cardiac function in the different imaging phases post-exercise and rest by GSPECT. Methods: 46 normal individuals underwent exercise/rest GSPECT using 99mTc-MIBI by 2- day program. Sequential imaging was started 15, 35 and 120 minutes after exercise and rest imaging was performed the following day. The left ventricular EF and EDV, ESV values were calculated with the Cedars-Sinai program. Results: The EF values of post- exercise at 15, 35, and 120m was 64.48±7.43%, 65.02±7.66%, and 60.98±7.28% respectively, and the rest EF value was 61.46±7.23%. The post exercise EF at 15m and 35m was higher than EF at post- exercise 120m and rest, but there is a significant difference only between post exercise 35m and rest (P< 0.05), and all post exercise EF did not increase at least 5% from EF at-rest. The EDV and ESV values did not have statistically significant differences at 15, 35,120m post-exercise and rest. The heart rate at 15,35m post- exercise was higher significantly than at rest. Conclusions: The different imaging phases after exercise with 99mTc-MIBI GSPECT affects LVEF in normal individuals, the 35m post- exercise EF is highest. (author)

  8. Effect of hybrid iterative reconstruction technique on quantitative and qualitative image analysis at 256-slice prospective gating cardiac CT

    International Nuclear Information System (INIS)

    Utsunomiya, Daisuke; Weigold, W. Guy; Weissman, Gaby; Taylor, Allen J.

    2012-01-01

    To evaluate the effect of hybrid iterative reconstruction on qualitative and quantitative parameters at 256-slice cardiac CT. Prospective cardiac CT images from 20 patients were analysed. Paired image sets were created using 3 reconstructions, i.e. filtered back projection (FBP) and moderate- and high-level iterative reconstructions. Quantitative parameters including CT-attenuation, noise, and contrast-to-noise ratio (CNR) were determined in both proximal- and distal coronary segments. Image quality was graded on a 4-point scale. Coronary CT attenuation values were similar for FBP, moderate- and high-level iterative reconstruction at 293 ± 74-, 290 ± 75-, and 283 ± 78 Hounsfield units (HU), respectively. CNR was significantly higher with moderate- and high-level iterative reconstructions (10.9 ± 3.5 and 18.4 ± 6.2, respectively) than FBP (8.2 ± 2.5) as was the visual grading of proximal vessels. Visualisation of distal vessels was better with high-level iterative reconstruction than FBP. The mean number of assessable segments among 289 segments was 245, 260, and 267 for FBP, moderate- and high-level iterative reconstruction, respectively; the difference between FBP and high-level iterative reconstruction was significant. Interobserver agreement was significantly higher for moderate- and high-level iterative reconstruction than FBP. Cardiac CT using hybrid iterative reconstruction yields higher CNR and better image quality than FBP. circle Cardiac CT helps clinicians to assess patients with coronary artery disease circle Hybrid iterative reconstruction provides improved cardiac CT image quality circle Hybrid iterative reconstruction improves the number of assessable coronary segments circle Hybrid iterative reconstruction improves interobserver agreement on cardiac CT. (orig.)

  9. Measurement of left ventricular ejection fraction using gated 99mTc-sestamibi myocardial planar images: Comparison to contrast ventriculography

    International Nuclear Information System (INIS)

    Parker, D.A.; Lloret, R.L.; Barilla, F.; Douthat, L.; Gheorghiade, M.

    1991-01-01

    Using the new myocardial perfusion agent 99mTc-sestamibi and multigated acquisition on a nuclear medicine gamma camera, the left ventricular ejection fraction (LVEF) was derived in 13 patients with coronary artery disease (CAD). Cross-sectional activity profiles were used to measure the left ventricle from end-diastolic and end-systolic images. Several different geometric methods were then utilized to derive ejection fractions from the nuclear data. Comparison of the resultant ejection fractions to those obtained from contrast ventriculography showed significant correlation for all geometric methods (P less than 0.01, Sy X x = 6.2 to 9.6). The authors conclude that in patients with CAD one or more of these simple geometric methods can provide a useful estimate of the LVEF when performing 99mTc-sestamibi multigated myocardial perfusion imaging

  10. Respiratory gating in cardiac PET

    DEFF Research Database (Denmark)

    Lassen, Martin Lyngby; Rasmussen, Thomas; Christensen, Thomas E

    2017-01-01

    BACKGROUND: Respiratory motion due to breathing during cardiac positron emission tomography (PET) results in spatial blurring and erroneous tracer quantification. Respiratory gating might represent a solution by dividing the PET coincidence dataset into smaller respiratory phase subsets. The aim...... of our study was to compare the resulting imaging quality by the use of a time-based respiratory gating system in two groups administered either adenosine or dipyridamole as the pharmacological stress agent. METHODS AND RESULTS: Forty-eight patients were randomized to adenosine or dipyridamole cardiac...... stress (82)RB-PET. Respiratory rates and depths were measured by a respiratory gating system in addition to registering actual respiratory rates. Patients undergoing adenosine stress showed a decrease in measured respiratory rate from initial to later scan phase measurements [12.4 (±5.7) vs 5.6 (±4...

  11. Comparative study of gated myocardial perfusion imaging using 99Tcm-tetrofosmin and 99Tcm-sestamibi

    International Nuclear Information System (INIS)

    Wang Ruihua; Ruan Qiao; Sun Ke; Han Xingmin; Sun Bingqi; Xie Xinli; Cheng Bing; Chen Yanlin; Liu Baoping

    2013-01-01

    Objective: To compare the results of 99 Tc m -tetrofosmin (TF) and 99 Tc m -MIBI G-MPI in evaluating left ventricular myocardial perfusion and other functional parameters. Methods: TF and MIBI were both labeled by 99 Tc m and the radiochemical purities were tested. During December 2011 to May 2012, 112 patients who had examinations of CAG and echocardiograph in one week after G-MPI were divided into 99 Tc m -TF group (47 patients) and 99 Tc m -MIBI group (65 patients) by simple random sampling. Patients who suffered from severe arrhythmia, clinically suspicious of myocarditis or cardiomyopathy were excluded. The research was approved by the ethics committee, and all patients signed informed consents. One-day 99 Tc m -TF G-MPI and two-day 99 Tc m -MIBI G-MPI were performed. The left ventricular functional parameters were acquired automatically by Cedars quantitative gated SPECT (QGS) software, including LVEF, EDV, ESV, peak filling rate (PFR), peak ejection rate (PER) and phase standard difference (SD). The data were analyzed using χ 2 test, two-sample t test, paired t test and linear correlation analysis by SPSS 17.0. Results: The radiochemical purities of 99 Tc m -TF and 99 Tc m -MIBI were (97.5±0.4) % and (99.1±0.2) % respectively. The coincidence rates of 99 Tc m -TF and 99 Tc m -MIBI G-MPI with CAG were 88.9% (40/45) and 90.5% (57/63), respectively. There was no significant difference between G-MPI results of the two agents (χ 2 =0.389, P>0.05). There was also no significant difference between left ventricular functional parameters of the two agents (LVEF:(62.60±13.56)% vs (60.52±7.08)%, t=0.940; EDV: (103.3±17.29) ml vs (98.52±19.37) ml, t=1.348; ESV: (41.73±12.69) ml vs (46.05±10.81) ml, t=0.851; PER: (2.73±0.67)EDV/s vs (2.61±1.04) EDV/s, t=0.725; PFR: (2.13±0.80) EDV/s vs (2.07±1.09) EDV/s, t=0.339; phase SD: (5.58±4.16)° vs (5.97±4.64)°, t=0.450; all P>0.05). There was no significant difference between left ventricular functional

  12. High-resolution imaging of pulmonary ventilation and perfusion with 68Ga-VQ respiratory gated (4-D) PET/CT

    International Nuclear Information System (INIS)

    Callahan, Jason; Hofman, Michael S.; Siva, Shankar; Kron, Tomas; Schneider, Michal E.; Binns, David; Eu, Peter; Hicks, Rodney J.

    2014-01-01

    Our group has previously reported on the use of 68 Ga-ventilation/perfusion (VQ) PET/CT scanning for the diagnosis of pulmonary embolism. We describe here the acquisition methodology for 68 Ga-VQ respiratory gated (4-D) PET/CT and the effects of respiratory motion on image coregistration in VQ scanning. A prospective study was performed in 15 patients with non-small-cell lung cancer. 4-D PET and 4-D CT images were acquired using an infrared marker on the patient's abdomen as a surrogate for breathing motion following inhalation of Galligas and intravenous administration of 68 Ga-macroaggregated albumin. Images were reconstructed with phase-matched attenuation correction. The lungs were contoured on CT and PET VQ images during free-breathing (FB) and at maximum inspiration (Insp) and expiration (Exp). The similarity between PET and CT volumes was measured using the Dice coefficient (DC) comparing the following groups; (1) FB-PET/CT, (2) InspPET/InspCT, (3) ExpPET/Exp CT, and (4) FB-PET/AveCT. A repeated measures one-way ANOVA with multiple comparison Tukey tests were performed to evaluate any difference between the groups. Diaphragmatic motion in the superior-inferior direction on the 4-D CT scan was also measured. 4-D VQ scanning was successful in all patients without additional acquisition time compared to the nongated technique. The highest volume overlap was between ExpPET and ExpCT and between FB-PET and AveCT with a DC of 0.82 and 0.80 for ventilation and perfusion, respectively. This was significantly better than the DC comparing the other groups (0.78-0.79, p 68 Ga-VQ 4-D PET/CT is feasible and the blurring caused by respiratory motion is well corrected with 4-D acquisition, which principally reduces artefact at the lung bases. The images with the highest spatial overlap were the combined expiration phase or FB PET and average CT. With higher resolution than SPECT/CT, the PET/CT technique has a broad range of potential clinical applications including

  13. Assessment of various systolic phase indexes for the detection of coronary artery disease by multi-gated blood pool imaging at rest

    International Nuclear Information System (INIS)

    Narita, Michihiro; Kurihara, Tadashi; Murano, Kenichi; Usami, Masahisa; Honda, Minoru; Kanao, Keisuke

    1982-01-01

    After Tc-99m was labeled with red blood cells in vivo, multi-gated blood pool imaging (MGBPI) was obtained at anterior and 40-degree left anterior oblique (LAO) position at rest. In addition to left ventricular (LV) ejection fraction (EF) and wall motion (WM) abnormality, first-third EF, mean normalized systolic ejection rate, SdV/dt/EDV (LV peak ejection rate normalized by end-diastolic volume) and SdV/dt/V (peak ejection rate normalized by LV volume at the peak ejection) were calculated. Patients were divided into 3 groups; Normal (n = 14), coronary artery disease (CAD) with normal EF (> = 55%) and normal WM (Group I, n = 16), and CAD with abnormal EF and/or WM abnormality (Group II, n = 31). In all subjects of Normal and 13 patients of Group I, graded supine exercise stress MGBPI was performed at LAO position by using bicycle ergometer. All systolic phase indexes were correlated well with EF (r > = 0.77, p - 1 , p - 1 as a criteria of CAD, sensitivity of this index was 91% (100% in Group II and 75% in Group I). This sensitivity in Group I was identical with that of exercise stress MGBPI. Specificity of SdV/dt/V (86%) was a little inferior to that of exercise stress MGBPI (93%), but it was not statistically significant. In conclusion, SdV/dt/V is a useful systolic phase index to detect CAD. (J.P.N.)

  14. Bicuspid aortic valves: Diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, David J., E-mail: david.murphy@st-vincents.ie [Department of Radiology, St Vincent' s University Hospital, Elm Park, Dublin 4 (Ireland); McEvoy, Sinead H., E-mail: s.mcevoy@st-vincents.ie [Department of Radiology, St Vincent' s University Hospital, Elm Park, Dublin 4 (Ireland); Iyengar, Sri, E-mail: sri.iyengar@nhs.net [Department of Radiology, Plymouth Hospitals NHS Trust, Plymouth Devon PL6 8DH (United Kingdom); Feuchtner, Gudrun, E-mail: Gudrun.Feuchtner@i-med.ac.at [Department of Radiology, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck (Austria); Cury, Ricardo C., E-mail: r.cury@baptisthealth.net [Department of Radiology, Baptist Cardiac and Vascular Institute, 8900 North Kendall Drive, Miami, FL 33176 (United States); Roobottom, Carl, E-mail: carl.roobottom@nhs.net [Department of Radiology, Plymouth Hospitals NHS Trust, Plymouth Devon PL6 8DH (United Kingdom); Plymouth University Peninsula Schools of Medicine and Dentistry (United Kingdom); Baumueller, Stephan, E-mail: Hatem.Alkadhi@usz.ch [Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich (Switzerland); Alkadhi, Hatem, E-mail: stephan.baumueller@usz.ch [Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich (Switzerland); Dodd, Jonathan D., E-mail: jonniedodd@gmail.com [Department of Radiology, St Vincent' s University Hospital, Elm Park, Dublin 4 (Ireland)

    2014-08-15

    Objectives: To assess the diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT for bicuspid aortic valves. Materials and methods: The standard axial chest CT scans of 20 patients with known bicuspid aortic valves were blindly, randomly analyzed for (i) the appearance of the valve cusps, (ii) the largest aortic sinus area, (iii) the longest aortic cusp length, (iv) the thickest aortic valve cusp and (v) valve calcification. A second blinded reader independently analyzed the appearance of the valve cusps. Forty-two age- and sex-matched patients with known tricuspid aortic valves were used as controls. Retrospectively ECG-gated cardiac CT multiphase reconstructions of the aortic valve were used as the gold-standard. Results: Fourteen (21%) scans were scored as unevaluable (7 bicuspid, 7 tricuspid). Of the remainder, there were 13 evaluable bicuspid valves, ten of which showed an aortic valve line sign, while the remaining three showed a normal Mercedes-Benz appearance owing to fused valve cusps. The 35 evaluable tricuspid aortic valves all showed a normal Mercedes-Benz appearance (P = 0.001). Kappa analysis = 0.62 indicating good interobserver agreement for the aortic valve cusp appearance. Aortic sinus areas, aortic cusp lengths and aortic cusp thicknesses of ≥3.8 cm{sup 2}, 3.2 cm and 1.6 mm respectively on standard axial chest CT best distinguished bicuspid from tricuspid aortic valves (P < 0.0001 for all). Of evaluable scans, the sensitivity, specificity, positive and negative predictive values of standard axial chest CT in diagnosing bicuspid aortic valves was 77% (CI 0.54–1.0), 100%, 100% and 70% respectively. Conclusion: The aortic valve is evaluable in approximately 80% of standard chest 64-slice CT scans. Bicuspid aortic valves may be diagnosed on evaluable scans with good diagnostic accuracy. An aortic valve line sign, enlarged aortic sinuses and elongated, thickened valve cusps are specific CT

  15. New gate opening hours

    CERN Multimedia

    GS Department

    2009-01-01

    Please note the new opening hours of the gates as well as the intersites tunnel from the 19 May 2009: GATE A 7h - 19h GATE B 24h/24 GATE C 7h - 9h\t17h - 19h GATE D 8h - 12h\t13h - 16h GATE E 7h - 9h\t17h - 19h Prévessin 24h/24 The intersites tunnel will be opened from 7h30 to 18h non stop. GS-SEM Group Infrastructure and General Services Department

  16. Chitosan-Gated Magnetic-Responsive Nanocarrier for Dual-Modal Optical Imaging, Switchable Drug Release, and Synergistic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Mu, Qingxin [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Revia, Richard [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Wang, Kui [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Zhou, Xuezhe [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Pauzauskie, Peter J. [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhou, Shuiqin [Department of Chemistry, The College of Staten Island, City University of New York, Staten Island NY 10314 USA; Zhang, Miqin [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA

    2017-01-25

    In this study, we present a multifunctional yet structurally simple nanocarrier that has a high drug loading capacity, releases drug in response to onset of an AC magnetic field, and can serve as a long-term imaging contrast agent and effectively kills cancer cells by synergistic action. This nanocarrier (HMMC-NC) has a spherical shell structure with a center cavity of 80 nm in diameter. The shell is comprised of two layers: an inner layer of magnetite that exhibits superparamagnetism and an outer layer of mesoporous carbon embedded with carbon dots that exhibit photoluminescence property. Thus in addition to being a drug carrier, HMMC-NC is also a contrast agent for bioimaging. The switchable drug release is enabled by the chitosan molecules attached on the nanocarrier as the switching material which turns on or off the drug release in response to the application or withdrawal of an AC magnetic field.

  17. Dynamic underground stripping demonstration project

    International Nuclear Information System (INIS)

    Newmark, R.L.

    1992-04-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation techniques for rapid cleanup of localized underground spills. Called dynamic stripping to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first eight months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques. Tests then began on the contaminated site in FY 1992. This report describes the work at the Clean Site, including design and performance criteria, test results, interpretations, and conclusions. We fielded 'a wide range of new designs and techniques, some successful and some not. In this document, we focus on results and performance, lessons learned, and design and operational changes recommended for work at the contaminated site. Each section focuses on a different aspect of the work and can be considered a self-contained contribution

  18. Gate crashing arbuscular mycorrhizas: in vivo imaging shows the extensive colonization of both symbionts by Trichoderma atroviride.

    Science.gov (United States)

    Lace, Beatrice; Genre, Andrea; Woo, Sheridan; Faccio, Antonella; Lorito, Matteo; Bonfante, Paola

    2015-02-01

    Plant growth-promoting fungi include strains of Trichoderma species that are used in biocontrol, and arbuscular mycorrhizal (AM) fungi, that enhance plant nutrition and stress resistance. The concurrent interaction of plants with these two groups of fungi affects crop performance but has only been occasionally studied so far. Using in vivo imaging of green fluorescent protein-tagged lines, we investigated the cellular interactions occurring between Trichoderma atroviride PKI1, Medicago truncatula and two Gigaspora species under in vitro culture conditions. Trichoderma atroviride did not activate symbiotic-like responses in the plant cells, such as nuclear calcium spiking or cytoplasmic aggregations at hyphal contact sites. Furthermore, T. atroviride parasitized G. gigantea and G. margarita hyphae through localized wall breaking and degradation - although this was not associated with significant chitin lysis nor the upregulation of two major chitinase genes. Trichoderma atroviride colonized broad areas of the root epidermis, in association with localized cell death. The infection of both symbionts was also observed when T. atroviride was applied to a pre-established AM symbiosis. We conclude that - although this triple interaction is known to improve plant growth in agricultural environments - in vitro culture demonstrate a particularly aggressive mycoparasitic and plant-colonizing behaviour of a biocontrol strain of Trichoderma. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Double-gated spectral snapshots for biomolecular fluorescence

    International Nuclear Information System (INIS)

    Nakamura, Ryosuke; Hamada, Norio; Ichida, Hideki; Tokunaga, Fumio; Kanematsu, Yasuo

    2007-01-01

    A versatile method to take femtosecond spectral snapshots of fluorescence has been developed based on a double gating technique in the combination of an optical Kerr gate and an image intensifier as an electrically driven gate set in front of a charge-coupled device detector. The application of a conventional optical-Kerr-gate method is limited to molecules with the short fluorescence lifetime up to a few hundred picoseconds, because long-lifetime fluorescence itself behaves as a source of the background signal due to insufficiency of the extinction ratio of polarizers employed for the Kerr gate. By using the image intensifier with the gate time of 200 ps, we have successfully suppressed the background signal and overcome the application limit of optical-Kerr-gate method. The system performance has been demonstrated by measuring time-resolved fluorescence spectra for laser dye solution and the riboflavin solution as a typical sample of biomolecule

  20. High-resolution imaging of pulmonary ventilation and perfusion with {sup 68}Ga-VQ respiratory gated (4-D) PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, Jason [Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Hofman, Michael S. [The University of Melbourne, Department of Medicine, Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne, VIC (Australia); Siva, Shankar [The University of Melbourne, Peter MacCallum Cancer Centre, Department of Radiation Oncology, East Melbourne, VIC (Australia); The University of Melbourne, Sir Peter MacCallum Department of Oncology, East Melbourne, VIC (Australia); Kron, Tomas [The University of Melbourne, Sir Peter MacCallum Department of Oncology, East Melbourne, VIC (Australia); The University of Melbourne, Peter MacCallum Cancer Centre, Department of Physical Sciences, East Melbourne, VIC (Australia); Schneider, Michal E. [Monash University, Department of Medical Imaging and Radiation Science, Clayton, VIC (Australia); Binns, David; Eu, Peter [Peter MacCallum Cancer Centre, Centre for Cancer Imaging, East Melbourne, VIC (Australia); Hicks, Rodney J. [The University of Melbourne, Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne, VIC (Australia)

    2014-02-15

    Our group has previously reported on the use of {sup 68}Ga-ventilation/perfusion (VQ) PET/CT scanning for the diagnosis of pulmonary embolism. We describe here the acquisition methodology for {sup 68}Ga-VQ respiratory gated (4-D) PET/CT and the effects of respiratory motion on image coregistration in VQ scanning. A prospective study was performed in 15 patients with non-small-cell lung cancer. 4-D PET and 4-D CT images were acquired using an infrared marker on the patient's abdomen as a surrogate for breathing motion following inhalation of Galligas and intravenous administration of {sup 68}Ga-macroaggregated albumin. Images were reconstructed with phase-matched attenuation correction. The lungs were contoured on CT and PET VQ images during free-breathing (FB) and at maximum inspiration (Insp) and expiration (Exp). The similarity between PET and CT volumes was measured using the Dice coefficient (DC) comparing the following groups; (1) FB-PET/CT, (2) InspPET/InspCT, (3) ExpPET/Exp CT, and (4) FB-PET/AveCT. A repeated measures one-way ANOVA with multiple comparison Tukey tests were performed to evaluate any difference between the groups. Diaphragmatic motion in the superior-inferior direction on the 4-D CT scan was also measured. 4-D VQ scanning was successful in all patients without additional acquisition time compared to the nongated technique. The highest volume overlap was between ExpPET and ExpCT and between FB-PET and AveCT with a DC of 0.82 and 0.80 for ventilation and perfusion, respectively. This was significantly better than the DC comparing the other groups (0.78-0.79, p < 0.05). These values agreed with a visual inspection of the images with improved image coregistration around the lung bases. The diaphragmatic motion during the 4-D CT scan was highly variable with a range of 0.4-3.4 cm (SD 0.81 cm) in the right lung and 0-2.8 cm (SD 0.83 cm) in the left lung. Right-sided diaphragmatic nerve palsy was observed in 3 of 15 patients. {sup 68}Ga-VQ 4-D

  1. Dual-gated cardiac PET-clinical feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Teraes, Mika; Kokki, Tommi; Noponen, Tommi; Hoppela, Erika; Sipilae, Hannu T.; Knuuti, Juhani [Turku PET Centre, PO BOX 52, Turku (Finland); Durand-Schaefer, Nicolas [General Electric Medical Systems, Buc (France); Pietilae, Mikko [Turku University Hospital, Department of Internal Medicine, Turku (Finland); Kiss, Jan [Turku University Hospital, Department of Surgery, Turku (Finland)

    2010-03-15

    Both respiratory and cardiac motions reduce image quality in myocardial imaging. For accurate imaging of small structures such as vulnerable coronary plaques, simultaneous cardiac and respiratory gating is warranted. This study tests the feasibility of a recently developed robust method for cardiac-respiratory gating. List-mode data with triggers from respiratory and cardiac cycles are rearranged into dual-gated segments and reconstructed with standard algorithms of a commercial PET/CT scanner. Cardiac gates were defined as three fixed phases and one variable diastolic phase. Chest motion was measured with a respiratory gating device and post-processed to determine gates. Preservation of quantification in dual-gated images was tested with an IEC whole-body phantom. Minipig and human studies were performed to evaluate the feasibility of the method. In minipig studies, a coronary catheter with radioactive tip was guided in coronary artery for in vivo and ex vivo acquisitions. Dual gating in humans with suspected cardiac disorders was performed using 18-F-FDG as a tracer. The method was found feasible for in vivo imaging and the radioactive catheter tip was better resolved in gated images. In human studies, the dual gating was found feasible and easy for clinical routine. Maximal movement of myocardial surface in cranio-caudal direction was over 20 mm. The shape of myocardium was clearly different between the gates and papillary muscles become more visible in diastolic images. The first clinical experiences using robust cardiac-respiratory dual gating are encouraging. Further testing in larger clinical populations using tracers designed especially for plaque imaging is warranted. (orig.)

  2. Dual-gated cardiac PET-clinical feasibility study

    International Nuclear Information System (INIS)

    Teraes, Mika; Kokki, Tommi; Noponen, Tommi; Hoppela, Erika; Sipilae, Hannu T.; Knuuti, Juhani; Durand-Schaefer, Nicolas; Pietilae, Mikko; Kiss, Jan

    2010-01-01

    Both respiratory and cardiac motions reduce image quality in myocardial imaging. For accurate imaging of small structures such as vulnerable coronary plaques, simultaneous cardiac and respiratory gating is warranted. This study tests the feasibility of a recently developed robust method for cardiac-respiratory gating. List-mode data with triggers from respiratory and cardiac cycles are rearranged into dual-gated segments and reconstructed with standard algorithms of a commercial PET/CT scanner. Cardiac gates were defined as three fixed phases and one variable diastolic phase. Chest motion was measured with a respiratory gating device and post-processed to determine gates. Preservation of quantification in dual-gated images was tested with an IEC whole-body phantom. Minipig and human studies were performed to evaluate the feasibility of the method. In minipig studies, a coronary catheter with radioactive tip was guided in coronary artery for in vivo and ex vivo acquisitions. Dual gating in humans with suspected cardiac disorders was performed using 18-F-FDG as a tracer. The method was found feasible for in vivo imaging and the radioactive catheter tip was better resolved in gated images. In human studies, the dual gating was found feasible and easy for clinical routine. Maximal movement of myocardial surface in cranio-caudal direction was over 20 mm. The shape of myocardium was clearly different between the gates and papillary muscles become more visible in diastolic images. The first clinical experiences using robust cardiac-respiratory dual gating are encouraging. Further testing in larger clinical populations using tracers designed especially for plaque imaging is warranted. (orig.)

  3. Efficient optical Kerr gate of Bi2O3–B2O3–SiO2 glass for acquiring high contrast ballistic imaging in turbid medium

    International Nuclear Information System (INIS)

    Zhan, Pingping; Tan, Wenjiang; Wu, Bin; Si, Jinhai; Chen, Feng; Hou, Xun; Liu, Xin

    2013-01-01

    We investigated the ballistic imaging of a 1.41 line pair mm −1 section of a resolution test chart hidden behind a solution of polystyrene spheres with a femtosecond optical Kerr gate (OKG). A better transillumination image contrast could be acquired with an OKG of Bi 2 O 3 –B 2 O 3 –SiO 2 (BI) glass than that with an OKG of fused silica in a highly scattering media, which indicated that the BI glass was a better OKG medium due to its large nonlinear refractive index. (paper)

  4. Rapid gated Thallium-201 perfusion SPECT - clinically feasible?

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B.; Wilkinson, D.; Abatti, D.

    1998-01-01

    Full text: Standard dose energy window optimised Thallium-201 (Tl-201) SPECT has about half the counts of a standard dose from Technetium-99m Sestamibi (Tc99m-Mibi) gated perfusion SPECT. This study investigates the clinical feasibility of rapid energy window optimised Tl-201 gated perfusion SPECT (gated-TI) and compares quantitative left ventricular ejection fraction (LVEF) and visually assessed image quality for wall motion and thickening to analogous values obtained from Tc99m-Mibi gated perfusion SPECT (gated - mibi). Methods: We studied 60 patients with a rest gated Tl-201 SPECT (100 MBq, 77KeV peak, 34% window, 20 sec/projection) followed by a post stress gated Sestamibi SPECT (1GBq, 140KeV, 20% window, 20 sec/projection) separate dual isotope protocol. LVEF quantitation was performed using commercially available software (SPECTEF, General Electric). Visual grading of image quality for wall thickening and motion was performed using a three-point scale (excellent, good and poor). Results: LVEF for gated Tl-201 SPECT was 59.6 ± 12.0% (Mean ± SD). LVEF for gated Sestamibi SPECT was 60.4 ±11.4% (Mean ± SD). These were not significantly different (P=0.27, T-Test). There was good correlation (r=0.9) between gated-TI and gated-mibi LVEF values. The quality of gated-Tl images was ranked as excellent, good and poor in 12, 50 and 38% of the patients respectively. Image quality was better in gated-mibi SPECT, with ratings of 12, 62 and 26% respectively. Conclusion: Rapid gated Thallium-201 acquisition with energy window optimisation can be effectively performed on majority of patients and offers the opportunity to assess not only myocardial perfusion and function, as with Technetium based agents, but also viability using a single day one isotope protocol

  5. The impact of optimal respiratory gating and image noise on evaluation of intra-tumor heterogeneity in 18F-FDG positron emission tomography imaging of lung cancer

    NARCIS (Netherlands)

    Grootjans, W.; Tixier, F.; Vos, C.S. van der; Vriens, D.; Rest, C.C. Le; Bussink, J.; Oyen, W.J.G.; Geus-Oei, L.F. de; Visvikis, D.; Visser, E.P.

    2016-01-01

    Assessment of measurement accuracy of intra-tumor heterogeneity using texture features in positron emission tomography (PET) images is essential to characterize cancer lesions with high precision. In this study, we investigated the influence of respiratory motion and varying noise levels on

  6. The Impact of Optimal Respiratory Gating and Image Noise on Evaluation of Intratumor Heterogeneity on 18F-FDG PET Imaging of Lung Cancer

    NARCIS (Netherlands)

    Grootjans, W.; Tixier, F.; van der Vos, Charlotte Sophie; Vriens, D.; Le Rest, C.C.; Bussink, J.; Oyen, W.J.; de Geus-Oei, Lioe-Fee; Visvikis, D.; Visser, E.P.

    2016-01-01

    Accurate measurement of intratumor heterogeneity using parameters of texture on PET images is essential for precise characterization of cancer lesions. In this study, we investigated the influence of respiratory motion and varying noise levels on quantification of textural parameters in patients

  7. Probing Dense Sprays with Gated, Picosecond, Digital Particle Field Holography

    Directory of Open Access Journals (Sweden)

    James Trolinger

    2011-12-01

    Full Text Available This paper describes work that demonstrated the feasibility of producing a gated digital holography system that is capable of producing high-resolution images of three-dimensional particle and structure details deep within dense particle fields of a spray. We developed a gated picosecond digital holocamera, using optical Kerr cell gating, to demonstrate features of gated digital holography that make it an exceptional candidate for this application. The Kerr cell gate shuttered the camera after the initial burst of ballistic and snake photons had been recorded, suppressing longer path, multiple scattered illumination. By starting with a CW laser without gating and then incorporating a picosecond laser and an optical Kerr gate, we were able to assess the imaging quality of the gated holograms, and determine improvement gained by gating. We produced high quality images of 50–200 μm diameter particles, hairs and USAF resolution charts from digital holograms recorded through turbid media where more than 98% of the light was scattered from the field. The system can gate pulses as short as 3 mm in pathlength (10 ps, enabling image-improving features of the system. The experiments lead us to the conclusion that this method has an excellent capability as a diagnostics tool in dense spray combustion research.

  8. Buffers and vegetative filter strips

    Science.gov (United States)

    Matthew J. Helmers; Thomas M. Isenhart; Michael G. Dosskey; Seth M. Dabney

    2008-01-01

    This chapter describes the use of buffers and vegetative filter strips relative to water quality. In particular, we primarily discuss the herbaceous components of the following NRCS Conservation Practice Standards.

  9. Magnetic stripping studies for SPL

    CERN Document Server

    Posocco, P; CERN. Geneva. BE Department

    2010-01-01

    Magnetic stripping of H- can seriously enhance the beam losses along the SPL machine. These losses depend on the beam energy, on the beam transverse distribution and on the intensity of the magnetic field. For radioprotection issues the losses must be limited to 1 W/m. In this paper we will concentrate on the stripping phenomena inside the quadrupole magnets with the aim of defining the quadrupole range for the design phase of SPL.

  10. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique

    International Nuclear Information System (INIS)

    Tsai, I.C.; Lee, Tain; Chen, Min-Chi; Fu, Yun-Ching; Jan, Sheng-Lin; Wang, Chung-Chi; Chang, Yen

    2007-01-01

    Multidetector CT (MDCT) seems to be a promising tool for detection of neonatal coronary arteries, but whether the ECG-gated or non-ECG-gated technique should be used has not been established. To compare the detection rate and image quality of neonatal coronary arteries on MDCT using ECG-gated and non-ECG-gated techniques. Twelve neonates with complex congenital heart disease were included. The CT scan was acquired using an ECG-gated technique, and the most quiescent phase of the RR interval was selected to represent the ECG-gated images. The raw data were then reconstructed without the ECG signal to obtain non-ECG-gated images. The detection rate and image quality of nine coronary artery segments in the two sets of images were then compared. A two-tailed paired t test was used with P values <0.05 considered as statistically significant. In all coronary segments the ECG-gated technique had a better detection rate and produced images of better quality. The difference between the two techniques ranged from 25% in the left main coronary artery to 100% in the distal right coronary artery. For neonates referred for MDCT, if evaluation of coronary artery anatomy is important for the clinical management or surgical planning, the ECG-gated technique should be used because it can reliably detect the coronary arteries. (orig.)

  11. ECG-gating in non-cardiac digital subtraction angiography

    International Nuclear Information System (INIS)

    Gattoni, F.; Baldini, V.; Cairo, F.

    1987-01-01

    This paper reports the results of the ECG-gating in non-cardiac digital subtraction angiography (DSA). One hundred and fifteen patients underwent DSA (126 examinations); ECG-gating was applied in 66/126 examinations: images recorded at 70% of R wave were subtracted. Artifacts produced by vascular movements were evaluated in all patients: only 40 examinations, carried out whithout ECG-gating, showed vascular artifacts. The major advantage of the ECG-gated DSA is the more efficent subtraction because of the better images superimposition: therefore, ECG-gating can be clinically helpful. On the contrary, it could be a problem in arrhytmic or bradycardic patients. ECG-gating is helpful in DSA imaging of the thoracic and abdominal aorta and of the cervical and renal arteries. In the examinations of peripheral vessels of the limbs it is not so efficent as in the trunk or in the neck

  12. Respiratory gating in positron emission tomography: A quantitative comparison of different gating schemes

    International Nuclear Information System (INIS)

    Dawood, Mohammad; Buether, Florian; Lang, Norbert; Schober, Otmar; Schaefers, Klaus P

    2007-01-01

    Respiratory gating is used for reducing the effects of breathing motion in a wide range of applications from radiotherapy treatment to diagnostical imaging. Different methods are feasible for respiratory gating. In this study seven gating methods were developed and tested on positron emission tomography (PET) listmode data. The results of seven patient studies were compared quantitatively with respect to motion and noise. (1) Equal and (2) variable time-based gating methods use only the time information of the breathing cycle to define respiratory gates. (3) Equal and (4) variable amplitude-based gating approaches utilize the amplitude of the respiratory signal. (5) Cycle-based amplitude gating is a combination of time and amplitude-based techniques. A baseline correction was applied to methods (3) and (4) resulting in two new approaches: Baseline corrected (6) equal and (7) variable amplitude-based gating. Listmode PET data from seven patients were acquired together with a respiratory signal. Images were reconstructed applying the seven gating methods. Two parameters were used to quantify the results: Motion was measured as the displacement of the heart due to respiration and noise was defined as the standard deviation of pixel intensities in a background region. The amplitude-based approaches (3) and (4) were superior to the time-based methods (1) and (2). The improvement in capturing the motion was more than 30% (up to 130%) in all subjects. The variable time (2) and amplitude (4) methods had a more uniform noise distribution among all respiratory gates compared to equal time (1) and amplitude (3) methods. Baseline correction did not improve the results. Out of seven different respiratory gating approaches, the variable amplitude method (4) captures the respiratory motion best while keeping a constant noise level among all respiratory phases

  13. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mikestikova, M., E-mail: mikestik@fzu.cz [Academy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, 18221 Prague 8 (Czech Republic); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ullan, M. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Gregor, I.M.; Tackmann, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Hauser, M.; Jakobs, K.; Kuehn, S. [Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); and others

    2016-09-21

    A radiation hard n{sup +}-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the “ATLAS ITk Strip Sensor collaboration” and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in “punch-through protection” (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×10{sup 16} n{sub eq}/cm{sup 2}, by reactor neutron fluence of 1×10{sup 15} n{sub eq}/cm{sup 2} and by gamma rays from {sup 60}Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07. - Highlights:

  14. An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

    Science.gov (United States)

    Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-01-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  15. The value of gated myocardial perfusion imaging for the evaluation of early treatment effectiveness of ischemic heart disease using Ad-HGF myocardial injection

    International Nuclear Information System (INIS)

    Feng Jianlin; Cheng Xu; Li Jianhua; Xu Zhaoqiang; Li Dianfu; Yuan Biao; Zhang Yourong; Cao Kejiang; Huang Jun

    2008-01-01

    Objective: Hepatocyte growth factor (HGF) has multipotent actions mediated by c- Mesenchymal epithelial transition factor (Met) receptor. Preclinical studies in animal models of myocardial ischemia demonstrated that treatment with HGF could benefit myocardial perfusion, cardiac remodeling, angiogenesis and myocardial function. This study used gated 99 Tc m -methoxyisobutylisonitrile (MIBI) myocardial perfusion imaging (G-MPI) to assess the early treatment effectiveness of adenovirus HGF (Ad-HGF) directly administered in ischemic heart disease (IHD) patients. Methods: Eighteen patients with IHD were divided into 3 groups receiving low dose [5 x 10 8 plaque forming unit (PFU)/site], medium (1.5 x 10 9 PFU/site) and high dose (5 x l0 9 PFU/site) of Ad-HGF. And the Ad-HGF was injected at 10 sites in each patient. Rest G-MPI was performed before and after treatment for myocardial perfusion and left ventricular function measurement. Stata 7.0 was used to analyse the data. Results: (1) After Ad-HGF, myocardial perfusion was improved in 3/6, 5/6 and 6/6 patients in low, medium and high dosage groups. The dosage of AD-HGF was closely correlated with the improvement of myocardial perfusion (χ 2 =4.34, P<0.05). (2) Left ventricular ejection fraction (LVEF) was significantly increased [(50.1 ± 6.4)% vs (58.7 ± 5.6)%, t=6.1, P<0.01], end-diastolic volume [EDV, (137.7 ± 33.2) ml vs (123.7 ± 32.7) ml] and end-systolic volume [ESV, (70.2 ± 22.4) ml vs (51.9 ± 14.9) ml] were significantly reduced. (3) The LVEFs were increased in all groups, and the LVEF improvement in the high dosage group [(8.6 ± 5.9)%] was significantly greater than the other two groups [(4.3 ± l.2)%, (6.8 ± 5.7)%]. The difference of post-treatment improvement on LVEF between the low and medium dosage groups was not significant. The dosage of Ad-HGF was closely correlated with the improvement of LVEF (r=0.67, P< 0.01). Conclusion: G-MPI is a reliable method for evaluating the early effectiveness of

  16. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation

    Science.gov (United States)

    Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea

    2015-12-01

    PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δ φ =0.3+/- 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC  =  0.66+/- 0.04 ), Positive Predictive Value (PPV  =  0.81+/- 0.06 ) and Sensitivity (Sen.  =  0.49+/- 0.05 ). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol)  =  40+/- 30 , DSC  =  0.71+/- 0.07 and PPV  =  0.90+/- 0.13 ). High accuracy in target tracking position (Δ ME) was obtained for experimental and clinical data (Δ ME{{}\\text{exp}}=0+/- 3 mm; Δ ME{{}\\text{clin}}=0.3+/- 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume

  17. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems.

    Science.gov (United States)

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I; Du, Min; Pun, Sio-Hang

    2016-06-29

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R² = 98.78%).

  18. Image-Based Phenotypic Screening with Human Primary T Cells Using One-Dimensional Imaging Cytometry with Self-Tuning Statistical-Gating Algorithms.

    Science.gov (United States)

    Wang, Steve S; Ehrlich, Daniel J

    2017-09-01

    The parallel microfluidic cytometer (PMC) is an imaging flow cytometer that operates on statistical analysis of low-pixel-count, one-dimensional (1D) line scans. It is highly efficient in data collection and operates on suspension cells. In this article, we present a supervised automated pipeline for the PMC that minimizes operator intervention by incorporating multivariate logistic regression for data scoring. We test the self-tuning statistical algorithms in a human primary T-cell activation assay in flow using nuclear factor of activated T cells (NFAT) translocation as a readout and readily achieve an average Z' of 0.55 and strictly standardized mean difference of 13 with standard phorbol myristate acetate/ionomycin induction. To implement the tests, we routinely load 4 µL samples and can readout 3000 to 9000 independent conditions from 15 mL of primary human blood (buffy coat fraction). We conclude that the new technology will support primary-cell protein-localization assays and "on-the-fly" data scoring at a sample throughput of more than 100,000 wells per day and that it is, in principle, consistent with a primary pharmaceutical screen.

  19. Quantum gate decomposition algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Slepoy, Alexander

    2006-07-01

    Quantum computing algorithms can be conveniently expressed in a format of a quantum logical circuits. Such circuits consist of sequential coupled operations, termed ''quantum gates'', or quantum analogs of bits called qubits. We review a recently proposed method [1] for constructing general ''quantum gates'' operating on an qubits, as composed of a sequence of generic elementary ''gates''.

  20. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Science.gov (United States)

    Mikestikova, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Ullan, M.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A radiation hard n+-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the "ATLAS ITk Strip Sensor collaboration" and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in "punch-through protection" (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×1016 neq/cm2, by reactor neutron fluence of 1×1015 neq/cm2 and by gamma rays from 60Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07.

  1. A plane mirror experiment inspired by a comic strip

    Science.gov (United States)

    Lúcio Prados Ribeiro, Jair

    2016-01-01

    A comic strip about a plane mirror was used in a high school optics test, and it was perceived that a large portion of the students believed that the mirror should be larger than the object so the virtual image could be entirely visible. Inspired on the comic strip, an experimental demonstration with flat mirrors was developed, in order to readdress this topic learning. Students were encouraged to create their own investigation of the phenomenon with a simple instrumental apparatus and also suggest different experimental approaches.

  2. Magnetic ring for stripping enhancement

    International Nuclear Information System (INIS)

    Selph, F.

    1992-10-01

    A ring designed to recycle ions through a stripping medium offers the possibility for increasing output of the desired charge state by up to 4x. This could be a very important component of a Radioactive Nuclear Beam Facility. In order for such a ring to work effectively it must satisfy certain design conditions. These include achromaticity at the stripper, a dispersed region for an extraction magnet, and a number of first and higher order optics constraints which are necessary to insure that the beam emittance is not degraded unduly by the ring. An example is given of a candidate design of a stripping ring

  3. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jan, S; Becheva, E [DSV/I2BM/SHFJ, Commissariat a l' Energie Atomique, Orsay (France); Benoit, D; Rehfeld, N; Stute, S; Buvat, I [IMNC-UMR 8165 CNRS-Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Carlier, T [INSERM U892-Cancer Research Center, University of Nantes, Nantes (France); Cassol, F; Morel, C [Centre de physique des particules de Marseille, CNRS-IN2P3 and Universite de la Mediterranee, Aix-Marseille II, 163, avenue de Luminy, 13288 Marseille Cedex 09 (France); Descourt, P; Visvikis, D [INSERM, U650, Laboratoire du Traitement de l' Information Medicale (LaTIM), CHU Morvan, Brest (France); Frisson, T; Grevillot, L; Guigues, L; Sarrut, D; Zahra, N [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U630, INSA-Lyon, Universite Lyon 1, Centre Leon Berard (France); Maigne, L; Perrot, Y [Laboratoire de Physique Corpusculaire, 24 Avenue des Landais, 63177 Aubiere Cedex (France); Schaart, D R [Delft University of Technology, Radiation Detection and Medical Imaging, Mekelweg 15, 2629 JB Delft (Netherlands); Pietrzyk, U, E-mail: buvat@imnc.in2p3.fr [Reseach Center Juelich, Institute of Neurosciences and Medicine and Department of Physics, University of Wuppertal (Germany)

    2011-02-21

    GATE (Geant4 Application for Emission Tomography) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. Dedicated to the modelling of planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET) acquisitions, this platform is widely used to assist PET and SPECT research. A recent extension of this platform, released by the OpenGATE collaboration as GATE V6, now also enables modelling of x-ray computed tomography and radiation therapy experiments. This paper presents an overview of the main additions and improvements implemented in GATE since the publication of the initial GATE paper (Jan et al 2004 Phys. Med. Biol. 49 4543-61). This includes new models available in GATE to simulate optical and hadronic processes, novelties in modelling tracer, organ or detector motion, new options for speeding up GATE simulations, examples illustrating the use of GATE V6 in radiotherapy applications and CT simulations, and preliminary results regarding the validation of GATE V6 for radiation therapy applications. Upon completion of extensive validation studies, GATE is expected to become a valuable tool for simulations involving both radiotherapy and imaging.

  4. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  5. Gated myocardial SPECT using spatial and temporal filtering

    International Nuclear Information System (INIS)

    Hatton, R.L.; Hutton, B.F.; Kyme, A.Z.; Larcos, G.

    2002-01-01

    Full text: Standard protocols for examining myocardial perfusion and motion defects involve the use of gated SPECT images, and a composite of the gated frames. This study examines the usefulness of extracting one or a combination of frames from the gated image to assess perfusion, and whether the addition of a temporal filter to the gated image improves signal to noise. Choice of the most appropriate frame was also considered. Sixteen and eight frame gated SPECT studies were simulated using the dynamic NURBS-based cardiac torso (NCAT) phantom. Variously sized perfusion defects were included in the inferior wall to assess contrast to normal tissue. Scatter and attenuation were not included. Butterworth spatial cutoff frequencies were varied to establish the most appropriate combination of temporal/spatial filters to reduce noise and retain contrast in the images. The 16 frame data produced higher ejection fraction across all spatial filter cutoffs, and generally was unaffected by temporal filtering. Temporal filtering reduced the noise in a uniform liver region in the gated images to within 25% of the composite image noise. The lesion extent and contrast were greater in the end-diastolic frames compared to end-systolic and mid-cycle frames. In conclusion, by using a temporally filtered end-diastolic image from the gated sequence, a favourable balance between noise and contrast can be achieved. Work is progress to confirm these findings in the clinical situation. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  6. Determination of prospective displacement-based gate threshold for respiratory-gated radiation delivery from retrospective phase-based gate threshold selected at 4D CT simulation

    International Nuclear Information System (INIS)

    Vedam, S.; Archambault, L.; Starkschall, G.; Mohan, R.; Beddar, S.

    2007-01-01

    Four-dimensional (4D) computed tomography (CT) imaging has found increasing importance in the localization of tumor and surrounding normal structures throughout the respiratory cycle. Based on such tumor motion information, it is possible to identify the appropriate phase interval for respiratory gated treatment planning and delivery. Such a gating phase interval is determined retrospectively based on tumor motion from internal tumor displacement. However, respiratory-gated treatment is delivered prospectively based on motion determined predominantly from an external monitor. Therefore, the simulation gate threshold determined from the retrospective phase interval selected for gating at 4D CT simulation may not correspond to the delivery gate threshold that is determined from the prospective external monitor displacement at treatment delivery. The purpose of the present work is to establish a relationship between the thresholds for respiratory gating determined at CT simulation and treatment delivery, respectively. One hundred fifty external respiratory motion traces, from 90 patients, with and without audio-visual biofeedback, are analyzed. Two respiratory phase intervals, 40%-60% and 30%-70%, are chosen for respiratory gating from the 4D CT-derived tumor motion trajectory. From residual tumor displacements within each such gating phase interval, a simulation gate threshold is defined based on (a) the average and (b) the maximum respiratory displacement within the phase interval. The duty cycle for prospective gated delivery is estimated from the proportion of external monitor displacement data points within both the selected phase interval and the simulation gate threshold. The delivery gate threshold is then determined iteratively to match the above determined duty cycle. The magnitude of the difference between such gate thresholds determined at simulation and treatment delivery is quantified in each case. Phantom motion tests yielded coincidence of simulation

  7. Signatures of Mechanosensitive Gating.

    Science.gov (United States)

    Morris, Richard G

    2017-01-10

    The question of how mechanically gated membrane channels open and close is notoriously difficult to address, especially if the protein structure is not available. This perspective highlights the relevance of micropipette-aspirated single-particle tracking-used to obtain a channel's diffusion coefficient, D, as a function of applied membrane tension, σ-as an indirect assay for determining functional behavior in mechanosensitive channels. While ensuring that the protein remains integral to the membrane, such methods can be used to identify not only the gating mechanism of a protein, but also associated physical moduli, such as torsional and dilational rigidity, which correspond to the protein's effective shape change. As an example, three distinct D-versus-σ "signatures" are calculated, corresponding to gating by dilation, gating by tilt, and gating by a combination of both dilation and tilt. Both advantages and disadvantages of the approach are discussed. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Comparison of an adaptive neuro-fuzzy inference system and an artificial neural network in the cross-talk correction of simultaneous 99 m Tc / 201Tl SPECT imaging using a GATE Monte-Carlo simulation

    Science.gov (United States)

    Heidary, Saeed; Setayeshi, Saeed; Ghannadi-Maragheh, Mohammad

    2014-09-01

    The aim of this study is to compare the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network (ANN) to estimate the cross-talk contamination of 99 m Tc / 201 Tl image acquisition in the 201 Tl energy window (77 ± 15% keV). GATE (Geant4 Application in Emission and Tomography) is employed due to its ability to simulate multiple radioactive sources concurrently. Two kinds of phantoms, including two digital and one physical phantom, are used. In the real and the simulation studies, data acquisition is carried out using eight energy windows. The ANN and the ANFIS are prepared in MATLAB, and the GATE results are used as a training data set. Three indications are evaluated and compared. The ANFIS method yields better outcomes for two indications (Spearman's rank correlation coefficient and contrast) and the two phantom results in each category. The maximum image biasing, which is the third indication, is found to be 6% more than that for the ANN.

  9. Imaging system

    International Nuclear Information System (INIS)

    Froggatt, R.J.

    1981-01-01

    The invention provides a two dimensional imaging system in which a pattern of radiation falling on the system is detected to give electrical signals for each of a plurality of strips across the pattern. The detection is repeated for different orientations of the strips and the whole processed by compensated back projection. For a shadow x-ray system a plurality of strip x-ray detectors are rotated on a turntable. For lower frequencies the pattern may be rotated with a Dove prism and the strips condensed to suit smaller detectors with a cylindrical lens. (author)

  10. Step-and-shoot prospectively ECG-gated versus retrospectively ECG-gated with tube current modulation coronary CT angiography using the 128-slice MDCT: comparison of image quality and radiation dose

    International Nuclear Information System (INIS)

    Jeong, Dong Wook; Choo, Ki Seok; Baik, Seung Kug; Kim, Yong Woo; Jeon, Ung Bae; Kim, Jeong Soo; Lim, Soo Jin

    2011-01-01

    Background: Little is known regarding image quality and the required radiation dose for step-and-shoot and retrospective coronary computed tomography angiography (CCTA) with tube current modulation (TCM) in 128-slice multidetector CT (MDCT) coronary angiography. Purpose: To compare image quality and radiation dose in patients who underwent 128-slice MDCT by the step-and- shoot method with those in patients who underwent 128-slice MDCT with retrospective CCTA with TCM. Material and Methods: CCTA obtained with 128-slice MDCT was retrospectively evaluated in 160 patients. Two independent reviewers separately scored the subjective image quality of the coronary artery segments (1, excellent; 4, poor) for step-and-shoot (68, mean heart rate [HR]: 59.3±6.8) and retrospective CCTA with TCM (77, mean HR: 59.1±9.8). Interobserver variability was calculated. Effective radiation doses of both scan techniques were calculated with dose-length product. Results: There was good agreement for quality scores of coronary artery segment images between the independent reviewers (k=0.72). The number of coronary artery segments that could not be evaluated was 2.85% (27 of 947) in the step-and-shoot and 1.87% (20 of 1071) in retrospective CCTA with TCM. Image quality scores were not significantly different (P>.05). Mean patient radiation dose was 63% lower for step-and-shoot (1.94±0.70 mSv) than for retrospective CCTA with TCM (4.51±1.18 mSv) (P<0.0001). For patients who underwent step-and-shoot or retrospective CCTA with TCM, an average HR of 63.5 beats per minute was identified as the threshold for the prediction of non-diagnostic image quality for both protocols. There were no significant differences in the image quality of both methods between obese (body mass index [BMI≥25) and non-obese patients (BMI<25), but radiation doses were higher in the obesity group than in the non-obesity group for both methods. Conclusion: Both step-and-shoot and retrospective CCTA with TCM using 128

  11. Gated Treatment Delivery Verification With On-Line Megavoltage Fluoroscopy

    International Nuclear Information System (INIS)

    Tai An; Christensen, James D.; Gore, Elizabeth; Khamene, Ali; Boettger, Thomas; Li, X. Allen

    2010-01-01

    Purpose: To develop and clinically demonstrate the use of on-line real-time megavoltage (MV) fluoroscopy for gated treatment delivery verification. Methods and Materials: Megavoltage fluoroscopy (MVF) image sequences were acquired using a flat panel equipped for MV cone-beam CT in synchrony with the respiratory signal obtained from the Anzai gating device. The MVF images can be obtained immediately before or during gated treatment delivery. A prototype software tool (named RTReg4D) was developed to register MVF images with phase-sequenced digitally reconstructed radiograph images generated from the treatment planning system based on four-dimensional CT. The image registration can be used to reposition the patient before or during treatment delivery. To demonstrate the reliability and clinical usefulness, the system was first tested using a thoracic phantom and then prospectively in actual patient treatments under an institutional review board-approved protocol. Results: The quality of the MVF images for lung tumors is adequate for image registration with phase-sequenced digitally reconstructed radiographs. The MVF was found to be useful for monitoring inter- and intrafractional variations of tumor positions. With the planning target volume contour displayed on the MVF images, the system can verify whether the moving target stays within the planning target volume margin during gated delivery. Conclusions: The use of MVF images was found to be clinically effective in detecting discrepancies in tumor location before and during respiration-gated treatment delivery. The tools and process developed can be useful for gated treatment delivery verification.

  12. Using Comic Strips in Language Classes

    Science.gov (United States)

    Csabay, Noémi

    2006-01-01

    The author believes that using comic strips in language-learning classes has three main benefits. First, comic strips motivate younger learners. Second, they provide a context and logically connected sentences to help language learning. Third, their visual information is helpful for comprehension. The author argues that comic strips can be used in…

  13. Optical XOR gate

    Science.gov (United States)

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  14. Dynamic underground stripping. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    Dynamic Underground Stripping (DUS) is a combination of technologies targeted to remediate soil and ground water contaminated with organic compounds. DUS is effective both above and below the water table and is especially well suited for sites with interbedded sand and clay layers. The main technologies comprising DUS are steam injection at the periphery of a contaminated area to heat permeable subsurface areas, vaporize volatile compounds bound to the soil, and drive contaminants to centrally located vacuum extraction wells; electrical heating of less permeable sediments to vaporize contaminants and drive them into the steam zone; and underground imaging such as Electrical Resistance Tomography to delineate heated areas to ensure total cleanup and process control. A full-scale demonstration was conducted on a gasoline spill site at Lawrence Livermore National Laboratory in Livermore, California from November 1992 through December 1993

  15. Digital autoradiography using silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Overdick, M.

    1998-05-01

    Spatially resolving radiation detection systems operating in real time can be used to acquire autoradiographic images. An overview over alternatives to traditional autoradiography is given and the special features of these filmless methods are discussed. On this basis the design of a system for digital autoradiography using silicon strip detectors is presented. Special emphasis is put on the physical background of the detection process in the semiconductor and on the self-triggering read-out technique. The practical performance of the system is analyzed with respect to energy and spatial resolution. This analysis is complemented by case studies from cell biology (especially electrophoresis), botany and mineralogy. Also the results from a time-resolved autoradiographic experiment are presented. (orig.) 80 refs.

  16. Method of stripping solid particles

    International Nuclear Information System (INIS)

    1980-01-01

    A method of stripping loaded solid particles is specified in which uniform batches of the loaded particles are passed successively upwardly through an elution column in the form of discrete plugs, the particles of which do not intermingle substantially with the particles of the vertically adjacent plug(s), and are contacted therein with eluant liquid flowed downwardly, strong eluate being withdrawn from the lower region of the column, the loaded particles being supplied as a slurry in a carrier liquid, and successive batches of loaded particles being isolated as measured batches and being separated from their carrier liquid before being contacted with strong eluate and slurried with the strong eluate into the lower region of the column. An example describes the stripping of ion exchange resin particles loaded with complex uranium ions. (author)

  17. Dynamic Liver Magnetic Resonance Imaging in Free-Breathing: Feasibility of a Cartesian T1-Weighted Acquisition Technique With Compressed Sensing and Additional Self-Navigation Signal for Hard-Gated and Motion-Resolved Reconstruction.

    Science.gov (United States)

    Kaltenbach, Benjamin; Bucher, Andreas M; Wichmann, Julian L; Nickel, Dominik; Polkowski, Christoph; Hammerstingl, Renate; Vogl, Thomas J; Bodelle, Boris

    2017-11-01

    The aim of this study was to assess the feasibility of a free-breathing dynamic liver imaging technique using a prototype Cartesian T1-weighted volumetric interpolated breathhold examination (VIBE) sequence with compressed sensing and simultaneous acquisition of a navigation signal for hard-gated and motion state-resolved reconstruction. A total of 43 consecutive oncologic patients (mean age, 66 ± 11 years; 44% female) underwent free-breathing dynamic liver imaging for the evaluation of liver metastases from colorectal cancer using a prototype Cartesian VIBE sequence (field of view, 380 × 345 mm; image matrix, 320 × 218; echo time/repetition time, 1.8/3.76 milliseconds; flip angle, 10 degrees; slice thickness, 3.0 mm; acquisition time, 188 seconds) with continuous data sampling and additionally acquired self-navigation signal. Data were iteratively reconstructed using 2 different approaches: first, a hard-gated reconstruction only using data associated to the dominating motion state (CS VIBE, Compressed Sensing VIBE), and second, a motion-resolved reconstruction with 6 different motion states as additional image dimension (XD VIBE, eXtended dimension VIBE). Continuous acquired data were grouped in 16 subsequent time increments with 11.57 seconds each to resolve arterial and venous contrast phases. For image quality assessment, both CS VIBE and XD VIBE were compared with the patient's last staging dynamic liver magnetic resonance imaging including a breathhold (BH) VIBE as reference standard 4.5 ± 1.2 months before. Representative quality parameters including respiratory artifacts were evaluated for arterial and venous phase images independently, retrospectively and blindly by 3 experienced radiologists, with higher scores indicating better examination quality. To assess diagnostic accuracy, same readers evaluated the presence of metastatic lesions for XD VIBE and CS VIBE compared with reference BH examination in a second session. Compared with CS VIBE, XD VIBE

  18. Field programmable gate array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo

    DEFF Research Database (Denmark)

    Thrane, Lars; Larsen, Henning Engelbrecht; Norozi, Kambiz

    2009-01-01

    efficient and compact implementation by combining the conversion to an analytic signal with a pulse shaping function without the need for extra resources as compared to the Hilbert transform method. The conversion of the analytic signal to amplitude and phase is done by use of the coordinate rotation......We demonstrate a field programmable gate-array-based real-time optical Doppler tomography system. A complex-valued bandpass filter is used for the first time in optical coherence tomography signal processing to create the analytic signal. This method simplifies the filter design, and allows...

  19. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  20. 360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.

    Science.gov (United States)

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-01-11

    360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.

  1. Phase analysis in gated blood pool tomography

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Bunko, Hisashi; Tada, Akira; Taki, Junichi; Nanbu, Ichiro

    1984-01-01

    Phase analysis of gated blood pool study has been applied to detect the site of accessory conduction pathway (ACP) in the Wolff-Parkinson-White (WPW) syndrome; however, there was a limitation to detect the precise location of ACP by phase analysis alone. In this study, we applied phase analysis to gated blood pool tomography using seven pin hole tomography (7PT) and gated emission computed tomography (GECT) in 21 patients with WPW syndrome and 3 normal subjects. In 17 patients, the sites of ACPs were confirmed by epicardial mapping and the result of the surgical division of ACP. In 7PT, the site of ACP grossly agreed to the abnormal initial phase in phase image in 5 out of 6 patients with left cardiac type. In GECT, phase images were generated in short axial, vertical and horizontal long axial sections. In 8 out of 9 patients, the site of ACP was correctly identified by phase images, and in a patient who had two ACPs, initial phase corresponded to one of the two locations. Phase analysis of gated blood pool tomography has advantages for avoiding overlap of blood pools and for estimating three-dimensional propagation of the contraction, and can be a good adjunctive method in patients with WPW syndrome. (author)

  2. Low material budget floating strip Micromegas for ion transmission radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bortfeldt, J., E-mail: jonathan.bortfeldt@cern.ch [LMU Munich, LS Schaile, Am Coulombwall 1, D-85748 Garching (Germany); Biebel, O.; Flierl, B.; Hertenberger, R.; Klitzner, F.; Lösel, Ph. [LMU Munich, LS Schaile, Am Coulombwall 1, D-85748 Garching (Germany); Magallanes, L. [LMU Munich, LS Parodi, Am Coulombwall 1, D-85748 Garching (Germany); University Hospital Heidelberg, Im Neuenheimer Feld 672, D-69120 Heidelberg (Germany); Müller, R. [LMU Munich, LS Schaile, Am Coulombwall 1, D-85748 Garching (Germany); Parodi, K. [LMU Munich, LS Parodi, Am Coulombwall 1, D-85748 Garching (Germany); Heidelberg Ion-Beam Therapy Center, Im Neuenheimer Feld 450, D-69120 Heidelberg (Germany); Schlüter, T. [LMU Munich, Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching (Germany); Voss, B. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany); Zibell, A. [JMU Würzburg, Sanderring 2, D-97070 Würzburg (Germany)

    2017-02-11

    Floating strip Micromegas are high-accuracy and discharge insensitive gaseous detectors, able to track single particles at fluxes of 7 MHz/cm{sup 2} with 100 μm resolution. We developed low-material-budget detectors with one-dimensional strip readout, suitable for tracking at highest particle rates as encountered in medical ion transmission radiography or inner tracker applications. Recently we additionally developed Kapton-based floating strip Micromegas with two-dimensional strip readout, featuring an overall thickness of 0.011 X{sub 0}. These detectors were tested in high-rate proton and carbon-ion beams at the tandem accelerator in Garching and the Heidelberg Ion-Beam Therapy Center, operated with an optimized Ne:CF{sub 4} gas mixture. By coupling the Micromegas detectors to a new scintillator based range detector, ion transmission radiographies of PMMA and tissue-equivalent phantoms were acquired. The range detector with 18 layers is read out via wavelength shifting fibers, coupled to a multi-anode photomultiplier. We present the performance of the Micromegas detectors with respect to timing and single plane track reconstruction using the μTPC method. We discuss the range resolution of the scintillator range telescope and present the image reconstruction capabilities of the combined system.

  3. Stress-induced myocardial ischemia is associated with early post-stress left ventricular mechanical dyssynchrony as assessed by phase analysis of {sup 201}Tl gated SPECT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Cheng; Shen, Thau-Yun [Show Chwan Memorial Hospital, Department of Cardiology, Changhua (China); Chang, Ming-Che [Changhua Christian Hospital, Department of Nuclear Medicine, Changhua (China); Hung, Guang-Uei [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Changhua (China); China Medical University, Department of Biomedical Imaging and Radiological Science, Taichung (China); Chen, Wan-Chen [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Changhua (China); Kao, Chia-Hung [China Medical University, Department of Biomedical Imaging and Radiological Science, Taichung (China); Chen, Ji [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States)

    2012-12-15

    In {sup 201}Tl SPECT myocardial perfusion imaging (MPI) data are acquired shortly after the stress injection to assess early post-stress left ventricle (LV) function. The purpose of this study was to use {sup 201}Tl SPECT MPI to investigate whether stress-induced myocardial ischemia is associated with LV mechanical dyssynchrony. Enrolled in the study were 75 patients who were referred for dipyridamole stress and rest {sup 201}Tl gated SPECT MPI. The early post-stress scan was started 5 min after injection, and followed by the rest scan 4 h later. The patients were divided into three groups: ischemia group (N = 25, summed stress score, SSS, {>=}5, summed rest score, SRS, <5), infarct group (N = 16, SSS {>=}5, SRS {>=}5) and normal group (N = 34, SSS <5, SRS <5). LV dyssynchrony parameters were calculated by phase analysis, and compared between the stress and rest images. In the ischemia group, LV dyssynchrony was significantly larger during stress than during rest. On the contrary, LV dyssynchrony during stress was significantly smaller than during rest in the normal and infarct groups. LV dyssynchrony during rest was significantly larger in the infarct group than in the normal and ischemia groups. There were no significant differences in LV dyssynchrony during rest between the normal and ischemia groups. Stress-induced myocardial ischemia caused dyssynchronous contraction in the ischemic region, leading to a deterioration in LV synchrony. Normal myocardium had more synchronous contraction during stress. The different dyssynchrony pattern between ischemic and normal myocardium early post-stress may aid the diagnosis of coronary artery disease using {sup 201}Tl gated SPECT MPI. (orig.)

  4. 128-slice Dual-source Computed Tomography Coronary Angiography in Patients with Atrial Fibrillation: Image Quality and Radiation Dose of Prospectively Electrocardiogram-triggered Sequential Scan Compared with Retrospectively Electrocardiogram-gated Spiral Scan.

    Science.gov (United States)

    Lin, Lu; Wang, Yi-Ning; Kong, Ling-Yan; Jin, Zheng-Yu; Lu, Guang-Ming; Zhang, Zhao-Qi; Cao, Jian; Li, Shuo; Song, Lan; Wang, Zhi-Wei; Zhou, Kang; Wang, Ming

    2013-01-01

    Objective To evaluate the image quality (IQ) and radiation dose of 128-slice dual-source computed tomography (DSCT) coronary angiography using prospectively electrocardiogram (ECG)-triggered sequential scan mode compared with ECG-gated spiral scan mode in a population with atrial fibrillation. Methods Thirty-two patients with suspected coronary artery disease and permanent atrial fibrillation referred for a second-generation 128-slice DSCT coronary angiography were included in the prospective study. Of them, 17 patients (sequential group) were randomly selected to use a prospectively ECG-triggered sequential scan, while the other 15 patients (spiral group) used a retrospectively ECG-gated spiral scan. The IQ was assessed by two readers independently, using a four-point grading scale from excel-lent (grade 1) to non-assessable (grade 4), based on the American Heart Association 15-segment model. IQ of each segment and effective dose of each patient were compared between the two groups. Results The mean heart rate (HR) of the sequential group was 96±27 beats per minute (bpm) with a variation range of 73±25 bpm, while the mean HR of the spiral group was 86±22 bpm with a variationrange of 65±24 bpm. Both of the mean HR (t=1.91, P=0.243) and HR variation range (t=0.950, P=0.350) had no significant difference between the two groups. In per-segment analysis, IQ of the sequential group vs. spiral group was rated as excellent (grade 1) in 190/244 (78%) vs. 177/217 (82%) by reader1 and 197/245 (80%) vs. 174/214 (81%) by reader2, as non-assessable (grade 4) in 4/244 (2%) vs. 2/217 (1%) by reader1 and 6/245 (2%) vs. 4/214 (2%) by reader2. Overall averaged IQ per-patient in the sequential and spiral group showed equally good (1.27±0.19 vs. 1.25±0.22, Z=-0.834, P=0.404). The effective radiation dose of the sequential group reduced significantly compared with the spiral group (4.88±1.77 mSv vs. 10.20±3.64 mSv; t=-5.372, P=0.000). Conclusion Compared with retrospectively

  5. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates

    Science.gov (United States)

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-05-01

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a

  6. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates.

    Science.gov (United States)

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-06-07

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.

  7. Synchrotron applications of pixel and strip detectors at Diamond Light Source

    International Nuclear Information System (INIS)

    Marchal, J.; Tartoni, N.; Nave, C.

    2009-01-01

    A wide range of position-sensitive X-ray detectors have been commissioned on the synchrotron X-ray beamlines operating at the Diamond Light Source in UK. In addition to mature technologies such as image-plates, CCD-based detectors, multi-wire and micro-strip gas detectors, more recent detectors based on semiconductor pixel or strip sensors coupled to CMOS read-out chips are also in use for routine synchrotron X-ray diffraction and scattering experiments. The performance of several commercial and developmental pixel/strip detectors for synchrotron studies are discussed with emphasis on the image quality achieved with these devices. Examples of pixel or strip detector applications at Diamond Light Source as well as the status of the commissioning of these detectors on the beamlines are presented. Finally, priorities and ideas for future developments are discussed.

  8. 3D silicon strip detectors

    International Nuclear Information System (INIS)

    Parzefall, Ulrich; Bates, Richard; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kuehn, Susanne; Lozano, Manuel; Pahn, Gregor; Parkes, Chris; Pellegrini, Giulio; Pennicard, David; Piemonte, Claudio; Ronchin, Sabina; Szumlak, Tomasz; Zoboli, Andrea; Zorzi, Nicola

    2009-01-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10 15 N eq /cm 2 , which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10 15 N eq /cm 2 . The tests were performed with three systems: a highly focused IR-laser with 5μm spot size to make position-resolved scans of the charge collection efficiency, an Sr 90 β-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the results obtained with 3D-STC-modules.

  9. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  10. Depletive stripping chronopotentiometry : a major step forward in electrochemical stripping techniques for metal ion speciation analysis

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2004-01-01

    A comparative evaluation of the utility of the various modes of stripping chronopotentiometry (SCP) for trace metal speciation analysis is presented in the broad context of stripping voltammetric techniques. The remarkable fundamental advantages of depletive SCP at scanned deposition potential

  11. Potential profile in a conducting polymer strip

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Vlachopoulos, Nikolaos

    2002-01-01

    Many conjugated polymers show an appreciable difference in volume between their oxidized and reduced forms. This property can be utilized in soft electrochemically driven actuators, "artificial muscles". Several geometries have been proposed for the conversion of the volume expansion into useful...... mechanical work. In a particularly simple geometry, the length change of polymer strips is exploited. The polymer strips are connected to the driving circuit at the end of the strip that is attached to the support of the device. The other end of the strip is connected to the load. The advantage of this set...

  12. Optimizing the Stripping Procedure for LHCb

    CERN Document Server

    Richardson, Rachel

    2017-01-01

    The LHCb experiment faces a major challenge from the large amounts of data received while the LHC is running. The ability to sort this information in a useful manner is important for working groups to perform physics analyses. Both hardware and software triggers are used to decrease the data rate and then the stripping process is used to sort the data into streams and further into stripping lines. This project studies the hundreds of stripping lines to look for overlaps between them in order to make the stripping process more efficient.

  13. Study on lifetime of C stripping foils

    International Nuclear Information System (INIS)

    Zhang Hongbin; Lu Ziwei; Zhao Yongtao; Li Zhankui; Xu Hushan; Xiao Guoqing; Wang Yuyu; Zhang Ling; Li Longcai; Fang Yan

    2007-01-01

    The carbon stripping foils can be prepared with the AC and DC arc discharge methods, or even sandwiched with AC-DC alternative layers. The lifetime of the carbon stripping foils of 19 μg/cm 2 prepared with different methods and/or structures was measured. The factors affecting the bombarding lifetime of the carbon stripping foils, especially the method of the foil preparation and the structure of the carbon stripping foils, were discussed. It is observed that the foils prepared with the DC arc discharge method have a longer bombarding lifetime than those prepared with the AC arc discharge method. (authors)

  14. Amplifying genetic logic gates.

    Science.gov (United States)

    Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew

    2013-05-03

    Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

  15. The Whipple Strip Sky Survey

    Science.gov (United States)

    Kertzman, M. P.

    As part of the normal operation of the Whipple 10m Gamma Ray telescope, ten minute drift scan “zenith” runs are made each night of observation for use as calibration. Most of the events recorded during a zenith run are due to the background of cosmic ray showers. However, it would be possible for a hitherto unknown source of gamma rays to drift through the field. This paper reports the results of a search for serendipitous high energy gamma ray sources in the Whipple 10m nightly calibration zenith data. From 2000-2004 nightly calibration runs were taken at an elevation of 89 º. A 2- D analysis of these drift scan runs produces a strip of width ~ 3.5º in declination and spanning the full range of right ascension. In the 2004-05 observing season the calibration runs were taken at elevations of 86° and 83°. Beginning in the 2005-06 season, the nightly calibration runs were taken at an elevation of 80º. Collectively, these drift scans cover a strip approximately 12.5º wide in declination, centered at declination 37.18º, and spanning the full range of RA. The analysis procedures developed for drift scan data, the sensitivity of the method, and the results will be presented.

  16. Respiratory gated lung CT using 320-row area detector CT

    International Nuclear Information System (INIS)

    Sakamoto, Ryo; Noma, Satoshi; Higashino, Takanori

    2010-01-01

    Three hundred and twenty-row Area Detector CT (ADCT) has made it possible to scan whole lung field with prospective respiratory gated wide volume scan. We evaluated whether the respiratory gated wide volume scan enables to reduce motion induced artifacts in the lung area. Helical scan and respiratory gated wide volume scan were performed in 5 patients and 10 healthy volunteers under spontaneous breathing. Significant reduction of motion artifact and superior image quality were obtained in respiratory gated scan in comparison with helical scan. Respiratory gated wide volume scan is an unique method using ADCT, and is able to reduce motion artifacts in lung CT scans of patients unable to suspend respiration in clinical scenes. (author)

  17. Dosimetry applications in GATE Monte Carlo toolkit.

    Science.gov (United States)

    Papadimitroulas, Panagiotis

    2017-09-01

    Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Semi-automatic segmentation of gated blood pool emission tomographic images by watersheds: application to the determination of right and left ejection fractions

    International Nuclear Information System (INIS)

    Mariano-Goulart, D.; Collet, H.; Kotzki, P.-O.; Zanca, M.; Rossi, M.

    1998-01-01

    Tomographic multi-gated blood pool scintigraphy (TMUGA) is a widely available method which permits simultaneous assessment of right and left ventricular ejection fractions. However, the widespread clinical use of this technique is impeded by the lack of segmentation methods dedicated to an automatic analysis of ventricular activities. In this study we evaluated how a watershed algorithm succeeds in providing semi-automatic segmentation of ventricular activities in order to measure right and left ejection fractions by TMUGA. The left ejection fractions of 30 patients were evaluated both with TMUGA and with planar multi-gated blood pool scintigraphy (PMUGA). Likewise, the right ejection fractions of 25 patients were evaluated with first-pass scintigraphy (FP) and with TMUGA. The watershed algorithm was applied to the reconstructed slices in order to group together the voxels whose activity came from one specific cardiac cavity. First, the results of the watershed algorithm were compared with manual drawing around left and right ventricles. Left ejection fractions evaluated by TMUGA with the watershed procedure were not significantly different (p=0.30) from manual outlines whereas a small but significant difference was found for right ejection fractions (p=0.004). Then right and left ejection fractions evaluated by TMUGA (with the semi-automatic segmentation procedure) were compared with the results obtained by FP or PMUGA. Left ventricular ejection fractions evaluated by TMUGA showed an excellent correlation with those evaluated by PMUGA (r=0.93; SEE=5.93%; slope=0.99; intercept = 4.17%). The measurements of these ejection fractions were significantly higher with TMUGA than with PMUGA (P<0.01). The interoperator variability for the measurement of left ejection fractions by TMUGA was 4.6%. Right ventricular ejection fractions evaluated by TMUGA showed a good correlation with those evaluated by FP (r = 0.81; SEE = 6.68%; slope = 1.00; intercept = 0.85%) and were not

  19. The 'KATOD-1' strip readout ASIC for cathode strip chamber

    International Nuclear Information System (INIS)

    Golutvin, I.A.; Gorbunov, N.V.; Karzhavin, V.Yu.; Khabarov, V.S.; Movchan, S.A.; Smolin, D.A.; Dvornikov, O.V.; Shumejko, N.M.; Chekhovskij, V.A.

    2001-01-01

    The 'KATOD-1', a 16-channels readout ASIC, has been designed to perform tests of P3 and P4 full-scale prototypes of the cathode strip chamber for the ME1/1 forward muon station of the Compact Muon Solenoid (CMS) experiment. The ASIC channel consists of two charge-sensitive preamplifiers, a three-stage shaper with cancellation, and an output driver. The ASIC is instrumented with control of gain, in the range of (-4.2 : +5.0) mV/fC, and control of output pulse-shape. The equivalent input noise is equal to 2400 e with the slope of 12 e/pF for detector capacity up to 200 pF. The peaking time is 100 ns for the chamber signal. The ASIC has been produced by a microwave Bi-jFET technology

  20. The "KATOD-1" Strip Readout ASIC for Cathode Strip Chamber

    CERN Document Server

    Golutvin, I A; Karjavin, V Yu; Khabarov, V S; Movchan, S A; Smolin, D A; Dvornikov, O V; Shumeiko, N M; Tchekhovski, V A

    2001-01-01

    The "KATOD-1", a 16-channels readout ASIC, has been designed to perform tests of P3 and P4 full-scale prototypes of the cathode strip chamber for the ME1/1 forward muon station of the Compact Muon Solenoid (CMS) experiment. The ASIC channel consists of two charge-sensitive preamplifiers, a three-stage shaper with tail cancellation, and an output driver. The ASIC is instrumented with control of gain, in the range of (-4.2\\div +5.0) mV/fC, and control of output pulse-shape. The equivalent input noise is equal to 2400 e with the slope of 12 e/pF for detector capacity up to 200 pF. The peaking time is 100 ns for the chamber signal. The ASIC has been produced by a microwave Bi-jFET technology.

  1. Gate valve performance prediction

    International Nuclear Information System (INIS)

    Harrison, D.H.; Damerell, P.S.; Wang, J.K.; Kalsi, M.S.; Wolfe, K.J.

    1994-01-01

    The Electric Power Research Institute is carrying out a program to improve the performance prediction methods for motor-operated valves. As part of this program, an analytical method to predict the stem thrust required to stroke a gate valve has been developed and has been assessed against data from gate valve tests. The method accounts for the loads applied to the disc by fluid flow and for the detailed mechanical interaction of the stem, disc, guides, and seats. To support development of the method, two separate-effects test programs were carried out. One test program determined friction coefficients for contacts between gate valve parts by using material specimens in controlled environments. The other test program investigated the interaction of the stem, disc, guides, and seat using a special fixture with full-sized gate valve parts. The method has been assessed against flow-loop and in-plant test data. These tests include valve sizes from 3 to 18 in. and cover a considerable range of flow, temperature, and differential pressure. Stem thrust predictions for the method bound measured results. In some cases, the bounding predictions are substantially higher than the stem loads required for valve operation, as a result of the bounding nature of the friction coefficients in the method

  2. Stanford, Duke, Rice,... and Gates?

    Science.gov (United States)

    Carey, Kevin

    2009-01-01

    This article presents an open letter to Bill Gates. In his letter, the author suggests that Bill Gates should build a brand-new university, a great 21st-century institution of higher learning. This university will be unlike anything the world has ever seen. He asks Bill Gates not to stop helping existing colleges create the higher-education system…

  3. Mechanical behaviour of a creased thin strip

    Directory of Open Access Journals (Sweden)

    J. Liu

    2018-02-01

    Full Text Available In this study the mechanical behaviour of a creased thin strip under opposite-sense bending was investigated. It was found that a simple crease, which led to the increase of the second moment of area, could significantly alter the overall mechanical behaviour of a thin strip, for example the peak moment could be increased by 100 times. The crease was treated as a cylindrical segment of a small radius. Parametric studies demonstrated that the geometry of the strip could strongly influence its flexural behaviour. We showed that the uniform thickness and the radius of the creased segment had the greatest and the least influence on the mechanical behaviour, respectively. We further revealed that material properties could dramatically affect the overall mechanical behaviour of the creased strip by gradually changing the material from being linear elastic to elastic-perfect plastic. After the formation of the fold, the moment of the two ends of the strip differed considerably when the elasto-plastic materials were used, especially for materials with smaller tangent modulus in the plastic range. The deformation patterns of the thin strips from the finite element simulations were verified by physical models made of thin metal strips. The findings from this study provide useful information for designing origami structures for engineering applications using creased thin strips.

  4. Nuclear reactor spring strip grid spacer

    International Nuclear Information System (INIS)

    Patterson, J.F.; Flora, B.S.

    1978-01-01

    A bimetallic grid spacer is described comprising a grid structure of zircaloy formed by intersecting striplike members which define fuel element openings for receiving fuel elements and spring strips made of Inconel positioned within the grid structure for cooperating with the fuel elements to maintain them in their desired position. A plurality of these spring strips extend longitudinally between sides of the grid structure, being locked in position by the grid retaining strips. The fuel rods, which are disposed in the fuel openings formed in the grid structure, are positioned by means of the springs associated with the spring strips and a plurality of dimples which extend from the zircaloy grid structure into the openings. In one embodiment the strips are disposed in a plurality of arrays with those spring strip arrays situated in opposing diagonal quadrants of the grid structure extending in the same direction and adjacent spring strip arrays in each half of the spacer extending in relatively perpendicular directions. Other variations of the spring strip arrangements for a particular fuel design are disclosed herein

  5. Double optical gating

    Science.gov (United States)

    Gilbertson, Steve

    The observation and control of dynamics in atomic and molecular targets requires the use of laser pulses with duration less than the characteristic timescale of the process which is to be manipulated. For electron dynamics, this time scale is on the order of attoseconds where 1 attosecond = 10 -18 seconds. In order to generate pulses on this time scale, different gating methods have been proposed. The idea is to extract or "gate" a single pulse from an attosecond pulse train and switch off all the other pulses. While previous methods have had some success, they are very difficult to implement and so far very few labs have access to these unique light sources. The purpose of this work is to introduce a new method, called double optical gating (DOG), and to demonstrate its effectiveness at generating high contrast single isolated attosecond pulses from multi-cycle lasers. First, the method is described in detail and is investigated in the spectral domain. The resulting attosecond pulses produced are then temporally characterized through attosecond streaking. A second method of gating, called generalized double optical gating (GDOG), is also introduced. This method allows attosecond pulse generation directly from a carrier-envelope phase un-stabilized laser system for the first time. Next the methods of DOG and GDOG are implemented in attosecond applications like high flux pulses and extreme broadband spectrum generation. Finally, the attosecond pulses themselves are used in experiments. First, an attosecond/femtosecond cross correlation is used for characterization of spatial and temporal properties of femtosecond pulses. Then, an attosecond pump, femtosecond probe experiment is conducted to observe and control electron dynamics in helium for the first time.

  6. CMS Silicon Strip Tracker Performance

    CERN Document Server

    Agram, Jean-Laurent

    2012-01-01

    The CMS Silicon Strip Tracker (SST), consisting of 9.6 million readout channels from 15148 modules and covering an area of 198 square meters, needs to be precisely calibrated in order to correctly reconstruct the events recorded. Calibration constants are derived from different workflows, from promptly reconstructed events with particles as well as from commissioning events gathered just before the acquisition of physics runs. The performance of the SST has been carefully studied since the beginning of data taking: the noise of the detector, data integrity, signal-over-noise ratio, hit reconstruction efficiency and resolution have been all investigated with time and for different conditions. In this paper we describe the reconstruction strategies, the calibration procedures and the detector performance results from the latest CMS operation.

  7. The CMS silicon strip tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Bartalini, P.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Raffaelli, F.; Raso, G.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Wang, Y.; Watts, S.; Wittmer, B.

    1999-01-01

    The Silicon Strip Tracker (SST) is the intermediate part of the CMS Central Tracker System. SST is based on microstrip silicon devices and in combination with pixel detectors and the Microstrip Gas Chambers aims at performing pattern recognition, track reconstruction and momentum measurements for all tracks with p T ≥2 GeV/c originating from high luminosity interactions at √s=14 TeV at LHC. We aim at exploiting the advantages and the physics potential of the precise tracking performance provided by the microstrip silicon detectors on a large scale apparatus and in a much more difficult environment than ever. In this paper we describe the actual SST layout and the readout system. (author)

  8. Non-gated vessel wall imaging of the internal carotid artery using radial scanning and fast spin echo sequence. Evaluation of vessel signal intensity by flow rate at 3.0 tesla

    International Nuclear Information System (INIS)

    Nakamura, Manami; Makabe, Takeshi; Ichikawa, Masaki; Hatakeyama, Ryohei; Sugimori, Hiroyuki; Sakata, Motomichi

    2013-01-01

    Vessel wall imaging using radial scanning does not use a blood flow suppression pulse with gated acquisition. It has been proposed that there may not be a flow void effect if the flow rate is slow; however, this has yet to be empirically tested. To clarify the relationship between the signal intensity of the vessel lumen and the blood flow rate in a flow phantom, we investigated the usefulness of vessel wall imaging at 3.0 tesla (T). We measured the signal intensity while changing the flow rate in the flow phantom. Radial scanning at 1.5 T showed sufficient flow voids at above medium flow rates. There was no significant difference in lumen signal intensity at the carotid artery flow rate. The signal intensity of the vessel lumen decreased sufficiently using the radial scan method at 3.0 T. We thus obtained sufficient flow void effects at the carotid artery flow rate. We conclude this technique to be useful for evaluating plaque if high contrast can be maintained for fixed tissue (such as plaque) and the vessel lumen. (author)

  9. Ultrasonic examination of JBK-75 strip material

    International Nuclear Information System (INIS)

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material [1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)], feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches [0.28 mm deep (0.011 in., about 17% of the strip thickness)] were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests

  10. Model for prediction of strip temperature in hot strip steel mill

    International Nuclear Information System (INIS)

    Panjkovic, Vladimir

    2007-01-01

    Proper functioning of set-up models in a hot strip steel mill requires reliable prediction of strip temperature. Temperature prediction is particularly important for accurate calculation of rolling force because of strong dependence of yield stress and strip microstructure on temperature. A comprehensive model was developed to replace an obsolete model in the Western Port hot strip mill of BlueScope Steel. The new model predicts the strip temperature evolution from the roughing mill exit to the finishing mill exit. It takes into account the radiative and convective heat losses, forced flow boiling and film boiling of water at strip surface, deformation heat in the roll gap, frictional sliding heat, heat of scale formation and the heat transfer between strip and work rolls through an oxide layer. The significance of phase transformation was also investigated. Model was tested with plant measurements and benchmarked against other models in the literature, and its performance was very good

  11. Model for prediction of strip temperature in hot strip steel mill

    Energy Technology Data Exchange (ETDEWEB)

    Panjkovic, Vladimir [BlueScope Steel, TEOB, 1 Bayview Road, Hastings Vic. 3915 (Australia)]. E-mail: Vladimir.Panjkovic@BlueScopeSteel.com

    2007-10-15

    Proper functioning of set-up models in a hot strip steel mill requires reliable prediction of strip temperature. Temperature prediction is particularly important for accurate calculation of rolling force because of strong dependence of yield stress and strip microstructure on temperature. A comprehensive model was developed to replace an obsolete model in the Western Port hot strip mill of BlueScope Steel. The new model predicts the strip temperature evolution from the roughing mill exit to the finishing mill exit. It takes into account the radiative and convective heat losses, forced flow boiling and film boiling of water at strip surface, deformation heat in the roll gap, frictional sliding heat, heat of scale formation and the heat transfer between strip and work rolls through an oxide layer. The significance of phase transformation was also investigated. Model was tested with plant measurements and benchmarked against other models in the literature, and its performance was very good.

  12. Clinical application of a right ventricular pressure-volume loop determined by gated blood-pool imaging and simultaneously measured right ventricular pressure

    International Nuclear Information System (INIS)

    Yasue, Takao; Watanabe, Sachiro; Sugishita, Nobuyoshi; Tanaka, Tsutomu; Yokoyama, Hideo

    1983-01-01

    The data obtained by ECG-gated radionuclide angiography were collected simultaneously with right ventricular pressure and thermal cardiac output (CO) obtained by a Swan-Ganz catheter in Scintipac 1200 (Shimazu Co) in order to create a right ventricular pressure-volume (RV P-V) loop. Subjects consisted of 15 patients with old myocardial infarction (MI group), seven with angina pectoris (AP group), six with congestive cardiomyopathy (CCM group) and five with neurocirculatory asthenia (NCA group). Right ventricular end-diastolic volume (RVEDV) was calculated as RVEDV = CO/(EF x HR) (CO = cardiac output; HR = heart rate). Systolic work (W sub(S)), diastolic work (W sub(D)) and net work (W sub(N)) were calculated from a RV P-V loop by Simpson's method. The measurements were performed before and 5 min after sublingual administration of nitroglycerin (NG) (0.3 mg). The results were as follows: 1. RV P-V loops shifted towards the left lower part of the P-V plane after sublingual administration of nitroglycerin, indicating the reduction of pressure and volume of the right ventricle. 2. Right ventricular ejection fraction (RVEF) in the MI, AP and CCM groups showed smaller values than that of the NCA group. 3. Right ventricular end-diastolic volume index (RVEDVI) showed a converse relation with RVEF. 4. Cardiac index in all groups decreased after NG and a statistical significance was seen in the MI, AP and NCA groups (p<0.05). 5. RV W sub(S), RV W sub(D) and RV W sub(N) showed no difference among each groups in the control state, and significantly decreased after NG. We conclude that the present method using RV P-V loop might be useful as a noninvasive bedside monitoring and permits the evaluation of RV function in a clinical setting

  13. The additive prognostic value of perfusion and functional data assessed by quantitative gated SPECT in women

    NARCIS (Netherlands)

    Y.G.C.J. America (Yves); J.J. Bax (Jeroen); H. Boersma (Eric); M. Stokkel (Marcel); E.E. van der Wall (Ernst)

    2009-01-01

    textabstractBackground: The aim of this study was to assess the prognostic value of technetium-99m tetrofosmin gated SPECT imaging in women using quantitative gated single photon emission computed tomography (SPECT) imaging. Methods: We followed 453 consecutive female patients. Average follow-up was

  14. Structures of Gate Loop Variants of the AcrB Drug Efflux Pump Bound by Erythromycin Substrate.

    Directory of Open Access Journals (Sweden)

    Abdessamad Ababou

    Full Text Available Gram-negative bacteria such as E. coli use tripartite efflux pumps such as AcrAB-TolC to expel antibiotics and noxious compounds. A key feature of the inner membrane transporter component, AcrB, is a short stretch of residues known as the gate/switch loop that divides the proximal and distal substrate binding pockets. Amino acid substitutions of the gate loop are known to decrease antibiotic resistance conferred by AcrB. Here we present two new AcrB gate loop variants, the first stripped of its bulky side chains, and a second in which the gate loop is removed entirely. By determining the crystal structures of the variant AcrB proteins in the presence and absence of erythromycin and assessing their ability to confer erythromycin tolerance, we demonstrate that the gate loop is important for AcrB export activity but is not required for erythromycin binding.

  15. Prototype Strip Barrel Modules for the ATLAS ITk Strip Detector

    CERN Document Server

    Sawyer, Craig; The ATLAS collaboration

    2017-01-01

    The module design for the Phase II Upgrade of the new ATLAS Inner Tracker (ITk) detector at the LHC employs integrated low mass assembly using single-sided flexible circuits with readout ASICs and a powering circuit incorporating control and monitoring of HV, LV and temperature on the module. Both readout and powering circuits are glued directly onto the silicon sensor surface resulting in a fully integrated, extremely low radiation length module which simultaneously reduces the material requirements of the local support structure by allowing a reduced width stave structure to be employed. Such a module concept has now been fully demonstrated using so-called ABC130 and HCC130 ASICs fabricated in 130nm CMOS technology to readout ATLAS12 n+-in-p silicon strip sensors. Low voltage powering for these demonstrator modules has been realised by utilising a DCDC powerboard based around the CERN FEAST ASIC. This powerboard incorporates an HV multiplexing switch based on a Panasonic GaN transistor. Control and monitori...

  16. The diagnostic relevance of an integrated approach to gated cardiac studies

    International Nuclear Information System (INIS)

    Pavel, D.G.

    1982-01-01

    Evolution of Nuclear Medicine hardware and software has opened the way towards maximizing the amount of information of gated cardiac studies. The clinical use of cardiac functional images started with stroke volume image, paradoxis images and regional ejection fraction images, followed later by slope images, variation images and others. Especially the introduction of phase analysis has opened a variety of new perspectives. (WU)

  17. Charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.; Beuttenmuller, R.; Ludlam, T.; Hanson, A.L.; Jones, K.W.; Radeka, V.; Heijne, E.H.M.

    1982-11-01

    The use of position sensitive silicon detectors as very high resolution tracking devices in high energy physics experiments has been a subject of intense development over the past few years. Typical applications call for the detection of minimum ionizing particles with position measurement accuracy of 10 μm in each detector plane. The most straightforward detector geometry is that in which one of the collecting electrodes is subdivided into closely spaced strips, giving a high degree of segmentation in one coordinate. Each strip may be read out as a separate detection element, or, alternatively, resistive and/or capacitive coupling between adjacent strips may be exploited to interpolate the position via charge division measrurements. With readout techniques that couple several strips, the numer of readout channels can, in principle, be reduced by large factors without sacrificing the intrinsic position accuracy. The testing of individual strip properties and charge division between strips has been carried out with minimum ionizing particles or beams for the most part except in one case which used alphs particless scans. This paper describes the use of a highly collimated MeV proton beam for studies of the position sensing properties of representative one dimensional strip detectors

  18. 3D absorbed dose calculation with GATE Monte Carlo simulation for the image-guided radiation therapy dedicated to the small animal

    International Nuclear Information System (INIS)

    Noblet, Caroline

    2014-01-01

    Innovating irradiators dedicated to small animal allow to mimic clinical treatments in image-guided radiation therapy. Clinical practice is scaled down to the small animal by reducing beam dimensions (from cm to mm) and energy (from MeV to keV). Millimeter medium energy beams ( [fr

  19. An integrated bioimpedance—ECG gating technique for respiratory and cardiac motion compensation in cardiac PET

    International Nuclear Information System (INIS)

    Koivumäki, Tuomas; Nekolla, Stephan G; Fürst, Sebastian; Loher, Simone; Schwaiger, Markus; Vauhkonen, Marko; Hakulinen, Mikko A

    2014-01-01

    Respiratory motion may degrade image quality in cardiac PET imaging. Since cardiac PET studies often involve cardiac gating by ECG, a separate respiratory monitoring system is required increasing the logistic complexity of the examination, in case respiratory gating is also needed. Thus, we investigated the simultaneous acquisition of both respiratory and cardiac gating signals using II limb lead mimicking electrode configuration during cardiac PET scans of 11 patients. In addition to conventional static and ECG-gated images, bioimpedance technique was utilized to generate respiratory- and dual-gated images. The ability of the bioimpedance technique to monitor intrathoracic respiratory motion was assessed estimating cardiac displacement between end-inspiration and -expiration. The relevance of dual gating was evaluated in left ventricular volume and myocardial wall thickness measurements. An average 7.6  ±  3.3 mm respiratory motion was observed in the study population. Dual gating showed a small but significant increase (4 ml, p = 0.042) in left ventricular myocardial volume compared to plain cardiac gating. In addition, a thinner myocardial wall was observed in dual-gated images (9.3  ±  1.3 mm) compared to cardiac-gated images (11.3  ±  1.3 mm, p = 0.003). This study shows the feasibility of bioimpedance measurements for dual gating in a clinical setting. The method enables simultaneous acquisition of respiratory and cardiac gating signals using a single device with standard ECG electrodes. (paper)

  20. A quantum Fredkin gate

    Science.gov (United States)

    Patel, Raj B.; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C.; Pryde, Geoff J.

    2016-01-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently. PMID:27051868

  1. A quantum Fredkin gate.

    Science.gov (United States)

    Patel, Raj B; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C; Pryde, Geoff J

    2016-03-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently.

  2. Automatically gated image-guided breath-hold IMRT is a fast, precise, and dosimetrically robust treatment for lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Simeonova-Chergou, Anna; Jahnke, Anika; Siebenlist, Kerstin; Stieler, Florian; Mai, Sabine; Boda-Heggemann, Judit; Wenz, Frederik; Lohr, Frank; Jahnke, Lennart [University Medical Center Mannheim, University of Heidelberg, Department of Radiotherapy and Oncology, Mannheim (Germany)

    2016-03-15

    High-dose radiotherapy of lung cancer is challenging. Tumors may move by up to 2 cm in craniocaudal and anteroposterior directions as a function of breathing cycle. Tumor displacement increases with treatment time, which consequentially increases the treatment uncertainty. This study analyzed whether automatically gated cone-beam-CT (CBCT)-controlled intensity modulated fast deep inspiration breath hold (DIBH) stereotactic body radiation therapy (SBRT) in flattening filter free (FFF) technique and normofractionated lung DIBH intensity-modulated radiotherapy (IMRT)/volumetric-modulated arc therapy (VMAT) treatments delivered with a flattening filter can be applied with sufficient accuracy within a clinically acceptable timeslot. Plans of 34 patients with lung tumors were analyzed. Of these patients, 17 received computer-controlled fast DIBH SBRT with a dose of 60 Gy (5 fractions of 12 Gy or 12 fractions of 5 Gy) in an FFF VMAT technique (FFF-SBRT) every other day and 17 received conventional VMAT with a flattening filter (conv-VMAT) and 2-Gy daily fractional doses (cumulative dose 50-70 Gy). FFF-SBRT plans required more monitor units (MU) than conv-VMAT plans (2956.6 ± 885.3 MU for 12 Gy/fraction and 1148.7 ± 289.2 MU for 5 Gy/fraction vs. 608.4 ± 157.5 MU for 2 Gy/fraction). Total treatment and net beam-on times were shorter for FFF-SBRT plans than conv-VMAT plans (268.0 ± 74.4 s vs. 330.2 ± 93.6 s and 85.8 ± 25.3 s vs. 117.2 ± 29.6 s, respectively). Total slot time was 13.0 min for FFF-SBRT and 14.0 min for conv-VMAT. All modalities could be delivered accurately despite multiple beam-on/-off cycles and were robust against multiple interruptions. Automatically gated CBCT-controlled fast DIBH SBRT in VMAT FFF technique and normofractionated lung DIBH VMAT can be applied with a low number of breath-holds in a short timeslot, with excellent dosimetric accuracy. In clinical routine, these approaches combine optimally reduced lung tissue irradiation with maximal

  3. 'Motion frozen' quantification and display of myocardial perfusion gated SPECT

    International Nuclear Information System (INIS)

    Slomka, P.J.; Hurwitz, G.A.; Baddredine, M.; Baranowski, J.; Aladl, U.E.

    2002-01-01

    Aim: Gated SPECT imaging incorporates both functional and perfusion information of the left ventricle (LV). However perfusion data is confounded by the effect of ventricular motion. Most existing quantification paradigms simply add all gated frames and then proceed to extract the perfusion information from static images, discarding the effects of cardiac motion. In an attempt to improve the reliability and accuracy of cardiac SPECT quantification we propose to eliminate the LV motion prior to the perfusion quantification via automated image warping algorithm. Methods: A pilot series of 14 male and 11 female gated stress SPECT images acquired with 8 time bins have been co-registered to the coordinates of the 3D normal templates. Subsequently the LV endo and epi-cardial 3D points (300-500) were identified on end-systolic (ES) and end-diastolic (ED) frames, defining the ES-ED motion vectors. The nonlinear image warping algorithm (thin-plate-spline) was then applied to warp end-systolic frame was onto the end-diastolic frames using the corresponding ES-ED motion vectors. The remaining 6 intermediate frames were also transformed to the ED coordinates using fractions of the motion vectors. Such warped images were then summed to provide the LV perfusion image in the ED phase but with counts from the full cycle. Results: The identification of the ED/ES corresponding points was successful in all cases. The corrected displacement between ED and ES images was up to 25 mm. The summed images had the appearance of the ED frames but have been much less noisy since all the counts have been used. The spatial resolution of such images appeared higher than that of summed gated images, especially in the female scans. These 'motion frozen' images could be displayed and quantified as regular non-gated tomograms including polar map paradigm. Conclusions: This image processing technique may improve the effective image resolution of summed gated myocardial perfusion images used for

  4. Extension of a data-driven gating technique to 3D, whole body PET studies

    International Nuclear Information System (INIS)

    Schleyer, Paul J; O'Doherty, Michael J; Marsden, Paul K

    2011-01-01

    Respiratory gating can be used to separate a PET acquisition into a series of near motion-free bins. This is typically done using additional gating hardware; however, software-based methods can derive the respiratory signal from the acquired data itself. The aim of this work was to extend a data-driven respiratory gating method to acquire gated, 3D, whole body PET images of clinical patients. The existing method, previously demonstrated with 2D, single bed-position data, uses a spectral analysis to find regions in raw PET data which are subject to respiratory motion. The change in counts over time within these regions is then used to estimate the respiratory signal of the patient. In this work, the gating method was adapted to only accept lines of response from a reduced set of axial angles, and the respiratory frequency derived from the lung bed position was used to help identify the respiratory frequency in all other bed positions. As the respiratory signal does not identify the direction of motion, a registration-based technique was developed to align the direction for all bed positions. Data from 11 clinical FDG PET patients were acquired, and an optical respiratory monitor was used to provide a hardware-based signal for comparison. All data were gated using both the data-driven and hardware methods, and reconstructed. The centre of mass of manually defined regions on gated images was calculated, and the overall displacement was defined as the change in the centre of mass between the first and last gates. The mean displacement was 10.3 mm for the data-driven gated images and 9.1 mm for the hardware gated images. No significant difference was found between the two gating methods when comparing the displacement values. The adapted data-driven gating method was demonstrated to successfully produce respiratory gated, 3D, whole body, clinical PET acquisitions.

  5. Stripping voltammetry in environmental and food analysis.

    Science.gov (United States)

    Brainina, K Z; Malakhova, N A; Stojko, N Y

    2000-10-01

    The review covers over 230 papers published mostly in the last 5 years. The goal of the review is to attract the attention of researchers and users to stripping voltammetry in particular, its application in environmental monitoring and analysis of foodstuffs. The sensors employed are impregnated graphite, carbon paste, thick film carbon/graphite and thin film metallic electrodes modified in-situ or beforehand. Hanging mercury drop electrodes and mercury coated glassy carbon electrodes are also mentioned. Strip and long-lived sensors for portable instruments and flow through systems are discussed as devices for future development and application of stripping voltammetry.

  6. Hardness of approximation for strip packing

    DEFF Research Database (Denmark)

    Adamaszek, Anna Maria; Kociumaka, Tomasz; Pilipczuk, Marcin

    2017-01-01

    Strip packing is a classical packing problem, where the goal is to pack a set of rectangular objects into a strip of a given width, while minimizing the total height of the packing. The problem has multiple applications, for example, in scheduling and stock-cutting, and has been studied extensively......)-approximation by two independent research groups [FSTTCS 2016,WALCOM 2017]. This raises a questionwhether strip packing with polynomially bounded input data admits a quasi-polynomial time approximation scheme, as is the case for related twodimensional packing problems like maximum independent set of rectangles or two...

  7. Feasibility and diagnostic accuracy of Ecg-gated SPECT myocardial perfusion imaging by a two-hour protocol: The Myofast study;Faisabilite et precision diagnostique d'un protocole de scintigraphie myocardique synchronisee a l'ECG en deux heures: l'etude Myofast

    Energy Technology Data Exchange (ETDEWEB)

    Dunet, V.; Costo, S.; Sabatier, R.; Grollier, G.; Bouvard, G.; Agostini, D. [CHU Cote-de-Nacre, Service de medecine nucleaire, 14 - Caen (France)

    2010-04-15

    Aim of the study: To assess the feasibility of early stress and rest myocardial perfusion and function study using a fast {sup 99m}Tc-tetrofosmin gated-SPECT protocol in patients with known coronary artery disease. Materials and methods: Forty-three patients (pts) (37 M, 6 F, mean age 63.8 +- 9.8 years) underwent a {sup 99m}Tc-Tetrofosmin gated-SPECT (Axis Picker-Philips) myocardial study and a coronary angiography (C.A.) within 3 months. Images were acquired (LEHR, eight bins, 40 sec per image) after injection of {sup 99m}Tc-tetrofosmin (200 to 380 MBq) early (15 min) post-stress (36 dipyridamole, two dobutamine and five ergo-metric stress), and at rest after {sup 99m}Tc-tetrofosmin reinjection (600 to 1150 MBq), in a total time not exceeding 2 hours. Processing was performed with Q.G.S. software using the 17-segment model. Pathological study was defined as a summed difference score (SDS) greater than or equal to 4 4, a fixed defect with summed rest score greater than or equal to 4 and/or L.V. dysfunction defined as myocardial stunning (variation between stress and rest L.V.E.F. greater than or equal to 4 5%), stress L.V.E.F. less than or equal to 45% or rest L.V.E.F. less than or equal to 40%. Results were compared with C.A., and stenosis greater than or equal to 4 50% was considered as significant. Results: For 100% the quality of SPECT imaging was good or excellent. For six patients gating was impossible because of arrhythmia. The overall sensitivity, specificity and accuracy were 95%, 50%, and 91%, respectively. The concordance between gated SPECT and C.A. was moderate (kappa = 0.45, S.E. = 0.15). Interestingly, early-gated acquisition permitted to underline left ventricular dysfunction in 11 cases (30%), of whom eight had poly vascular disease. Stunning was detected in six of 37 cases (16%), of whom six had poly vascular disease. Conclusion: A one-day two-hour {sup 99m}Tc-tetrofosmin gated-SPECT protocol to assess left ventricular perfusion and function is

  8. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  9. The Panda Strip Asic: Pasta

    Science.gov (United States)

    Lai, A.

    2018-01-01

    PASTA is the 64 channel front-end chip, designed in a 110 nm CMOS technology to read out the strip sensors of the Micro Vertex Detector (MVD) of the PANDA experiment. This chip provides high resolution timestamp and deposited charge information by means of the time-over-threshold technique. Its working principle is based on a predecessor, the TOFPET ASIC, that was designed for medical applications. A general restructuring of the architecture was needed, in order to meet the specific requirements imposed by the physics programme of PANDA, especially in terms of radiation tolerance, spatial constraints, and readout in absence of a first level hardware trigger. The first revision of PASTA is currently under evaluation at the Forschungszentrum Jülich, where a data acquisition system dedicated to the MVD prototypes has been developed. This paper describes the main aspect of the chip design, gives an overview of the data acquisition system used for the verification, and shows the first results regarding the performance of PASTA.

  10. Multiple Independent Gate FETs: How Many Gates Do We Need?

    OpenAIRE

    Amarù, Luca; Hills, Gage; Gaillardon, Pierre-Emmanuel; Mitra, Subhasish; De Micheli, Giovanni

    2015-01-01

    Multiple Independent Gate Field Effect Transistors (MIGFETs) are expected to push FET technology further into the semiconductor roadmap. In a MIGFET, supplementary gates either provide (i) enhanced conduction properties or (ii) more intelligent switching functions. In general, each additional gate also introduces a side implementation cost. To enable more efficient digital systems, MIGFETs must leverage their expressive power to realize complex logic circuits with few physical resources. Rese...

  11. A prospective gating method to acquire a diverse set of free-breathing CT images for model-based 4DCT

    Science.gov (United States)

    O'Connell, D.; Ruan, D.; Thomas, D. H.; Dou, T. H.; Lewis, J. H.; Santhanam, A.; Lee, P.; Low, D. A.

    2018-02-01

    Breathing motion modeling requires observation of tissues at sufficiently distinct respiratory states for proper 4D characterization. This work proposes a method to improve sampling of the breathing cycle with limited imaging dose. We designed and tested a prospective free-breathing acquisition protocol with a simulation using datasets from five patients imaged with a model-based 4DCT technique. Each dataset contained 25 free-breathing fast helical CT scans with simultaneous breathing surrogate measurements. Tissue displacements were measured using deformable image registration. A correspondence model related tissue displacement to the surrogate. Model residual was computed by comparing predicted displacements to image registration results. To determine a stopping criteria for the prospective protocol, i.e. when the breathing cycle had been sufficiently sampled, subsets of N scans where 5  ⩽  N  ⩽  9 were used to fit reduced models for each patient. A previously published metric was employed to describe the phase coverage, or ‘spread’, of the respiratory trajectories of each subset. Minimum phase coverage necessary to achieve mean model residual within 0.5 mm of the full 25-scan model was determined and used as the stopping criteria. Using the patient breathing traces, a prospective acquisition protocol was simulated. In all patients, phase coverage greater than the threshold necessary for model accuracy within 0.5 mm of the 25 scan model was achieved in six or fewer scans. The prospectively selected respiratory trajectories ranked in the (97.5  ±  4.2)th percentile among subsets of the originally sampled scans on average. Simulation results suggest that the proposed prospective method provides an effective means to sample the breathing cycle with limited free-breathing scans. One application of the method is to reduce the imaging dose of a previously published model-based 4DCT protocol to 25% of its original value while

  12. MO-FG-CAMPUS-JeP2-01: 4D-MRI with 3D Radial Sampling and Self-Gating-Based K-Space Sorting: Image Quality Improvement by Slab-Selective Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Pang, J; Tuli, R; Fraass, B; Fan, Z [Cedars Sinai Medical Center, Los Angeles, CA (United States); Yang, W [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Bi, X [Siemens Healthcare, Los Angeles, CA (United States); Hakimian, B [Cedars Sinai Medical Center, Los Angeles CA (United States); Li, D [Cedars Sinai Medical Center, Los Angeles, California (United States)

    2016-06-15

    Purpose: A recent 4D MRI technique based on 3D radial sampling and self-gating-based K-space sorting has shown promising results in characterizing respiratory motion. However due to continuous acquisition and potentially drastic k-space undersampling resultant images could suffer from low blood-to-tissue contrast and streaking artifacts. In this study 3D radial sampling with slab-selective excitation (SS) was proposed in attempt to enhance blood-to-tissue contrast by exploiting the in-flow effect and to suppress the excess signal from the peripheral structures particularly in the superior-inferior direction. The feasibility of improving image quality by using this approach was investigated through a comparison with the previously developed non-selective excitation (NS) approach. Methods: Two excitation approaches SS and NS were compared in 5 cancer patients (1 lung 1 liver 2 pancreas and 1 esophagus) at 3Tesla. Image artifact was assessed in all patients on a 4-point scale (0: poor; 3: excellent). Signal-tonoise ratio (SNR) of the blood vessel (aorta) at the center of field-of-view and its nearby tissue were measured in 3 of the 5 patients (1 liver 2 pancreas) and blood-to-tissue contrast-to-noise ratio (CNR) were then determined. Results: Compared with NS the image quality of SS was visually improved with overall higher signal in all patients (2.6±0.55 vs. 3.4±0.55). SS showed an approximately 2-fold increase of SNR in the blood (aorta: 16.39±1.95 vs. 32.19±7.93) and slight increase in the surrounding tissue (liver/pancreas: 16.91±1.82 vs. 22.31±3.03). As a result the blood-totissue CNR was dramatically higher in the SS method (1.20±1.20 vs. 9.87±6.67). Conclusion: The proposed 3D radial sampling with slabselective excitation allows for reduced image artifact and improved blood SNR and blood-to-tissue CNR. The success of this technique could potentially benefit patients with cancerous tumors that have invaded the surrounding blood vessels where radiation

  13. MO-FG-CAMPUS-JeP2-01: 4D-MRI with 3D Radial Sampling and Self-Gating-Based K-Space Sorting: Image Quality Improvement by Slab-Selective Excitation

    International Nuclear Information System (INIS)

    Deng, Z; Pang, J; Tuli, R; Fraass, B; Fan, Z; Yang, W; Bi, X; Hakimian, B; Li, D

    2016-01-01

    Purpose: A recent 4D MRI technique based on 3D radial sampling and self-gating-based K-space sorting has shown promising results in characterizing respiratory motion. However due to continuous acquisition and potentially drastic k-space undersampling resultant images could suffer from low blood-to-tissue contrast and streaking artifacts. In this study 3D radial sampling with slab-selective excitation (SS) was proposed in attempt to enhance blood-to-tissue contrast by exploiting the in-flow effect and to suppress the excess signal from the peripheral structures particularly in the superior-inferior direction. The feasibility of improving image quality by using this approach was investigated through a comparison with the previously developed non-selective excitation (NS) approach. Methods: Two excitation approaches SS and NS were compared in 5 cancer patients (1 lung 1 liver 2 pancreas and 1 esophagus) at 3Tesla. Image artifact was assessed in all patients on a 4-point scale (0: poor; 3: excellent). Signal-tonoise ratio (SNR) of the blood vessel (aorta) at the center of field-of-view and its nearby tissue were measured in 3 of the 5 patients (1 liver 2 pancreas) and blood-to-tissue contrast-to-noise ratio (CNR) were then determined. Results: Compared with NS the image quality of SS was visually improved with overall higher signal in all patients (2.6±0.55 vs. 3.4±0.55). SS showed an approximately 2-fold increase of SNR in the blood (aorta: 16.39±1.95 vs. 32.19±7.93) and slight increase in the surrounding tissue (liver/pancreas: 16.91±1.82 vs. 22.31±3.03). As a result the blood-totissue CNR was dramatically higher in the SS method (1.20±1.20 vs. 9.87±6.67). Conclusion: The proposed 3D radial sampling with slabselective excitation allows for reduced image artifact and improved blood SNR and blood-to-tissue CNR. The success of this technique could potentially benefit patients with cancerous tumors that have invaded the surrounding blood vessels where radiation

  14. A 600-µW ultra-low-power associative processor for image pattern recognition employing magnetic tunnel junction-based nonvolatile memories with autonomic intelligent power-gating scheme

    Science.gov (United States)

    Ma, Yitao; Miura, Sadahiko; Honjo, Hiroaki; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo

    2016-04-01

    A novel associative processor using magnetic tunnel junction (MTJ)-based nonvolatile memories has been proposed and fabricated under a 90 nm CMOS/70 nm perpendicular-MTJ (p-MTJ) hybrid process for achieving the exceptionally low-power performance of image pattern recognition. A four-transistor 2-MTJ (4T-2MTJ) spin transfer torque magnetoresistive random access memory was adopted to completely eliminate the standby power. A self-directed intelligent power-gating (IPG) scheme specialized for this associative processor is employed to optimize the operation power by only autonomously activating currently accessed memory cells. The operations of a prototype chip at 20 MHz are demonstrated by measurement. The proposed processor can successfully carry out single texture pattern matching within 6.5 µs using 128-dimension bag-of-feature patterns, and the measured average operation power of the entire processor core is only 600 µW. Compared with the twin chip designed with 6T static random access memory, 91.2% power reductions are achieved. More than 88.0% power reductions are obtained compared with the latest associative memories. The further power performance analysis is discussed in detail, which verifies the special superiority of the proposed processor in power consumption for large-capacity memory-based VLSI systems.

  15. Design, fabrication, and evaluation of charge-coupled devices with aluminum-anodized-aluminum gates

    Science.gov (United States)

    Gassaway, J. D.; Causey, W. H., Jr.

    1977-01-01

    A 4-phase, 49 1/2 bit CCD shift register was designed and fabricated using two levels of aluminum metallization with anodic Al2O3 insulation separating the layers. Test circuitry was also designed and constructed. A numerical analysis of an MOS-RC transmission line was made and results are given to characterize performance for various conductivities. The electrical design of the CCD included a low-noise dual-gate input and a balanced floating diffusion output circuit. Metallization was accomplished both by low voltage DC sputtering and thermal evaporation. The audization was according to published procedures using a buffered tartaric acid bath. Approximately 20 wafers were processed with 50 complete chips per wafer. All devices failed by shorting between the metal levels at some point. Experimental procedures eliminated temperature effects from sintering and drying, anodic oxide thickness, edge effects, photoresist stripping procedures, and metallization techniques as the primary causes of failure. It was believed from a study of SEM images that protuberances (hillocks) grow up from the first level metal through the oxide either causing a direct short or producing a weak, highly stressed insulation point which fails at low voltage. The cause of these hillocks is unknown; however, they have been observed to grow during temperature excursions to 470 C.

  16. 100-nm gate lithography for double-gate transistors

    Science.gov (United States)

    Krasnoperova, Azalia A.; Zhang, Ying; Babich, Inna V.; Treichler, John; Yoon, Jung H.; Guarini, Kathryn; Solomon, Paul M.

    2001-09-01

    The double gate field effect transistor (FET) is an exploratory device that promises certain performance advantages compared to traditional CMOS FETs. It can be scaled down further than the traditional devices because of the greater electrostatic control by the gates on the channel (about twice as short a channel length for the same gate oxide thickness), has steeper sub-threshold slope and about double the current for the same width. This paper presents lithographic results for double gate FET's developed at IBM's T. J. Watson Research Center. The device is built on bonded wafers with top and bottom gates self-aligned to each other. The channel is sandwiched between the top and bottom polysilicon gates and the gate