WorldWideScience

Sample records for strip detector dose

  1. A silicon strip detector dose magnifying glass for IMRT dosimetry

    International Nuclear Information System (INIS)

    Wong, J. H. D.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Khanna, S.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B.

    2010-01-01

    Purpose: Intensity modulated radiation therapy (IMRT) allows the delivery of escalated radiation dose to tumor while sparing adjacent critical organs. In doing so, IMRT plans tend to incorporate steep dose gradients at interfaces between the target and the organs at risk. Current quality assurance (QA) verification tools such as 2D diode arrays, are limited by their spatial resolution and conventional films are nonreal time. In this article, the authors describe a novel silicon strip detector (CMRP DMG) of high spatial resolution (200 μm) suitable for measuring the high dose gradients in an IMRT delivery. Methods: A full characterization of the detector was performed, including dose per pulse effect, percent depth dose comparison with Farmer ion chamber measurements, stem effect, dose linearity, uniformity, energy response, angular response, and penumbra measurements. They also present the application of the CMRP DMG in the dosimetric verification of a clinical IMRT plan. Results: The detector response changed by 23% for a 390-fold change in the dose per pulse. A correction function is derived to correct for this effect. The strip detector depth dose curve agrees with the Farmer ion chamber within 0.8%. The stem effect was negligible (0.2%). The dose linearity was excellent for the dose range of 3-300 cGy. A uniformity correction method is described to correct for variations in the individual detector pixel responses. The detector showed an over-response relative to tissue dose at lower photon energies with the maximum dose response at 75 kVp nominal photon energy. Penumbra studies using a Varian Clinac 21EX at 1.5 and 10.0 cm depths were measured to be 2.77 and 3.94 mm for the secondary collimators, 3.52 and 5.60 mm for the multileaf collimator rounded leaf ends, respectively. Point doses measured with the strip detector were compared to doses measured with EBT film and doses predicted by the Philips Pinnacle treatment planning system. The differences were 1.1%

  2. Low dose radiation damage effects in silicon strip detectors

    International Nuclear Information System (INIS)

    Wiącek, P.; Dąbrowski, W.

    2016-01-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  3. Low dose radiation damage effects in silicon strip detectors

    Science.gov (United States)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  4. The use of a silicon strip detector dose magnifying glass in stereotactic radiotherapy QA and dosimetry

    International Nuclear Information System (INIS)

    Wong, J. H. D.; Knittel, T.; Downes, S.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Perevertaylo, V. L.; Metcalfe, P.; Jackson, M.; Rosenfeld, A. B.

    2011-01-01

    Purpose: Stereotactic radiosurgery/therapy (SRS/SRT) is the use of radiation ablation in place of conventional surgical excision to remove or create fibrous tissue in small target volumes. The target of the SRT/SRS treatment is often located in close proximity to critical organs, hence the requirement of high geometric precision including a tight margin on the planning target volume and a sharp dose fall off. One of the major problems with quality assurance (QA) of SRT/SRS is the availability of suitable detectors with the required spatial resolution. The authors present a novel detector that they refer to as the dose magnifying glass (DMG), which has a high spatial resolution (0.2 mm) and is capable of meeting the stringent requirements of QA and dosimetry in SRS/SRT therapy. Methods: The DMG is an array of 128 phosphor implanted n + strips on a p-type Si wafer. The sensitive area defined by a single n + strip is 20x2000 μm 2 . The Si wafer is 375 μm thick. It is mounted on a 0.12 mm thick Kapton substrate. The authors studied the dose per pulse (dpp) and angular response of the detector in a custom-made SRS phantom. The DMG was used to determine the centers of rotation and positioning errors for the linear accelerator's gantry, couch, and collimator rotations. They also used the DMG to measure the profiles and the total scatter factor (S cp ) of the SRS cones. Comparisons were made with the EBT2 film and standard S cp values. The DMG was also used for dosimetric verification of a typical SRS treatment with various noncoplanar fields and arc treatments when applied to the phantom. Results: The dose per pulse dependency of the DMG was found to be cp agrees very well with the standard data with an average difference of 1.2±1.1%. Comparison of the relative intensity profiles of the DMG and EBT2 measurements for a simulated SRS treatment shows a maximum difference of 2.5%. Conclusions: The DMG was investigated for dose per pulse and angular dependency. Its

  5. The use of a silicon strip detector dose magnifying glass in stereotactic radiotherapy QA and dosimetry.

    Science.gov (United States)

    Wong, J H D; Knittel, T; Downes, S; Carolan, M; Lerch, M L F; Petasecca, M; Perevertaylo, V L; Metcalfe, P; Jackson, M; Rosenfeld, A B

    2011-03-01

    Stereotactic radiosurgery/therapy (SRS/SRT) is the use of radiation ablation in place of conventional surgical excision to remove or create fibrous tissue in small target volumes. The target of the SRT/SRS treatment is often located in close proximity to critical organs, hence the requirement of high geometric precision including a tight margin on the planning target volume and a sharp dose fall off. One of the major problems with quality assurance (QA) of SRT/SRS is the availability of suitable detectors with the required spatial resolution. The authors present a novel detector that they refer to as the dose magnifying glass (DMG), which has a high spatial resolution (0.2 mm) and is capable of meeting the stringent requirements of QA and dosimetry in SRS/SRT therapy. The DMG is an array of 128 phosphor implanted n+ strips on a p-type Si wafer. The sensitive area defined by a single n+ strip is 20 x 2000 microm2. The Si wafer is 375 microm thick. It is mounted on a 0.12 mm thick Kapton substrate. The authors studied the dose per pulse (dpp) and angular response of the detector in a custom-made SRS phantom. The DMG was used to determine the centers of rotation and positioning errors for the linear accelerator's gantry, couch, and collimator rotations. They also used the DMG to measure the profiles and the total scatter factor (S(cp)) of the SRS cones. Comparisons were made with the EBT2 film and standard S(cp) values. The DMG was also used for dosimetric verification of a typical SRS treatment with various noncoplanar fields and arc treatments when applied to the phantom. The dose per pulse dependency of the DMG was found to be DMG and EBT2 measurements for a simulated SRS treatment shows a maximum difference of 2.5%. The DMG was investigated for dose per pulse and angular dependency. Its application to SRS/SRT delivery verification was demonstrated. The DMG with its high spatial resolution and real time capability allows measurement of dose profiles for cone

  6. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  7. Characterization of a dose verification system dedicated to radiotherapy treatments based on a silicon detector multi-strips

    International Nuclear Information System (INIS)

    Bocca, A.; Cortes Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Aranas, R.; Abou Haidar, Z.; Alvarez, M. A. G.; Quesada, J. M.; Vega-Leal, A. P.; Perez Neto, F. J.

    2011-01-01

    In this paper, we present the characterization of a silicon detector multi-strips (SSSSD: Single Sided Silicon Strip Detector), developed by the company Micron Semiconductors Ltd. for use as a verification system for radiotherapy treatments.

  8. Output factor determination for dose measurements in axial and perpendicular planes using a silicon strip detector

    Science.gov (United States)

    Abou-Haïdar, Z.; Bocci, A.; Alvarez, M. A. G.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Ovejero, M. C.; Quesada, J. M.; Arráns, R.; Prieto, M. Ruiz; Vega-Leal, A. Pérez; Nieto, F. J. Pérez

    2012-04-01

    In this work we present the output factor measurements of a clinical linear accelerator using a silicon strip detector coupled to a new system for complex radiation therapy treatment verification. The objective of these measurements is to validate the system we built for treatment verification. The measurements were performed at the Virgin Macarena University Hospital in Seville. Irradiations were carried out with a Siemens ONCOR™ linac used to deliver radiotherapy treatment for cancer patients. The linac was operating in 6 MV photon mode; the different sizes of the fields were defined with the collimation system provided within the accelerator head. The output factor was measured with the silicon strip detector in two different layouts using two phantoms. In the first, the active area of the detector was placed perpendicular to the beam axis. In the second, the innovation consisted of a cylindrical phantom where the detector was placed in an axial plane with respect to the beam. The measured data were compared with data given by a commercial treatment planning system. Results were shown to be in a very good agreement between the compared set of data.

  9. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    Science.gov (United States)

    Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution

  10. Strip interpolation in silicon and germanium strip detectors

    International Nuclear Information System (INIS)

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM

  11. 3D silicon strip detectors

    International Nuclear Information System (INIS)

    Parzefall, Ulrich; Bates, Richard; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kuehn, Susanne; Lozano, Manuel; Pahn, Gregor; Parkes, Chris; Pellegrini, Giulio; Pennicard, David; Piemonte, Claudio; Ronchin, Sabina; Szumlak, Tomasz; Zoboli, Andrea; Zorzi, Nicola

    2009-01-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10 15 N eq /cm 2 , which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10 15 N eq /cm 2 . The tests were performed with three systems: a highly focused IR-laser with 5μm spot size to make position-resolved scans of the charge collection efficiency, an Sr 90 β-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the results obtained with 3D-STC-modules.

  12. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  13. The charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Boehringer, T.; Hubbeling, L.; Weilhammer, P.; Kemmer, J.; Koetz, U.; Riebesell, M.; Belau, E.; Klanner, R.; Lutz, G.; Neugebauer, E.; Seebrunner, H.J.; Wylie, A.

    1983-02-01

    The charge collection in silicon detectors has been studied, by measuring the response to high-energy particles of a 20μm pitch strip detector as a function of applied voltage and magnetic field. The results are well described by a simple model. The model is used to predict the spatial resolution of silicon strip detectors and to propose a detector with optimized spatial resolution. (orig.)

  14. Charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.; Beuttenmuller, R.; Ludlam, T.; Hanson, A.L.; Jones, K.W.; Radeka, V.; Heijne, E.H.M.

    1982-11-01

    The use of position sensitive silicon detectors as very high resolution tracking devices in high energy physics experiments has been a subject of intense development over the past few years. Typical applications call for the detection of minimum ionizing particles with position measurement accuracy of 10 μm in each detector plane. The most straightforward detector geometry is that in which one of the collecting electrodes is subdivided into closely spaced strips, giving a high degree of segmentation in one coordinate. Each strip may be read out as a separate detection element, or, alternatively, resistive and/or capacitive coupling between adjacent strips may be exploited to interpolate the position via charge division measrurements. With readout techniques that couple several strips, the numer of readout channels can, in principle, be reduced by large factors without sacrificing the intrinsic position accuracy. The testing of individual strip properties and charge division between strips has been carried out with minimum ionizing particles or beams for the most part except in one case which used alphs particless scans. This paper describes the use of a highly collimated MeV proton beam for studies of the position sensing properties of representative one dimensional strip detectors

  15. Silicon strip detectors for the ATLAS upgrade

    CERN Document Server

    Gonzalez Sevilla, S; The ATLAS collaboration

    2011-01-01

    The Large Hadron Collider at CERN will extend its current physics program by increasing the peak luminosity by one order of magnitude. For ATLAS, one of the two general-purpose experiments of the LHC, an upgrade scenario will imply the complete replacement of its internal tracker due to the harsh conditions in terms of particle rates and radiation doses. New radiation-hard prototype n-in-p silicon sensors have been produced for the short-strip region of the future ATLAS tracker. The sensors have been irradiated up to the fluences expected in the high-luminous LHC collider. This paper summarizes recent results on the performance of the irradiated n-in-p detectors.

  16. Superconducting nano-strip particle detectors

    International Nuclear Information System (INIS)

    Cristiano, R; Ejrnaes, M; Casaburi, A; Zen, N; Ohkubo, M

    2015-01-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2–5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications. (paper)

  17. Development of floating strip micromegas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bortfeldt, Jonathan

    2014-04-28

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10{sup 34} cm{sup -2}s{sup -1} around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm{sup 2} floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm{sup 2} floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm{sup 2} floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the

  18. Development of floating strip micromegas detectors

    International Nuclear Information System (INIS)

    Bortfeldt, Jonathan

    2014-01-01

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10 34 cm -2 s -1 around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm 2 floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm 2 floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm 2 floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the track inclination in a single

  19. Silicon strip detectors for the ATLAS HL-LHC upgrade

    CERN Document Server

    Gonzalez Sevilla, S; The ATLAS collaboration

    2011-01-01

    The LHC upgrade is foreseen to increase the ATLAS design luminosity by a factor ten, implying the need to build a new tracker suited to the harsh HL-LHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. We give an overview of the ATLAS tracker upgrade project, in particular focusing on the crucial innermost silicon strip layers. Results from a wide range of irradiated silicon detectors for the strip region of the future ATLAS tracker are presented. Layout concepts for lightweight yet mechanically very rigid detector modules with high service integration are shown.

  20. The Argonne silicon strip-detector array

    Energy Technology Data Exchange (ETDEWEB)

    Wuosmaa, A H; Back, B B; Betts, R R; Freer, M; Gehring, J; Glagola, B G; Happ, Th; Henderson, D J; Wilt, P [Argonne National Lab., IL (United States); Bearden, I G [Purdue Univ., Lafayette, IN (United States). Dept. of Physics

    1992-08-01

    Many nuclear physics experiments require the ability to analyze events in which large numbers of charged particles are detected and identified simultaneously, with good resolution and high efficiency, either alone, or in coincidence with gamma rays. The authors have constructed a compact large-area detector array to measure these processes efficiently and with excellent energy resolution. The array consists of four double-sided silicon strip detectors, each 5x5 cm{sup 2} in area, with front and back sides divided into 16 strips. To exploit the capability of the device fully, a system to read each strip-detector segment has been designed and constructed, based around a custom-built multi-channel preamplifier. The remainder of the system consists of high-density CAMAC modules, including multi-channel discriminators, charge-sensing analog-to-digital converters, and time-to-digital converters. The array`s performance has been evaluated using alpha-particle sources, and in a number of experiments conducted at Argonne and elsewhere. Energy resolutions of {Delta}E {approx} 20-30 keV have been observed for 5 to 8 MeV alpha particles, as well as time resolutions {Delta}T {<=} 500 ps. 4 figs.

  1. The ATLAS Tracker Upgrade: Short Strips Detectors for the SLHC

    CERN Document Server

    Soldevila, U; Lacasta, C; Marti i García, S; Miñano, M

    2009-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 2018 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for SLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D programme is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics ...

  2. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    Cormier, Kyle James Read; The ATLAS collaboration

    2016-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  3. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00512833; The ATLAS collaboration

    2017-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  4. Prototype Strip Barrel Modules for the ATLAS ITk Strip Detector

    CERN Document Server

    Sawyer, Craig; The ATLAS collaboration

    2017-01-01

    The module design for the Phase II Upgrade of the new ATLAS Inner Tracker (ITk) detector at the LHC employs integrated low mass assembly using single-sided flexible circuits with readout ASICs and a powering circuit incorporating control and monitoring of HV, LV and temperature on the module. Both readout and powering circuits are glued directly onto the silicon sensor surface resulting in a fully integrated, extremely low radiation length module which simultaneously reduces the material requirements of the local support structure by allowing a reduced width stave structure to be employed. Such a module concept has now been fully demonstrated using so-called ABC130 and HCC130 ASICs fabricated in 130nm CMOS technology to readout ATLAS12 n+-in-p silicon strip sensors. Low voltage powering for these demonstrator modules has been realised by utilising a DCDC powerboard based around the CERN FEAST ASIC. This powerboard incorporates an HV multiplexing switch based on a Panasonic GaN transistor. Control and monitori...

  5. Fast timing readout for silicon strip detectors

    International Nuclear Information System (INIS)

    Jhingan, A.; Saneesh, N.; Kumar, M.

    2016-01-01

    The development and performance of a 16 channel hybrid fast timing amplifier (FTA), for extracting timing information from silicon strip detectors (SSD), is described. The FTA will be used in a time of flight (TOF) measurement, in which one SSD is used to obtain the ion velocity (A) as well as the energy information of a scattered particle. The TOF information with a thin transmission SSD, acting as ΔE detector (Z) in a detector telescope, will provide a unique detection system for the identification of reaction products in the slowed down beam campaign of low energy branch (LEB) at NUSTAR-FAIR. Such a system will also provide large solid angle coverage with ~ 100% detection efficiency, and adequate segmentation for angular information. A good timing resolution (≤ 100 ps) enables to have shorter flight paths, thus a closely packed 4π array should be feasible. Preamplifiers for energy readout in SSD are easily available. A major constraint with SSDs is the missing high density multichannel preamplifiers which can provide both fast timing as well as energy. Provision of both timing and energy processing, generally makes circuit bulky, with higher power consumption, which may not be suitable in SSD arrays. In case of DSSSD, the problem was overcome by using timing from one side and energy from the other side. A custom designed 16 channel FTA has been developed for DSSSD design W from Micron Semiconductors, UK

  6. Digital autoradiography using silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Overdick, M.

    1998-05-01

    Spatially resolving radiation detection systems operating in real time can be used to acquire autoradiographic images. An overview over alternatives to traditional autoradiography is given and the special features of these filmless methods are discussed. On this basis the design of a system for digital autoradiography using silicon strip detectors is presented. Special emphasis is put on the physical background of the detection process in the semiconductor and on the self-triggering read-out technique. The practical performance of the system is analyzed with respect to energy and spatial resolution. This analysis is complemented by case studies from cell biology (especially electrophoresis), botany and mineralogy. Also the results from a time-resolved autoradiographic experiment are presented. (orig.) 80 refs.

  7. Silicon Strip Detectors for the ATLAS sLHC Upgrade

    CERN Document Server

    Miñano, M; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. The left part of figure 1 shows the simulated layout for the ATLAS tracker upgrade to be installed in the volume taken up by the current ATLAS pixel, strip and transition radiation detectors. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The...

  8. Strip type radiation detector and method of making same

    International Nuclear Information System (INIS)

    Jantsch, O.; Feigt, I.; Willig, W.R.

    1976-01-01

    An improved strip detector and a method for making such a detector in which a high resistivity N conduction semiconductor body has electrode strips formed thereon by diffusion is described. The strips are formed so as to be covered by an oxide layer at the surface point of the PN junction and in which the opposite side of the semiconductor body then has a substantial amount of material etched away to form a thin semiconductor upon which strip electrodes which are perpendicular to the electrodes on the first side are then placed

  9. Position-sensitive silicon strip detector characterization using particle beams

    CERN Document Server

    Maenpaeae, Teppo

    2012-01-01

    Silicon strip detectors are fast, cost-effective and have an excellent spatial resolution.They are widely used in many high-energy physics experiments. Modern high energyphysics experiments impose harsh operation conditions on the detectors, e.g., of LHCexperiments. The high radiation doses cause the detectors to eventually fail as a resultof excessive radiation damage. This has led to a need to study radiation tolerance usingvarious techniques. At the same time, a need to operate sensors approaching the endtheir lifetimes has arisen.The goal of this work is to demonstrate that novel detectors can survive the environment that is foreseen for future high-energy physics experiments. To reach this goal,measurement apparatuses are built. The devices are then used to measure the propertiesof irradiated detectors. The measurement data are analyzed, and conclusions are drawn.Three measurement apparatuses built as a part of this work are described: two telescopes measuring the tracks of the beam of a particle acceler...

  10. The silicon strip detector at the Mark 2

    International Nuclear Information System (INIS)

    Jacobsen, R.; Golubev, V.; Lueth, V.; Barnett, B.; Dauncey, P.; Matthews, J.; Adolphsen, C.; Burchat, P.; Gratta, G.; King, M.; Labarga, L.; Litke, A.; Turala, M.; Zaccardelli, C.

    1990-04-01

    We have installed a Silicon Strip Vertex Detector in the Mark II detector at the Stanford Linear Collider. We report on the performance of the detector during a recent test run, including backgrounds, stability and charged particle tracking. 10 refs., 9 figs

  11. Petalet prototype for the ATLAS silicon strip detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Sperlich, Dennis [Humboldt-Universitaet zu Berlin (Germany); Gregor, Ingrid-Maria; Bloch, Ingo; Keller, John Stakely; Lohwasser, Kristin; Poley, Louise; Zakharchuk, Nataliia; Diez Cornell, Sergio [DESY (Germany); Hauser, Marc Manuel; Mori, Riccardo; Kuehl, Susanne; Parzefall, Ulrich [Albert-Ludwigs Universitaet Freiburg (Germany)

    2015-07-01

    To achieve more precise measurements and to search new physics phenomena, the luminosity at the LHC is expected to be increased during a series of upgrades in the next years. The latest scheduled upgrade, called the High Luminosity LHC (HL-LHC) is proposed to provide instantaneous luminosity of 5 x 10{sup 34} cm{sup 2}s{sup -1}. The increased luminosity and the radiation damage will affect the current Inner Tracker. In order to cope with the higher radiation dose and occupancy, the ATLAS experiment plans to replace the current Inner Detector with a new all-silicon tracker consisting of ∝8 m{sup 2} pixel and ∝192 m{sup 2} strip detectors. In response to the needs, highly modular structures will be used for the strip system, called Staves for the barrel region and Petals for the end-caps region. A small-scaled prototype for the Petal, the Petalet, is built to study some specialties of this complex wedge-shaped structures. The Petalet consists of one large and two small sized sensors. This report focuses on the recent progress in the prototyping of the Petalet and their electrical performances.

  12. Quality Tests of Double-Sided Silicon Strip Detectors

    CERN Document Server

    Cambon, T; CERN. Geneva; Fintz, P; Guillaume, G; Jundt, F; Kuhn, C; Lutz, Jean Robert; Pagès, P; Pozdniakov, S; Rami, F; Sparavec, K; Dulinski, W; Arnold, L

    1997-01-01

    The quality of the SiO2 insulator (AC coupling between metal and implanted strips) of double-sided Silicon strip detectors has been studied by using a probe station. Some tests performed on 23 wafers are described and the results are discussed. Remark This note seems to cause problems with ghostview but it can be printed without any problem.

  13. Efficiency measurements for 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich, E-mail: ulrich.parzefall@physik.uni-freiburg.d [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Dalla Betta, Gian-Franco [INFN Trento and Universita di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Koehler, Michael; Kuehn, Susanne; Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris; Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Zoboli, Andrea [INFN Trento and Universita di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2010-11-01

    Silicon strip detectors are widely used as part of the inner tracking layers in particle physics experiments. For applications at the luminosity upgrade of the Large Hadron Collider (LHC), the sLHC, silicon detectors with extreme radiation hardness are required. The 3D detector design, where electrodes are processed from underneath the strips into the silicon bulk material, provides a way to enhance the radiation tolerance of standard planar silicon strip detectors. Detectors with several innovative 3D designs that constitute a simpler and more cost-effective processing than the 3D design initially proposed were connected to read-out electronics from LHC experiments and subsequently tested. Results on the amount of charge collected, the noise and the uniformity of charge collection are given.

  14. A new strips tracker for the upgraded ATLAS ITk detector

    Science.gov (United States)

    David, C.

    2018-01-01

    The ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the fluences and radiation levels will be higher by as much as a factor of ten. The new sub-detectors must thus be faster, of larger area, more segmented and more radiation hard while the amount of inactive material should be minimized and the power supply to the front-end systems should be increased. For those reasons, the current inner tracker of the ATLAS detector will be fully replaced by an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large area strip tracker surrounding it. This document gives an overview of the design of the strip inner tracker (Strip ITk) and summarises the intensive R&D activities performed over the last years by the numerous institutes within the Strips ITk collaboration. These studies are accompanied with a strong prototyping effort to contribute to the optimisation of the Strip ITk's structure and components. This effort culminated recently in the release of the ATLAS Strips ITk Technical Design Report (TDR).

  15. The ATLAS ITk strip detector. Status of R&D

    Energy Technology Data Exchange (ETDEWEB)

    García Argos, Carlos, E-mail: carlos.garcia.argos@cern.ch

    2017-02-11

    While the LHC at CERN is ramping up luminosity after the discovery of the Higgs Boson in the ATLAS and CMS experiments in 2012, upgrades to the LHC and experiments are planned. The major upgrade is foreseen for 2024, with a roughly tenfold increase in luminosity, resulting in corresponding increases in particle rates and radiation doses. In ATLAS the entire Inner Detector will be replaced for Phase-II running with an all-silicon system. This paper concentrates on the strip part. Its layout foresees low-mass and modular yet highly integrated double-sided structures for the barrel and forward region. The design features conceptually simple modules made from electronic hybrids glued directly onto the silicon. Modules will then be assembled on both sides of large carbon-core structures with integrated cooling and electrical services.

  16. New developments in double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Becker, H.; Boulos, T.; Cattaneo, P.; Dietl, H.; Hauff, D.; Holl, P.; Lange, E.; Lutz, G.; Moser, H.G.; Schwarz, A.S.; Settles, R.; Struder, L.; Kemmer, J.; Buttler, W.

    1990-01-01

    A new type of double sided silicon strip detector has been built and tested using highly density VLSI readout electronics connected to both sides. Capacitive coupling of the strips to the readout electronics has been achieved by integrating the capacitors into the detector design, which was made possible by introducing a new detector biasing concept. Schemes to simplify the technology of the fabrication of the detectors are discussed. The static performance properties of the devices as well as implications of the use of VLSI electronics in their readout are described. Prototype detectors of the described design equipped with high density readout electronics have been installed in the ALEPH detector at LEP. Test results on the performance are given

  17. Infrared LED Array For Silicon Strip Detector Qualification

    CERN Document Server

    Dirkes, Guido; Hartmann, Frank; Heier, Stefan; Schwerdtfeger, Wolfgang; Waldschmitt, M; Weiler, K W; Weseler, Siegfried

    2003-01-01

    The enormous amount of silicon strip detector modules for the CMS tracker requires a test-sytem to allow qualification of each individual detector module and its front-end electronics within minutes. The objective is to test the detector with a physical signal. Signals are generated in the detector by illumination with lightpulses emitted by a LED at 950~nm and with a rise time of 10~ns. In order to avoid a detector moving, an array of 64 LEDs is used, overlaping the complete detector width. The total length of an array is 15~cm. The spot size of an individual LED is controlled by apertures to illuminate about 25 strips. Furthermore it is possible to simulate the high leakage current of irradiated sensors by constant illumination of the sensor. This provides an effective mean to identfy pinholes on a sensor.

  18. Advancements of floating strip Micromegas detectors for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Klitzner, Felix; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard [LS Schaile, LMU Muenchen (Germany); Magallanes, Lorena [LS Parodi, LMU Muenchen (Germany); Universitaetsklinikum Heidelberg (Germany); Parodi, Katia [LS Parodi, LMU Muenchen (Germany); Heidelberger Ionenstrahl Therapiezentrum (Germany); Voss, Bernd [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    2016-07-01

    Floating strip Micromegas have proven to be high-rate capable tracking detectors with excellent spatial and temporal resolution for particle fluxes up to 7 MHz/cm{sup 2}. To further increase the high-rate capability a Ne:CF{sub 4} 86:14 vol.% gas mixture has been used as detector gas. We present results from measurements with a seven detector system consisting of six low material budget floating strip Micromegas, a GEM detector and a scintillator based particle range telescope. The gaseous and the scintillation detectors were read out with APV25 frontend boards, allowing for single strip readout with pulse height and timing information. A two-dimensional readout anode for floating strip Micromegas has been tested for the first time. The Micromegas detectors were operated with minimal additional drift field, which significantly improves the timing resolution and also the spatial resolution for inclined tracks. We discuss the detector performance in high-rate carbon and proton beams at the Heidelberg Ion Beam Therapy Center (HIT) and present radiographies of phantoms, acquired with the system.

  19. Characterization and Calibration of Large Area Resistive Strip Micromegas Detectors

    CERN Document Server

    Losel, Philipp Jonathan; The ATLAS collaboration

    2015-01-01

    Resisitve strip Micromegas detectors behave discharge tolerant. They have been tested extensively as smaller detectors of about 10 x 10 cm$^2$ in size and they work reliably at high rates of 100\\,kHz/cm$^2$ and above. Tracking resolutions well below 100\\,$\\mu$m have been observed for 100 GeV muons and pions. Micromegas detectors are meanwhile proposed as large area muon precision trackers of 2-3\\,m$^2$ in size. To investigate possible differences between small and large detectors, a 1\\,m$^2$ detector with 2048 resistive strips at a pitch of 450 $\\mu$m was studied in the LMU Cosmic Ray Facility (CRF) using two 4 $\\times$ 2.2 m$^2$ large Monitored Drift Tube (MDT) chambers for cosmic muon reference tracking. Segmentation of the resistive strip anode plane in 57.6\\,mm x 95\\,mm large areas has been realized by the readout of 128 strips with one APV25 chip each and by 11 95\\,mm broad trigger scintillators placed along the readout strips.\\\\ This allows for mapping of homogenity in pulse height and efficiency, deter...

  20. Characterization and Calibration of Large Area Resistive Strip Micromegas Detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00389527; The ATLAS collaboration

    2016-01-01

    Resistive strip Micromegas detectors are discharge tolerant. They have been tested extensively as small detectors of about 10 x 10 cm$^2$ in size and they work reliably at high rates of 100 kHz/cm$^2$ and above. Tracking resolution well below 100 $\\mu$m has been observed for 100 GeV muons and pions. Micromegas detectors are meanwhile proposed as large area muon precision trackers of 2-3 m$^2$ in size. To investigate possible differences between small and large detectors, a 1 m$^2$ detector with 2048 resistive strips at a pitch of 450 $\\mu$m was studied in the LMU Cosmic Ray Measurement Facility (CRMF) using two 4 $\\times$ 2.2 m$^2$ large Monitored Drift Tube (MDT) chambers for cosmic muon reference tracking. A segmentation of the resistive strip anode plane in 57.6 mm x 93 mm large areas has been realized by the readout of 128 strips with one APV25 chip each and by eleven 93 mm broad trigger scintillators placed along the readout strips. This allows for mapping of homogeneity in pulse height and efficiency, d...

  1. The New Silicon Strip Detectors for the CMS Tracker Upgrade

    CERN Document Server

    Dragicevic, Marko

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the ...

  2. Operation and radiation resistance of a FOXFET biasing structure for silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinski (Finland); Singh, P; Engels, E Jr; Shepard, J; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-03-01

    AC-coupled strip detectors biased with a FOXFET transistor structure have been studied. Measurement results for the basic operational characteristics of the FOXFET are presented together with a brief description of the physics underlying its operation. Radiation effects were studied using photons from a [sup 137]Cs source. Changes in the FOXFET characteristics as a function of radiation dose up to 1 Mrad are reported. Results about the effect of radiation on the noise from a FOXFET biased detector are discribed. (orig.).

  3. Operation and radiation resistance of a FOXFET biasing structure for silicon strip detectors

    International Nuclear Information System (INIS)

    Laakso, M.; Helsinki Univ.; Singh, P.; Engels, E. Jr.; Shepard, P.

    1992-02-01

    AC-coupled strip detectors biased with a FOXFET transistor structure have been studied. Measurement results for the basic operational characteristics of the FOXFET are presented together with a brief description of the physics underlying its operation. Radiation effects were studied using photons from a 137 Cs source. Changes in the FOXFET characteristics as a function of radiation dose up to 1 MRad are reported. Results about the effect of radiation on the noise from a FOXFET biased detector are described. 13 refs

  4. Laboratory course on silicon strip detectors

    International Nuclear Information System (INIS)

    Montano, Luis M

    2005-01-01

    In this laboratory course we present an elementary introduction to the characteristics and applications of silicon detectors in High-Energy Physics, through performing some measurements which give an overview of the properties of these detectors as position resolution. The principles of operation are described in the activities the students have to develop together with some exercises to reinforce their knowledge on these devices

  5. Charge Collection Efficiency Simulations of Irradiated Silicon Strip Detectors

    CERN Document Server

    Peltola, T.

    2014-01-01

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. Thus, to upgrade the tracker to required performance level, comprehensive measurements and simulations studies have already been carried out. Essential information of the performance of an irradiated silicon detector is obtained by monitoring its charge collection efficiency (CCE). From the evolution of CCE with fluence, it is possible to directly observe the effect of the radiation induced defects to the ability of the detector to collect charge carriers generated by traversing minimum ionizing particles (mip). In this paper the numerically simulated CCE and CCE loss between the strips of irradiated silicon strip detectors are presented. The simulations based on Synopsys Sentaurus TCAD framework were performed ...

  6. Parallel superconducting strip-line detectors: reset behaviour in the single-strip switch regime

    International Nuclear Information System (INIS)

    Casaburi, A; Heath, R M; Tanner, M G; Hadfield, R H; Cristiano, R; Ejrnaes, M; Nappi, C

    2014-01-01

    Superconducting strip-line detectors (SSLDs) are an important emerging technology for the detection of single molecules in time-of-flight mass spectrometry (TOF-MS). We present an experimental investigation of a SSLD laid out in a parallel configuration, designed to address selected single strip-lines operating in the single-strip switch regime. Fast laser pulses were tightly focused onto the device, allowing controllable nucleation of a resistive region at a specific location and study of the subsequent device response dynamics. We observed that in this regime, although the strip-line returns to the superconducting state after triggering, no effective recovery of the bias current occurs, in qualitative agreement with a phenomenological circuit simulation that we performed. Moreover, from theoretical considerations and by looking at the experimental pulse amplitude distribution histogram, we have the first confirmation of the fact that the phenomenological London model governs the current redistribution in these large area devices also after detection events. (paper)

  7. Influence for high intensity irradiation on characteristics of silicon strip-detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Pugatch, V.M.; Zinets, O.S.

    1995-01-01

    Full text: Silicon strip detectors (SSD) are widely used for the coordinate determination of short-range as well as minimum ionizing particles with high spatial resolution. Submicron position sensitivity of strip-detectors for short-range particles has been studied by means of two dimensional analyses of charges collected by neighboring strips as well as by measurement of charge collection times [1]. Silicon strip detectors was also used for testing high energy electron beam [2]. Under large fluences the radiation defects are stored and such characteristics of strip-detectors as an accuracy of the coordinate determination and the registration efficiency are significantly changed. Radiation defects lead to a decrease of the lifetime and mobility of charge carriers and therefore to changes of conditions for the charge collection in detectors. The inhomogeneity in spatial distribution if defects and electrical field plays an important role in the charge collection. In this report the role of the diffusion and drift in the charge collection in silicon strip-detectors under irradiation up to 10 Mrad has been studied. The electric field distribution and its dependence on the radiation dose in the detector have been calculated. It is shown that for particles incident between adjacent strips the coordinate determination precision depends strongly on the detector geometry and the electric field distribution, particularly in the vicinity of strips. Measuring simultaneously the collected charges and collection times on adjacent strips one can essentially improve reliability of the coordinate determination for short-range particles. Usually SSD are fabricated on n-type wafers. It is well known that under high intensity irradiation n-Si material converts into p-Si as far as p-type silicon is more radiative hard than n-type silicon [3] it is reasonable to fabricate SSD using high resistivity p-Si. Characteristics of SSD in basis n-and P-Si have been compared and higher

  8. Resistive-strips micromegas detectors with two-dimensional readout

    Science.gov (United States)

    Byszewski, M.; Wotschack, J.

    2012-02-01

    Micromegas detectors show very good performance for charged particle tracking in high rate environments as for example at the LHC. It is shown that two coordinates can be extracted from a single gas gap in these detectors. Several micromegas chambers with spark protection by resistive strips and two-dimensional readout have been tested in the context of the R&D work for the ATLAS Muon System upgrade.

  9. Strip detectors read-out system user's guide

    International Nuclear Information System (INIS)

    Claus, G.; Dulinski, W.; Lounis, A.

    1996-01-01

    The Strip Detector Read-out System consists of two VME modules: SDR-Flash and SDR-seq completed by a fast logic SDR-Trig stand alone card. The system is a self-consistent, cost effective and easy use solution for the read-out of analog multiplexed signals coming from some of the front-end electronics chips (Viking/VA chips family, Premus 128 etc...) currently used together with solid (silicon) or gas microstrip detectors. (author)

  10. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  11. Field oxide radiation damage measurements in silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland); Singh, P; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-04-01

    Surface radiation damage in planar processed silicon detectors is caused by radiation generated holes being trapped in the silicon dioxide layers on the detector wafer. We have studied charge trapping in thick (field) oxide layers on detector wafers by irradiating FOXFET biased strip detectors and MOS test capacitors. Special emphasis was put on studying how a negative bias voltage across the oxide during irradiation affects hole trapping. In addition to FOXFET biased detectors, negatively biased field oxide layers may exist on the n-side of double-sided strip detectors with field plate based n-strip separation. The results indicate that charge trapping occurred both close to the Si-SiO[sub 2] interface and in the bulk of the oxide. The charge trapped in the bulk was found to modify the electric field in the oxide in a way that leads to saturation in the amount of charge trapped in the bulk when the flatband/threshold voltage shift equals the voltage applied over the oxide during irradiation. After irradiation only charge trapped close to the interface is annealed by electrons tunneling to the oxide from the n-type bulk. (orig.).

  12. Experience with the silicon strip detector of ALICE

    NARCIS (Netherlands)

    Nooren, G.J.L.

    2009-01-01

    The Silicon Strip Detector (SSD) forms the two outermost layers of the ALICE Inner Track- ing System (ITS), connecting the TPC with the inner layers of the ITS. The SSD consists of 1698 double-sided silicon microstrip modules, 95 μm pitch, distributed in two cylindrical bar- rels, whose radii are

  13. Silicon μ-strip detectors with SVX chip readout

    International Nuclear Information System (INIS)

    Brueckner, W.; Dropmann, F.; Godbersen, M.; Konorov, I.; Koenigsmann, K.; Newsom, C.; Paul, S.; Povh, B.; Russ, J.; Timm, S.; Vorwalter, K.; Werding, R.

    1994-01-01

    A new silicon strip detector has been designed and constructed for a fixed target experiment at CERN. The system of about 30 000 channels is equipped with SVX chips and read out via a double buffer into Fastbus memory. Construction and performance during the actual data taking run are discussed. ((orig.))

  14. Development of the H1 backward silicon strip detector

    International Nuclear Information System (INIS)

    Eick, W.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Bullough, M.A.; Greenwood, N.M.; Lucas, A.D.; Newton, A.M.; Wilburn, C.D.; Horisberger, R.; Pitzl, D.; Haynes, W.J.; Noyes, G.

    1996-10-01

    The development and first results are described of a silicon strip detector telescope for the HERA experiment H1 designed to measure the polar angle of deep inelastic scattered electrons at small Bjorken x and low momentum transfers Q 2 . (orig.)

  15. Development of the H1 backward silicon strip detector

    International Nuclear Information System (INIS)

    Eick, W.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Bullough, M.A.; Greenwood, N.M.; Lucas, A.D.; Newton, A.M.; Wilburn, C.D.; Horisberger, R.; Pitzl, D.; Haynes, W.J.; Noyes, G.

    1997-01-01

    The development and first results are described of a silicon strip detector telescope for the HERA experiment H1 designed to measure the polar angle of deep inelastic scattered electrons at small Bjorken x and low momentum transfers Q 2 . (orig.)

  16. Operational issues of present ATLAS strip detector

    CERN Document Server

    Yacoob, S; The ATLAS collaboration

    2013-01-01

    Current results from the successful operation of the Semi-Conductor Tracker (SCT) Detector at the LHC and its status after three years of operation is presented. This note reports on the operation of the detector including an overview of the issues we encountered and the observation of significant increases in leakage currents from bulk damage due to non-ionising radiation, there have been a small number of significant changes effecting detector operation since the contribution to the previous conference in the series [1]. The main emphasis is given to the tracking performance of the SCT and the data quality during the many months of data-taking (the LHC delivered 47 pb

  17. Distribution of electric field and charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Zinets, O.S.

    1995-01-01

    The distribution of electric field in silicon strip detectors is analyzed in the case of dull depletion as well as for partial depletion. Influence of inhomogeneous electric fields on the charge collection and performances of silicon strip detectors is discussed

  18. Evaluation of silicon micro strip detectors with large read-out pitch

    International Nuclear Information System (INIS)

    Senyo, K.; Yamamura, K.; Tsuboyama, T.; Avrillon, S.; Asano, Y.; Bozek, A.; Natkaniec, Z.; Palka, H.; Rozanska, M.; Rybicki, K.

    1996-01-01

    For the development of the silicon micro-strip detector with the pitch of the readout strips as large as 250 μm on the ohmic side, we made samples with different structures. Charge collection was evaluated to optimize the width of implant strips, aluminum read-out strips, and/or the read-out scheme among strips. (orig.)

  19. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to 7.5E34 per second and cm2 corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of 3000/fb and hadron fluencies over 1E16 1 MeV neutron equivalent per cm2, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six discs on each side of the barrel, has resulted in the ATLAS ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the ...

  20. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to $7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of $3000\\;\\mathrm{fb}^{-1}$ and hadron fluencies over $2\\times10^{16}\\;\\mathrm{n}_{\\mathrm{eq}}/\\mathrm{cm}^{2}$, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six disks on each side of the barrel, has resulted in the ATLAS Inner Tracker Strip Detector Technical Design R...

  1. Fabrication of double-sided thallium bromide strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Keitaro, E-mail: keitaro.hitomi@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Nagano, Nobumichi [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Onodera, Toshiyuki [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577 (Japan); Kim, Seong-Yun; Ito, Tatsuya; Ishii, Keizo [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2016-07-01

    Double-sided strip detectors were fabricated from thallium bromide (TlBr) crystals grown by the traveling-molten zone method using zone-purified materials. The detectors had three 3.4-mm-long strips with 1-mm widths and a surrounding electrode placed orthogonally on opposite surfaces of the crystals at approximately 6.5×6.5 mm{sup 2} in area and 5 mm in thickness. Excellent charge transport properties for both electrons and holes were observed from the TlBr crystals. The mobility-lifetime products for electrons and holes in the detector were measured to be ~3×10{sup −3} cm{sup 2}/V and ~1×10{sup −3} cm{sup 2}/V, respectively. The {sup 137}Cs spectra corresponding to the gamma-ray interaction position were obtained from the detector. An energy resolution of 3.4% of full width at half maximum for 662-keV gamma rays was obtained from one “pixel” (an intersection of the strips) of the detector at room temperature.

  2. MUST: A silicon strip detector array for radioactive beam experiments

    CERN Document Server

    Blumenfeld, Y; Sauvestre, J E; Maréchal, F; Ottini, S; Alamanos, N; Barbier, A; Beaumel, D; Bonnereau, B; Charlet, D; Clavelin, J F; Courtat, P; Delbourgo-Salvador, P; Douet, R; Engrand, M; Ethvignot, T; Gillibert, A; Khan, E; Lapoux, V; Lagoyannis, A; Lavergne, L; Lebon, S; Lelong, P; Lesage, A; Le Ven, V; Lhenry, I; Martin, J M; Musumarra, A; Pita, S; Petizon, L; Pollacco, E; Pouthas, J; Richard, A; Rougier, D; Santonocito, D; Scarpaci, J A; Sida, J L; Soulet, C; Stutzmann, J S; Suomijärvi, T; Szmigiel, M; Volkov, P; Voltolini, G

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm sup 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and a...

  3. Beam test of CSES silicon strip detector module

    Science.gov (United States)

    Zhang, Da-Li; Lu, Hong; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, Zheng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun

    2017-05-01

    The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. A low-noise analog ASIC VA140 was used in this study for DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400-800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and intensity distribution of incident particles of the DSSD module are presented. Supported by the XXX Civil Space Programme

  4. Silicon strip detector for a novel 2D dosimetric method for radiotherapy treatment verification

    Science.gov (United States)

    Bocci, A.; Cortés-Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Arráns, R.; Alvarez, M. A. G.; Abou-Haïdar, Z.; Quesada, J. M.; Pérez Vega-Leal, A.; Pérez Nieto, F. J.

    2012-05-01

    The aim of this work is to characterize a silicon strip detector and its associated data acquisition system, based on discrete electronics, to obtain in a near future absorbed dose maps in axial planes for complex radiotherapy treatments, using a novel technique. The experimental setup is based on two phantom prototypes: the first one is a polyethylene slab phantom used to characterize the detector in terms of linearity, percent depth dose, reproducibility, uniformity and penumbra. The second one is a cylindrical phantom, specifically designed and built to recreate conditions close to those normally found in clinical environments, for treatment planning assessment. This system has been used to study the dosimetric response of the detector, in the axial plane of the phantom, as a function of its angle with respect to the irradiation beam. A software has been developed to operate the rotation of this phantom and to acquire signals from the silicon strip detector. As an innovation, the detector was positioned inside the cylindrical phantom parallel to the beam axis. Irradiation experiments were carried out with a Siemens PRIMUS linac operating in the 6 MV photon mode at the Virgen Macarena Hospital. Monte Carlo simulations were performed using Geant4 toolkit and results were compared to Treatment Planning System (TPS) calculations for the absorbed dose-to-water case. Geant4 simulations were used to estimate the sensitivity of the detector in different experimental configurations, in relation to the absorbed dose in each strip. A final calibration of the detector in this clinical setup was obtained by comparing experimental data with TPS calculations.

  5. Silicon strip detector qualification for the CMS experiment

    International Nuclear Information System (INIS)

    Kaussen, Gordon

    2008-01-01

    To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The performance of the participating two shells of the TIB, four rods of the TOB and two petals of the TEC (representing about 1% of the final strip tracker) could be studied in different magnetic fields over a period of approximately two month using cosmic muon signals. The last test before inserting the tracker in the CMS experiment was the Tracker Slice Test performed in spring/summer 2007 at the Tracker Integration Facility (TIF) at CERN after installing all subdetectors in the tracker support tube. Approximately 25% of the strip tracker +z side was powered and read out using a cosmic ray trigger built up of scintillation counters. In total, about 5 million muon events were recorded under various operating conditions. These events together with results from commissioning runs were used to study the detector response like cluster charges, signal-to-noise ratios and single strip noise behaviour as well as to identify faulty channels which turned out to be in the order of a few per mille. The performance of the silicon strip tracker during these different construction stages is discussed in this thesis with a special emphasis on the tracker end caps. (orig.)

  6. Silicon strip detector qualification for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaussen, Gordon

    2008-10-06

    To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The performance of the participating two shells of the TIB, four rods of the TOB and two petals of the TEC (representing about 1% of the final strip tracker) could be studied in different magnetic fields over a period of approximately two month using cosmic muon signals. The last test before inserting the tracker in the CMS experiment was the Tracker Slice Test performed in spring/summer 2007 at the Tracker Integration Facility (TIF) at CERN after installing all subdetectors in the tracker support tube. Approximately 25% of the strip tracker +z side was powered and read out using a cosmic ray trigger built up of scintillation counters. In total, about 5 million muon events were recorded under various operating conditions. These events together with results from commissioning runs were used to study the detector response like cluster charges, signal-to-noise ratios and single strip noise behaviour as well as to identify faulty channels which turned out to be in the order of a few per mille. The performance of the silicon strip tracker during these different construction stages is discussed in this thesis with a special emphasis on the tracker end caps. (orig.)

  7. Development and performance of double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Batignani, G.; Forti, F.; Moneta, L.; Triggiani, G.; Bosisio, L.; Focardi, E.; Giorgi, M.A.; Parrini, G.; Tonelli, G.

    1991-01-01

    Microstrip silicon detectors with orthogonal readout on opposite sides have been designed and fabricated. The active area of each device is 25 cm 2 and the strip pitch is 25 μm on the junction side and 50 μm on the opposite ohmic side. A space resolution of 15 μm on the junction side (100 μm readout pitch) and 24 μm on the ohmic side (200 μm readout pitch) has been measured. We also report on AC-coupling chips, designed and fabricated in order to allow AC connection of the strips to the amplifiers. These chips are 6.4x5.0 mm 2 and have 100 μm pitch. Both AC-couplers and detectors have been installed as part of the ALEPH minivertex. (orig.)

  8. Strip detector for the ATLAS detector upgrade for the High-Luminosity LHC

    CERN Document Server

    Veloce, Laurelle Maria; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High Luminosity LHC, scheduled for 2025. The expected radiation damage at an integrated luminosity of 3000fb-1 will require the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, the existing Inner Detector will have to be replaced by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The ITk strip detector consists of a four-layer barrel and a forward region composed of six discs on each side of the barrel. The current prototyping phase has resulted in the ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the involved institutes. In this contribution we present the design of the ITk Strip Detector and current status of R&D of various detector components.

  9. Radiation damage status of the ATLAS silicon strip detectors (SCT)

    CERN Document Server

    Kondo, Takahiko; The ATLAS collaboration

    2017-01-01

    The Silicon microstrip detector system (SCT) of the ATLAS experiment at LHC has been working well for about 7 years since 2010. The innermost layer has already received a few times of 10**13 1-MeV neutron-equivalent fluences/cm2. The evolutions of the radiation damage effects on strip sensors such as leakage current and full depletion voltages will be presented.

  10. Beam tests of ATLAS SCT silicon strip detector modules

    CERN Document Server

    Campabadal, F; Key, M; Lozano, M; Martínez, C; Pellegrini, G; Rafí, J M; Ullán, M; Johansen, L; Pommeresche, B; Stugu, B; Ciocio, A; Fadeev, V; Gilchriese, M G D; Haber, C; Siegrist, J; Spieler, H; Vu, C; Bell, P J; Charlton, D G; Dowell, John D; Gallop, B J; Homer, R J; Jovanovic, P; Mahout, G; McMahon, T J; Wilson, J A; Barr, A J; Carter, J R; Fromant, B P; Goodrick, M J; Hill, J C; Lester, C G; Palmer, M J; Parker, M A; Robinson, D; Sabetfakhri, A; Shaw, R J; Anghinolfi, F; Chesi, Enrico Guido; Chouridou, S; Fortin, R; Grosse-Knetter, J; Gruwé, M; Ferrari, P; Jarron, P; Kaplon, J; MacPherson, A; Niinikoski, T O; Pernegger, H; Roe, S; Rudge, A; Ruggiero, G; Wallny, R; Weilhammer, P; Bialas, W; Dabrowski, W; Grybos, P; Koperny, S; Blocki, J; Brückman, P; Gadomski, S; Godlewski, J; Górnicki, E; Malecki, P; Moszczynski, A; Stanecka, E; Stodulski, M; Szczygiel, R; Turala, M; Wolter, M; Ahmad, A; Benes, J; Carpentieri, C; Feld, L; Ketterer, C; Ludwig, J; Meinhardt, J; Runge, K; Mikulec, B; Mangin-Brinet, M; D'Onofrio, M; Donega, M; Moêd, S; Sfyrla, A; Ferrère, D; Clark, A G; Perrin, E; Weber, M; Bates, R L; Cheplakov, A P; Saxon, D H; O'Shea, V; Smith, K M; Iwata, Y; Ohsugi, T; Kohriki, T; Kondo, T; Terada, S; Ujiie, N; Ikegami, Y; Unno, Y; Takashima, R; Brodbeck, T; Chilingarov, A G; Hughes, G; Ratoff, P; Sloan, T; Allport, P P; Casse, G L; Greenall, A; Jackson, J N; Jones, T J; King, B T; Maxfield, S J; Smith, N A; Sutcliffe, P; Vossebeld, Joost Herman; Beck, G A; Carter, A A; Lloyd, S L; Martin, A J; Morris, J; Morin, J; Nagai, K; Pritchard, T W; Anderson, B E; Butterworth, J M; Fraser, T J; Jones, T W; Lane, J B; Postranecky, M; Warren, M R M; Cindro, V; Kramberger, G; Mandic, I; Mikuz, M; Duerdoth, I P; Freestone, J; Foster, J M; Ibbotson, M; Loebinger, F K; Pater, J; Snow, S W; Thompson, R J; Atkinson, T M; Bright, G; Kazi, S; Lindsay, S; Moorhead, G F; Taylor, G N; Bachindgagyan, G; Baranova, N; Karmanov, D; Merkine, M; Andricek, L; Bethke, Siegfried; Kudlaty, J; Lutz, Gerhard; Moser, H G; Nisius, R; Richter, R; Schieck, J; Cornelissen, T; Gorfine, G W; Hartjes, F G; Hessey, N P; de Jong, P; Muijs, A J M; Peeters, S J M; Tomeda, Y; Tanaka, R; Nakano, I; Dorholt, O; Danielsen, K M; Huse, T; Sandaker, H; Stapnes, S; Bargassa, Pedrame; Reichold, A; Huffman, T; Nickerson, R B; Weidberg, A; Doucas, G; Hawes, B; Lau, W; Howell, D; Kundu, N; Wastie, R; Böhm, J; Mikestikova, M; Stastny, J; Broklová, Z; Broz, J; Dolezal, Z; Kodys, P; Kubík, P; Reznicek, P; Vorobel, V; Wilhelm, I; Chren, D; Horazdovsky, T; Linhart, V; Pospísil, S; Sinor, M; Solar, M; Sopko, B; Stekl, I; Ardashev, E N; Golovnya, S N; Gorokhov, S A; Kholodenko, A G; Rudenko, R E; Ryadovikov, V N; Vorobev, A P; Adkin, P J; Apsimon, R J; Batchelor, L E; Bizzell, J P; Booker, P; Davis, V R; Easton, J M; Fowler, C; Gibson, M D; Haywood, S J; MacWaters, C; Matheson, J P; Matson, R M; McMahon, S J; Morris, F S; Morrissey, M; Murray, W J; Phillips, P W; Tyndel, M; Villani, E G; Dorfan, D E; Grillo, A A; Rosenbaum, F; Sadrozinski, H F W; Seiden, A; Spencer, E; Wilder, M; Booth, P; Buttar, C M; Dawson, I; Dervan, P; Grigson, C; Harper, R; Moraes, A; Peak, L S; Varvell, K E; Chu Ming Lee; Hou Li Shing; Lee Shih Chang; Teng Ping Kun; Wan Chang Chun; Hara, K; Kato, Y; Kuwano, T; Minagawa, M; Sengoku, H; Bingefors, N; Brenner, R; Ekelöf, T J C; Eklund, L; Bernabeu, J; Civera, J V; Costa, M J; Fuster, J; García, C; García, J E; González-Sevilla, S; Lacasta, C; Llosa, G; Martí i García, S; Modesto, P; Sánchez, J; Sospedra, L; Vos, M; Fasching, D; González, S; Jared, R C; Charles, E

    2005-01-01

    The design and technology of the silicon strip detector modules for the Semiconductor Tracker (SCT) of the ATLAS experiment have been finalised in the last several years. Integral to this process has been the measurement and verification of the tracking performance of the different module types in test beams at the CERN SPS and the KEK PS. Tests have been performed to explore the module performance under various operating conditions including detector bias voltage, magnetic field, incidence angle, and state of irradiation up to 3 multiplied by 1014 protons per square centimetre. A particular emphasis has been the understanding of the operational consequences of the binary readout scheme.

  11. A silicon strip detector used as a high rate focal plane sensor for electrons in a magnetic spectrometer

    CERN Document Server

    Miyoshi, T; Fujii, Y; Hashimoto, O; Hungerford, E V; Sato, Y; Sarsour, M; Takahashi, T; Tang, L; Ukai, M; Yamaguchi, H

    2003-01-01

    A silicon strip detector was developed as a focal plane sensor for a 300 MeV electron spectrometer and operated in a high rate environment. The detector with 500 mu m pitch provided good position resolution for electrons crossing the focal plane of the magnetic spectrometer system which was mounted in Hall C of the Thomas Jefferson National Accelerator Facility. The design of the silicon strip detector and the performance under high counting rate (<=2.0x10 sup 8 s sup - sup 1 for approx 1000 SSD channels) and high dose are discussed.

  12. The development of drift-strip detectors based on CdZnTe

    DEFF Research Database (Denmark)

    Gostilo, V.; Budtz-Jørgensen, Carl; Kuvvetli, Irfan

    2002-01-01

    The design and technological development of a CdZnTe drift strip detector is described. The device is based on a monocrystal of dimensions 10 x 10 x 3 mm(3) and has a pitch of 200 mum and a strip width of 100 mum. The strip length is 9.5 mm. The distribution of the leakage currents of the strips...

  13. MUST: A silicon strip detector array for radioactive beam experiments

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.; Marechal, F.; Ottini, S.; Alamanos, N.; Barbier, A.; Beaumel, D.; Bonnereau, B.; Charlet, D.; Clavelin, J.F.; Courtat, P.; Delbourgo-Salvador, P.; Douet, R.; Engrand, M.; Ethvignot, T.; Gillibert, A.; Khan, E.; Lapoux, V.; Lagoyannis, A.; Lavergne, L.; Lebon, S.; Lelong, P.; Lesage, A.; Le Ven, V.; Lhenry, I.; Martin, J.M.; Musumarra, A.; Pita, S.; Petizon, L.; Pollacco, E.; Pouthas, J.; Richard, A.; Rougier, D.; Santonocito, D.; Scarpaci, J.A.; Sida, J.L.; Soulet, C.; Stutzmann, J.S.; Suomijaervi, T.; Szmigiel, M.; Volkov, P.; Voltolini, G.

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and analog channels of the array in one crate placed adjacent to the reaction chamber and fully remote controlled, including pulse visualization on oscilloscopes. A stand alone data acquisition system devoted to the MUST array has been developed. Isotope identification of light charged particles over the full energy range has been achieved, and the capability of the system to measure angular distributions of states populated in inverse kinematics reactions has been demonstrated

  14. The new silicon strip detectors for the CMS tracker upgrade

    International Nuclear Information System (INIS)

    Dragicevic, M.

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the tracker caused by the increase in luminosity which is proposed as an upgrade to the LHC accelerator (sLHC). This chapter motivates the work I have conducted and clarifies why the solutions proposed by myself are important contributions to the upgrade of the CMS tracker. The following chapters present the concepts that are necessary to operate the silicon strip sensors at sLHC luminosities and additional improvements to the construction and quality assurance of the sensors and the detector modules. The most important concepts and works presented in chapters 7 to 9 are: Development of a software framework to enable the flexible and quick design of test structures and sensors. Selecting a suitable sensor material which is sufficiently radiation hard. Design, implementation and production of a standard set of test structures to enable the quality assurance of such sensors and any future developments. Electrical characterisation of the test structures and analysis

  15. ATLAS Tracker Upgrade: Silicon Strip Detectors and Modules for the sLHC

    International Nuclear Information System (INIS)

    Lefebvre, Michel; Minano Moya, Mercedes

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. (authors)

  16. ATLAS Tracker Upgrade: Silicon Strip Detectors for the sLHC

    CERN Document Server

    Koehler, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. A key issue ...

  17. The ATLAS Tracker Upgrade Short Strips Detectors for the sLHC

    CERN Document Server

    Soldevila, U; Lacasta, C; Marti i García, S; Miñano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 2018 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for SLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D programme is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics ...

  18. ATLAS Tracker Upgrade: Silicon Strip Detectors and Modules for the SLHC

    CERN Document Server

    Minano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown.

  19. Atlas Tracker Upgrade: Silicon Strip Detectors and Modules for the SLHC

    CERN Document Server

    Minano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a significant factor, with the upgraded machine dubbed Super-LHC. The ATLAS experiment will require a new tracker for Super-LHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will imply a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown.

  20. A Proposal to Upgrade the Silicon Strip Detector

    International Nuclear Information System (INIS)

    Matis, Howard; Michael, LeVine; Jonathan, Bouchet; Stephane, Bouvier; Artemios, Geromitsos; Gerard, Guilloux; Sonia, Kabana; Christophe, Renard; Howard, Matis; Jim, Thomas; Vi Nham, Tram

    2007-01-01

    The STAR Silicon Strip Detector (SSD) was built by a collaboration of Nantes, Strasbourg and Warsaw collaborators. It is a beautiful detector; it can provide 500 mu m scale pointing resolution at the vertex when working in combination with the TPC. It was first used in Run 4, when half the SSD was installed in an engineering run. The full detector was installed for Run 5 (the Cu-Cu run) and the operation and performance of the detector was very successful. However, in preparation for Run 6, two noisy ladders (out of 20) were replaced and this required that the SSD be removed from the STAR detector. The re-installation of the SSD was not fully successful and so for the next two Runs, 6 and 7, the SSD suffered a cooling system failure that allowed a large fraction of the ladders to overheat and become noisy, or fail. (The cause of the SSD cooling failure was rather trivial but the SSD could not be removed between Runs 6 and 7 due to the inability of the STAR detector to roll along its tracks at that time.)

  1. EMC Diagnosis and Corrective Actions for Silicon Strip Tracker Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arteche, F.; /CERN /Imperial Coll., London; Rivetta, C.; /SLAC

    2006-06-06

    The tracker sub-system is one of the five sub-detectors of the Compact Muon Solenoid (CMS) experiment under construction at CERN for the Large Hadron Collider (LHC) accelerator. The tracker subdetector is designed to reconstruct tracks of charged sub-atomic particles generated after collisions. The tracker system processes analogue signals from 10 million channels distributed across 14000 silicon micro-strip detectors. It is designed to process signals of a few nA and digitize them at 40 MHz. The overall sub-detector is embedded in a high particle radiation environment and a magnetic field of 4 Tesla. The evaluation of the electromagnetic immunity of the system is very important to optimize the performance of the tracker sub-detector and the whole CMS experiment. This paper presents the EMC diagnosis of the CMS silicon tracker sub-detector. Immunity tests were performed using the final prototype of the Silicon Tracker End-Caps (TEC) system to estimate the sensitivity of the system to conducted noise, evaluate the weakest areas of the system and take corrective actions before the integration of the overall detector. This paper shows the results of one of those tests, that is the measurement and analysis of the immunity to CM external conducted noise perturbations.

  2. Study of inter-strip gap effects and efficiency for full energy detection of double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Fisichella, M.; Forneris, J.; Grassi, L.

    2015-01-01

    We performed a characterization of Double Sided Silicon Strip Detectors (DSSSD) with the aim to carry out a systematic study of the inter-strip effects on the energy measurement of charged particles. The dependence of the DSSSD response on ion, energy and applied bias has been investigated. (author)

  3. Silicon strip detector system for Fermilab E706

    Energy Technology Data Exchange (ETDEWEB)

    Engels, E Jr; Mani, S; Plants, D; Shepard, P F; Wilkins, R [Pittsburgh Univ., PA (USA); Hossain, S [Northeastern Univ., Boston, MA (USA)

    1984-09-15

    Fermilab Experiment E706 is an experiment to study direct photon production in hadron-hadron collisions at the Fermilab Tevatron II. A part of the charged particle spectrometer is a silicon strip detector system used to determine the position of interaction vertices in the production target and to provide angular formation about the secondary hadrons produced in a collision. We present some design criteria, as well as the results of tests of a wafer similar to those to be used in the experiment.

  4. Coordinate determination of high energy charged particles by silicon strip detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Zinets, O.S.

    2002-01-01

    The coordinate determination accuracy of minimum ionizing and short-range particles by silicon strip detectors has been considered. The charge collection on neighboring strips of the detector is studied and the influence of diffusion and the electric field distribution on the accuracy of the coordinate determination is analyzed. It has been shown that coordinates of both minimum ionizing and short-range particles can be determined with accuracy to a few microns using silicon strip detectors. 11 refs.; 8 figs

  5. Data quality monitoring of the CMS Silicon Strip Tracker detector

    International Nuclear Information System (INIS)

    Benucci, L.

    2010-01-01

    The Physics and Data Quality Monitoring (DQM) framework aims at providing a homogeneous monitoring environment across various applications related to data taking at the CMS experiment. In this contribution, the DQM system for the Silicon Strip Tracker will be introduced. The set of elements to assess the status of detector will be mentioned, along with the way to identify problems and trace them to specific tracker elements. Monitoring tools, user interfaces and automated software will be briefly described. The system was used during extensive cosmic data taking of CMS in Autumn 2008, where it demonstrated to have a flexible and robust implementation and has been essential to improve the understanding of the detector. CMS Collaboration believes that this tool is now mature to face the forthcoming data-taking era.

  6. Strip detector for the ATLAS detector upgrade for the high-luminosity LHC

    CERN Document Server

    Madaffari, Daniele; The ATLAS collaboration

    2017-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1x10$^{35}$ cm$^{-2}$s$^{-1}$ after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000 fb$^{-1}$, requiring the tracking detectors to withstand hadron fluencies to over 1x10$^{16}$ 1 MeV neutron equivalent per cm$^2$. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  7. The Control System for the CMS Strip Tracking Detector

    CERN Document Server

    Fahrer, Manuel; Chen, Jie; Dierlamm, Alexander; Frey, Martin; Masetti, Lorenzo; Militaru, Otilia; Shah, Yousaf; Stringer, Robert; Tsirou, Andromachi

    2008-01-01

    The Tracker of the CMS silicon strip tracking detector covers a surface of 206 m2. 9648128 channels are available on 75376 APV front-end chips on 15232 modules, built of 24328 silicon sensors. The power supply of the detector modules is split up in 1944 power supplies with two low voltage for front end power and two high voltage channels each for the bias voltage of the silicon sensors. In addition 356 low voltage channels are needed to power the control chain. The tracker will run at -20°C at low relative humidity for at least 10 years. The Tracker Control System handles all interdependencies of control, low and high voltages, as well as fast ramp downs in case of higher than allowed temperatures or currents in the detector and experimental cavern problems. This is ensured by evaluating $10^{4}$ power supply parameters, $10^{3}$ information from Tracker Safety System and $10^{5}$ information from the tracker front end.

  8. Signal collection and position reconstruction of silicon strip detectors with 200 μm readout pitch

    International Nuclear Information System (INIS)

    Krammer, M.; Pernegger, H.

    1997-01-01

    Silicon strip detectors with large readout pitch and intermediate strips offer an interesting approach to reduce the number of readout channels in the tracking systems of future collider experiments without compromising too much on the spatial resolution. Various detector geometries with a readout pitch of 200 μm have been studied for their signal response and spatial resolution. (orig.)

  9. Synchrotron applications of pixel and strip detectors at Diamond Light Source

    International Nuclear Information System (INIS)

    Marchal, J.; Tartoni, N.; Nave, C.

    2009-01-01

    A wide range of position-sensitive X-ray detectors have been commissioned on the synchrotron X-ray beamlines operating at the Diamond Light Source in UK. In addition to mature technologies such as image-plates, CCD-based detectors, multi-wire and micro-strip gas detectors, more recent detectors based on semiconductor pixel or strip sensors coupled to CMOS read-out chips are also in use for routine synchrotron X-ray diffraction and scattering experiments. The performance of several commercial and developmental pixel/strip detectors for synchrotron studies are discussed with emphasis on the image quality achieved with these devices. Examples of pixel or strip detector applications at Diamond Light Source as well as the status of the commissioning of these detectors on the beamlines are presented. Finally, priorities and ideas for future developments are discussed.

  10. A double sided silicon strip detector as a DRAGON end detector

    CERN Document Server

    Wrede, C; Rogers, J G; D'Auria, J M

    2003-01-01

    The new DRAGON facility (detector of recoils and gammas of nuclear reactions), located at the TRlUMF-ISAC Radioactive Beams facility in Vancouver, Canada is now operational. This facility is used to study radiative proton capture reactions in inverse kinematics (heavy ion beam onto a light gaseous target) with both stable beams and radioactive beams of mass A=13-26 in the energy range 0.15-1.5 MeV/u. A double sided silicon strip detector (DSSSD) has been used to detect recoil ions. Tests have been performed to determine the performance of this DSSSD.

  11. Development of the RAIDS extreme ultraviolet wedge and strip detector. [Remote Atmospheric and Ionospheric Detector System

    Science.gov (United States)

    Kayser, D. C.; Chater, W. T.; Christensen, A. B.; Howey, C. K.; Pranke, J. B.

    1988-01-01

    In the next few years the Remote Atmospheric and Ionospheric Detector System (RAIDS) package will be flown on a Tiros spacecraft. The EUV spectrometer experiment contains a position-sensitive detector based on wedge and strip anode technology. A detector design has been implemented in brazed alumina and kovar to provide a rugged bakeable housing and anode. A stack of three 80:1 microchannel plates is operated at 3500-4100 V. to achieve a gain of about 10 to the 7th. The top MCP is to be coated with MgF for increased quantum efficiency in the range of 50-115 nm. A summary of fabrication techniques and detector performance characteristics is presented.

  12. Technical Design Report for the ATLAS Inner Tracker Strip Detector

    CERN Document Server

    Collaboration, ATLAS

    2017-01-01

    This is the first of two Technical Design Report documents that describe the upgrade of the central tracking system for the ATLAS experiment for the operation at the High Luminosity LHC (HL-LHC) starting in the middle of 2026. At this time the LHC will have been upgraded to reach a peak instantaneous luminosity of 7.5x10^34 cm^[-2]s^[-1], which corresponds to approximately 200 inelastic proton-proton collisions per beam crossing. The new Inner Tracker (ITk) will be operational for more than ten years, during which ATLAS aims to accumulate a total data set of 3,000 fb^[-1]. Meeting these requirements presents a unique challenge for the design of an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large-area strip tracking detector surrounding it. This document presents in detail the requirements of the new tracker, its layout and expected performance including the results of several benchmark physics studies at the highest numbers of collisions per beam...

  13. Fabrication of silicon strip detectors using a step-and-repeat lithography system

    International Nuclear Information System (INIS)

    Holland, S.

    1991-11-01

    In this work we describe the use of a step-and-repeat lithography system (stepper) for the fabrication of silicon strip detectors. Although the field size of the stepper is only 20 mm in diameter, we have fabricated much larger detectors by printing a repetitive strip detector pattern in a step-and-repeat fashion. The basic unit cell is 7 mm in length. The stepper employs a laser interferometer for stage placement, and the resulting high precision allows one to accurately place the repetitive patterns on the wafer. A small overlap between the patterns ensures a continuous strip. A detector consisting of 512 strips on a 50 μm pitch has been fabricated using this technique. The dimensions of the detector are 6.3 cm by 2.56 cm. Yields of over 99% have been achieved, where yield is defined as the percentage of strips with reverse leakage current below 1 nA. In addition to the inherent advantages of a step-and-repeat system, this technique offers great flexibility in the fabrication of large-area strip detectors since the length and width of the detector can be changed by simply reprogramming the stepper computer. Hence various geometry strip detectors can be fabricated with only one set of masks, as opposed to a separate set of masks for each geometry as would be required with a contact or proximity aligner

  14. MUST, a set of strip detectors for studying radioactive beams induced reactions

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Barbier, A.; Beaumel, D.; Charlet, D.; Clavelin, J.F.; Douet, R.; Engrand, M.; Lebon, S.; Lelong, P.; Lesage, A.; Leven, V.; Lhenry, I.; Marechal, F.; Petizon, L.; Pouthas, J.; Richard, A.; Rougier, D.; Soulet, C.; Suomijaervi, T.; Volkov, P.; Voltolini, G.

    1996-01-01

    This report states the specificity of light particles elastic scattering, and the need of detecting recoil protons to improve angular resolution. Then the development of a specific MUST strip detector is detailed: 60 strips detectors with Si O sub 2 dielectric, that yield 500 ps time resolution, and Si (Li) detectors following next. A versatile data acquisition system has been developed too, with CAMAC interface to suit to any experimental plant. (D.L.)

  15. Evaluation of FOXFET biased ac-coupled silicon strip detector prototypes for CDF SVX upgrade

    International Nuclear Information System (INIS)

    Laakso, M.

    1992-03-01

    Silicon microstrip detectors for high-precision charged particle position measurements have been used in nuclear and particle physics for years. The detectors have evolved from simple surface barrier strip detectors with metal strips to highly complicated double-sided AC-coupled junction detectors. The feature of AC-coupling the readout electrodes from the diode strips necessitates the manufacture of a separate biasing structure for the strips, which comprises a common bias line together with a means for preventing the signal from one strip from spreading to its neighbors through the bias line. The obvious solution to this is to bias the strips through individual high value resistors. These resistors can be integrated on the detector wafer by depositing a layer of resistive polycrystalline silicon and patterning it to form the individual resistors. To circumvent the extra processing step required for polysilicon resistor processing and the rather difficult tuning of the process to obtain uniform and high enough resistance values throughout the large detector area, alternative methods for strip biasing have been devised. These include the usage of electron accumulation layer resistance for N + - strips or the usage of the phenomenon known as the punch-through effect for P + - strips. In this paper we present measurement results about the operation and radiation resistance of detectors with a punch-through effect based biasing structure known as a Field OXide Field-Effect Transistor (FOXFET), and present a model describing the FOXFET behavior. The studied detectors were prototypes for detectors to be used in the CDF silicon vertex detector upgrade

  16. Evaluation of FOXFET biased ac-coupled silicon strip detector prototypes for CDF SVX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M. (Fermi National Accelerator Lab., Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland))

    1992-03-01

    Silicon microstrip detectors for high-precision charged particle position measurements have been used in nuclear and particle physics for years. The detectors have evolved from simple surface barrier strip detectors with metal strips to highly complicated double-sided AC-coupled junction detectors. The feature of AC-coupling the readout electrodes from the diode strips necessitates the manufacture of a separate biasing structure for the strips, which comprises a common bias line together with a means for preventing the signal from one strip from spreading to its neighbors through the bias line. The obvious solution to this is to bias the strips through individual high value resistors. These resistors can be integrated on the detector wafer by depositing a layer of resistive polycrystalline silicon and patterning it to form the individual resistors. To circumvent the extra processing step required for polysilicon resistor processing and the rather difficult tuning of the process to obtain uniform and high enough resistance values throughout the large detector area, alternative methods for strip biasing have been devised. These include the usage of electron accumulation layer resistance for N{sup +}{minus} strips or the usage of the phenomenon known as the punch-through effect for P{sup +}{minus} strips. In this paper we present measurement results about the operation and radiation resistance of detectors with a punch-through effect based biasing structure known as a Field OXide Field-Effect Transistor (FOXFET), and present a model describing the FOXFET behavior. The studied detectors were prototypes for detectors to be used in the CDF silicon vertex detector upgrade.

  17. Position calibration of silicon strip detector using quasi-elastic scattering of 16O+197Au

    International Nuclear Information System (INIS)

    Yan Wenqi; Hu Hailong; Zhang Gaolong

    2013-01-01

    Background: Elastic scattering is induced by weakly unstable nuclei. Generally, a good angular resolution for angular distribution of elastic scattering is needed. The silicon strip detector is often used for this kind of experiment. Purpose: In order to use silicon strip detector to study the elastic scattering of weakly unbound nuclei, it is important to get the information of its position calibration. It is well known that the elastic scattering of stable nuclei has a good angular distribution and many experimental data have been obtained. Methods: So the scattering of stable nuclei can be used to calibrate the position information of silicon strip detector. In this experiment, the positions of silicon strip detectors are calibrated using 101 MeV and 59 MeV 16 O scattering on the 197 Au target. Results: The quasi-elastic peaks can be observed in the silicon strip detectors and the counts of quasi-elastic 16 O can be obtained. The solid angles of the silicon strip detectors are calibrated by using alpha source which has three alpha energy values. The angular distribution of quasi-elastic scattering of 16 O+ 197 Au is obtained at these two energy values. Conclusions: The experimental data of angular distribution are reasonable and fit for the principle of angular distribution of elastic scattering. It is concluded that in the experiment these silicon strip detectors can accurately give the position information and can be used for the elastic scattering experiment. (authors)

  18. Accelerated life test of an ONO stacked insulator film for a silicon micro-strip detector

    International Nuclear Information System (INIS)

    Okuno, Shoji; Ikeda, Hirokazu; Saitoh, Yutaka

    1996-01-01

    We have used to acquire the signal through an integrated capacitor for a silicon micro-strip detector. When we have been using a double-sided silicon micro-strip detector, we have required a long-term stability and a high feasibility for the integrated capacitor. An oxide-nitride-oxide (ONO) insulator film was theoretically expected to have a superior nature in terms of long term reliability. In order to test long term reliability for integrated capacitor of a silicon micro-strip detector, we made a multi-channel measuring system for capacitors

  19. Silicon Strip Detectors for ATLAS at the HL-LHC Upgrade

    CERN Document Server

    Hara, K; The ATLAS collaboration

    2012-01-01

    The present ATLAS silicon strip (SCT) and transition radiation (TRT) trackers will be replaced with new silicon strip detectors, as part of the Inner Tracker System (ITK), for the Phase-2 upgrade of the Large Hadron Collider, HL-LHC. We have carried out intensive R&D programs to establish radiation harder strip detectors that can survive in a radiation level up to 3000 fb-1 of integrated luminosity based on n+-on-p microstrip detector. We describe main specifications for this year’s sensor fabrication, followed by a description of possible module integration schema

  20. Radiation damage measurements on CZT drift strip detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Korsbech, Uffe C C

    2003-01-01

    from 2 x 10(8) to 60 x 10(8) p(+)/cm(2). Even for the highest fluences, which had a dramatic effect on the spectroscopic performance, we were able to recover the detectors after an appropriate annealing procedure. The radiation damage was studied as a function of depth inside the detector material...... with the proton dose. The radiation contribution to the electron trapping was found to obey the following relation: (mutau(e)(-1))(rad) = (2.5+/-0.2) x 10(-7) x Phi (V/cm)(2) with the proton fluence, Phi in p(+)/cm(2). The trapping depth dependence, however, did not agree well with the damage profile calculated...

  1. Numerical analysis of edge effects in side illuminated strip detectors for digital radiology

    CERN Document Server

    Krizaj, D

    2000-01-01

    The influence of edge defects on side illuminated X-ray strip detectors for digital radiology is investigated by numerical device modeling. By assuming positive fixed oxide charges on side and top surfaces simulations have shown strong curvature of the equipotential lines in the edge region. A fraction of the edge generated current surpasses the edge guard-ring junction and is collected by the readout strips. As a consequence, strips cannot be placed close to the edge of the structure and collection efficiency is reduced. An n-on-n instead of a p-on-n strip detector is proposed enabling collection of edge generated carriers by a very narrow guard-ring junction and placement of the readout strip close to the edge without increase of the strip leakage current.

  2. Results on a 10 micron pitch detector with individual strip readout

    International Nuclear Information System (INIS)

    Antinori, F.; Dameri, M.; Olcese, A.; Osculati, B.; Rossi, L.; Forino, A.; Marioli, D.; Meroni, C.; Redaelli, N.; Torretta, D.

    1990-01-01

    A 10 μm pitch silicon microstrip detector with individual strip readout via hybrid electronics has been produced and operated. Connections to digital and analog electronics is realized through an insensitive fan-out structure on the detector itself. The detector has been used in the WA82 experiment at the CERN Ω' spectrometer. (orig.)

  3. First results from a silicon-strip detector with VLSI readout

    International Nuclear Information System (INIS)

    Anzivino, G.; Horisberger, R.; Hubbeling, L.; Hyams, B.; Parker, S.; Breakstone, A.; Litke, A.M.; Walker, J.T.; Bingefors, N.

    1986-01-01

    A 256-strip silicon detector with 25 μm strip pitch, connected to two 128-channel NMOS VLSI chips (Microplex), has been tested using straight-through tracks from a ruthenium beta source. The readout channels have a pitch of 47.5 μm. A single multiplexed output provides voltages proportional to the integrated charge from each strip. The most probable signal height from the beta traversals is approximately 14 times the rms noise in any single channel. (orig.)

  4. Assembly of an endcap of the ATLAS silicon strip detector at NIKHEF, Amsterdam.

    CERN Multimedia

    Ginter, P

    2005-01-01

    Assembly of an endcap of the ATLAS silicon strip detector (SCT) at NIKHEF, Amsterdam. Technicians are mounting the power distribution cables on the cylinder that houses nine disks with silicon sensors.

  5. The depletion properties of silicon microstrip detectors with variable strip pitch

    International Nuclear Information System (INIS)

    Krizmanic, J.F.

    1994-01-01

    We have investigated the depletion properties of trapezoidal shaped silicon microstrip detectors which have variable strip pitch. Four types of detectors were examined: three detectors have constant strip width and a fourth has a varying strip width. The detectors are single sided with readout performed via p + strips. The depletion properties of the devices were measured using two different methods. The first used capacitance versus voltage measurements, while the second used a 1060 nm wavelength laser coupled to a single mode fiber with a mode field diameter less than 10 μm. The small laser spot size allowed for the depletion depth to be measured in a localized area of the detector. The laser induced charge on an electrode was measured as a function of reverse bias voltage using a sensitive charge preamplifier. The depletion voltages of the detectors demonstrate a strong dependence upon the ratio of strip width to strip pitch. Moreover, these measurements show that a large value of this ratio yields a lower depletion voltage and vice versa. (orig.)

  6. Cross-talk studies on FPCB of double-sided silicon micro-strip detector

    International Nuclear Information System (INIS)

    Yang, Lei; Li, Zhankui; Li, Haixia; Wang, Pengfei; Wang, Zhusheng; Chen, Cuihong; Liu, Fengqiong; Li, Ronghua; Wang, Xiuhua; Li, Chunyan; Zu, Kailing

    2014-01-01

    Double-sided silicon micro-strip detector's parameters and a test method and the results of cross-talk of FPCB are given in this abstract. In addition, the value of our detector's readout signal has little relation to FPCB's cross-talk.

  7. Development of readout electronics for monolithic integration with diode strip detectors

    International Nuclear Information System (INIS)

    Hosticka, B.J.; Wrede, M.; Zimmer, G.; Kemmer, J.; Hofmann, R.; Lutz, G.

    1984-03-01

    Parallel in - serial out analog readout electronics integrated with silicon strip detectors will bring a reduction of two orders of magnitude in external electronics. The readout concept and the chosen CMOS technology solve the basic problem of low noise and low power requirements. A hybrid solution is an intermediate step towards the final goal of monolithic integration of detector and electronics. (orig.)

  8. Response of CZT drift-strip detector to X- and gamma rays

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Gerward, Leif

    2001-01-01

    The drift-strip method for improving the energy response of a CdZnTe (CZT) detector to hard X- and gamma rays is discussed. Results for a 10 x 10 x 3 mm(3) detector crystal demonstrate a remarkable improvement of the energy resolution. The full width at half maximum (FWHM) is 2.18 keV (3.6%), 2...

  9. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Ley, J.-L. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Abellan, C.; Cachemiche, J.-P. [Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille (France); Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Joly, B.; Lambert, D.; Lestand, L. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Létang, J.M. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Magne, M. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); and others

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm{sup 3}, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm{sup 3}, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  10. The development of two ASIC's for a fast silicon strip detector readout system

    International Nuclear Information System (INIS)

    Christain, D.; Haldeman, M.; Yarema, R.; Zimmerman, T.; Newcomer, F.M.; VanBerg, R.

    1989-01-01

    A high speed, low noise readout system for silicon strip detectors is being developed for Fermilab E771, which will begin taking data in 1989. E771 is a fixed target experiment designed to study the production of B hadrons by an 800 GeV/c proton beam. The experimental apparatus consists of an open geometry magnetic spectrometer featuring good muon and electron identification and a 16000 channel silicon microstrip vertex detector. This paper reviews the design and prototyping of two application specific integrated circuits (ASIC's) an amplifier and a discriminator, which are being produced for the silicon strip detector readout system

  11. Beam tests of ATLAS SCT silicon strip detector modules

    Czech Academy of Sciences Publication Activity Database

    Campabadal, F.; Fleta, C.; Key, M.; Böhm, Jan; Mikeštíková, Marcela; Šťastný, Jan

    2005-01-01

    Roč. 538, - (2005), s. 384-407 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * silicon * micro-strip * beam * test Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.224, year: 2005

  12. Investigation of the charge collection for strongly irradiated silicon strip detectors of the CMS ECAL Preshower

    International Nuclear Information System (INIS)

    Bloch, Ph.; Peisert, A.; Chang, Y.H.; Chen, A.E.; Hou, S.; Lin, W.T.; Cheremukhin, A.E.; Golutvin, I.A.; Urkinbaev, A.R.; Zamyatin, N.I.; Loukas, D.

    2001-01-01

    Strongly irradiated (2.3·10 14 n/cm 2 ) silicon strip detectors of different size, thickness and different design options were tested in a muon beam at CERN in 1999. A charge collection efficiency in excess of 85% and a signal-to-noise ratio of about 6 are obtained in all cases at high enough bias voltage. Details of the charge collection in the interstrip and the guard ring region and cross-talk between strips were also studied. We find that the charge collection efficiency and the cross-talk between strips depend on the interstrip distance

  13. Performance tests of developed silicon strip detector by using a 150 GeV electron beam

    International Nuclear Information System (INIS)

    Hyun, Hyojung; Jung, Sunwoo; Kah, Dongha; Kang, Heedong; Kim, Hongjoo; Park, Hwanbae

    2008-01-01

    We manufactured and characterized a silicon micro-strip detector to be used in a beam tracker. A silicon detector features a DC-coupled silicon strip sensor with VA1 Prime2 analog readout chips. The silicon strip sensors have been fabricated on 5-in. wafers at Electronics and Telecommunications Research Institute (Daejeon, Korea). The silicon strip sensor is single-sided and has 32 channels with a 1 mm pitch, and its active area is 3.2 by 3.2 cm 2 with 380 μm thickness. The readout electronics consists of VA hybrid, VA Interface, and FlashADC and Control boards. Analog signals from the silicon strip sensor were being processed by the analog readout chips on the VA hybrid board. Analog signals were then changed into digital signals by a 12 bit 25 MHz FlashADC. The digital signals were read out by the Linux-operating PC through the FlashADC-USB2 interface. The DAQ system and analysis programs were written in the framework of ROOT package. The beam test with the silicon detector had been performed at CERN beam facility. We used a 150 GeV electron beam out of the SPS(Super Proton Synchrotron) H2 beam line. We present beam test setup and measurement result of signal-to-noise ratio of each strip channel. (author)

  14. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    Science.gov (United States)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  15. Technology Development on P-type Silicon Strip Detectors for Proton Beam Dosimetry

    International Nuclear Information System (INIS)

    Aouadi, K.; Bouterfa, M.; Delamare, R.; Flandre, D.; Bertrand, D.; Henry, F.

    2013-06-01

    In this paper, we present a technology for the fabrication of n-in-p silicon strip detectors, which is based on the use of Al 2 O 3 oxide compared to p-spray insulation scheme. This technology has been developed using the best technological parameters deduced from simulations, particularly for the p-spray implantation parameters. Different wafers were processed towards the fabrication of the radiation detectors with p-spray insulation and Al 2 O 3 . The evaluation of the prototype detectors has been carried out by performing the electrical characterization of the devices through the measurement of current-voltage and capacitance-voltage characteristics, as well as the measurement of detection response under radiation. The results of electrical measurements indicate that detectors fabricated with Al 2 O 3 exhibit a dark current several times lower than p-spray detectors and show an excellent electrical insulation between strips with a higher inter-strip resistance. Response of Al 2 O 3 strip detector under radiation has been found better. The resulting improved output signal dynamic range finally makes the use of Al 2 O 3 more attractive. (authors)

  16. Silicon Strip Detectors for ATLAS at the HL-LHC Upgrade

    CERN Document Server

    Hara, K; The ATLAS collaboration

    2012-01-01

    present ATLAS silicon strip tracker (SCT) and transition radiation tracker(TRT) are to be replaced with new silicon strip detectors as part of the Inner Tracker System (ITK) for the Phase-II upgrade of the Large Hadron Collider, HL-LHC. We have carried out intensive R&D programs based on n+-on-p microstrip detectors to fabricate improved radiation hard strip detectors that can survive the radiation levels corresponding to the integrated luminosity of up to 3000 fb−1. We describe the main specifications for this year’s sensor fabrication and the related R&D results, followed by a description of the candidate schema for module integration.

  17. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  18. Effects of the interstrip gap on the efficiency and response of Double Sided Silicon Strip Detectors

    Directory of Open Access Journals (Sweden)

    Torresi D.

    2016-01-01

    Full Text Available In this work the effects of the segmentation of the electrodes of Double Sided Silicon Strip Detectors (DSSSDs are investigated. In order to characterize the response of the DSSSDs we perform a first experiment by using tandem beams of different energies directly sent on the detector and a second experiment by mean of a proton microbeam. Results show that the effective width of the inter-strip region and the efficiency for full energy detection, varies with both detected energy and bias voltage. The experimental results are qualitatively reproduced by a simplified model based on the Shockley-Ramo-Gunn framework.

  19. Measurement of the spatial resolution of wide-pitch silicon strip detectors with large incident angle

    International Nuclear Information System (INIS)

    Kawasaki, T.; Hazumi, M.; Nagashima, Y.

    1996-01-01

    As a part of R ampersand D for the BELLE experiment at KEK-B, we measured the spatial resolution of silicon strip detectors for particles with incident angles ranging from 0 degrees to 75 degrees. These detectors have strips with pitches of 50, 125 and 250 μm on the ohmic side. We have obtained the incident angle dependence which agreed well with a Monte Carlo simulation. The resolution was found to be 11 μm for normal incidence with a pitch of 50 μm, and 29 μm for incident angle of 75 degrees with a pitch of 250μm

  20. CZT drift strip detectors for high energy astrophysics

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions.We report on experimental investigations on the CZT drift detector developed DTU Space...

  1. A new semicustom integrated bipolar amplifier for silicon strip detectors

    International Nuclear Information System (INIS)

    Zimmerman, T.

    1989-01-01

    The QPA02 is a four channel DC coupled two stage transimpedance amplifier designed at Fermilab on a semicustom linear array (Quickchip 2S) manufactured by Tektronix. The chip was developed as a silicon strip amplifier but may have other applications as well. Each channel consists of a preamplifier and a second stage amplifier/sharper with differential output which can directly drive a transmission line (90 to 140 ohms). External bypass capacitors are the only discrete components required. QPA02 has been tested and demonstrated to be an effective silicon strip amplifier. Other applications may exist which can use this amplifier or a modified version of this amplifier. For example, another design is now in progress for a wire chamber amplifier, QPA03, to be reported later. Only a relatively small effort was required to modify the design and layout for this application. 11 figs

  2. GaAs strip detectors: the Australian production program

    International Nuclear Information System (INIS)

    Butcher, K.S.A.; Alexiev, D.

    1995-01-01

    The Australian High Energy Physics consortium (composed of the University of Melbourne, the University of Sydney and ANSTO) has been investigating the possibility of producing a large area wheel of SI GaAs detectors for the ATLAS detector array. To help assess the extent of Australia's role in this venture a few SI GaAs microstrip detectors are to be manufactured under contract by the CSIRO division of Radiophysics GaAs IC Prototyping Facility. The planned production of the devices is discussed. First, the reasons for producing the detectors here in Australia are examined, then some basic characteristics of the material are considered, and finally details are provided of the design used for the manufacture of the devices. Two sets of detectors will be produced using the standard Glasgow production recipe; SIGaAs and GaN. The Glasgow mask set is being used as a benchmark against which to compare the Australian devices

  3. Status of the Silicon Strip Detector at CMS

    CERN Document Server

    Simonis, H J

    2008-01-01

    The CMS Tracker is the world's largest silicon detector. It has only recently been moved underground and installed in the 4T solenoid. Prior to this there has been an intensive testing on the surface, which confirms that the detector system fully meets the design specifications. Irradiation studies with the sensor material shows that the system will survive for at least 10 years in the harsh radiation environment prevailing within the Tracker volume. The planning phase for SLHC as the successor of LHC, with a ten times higher luminosity at the same energy has already begun. First R\\&D studies for more robust detector materials and a new Tracker layout have started.

  4. Beam tests of lead tungstate crystal matrices and a silicon strip preshower detector for the CMS electromagnetic calorimeter

    CERN Document Server

    Auffray, Etiennette; Barney, D; Bassompierre, Gabriel; Benhammou, Ya; Blick, A M; Bloch, P; Bonamy, P; Bourotte, J; Buiron, L; Cavallari, F; Chipaux, Rémi; Cockerill, D J A; Dafinei, I; Davies, G; Depasse, P; Deiters, K; Diemoz, M; Dobrzynski, Ludwik; Donskov, S V; Mamouni, H E; Ercoli, C; Faure, J L; Felcini, Marta; Gautheron, F; Géléoc, M; Givernaud, Alain; Gninenko, S N; Godinovic, N; Graham, D J; Guillaud, J P; Guschin, E; Haguenauer, Maurice; Hillemanns, H; Hofer, H; Ille, B; Inyakin, A V; Jääskeläinen, S; Katchanov, V A; Kirn, T; Kloukinas, Kostas C; Korzhik, M V; Lassila-Perini, K M; Lebrun, P; Lecoq, P; Lecoeur, Gérard; Lecomte, P; Leonardi, E; Locci, E; Loos, R; Longo, E; MacKay, C K; Martin, E; Mendiburu, J P; Musienko, Yu V; Nédélec, P; Nessi-Tedaldi, F; Organtini, G; Paoletti, S; Pansart, J P; Peigneux, J P; Puljak, I; Qian, S; Reid, E; Renker, D; Rosowsky, A; Rosso, E; Rusack, R W; Rykaczewski, H; Schneegans, M; Seez, Christopher J; Semeniouk, I N; Shagin, P M; Sillou, D; Singovsky, A V; Sougonyaev, V; Soric, I; Verrecchia, P; Vialle, J P; Virdee, Tejinder S; Zhu, R Y

    1998-01-01

    Tests of lead tungstate crystal matrices carried out in high-energy electron beams in 1996, using new crystals, new APDs and an improved test set-up, confirm that an energy resolution of better than 0 .6% at 100 GeV can be obtained when the longitudinal uniformity of the struck crystal is adequate. Light loss measurements under low dose irradiation are reported. It is shown that there is no loss of energy resolution after irradiation and that the calibration change due to light loss can be tracked with a precision monitoring system. Finally, successuful tests with a preshower device, equipped wi th silicon strip detector readout, are described.

  5. Performance of a large-area GEM detector read out with wide radial zigzag strips

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Aiwu, E-mail: azhang@fit.edu; Bhopatkar, Vallary; Hansen, Eric; Hohlmann, Marcus; Khanal, Shreeya; Phipps, Michael; Starling, Elizabeth; Twigger, Jessie; Walton, Kimberly

    2016-03-01

    A 1-meter-long trapezoidal Triple-GEM detector with wide readout strips was tested in hadron beams at the Fermilab Test Beam Facility in October 2013. The readout strips have a special zigzag geometry and run radially with an azimuthal pitch of 1.37 mrad to measure the azimuthal ϕ-coordinate of incident particles. The zigzag geometry of the readout reduces the required number of electronic channels by a factor of three compared to conventional straight readout strips while preserving good angular resolution. The average crosstalk between zigzag strips is measured to be an acceptable 5.5%. The detection efficiency of the detector is (98.4±0.2)%. When the non-linearity of the zigzag-strip response is corrected with track information, the angular resolution is measured to be (193±3) μrad, which corresponds to 14% of the angular strip pitch. Multiple Coulomb scattering effects are fully taken into account in the data analysis with the help of a stand-alone Geant4 simulation that estimates interpolated track errors.

  6. Hadron-therapy beam monitoring: Towards a new generation of ultra-thin p-type silicon strip detectors

    International Nuclear Information System (INIS)

    Bouterfa, M.; Aouadi, K.; Bertrand, D.; Olbrechts, B.; Delamare, R.; Raskin, J. P.; Gil, E. C.; Flandre, D.

    2011-01-01

    Hadron-therapy has gained increasing interest for cancer treatment especially within the last decade. System commissioning and quality assurance procedures impose to monitor the particle beam using 2D dose measurements. Nowadays, several monitoring systems exist for hadron-therapy but all show a relatively high influence on the beam properties: indeed, most devices consist of several layers of materials that degrade the beam through scattering and energy losses. For precise treatment purposes, ultra-thin silicon strip detectors are investigated in order to reduce this beam scattering. We assess the beam size increase provoked by the Multiple Coulomb Scattering when passing through Si, to derive a target thickness. Monte-Carlo based simulations show a characteristic scattering opening angle lower than 1 mrad for thicknesses below 20 μm. We then evaluated the fabrication process feasibility. We successfully thinned down silicon wafers to thicknesses lower than 10 μm over areas of several cm 2 . Strip detectors are presently being processed and they will tentatively be thinned down to 20 μm. Moreover, two-dimensional TCAD simulations were carried out to investigate the beam detector performances on p-type Si substrates. Additionally, thick and thin substrates have been compared thanks to electrical simulations. Reducing the pitch between the strips increases breakdown voltage, whereas leakage current is quite insensitive to strips geometrical configuration. The samples are to be characterized as soon as possible in one of the IBA hadron-therapy facilities. For hadron-therapy, this would represent a considerable step forward in terms of treatment precision. (authors)

  7. A high rate, low noise, x-ray silicon strip detector system

    International Nuclear Information System (INIS)

    Ludewigt, B.; Jaklevic, J.; Kipnis, I.; Rossington, C.; Spieler, H.

    1993-11-01

    An x-ray detector system, based on a silicon strip detector wire-bonded to a low noise charge-senstive amplifier integrated circuit, has been developed for synchrotron radiation experiments which require very high count rates and good energy resolution. Noise measurements and x-ray spectra were taken using a 6 mm long, 55 μm pitch strip detector in conjunction with a prototype 16-channel charge-sensitive preamplifier, both fabricated using standard 1.2 μm CMOS technology. The detector system currently achieves an energy resolution of 350 eV FWHM at 5.9 key, 2 μs peaking time, when cooled to -5 degree C

  8. A new strips tracker for the upgraded ATLAS ITk detector

    CERN Document Server

    David, Claire; The ATLAS collaboration

    2017-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  9. SVX3: A deadtimeless readout chip for silicon strip detectors

    International Nuclear Information System (INIS)

    Zimmerman, T.; Huffman, T.; Srage, J.; Stroehmer, R.; Yarema, R.; Garcia-Sciveras, M.; Luo, L.; Milgrome, O.

    1997-12-01

    A new silicon strip readout chip called the SVX3 has been designed for the 720,000 channel CDF silicon upgrade at Fermilab. SVX3 incorporates an integrator, analog delay pipeline, ADC, and data sparsification for each of 128 identical channels. Many of the operating parameters are programmable via a serial bit stream, which allows the chip to be used under a variety of conditions. Distinct features of SVX3 include use of a backside substrate contact for optimal ground referencing, and the capability of simultaneous signal acquisition and digital readout allowing deadtimeless operation in the Fermilab Tevatron

  10. Varicose Vein Stripping Under Low-Dose Spinal Anaesthesia

    Directory of Open Access Journals (Sweden)

    Nalan Muhammedoğlu

    2014-03-01

    Full Text Available Aim: Spinal anesthesia is frequently used for procedures involving the lower limbs. Compared with general anesthesia, low-dose spinal anesthesia is a cost-effective method and has advantages such as avoiding hypotension, longer duration of anesthesia and increased length of hospitalization. The aim of this trial was to compare two different low-dose bupivacaine drug regimens. Methods: Sixty unpremedicated patients were randomly allocated into two groups (n=30. There were no differences between the groups in age, weight, the American Society of Anesthesiologists (ASA physical status classification, gender, and duration of surgery. We performed spinal anesthesia at the L3-4 interspace with the patient in the lateral decubitus position. We administered 6.5 mg (group 1 and 8 mg (group 2 0.5% heavy bupivacaine into the subarachnoid space. We positioned the patient laterally to the operation side for 15 minutes, then, turned to supine position. Motor and sensory block was assessed by the Bromage scale and pinprick test. Results: There were significant differences between the two groups in duration of motor block, but no significant differences in hemodynamic response to spinal anesthesia. None of the patients had intraoperative pain. Five patients in group 1 and 2 patients in group 2 had urinary retention. Conclusion: Our observations suggest that 6.5 mg heavy bupivacaine is efficient and suitable for unilateral varicose veins stripping operation. (The Me­di­cal Bul­le­tin of Ha­se­ki 2014; 52: 25-8

  11. Performance updating of CdZnTe strip-drift detectors

    DEFF Research Database (Denmark)

    Shorohov, M.; Tsirkunova, I.; Loupilov, A.

    2007-01-01

    59.6 and 662 keV correspondingly. Recently, significant progress was done in CdZnTe crystals growth technology. In the present paper we present preliminary result of performance updating of CdZnTe strip-drift detectors based on crystal of 10 x 10 x 6 mm 3 produced by Yinnel Tech company. Results...

  12. Charge Division Readout of a Two-Dimensional Germanium Strip Detector

    National Research Council Canada - National Science Library

    Kroeger, R. A; Inderhees, S. E; Johnson, W. N; Kinzer, R. L; Kurfess, J. D; Gehrels, N

    1993-01-01

    .... The four data channels are stored as an event list for subsequent processing. We form a response map over the detector surface in order to locate the position of each interaction with the spatial resolution of the strip pitch, in our case 9 mm...

  13. Proposed method of assembly for the BCD silicon strip vertex detector modules

    International Nuclear Information System (INIS)

    Lindenmeyer, C.

    1989-01-01

    The BCD Silicon strip Vertex Detector is constructed of 10 identical central region modules and 18 similar forward region modules. This memo describes a method of assembling these modules from individual silicon wafers. Each wafer is fitted with associated front end electronics and cables and has been tested to insure that only good wafers reach the final assembly stage. 5 figs

  14. Charge collection and depth sensing investigation on CZT drift strip detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    CZT drift strip detectors with Planar Transverse Field (PTF) configuration are suitable for high energy astrophysics instrumentation, where high efficiency, high energy and position resolution are required from the sensors. We report on experimental investigations on the DTU Space developed CZT d...

  15. The silicon strips Inner Tracker (ITk) of the ATLAS Phase-II upgrade detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220523; The ATLAS collaboration

    2018-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The inner detector of the current detector will be replaced by the Inner Tracker (ITk). It consists of an innermost pixel detector and an outer strips tracker. This contribution focuses on the strips tracker. The basic detection unit of the ...

  16. Commissioning of the Silicon Strip Detector (SSD) of ALICE

    NARCIS (Netherlands)

    Christakoglou, P.; Botje, M.A.J.; Mischke, A.; van Leeuwen, M.

    2009-01-01

    The latest results from the commissioning of the SSD with cosmics are presented in this paper. The hardware status of the detector, the front-end electronics, cooling, data acquisition and issues related to the on-line monitoring are shown. In addition, the procedures implemented and followed to

  17. Detector and Front-end electronics for ALICE and STAR silicon strip layers

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Higueret, S; Jundt, F; Kühn, C E; Lutz, Jean Robert; Suire, C; Tarchini, A; Berst, D; Blondé, J P; Clauss, G; Colledani, C; Deptuch, G; Dulinski, W; Hu, Y; Hébrard, L; Kucewicz, W; Boucham, A; Bouvier, S; Ravel, O; Retière, F

    1998-01-01

    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented.

  18. A test-bench for measurement of electrical static parameters of strip silicon detectors

    International Nuclear Information System (INIS)

    Golutvin, I.A.; Dmitriev, A.Yu.; Elsha, V.V.

    2003-01-01

    An automated test-bench for electrical parameters input control of the strip silicon detectors, used in the End-Cap Preshower detector of the CMS experiment, is described. The test-bench application allows one to solve a problem of silicon detectors input control in conditions of mass production - 1800 detectors over 2 years. The test-bench software is realized in Delphi environment and contains a user-friendly operator interface for data processing and visualization as well as up-to-date facilities for MS-Windows used for the network database. High operating characteristics and reliability of the test-bench were confirmed while more than 800 detectors were tested. Some technical solutions applied to the test-bench could be useful for design and construction of automated facilities for electrical parameters measurements of the microstrip detectors input control. (author)

  19. A Test-Bench for Measurement of Electrical Static Parameters of Strip Silicon Detectors

    CERN Document Server

    Golutvin, I A; Danilevich, V G; Dmitriev, A Yu; Elsha, V V; Zamiatin, Y I; Zubarev, E V; Ziaziulia, F E; Kozus, V I; Lomako, V M; Stepankov, D V; Khomich, A P; Shumeiko, N M; Cheremuhin, A E

    2003-01-01

    An automated test-bench for electrical parameters input control of the strip silicon detectors, used in the End-Cap Preshower detector of the CMS experiment, is described. The test-bench application allows one to solve a problem of silicon detectors input control in conditions of mass production - 1800 detectors over 2 years. The test-bench software is realized in Delphi environment and contains a user-friendly operator interface for measurement data processing and visualization as well as up-to-date facilities for MS-Windows used for the network database. High operating characteristics and reliability of the test-bench were confirmed while more than 800 detectors were tested. Some technical solutions applied to the test-bench could be useful for design and construction of automated facilities for electrical parameters measurements of the microstrip detectors input control.

  20. One dimensional detector for X-ray diffraction with superior energy resolution based on silicon strip detector technology

    International Nuclear Information System (INIS)

    Dąbrowski, W; Fiutowski, T; Wiącek, P; Fink, J; Krane, H-G

    2012-01-01

    1-D position sensitive X-ray detectors based on silicon strip detector technology have become standard instruments in X-ray diffraction and are available from several vendors. As these devices have been proven to be very useful and efficient further improvement of their performance is investigated. The silicon strip detectors in X-ray diffraction are primarily used as counting devices and the requirements concerning the spatial resolution, dynamic range and count rate capability are of primary importance. However, there are several experimental issues in which a good energy resolution is important. The energy resolution of silicon strip detectors is limited by the charge sharing effects in the sensor as well as by noise of the front-end electronics. The charge sharing effects in the sensor and various aspects of the electronics, including the baseline fluctuations, which affect the energy resolution, have been analyzed in detail and a new readout concept has been developed. A front-end ASIC with a novel scheme of baseline restoration and novel interstrip logic circuitry has been designed. The interstrip logic is used to reject the events resulting in significant charge sharing between neighboring strips. At the expense of rejecting small fraction of photons entering the detector one can obtain single strip energy spectra almost free of charge sharing effects. In the paper we present the design considerations and measured performance of the detector being developed. The electronic noise of the system at room temperature is typically of the order of 70 el rms for 17 mm long silicon strips and a peaking time of about 1 μs. The energy resolution of 600 eV FWHM has been achieved including the non-reducible charge sharing effects and the electronic noise. This energy resolution is sufficient to address a common problem in X-ray diffraction, i.e. electronic suppression of the fluorescence radiation from samples containing iron or cobalt while irradiated with 8.04 ke

  1. Application of a wedge strip anode in micro-pattern gaseous detectors

    International Nuclear Information System (INIS)

    Tian Yang; Yang Yigang; Li Yulan; Li Yuanjing

    2013-01-01

    The wedge strip anode (WSA) has been widely used in 2-D position-sensitive detectors. A circular WSA with an effective diameter of 52 mm is successfully coupled to a tripe gas electron multiplier (GEM) detector through a simple resistive layer. A spatial resolution of 440 μm (FWHM) is achieved for a 10 kVp X-ray using 1 atm Ar:CO 2 =70:30 gas. The simple electronics of only three channels makes it very useful in applications strongly requiring simple interface design, e.g. sealed tubes and high pressure detectors. (authors)

  2. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sevilla, S., E-mail: Sergio.Gonzalez.Sevilla@cern.ch [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Barbier, G. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Anghinolfi, F. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Cadoux, F.; Clark, A. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Dabrowski, W.; Dwuznik, M. [AGH University of Sceince and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Ferrere, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Garcia, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Ikegami, Y. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hara, K. [University of Tsukuba, School of Pure and Applied Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Jakobs, K. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Kaplon, J. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Koriki, T. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Lacasta, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); La Marra, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Marti i Garcia, S. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Parzefall, U. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Pohl, M. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Terada, S. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2011-04-21

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10{sup 34} cm{sup -2} s{sup -1}. It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown.

  3. Review of surface dose detectors in radiotherapy

    LENUS (Irish Health Repository)

    O'Shea, E.

    2006-11-20

    Several instruments have been used to measure absorbed radiation dose under non-electronic equilibrium conditions, such as in the build-up region or near the interface between two different media, including the surface. Many of these detectors are discussed in this paper. A common method of measuring the absorbed dose distribution and electron contamination in the build-up region of high-energy beams for radiation therapy is by means of parallel-plate ionisation chambers. Thermoluminescent dosimeters (TLDs), diodes and radiographic film have also been used to obtain surface dose measurements. The diamond detector was used recently by the author in an investigation on the effects of beam-modifying devices on skin dose and it is also described in this report

  4. Micro-strip Metal Foil Detectors for the Beam Profile Monitoring

    CERN Document Server

    Pugatch, V M; Fedorovitch, O A; Mikhailenko, A V; Prystupa, S V; Pylypchenko, Y

    2005-01-01

    The Micro-strip Metal Foil Detectors (MMFD) designed and used for the Beam Profile Monitoring (BPM) are discussed. Fast particles hitting a metal strip initiate Secondary Electron Emission (SEE) which occurs at 10 - 50 nm surface layers of a strip. The SEE yield is measured by a sensitive Charge Integrator with built-in current-to-frequency converter (1 Hz per 1 fA). The MMFD (deposited onto the 20 μm thick Si-wafer) with 32 Al strips (10 μm wide, 32 μm pitch) has been used for the BPM of the 32 MeV alpha-particle beam at the MPIfK (Heidelberg) Tandem generator for Single-Event-Upset studies of the BEETLE micro-chip. Similar MMFD (0.5 μm thick Ni-strips) with totally removed Si-wafer (by plasma-chemistry, at the working area of 8 x 10 mm2) has been applied for the on-line X-ray BPM at the HASYLAB (DESY). The number of photons (11.3 GeV, mean X-ray energy 18 keV) producing out of a strip a single SEE was evaluated as (1.5 ±0.5)* 104. MMFD has demonstrated stable...

  5. ATLAS Tracker Upgrade: Silicon Strip Detectors for the sLHC

    CERN Document Server

    Koehler, M; The ATLAS collaboration

    2010-01-01

    To extend the physics potential of the Large Hadron Colider (LHC) at CERN, upgrades of the accelerator complex and the detectors towards the Super-LHC (sLHC) are foreseen. The upgrades, separated in Phase-1 and Phase-2, aim at increasing the luminosity while leaving the energy of the colliding particles (7 TeV per proton beam) unchanged. After the Phase-2 upgrade the instantaneous luminosity will be a factor of 5-10 higher than the design luminosity of the LHC. Due to the increased track rate and extreme radiation levels for the tracking detectors, upgrades of the detectors are necessary. At ATLAS, one of the two general purpose detectors at the LHC, the current inner detector will be replaced by an all-silicon tracker. This article describes the plans for the Phase-2 upgrade of the silicon strip detector of ATLAS. Radiation hard n-in-p silicon detectors with shorter strips than currently installed in ATLAS are planned. Results of measurements with these sensors and plans for module designs will be discussed.

  6. Initial beam test results from a silicon-strip detector with VLSI readout

    International Nuclear Information System (INIS)

    Adolphsen, C.; Litke, A.; Schwarz, A.

    1986-01-01

    Silicon detectors with 256 strips, having a pitch of 25 μm, and connected to two 128 channel NMOS VLSI chips each (Microplex), have been tested in relativistic charged particle beams at CERN and at the Stanford Linear Accelerator Center. The readout chips have an input channel pitch of 47.5 μm and a single multiplexed output which provides voltages proportional to the integrated charge from each strip. The most probable signal height from minimum ionizing tracks was 15 times the rms noise in any single channel. Two-track traversals with a separation of 100 μm were cleanly resolved

  7. Monolithic front-end ICs for interpolating cathode pad and strip detectors for GEM

    International Nuclear Information System (INIS)

    O'Connor, P.

    1993-05-01

    We are developing CMOS circuits for readout of interpolating cathode strip and pad chambers for the GEM experiment at the SSC. Because these detectors require position resolution of about 1% of the strip pitch, the electronic noise level must be less than 2000 electrons. Several test chips have been fabricated to demonstrate the feasibility of achieving the combination of low noise, speed, and wide dynamic range in CMOS. Results to date show satisfactory noise and linearity performance. Future development will concentrate on radiation-hardening the central tracker ASIC design, optimizing the shaper peaking time and noise contribution, providing more user-configurable output options, and packaging and test issues

  8. A readout system for position sensitive measurements of X-ray using silicon strip detectors

    CERN Document Server

    Dabrowski, W; Grybos, P; Idzik, M; Kudlaty, J

    2000-01-01

    In this paper we describe the development of a readout system for X-ray measurements using silicon strip detectors. The limitation concerning the inherent spatial resolution of silicon strip detectors has been evaluated by Monte Carlo simulation and the results are discussed. The developed readout system is based on the binary readout architecture and consists of two ASICs: RX32 front-end chip comprising 32 channels of preamplifiers, shapers and discriminators, and COUNT32 counter chip comprising 32 20-bit asynchronous counters and the readout logic. This work focuses on the design and performance of the front-end chip. The RX32 chip has been optimised for a low detector capacitance, in the range of 1-3 pF, and high counting rate applications. It can be used with DC coupled detectors allowing the leakage current up to a few nA per strip. For the prototype chip manufactured in a CMOS process all basic parameters have been evaluated by electronic measurements. The noise below 140 el rms has been achieved for a ...

  9. Gas detector with a μm size strips anode

    International Nuclear Information System (INIS)

    Oed, A.

    1988-01-01

    A flat electrode device for an ionizing radiation multidetector, particularly for an X-ray detector used in tomodensitometry, is presented. It consists of either two active electrodes of the same kind, or an anode-electrode and a cathode electrode, on opposite sides of a base plate. The device avoids problems linked to flatness and parallelism, and the base plate consists of at least two intermediate plates separated by a space containing at least layer of binding material. The device thus overcomes difficulties associated with thickness and the need to stop ionizing radiation from passing from one cell to another by traversing the base plate. The steps of the fabrication process are detailed [fr

  10. Degradation of charge sharing after neutron irradiation in strip silicon detectors with different geometries

    International Nuclear Information System (INIS)

    Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Huse, T.; Tsurin, I.; Wormald, M.

    2013-01-01

    The aim of the CERN/RD50 collaboration is the improvement of the radiation tolerance of semiconductor detectors for future experiments at high-luminosity colliders. In the RD50 framework, evidence of enhanced signal charge in severely irradiated silicon detectors (diodes, segmented planar and 3D devices) was found. The underlying mechanism was labelled charge multiplication. This has been one of the most exciting results from the research activity of RD50 because it could allow for a greatly extended radiation tolerance, if the mechanism is to be found controllable and tuneable. The charge multiplication mechanism is governed by impact ionisation from electrons drifting in high electric field. The electric field profile is influenced by the geometry of the implanted electrodes. In order to investigate the influence of the diode implantation geometry on charge multiplication, the RD50 collaboration has commissioned the production of miniature microstrip silicon sensors with various choices of strip pitch and strip width over pitch (w/p) ratios. Moreover, some of the sensors were produced interleaving readout strips with dummy intermediate ones in order to modify the electric field profile. These geometrical solutions can influence both charge multiplication and charge sharing between adjacent strips. The initial results of this study are here presented

  11. Incomplete charge collection in an HPGe double-sided strip detector

    International Nuclear Information System (INIS)

    Hayward, Jason; Wehe, David

    2008-01-01

    For gamma-ray detection, high-purity germanium (HPGe) has long been the standard for energy resolution, and double-sided strip detectors (DSSDs) offer the possibility of sub-millimeter position resolution. Our HPGe DSSD is 81 mm in diameter, 11-mm thick, and has 3-mm strip pitch with a gap width of 500 μm. In this work, we focus on characterizing just the interactions that occur between collecting strips. Simulation and measurement results for our HPGe DSSD show that the gap between strips is the most position-sensitive region. But, spectra collected from events that occur in and near the gaps are complicated by: (1) incomplete charge-carrier collection, or charge loss; (2) signal variance introduced by charge-carrier cloud size, orientation, and lateral spreading; and (3) the difficulty of distinguishing single interactions from multiple close interactions. Using tightly, collimated beams of monoenergetic gamma rays, the measured energy spectra at the gap center show that incomplete charge collection is significant in our detector at 356 and 662 keV, resulting in degradation of the photopeak efficiency. Additionally, close interactions are identifiable in the spectra. Thus, close interactions must be identified on an event-by-event basis in order to precisely identify gap interaction position or make charge-loss corrections at these energies. Furthermore, spectral differences are observed between anode and cathode gaps, and a possible reason for this asymmetry is proposed

  12. First implementation of the MEPHISTO binary readout architecture for strip detectors

    International Nuclear Information System (INIS)

    Fischer, P.

    2001-01-01

    Today's front-end readout chips for multi-channel silicon strip detectors use pipeline-like structures for temporary storage of hit information until arrival of a trigger signal. This approach leads to large-area chips when long trigger latencies are necessary. The MEPHISTO architecture uses a different concept. Hit strips are identified in real time and only the relevant binary hit information is stored in FIFOs. For the typical occupancies in LHC detectors of ∼1 hit per clock cycle this architecture requires less than half the chip area of a typical binary pipeline. This reduces the system cost considerably. At a lower data rate, operation with very long trigger latencies or even without any trigger is possible due to the real-time data sparsification. The Mephisto II architecture is presented and the expected performance is discussed

  13. Interference coupling mechanisms in Silicon Strip Detectors - CMS tracker "wings" A learned lesson for SLHC

    CERN Document Server

    Arteche, F; Rivetta, C

    2009-01-01

    The identification of coupling mechanisms between noise sources and sensitive areas of the front-end electronics (FEE) in the previous CMS tracker sub-system is critical to optimize the design and integration of integrated circuits, sensors and power distribution circuitry for the proposed SLHC Silicon Strip Tracker systems. This paper presents a validated model of the noise sensitivity observed in the Silicon Strip Detector-FEE of the CMS tracker that allows quantifying both the impact of the noise coupling mechanisms and the system immunity against electromagnetic interferences. This model has been validated based on simulations using finite element models and immunity tests conducted on prototypes of the Silicon Tracker End-Caps (TEC) and Outer Barrel (TOB) systems. The results of these studies show important recommendations and criteria to be applied in the design of future detectors to increase the immunity against electromagnetic noise.

  14. Design and characterization of integrated front-end transistors in a micro-strip detector technology

    International Nuclear Information System (INIS)

    Simi, G.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Manghisoni, M.; Morganti, M.; U. Pignatel, G.; Ratti, L.; Re, V.; Rizzo, G.; Speziali, V.; Zorzi, N.

    2002-01-01

    We present the developments in a research program aimed at the realization of silicon micro-strip detectors with front-end electronics integrated in a high resistivity substrate to be used in high-energy physics, space and medical/industrial imaging applications. We report on the fabrication process developed at IRST (Trento, Italy), the characterization of the basic wafer parameters and measurements of the relevant working characteristics of the integrated transistors and related test structures

  15. Radiation tolerance of oxygenated n-strip read-out detectors

    CERN Document Server

    Allport, P P; Greenall, A

    2003-01-01

    Following earlier work on 'oxygenated' detectors in terms of charge collection efficiencies after proton irradiation, full-size detectors for the LHC have been processed with n-side read-out on oxygen enhanced n-type silicon substrates. Two hundred-micron-thick detectors have been inhomogeneously irradiated up to doses of 7 multiplied by 10**1**4p/cm**2 using 24 GeV protons from the CERN PS. Results are presented on the charge collection efficiencies as a function of operating voltage for regions of the detectors irradiated to different doses, using LHC speed analogue read-out electronics. The measurements confirm the expectations which led to our original proposal of such detectors which are now being envisaged for the silicon-based detector systems at the LHC designed to withstand the greatest doses. The possibilities for survival at an upgraded luminosity LHC (Super-LHC) are also briefly discussed.

  16. Expert System for the LHC CMS Cathode Strip Chambers (CSC) detector

    Energy Technology Data Exchange (ETDEWEB)

    Rapsevicius, Valdas, E-mail: valdas.rapsevicius@cern.ch [Fermi National Accelerator Laboratory, Batavia, IL (United States); Vilnius University, Didlaukio g. 47-325, LT-08303 Vilnius (Lithuania); Juska, Evaldas, E-mail: evaldas.juska@cern.ch [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2014-02-21

    Modern High Energy Physics experiments are of high demand for a generic and consolidated solution to integrate and process high frequency data streams by applying experts' knowledge and inventory configurations. In this paper we present the Expert System application that was built for the Compact Muon Solenoid (CMS) Cathode Strip Chambers (CSC) detector at the Large Hadron Collider (LHC) aiming to support the detector operations and to provide integrated monitoring. The main building blocks are the integration platform, rule-based complex event processing engine, ontology-based knowledge base, persistent storage and user interfaces for results and control.

  17. Radiation Damage Effects and Performance of Silicon Strip Detectors using LHC Readout Electronics

    CERN Document Server

    AUTHOR|(CDS)2067734

    1998-01-01

    Future high energy physics experiments as the ATLAS experiment at CERN, will use silicon strip detectors for fast and high precision tracking information. The high hadron fluences in these experiments cause permanent damage in the silicon.Additional energy levels are introduced in the bandgap thus changing the electrical properties such as leakage current and full depletion voltage V_fd .Very high leakage currents are observed after irradiation and lead to higher electronic noise and thus decrease the spatial resolution.V_fd increases to a few hundred volts after irradiation and eventually beyond the point of stable operating voltages. Prototype detectors with either p-implanted strips (p-in-n) and n-implanted strip detectors (n-in-n) were irradiated to the maximum expected fluence in ATLAS.The irradiation and the following study of the current and V_fd were carried out under ATLAS operational conditions.The evolution of V_fd after irradiation is compared to models based on diode irradiations.The qualitative ...

  18. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  19. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  20. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    CERN Document Server

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of the ITS use double-sided silicon strip detectors. This thesis focuses on testing of these detectors and performance studies of the detector module prototypes at the beam test. Silicon strip detector layers will require about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bond...

  1. Timing characteristics of a two-dimensional multi-wire cathode strip detector for fission fragments

    International Nuclear Information System (INIS)

    Vind, R.P.; Joshi, B.N.; Jangale, R.V.; Inkar, A.L.; Prajapati, G.K.; John, B.V.; Biswas, D.C.

    2014-01-01

    In the recent past, a gas filled two-dimensional multi-wire cathode strip detector (MCSD) was developed for the detection of fission fragments (FFs). The position resolution was found to be about 1.0 and 1.5 mm in X and Y directions respectively. The detector has three electrode planes consisting of cathode strip (X-plane), anode wires and split-cathode wires (Y-plane). Each thin wire of the anode plane placed between the two cathode planes is essentially independent and behaves like a proportional counter. The construction of the detector in detail has been given in our earlier paper. The position information has been obtained by employing high impedance discrete delay line read out method for extracting position information in X and Y-directions. In this work, the timing characteristics of MCSD detector are reported to explore the possible use of this detector for the measurement of the mass of the fission fragments produced in heavy ion induced fission reactions

  2. Light output optimization for the Cherenkov strips of the Barrel detector of FOPI

    Energy Technology Data Exchange (ETDEWEB)

    Petrovici, M; Gobbi, A; Hildenbrand, K D [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Kirejczyk, M; Sikora, B [Warsaw Univ. (Poland); Chelepov, V; Dulin, M; Frolov, S; Judentsov, A; Krylov, V; Nikitin, A; Smolyankin, V; Zhilin, A [Institute for Theoretical and Expermental Physics - ITEP, B. Chermushkinskaya ulitsa 25, RU-117 259 Moskva, (Russian Federation); Mgebrishvili, G; Vasiliev, M [I.V. Kurchatov Institute of Atomic Energy, Ulitsa Kurchatova 46, RU-123 182 Moskva, (Russian Federation)

    1994-12-31

    Available as short communication only. A systematic study on how to increase the number of the photoelectrons (PE) in the phototubes at the end of the bent light guides has been undertaken prior to the final assembly of the Cherenkov strips of the Barrel detector for the 4{pi} facility FOPI at GSI-Darmstadt. This was motivated by the observation that with the mass-produced strips only 0.8 PE were found for cosmic rays incident at the center of the 240 cm long strips, a value too low to ensure a decent detection of even {beta}=1 particles. The method used was based on a careful calibration of the amplitude spectra by means of measuring single-electron peaks in the attached tubes. As the consequence of these studies the wave-length shifter (amino G salt) concentration in the distilled water of strips was optimized and a cell of 1000 mm with a mirror on one side has been used. These changes brought a improvement factor of 9 in the number of PE at 85 cm distance from the light guide. This results led to the decision of changing the former design of the Cherenkov layer. In addition during production of these final modules it has been observed that variances between different strips in terms of the number of PE could be minimized by an outer polishing of the plexiglas cells. Finally, during mounting of the detectors the used phototubes were selected according to their performance in peak to valley ratio of the single electron peaks spectrum. (Author) 3 Figs., 2 Refs.

  3. Onyx as radiation detector for high doses

    International Nuclear Information System (INIS)

    Teixeira, Maria Inês; Souza, Divanizia N.; Caldas, Linda V.E.

    2011-01-01

    A study of the thermoluminescent (TL) characteristics of white, black and stripped onyx samples is reported in this work. Onyx is a variety of chalcedony, a form of quartz. The onyx stone is considered nobler than marble. The irradiations were performed using a Gamma-Cell 220 system ( 60 Co). The TL emission curves presented two peaks around 150 °C and 210 °C for all samples. The dose–response curves showed a sublinear behavior between 0.5 Gy and 5 kGy, and the lower detection limit for the white onyx pellets was 1.5 mGy. The main dosimetric characteristics were studied, and the material showed good performance for high dose dosimetry.

  4. Electromagnetic noise studies in a silicon strip detector, used as part of a luminosity monitor at LEP

    Science.gov (United States)

    Ødegaard, Trygve; Tafjord, Harald; Buran, Torleiv

    1995-02-01

    As part of the luminosity monitor, SAT, in the DELPHI [1] experiment at CERN's Large Electron Positron collider, a tracking detector constructed from silicon strip detector elements was installed in front of an electromagnetic calorimeter. The luminosity was measured by counting the number of Bhabha events at the interaction point of the electron and the positron beans. The tracking detector reconstructs from the interaction point and the calorimeter measures the corresponding particles' energies. The SAT Tracker [2] consists of 504 silicon strip detectors. The strips are DC-coupled to CMOS VLSI-chips, baptized Balder [3,4]. The chip performs amplification, zero-suppression, digitalisation, and multiplexing. The requirements of good space resolution and high efficiency put strong requirements on noise control. A short description of the geometry and the relevant circuit layout is given. We describe the efforts made to minimise the electromagnetic noise in the detector and present some numbers of the noise level using various techniques.

  5. Ion-implanted capacitively coupled silicon strip detectors with integrated polysilicon bias resistors processed on a 100 mm wafer

    International Nuclear Information System (INIS)

    Hietanen, I.; Lindgren, J.; Orava, R.; Tuuva, T.; Voutilainen, M.; Brenner, R.; Andersson, M.; Leinonen, K.; Ronkainen, H.

    1991-01-01

    Double-sided silicon strip detectors with integrated coupling capacitors and polysilicon resistors have been processed on a 100 mm wafer. A detector with an active area of 19x19 mm 2 was connected to LSI readout electronics and tested. The strip pitch of the detector is 25 μm on the p-side and 50 μm on the n-side. The readout pitch is 50 μm on both sides. The number of readout strips is 774 and the total number of strips is 1161. On the p-side a signal-to-noise of 35 has been measured using a 90 Sr β-source. The n-side has been studied using a laser. (orig.)

  6. First results of the front-end ASIC for the strip detector of the PANDA MVD

    Science.gov (United States)

    Quagli, T.; Brinkmann, K.-T.; Calvo, D.; Di Pietro, V.; Lai, A.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Wheadon, R.; Zambanini, A.

    2017-03-01

    PANDA is a key experiment of the future FAIR facility and the Micro Vertex Detector (MVD) is the innermost part of its tracking system. PASTA (PAnda STrip ASIC) is the readout chip for the strip part of the MVD. The chip is designed to provide high resolution timestamp and charge information with the Time over Threshold (ToT) technique. Its architecture is based on Time to Digital Converters with analog interpolators, with a time bin width of 50 ps. The chip implements Single Event Upset (SEU) protection techniques for its digital parts. A first full-size prototype with 64 channels was produced in a commercial 110 nm CMOS technology and the first characterizations of the prototype were performed.

  7. Characterization and calibration of radiation-damaged double-sided silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, L. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Vogt, A., E-mail: andreas.vogt@ikp.uni-koeln.de [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Reiter, P.; Birkenbach, B.; Hirsch, R.; Arnswald, K.; Hess, H.; Seidlitz, M.; Steinbach, T.; Warr, N.; Wolf, K. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Stahl, C.; Pietralla, N. [Institut für Kernphysik, Technische Universität Darmstadt, D-64291 Darmstadt (Germany); Limböck, T.; Meerholz, K. [Physikalische Chemie, Universität zu Köln, D-50939 Köln (Germany); Lutter, R. [Maier-Leibnitz-Laboratorium, Ludwig-Maximilians-Universität München, D-85748 Garching (Germany)

    2017-05-21

    Double-sided silicon strip detectors (DSSSD) are commonly used for event-by-event identification of charged particles as well as the reconstruction of particle trajectories in nuclear physics experiments with stable and radioactive beams. Intersecting areas of both p- and n-doped front- and back-side segments form individual virtual pixel segments allowing for a high detector granularity. DSSSDs are employed in demanding experimental environments and have to withstand high count rates of impinging nuclei. The illumination of the detector is often not homogeneous. Consequently, radiation damage of the detector is distributed non-uniformly. Position-dependent incomplete charge collection due to radiation damage limits the performance and lifetime of the detectors, the response of different channels may vary drastically. Position-resolved charge-collection losses between front- and back-side segments are investigated in an in-beam experiment and by performing radioactive source measurements. A novel position-resolved calibration method based on mutual consistency of p-side and n-side charges yields a significant enhancement of the energy resolution and the performance of radiation-damaged parts of the detector.

  8. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    CERN Document Server

    Gonzalez-Sevilla, S; Parzefall, U; Clark, A; Ikegami, Y; Hara, K; Garcia, C; Jakobs, K; Dwuznik, M; Terada, S; Barbier, G; Koriki, T; Lacasta, C; Unno, Y; Anghinolfi, F; Cadoux, F; Garcia, S M I; Ferrere, D; La Marra, D; Pohl, M; Dabrowski, W; Kaplon, J

    2011-01-01

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10(34)cm(-2)s(-1). It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown. (C) 2010 Elsevier B.V. All rights reserved.

  9. Build-up of the silicon micro-strip detector array in ETF of HIRFL-CSR

    International Nuclear Information System (INIS)

    Wang Pengfei; Li Zhankui; Li Haixia

    2014-01-01

    Silicon micro-strip detectors have been widely used in the world-famous nuclear physics laboratories due to their better position resolution and energy resolution. Double-sided silicon micro-strip detectors with a position resolution of 0.5 mm × 0.5 mm, have been fabricated in the IMP (Institute of Modern Physics, CAS) by using microelectronics technology. These detectors have been used in the ETF (External Target Facility) of HIRFL-CSR, as ΔE detectors of the ΔE-E telescope system and the track detectors. With the help of flexibility printed circuit board (FPCB) and the integrated ASIC chips, a compact multi-channel front-end electronic board has been designed to fulfill the acquisition of the energy and position information of the Silicon micro-strip detectors. It is described in this paper that the build-up of the Silicon micro-strip detector array in ETF of HIRFL-CSR, the determination of the energy resolution of the detector units, and the energy resolution of approximately 1% obtained for 5∼9 MeV α particles in vacuum. (authors)

  10. A Low Mass On-Chip Readout Scheme for Double-Sided Silicon Strip Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Irmler, C., E-mail: christian.irmler@oeaw.ac.at [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Bergauer, T.; Frankenberger, A.; Friedl, M.; Gfall, I. [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); Kah, D.H.; Kang, K.H. [Kyungpook National University, Department of Physics, 1370 Sankyuk Dong, Buk Gu, Daegu 702-701 (Korea, Republic of); Rao, K.K. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Kato, E. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Mohanty, G.B. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Negishi, K. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Onuki, Y.; Shimizu, N. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsuboyama, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Valentan, M. [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2013-12-21

    B-factories like the KEKB in Tsukuba, Japan, operate at relatively low energies and thus require detectors with very low material budget in order to minimize multiple scattering. On the other hand, front-end chips with short shaping time like the APV25 have to be placed as close to the sensor strips as possible to reduce the capacitive load, which mainly determines the noise figure. In order to achieve both – minimal material budget and low noise – we developed a readout scheme for double-sided silicon detectors, where the APV25 chips are placed on a flexible circuit, which is glued onto the top side of the sensor. The bottom-side strips are connected by two flexible circuits, which are bent around the edge of the sensor. This so-called “Origami” design will be utilized to build the Silicon Vertex Detector of the Belle II experiment, which will consist of four layers made from ladders with up to five double-sided silicon strip sensors in a row. Each ladder will be supported by two ribs made of a carbon fiber and Airex foam core sandwich. The heat dissipated by the front-end chips will be removed by a highly efficient two-phase CO{sub 2} system. Thanks to the Origami concept, all APV25 chips are aligned in a row and thus can be cooled by a single thin cooling pipe per ladder. We present the concept and the assembly procedure of the Origami chip-on-sensor modules.

  11. A Low Mass On-Chip Readout Scheme for Double-Sided Silicon Strip Detectors

    International Nuclear Information System (INIS)

    Irmler, C.; Bergauer, T.; Frankenberger, A.; Friedl, M.; Gfall, I.; Higuchi, T.; Ishikawa, A.; Joo, C.; Kah, D.H.; Kang, K.H.; Rao, K.K.; Kato, E.; Mohanty, G.B.; Negishi, K.; Onuki, Y.; Shimizu, N.; Tsuboyama, T.; Valentan, M.

    2013-01-01

    B-factories like the KEKB in Tsukuba, Japan, operate at relatively low energies and thus require detectors with very low material budget in order to minimize multiple scattering. On the other hand, front-end chips with short shaping time like the APV25 have to be placed as close to the sensor strips as possible to reduce the capacitive load, which mainly determines the noise figure. In order to achieve both – minimal material budget and low noise – we developed a readout scheme for double-sided silicon detectors, where the APV25 chips are placed on a flexible circuit, which is glued onto the top side of the sensor. The bottom-side strips are connected by two flexible circuits, which are bent around the edge of the sensor. This so-called “Origami” design will be utilized to build the Silicon Vertex Detector of the Belle II experiment, which will consist of four layers made from ladders with up to five double-sided silicon strip sensors in a row. Each ladder will be supported by two ribs made of a carbon fiber and Airex foam core sandwich. The heat dissipated by the front-end chips will be removed by a highly efficient two-phase CO 2 system. Thanks to the Origami concept, all APV25 chips are aligned in a row and thus can be cooled by a single thin cooling pipe per ladder. We present the concept and the assembly procedure of the Origami chip-on-sensor modules

  12. A programmable electronic Microplex Driver Unit for readout of silicon strip detectors

    International Nuclear Information System (INIS)

    Bairstow, R.

    1990-08-01

    The unit provides the necessary signals to drive arrays of Microplex devices used to readout silicon strip Vertex detectors as used in DELPHI and OPAL at CERN. The unit has a CAMAC interface allowing operation of the unit by computer in a Remote-control mode. The computer can control all the essential parameters of the drive signals, together with the operational characteristics of the system. Alternatively, the unit can be used in a stand-alone Local-control mode. In this case the front panel controls and displays enable the user to set up the unit. (author)

  13. LHCb - SALT, a dedicated readout chip for strip detectors in the LHCb Upgrade experiment

    CERN Multimedia

    Swientek, Krzysztof Piotr

    2015-01-01

    Silicon strip detectors in the upgraded Tracker of LHCb experiment will require a new readout 128-channel ASIC called SALT. It will extract and digitise analogue signals from the sensor, perform digital processing and transmit serial output data. SALT is designed in CMOS 130 nm process and uses a novel architecture comprising of analogue front-end and ultra-low power ($<$0.5 mW) fast (40 MSps) sampling 6-bit ADC in each channel. A prototype of first 8-channel version of SALT chip, comprising all important functionalities, was submitted. Its design and possibly first tests results will be presented.

  14. A digital X-ray imaging system based on silicon strip detectors working in edge-on configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bolanos, L. [CEADEN, Calle 30 502 e/ 5ta y 7ma Avenida, Playa, Ciudad Habana (Cuba); Boscardin, M. [IRST, Fondazione Bruno Kessler, Via Sommarive 18, Povo, 38100 Trento (Italy); Cabal, A.E. [CEADEN, Calle 30 502 e/ 5ta y 7ma Avenida, Playa, Ciudad Habana (Cuba); Diaz, M. [InSTEC, Ave. Salvador Allende esq. Luaces, Quinta de los Molinos, Ciudad Habana (Cuba); Grybos, P.; Maj, P. [Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Measurement and Instrumentation, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Prino, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Ramello, L. [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale, Via T. Michel 11, 15100 Alessandria (Italy)], E-mail: luciano.ramello@mfn.unipmn.it; Szczygiel, R. [Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Measurement and Instrumentation, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2009-09-21

    We present the energy resolution and imaging performance of a digital X-ray imaging system based on a 512-strip silicon strip detector (SSD) working in the edge-on configuration. The SSDs tested in the system are 300 {mu}m thick with 1 or 2-cm-long strips and 100 {mu}m pitch. To ensure a very small dead area of the SSD working in edge-on configuration, the detector is cut perpendicular to the strips at a distance of only 20 {mu}m from the end of the strips. The 512-strip silicon detector is read out by eight 64-channel integrated circuits called DEDIX [Grybos et al., IEEE Trans. Nucl. Sci. NS-54 (2007) 1207]. The DEDIX IC operates in a single photon counting mode with two independent amplitude discriminators per channel. The readout electronic channel connected to a detector with effective input capacitance of about 2 pF has an average equivalent noise charge (ENC) of about 163 el. rms and is able to count 1 Mcps of average rate of input pulses. The system consisting of 512 channels has an excellent channel-to-channel uniformity-the effective threshold spread calculated to the charge-sensitive amplifier inputs is 12 el. rms (at one sigma level). With this system a few test images of a phantom have been taken in the 10-30 keV energy range.

  15. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition.

    Science.gov (United States)

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Wyrwicz, Alice M; Li, Limin; Kao, C-M

    2015-06-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 Tesla small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2 × 8 LYSO scintillators (5.0 × 5.0 × 10.0 mm 3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner.

  16. Development of carbon fiber staves for the strip part of the PANDA micro vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Quagli, Tommaso; Brinkmann, Kai-Thomas [II. Physikalisches Institut, Justus-Liebig Universitaet Giessen (Germany); Fracassi, Vincenzo; Grunwald, Dirk; Rosenthal, Eberhard [ZEA-1, Forschungszentrum Juelich GmbH, Juelich (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    PANDA is a key experiment of the future FAIR facility, under construction in Darmstadt, Germany. It will study the collisions between an antiproton beam and a fixed proton or nuclear target. The Micro Vertex Detector (MVD) is the innermost detector of the apparatus and is composed of four concentric barrels and six forward disks, instrumented with silicon hybrid pixel detectors and double-sided silicon microstrip detectors; its main task is the identification of primary and secondary vertices. The central requirements include high spatial and time resolution, trigger-less readout with high rate capability, good radiation tolerance and low material budget. Because of the compact layout of the system, its integration poses significant challenges. The detectors in the strip barrels will be supported by a composite structure of carbon fiber and carbon foam; a water-based cooling system embedded in the mechanical supports will be used to remove the excess heat from the readout electronics. In this contribution the design of the barrel stave and the ongoing development of some hardware components related to its integration will be presented.

  17. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    OpenAIRE

    Poley, Luise; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid-Maria; Jones, Tim; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2015-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy gl...

  18. Study of the effects of neutron irradiation on silicon strip detectors

    International Nuclear Information System (INIS)

    Giubellino, P.; Panizza, G.; Hall, G.; Sotthibandhu, S.; Ziock, H.J.; Ferguson, P.; Sommer, W.F.; Edwards, M.; Cartiglia, N.; Hubbard, B.; Leslie, J.; Pitzl, D.; O'Shaughnessy, K.; Rowe, W.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.

    1992-01-01

    Silicon strip detectors and test structures were exposed to neutron fluences up to Φ=6.1x10 14 n/cm 2 , using the ISIS neutron source at the Rutherford Appleton Laboratory (UK). In this paper we report some of our results concerning the effects of displacement damage, with a comparison of devices made of silicon of different resistivity. The various samples exposed showed a very similar dependence of the leakage current on the fluence received. We studied the change of effective doping concentration, and observed a behaviour suggesting the onset of type inversion at a fluence of ∝2.0x10 13 n/cm 2 , a value which depends on the initial doping concentration. The linear increase of the depletion voltage for fluences higher than the inversion point could eventually determine the maximum fluence tolerable by silicon detectors. (orig.)

  19. Study of the effects of neutron irradiation on silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Giubellino, P.; Panizza, G. (INFN Torino (Italy)); Hall, G.; Sotthibandhu, S. (Imperial Coll., London (United Kingdom)); Ziock, H.J.; Ferguson, P.; Sommer, W.F. (Los Alamos National Lab., NM (United States)); Edwards, M. (Rutherford Appleton Lab., Chilton (United Kingdom)); Cartiglia, N.; Hubbard, B.; Leslie, J.; Pitzl, D.; O' Shaughnessy, K.; Rowe, W.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. (Santa Cruz Inst. for Particle Physics, Univ. California, CA (United States))

    1992-05-01

    Silicon strip detectors and test structures were exposed to neutron fluences up to {Phi}=6.1x10{sup 14} n/cm{sup 2}, using the ISIS neutron source at the Rutherford Appleton Laboratory (UK). In this paper we report some of our results concerning the effects of displacement damage, with a comparison of devices made of silicon of different resistivity. The various samples exposed showed a very similar dependence of the leakage current on the fluence received. We studied the change of effective doping concentration, and observed a behaviour suggesting the onset of type inversion at a fluence of {proportional to}2.0x10{sup 13} n/cm{sup 2}, a value which depends on the initial doping concentration. The linear increase of the depletion voltage for fluences higher than the inversion point could eventually determine the maximum fluence tolerable by silicon detectors. (orig.).

  20. A simple pulse shape discrimination technique applied to a silicon strip detector

    International Nuclear Information System (INIS)

    Figuera, P.; Lu, J.; Amorini, F.; Cardella, G.; DiPietro, A.; Papa, M.; Musumarra, A.; Pappalardo, G.; Rizzo, F.; Tudisco, S.

    2001-01-01

    Full text: Since the early sixties, it has been known that the shape of signals from solid state detectors can be used for particle identification. Recently, this idea has been revised in a group of papers where it has been shown that the shape of current signals from solid state detectors is mainly governed by the combination of plasma erosion time and charge carrier collection time effects. We will present the results of a systematic study on a pulse shape identification method which, contrary to the techniques proposed, is based on the use of the same electronic chain normally used in the conventional time of flight technique. The method is based on the use of charge preamplifiers, low polarization voltages (i.e. just above full depletion ones), rear side injection of the incident particles, and on a proper setting of the constant fraction discriminators which enhances the dependence of the timing output on the rise time of the input signals (which depends on the charge and energy of the incident ions). The method has been applied to an annular Si strip detector with an inner radius of about 16 mm and an outer radius of about 88 mm. The detector, manufactured by Eurisys Measures (Type Ips.73.74.300.N9), is 300 microns thick and consists of 8 independent sectors each divided into 9 circular strips. On beam tests have been performed at the cyclotron of the Laboratori Nazionali del Sud in Catania using a 25.7 MeV/nucleon 58 Ni beam impinging on a 51 V and 45 Sc composite target. Excellent charge identification from H up to the Ni projectile has been observed and typical charge identification thresholds are: ∼ 1.7 MeV/nucleon for Z ≅ 6, ∼ 3.0 MeV/nucleon for Z ≅ 11, and ∼ 5.5 MeV/nucleon for Z ≅ 20. Isotope identification up to A ≅ 13 has been observed with an energy threshold of about 6 MeV/nucleon. The identification quality has been studied as a function of the constant fraction settings. The method has been applied to all the 72 independent strips

  1. Study of 236U/238U ratio at CIRCE using a 16-strip silicon detector with a TOF system

    Science.gov (United States)

    De Cesare, M.; De Cesare, N.; D'Onofrio, A.; Gialanella, L.; Terrasi, F.

    2015-04-01

    Accelerator Mass Spectrometry (AMS) is presently the most sensitive technique for the measurement of long-lived actinides, e.g. 236U and xPu isotopes. A new actinide AMS system, based on a 3-MV pelletron tandem accelerator, is operated at the Center for Isotopic Research on Cultural and Environmental Heritage (CIRCE) in Caserta, Italy. In this paper we report on the procedure adopted to increase the 236U abundance sensitivity as low as possible. The energy and position determinations of the 236U ions, using a 16-strip silicon detector have been obtained. A 236U/238U isotopic ratio background level of about 2.9×10-11 was obtained, summing over all the strips, using a Time of Flight-Energy (TOF-E) system with a 16-strip silicon detector (4.9×10-12 just with one strip).

  2. Study of 236U/238U ratio at CIRCE using a 16-strip silicon detector with a TOF system

    Directory of Open Access Journals (Sweden)

    De Cesare M.

    2015-01-01

    Full Text Available Accelerator Mass Spectrometry (AMS is presently the most sensitive technique for the measurement of long-lived actinides, e.g. 236U and xPu isotopes. A new actinide AMS system, based on a 3-MV pelletron tandem accelerator, is operated at the Center for Isotopic Research on Cultural and Environmental Heritage (CIRCE in Caserta, Italy. In this paper we report on the procedure adopted to increase the 236U abundance sensitivity as low as possible. The energy and position determinations of the 236U ions, using a 16-strip silicon detector have been obtained. A 236U/238U isotopic ratio background level of about 2.9×10−11 was obtained, summing over all the strips, using a Time of Flight-Energy (TOF-E system with a 16-strip silicon detector (4.9×10−12 just with one strip.

  3. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters).

    Science.gov (United States)

    Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H

    2016-01-07

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm  ×  25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40

  4. Transparent silicon strip sensors for the optical alignment of particle detector systems

    International Nuclear Information System (INIS)

    Blum, W.; Kroha, H.; Widmann, P.

    1995-05-01

    Modern large-area precision tracking detectors require increasing accuracy for the alignment of their components. A novel multi-point laser alignment system has been developed for such applications. The position of detector components with respect to reference laser beams is monitored by semi-transparent optical position sensors which work on the principle of silicon strip photodiodes. Two types of custom designed transparent strip sensors, based on crystalline and on amorphous silicon as active material, have been studied. The sensors are optimised for the typical diameters of collimated laser beams of 3-5 mm over distances of 10-20 m. They provide very high position resolution, on the order of 1 μm, uniformly over a wide measurement range of several centimeters. The preparation of the sensor surfaces requires special attention in order to achieve high light transmittance and minimum distortion of the traversing laser beams. At selected wavelengths, produced by laser diodes, transmission rates above 90% have been achieved. This allows to position more than 30 sensors along one laser beam. The sensors will be equipped with custom designed integrated readout electronics. (orig.)

  5. High-resolution Compton cameras based on Si/CdTe double-sided strip detectors

    International Nuclear Information System (INIS)

    Odaka, Hirokazu; Ichinohe, Yuto; Takeda, Shin'ichiro; Fukuyama, Taro; Hagino, Koichi; Saito, Shinya; Sato, Tamotsu; Sato, Goro; Watanabe, Shin; Kokubun, Motohide; Takahashi, Tadayuki; Yamaguchi, Mitsutaka

    2012-01-01

    We have developed a new Compton camera based on silicon (Si) and cadmium telluride (CdTe) semiconductor double-sided strip detectors (DSDs). The camera consists of a 500-μm-thick Si-DSD and four layers of 750-μm-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250μm. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5° at 356 keV and 3.5° at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.

  6. Dose measurements with a HPGe detector - a technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Lidstroem, K.; Nordenfors, C.; Aagren, G

    2000-06-01

    This paper is a technical manual for estimations of dose based on a gamma spectrum. The method used is based on the Monte Carlo code EGS4. Since dose estimations from spectra are specific for each detector, this work is performed on two mobile HPGe detectors at FOA NBC Defence in Umeaa. This technical manual describes the method used in three steps: Part 1 explains how to construct a model of the detector geometry and the specific material for a new detector. Part 2 describes the underlying work of Monte Carlo simulations of a detector given geometry and material. Part 3 describes dose estimations from a gamma spectrum.

  7. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    Science.gov (United States)

    Sokolov, Oleksiy

    2006-04-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5˜TeV per nucleon. Particle tracking around the interaction region at radii rrequire about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bonding operation, the component testing is done to reject the non-functional or poorly performing chips and hybrids. The LabView-controlled test station for this operation has been built at Utrecht University and was successfully used for mass production acceptance tests of chips and hybrids at three production labs. The functionality of the chip registers, bonding quality and analogue functionality of the chips and hybrids are addressed in the test. The test routines were optimized to minimize the testing time to make sure that testing is not a bottleneck of the mass production. For testing of complete modules the laser scanning station with 1060 nm diode laser has been assembled at Utrecht University. The testing method relies of the fact that a response of the detector module to a short collimated laser beam pulse resembles a response to a minimum ionizing particle. A small beam spot size (˜7 μm ) allows to deposit the charge in a narrow region and measure the response of individual detector channels. First several module prototypes have been studied with this setup, the strip gain and charge sharing function have been measured, the later is compared with the model predictions. It was also shown that for a laser beam of a high monochromaticity, interference in the sensor bulk significantly modulates

  8. The honeycomb strip chamber: A two coordinate and high precision muon detector

    International Nuclear Information System (INIS)

    Tolsma, H.P.T.

    1996-01-01

    This thesis describes the construction and performance of the Honeycomb Strip Chamber (HSC). The HSC offers several advantages with respect to classical drift chambers and drift tubes. The main features of the HSC are: -The detector offers the possibility of simultaneous readout of two orthogonal coordinates with approximately the same precision. - The HSC technology is optimised for mass production. This means that the design is modular (monolayers) and automisation of most of the production steps is possible (folding and welding machines). - The technology is flexible. The cell diameter can easily be changed from a few millimetres to at least 20 mm by changing the parameters in the computer programme of the folding machine. The number of monolayers per station can be chosen freely to the demands of the experiment. -The honeycomb structure gives the detector stiffness and makes it self supporting. This makes the technology a very transparent one in terms of radiation length which is important to prevent multiple scattering of high energetic muons. - The dimensions of the detector are defined by high precision templates. Those templates constrain for example the overall tolerance on the wire positions to 20 μm rms. Reproduction of the high precision assembly of the detector is thus guaranteed. (orig.)

  9. The honeycomb strip chamber: A two coordinate and high precision muon detector

    Energy Technology Data Exchange (ETDEWEB)

    Tolsma, H P.T.

    1996-04-19

    This thesis describes the construction and performance of the Honeycomb Strip Chamber (HSC). The HSC offers several advantages with respect to classical drift chambers and drift tubes. The main features of the HSC are: -The detector offers the possibility of simultaneous readout of two orthogonal coordinates with approximately the same precision. - The HSC technology is optimised for mass production. This means that the design is modular (monolayers) and automisation of most of the production steps is possible (folding and welding machines). - The technology is flexible. The cell diameter can easily be changed from a few millimetres to at least 20 mm by changing the parameters in the computer programme of the folding machine. The number of monolayers per station can be chosen freely to the demands of the experiment. -The honeycomb structure gives the detector stiffness and makes it self supporting. This makes the technology a very transparent one in terms of radiation length which is important to prevent multiple scattering of high energetic muons. - The dimensions of the detector are defined by high precision templates. Those templates constrain for example the overall tolerance on the wire positions to 20 {mu}m rms. Reproduction of the high precision assembly of the detector is thus guaranteed. (orig.).

  10. A Silicon Strip Detector for the Phase II High Luminosity Upgrade of the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    INSPIRE-00425747; McMahon, Stephen J

    2015-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider (LHC) that detects proton-proton collisions at a centre of mass energy of 14 TeV. The Semiconductor Tracker is part of the Inner Detector, implemented using silicon microstrip detectors with binary read-out, providing momentum measurement of charged particles with excellent resolution. The operation of the LHC and the ATLAS experiment started in 2010, with ten years of operation expected until major upgrades are needed in the accelerator and the experiments. The ATLAS tracker will need to be completely replaced due to the radiation damage and occupancy of some detector elements and the data links at high luminosities. These upgrades after the first ten years of operation are named the Phase-II Upgrade and involve a re-design of the LHC, resulting in the High Luminosity Large Hadron Collider (HL-LHC). This thesis presents the work carried out in the testing of the ATLAS Phase-II Upgrade electronic systems in the future strips tracker a...

  11. A silicon strip detector array for energy verification and quality assurance in heavy ion therapy.

    Science.gov (United States)

    Debrot, Emily; Newall, Matthew; Guatelli, Susanna; Petasecca, Marco; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2018-02-01

    The measurement of depth dose profiles for range and energy verification of heavy ion beams is an important aspect of quality assurance procedures for heavy ion therapy facilities. The steep dose gradients in the Bragg peak region of these profiles require the use of detectors with high spatial resolution. The aim of this work is to characterize a one dimensional monolithic silicon detector array called the "serial Dose Magnifying Glass" (sDMG) as an independent ion beam energy and range verification system used for quality assurance conducted for ion beams used in heavy ion therapy. The sDMG detector consists of two linear arrays of 128 silicon sensitive volumes each with an effective size of 2mm × 50μm × 100μm fabricated on a p-type substrate at a pitch of 200 μm along a single axis of detection. The detector was characterized for beam energy and range verification by measuring the response of the detector when irradiated with a 290 MeV/u 12 C ion broad beam incident along the single axis of the detector embedded in a PMMA phantom. The energy of the 12 C ion beam incident on the detector and the residual energy of an ion beam incident on the phantom was determined from the measured Bragg peak position in the sDMG. Ad hoc Monte Carlo simulations of the experimental setup were also performed to give further insight into the detector response. The relative response profiles along the single axis measured with the sDMG detector were found to have good agreement between experiment and simulation with the position of the Bragg peak determined to fall within 0.2 mm or 1.1% of the range in the detector for the two cases. The energy of the beam incident on the detector was found to vary less than 1% between experiment and simulation. The beam energy incident on the phantom was determined to be (280.9 ± 0.8) MeV/u from the experimental and (280.9 ± 0.2) MeV/u from the simulated profiles. These values coincide with the expected energy of 281 MeV/u. The sDMG detector

  12. micro strip gas chamber

    CERN Multimedia

    1998-01-01

    About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.

  13. Prototyping of petalets for the Phase-II upgrade of the silicon strip tracking detector of the ATLAS experiment

    Science.gov (United States)

    Kuehn, S.; Benítez, V.; Fernández-Tejero, J.; Fleta, C.; Lozano, M.; Ullán, M.; Lacker, H.; Rehnisch, L.; Sperlich, D.; Ariza, D.; Bloch, I.; Díez, S.; Gregor, I.; Keller, J.; Lohwasser, K.; Poley, L.; Prahl, V.; Zakharchuk, N.; Hauser, M.; Jakobs, K.; Mahboubi, K.; Mori, R.; Parzefall, U.; Bernabéu, J.; Lacasta, C.; Marco-Hernandez, R.; Rodriguez Rodriguez, D.; Santoyo, D.; Solaz Contell, C.; Soldevila Serrano, U.; Affolder, T.; Greenall, A.; Gallop, B.; Phillips, P. W.; Cindro, V.

    2018-03-01

    In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.

  14. Silicon Strip detectors for the ATLAS End-Cap Tracker at the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00232570

    Inside physics programme of the LHC different experiment upgrades are foreseen. After the phase-II upgrade of the ATLAS detector the luminosity will be increased up to 5-7.5x10E34 cm-2s-1. This will mean a considerable increase in the radiation levels, above 10E16 neq/cm2 in the inner regions. This thesis is focused on the development of silicon microstrip detectors enough radiation hard to cope with the particle fluence expected at the ATLAS detector during HL-LHC experiment. In particular on the electrical characterization of silicon sensors for the ATLAS End-Caps. Different mechanical and thermal tests are shown using a Petal core as well as the electrical characterization of the silicon sensors that will be used with the Petal structure. Charge collection efficiency studies are carried out on sensors with different irradiation fluences using the ALiBaVa system and two kinds of strips connection are also analized (DC and AC ganging) with a laser system. The Petalet project is presented and the electrical c...

  15. Beam loss studies on silicon strip detector modules for the CMS experiment

    CERN Document Server

    Fahrer, Manuel

    2006-01-01

    The large beam energy of the LHC demands for a save beam abort system. Nevertheless, failures cannot be excluded with last assurance and are predicted to occur once per year. As the CMS experiment is placed in the neighboured LHC octant, it is affected by such events. The effect of an unsynchronized beam abort on the silicon strip modules of the CMS tracking detector has been investigated in this thesis by performing one accelerator and two lab experiments. The dynamical behaviour of operational parameters of modules and components has been recorded during simulated beam loss events to be able to disentangle the reasons of possible damages. The first study with high intensive proton bunches at the CERN PS ensured the robustness of the module design against beam losses. A further lab experiment with pulsed IR LEDs clarified the physical and electrical processes during such events. The silicon strip sensors on a module are protected against beam losses by a part of the module design that originally has not been...

  16. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector.

    Science.gov (United States)

    Ovejero, M C; Pérez Vega-Leal, A; Gallardo, M I; Espino, J M; Selva, A; Cortés-Giraldo, M A; Arráns, R

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  17. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    Science.gov (United States)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  18. Assembly and Electrical Tests of the First Full-size Forward Module for the ATLAS ITk Strip Detector

    CERN Document Server

    Garcia-Argos, Carlos; The ATLAS collaboration

    2018-01-01

    The ATLAS experiment will replace the existing Inner Detector by an all-silicon detector named the Inner Tracker (ITk) for the High Luminosity LHC upgrades. In the outer region of the Inner Tracker is the strip detector, which consists of a four layer barrel and six discs to each side of the barrel, with silicon-strip modules as basic units. Each module is composed of a sensor and one or more flex circuits that hold the read-out electronics. In the experiment, the modules are mounted on support structures with integrated power and cooling. The modules are designed with geometries that accommodate the central and forward regions, with rectangular sensors in the barrels and wedge shaped sensors in the end-caps. The strips lengths and pitch sizes vary according to the occupancy of the region. In this contribution, we present the construction and results of the electrical tests of the first full-size module of the innermost forward region, named \\textit{Ring 0} in the ATLAS ITk strip detector nomenclature. This m...

  19. Assembly and Electrical Tests of the First Full-size Forward Module for the ATLAS ITk Strip Detector

    CERN Document Server

    Garcia-Argos, Carlos; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment will replace the existing Inner Detector by an all-silicon detector named the Inner Tracker (ITk) for the High Luminosity LHC upgrades. In the outer region of the Inner Tracker is the strip detector, which consists of a four layer barrel and six discs to each side of the barrel, with silicon-strip modules as basic units. Each module is composed of a sensor and one or more flex circuits that hold the read-out electronics. In the experiment, the modules are mounted on support structures with integrated power and cooling. The modules are designed with geometries that accommodate the central and forward regions, with rectangular sensors in the barrels and wedge shaped sensors in the end-caps. The strips lengths and pitch sizes vary according to the occupancy of the region. In this contribution, we present the construction and the results of the electrical tests of the first full-size module of the innermost forward region, named Ring 0 in the ATLAS ITk strip detector nomenclature. This module...

  20. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.

    Science.gov (United States)

    Cho, Hyo-Min; Ding, Huanjun; Barber, William C; Iwanczyk, Jan S; Molloi, Sabee

    2015-07-01

    To investigate the feasibility of detecting breast microcalcification (μCa) with a dedicated breast computed tomography (CT) system based on energy-resolved photon-counting silicon (Si) strip detectors. The proposed photon-counting breast CT system and a bench-top prototype photon-counting breast CT system were simulated using a simulation package written in matlab to determine the smallest detectable μCa. A 14 cm diameter cylindrical phantom made of breast tissue with 20% glandularity was used to simulate an average-sized breast. Five different size groups of calcium carbonate grains, from 100 to 180 μm in diameter, were simulated inside of the cylindrical phantom. The images were acquired with a mean glandular dose (MGD) in the range of 0.7-8 mGy. A total of 400 images was used to perform a reader study. Another simulation study was performed using a 1.6 cm diameter cylindrical phantom to validate the experimental results from a bench-top prototype breast CT system. In the experimental study, a bench-top prototype CT system was constructed using a tungsten anode x-ray source and a single line 256-pixels Si strip photon-counting detector with a pixel pitch of 100 μm. Calcium carbonate grains, with diameter in the range of 105-215 μm, were embedded in a cylindrical plastic resin phantom to simulate μCas. The physical phantoms were imaged at 65 kVp with an entrance exposure in the range of 0.6-8 mGy. A total of 500 images was used to perform another reader study. The images were displayed in random order to three blinded observers, who were asked to give a 4-point confidence rating on each image regarding the presence of μCa. The μCa detectability for each image was evaluated by using the average area under the receiver operating characteristic curve (AUC) across the readers. The simulation results using a 14 cm diameter breast phantom showed that the proposed photon-counting breast CT system can achieve high detection accuracy with an average AUC greater

  1. Fast CMOS binary front-end for silicon strip detectors at LHC experiments

    CERN Document Server

    Kaplon, Jan

    2004-01-01

    We present the design and the test results of a front-end circuit developed in a 0.25 mu m CMOS technology. The aim of this work is to study the performance of a deep submicron process in applications for fast binary front-end for silicon strip detectors. The channel comprises a fast transimpedance preamplifier working with an active feedback loop, two stages of the amplifier-integrator circuits providing 22 ns peaking time and two-stage differential discriminator. Particular effort has been made to minimize the current and the power consumption of the preamplifier, while keeping the required noise and timing performance. For a detector capacitance of 20 pF noise below 1500 e/sup -/ ENC has been achieved for 300 mu A bias current in the input transistor, which is comparable with levels achieved in the past for a front-end using bipolar input transistor. The total supply current of the front-end is 600 mu A and the power dissipation is 1.5 mW per channel. The offset spread of the comparator is below 3 mV rms.

  2. Development of double-sided silicon strip detectors (DSSD) for a Compton telescope

    International Nuclear Information System (INIS)

    Takeda, Shin'ichiro; Watanabe, Shin; Tanaka, Takaaki; Nakazawa, Kazuhiro; Takahashi, Tadayuki; Fukazawa, Yasushi; Yasuda, Hajimu; Tajima, Hiroyasu; Kuroda, Yoshikatsu; Onishi, Mitsunobu; Genba, Kei

    2007-01-01

    The low noise double-sided silicon strip detector (DSSD) technology is used to construct a next generation Compton telescope which is required to have both high-energy resolution and high-Compton reconstruction efficiency. In this paper, we present the result of a newly designed stacked DSSD module with high-energy resolution in highly packed mechanical structure. The system is designed to obtain good P-side and N-side noise performance by means of DC-coupled read-out. Since there are no decoupling capacitors in front-end electronics before the read-out ASICs, a high density stacked module with a pitch of 2 mm can be constructed. By using a prototype with four-layer of DSSDs with an area of 2.56cmx2.56cm, we have succeeded to operate the system. The energy resolution at 59.5 keV is measured to be 1.6 keV (FWHM) for the P-side and 2.8 keV (FWHM) for the N-side, respectively. In addition to the DSSD used in the prototype, a 4 cm wide DSSD with a thickness of 300μm is also developed. With this device, an energy resolution of 1.5 keV (FWHM) was obtained. A method to model the detector energy response to properly handle split events is also discussed

  3. Electromagnetic noise studies in a silicon strip detector, used as part of a luminosity monitor at LEP

    International Nuclear Information System (INIS)

    Oedegaard, T.; Tafjord, H.; Buran, T.

    1994-12-01

    As part of the luminosity monitor SAT in the DELPHI experiment at CERN's Large Electron Positron collider, a tracking detector constructed from silicon strip detector elements was installed in front of an electromagnetic calorimeter. The luminosity was measured by counting the number of Bhabha events at the interaction point of the electron and the positron beams. The tracking detector reconstructs tracks from the interaction point and the calorimeter measures the corresponding particles' energies.The SAT Tracker consists of 504 silicon strip detectors. The strips are DC-coupled to CMOS VLSI-chips, baptized Balder. The chip performs amplification, zero-suppression, digitalisation, and multiplexing. The requirements of good space resolution and high efficiency put strong requirements on noise control. A short description of the geometry and the relevant circuit layout is given. The authors describe the efforts made to minimise the electromagnetic noise in the detector and present some numbers of the noise level using various techniques. 11 refs., 5 figs., 4 tabs

  4. Noise characterization of silicon strip detectors-comparison of sensors with and without integrated jfet source-follower.

    CERN Document Server

    Giacomini, Gabriele

    Noise is often the main factor limiting the performance of detector systems. In this work a detailed study of the noise contributions in different types of silicon microstrip sensors is carried on. We investigate three sensors with double-sided readout fabricated by different suppliers for the ALICE experiment at the CERN LHC, in addition to detectors including an integrated JFET Source-Follower as a first signal conditioning stage. The latter have been designed as an attempt at improving the performance when very long strips, obtained by gangling together several sensors, are required. After a description of the strip sensors and of their operation, the “static” characterization measurements performed on them (current and capacitance versus voltage and/or frequency) are illustrated and interpreted. Numerical device simulation has been employed as an aid in interpreting some of the measurement results. The commonly used models for expressing the noise of the detector-amplifier system in terms of its relev...

  5. Performance of p-type micro-strip detectors after irradiation to $7.5x10^{15} p/cm^{2}$

    CERN Document Server

    Allport, Philip P; Lozano-Fantoba, Manuel; Sutcliffe, Peter; Velthuis, J J; Vossebeld, Joost Herman

    2004-01-01

    Exploiting the advantages of reading out segmented silicon from the n-side, we have produced test detectors with LHC pitch but 1 cm long strips which even after proton irradiation at the CERN PS to 7.5*10 /sup 15/ cm/sup -2/ show signal to noise greater than 8:1 using LHC speed electronics. This dose exceeds by a factor of 2 that required for a replacement of the ATLAS semiconductor tracker to cope with an upgrade of the LHC to a Super-LHC with 10 times greater luminosity. These detectors were processed on p-type starting material of resistivity ~ 2 k Omega cm and, unlike n-in-n designs, only required single-sided processing. Such technology should therefore provide a relatively inexpensive route to replacing the central tracking at both ATLAS and CMS for Super-LHC. The shorter strip length is required to limit the noise. Even at these extreme doses 30% of the non-irradiated signal is seen. This 7000e/sup -/ signal (in 280 mu m thick sensors) is very competitive with the post irradiation performance of other,...

  6. Spectral CT of the extremities with a silicon strip photon counting detector

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized regularization.

  7. NaI(Tl) scintillator detectors stripping procedure for air kerma measurements of diagnostic X-ray beams

    Science.gov (United States)

    Oliveira, L. S. R.; Conti, C. C.; Amorim, A. S.; Balthar, M. C. V.

    2013-03-01

    Air kerma is an essential quantity for the calibration of national standards used in diagnostic radiology and the measurement of operating parameters used in radiation protection. Its measurement within the appropriate limits of accuracy, uncertainty and reproducibility is important for the characterization and control of the radiation field for the dosimetry of the patients submitted to diagnostic radiology and, also, for the assessment of the system which produces radiological images. Only the incident beam must be considered for the calculation of the air kerma. Therefore, for energy spectrum, counts apart the total energy deposition in the detector must be subtracted. It is necessary to establish a procedure to sort out the different contributions to the original spectrum and remove the counts representing scattered photons in the detector's materials, partial energy deposition due to the interactions in the detector active volume and, also, the escape peaks contributions. The main goal of this work is to present spectrum stripping procedure, using the MCNP Monte Carlo computer code, for NaI(Tl) scintillation detectors to calculate the air kerma due to an X-ray beam usually used in medical radiology. The comparison between the spectrum before stripping procedure against the reference value showed a discrepancy of more than 63%, while the comparison with the same spectrum after the stripping procedure showed a discrepancy of less than 0.2%.

  8. Performance Test Results of a Single-sided Silicon Strip Detector with a Radioactive Source and a Proton Beam

    International Nuclear Information System (INIS)

    Ki, Y. I.; Kah, D. H.; Son, D. H.; Kang, H. D.; Kim, H. J.; Kim, H. O.; Bae, J. B.; Ryu, S.; Park, H.; Kim, K. R.

    2007-01-01

    Due to high intrinsic precision and high speed properties of a silicon material, the silicon detector has been used in various applications such as medical imaging detector, radiation detector, positioning detectors in space science and experimental particle physics. High technology, modern equipment, and deep expertise are required to design and fabricate good quality of silicon sensors. Only few facilities in the world can develop silicon sensors which meet requirements of sensor performances. That is one of main reasons that the silicon sensor is so expensive and it takes time to purchase the silicon sensor once it is ordered. We designed and fabricated AC-coupled single-sided silicon strip sensors and developed front-end electronics and DAQ system to read out sensor signals. The silicon strip sensors were fabricated on a 5-in. n-type silicon wafer which has an orientation, high resistivity (>5 kΩ · cm) and a thickness of 380 μm. We measured the signal-to-noise ratio (SNR) of each channel by using a radioactive source and a 45 MeV proton beam from the MC-50 cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS) in Seoul. We present the measurement results of the SNRs of the silicon strip sensor with a proton beam and radioactive sources

  9. High Precision Axial Coordinate Readout for an Axial 3-D PET Detector Module using a Wave Length Shifter Strip Matrix

    CERN Document Server

    Braem, André; Joram, C; Séguinot, Jacques; Weilhammer, P; De Leo, R; Nappi, E; Lustermann, W; Schinzel, D; Johnson, I; Renker, D; Albrecht, S

    2007-01-01

    We describe a novel method to extract the axial coordinate from a matrix of long axially oriented crystals, which is based on wavelength shifting plastic strips. The method allows building compact 3-D axial gamma detector modules for PET scanners with excellent 3-dimensional spatial, timing and energy resolution while keeping the number of readout channels reasonably low. A voxel resolution of about 10 mm3 is expected. We assess the performance of the method in two independent ways, using classical PMTs and G-APDs to read out the LYSO (LSO) scintillation crystals and the wavelength shifting strips. We observe yields in excess of 35 photoelectrons from the strips for a 511 keV gamma and reconstruct the axial coordinate with a precision of about 2.5 mm (FWHM).

  10. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.; Pichler, B. J. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen (Germany); Mantlik, F. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany and Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076 Tübingen (Germany); Lorenz, E. [Max Planck Institute for Physics, Föhringer Ring 6, 80805 München (Germany); Renker, D. [Department of Physics, Technische Universität München, 85748 Garching (Germany)

    2014-08-15

    Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90

  11. Lithium analysis using a double-sided silicon strip detector at LIBAF

    Science.gov (United States)

    De La Rosa, Nathaly; Kristiansson, Per; Nilsson, E. J. Charlotta; Ros, Linus; Elfman, Mikael; Pallon, Jan

    2017-08-01

    Quantification and mapping possibilities of lithium in geological material, by Nuclear Reaction Analysis (NRA), was evaluated at the Lund Ion Beam Analysis Facility (LIBAF). LiF and two Standard Reference Materials, (SRM 610 and SRM 612) were used in the investigation. The main part of the data was obtained at the beam energy 635 keV studying the high Q-value reaction 7Li(p, α)4He, but reaction yield and detection limits were also briefly investigated as a function of the energy. A double-sided silicon strip detector (DSSSD) was used to detect the α -particles emitted in the reaction in the backward direction. The combination of the high Q-value, a reasonably good cross-section and the possibility to use a high beam current have been demonstrated to allow for measurement of concentrations down below 50 ppm. Proton energies below 800 keV were demonstrated to be appropriate energies for extracting lithium in combination with boron analysis.

  12. Response of cellulose nitrate track detectors to electron doses

    CERN Document Server

    Segovia, N; Moreno, A; Vazquez-Polo, G; Santamaría, T; Aranda, P; Hernández, A

    1999-01-01

    In order to study alternative dose determination methods, the bulk etching velocity and the latent track annealing of LR 115 track detectors was studied during electron irradiation runs from a Pelletron accelerator. For this purpose alpha irradiated and blank detectors were exposed to increasing electron doses from 10.5 to 317.5 kGy. After the irradiation with electrons the detectors were etched under routine conditions, except for the etching time, that was varied for each electron dose in order to reach a fixed residual thickness. The variation of the bulk etching velocity as a function of each one of the electron doses supplied, was interpolated in order to obtain dosimetric response curves. The observed annealing effect on the latent tracks is discussed as a function of the total electron doses supplied and the temperature.

  13. Development of a multi-channel front-end electronics module based on ASIC for silicon strip array detectors

    International Nuclear Information System (INIS)

    Zhao Xingwen; Yan Duo; Su Hong; Qian Yi; Kong Jie; Zhang Xueheng; Li Zhankui; Li Haixia

    2014-01-01

    The silicon strip array detector is one of external target facility subsystems in the Cooling Storage Ring on the Heavy Ion Research Facility at Lanzhou (HIRFL-CSR). Using the ASICs, the front-end electronics module has been developed for the silicon strip array detectors and can implement measurement of energy of 96 channels. The performance of the front-end electronics module has been tested. The energy linearity of the front-end electronics module is better than 0.3% for the dynamic range of 0.1∼0.7 V. The energy resolution is better than 0.45%. The maximum channel crosstalk is better than 10%. The channel consistency is better than 1.3%. After continuously working for 24 h at room temperature, the maximum drift of the zero-peak is 1.48 mV. (authors)

  14. Design and performance of the ABCD3TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker

    Czech Academy of Sciences Publication Activity Database

    Campabadal, F.; Fleta, C.; Key, M.; Böhm, Jan; Mikeštíková, Marcela; Šťastný, Jan

    2005-01-01

    Roč. 552, - (2005), s. 292-328 ISSN 0168-9002 R&D Projects: GA MŠk 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : front-end electronics * binary readout * silicon strip detectors * application specific integrated circuits * quality assurance Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.224, year: 2005

  15. NaI(Tl) scintillator detectors stripping procedure for air kerma measurements of diagnostic X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, L.S.R. [Centro Tecnológico do Exército, CTEx (Brazilian Army Technological Center), Av. das Américas n° 28705, 23085-470 Rio de Janeiro (Brazil); Instituto de Radioprotecão e Dosimetria, CNEN/IRD (Institute for Radioprotection and Dosimetry, CNEN/IRD), Av. Salvador Allende s/no, P.O. Box 37750, 22783-127 Barra da Tijuca, Rio de Janeiro (Brazil); Conti, C.C., E-mail: ccconti@ird.gov.br [Instituto de Radioprotecão e Dosimetria, CNEN/IRD (Institute for Radioprotection and Dosimetry, CNEN/IRD), Av. Salvador Allende s/no, P.O. Box 37750, 22783-127 Barra da Tijuca, Rio de Janeiro (Brazil); Amorim, A.S.; Balthar, M.C.V. [Centro Tecnológico do Exército, CTEx (Brazilian Army Technological Center), Av. das Américas n° 28705, 23085-470 Rio de Janeiro (Brazil)

    2013-03-21

    Air kerma is an essential quantity for the calibration of national standards used in diagnostic radiology and the measurement of operating parameters used in radiation protection. Its measurement within the appropriate limits of accuracy, uncertainty and reproducibility is important for the characterization and control of the radiation field for the dosimetry of the patients submitted to diagnostic radiology and, also, for the assessment of the system which produces radiological images. Only the incident beam must be considered for the calculation of the air kerma. Therefore, for energy spectrum, counts apart the total energy deposition in the detector must be subtracted. It is necessary to establish a procedure to sort out the different contributions to the original spectrum and remove the counts representing scattered photons in the detector’s materials, partial energy deposition due to the interactions in the detector active volume and, also, the escape peaks contributions. The main goal of this work is to present spectrum stripping procedure, using the MCNP Monte Carlo computer code, for NaI(Tl) scintillation detectors to calculate the air kerma due to an X-ray beam usually used in medical radiology. The comparison between the spectrum before stripping procedure against the reference value showed a discrepancy of more than 63%, while the comparison with the same spectrum after the stripping procedure showed a discrepancy of less than 0.2%.

  16. Study of the physical processes involved in the operating mode of the micro-strips gas detector Micromegas

    International Nuclear Information System (INIS)

    Barouch, G.

    2001-04-01

    Micromegas is a micro-strip gaseous detector invented in 1996. It consists of two volumes of gas separated by a micro-mesh. The first volume of gas, 3 mm thick, is used to liberate ionization electrons from the incident charged particle. In the second volume, only 100 μm thick, an avalanche phenomenon amplifies the electrons produced in the first volume. Strips printed on an insulating substrate collect the electrons from the avalanche. The geometrical configuration of Micromegas showed many advantages. The short anode-cathode distance combined with a high granularity provide high rate capabilities due to a fast collection of ions produced during the avalanche development. Moreover, the possibility to localize the avalanche with strips printed about every hundreds of micrometers allows to measure the position of the incident particle with a good resolution. In this work, experimental tests of Micromegas are presented along with detailed Monte Carlo simulations used to understand and optimize the detector's performances. The prototypes were tested several times at the PS accelerator at CERN. The analysis of the date showed a stable and efficient behavior of Micromegas combined with an excellent space resolution. In fact, spatial resolutions of less than 15 μm were obtained. In parallel with the in-beam tests, several simulations have been developed in order to gain a better understanding of the detector's response. (author)

  17. Gamma Large Area Silicon Telescope (GLAST): Applying silicon strip detector technology to the detection of gamma rays in space

    International Nuclear Information System (INIS)

    Atwood, W.B.

    1993-06-01

    The recent discoveries and excitement generated by space satellite experiment EGRET (presently operating on Compton Gamma Ray Observatory -- CGRO) have prompted an investigation into modern detector technologies for the next generation space based gamma ray telescopes. The GLAST proposal is based on silicon strip detectors as the open-quotes technology of choiceclose quotes for space application: no consumables, no gas volume, robust (versus fragile), long lived, and self triggerable. The GLAST detector basically has two components: a tracking module preceding a calorimeter. The tracking module has planes of crossed strip (x,y) 300 μm pitch silicon detectors coupled to a thin radiator to measure the coordinates of converted electron-positron pairs. The gap between the layers (∼5 cm) provides a lever arm for track fitting resulting in an angular resolution of <0.1 degree at high energy. The status of this R ampersand D effort is discussed including details on triggering the instrument, the organization of the detector electronics and readout, and work on computer simulations to model this instrument

  18. Dose evaluation from multiple detector outputs using convex optimisation

    International Nuclear Information System (INIS)

    Hashimoto, M.; Iimoto, T.; Kosako, T.

    2011-01-01

    A dose evaluation using multiple radiation detectors can be improved by the convex optimisation method. It enables flexible dose evaluation corresponding to the actual radiation energy spectrum. An application to the neutron ambient dose equivalent evaluation is investigated using a mixed-gas proportional counter. The convex derives the certain neutron ambient dose with certain width corresponding to the true neutron energy spectrum. The range of the evaluated dose is comparable to the error of conventional neutron dose measurement equipments. An application to the neutron individual dose equivalent measurement is also investigated. Convexes of particular dosemeter combinations evaluate the individual dose equivalent better than the dose evaluation of a single dosemeter. The combinations of dosemeters with high orthogonality of their response characteristics tend to provide a good suitability for dose evaluation. (authors)

  19. T-CAD analysis of electric fields in n-in-p silicon strip detectors in dependence on the p-stop pattern and doping concentration

    CERN Document Server

    Printz, Martin

    2015-01-01

    However, n-in-p detectors necessarily need an isolation layer of the n+ strips due to an accumula- tion layer of electrons caused by positive charge in the SiO$_2$ at the sensor surface. An additional implantation of acceptors like boron between the n+ strips cuts the co...

  20. Angular dependence on the records of dose in radiochromic films strips

    Energy Technology Data Exchange (ETDEWEB)

    Costa, K. C.; Prata M, A. [Centro Federal de Educacao Tecnologica de Minas Gerais, Centro de Engenharia Biomedica, Av. Amazonas 5253, 30421-169 Nova Suica, Belo Horizonte, Minas Gerais (Brazil); Alonso, T. C. [Centro de Desenvolvimento da Tecnologia Nuclear - CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil); Campo de O, P. M., E-mail: kamilacosta1995@gmail.com [Universidade Federal de Minas Gerais, Departamento de Anatomia e Imagen, Av. Prof. Alfredo Balena 190, 30130-100 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Radiological images have relevant information both the diagnostic results as to treatment decisions. Then, the diagnostic quality of image that allows a proper analysis should be achieved with the lowest possible deposition of dose in a patient. CT scans produce sectional images that allow the observation of internal structures of the human body without overlap. As in conventional radiology, the contrast which allows obtaining CT images results from the difference in X-ray beam absorption, according to the characteristics of each tissue. The increased of the beam absorption by a tissue means that it appears brighter in the image. In CT scanners, X-ray tube rotates around the patient, and this rotation results in a cross-sectional image of the body. From a sectional image series is possible to obtain a 3-dimensional image that can be viewed from different angles. Among the methods of dose measurement is the use of radiochromic films, which record the energy deposition by darkening its emulsion. The radiochromic films show little sensitivity to visible light and respond better to exposure to ionizing radiation. In this work, strips of the radiochromic film GAFCHROMIC XR-QA2 were irradiated at different angular positions for radiation quality RQT8, defining a beam of X-rays generated from a voltage of 100 kV. The response of radiochromic films depending on the doses was assessed through digital images obtained by H P Scan jet G-4050 scanner. Digital images were analyzed using Image-J software, which allowed obtaining numerical values corresponding to the intensity of darkening for each film. The aim of this study is to evaluate the dose deposition in radiochromic film according to the angular variation in order how is affected the record. So, to examine the use of film strips to record doses in Computed Tomography tests. (Author)

  1. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions......-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasi mono energetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties...

  2. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    Science.gov (United States)

    Bates, R.; Blue, A.; Christophersen, M.; Eklund, L.; Ely, S.; Fadeyev, V.; Gimenez, E.; Kachkanov, V.; Kalliopuska, J.; Macchiolo, A.; Maneuski, D.; Phlips, B. F.; Sadrozinski, H. F.-W.; Stewart, G.; Tartoni, N.; Zain, R. M.

    2013-01-01

    Reduced edge or ``edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 μm FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 μm thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 μm thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 μm active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.

  3. Performance of CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    International Nuclear Information System (INIS)

    Mayer, M.; Boykin, D.V.; Drake, A.

    1996-01-01

    We report γ-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for γ-ray astronomy measurements in the range of 20-200 keV. The prototype is a 1.5 mm thick, 64 x 64 orthogonal stripe CdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from 8 x 8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (∼ 0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals, and the photon detection efficiency. We also present a technique for determining the location of the event in the third dimension (depth). We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that cathode signal - as well as the anode signal - arises more strongly from the conduction electrons rather than the holes

  4. Radiography imaging by 64 and 128 micro-strips crystalline detectors at different X-ray energies

    International Nuclear Information System (INIS)

    Leyva, A.; Cabal, A.; Montano, L. M.; Fontaine, M.; Mora, R. de la; Padilla, F.

    2006-01-01

    This paper summarizes some results obtained in the evaluation of the performance of position sensitive detectors in track reconstruction in particle physics experiments. Crystalline silicon micro-strips detectors with 64 and 128 channels and 100 μm pitch were used to obtain radiographic digital images of different objects. The more relevant figures for spectrometry applications were measured and reported. Two-dimensional images were obtained by scanning the object with a collimated beam using different source-target-detector positioning and three sources of X-rays (8.04, 18.55 and 22.16 keV). The counts acquired by each strip correspond to a particular collimator position during the scan, thus serving to reconstruct the image of the exposed to X-ray object and to reveal its internal structure. The use of some techniques for image processing allow the further improvement of the radiography quality. The preliminary results obtained using in-house made and accreditation mammography phantoms allow to infer that such detectors can be successfully introduced in the digital mammography practice. (Author)

  5. Impact of low-dose electron irradiation on n{sup +}p silicon strip sensors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-12-11

    The response of n{sup +}p silicon strip sensors to electrons from a {sup 90}Sr source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics on 200 μm thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 μm, and both p-stop and p-spray isolation of the n{sup +} strips were studied. The electrons from the {sup 90}Sr source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate in the SiO{sub 2} at the maximum was about 50 Gy(SiO{sub 2})/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80 °C and annealing times of 18 h showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positive oxide-charge density due to the ionization of the SiO{sub 2} by the radiation from the β source. TCAD simulations of the electric field in the sensor for different oxide-charge densities and different boundary conditions at the sensor surface support this explanation. The relevance of the measurements for the design of n{sup +}p strip sensors is discussed.

  6. Performance of a single photon counting microstrip detector for strip pitches down to 10 μm

    International Nuclear Information System (INIS)

    Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E.; Gozzo, F.; Henrich, B.; Kobas, M.; Kraft, P.; Patterson, B.; Schmitt, B.

    2008-01-01

    The MYTHEN detector is a one-dimensional microstrip detector with single photon counting readout optimized for time resolved powder diffraction experiments at the Swiss Light Source (SLS). The system has been successfully tested for many different synchrotron radiation applications including phase contrast and tomographic imaging, small angle scattering, diffraction and time resolved pump and probe experiments for X-ray energies down to 5 keV and counting rate up to 3 MHz. The frontend electronics is designed in order to be coupled to 50 μm pitch microstrip sensors but some interest in enhancing the spatial resolution is arising for imaging and powder diffraction experiments. A test structure with strip pitches in the range 10-50 μm has been tested and the gain and noise on the readout electronics have been measured for the different strip pitches, observing no large difference down to 25 μm. Moreover, the effect of the charge sharing between neighboring strips on the spatial resolution has been quantified by measuring the Point Spread Function (PSF) of the system for the different pitches

  7. Performance of a single photon counting microstrip detector for strip pitches down to 10 μm

    Science.gov (United States)

    Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E.; Gozzo, F.; Henrich, B.; Kobas, M.; Kraft, P.; Patterson, B.; Schmitt, B.

    2008-06-01

    The MYTHEN detector is a one-dimensional microstrip detector with single photon counting readout optimized for time resolved powder diffraction experiments at the Swiss Light Source (SLS). The system has been successfully tested for many different synchrotron radiation applications including phase contrast and tomographic imaging, small angle scattering, diffraction and time resolved pump and probe experiments for X-ray energies down to 5 keV and counting rate up to 3 MHz. The frontend electronics is designed in order to be coupled to 50 μm pitch microstrip sensors but some interest in enhancing the spatial resolution is arising for imaging and powder diffraction experiments. A test structure with strip pitches in the range 10-50 μm has been tested and the gain and noise on the readout electronics have been measured for the different strip pitches, observing no large difference down to 25 μm. Moreover, the effect of the charge sharing between neighboring strips on the spatial resolution has been quantified by measuring the Point Spread Function (PSF) of the system for the different pitches.

  8. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    Science.gov (United States)

    Poley, L.; Blue, A.; Bates, R.; Bloch, I.; Díez, S.; Fernandez-Tejero, J.; Fleta, C.; Gallop, B.; Greenall, A.; Gregor, I.-M.; Hara, K.; Ikegami, Y.; Lacasta, C.; Lohwasser, K.; Maneuski, D.; Nagorski, S.; Pape, I.; Phillips, P. W.; Sperlich, D.; Sawhney, K.; Soldevila, U.; Ullan, M.; Unno, Y.; Warren, M.

    2016-07-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6·1034 cm-2s-1. A consequence of this increased luminosity is the expected radiation damage at 3000 fb-1 after ten years of operation, requiring the tracking detectors to withstand fluences to over 1·1016 1 MeV neq/cm2. In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.

  9. Orthogonal strip HPGe planar SmartPET detectors in Compton configuration

    International Nuclear Information System (INIS)

    Boston, H.C.; Gillam, J.; Boston, A.J.; Cooper, R.J.; Cresswell, J.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G.; Hall, C.J.; Lazarus, I.; Berry, A.; Beveridge, T.; Lewis, R.

    2007-01-01

    The evolution of Germanium detector technology over the last decade has lead to the possibility that they can be employed in medical and security imaging. The potential of excellent energy resolution coupled with good position information that Germanium affords removes the necessity for mechanical collimators that would be required in a conventional gamma camera system. By removing this constraint, the overall dose to the patient can be reduced or the throughput of the system can be increased. An additional benefit of excellent energy resolution is that tight gates can be placed on energies from either a multi-lined gamma source or from multi-nuclide sources increasing the number of sources that can be used in medical imaging. In terms of security imaging, segmented Germanium gives directionality and excellent spectroscopic information

  10. Orthogonal strip HPGe planar SmartPET detectors in Compton configuration

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.C. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool, L69 7ZE (United Kingdom)], E-mail: H.C.Boston@liverpool.ac.uk; Gillam, J. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia); Boston, A.J.; Cooper, R.J.; Cresswell, J.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool, L69 7ZE (United Kingdom); Hall, C.J.; Lazarus, I. [STFC Daresbury Laboratory, Warrington, WA4 4AD (United Kingdom); Berry, A.; Beveridge, T.; Lewis, R. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-10-01

    The evolution of Germanium detector technology over the last decade has lead to the possibility that they can be employed in medical and security imaging. The potential of excellent energy resolution coupled with good position information that Germanium affords removes the necessity for mechanical collimators that would be required in a conventional gamma camera system. By removing this constraint, the overall dose to the patient can be reduced or the throughput of the system can be increased. An additional benefit of excellent energy resolution is that tight gates can be placed on energies from either a multi-lined gamma source or from multi-nuclide sources increasing the number of sources that can be used in medical imaging. In terms of security imaging, segmented Germanium gives directionality and excellent spectroscopic information.

  11. The antiproton depth–dose curve measured with alanine detectors

    CERN Document Server

    Bassler, Niels; Palmans, Hugo; Holzscheiter, Michael H; Kovacevic, Sandra

    2008-01-01

    n this paper we report on the measurement of the antiproton depth–dose curve, with alanine detectors. The results are compared with simulations using the particle energy spectrum calculated by FLUKA, and using the track structure model of Hansen and Olsen for conversion of calculated dose into response. A good agreement is observed between the measured and calculated relative effectiveness although an underestimation of the measured values beyond the Bragg-peak remains unexplained. The model prediction of response of alanine towards heavy charged particles encourages future use of the alanine detectors for dosimetry of mixed radiation fields.

  12. The Antiproton Depth Dose Curve Measured with Alanine Detectors

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, Johnny Witterseh; Palmans, Hugo

    2008-01-01

    In this paper we report on the measurement of the antiproton depth dose curve, with alanine detectors. The results are compared with simulations using the particle energy spectrum calculated by FLUKA, and using the track structure model of Hansen et Olsen for conversion of calculated dose...... into response. A good agreement was observed between the measured and calculated relative effectiveness although a slight underestimation of the calculated values in the Bragg peak remains unexplained. The model prediction of response of alanine towards heavy charged particles encourages future use...... of the alanine detectors for dosimetry of mixed radiation fields....

  13. Impact of low-dose electron irradiation on n+p silicon strip sensors

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruehwirth, R.; Hoch, M.; Hrubec, J.; Krammer, M.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Luyckx, S.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Grebenyuk, A.; Lenzi, Th.; Leonard, A.; Maerschalk, Th.; Mohammadi, A.; Pernie, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; D'Hondt, J.; Daci, N.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Mulders, P.; Van Onsem, G.; Van Parijs, I.; Strom, D.A.; Basegmez, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; De Callatay, B.; Delaere, C.; Pree, T.Du; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Michotte, D.; Nuttens, C.; Perrini, L.; Pagano, D.; Quertenmont, L.; Selvaggi, M.; Marono, M.Vidal; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G.H.; Harkonen, J.; Lampen, T.; Luukka, P.R.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Tuuva, T.; Beaulieu, G.; Boudoul, G.; Combaret, C.; Contardo, D.; Gallbit, G.; Lumb, N.; Mathez, H.; Mirabito, L.; Perries, S.; Sabes, D.; Vander Donckt, M.; Verdier, P.; Viret, S.; Zoccarato, Y.; Agram, J.L.; Conte, E.; Fontaine, J.Ch.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.M.; Chabert, E.; Charles, L.; Goetzmann, Ch.; Gross, L.; Hosselet, J.; Mathieu, C.; Richer, M.; Skovpen, K.; Autermann, C.; Edelhoff, M.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schwering, G.; Wittmer, B.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Geisler, M.; Pooth, O.; Stahl, A.; Bartosik, N.; Behr, J.; Burgmeier, A.; Calligaris, L.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Fluke, G.; Garcia, J.Garay; Gizhko, A.; Hansen, K.; Harb, A.; Hauk, J.; Kalogeropoulos, A.; Kleinwort, C.; Korol, I.; Lange, W.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Schroeder, M.; Seitz, C.; Spannagel, S.; Zuber, A.; Biskop, H.; Blobel, V.; Buhmann, P.; Centis-Vignali, M.; Draeger, A.R.; Erfle, J.; Garutti, E.; Haller, J.; Henkel, Ch.; Hoffmann, M.; Junkes, A.; Klanner, R.; Lapsien, T.; Mattig, S.; Matysek, M.; Perieanu, A.; Poehlsen, J.; Poehlsen, T.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schuwalow, S.; Schwandt, J.; Sola, V.; Steinbruck, G.; Vormwald, B.; Wellhausen, J.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Eber, R.; Freund, B.; Hartmann, F.; Hauth, Th.; Heindl, S.; Hoffmann, K.H.; Husemann, U.; Kornmeyer, A.; Mallows, S.; Muller, Th.; Nuernberg, A.; Printz, M.; Simonis, H.J.; Steck, P.; Weber, M.; Weiler, Th.; Bhardwaj, A.; Kumar, A.; Ranjan, K.; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Creanza, D.; De Palma, M.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Di Mattia, A.; Potenza, R.; Saizu, M.A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Civinini, C.; Gallo, E.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Ciulli, V.; D'Alessandro, R.; Gonzi, S.; Gori, V.; Focardi, E.; Lenzi, P.; Scarlini, E.; Tropiano, A.; Viliani, L.; Ferro, F.; Robutti, E.; Lo Vetere, M.; Gennai, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.; Dinardo, M.; Fiorendi, S.; Manzoni, R.A.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Dorigo, T.; Giubilato, P.; Pozzobon, N.; Tosi, M.; Zucchetta, A.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Bilei, G.M.; Bissi, L.; Checcucci, B.; Magalotti, D.; Menichelli, M.; Saha, A.; Servoli, L.; Storchi, L.; Biasini, M.; Conti, E.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Salvatore, M.; Santocchia, A.; Solestizi, L.A.; Spiezia, A.; Demaria, N.; Rivetti, A.; Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Migliore, E.; Monteil, E.; Musich, M.; Pacher, L.; Ravera, F.; Romero, A.; Solano, A.; Trapani, P.; Jaramillo Echeverria, R.; Fernandez, M.; Gomez, G.; Moya, D.; F. Gonzalez Sanchez, J.; Munoz Sanchez, F.J.; Vila, I.; Virto, A.L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Breuker, H.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Alfonso, M.; D'Auria, A.; Detraz, S.; De Visscher, S.; Deyrail, D.; Faccio, F.; Felici, D.; Frank, N.; Gill, K.; Giordano, D.; Harris, P.; Honma, A.; Kaplon, J.; Kornmayer, A.; Kortelainen, M.; Kottelat, L.; Kovacs, M.; Mannelli, M.; Marchioro, A.; Marconi, S.; Martina, S.; Mersi, S.; Michelis, S.; Moll, M.; Onnela, A.; Pakulski, T.; Pavis, S.; Peisert, A.; Pernot, J.F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Rzonca, M.; Stoye, M.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; Bani, L.; di Calafiori, D.; Casal, B.; Djambazov, L.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Hits, D.; Horisberger, U.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Perrozzi, L.; Roeser, U.; Rossini, M.; Starodumov, A.; Takahashi, M.; Wallny, R.; Amsler, C.; Bosiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.H.; Dietz, C.; Grundler, U.; Hou, W.S.; Lu, R.S.; Moya, M.; Wilken, R.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; El Nasr-Storey, S.Seif; Cole, J.; Hobson, P.; Leggat, D.; Reid, I.D.; Teodorescu, L.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; Magnan, A.M.; Pesaresi, M.; Raymond, D.M.; Uchida, K.; Coughlan, J.A.; Harder, K.; Ilic, J.; Tomalin, I.R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Malberti, M.; Olmedo, M.; Cerati, G.; Sharma, V.; Vartak, A.; Yagil, A.; Della Porta, G.Zevi; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; McColl, N.; Mullin, S.; White, D.; Cumalat, J.P.; Ford, W.T.; Gaz, A.; Krohn, M.; Stenson, K.; Wagner, S.R.; Baldin, B.; Bolla, G.; Burkett, K.; Butler, J.; Cheung, H.; Chramowicz, J.; Christian, D.; Cooper, W.E.; Deptuch, G.; Derylo, G.; Gingu, C.; Gruenendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Jung, A.; Joshi, U.; Kahlid, F.; Lei, C.M.; Lipton, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Yin, H.; Adams, M.R.; Berry, D.R.; Evdokimov, A.; Evdokimov, O.; Gerber, C.E.; Hofman, D.J.; Kapustka, B.K.; O'Brien, C.; Sandoval Gonzalez, D.I.; Trauger, H.; Turner, P.; Parashar, N.; Stupak, J., III; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D.H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Majumder, D.; Noonan, D.; Sanders, S.; Stringer, R.; Ivanov, A.; Makouski, M.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J.G.; Cremaldi, L.M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Bose, S.; Claes, D.R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Meier, F.; Monroy, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Duggan, D.; Halkiadakis, E.; Lath, A.; Park, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Mendez, H.; Ramirez Vargas, J.E.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Kaufman, G.; Mirman, N.; Ryd, A.; Salvati, E.; Skinnari, L.; Thom, J.; Thompson, J.; Tucker, J.; Winstrom, L.; Akgun, B.; Ecklund, K.M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K.A.; Delannoy, A.G.; D'Angelo, P.; Johns, W.

    2015-01-01

    The response of n+p silicon strip sensors to electrons from a Sr-90 source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics K.K. on 200 micrometer thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 micrometer, and both p-stop and p-spray isolation of the n+ strips were studied. The electrons from the Sr-90 source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate in the SiO2 at the maximum was about 50 Gy/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80{\\deg}C and annealing times of 18 hours, showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positi...

  14. Commissioning of the scatter component of a Compton camera consisting of a stack of Si strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Liprandi, S.; Marinsek, T.; Bortfeldt, J.; Lang, C.; Lutter, R.; Dedes, G.; Parodi, K.; Thirolf, P.G. [LMU Munich, Garching (Germany); Aldawood, S. [LMU Munich, Garching (Germany); King Saud University, Riyadh (Saudi Arabia); Maier, L.; Gernhaeuser, R. [TU Munich, Garching (Germany); Kolff, H. van der [LMU Munich, Garching (Germany); TU Delft (Netherlands); Castelhano, I. [LMU Munich, Garching (Germany); University of Lisbon, Lisbon (Portugal); Schaart, D.R. [TU Delft (Netherlands)

    2015-07-01

    At LMU Munich in Garching a Compton camera is presently being developed aiming at the range verification of proton (or ion) beams for hadron therapy via imaging of prompt γ rays from nuclear reactions in the tissue. The poster presentation focuses on the characterization of the scatter component of the Compton camera, consisting of a stack of six double-sided Si strip detectors (50 x 50 mm{sup 2}, 0.5 mm thick, 128 strips/side). The overall 1536 electronics channels are processed by a readout system based on the GASSIPLEX ASIC chip, feeding into a VME-based data acquisition system. The status of the offline and online characterization studies is presented.

  15. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    International Nuclear Information System (INIS)

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J.

    2012-01-01

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10 11 Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410 9 Gy/s within 2% (OSL and TLD) and up to 1510 9 Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  16. Design, fabrication and characterization of multi-guard-ring furnished p+n-n+ silicon strip detectors for future HEP experiments

    Science.gov (United States)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-07-01

    Si detectors, in various configurations (strips and pixels), have been playing a key role in High Energy Physics (HEP) experiments due to their excellent vertexing and high precision tracking information. In future HEP experiments like upgrade of the Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC), CERN and the proposed International Linear Collider (ILC), the Si tracking detectors will be operated in a very harsh radiation environment, which leads to both surface and bulk damage in Si detectors which in turn changes their electrical properties, i.e. change in the full depletion voltage, increase in the leakage current and decrease in the charge collection efficiency. In order to achieve the long term durability of Si-detectors in future HEP experiments, it is required to operate these detectors at very high reverse biases, beyond the full depletion voltage, thus requiring higher detector breakdown voltage. Delhi University (DU) is involved in the design, fabrication and characterization of multi-guard-ring furnished ac-coupled, single sided, p+n-n+ Si strip detectors for future HEP experiments. The design has been optimized using a two-dimensional numerical device simulation program (TCAD-Silvaco). The Si strip detectors are fabricated with eight-layers mask process using the planar fabrication technology by Bharat Electronic Lab (BEL), India. Further an electrical characterization set-up is established at DU to ensure the quality performance of fabricated Si strip detectors and test structures. In this work measurement results on non irradiated Si Strip detectors and test structures with multi-guard-rings using Current Voltage (IV) and Capacitance Voltage (CV) characterization set-ups are discussed. The effect of various design parameters, for example guard-ring spacing, number of guard-rings and metal overhang on breakdown voltage of test structures have been studied.

  17. Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response

    Energy Technology Data Exchange (ETDEWEB)

    Nordenfors, C

    1999-02-01

    To determine dose rate in a gamma radiation field, based on measurements with a semiconductor detector, it is necessary to know how the detector effects the field. This work aims to describe this effect with Monte Carlo simulations and calculations, that is to identify the detector response function. This is done for a germanium gamma detector. The detector is normally used in the in-situ measurements that is carried out regularly at the department. After the response function is determined it is used to reconstruct a spectrum from an in-situ measurement, a so called unfolding. This is done to be able to calculate fluence rate and dose rate directly from a measured (and unfolded) spectrum. The Monte Carlo code used in this work is EGS4 developed mainly at Stanford Linear Accelerator Center. It is a widely used code package to simulate particle transport. The results of this work indicates that the method could be used as-is since the accuracy of this method compares to other methods already in use to measure dose rate. Bearing in mind that this method provides the nuclide specific dose it is useful, in radiation protection, since knowing what the relations between different nuclides are and how they change is very important when estimating the risks

  18. Radiochromic film as a radiotherapy surface-dose detector

    International Nuclear Information System (INIS)

    Butson, M.J.; Metcalfe, P.E.; Wollongong Univ., NSW; Mathur, J.N.

    1996-01-01

    Radiochromic film is shown to be a useful surface-dose detector for radiotherapy x-ray beams. Central-axis percentage surface-dose results as measured by Gafchromic film for a 6 MVp x-ray beam produced by a Varian 2100C Linac at 100 cm SSD are 16%, 25%, 35%, 41% for 10, 20, 30 and 40 cm square field sizes, respectively. Using a simple, uniform light source and a CCD camera connected to an image analysis system, quantitative 3D surface doses are accurately attainable in real time as either numerical data, a black-and-white image or a colour-enhanced image. (Author)

  19. Assessment of low absorbed dose with a MOSFET detector

    International Nuclear Information System (INIS)

    Butson, M.J.; Cancer Services, Wollongong, NSW; Cheung, T.; Yu, P.K.N.

    2004-01-01

    Full text: The ability of a MOSFET dosimetry system to measure low therapeutic doses has been evaluated for accuracy for high energy x-ray radiotherapy applications. The MOSFET system in high sensitivity mode produces a dose measurement reproducibility of within 10%, 4% and 2.5% for 2 cGy, 5 cGy and 10cGy dose assessment respectively. This is compared to 7%, 4% and 2% for an Attix parallel plate ionisation chamber and 20%, 7% and 3.5% for a Wellhofer IC4 small volume ionisation chamber. Results for our dose standard thimble ionisation chamber and low noise farmer dosemeter were 2%, 0.5% and 0.25% respectively for these measurements. The quoted accuracy of the MOSFET dosimetry system is partially due to the slight non linear dose response (reduced response) with age of the detector but mainly due to the intrinsic variations in measured voltage differential per applied dose. Results have shown that the MOSFET dosimetry system provides an adequate measure of dose at low dose levels and is comparable in accuracy to the Attix parallel plate ionisation chambers for relative dose assessment at levels of 2cGy to 10cGy. The use of the MOSFET dosimeter at low doses can extend the life expectancy of the device and may provide useful information for areas where low dose assessment is required. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  20. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  1. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  2. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    CERN Document Server

    Masetti, Lorenzo; Fischer, Peter

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a significant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specific requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specific design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper configuration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations...

  3. Development of AC-coupled, poly-silicon biased, p-on-n silicon strip detectors in India for HEP experiments

    Science.gov (United States)

    Jain, Geetika; Dalal, Ranjeet; Bhardwaj, Ashutosh; Ranjan, Kirti; Dierlamm, Alexander; Hartmann, Frank; Eber, Robert; Demarteau, Marcel

    2018-02-01

    P-on-n silicon strip sensors having multiple guard-ring structures have been developed for High Energy Physics applications. The study constitutes the optimization of the sensor design, and fabrication of AC-coupled, poly-silicon biased sensors of strip width of 30 μm and strip pitch of 55 μm. The silicon wafers used for the fabrication are of 4 inch n-type, having an average resistivity of 2-5 k Ω cm, with a thickness of 300 μm. The electrical characterization of these detectors comprises of: (a) global measurements of total leakage current, and backplane capacitance; (b) strip and voltage scans of strip leakage current, poly-silicon resistance, interstrip capacitance, interstrip resistance, coupling capacitance, and dielectric current; and (c) charge collection measurements using ALiBaVa setup. The results of the same are reported here.

  4. Dose Calibration of the ISS-RAD Fast Neutron Detector

    Science.gov (United States)

    Zeitlin, C.

    2015-01-01

    The ISS-RAD instrument has been fabricated by Southwest Research Institute and delivered to NASA for flight to the ISS in late 2015 or early 2016. ISS-RAD is essentially two instruments that share a common interface to ISS. The two instruments are the Charged Particle Detector (CPD), which is very similar to the MSL-RAD detector on Mars, and the Fast Neutron Detector (FND), which is a boron-loaded plastic scintillator with readout optimized for the 0.5 to 10 MeV energy range. As the FND is completely new, it has been necessary to develop methodology to allow it to be used to measure the neutron dose and dose equivalent. This talk will focus on the methods developed and their implementation using calibration data obtained in quasi-monoenergetic (QMN) neutron fields at the PTB facility in Braunschweig, Germany. The QMN data allow us to determine an approximate response function, from which we estimate dose and dose equivalent contributions per detected neutron as a function of the pulse height. We refer to these as the "pSv per count" curves for dose equivalent and the "pGy per count" curves for dose. The FND is required to provide a dose equivalent measurement with an accuracy of ?10% of the known value in a calibrated AmBe field. Four variants of the analysis method were developed, corresponding to two different approximations of the pSv per count curve, and two different implementations, one for real-time analysis onboard ISS and one for ground analysis. We will show that the preferred method, when applied in either real-time or ground analysis, yields good accuracy for the AmBe field. We find that the real-time algorithm is more susceptible to chance-coincidence background than is the algorithm used in ground analysis, so that the best estimates will come from the latter.

  5. Evaluation of the data of the HERA-B vertex detector with regards to the physical properties of the applied silicon strip counters

    International Nuclear Information System (INIS)

    Wagner, W.

    1999-01-01

    The HERA-B experiment at the DESY laboratory in Hamburg is dedicated to measuring CP-violation in the decays of neutral B-mesons. The primary purpose of the experiment in the measurement of the CP-asymmetry in the decay channel B 0 → J/ψK S 0 . In order to identify the B-mesons and to determine the time-dependent asymmetry, the decay length anti Δ anti l of the B-mesons must be measured to an accuracy of σ Δl ≤ 500 μm. To achieve this aim, HERA-B has a vertex detector which is based on double-sided silicon strip detectors mounted in a Roman pot system. One important specification of the vertex detector is to allow independent tracking with an efficiency above 95%. Therefore, it is required to select hits on the strip detectors with an efficiency above 99% and optimize the suppression of noise. This thesis describes a detailed investigation of the behaviour of the silicon strip detectors used in the vertex detector. The first part presents measurements performed in the laboratory using a tunable infrared dye laser to simulate the passage of charged particles through the detector. This includes measurements of the charge division between adjacent readout strips and mapping of the detector depletion. The results of the measurements agree excellently with the predictions from a detailed model calculation carried out in this thesis. The second part of the thesis the analysis of data recorded with the HERA-B vertex detector during the commissioning run of spring 1999. The analysis focusses on the investigation of cluster shapes and cluster sizes. In particular, the dependence of these distributions from the selection cuts is analyzed. Additionally, the differences between the two detector designs used, p-spray and p-stop detectors with intermediate strip or without respectively, are worked out. The measured distributions agree very well with the predictions from a model calculation taking all relevant detector parameters into account. The results of the data

  6. Developing silicon strip detectors with a large-scale commercial foundry

    Energy Technology Data Exchange (ETDEWEB)

    König, A., E-mail: axel.koenig@oeaw.ac.at [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Bartl, U. [Infineon Technologies Austria AG, Villach (Austria); Bergauer, T.; Dragicevic, M. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Hacker, J. [Infineon Technologies Austria AG, Villach (Austria); Treberspurg, W. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria)

    2016-07-11

    Since 2009 the Institute of High Energy Physics (HEPHY) in Vienna is developing a production process for planar silicon strip sensors on 6-in. wafers together with the semiconductor manufacturer Infineon Technologies. Four runs with several batches of wafers, each comprising six different sensors, were manufactured and characterized. A brief summary of the recently completed 6-in. campaign is given. Milestones in sensor development as well as techniques to improve the sensor quality are discussed. Particular emphasis is placed on a failure causing areas of defective strips which accompanied the whole campaign. Beam tests at different irradiation facilities were conducted to validate the key capability of particle detection. Another major aspect is to prove the radiation hardness of sensors produced by Infineon. Therefore, neutron irradiation studies were performed.

  7. Analysis and comparison of the breakdown performance of semi- insulator and dielectric passivated Si strip detectors

    CERN Document Server

    Ranjan, Kirti; Chatterji, S; Srivastava-Ajay, K; Shivpuri, R K

    2002-01-01

    The harsh radiation environment in future high-energy physics (HEP) experiments like LHC provides a challenging task to the performance of Si microstrip detectors. Normal operating condition for silicon detectors in HEP experiments are in most cases not as favourable as for experiments in nuclear physics. In HEP experiments the detector may be exposed to moisture and other adverse atmospheric environment. It is therefore utmost important to protect the sensitive surfaces against such poisonous effects. These instabilities can be nearly eliminated and the performance of Si detectors can be improved by implementing suitably passivated metal-overhang structures. This paper presents the influence of the relative permittivity of the passivant on the breakdown performance of the Si detectors using computer simulations. The semi-insulator and the dielectric passivated metal-overhang structures are compared under optimal conditions. The influence of various parameters such as passivation layer thickness, junction dep...

  8. ATLAS strip detector: Operational Experience and Run1 → Run2 transition

    CERN Document Server

    NAGAI, K; The ATLAS collaboration

    2014-01-01

    The ATLAS SCT operational experience and the detector performance during the RUN1 period of LHC will be reported. Additionally the preparation outward to RUN2 during the long shut down 1 will be mentioned.

  9. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.L. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain); Martel, I. [Dpto de Física Aplicada, Universidad de Huelva (Spain); CERN, ISOLDE, CH 1211 Geneva, 23 (Switzerland); Jiménez, R. [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Galán, J., E-mail: jgalan@diesia.uhu.es [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Salmerón, P. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain)

    2016-09-11

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from {sup 12}C up to {sup 84}Kr, yielding higher discrimination rates than any other previously reported.

  10. Two gamma dose evaluation methods for silicon semiconductor detector

    International Nuclear Information System (INIS)

    Chen Faguo; Jin Gen; Yang Yapeng; Xu Yuan

    2011-01-01

    Silicon PIN diodes have been widely used as personal and areal dosimeters because of their small volume, simplicity and real-time operation. However, because silicon is neither a tissue-equivalent nor an air-equivalent material, an intrinsic disadvantage for silicon dosimeters is that a significant over-response occurs at low-energy region, especially below 200 keV. Using a energy compensation filter to flatten the energy response is one method overcoming this disadvantage. But for dose compensation method, the estimated dose depends only on the number of the detector pulses. So a weight function method was introduced to evaluate gamma dose, which depends on pulse number as well as its amplitude. (authors)

  11. A pixel segmented silicon strip detector for ultra fast shaping at low noise and low power consumption

    International Nuclear Information System (INIS)

    Misiakos, K.; Kavadias, S.

    1996-01-01

    A new radiation imaging device is proposed based on strips segmented into small pixels. Every pixel contains a submicron transistor that is normally biased in weak inversion. The ionization charge, upon collection by the pixel, changes the bias of the transistor to strong inversion and supplies a current up to several tens of a microA. This is a consequence of the small pixel capacitance (12 fF). The drains and sources of the transistors on the same row and column are shorted to bus lines that effectively become the Y and X coordinates. These bus lines are connected to the off chip ICON amplifiers to provide a 10 ns peaking time at a noise of about 150 electrons and 1 nW power consumption, for a 10x10 cm 2 detector and a MIP excitation. The noise performance is dominated by the ICON transistors. The cross talk between adjacent strips can be kept at a few percentage points provided a low transistor bias current is used

  12. Development of the specialized integrated circuit for signal readout from micro-strip structures of a coordinate detectors

    International Nuclear Information System (INIS)

    Aulchenko, V.; Shekhtman, L.; Zhulanov, V.

    2015-01-01

    The paper presents current status of development of a specialized 64-channel integrated circuit (IC, ASIC) for front-end electronics of coordinate detectors in the Budker INP. The ASIC is produced using 180 nm process. During the recording phase the IC allows integration of short current pulses from strips of a coordinate sensor, and storing of up to 100 corresponding charge values in the analogue memory with minimum time interval of 100 ns. Maximum input charge is equal to 2×10 6 electrons, equivalent noise charge is ∼2.7×10 3 electrons. Conversion of the data, stored in the analogue memory, to digital form is performed by an external ADC during the readout through an analogue multiplexer

  13. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS inner detector

    International Nuclear Information System (INIS)

    Poley, Luise; Bloch, Ingo; Edwards, Sam

    2016-04-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.

  14. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS inner detector

    Energy Technology Data Exchange (ETDEWEB)

    Poley, Luise [DESY, Zeuthen (Germany); Humboldt Univ. Berlin (Germany); Bloch, Ingo [DESY, Zeuthen (Germany); Edwards, Sam [Birmingham Univ. (United Kingdom); and others

    2016-04-15

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.

  15. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    CERN Document Server

    INSPIRE-00407830; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid M.; Jones, T; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2016-05-24

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigatio...

  16. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    Science.gov (United States)

    Poley, L.; Bloch, I.; Edwards, S.; Friedrich, C.; Gregor, I.-M.; Jones, T.; Lacker, H.; Pyatt, S.; Rehnisch, L.; Sperlich, D.; Wilson, J.

    2016-05-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.

  17. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    International Nuclear Information System (INIS)

    Poley, L.; Bloch, I.; Friedrich, C.; Gregor, I.-M.; Edwards, S.; Pyatt, S.; Wilson, J.; Jones, T.; Lacker, H.; Rehnisch, L.; Sperlich, D.

    2016-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.

  18. Dose energy dependence in proton imaging with thin detector

    Energy Technology Data Exchange (ETDEWEB)

    Denyak, V.V., E-mail: denyak@gmail.com [National Science Centre Kharkov Institute of Physics and Technology, St. Akademicheskaya 1, Kharkov 61108 (Ukraine); Federal University of Technology - Parana, Av. Sete de Setembro 3165, Curitiba 80230-901 (Brazil); Schelin, H.R. [Pele Pequeno Principe Research Institute, Av. Silva Jardim 1632, Curitiba 80250-200 (Brazil); Federal University of Technology - Parana, Av. Sete de Setembro 3165, Curitiba 80230-901 (Brazil); Silva, R.C.L.; Kozuki, C.; Paschuk, S.A.; Milhoretto, E. [Federal University of Technology - Parana, Av. Sete de Setembro 3165, Curitiba 80230-901 (Brazil)

    2012-07-15

    Since the earliest works proposing the use of protons for imaging, the main advantage of protons over X-rays was expected to be a result of the specific property of the proton flux dropping off very steeply at the end of the particle range. This idea was declared but was not checked. In the present work, this assumption was investigated using the Monte Carlo simulation for the case of registration of protons with a thin detector. - Highlights: Black-Right-Pointing-Pointer Principal idea of proton imaging 'to work at the end of the range' was tested. Black-Right-Pointing-Pointer The case of thin detector was investigated. Black-Right-Pointing-Pointer The dose energy dependence was calculated using computer simulation.

  19. Charge-partitioning study of a wide-pitch silicon micro-strip detector with a 64-channel CMOS preamplifier array

    International Nuclear Information System (INIS)

    Ikeda, H.; Tsuboyama, T.; Okuno, S.; Saitoh, Y.; Akamine, T.; Satoh, K.; Inoue, M.; Yamanaka, J.; Mandai, M.; Takeuchi, H.; Kitta, T.; Miyahara, S.; Kamiya, M.

    1996-01-01

    The wider pitch readout operation of a 50 μm-pitch double-sided silicon micro-strip detector has been studied specifically concerning its ohmic side. Every second readout and ganged configuration was examined by employing a newly developed 64-channel preamplifier array. The observed charge responses for collimated IR light were compared with a numerical model. (orig.)

  20. Measurements of low noise 64 channel counting ASIC for Si and CdTe strip detectors

    International Nuclear Information System (INIS)

    Kachel, M; Grybos, P; Szczygiel, R; Takeyoshi, T

    2011-01-01

    We present the design and performance of a 64-channel ASIC called SXDR64. The circuit is intended to work with DC coupled CdTe detectors as well as with standard AC coupled Si detectors. A single channel of the ASIC consists of a charge sensitive amplifier with a pole-zero cancellation circuit, a 4 th order programmable shaper, a base-line restorer and two independent discriminators with 20-bit counters equipped with RAM. The circuit is able to operate correctly with both polarities of the input signal and the detectors leakage current in a few nA range, with the average rate of input pulses up to 1 Mcps.

  1. A novel laser alignment system for tracking detectors using transparent silicon strip sensors

    International Nuclear Information System (INIS)

    Blum, W.; Kroha, H.; Widmann, P.

    1995-02-01

    Modern large-area precision tracking detectors require increasing accuracy of the geometrical alignment over large distances. A novel optical multi-point alignment system has been developed for the muon spectrometer of the ATLAS detector at the Large Hadron Collider. The system uses collimated laser beams as alignment references which are monitored by semi-transparent optical position sensors. The custom designed sensors provide very precise and uniform position information on the order of 1 μm over a wide measurement range. At suitable laser wavelengths, produced by laser diodes, transmission rates above 90% have been achieved which allow to align more than 30 sensors along one laser beam. With this capability and equipped with integrated readout electronics, the alignment system offers high flexibility for precision applications in a wide range of detector systems. (orig.)

  2. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    NARCIS (Netherlands)

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of

  3. Mechanical studies towards a silicon micro-strip super module for the ATLAS inner detector upgrade at the high luminosity LHC

    International Nuclear Information System (INIS)

    Barbier, G; Cadoux, F; Clark, A; Favre, Y; Ferrere, D; Gonzalez-Sevilla, S; Iacobucci, G; Marra, D La; Perrin, E; Seez, W; Endo, M; Hanagaki, K; Hara, K; Ikegami, Y; Nakamura, K; Takubo, Y; Terada, S; Jinnouchi, O; Nishimura, R; Takashima, R

    2014-01-01

    It is expected that after several years of data-taking, the Large Hadron Collider (LHC) physics programme will be extended to the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 10 34  cm −2  s −1 . For the general-purpose ATLAS experiment at the LHC, a complete replacement of its internal tracking detector will be necessary, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module (SM) is an integration concept proposed for the barrel strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules (DSM) are assembled into a low-mass local support (LS) structure. Mechanical aspects of the proposed LS structure are described

  4. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC)

    International Nuclear Information System (INIS)

    Moreau, St.

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  5. Concepts for dose determination in flat-detector CT

    International Nuclear Information System (INIS)

    Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A

    2008-01-01

    Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDI L=100mm , where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm x 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDI L determination with respect to the desired CTDI ∞ . Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of ≥600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of ≥600 mm appeared to be necessary to approximate CTDI ∞ in within 1%. MC

  6. Concepts for dose determination in flat-detector CT

    Science.gov (United States)

    Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A.

    2008-07-01

    Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDIL=100 mm, where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm × 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDIL determination with respect to the desired CTDI∞. Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of >=600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of >=600 mm appeared to be necessary to approximate CTDI∞ in within 1%. MC simulations

  7. The ATLAS inner detector semiconductor tracker (Si and GaAs strips): review of the 1995 beam tests at the CERN SPS H8 beamline

    International Nuclear Information System (INIS)

    Moorhead, G.F.

    1995-01-01

    This talk will consist of a brief review of the ATLAS Inner Detector (ID) Semiconductor Tracker (SCT) strip detector (both silicon and gallium arsenide) beam tests conducted at the ATLAS test beam facility at the CERN SPS H8 beamline. It will include a brief overview of the H8 facilities, the experimental layout of the SCT/Strip apparatus, the data acquisition system, some of the online software tools and the high precision silicon hodoscope and timing modules used. A very brief indication of some of the main varieties of detector systems tested and the measurements performed will be given. Throughout some emphasis will be placed on the contributions and-interests of members of the Melbourne group. (author)

  8. MUST, a set of strip detectors for studying radioactive beams induced reactions; MUST, un ensemble de detecteurs a pistes pour l`etude des reactions induites par faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, Y.; Barbier, A.; Beaumel, D.; Charlet, D.; Clavelin, J.F.; Douet, R.; Engrand, M.; Lebon, S.; Lelong, P.; Lesage, A.; Leven, V.; Lhenry, I.; Marechal, F.; Petizon, L.; Pouthas, J.; Richard, A.; Rougier, D.; Soulet, C.; Suomijaervi, T.; Volkov, P.; Voltolini, G. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Auger, F.; Ottini, S.; Alamanos, N. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Sauvestre, J.E.; Bonnereau, B.; Champion, L.; Delbourgo-Salvador, P.; Ethvignot, T.; Szmigiel, M. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France)

    1996-12-31

    This report states the specificity of light particles elastic scattering, and the need of detecting recoil protons to improve angular resolution. Then the development of a specific MUST strip detector is detailed: 60 strips detectors with Si O sub 2 dielectric, that yield 500 ps time resolution, and Si (Li) detectors following next. A versatile data acquisition system has been developed too, with CAMAC interface to suit to any experimental plant. (D.L.). 27 refs.

  9. Characterisation of micro-strip and pixel silicon detectors before and after hadron irradiation

    CERN Document Server

    Allport, P.P

    2012-01-01

    The use of segmented silicon detectors for tracking and vertexing in particle physics has grown substantially since their introduction in 1980. It is now anticipated that roughly 50,000 six inch wafers of high resistivity silicon will need to be processed into sensors to be deployed in the upgraded experiments in the future high luminosity LHC (HL-LHC) at CERN. These detectors will also face an extremely severe radiation environment, varying with distance from the interaction point. The volume of required sensors is large and their delivery is required during a relatively short time, demanding a high throughput from the chosen suppliers. The current situation internationally, in this highly specialist market, means that security of supply for large orders can therefore be an issue and bringing additional potential vendors into the field can only be an advantage. Semiconductor companies that could include planar sensors suitable for particle physics in their product lines will, however, need to prove their pro...

  10. Front-side biasing of n-in-p silicon strip detectors

    CERN Document Server

    Baselga Bacardit, Marta; Dierlamm, Alexander Hermann; Dragicevic, Marko Gerhart; Konig, Axel; Pree, Elias; Metzler, Marius

    2018-01-01

    Front-side biasing is an alternative method to bias a silicon sensor. Instead of directly applying high voltage to the back-side, one can exploit the conductive properties of the edge region to bias a detector exclusively via top-side connections. This option can be beneficial for the detector design and might help to facilitate the assembly process of modules. The effective bias voltage is affected by the resistance of the edge region and the sensor current. The measurements of n-in-p sensors performed to qualify this concept have shown that the voltage drop emerging from this resistance is negligible before irradiation. After irradiation, however, the resistivity of the edge region increases with fluence and saturates in the region of 10$^{7}\\,\\Omega$ at a fluence of 1$\\,\\cdot\\,10^{15}\\,$n$_{\\textrm{eq}}$cm$^{-2}$. The measurements are complemented by TCAD simulations and interpretations of the observed effects.

  11. A time-based front-end ASIC for the silicon micro strip sensors of the P-bar ANDA Micro Vertex Detector

    International Nuclear Information System (INIS)

    Pietro, V. Di; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Stockmanns, T.; Zambanini, A.; Rivetti, A.; Rolo, M.D.

    2016-01-01

    The P-bar ANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA ( P-bar ANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels

  12. A time-based front-end ASIC for the silicon micro strip sensors of the bar PANDA Micro Vertex Detector

    Science.gov (United States)

    Di Pietro, V.; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Zambanini, A.

    2016-03-01

    The bar PANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA (bar PANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels.

  13. Anode front-end electronics for the cathode strip chambers of the CMS Endcap Muon detector

    International Nuclear Information System (INIS)

    Ferguson, T.; Bondar, N.; Golyash, A.; Sedov, V.; Terentiev, N.; Vorobiev, I.

    2005-01-01

    The front-end electronics system for the anode signals of the CMS Endcap Muon cathode strip chambers has about 183,000 channels. The purposes of the anode front-end electronics are to acquire precise muon timing information for bunch crossing number identification at the Level-1 muon trigger system and to provide a coarse radial position of the muon track. Each anode channel consists of an input protection network, amplifier, shaper, constant-fraction discriminator, and a programmable delay. The essential parts of the electronics include a 16-channel amplifier-shaper-discriminator ASIC CMP16 and a 16-channel ASIC D16G providing programmable time delay. The ASIC CMP16 was optimized for the large cathode chamber size (up to 3x2.5 m 2 ) and for the large input capacitance (up to 200 pF). The ASIC combines low power consumption (30 mW/channel) with good time resolution (2-3 ns). The delay ASIC D16G makes possible the alignment of signals with an accuracy of 2.2 ns. This paper presents the anode front-end electronics structure and results of the preproduction and the mass production tests, including radiation resistance and reliability tests. The special set of test equipment, techniques, and corresponding software developed and used in the test procedures are also described

  14. A Distance Detector with a Strip Magnetic MOSFET and Readout Circuit.

    Science.gov (United States)

    Sung, Guo-Ming; Lin, Wen-Sheng; Wang, Hsing-Kuang

    2017-01-10

    This paper presents a distance detector composed of two separated metal-oxide semiconductor field-effect transistors (MOSFETs), a differential polysilicon cross-shaped Hall plate (CSHP), and a readout circuit. The distance detector was fabricated using 0.18 μm 1P6M Complementary Metal-Oxide Semiconductor (CMOS) technology to sense the magnetic induction perpendicular to the chip surface. The differential polysilicon CSHP enabled the magnetic device to not only increase the magnetosensitivity but also eliminate the offset voltage generated because of device mismatch and Lorentz force. Two MOSFETs generated two drain currents with a quadratic function of the differential Hall voltages at CSHP. A readout circuit-composed of a current-to-voltage converter, a low-pass filter, and a difference amplifier-was designed to amplify the current difference between two drains of MOSFETs. Measurements revealed that the electrostatic discharge (ESD) could be eliminated from the distance sensor by grounding it to earth; however, the sensor could be desensitized by ESD in the absence of grounding. The magnetic influence can be ignored if the magnetic body (human) stays far from the magnetic sensor, and the measuring system is grounded to earth by using the ESD wrist strap (Strap E-GND). Both 'no grounding' and 'grounding to power supply' conditions were unsuitable for measuring the induced Hall voltage.

  15. Simulation of new p-type strip detectors with trench to enhance the charge multiplication effect in the n-type electrodes

    International Nuclear Information System (INIS)

    Fernández-Martínez, P.; Pellegrini, G.; Balbuena, J.P.; Quirion, D.; Hidalgo, S.; Flores, D.; Lozano, M.; Casse, G.

    2011-01-01

    This paper shows the simulation results of new p-type strip detectors with trench electrodes to enhance the charge multiplication effect in the irradiated detector. The new design includes baby microstrip detectors (area=1 cm 2 ) with a strip pitch of 80 μm and p-stop isolation structures. The strip has a 5 μm-wide trench along all its length, filled and doped with polysilicon to create a deep N + contact into the material bulk. The trench depth can be varied in order to study the influence of the electric field on the charge multiplication effect in heavily irradiated samples. Some alternative designs have also been studied to establish a comparison between various structures using different technologies. Simulation reproduce the electrical behaviour under different irradiation conditions, taking into account the damage accumulated after irradiation with neutrons and protons with several fluence values. The investigation of these effects provides important indications on the ability of this modified electrode geometry to control and optimise the charge multiplication effect, in order to fully recover the collection efficiency of heavily irradiated microstrip detectors, at reasonable bias voltage compatible with the voltage feed limitation of the CERN SLHC experiments.

  16. TL detectors for gamma ray dose measurements in criticality accidents

    International Nuclear Information System (INIS)

    Miljanic, S.; Zorko, B.; Gregori, B.; Knezevic, Z.

    2007-01-01

    Determination of gamma ray dose in mixed neutron + gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Boskovic Inst. (RBI), Croatia, Jozef Stefan Inst. (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7 LiF (TLD-700), CaF 2 :Mn and Al2 O3 :Mg,Y - all from RBI; CaF 2 :Mn from JSI and 7 LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed. (authors)

  17. TL detectors for gamma ray dose measurements in criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka

    2007-01-01

    Determination of gamma ray dose in mixed neutron+gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Bosković Institute (RBI), Croatia, JoZef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed.

  18. Dose rate and SDD dependence of commercially available diode detectors

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhu, Timothy C.

    2004-01-01

    The dose-rate dependence of commercially available diode detectors was measured under both high instantaneous dose-rate (pulsed) and low dose rate (continuous, Co-60) radiation. The dose-rate dependence was measured in an acrylic miniphantom at a 5-cm depth in a 10x10 cm 2 collimator setting, by varying source-to-detector distance (SDD) between at least 80 and 200 cm. The ratio of a normalized diode reading to a normalized ion chamber reading (both at SDD=100 cm) was used to determine diode sensitivity ratio for pulsed and continuous radiation at different SDD. The inverse of the diode sensitivity ratio is defined as the SDD correction factor (SDD CF). The diode sensitivity ratio increased with increasing instantaneous dose rate (or decreasing SDD). The ratio of diode sensitivity, normalized to 4000 cGy/s, varied between 0.988 (1490 cGy/s)-1.023 (38 900 cGy/s) for unirradiated n-type Isorad Gold, 0.981 (1460 cGy/s)-1.026 (39 060 cGy/s) for unirradiated QED Red (n type), 0.972 (1490 cGy/s)-1.068 (38 900 cGy/s) for preirradiated Isorad Red (n type), 0.985 (1490 cGy/s)-1.012 (38 990 cGy/s) for n-type Pt-doped Isorad-3 Gold, 0.995 (1450 cGy/s)-1.020 (21 870 cGy/s) for n-type Veridose Green, 0.978 (1450 cGy/s)-1.066 (21 870 cGy/s) for preirradiated Isorad-p Red, 0.994 (1540 cGy/s)-1.028 (17 870 cGy/s) for p-type preirradiated QED, 0.998 (1450 cGy/s)-1.003 (21 870 cGy/s) for the p-type preirradiated Scanditronix EDP20 3G , and 0.998 (1490 cGy/s)-1.015 (38 880 cGy/s) for Scanditronix EDP10 3G diodes. The p-type diodes do not always show less dose-rate dependence than the n-type diodes. Preirradiation does not always reduce diode dose-rate dependence. A comparison between the SDD dependence measured at the surface of a full scatter phantom and that in a miniphantom was made. Using a direct adjustment of radiation pulse height, we concluded that the SDD dependence of diode sensitivity can be explained by the instantaneous dose-rate dependence if sufficient buildup is

  19. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    Science.gov (United States)

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-04-04

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.

  20. Optimization, evaluation and calibration of a cross-strip DOI detector

    Science.gov (United States)

    Schmidt, F. P.; Kolb, A.; Pichler, B. J.

    2018-02-01

    This study depicts the evaluation of a SiPM detector with depth of interaction (DOI) capability via a dual-sided readout that is suitable for high-resolution positron emission tomography and magnetic resonance (PET/MR) imaging. Two different 12  ×  12 pixelated LSO scintillator arrays with a crystal pitch of 1.60 mm are examined. One array is 20 mm-long with a crystal separation by the specular reflector Vikuiti enhanced specular reflector (ESR), and the other one is 18 mm-long and separated by the diffuse reflector Lumirror E60 (E60). An improvement in energy resolution from 22.6% to 15.5% for the scintillator array with the E60 reflector is achieved by taking a nonlinear light collection correction into account. The results are FWHM energy resolutions of 14.0% and 15.5%, average FWHM DOI resolutions of 2.96 mm and 1.83 mm, and FWHM coincidence resolving times of 1.09 ns and 1.48 ns for the scintillator array with the ESR and that with the E60 reflector, respectively. The measured DOI signal ratios need to be assigned to an interaction depth inside the scintillator crystal. A linear and a nonlinear method, using the intrinsic scintillator radiation from lutetium, are implemented for an easy to apply calibration and are compared to the conventional method, which exploits a setup with an externally collimated radiation beam. The deviation between the DOI functions of the linear or nonlinear method and the conventional method is determined. The resulting average of differences in DOI positions is 0.67 mm and 0.45 mm for the nonlinear calibration method for the scintillator array with the ESR and with the E60 reflector, respectively; Whereas the linear calibration method results in 0.51 mm and 0.32 mm for the scintillator array with the ESR and the E60 reflector, respectively; and is, due to its simplicity, also applicable in assembled detector systems.

  1. Investigations on commercial semiconductor diodes as possible high dose rate radiation detectors

    International Nuclear Information System (INIS)

    Breitenhuber, L.; Kindl, P.; Obenaus, B.

    1992-12-01

    Investigations concerning the relevant properties of commercial semiconductor diodes such as their sensitivity and its dependence on accumulated dose, dose rate, energy, temperature and direction have been made in order to obtain their usefullness as radiation detectors. (authors)

  2. SiliPET: An ultra high resolution design of a small animal PET scanner based on double sided silicon strip detector stacks

    International Nuclear Information System (INIS)

    Zavattini, G.; Cesca, N.; Di Domenico, G.; Moretti, E.; Sabba, N.

    2006-01-01

    We investigated the capabilities of a small animal PET scanner, named SiliPET, based on four stacks of double sided silicon strips detectors. Each stack consists of 40 silicon detectors with dimension 60x60x1mm 3 . These are arranged to form a box 5x5x6cm 3 with minor sides opened; the box represents the maximal FOV of the scanner. The performance parameters of SiliPET scanner have been estimated, giving an intrinsic spatial resolution of 0.52mm and a sensitivity of 5.1% at the center of the system

  3. Development and evaluation of test stations for the quality assurance of the silicon micro-strip detector modules for the CMS experiment

    International Nuclear Information System (INIS)

    Poettgens, M.

    2007-01-01

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m 2 , the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control of the quality is done by the members of the 21 participating institutes. Since the access to the silicon micro-strip tracker will be very limited after the installation in the CMS detector the installed modules must be of high quality. For this reason the modules are thoroughly tested and the test results are uploaded to a central database. By the development of a read-out system and the corresponding software the III. Physikalisches Institut made an important contribution for the electrical and functional quality control of hybrids and modules. The read-out system provides all features for the operation and test of hybrids and modules and stands out due to high reliability and simple handling. Because a very user-friedly and highly automated software it became the official test tool and was integrated in various test stands. The test stands, in which the read-out system is integrated in, are described and the tests which are implemented in the corresponding

  4. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    CERN Document Server

    INSPIRE-00407830; Blue, Andrew; Bates, Richard; Bloch, Ingo; Diez, Sergio; Fernandez-Tejero, Javier; Fleta, Celeste; Gallop, Bruce; Greenall, Ashley; Gregor, Ingrid-Maria; Hara, Kazuhiko; Ikegami, Yoichi; Lacasta, Carlos; Lohwasser, Kristin; Maneuski, Dzmitry; Nagorski, Sebastian; Pape, Ian; Phillips, Peter W.; Sperlich, Dennis; Sawhney, Kawal; Soldevila, Urmila; Ullan, Miguel; Unno, Yoshinobu; Warren, Matt

    2016-07-29

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity, totalling 1x10^35 cm^-2 s^-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at 3000 fb^-1, requiring the tracking detectors to withstand hadron equivalences to over 1x10^16 1 MeV neutrons per cm^2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 micron FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 micron thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 micron thick full size radial (Endcap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout...

  5. SiliPET: An ultra-high resolution design of a small animal PET scanner based on stacks of double-sided silicon strip detector

    International Nuclear Information System (INIS)

    Di Domenico, Giovanni; Zavattini, Guido; Cesca, Nicola; Auricchio, Natalia; Andritschke, Robert; Schopper, Florian; Kanbach, Gottfried

    2007-01-01

    We investigated with Monte Carlo simulations, using the EGSNrcMP code, the capabilities of a small animal PET scanner based on four stacks of double-sided silicon strip detectors. Each stack consists of 40 silicon detectors with dimension of 60x60x1 mm 3 and 128 orthogonal strips on each side. Two coordinates of the interaction are given by the strips, whereas the third coordinate is given by the detector number in the stack. The stacks are arranged to form a box of 5x5x6 cm 3 with minor sides opened; the box represents the minimal FOV of the scanner. The performance parameters of the SiliPET scanner have been estimated giving a (positron range limited) spatial resolution of 0.52 mm FWHM, and an absolute sensitivity of 5.1% at the center of system. Preliminary results of a proof of principle measurement done with the MEGA advanced Compton imager using a ∼1 mm diameter 22 Na source, showed a focal ray tracing FWHM of 1 mm

  6. The noise analysis and optimum filtering techniques for a two-dimensional position sensitive orthogonal strip gamma ray detector employing resistive charge division

    International Nuclear Information System (INIS)

    Gerber, M.S.; Muller, D.W.

    1976-01-01

    The analysis of an orthogonal strip, two-dimensional position sensitive high purity germanium gamma ray detector is discussed. Position sensitivity is obtained by connecting each electrode strip on the detector to a resistor network. Charge, entering the network, divides in relation to the resistance between its entry point and the virtual earth points of the charge sensitive preamplifiers located at the end of each resistor network. The difference of the voltage pulses at the output of each preamplifier is proportional to the position at which the charge entered the resistor network and the sum of the pulse is proportional to the energy of the detected gamma ray. The analysis and spatial noise resolution is presented for this type of position sensitive detector. The results of the analysis show that the position resolution is proportional to the square root of the filter amplifier's output pulse time constant and that for energy measurement the resolution is maximized at the filter amplifier's noise corner time constant. The design of the electronic noise filtering system for the prototype gamma ray camera was based on the mathematical energy and spatial resolution equations. For the spatial channel a Gaussian trapezoidal filtering system was developed. Gaussian filtering was used for the energy channel. The detector noise model was verified by taking rms noise measurements of the filtered energy and spatial pulses from resistive readout charge dividing detectors. These measurements were within 10% of theory. (Auth.)

  7. Development and Evaluation of Test Stations for the Quality Assurance of the Silicon Micro-Strip Detector Modules for the CMS Experiment

    CERN Document Server

    Pöttgens, Michael

    2007-01-01

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m2, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control o...

  8. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Mori, R., E-mail: riccardo.mori@physik.uni-freiburg.de [Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Arratia-Munoz, M.I.; Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ullan, M.; Fleta, C.; Fernandez-Tejero, J. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Gregor, I.M.; Lohwasser, K. [DESY, Notkestrasse 85, 22607 Hambrug (Germany); and others

    2016-09-21

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  9. Study on children patient dose in single-detector and multi-detector row helical computed tomography

    International Nuclear Information System (INIS)

    Lu Heqing; Zhu Guoying; Zhuo Weihai; Liu Haikuan; Guo Changyi

    2008-01-01

    Objective: To study and evaluate the radiation dose of children patient in single-detector and multi-detector row helical CT scan. Methods: The head and body CT dose index of 21 CT scanners were tested. Then the values of CTDI w , CTDI vol and DLP were calculated combining with the parameters of routine head and chest scan for children of 0-1 year old group, 5 years old group, 10 years old group and adults. The effective doses of children of every age group and adults in routine head and chest scan were subsequently estimated from effective dose per DLP by age and the calculated values of DLP. Results: CTDI per mAs is greater in the head than that in the body. In head routine scan, the effective doses of 0-1 year old group,5 years old group and 10 year old group were 2.2, 1.3 and 1.1 mSv, respectively. In chest routine scan, the effective doses of 0-1 year old group,5 years old group and 10 years old group were 5.3, 3.1 and 3.4 mSv, respectively. Effective doses to children per mAs are equally 1.8 times higher than corresponding values for adults. The CTDI vol , DLP and effective dose to children in head routine scan for MDCT were greater those that for single-detector CT and dual- detector CT. The CTDI vol , DLP and effective dose to children in chest routine scan for MDCT and dual-detector row CT were smaller than that for single-detector row CT. Conclusions: Children me more radiation risk in CT examination as compared with adults. So we should strictly abide by justification of children CT examination, and optimize the parameters of CT scan rationally in order to reduce the radiation dose to children patient as much as possible. (authors)

  10. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia and University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Jong, W. L. [Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Cutajar, D. L.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  11. Studying the potential of point detectors in time-resolved dose verification of dynamic radiotherapy

    International Nuclear Information System (INIS)

    Beierholm, A.R.; Behrens, C.F.; Andersen, C.E.

    2015-01-01

    Modern megavoltage x-ray radiotherapy with high spatial and temporal dose gradients puts high demands on the entire delivery system, including not just the linear accelerator and the multi-leaf collimator, but also algorithms used for optimization and dose calculations, and detectors used for quality assurance and dose verification. In this context, traceable in-phantom dosimetry using a well-characterized point detector is often an important supplement to 2D-based quality assurance methods based on radiochromic film or detector arrays. In this study, an in-house developed dosimetry system based on fiber-coupled plastic scintillator detectors was evaluated and compared with a Farmer-type ionization chamber and a small-volume ionization chamber. An important feature of scintillator detectors is that the sensitive volume of the detector can easily be scaled, and five scintillator detectors of different scintillator length were thus employed to quantify volume averaging effects by direct measurement. The dosimetric evaluation comprised several complex-shape static fields as well as simplified dynamic deliveries using RapidArc, a volumetric-modulated arc therapy modality often used at the participating clinic. The static field experiments showed that the smallest scintillator detectors were in the best agreement with dose calculations, while needing the smallest volume averaging corrections. Concerning total dose measured during RapidArc, all detectors agreed with dose calculations within 1.1 ± 0.7% when positioned in regions of high homogenous dose. Larger differences were observed for high dose gradient and organ at risk locations, were differences between measured and calculated dose were as large as 8.0 ± 5.5%. The smallest differences were generally seen for the small-volume ionization chamber and the smallest scintillators. The time-resolved RapidArc dose profiles revealed volume-dependent discrepancies between scintillator and ionization chamber response

  12. Measurement of depth-dose distributions by means of the LiF-fluoroplastic thermoluminescent detectors

    International Nuclear Information System (INIS)

    Shaks, A.I.; Uryaev, I.A.; Trifonov, V.A.; Reshetnikova, L.V.

    1977-01-01

    Depth-dose distributions have been studied by means of thin-layer thermoluminescent detectors LiF-fluoroplast (8 mg/cm 2 ). Dosimetric characteristics of the detectors are described. They are: tissue-equivalence, dependence of sensitivity on the dose, dose rate and angle of incidence of radiation, and time-dependent storage, of the total light absorbed. Comparison of the results obtained with the measurements taken with an extrapolation chamber has demonstrated the possibility of measuring the depth-dose distributions by means of LiF-fluoroplast detectors

  13. Characterisation of a MOSFET-based detector for dose measurement under megavoltage electron beam radiotherapy

    Science.gov (United States)

    Jong, W. L.; Ung, N. M.; Tiong, A. H. L.; Rosenfeld, A. B.; Wong, J. H. D.

    2018-03-01

    The aim of this study is to investigate the fundamental dosimetric characteristics of the MOSkin detector for megavoltage electron beam dosimetry. The reproducibility, linearity, energy dependence, dose rate dependence, depth dose measurement, output factor measurement, and surface dose measurement under megavoltage electron beam were tested. The MOSkin detector showed excellent reproducibility (>98%) and linearity (R2= 1.00) up to 2000 cGy for 4-20 MeV electron beams. The MOSkin detector also showed minimal dose rate dependence (within ±3%) and energy dependence (within ±2%) over the clinical range of electron beams, except for an energy dependence at 4 MeV electron beam. An energy dependence correction factor of 1.075 is needed when the MOSkin detector is used for 4 MeV electron beam. The output factors measured by the MOSkin detector were within ±2% compared to those measured with the EBT3 film and CC13 chamber. The measured depth doses using the MOSkin detector agreed with those measured using the CC13 chamber, except at the build-up region due to the dose volume averaging effect of the CC13 chamber. For surface dose measurements, MOSkin measurements were in agreement within ±3% to those measured using EBT3 film. Measurements using the MOSkin detector were also compared to electron dose calculation algorithms namely the GGPB and eMC algorithms. Both algorithms were in agreement with measurements to within ±2% and ±4% for output factor (except for the 4 × 4 cm2 field size) and surface dose, respectively. With the uncertainties taken into account, the MOSkin detector was found to be a suitable detector for dose measurement under megavoltage electron beam. This has been demonstrated in the in vivo skin dose measurement on patients during electron boost to the breast tumour bed.

  14. SU-F-T-473: Evaluation of Off-Axis And Peripheral Dose Using Different Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, B; Prakasarao, A; Singaravelu, G [Anna University, Chennai, TamilNadu (India); Palraj, T; Rai, R [Dr. Rai Memorial Cancer Institute, Chennai, TamilNadu (India)

    2016-06-15

    Purpose: In radiation therapy, measurement of off-axis and peripheral dose is a tedious task. The dose distribution along the beam central axis give only part of the information required for an accurate dose description inside the patient. Dose distributions in 2-D and 3-D are determined with central axis data in conjunction with off-axis dose profiles. Combining a central axis dose distribution with off-axis data results in volume dose matrix that provides 2-D and 3-D information on dose distribution. By considering the importance of these two parameters this study investigates and compares the off axis and peripheral dose measurement using Ionization chamber, MOSFET, Radiochromic film and EDR2 film. Methods: In the measurement of off-axis and peripheral doses 0.6cc farmer type chamber, EDR-2 film, MD-55 radiochromic film and MOSFET detectors were used for both 6MV and 15MV beams. The off-axis and peripheral dose was measured at every 1 cm interval by changing the position of the couch without disturbing the other experimental setup in particular, the phantom with detector position. Results: Readings were obtained for both 6MV and 15MV photon beams at SSD technique for various field size using MOSFET, Ionization chamber and Radiochromic film. The results shows the percentage difference between various detectors for various field sizes. For Peripheral dose measurement were taken from the edge of the field size and for off axis it is measured form central axis dose. Conclusion: In conclusion, our study shows that no detector is ideal and only a comparison between different detectors highlights the weaknesses of each detector. MOSFET provides adequate dose assessment in off-axis and peripheral regions in 6MV and 15MV photon beams. Film dosimetry in general a convenient method to generate one- and two-dimensional dose distributions. The result of this indicates that MOSFET is flexible tool for relative dosimetry as films.

  15. Studying the potential of point detectors in time-resolved dose verification of dynamic radiotherapy

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Behrens, C. F.; Andersen, Claus E.

    2015-01-01

    based on fiber-coupled plastic scintillator detectors was evaluated and compared with a Farmer-type ionization chamber and a small-volume ionization chamber. An important feature of scintillator detectors is that the sensitive volume of the detector can easily be scaled, and five scintillator detectors......-volume ionization chamber and the smallest scintillators. The time-resolved RapidArc dose profiles revealed volume-dependent discrepancies between scintillator and ionization chamber response, which confirmed that correction factors for ionization chambers in high temporal and spatial dose gradients are dominated...

  16. Design,construction and commissioning of a cylinder of double-sided silicon micro-strips detectors for the Star experiment at RHIC

    International Nuclear Information System (INIS)

    Guedon, M.

    2005-05-01

    This study has been performed in the frame of quark gluon plasma physics research in the STAR experiment at RHIC. It deals with the design, the construction and the commissioning of a barrel of silicon-strip detectors (SSD). Added to the Silicon Vertex Tracker (SVT) of the STAR detector, it extends the capabilities of track reconstruction for charged particles emitted in ultra-relativistic heavy-ion collisions. It also contributes to the general study of the quark-gluon plasma production undertaken at STAR. The SSD is a cylinder of 1 m long and of 23 cm radius, and it is composed of 320 compact identical modules. Each module includes one double-sided silicon micro-strip detector, 12 readout chips ALICE 128C, 12 TAB ribbons, 2 COSTAR control chips and 2 hybrids supporting all the components. The document explains why the SSD is an important and relevant element, and justifies the technological choices as well as their validation by in-beam characterization. All component functionalities, characteristics and test procedures are presented. The data and test results are stored in a database for tracing purpose. Component and module production is described. Two parallel studies have been performed, analysed and described. One on the temperature dependence of the module performances and the other one on the optimal adjustments of the analogue blocks inside the ALICE 128C chip. The SSD installation on the RHIC site as well as the commissioning are presented together with the first data takings. (author)

  17. Comparative study of mean value of 111 and mean value of 100 crystals and capacitance measurements on Si strip detectors in CSM

    International Nuclear Information System (INIS)

    Albergo, S.

    1999-01-01

    For the construction of the silicon microstrip detectors for the tracker of CMS experiment, two different substrate choices were investigated. A high-resistivity substrate with mean value of 111 crystal orientation and a low-resistivity one with mean value of 100 Dirac ket vector crystal orientation. The interstrip and backplane capacitances were measured before and after the exposure to radiation in a range of strip pitches from 60 μm to 240 μm and for values of the width-pitch ratio between 0.1 and 0.5

  18. ATLAS ITk Short Strip Prototype Module with Integrated DCDC Powering and Control Phase II Upgrade of the ATLAS Inner Tracker detector at the HL - LHC

    CERN Document Server

    Greenall, Ashley; The ATLAS collaboration

    2017-01-01

    The prototype Barrel module design, for the Phase II upgrade of the of the new Inner Tracker (ITk) detector at the LHC, has adopted an integrated low mass assembly featuring single-sided flexible circuits, with readout ASICs, glued to the silicon strip sensor. Further integration has been achieved by the attachment of module DCDC powering, HV sensor biasing switch and autonomous monitoring and control to the sensor. This low mass, integrated module approach benefits further in a reduced width stave structure to which the modules are attached. The results of preliminary electrical tests of such an integrated module will be presented.

  19. Impact of low-dose electron irradiation on n$^+$p silicon strip sensors

    CERN Document Server

    Klanner, Robert

    2014-01-01

    Significant changes in the charge collection and charge sharing were observed as function of $^{90}$Sr irradiation dose. Annealing studies, with temperatures up to $80^\\circ $C and annealing times of 18\\,hours, show that the changes can only be partially annealed. The observations ...

  20. Noise evaluation of silicon strip super-module with ABCN250 readout chips for the ATLAS detector upgrade at the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Todome, K., E-mail: todome@hep.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Jinnouchi, O. [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Clark, A.; Barbier, G.; Cadoux, F.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Iacobucci, G.; La Marra, D.; Perrin, E.; Weber, M. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y. [Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Takashima, R. [Department of Science Education, Kyoto University of Education, Kyoto 612-8522 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Tojo, J. [Department of Physics, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Kono, T. [Ochadai Academic Production, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); and others

    2016-09-21

    Toward High Luminosity LHC (HL-LHC), the whole ATLAS inner tracker will be replaced, including the semiconductor tracker (SCT) which is the silicon micro strip detector for tracking charged particles. In development of the SCT, integration of the detector is the important issue. One of the concepts of integration is the “super-module” in which individual modules are assembled to produce the SCT ladder. A super-module prototype has been developed to demonstrate its functionality. One of the concerns in integrating the super-modules is the electrical coupling between each module, because it may increase intrinsic noise of the system. To investigate the electrical performance of the prototype, the new Data Acquisition (DAQ) system has been developed by using SEABAS. The electric performance of the super-module prototype, especially the input noise and random noise hit rate, was investigated by using SEABAS system.

  1. Development and evaluation of test stations for the quality assurance of the silicon micro-strip detector modules for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Poettgens, M.

    2007-11-22

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m{sup 2}, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control of the quality is done by the members of the 21 participating institutes. Since the access to the silicon micro-strip tracker will be very limited after the installation in the CMS detector the installed modules must be of high quality. For this reason the modules are thoroughly tested and the test results are uploaded to a central database. By the development of a read-out system and the corresponding software the III. Physikalisches Institut made an important contribution for the electrical and functional quality control of hybrids and modules. The read-out system provides all features for the operation and test of hybrids and modules and stands out due to high reliability and simple handling. Because a very user-friedly and highly automated software it became the official test tool and was integrated in various test stands. The test stands, in which the read-out system is integrated in, are described and the tests which are implemented in the

  2. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  3. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    Science.gov (United States)

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  4. Relationship between noise, dose, and pitch in cardiac multi-detector row CT.

    Science.gov (United States)

    Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G

    2006-01-01

    In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006

  5. An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

    Science.gov (United States)

    Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-01-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  6. Plastic scintillation detectors for dose monitoring in digital breast tomosynthesis

    Science.gov (United States)

    Antunes, J.; Machado, J.; Peralta, L.; Matela, N.

    2018-01-01

    Plastic scintillators detectors (PSDs) have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Measurement and analysis of energy dependency were performed on a Siemens Mammomat tomograph for two different peak kilovoltages: 26 kV and 35 kV. Both PSD displayed good linearity for each energy considered and almost no energy dependence.

  7. Research of z-axis geometric dose efficiency in multi-detector computed tomography

    International Nuclear Information System (INIS)

    Kim, You Hyun; Kim, Moon Chan

    2006-01-01

    With the recent prevalence of helical CT and multi-slice CT, which deliver higher radiation dose than conventional CT due to overbeaming effect in X-ray exposure and interpolation technique in image reconstruction. Although multi-detector and helical CT scanner provide a variety of opportunities for patient dose reduction, the potential risk for high radiation levels in CT examination can't be overemphasized in spite of acquiring more diagnostic information. So much more concerns is necessary about dose characteristics of CT scanner, especially dose efficient design as well as dose modulation software, because dose efficiency built into the scanner's design is probably the most important aspect of successful low dose clinical performance. This study was conducted to evaluate z-axis geometric dose efficiency in single detector CT and each level multi-detector CT, as well as to compare z-axis dose efficiency with change of technical scan parameters such as focal spot size of tube, beam collimation, detector combination, scan mode, pitch size, slice width and interval. The results obtained were as follows; 1. SDCT was most highest and 4 MDCT was most lowest in z-axis geometric dose efficiency among SDCT, 4, 8, 16, 64 slice MDCT made by GE manufacture. 2. Small focal spot was 0.67-13.62% higher than large focal spot in z-axis geometric dose efficiency at MDCT. 3. Large beam collimation was 3.13-51.52% higher than small beam collimation in z-axis geometric dose efficiency at MDCT. Z-axis geometric dose efficiency was same at 4 slice MDCT in all condition and 8 slice MDCT of large beam collimation with change of detector combination, but was changed irregularly at 8 slice MDCT of small beam collimation and 16 slice MDCT in all condition with change of detector combination. 5. There was no significant difference for z-axis geometric dose efficiency between conventional scan and helical scan, and with change of pitch factor, as well as change of slice width or interval for

  8. SU-F-T-474: Evaluation of Dose Perturbation, Temperature and Sensitivity Variation With Accumulated Dose of MOSFET Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, B; Prakasarao, A; Singaravelu, G [Anna University, Chennai, TamilNadu (India); Palraj, T; Rai, R [Dr. Rai Memorial Cancer Institute, Chennai, TamilNadu (India)

    2016-06-15

    Purpose: The use of mega voltage gamma and x-ray sources with their skin sparring qualities in radiation therapy has been a boon in relieving patient discomfort and allowing high tumor doses to be given with fewer restrictions due to radiation effects in the skin. However, high doses given to deep tumors may require careful consideration of dose distribution in the buildup region in order to avoid irreparable damage to the skin. Methods: To measure the perturbation of MOSFET detector in Co60,6MV and 15MV the detector was placed on the surface of the phantom covered with the brass build up cap. To measure the effect of temperature the MOSFET detector was kept on the surface of hot water polythene container and the radiation was delivere. In order to measure the sensitivity variation with accumulated dose Measurements were taken by delivering the dose of 200 cGy to MOSFET until the MOSFET absorbed dose comes to 20,000 cGy Results: the Measurement was performed by positioning the bare MOSFET and MOSFET with brass build up cap on the top surface of the solid water phantom for various field sizes in order to find whether there is any attenuation caused in the dose distribution. The response of MOSFET was monitored for temperature ranging from 42 degree C to 22 degree C. The integrated dose dependence of MOSFET dosimeter sensitivity over different energy is not well characterized. This work investigates the dual-bias MOSFET dosimeter sensitivity response to 6 MV and 15 MV beams. Conclusion: From this study it is observed that unlike diode, bare MOSFET does not perturb the radiation field.. It is observed that the build-up influences the temperature dependency of MOSFET and causes some uncertainty in the readings. In the case of sensitivity variation with accumulated dose MOSFET showed higher sensitivity with dose accumulation for both the energies.

  9. SU-F-T-474: Evaluation of Dose Perturbation, Temperature and Sensitivity Variation With Accumulated Dose of MOSFET Detector

    International Nuclear Information System (INIS)

    Ganesan, B; Prakasarao, A; Singaravelu, G; Palraj, T; Rai, R

    2016-01-01

    Purpose: The use of mega voltage gamma and x-ray sources with their skin sparring qualities in radiation therapy has been a boon in relieving patient discomfort and allowing high tumor doses to be given with fewer restrictions due to radiation effects in the skin. However, high doses given to deep tumors may require careful consideration of dose distribution in the buildup region in order to avoid irreparable damage to the skin. Methods: To measure the perturbation of MOSFET detector in Co60,6MV and 15MV the detector was placed on the surface of the phantom covered with the brass build up cap. To measure the effect of temperature the MOSFET detector was kept on the surface of hot water polythene container and the radiation was delivere. In order to measure the sensitivity variation with accumulated dose Measurements were taken by delivering the dose of 200 cGy to MOSFET until the MOSFET absorbed dose comes to 20,000 cGy Results: the Measurement was performed by positioning the bare MOSFET and MOSFET with brass build up cap on the top surface of the solid water phantom for various field sizes in order to find whether there is any attenuation caused in the dose distribution. The response of MOSFET was monitored for temperature ranging from 42 degree C to 22 degree C. The integrated dose dependence of MOSFET dosimeter sensitivity over different energy is not well characterized. This work investigates the dual-bias MOSFET dosimeter sensitivity response to 6 MV and 15 MV beams. Conclusion: From this study it is observed that unlike diode, bare MOSFET does not perturb the radiation field.. It is observed that the build-up influences the temperature dependency of MOSFET and causes some uncertainty in the readings. In the case of sensitivity variation with accumulated dose MOSFET showed higher sensitivity with dose accumulation for both the energies.

  10. A new online detector for estimation of peripheral neutron equivalent dose in organ

    Energy Technology Data Exchange (ETDEWEB)

    Irazola, L., E-mail: leticia@us.es; Sanchez-Doblado, F. [Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain and Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41007 (Spain); Lorenzoli, M.; Pola, A. [Departimento di Ingegneria Nuclear, Politecnico di Milano, Milano 20133 (Italy); Bedogni, R. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare (INFN), Frascati Roma 00044 (Italy); Terrón, J. A. [Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41007 (Spain); Sanchez-Nieto, B. [Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 4880 (Chile); Expósito, M. R. [Departamento de Física, Universitat Autònoma de Barcelona, Bellaterra 08193 (Spain); Lagares, J. I.; Sansaloni, F. [Centro de Investigaciones Energéticas y Medioambientales y Tecnológicas (CIEMAT), Madrid 28040 (Spain)

    2014-11-01

    Purpose: Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. Methods: To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. Results: The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. Conclusions: The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an

  11. A new online detector for estimation of peripheral neutron equivalent dose in organ

    International Nuclear Information System (INIS)

    Irazola, L.; Sanchez-Doblado, F.; Lorenzoli, M.; Pola, A.; Bedogni, R.; Terrón, J. A.; Sanchez-Nieto, B.; Expósito, M. R.; Lagares, J. I.; Sansaloni, F.

    2014-01-01

    Purpose: Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. Methods: To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. Results: The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. Conclusions: The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an

  12. First charge collection and position-precision data on the medium-resistivity silicon strip detectors before and after neutron irradiation up to 2x10 sup 1 sup 4 n/cm sup 2

    CERN Document Server

    Li Zheng; Eremin, V; Li, C J; Verbitskaya, E

    1999-01-01

    Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm sup 2 areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k OMEGA cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2x10 sup 1 sup 4 n/cm sup 2) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k OMEGA cm (300 mu m thick) can be fully depleted before and after an irradiation of 2x10 sup 1 sup 4 n/cm sup 2. For a 500 mu m pitch strip detector made of 2.7 k OMEGA cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7x10 sup 1 sup 3 n/cm sup 2 irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We als...

  13. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    International Nuclear Information System (INIS)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung

    2010-01-01

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in μSv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  14. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung [Department of Oral and Maxillofacial Radiology, School of Dentistry, Dankook University, Cheonan (Korea, Republic of)

    2010-03-15

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in {mu}Sv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  15. The Honeycomb Strip Chamber

    International Nuclear Information System (INIS)

    Graaf, Harry van der; Buskens, Joop; Rewiersma, Paul; Koenig, Adriaan; Wijnen, Thei

    1991-06-01

    The Honeycomb Strip Chamber (HSC) is a new position sensitive detector. It consists of a stack of folded foils, forming a rigid honeycomb structure. In the centre of each hexagonal cell a wire is strung. Conducting strips on the foils, perpendicular to the wires, pick up the induced avalanche charge. Test results of a prototype show that processing the signals form three adjacent strips nearest to the track gives a spatial resolution better than 64 μm for perpendicular incident tracks. The chamber performance is only slightly affected by a magnetic field. (author). 25 refs.; 21 figs

  16. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    Science.gov (United States)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  17. Radiation dose of digital tomosynthesis for sinonasal examination: comparison with multi-detector CT.

    Science.gov (United States)

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Numano, Tomokazu; Abe, Shinji; Sabol, John M; Suzuki, Shigeru; Ueno, Eiko

    2012-06-01

    Using an anthropomorphic phantom, we have investigated the feasibility of digital tomosynthesis (DT) of flat-panel detector (FPD) radiography to reduce radiation dose for sinonasal examination compared to multi-detector computed tomography (MDCT). A female Rando phantom was scanned covering frontal to maxillary sinus using the clinically routine protocol by both 64-detector CT (120 kV, 200 mAs, and 1.375-pitch) and DT radiography (80 kV, 1.0 mAs per projection, 60 projections, 40° sweep, and posterior-anterior projections). Glass dosimeters were used to measure the radiation dose to internal organs including the thyroid gland, brain, submandibular gland, and the surface dose at various sites including the eyes during those scans. We compared the radiation dose to those anatomies between both modalities. In DT radiography, the doses of the thyroid gland, brain, submandibular gland, skin, and eyes were 230 ± 90 μGy, 1770 ± 560 μGy, 1400 ± 80 μGy, 1160 ± 2100 μGy, and 112 ± 6 μGy, respectively. These doses were reduced to approximately 1/5, 1/8, 1/12, 1/17, and 1/290 of the respective MDCT dose. For sinonasal examinations, DT radiography enables dramatic reduction in radiation exposure and dose to the head and neck region, particularly to the lens of the eye. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Use of glasses as radiation detectors for high doses

    International Nuclear Information System (INIS)

    Caldas, L.

    1989-08-01

    Glass samples were tested in relation to the possibility of use in high dose dosimetry in medical and industrial areas. The main characteristics were determined: detection threshold, reproducibility, response to gamma radiation of 137 Cs and 6 Co and thermal decay at ambient temperature, with the use of optical absorption and thermoluminesce techniques. (author) [pt

  19. Research and development of a beta skin-dose monitor using silicon detectors

    International Nuclear Information System (INIS)

    Chung Manho.

    1991-01-01

    The purpose of the research is to develop improved ways to computer and measure the beta skin dose. Beta spectra for the various sources were calculated based on the Fermi beta decay theory. The calculated average energies of the spectra agreed with the literature values within 6%. Monte Carlo electron transport codes have been developed for use on microcomputers. The one-dimensional code ZEBRA has been converted to a microcomputer version called Eltran2 which runs on the Macintosh or any IBM compatible microcomputers. Eltran2 has then been modified into a two-dimensional program called Eltran3. Using Eltran2 and Eltran3, different source distributions and the hot particle dose have been studied. It has been found that the VARSKIN code overestimates the skin dose from hot particles by about 10 to 40% in comparison with Eltran3 calculations, because the VARSKIN code is based on the data tables for an unbounded medium. An ion-implanted silicon detector was selected because of its small size, high sensitivity, and low leakage current. To cover a wide range of dose rate, both the pulse and current mode operations of the silicon detector were used, with an overlap of one order of magnitude in the measurable dose rate ranges. By using a gradient shield of about 7 mg/cm 2 on the detector, dose gradient measurements have been performed. Five 60 Co hot particles received from GPU Nuclear Corporation have been measured by the silicon detector and the measurements agreed well with Eltran3 calculations. In the pulse mode, variation of the depletion depth of the silicon detector due to the changes of bias voltage was confirmed. Based on this research, a prototype beta skin dose monitor has been constructed. The device includes an 8-bit analogue-to-digital converter and a Z-80 microprocessor with a machine-coded program, to calculate the skin dose

  20. Test of tissue-equivalent scintillation detector for dose measurement of megavoltage beams

    International Nuclear Information System (INIS)

    Geso, M.; Ackerly, T.; Clift, M.A.

    2000-01-01

    Full text: The measurement of depth doses and profiles for a stereotactic radiotherapy beam presents special problems associated with the small beam size compared to the dosimeter's active detection area. In this work a locally fabricated organic plastic scintillator detector has been used to measure the depth dose and profile of a stereotactic radiotherapy beam. The 6MV beam is 1.25 cm diameter at isocentre, typical of small field stereotactic radiosurgery. The detector is a water/tissue equivalent plastic scintillator that is accompanied by Cerenkov subtraction detector. In this particular application, a negligible amount of Cerenkov light was detected. A photodiode and an electronic circuit is used instead of a photomultiplier for signal amplification. Comparison with data using a diode detector and a small size ionization chamber, indicate that the organic plastic scintillator detector is a valid detector for stereotactic radiosurgery dosimetry. The tissue equivalence of the organic scintillator also holds the promise of accurate dosimetry in the build up region. Depth doses measured using our plastic scintillator agree to within about 1% with those obtained using commercially available silicon diodes. Beam profiles obtained using plastic scintillator presents correct field width to within 0.35 mm, however some artifacts are visible in the profiles. These artifacts are about 5% discrepancy which has been shown not to be a significant factor in stereotactic radiotherapy dosimetry. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  1. The ITk strips tracker for the phase-II upgrade of the ATLAS detector of the HL-LHC

    CERN Document Server

    Koutoulaki, Afroditi; The ATLAS collaboration

    2016-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  2. Method and apparatus for nuclear logging making use of lithium detectors and equipment for gamma ray stripping; Fremgangsmaate og apparat til nuklear logging med bruk av litiummontasjer og anordning for gammastraalestripping

    Energy Technology Data Exchange (ETDEWEB)

    Perry, C.A.; Daigle, G.A.; Bruck, W.D. [and others

    1998-05-11

    The patent deals with a borehole logging tool where a pair of spaced-apart lithium detectors is lowered into a borehole traversing a sursurface formation. The formation is irradiated with bursts of neutrons, and the neutrons returning to the borehole are detected by thermal neutron detectors. The dieaway gamma ray spectra provide information on the formation porosity. A MWD system includes a programmable gain amplifier and gamma ray stripping means. 30 figs.

  3. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    Science.gov (United States)

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  4. The effect of gamma dose on the PADC detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    The effect of irradiation by 6 0C O gamma rays in the range 0-60 K gray has been examined on CR-39 SSNTDs. The fission fragment tracks diameter were measured using an optical microscope, the bulk etching rate was calculated using the equation V B = D/2 t. The results indicate that, the track diameter is seen increase slowly in the range 0-60 K gray. The bulk etching rate increases almost linearly as the given gamma dose increases up to (22.5 K Gray), at higher doses the bulk etching rate increases exponentially. The exposure of the CR-39 to gamma rays could sensitize the CR-39 plastic and thus improve the Z/P threshold for track registration

  5. Development of a neutron personal dose equivalent detector

    International Nuclear Information System (INIS)

    Tsujimura, N.; Yoshida, T.; Takada, C.; Momose, T.; Nunomiya, T.; Aoyama, K.

    2007-01-01

    A new neutron-measuring instrument that is intended to measure a neutron personal dose equivalent, H p (10) was developed. This instrument is composed of two parts: (1) a conventional moderator-based neutron dose equivalent meter and (2) a neutron shield made of borated polyethylene, which covers a backward hemisphere to adjust the angular dependence. The whole design was determined on the basis of MCNP calculations so as to have response characteristics that would generally match both the energy and angular dependencies of H p (10). This new instrument will be a great help in assessing the reference values of neutron H p (10) during field testing of personal neutron dosemeters in workplaces and also in interpreting their readings. (authors)

  6. Multilayer detector for measuring absorbed dose in skin

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method of skin dosimetry using multilayer dosimeters is described that allows the skin-depth distribution of absorbed dose to be estimated. A method of quantitative estimation and prediction of the degree of skin radiation damage using a three-layer dosimeter is demonstrated. Dosimeters are holders of tissue-equivalent material that contain photographic film, a scintillator, thermoluminophor, or any other radiation-sensitive element

  7. Calorimetric low - temperature detectors for high resolution X-ray spectroscopy on stored highly stripped heavy ions

    International Nuclear Information System (INIS)

    Bleile, A.; Egelhof, P.; Kraft, S.; Meier, H.J.; Shrivastava, A.; Weber, M.; McCammon, D.; Stahle, C.K.

    2001-09-01

    The accurate determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields, not accessible otherwise. For the investigation of the Lyman-α transitions in 208 Pb 81+ or 238 U 91+ with sufficient accuracy, a high resolution calorimetric detector for hard X-rays (E ≤ 100 keV) is presently being developed. The detector modules consist of arrays of silicon thermistors and of X-ray absorbers made of high-Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3 He/ 4 He dilution refrigerator with a side arm which fits to the internal target geometry of the storage ring ESR at GSI Darmstadt. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector pixel with a 0.2 mm 2 x 47 μm Pb absorber an energy resolution of ΔE FWHM = 65 eV is obtained for 60 keV X-rays. (orig.)

  8. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    Science.gov (United States)

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  9. Poster - 20: Detector selection for commissioning of a Monte Carlo based electron dose calculation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Anusionwu, Princess [Medical Physics, CancerCare Manitoba, Winnipeg Canada (Canada); Department of Physics & Astronomy, University of Manitoba, Winnipeg Canada (Canada); Alpuche Aviles, Jorge E. [Medical Physics, CancerCare Manitoba, Winnipeg Canada (Canada); Pistorius, Stephen [Medical Physics, CancerCare Manitoba, Winnipeg Canada (Canada); Department of Physics & Astronomy, University of Manitoba, Winnipeg Canada (Canada); Department of Radiology, University of Manitoba, Winnipeg (Canada)

    2016-08-15

    Objective: Commissioning of a Monte Carlo based electron dose calculation algorithm requires percentage depth doses (PDDs) and beam profiles which can be measured with multiple detectors. Electron dosimetry is commonly performed with cylindrical chambers but parallel plate chambers and diodes can also be used. The purpose of this study was to determine the most appropriate detector to perform the commissioning measurements. Methods: PDDs and beam profiles were measured for beams with energies ranging from 6 MeV to 15 MeV and field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Detectors used included diodes, cylindrical and parallel plate ionization chambers. Beam profiles were measured in water (100 cm source to surface distance) and in air (95 cm source to detector distance). Results: PDDs for the cylindrical chambers were shallower (1.3 mm averaged over all energies and field sizes) than those measured with the parallel plate chambers and diodes. Surface doses measured with the diode and cylindrical chamber were on average larger by 1.6 % and 3% respectively than those of the parallel plate chamber. Profiles measured with a diode resulted in penumbra values smaller than those measured with the cylindrical chamber by 2 mm. Conclusion: The diode was selected as the most appropriate detector since PDDs agreed with those measured with parallel plate chambers (typically recommended for low energies) and results in sharper profiles. Unlike ion chambers, no corrections are needed to measure PDDs, making it more convenient to use.

  10. A study on dose attenuation in bone density when TBI using diode detector and TLD

    International Nuclear Information System (INIS)

    Im, Hyun Sil; Lee, Jung Jin; Jang, Ahn Ki; KIm, Wan Sun

    2003-01-01

    Uniform dose distribution of the whole body is essential factor for the total body irradiation(TBI). In order to achieved this goal, we used to compensation filter to compensate body contour irregularity and thickness differences. But we can not compensate components of body, namely lung or bone. The purpose of this study is evaluation of dose attenuation in bone tissue when TBI using diode detectors and TLD system. The object of this study were 5 patients who undergo TBI at our hospital. Dosimetry system were diode detectors and TLD system. Treatment method was bilateral and delivered 10 MV X-ray from linear accelerator. Measurement points were head, neck, pelvis, knees and ankles. TLD used two patients and diode detectors used three patients. Results are as followed. All measured dose value were normalized skin dose. TLD dosimetry : Measured skin dose of head, neck, pelvis, knees and ankles were 92.78±3.3, 104.34±2.3, 98.03±1.4, 99.9±2.53, 98.17±0.56 respectably. Measured mid-depth dose of pelvis, knees and ankles were 86±1.82, 93.24±2.53, 91.50±2.84 respectably. There were 6.67%-11.65% dose attenuation at mid-depth in pelvis, knees and ankles. Diode detector : Measured skin dose of head, neck, pelvis, knees and ankles were 95.23±1.18, 98.33±0.6, 93.5±1.5, 87.3±1.5, 86.90±1.16 respectably. There were 4.53%-12.6% dose attenuation at mid-depth in pelvis, knees and ankles. We concluded that dose measurement with TLD or diode detector was inevitable when TBI treatment. Considered dose attenuation in bone tissue, We must have adequately deduction of compensator thickness that body portion involved bone tissue.

  11. Measurements of the electron dose distribution near inhomogeneities using a plastic scintillation detector

    International Nuclear Information System (INIS)

    Wells, C.M.M.; Mackie, T.R.; Podgorsak, M.B.; Holmes, M.A.; Papanikolaou, N.; Reckwerdt, P.J.; Cygler, J.; Rogers, D.W.O.; Bielajew, A.F.; Schmidt, D.G.

    1994-01-01

    Accurate measurement of the electron dose distribution near an inhomogeneity is difficult with traditional dosimeters which themselves perturb the electron field. The authors tested the performance of a new high resolution, water-equivalent plastic scintillation detector which has ideal properties for this application. A plastic scintillation detector with a 1 mm diameter, 3 mm long cylindrical sensitive volume was used to measure the dose distributions behind standard benchmark inhomogeneities in water phantoms. The plastic scintillator material is more water equivalent than polystyrene in terms of its mass collision stopping power and mass scattering power. Measurements were performed for beams of electrons having initial energies of 6 and 18 MeV at depths from 0.2-4.2 cm behind the inhomogeneities. The detector reveals hot and cold spots behind heterogeneities at resolutions equivalent to typical film digitizer spot sizes. Plots of the dose distributions behind air, aluminum, lead, and formulations for cortical and inner bone-equivalent materials are presented. The plastic scintillation detector is suited for measuring the electron dose distribution near an inhomogeneity. 14 refs., 9 figs

  12. Dose optimisation for intraoperative cone-beam flat-detector CT in paediatric spinal surgery

    International Nuclear Information System (INIS)

    Petersen, Asger Greval; Eiskjaer, Soeren; Kaspersen, Jon

    2012-01-01

    During surgery for spinal deformities, accurate placement of pedicle screws may be guided by intraoperative cone-beam flat-detector CT. The purpose of this study was to identify appropriate paediatric imaging protocols aiming to reduce the radiation dose in line with the ALARA principle. Using O-arm registered (Medtronic, Inc.), three paediatric phantoms were employed to measure CTDI w doses with default and lowered exposure settings. Images from 126 scans were evaluated by two spinal surgeons and scores were compared (Kappa statistics). Effective doses were calculated. The recommended new low-dose 3-D spine protocols were then used in 15 children. The lowest acceptable exposure as judged by image quality for intraoperative use was 70 kVp/40 mAs, 70 kVp/80 mAs and 80 kVp/40 mAs for the 1-, 5- and 12-year-old-equivalent phantoms respectively (kappa = 0,70). Optimised dose settings reduced CTDI w doses 89-93%. The effective dose was 0.5 mSv (91-94,5% reduction). The optimised protocols were used clinically without problems. Radiation doses for intraoperative 3-D CT using a cone-beam flat-detector scanner could be reduced at least 89% compared to manufacturer settings and still be used to safely navigate pedicle screws. (orig.)

  13. Method of estimating patient skin dose from dose displayed on medical X-ray equipment with flat panel detector

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Koshida, Kichiro; Togashi, Atsuhiko; Matsubara, Kousuke

    2004-01-01

    The International Electrotechnical Commission (IEC) has stipulated that medical X-ray equipment for interventional procedures must display radiation doses such as air kerma in free air at the interventional reference point and dose area product to establish radiation safety for patients (IEC 60601-2-43). However, it is necessary to estimate entrance skin dose for the patient from air kerma for an accurate risk assessment of radiation skin injury. To estimate entrance skin dose from displayed air kerma in free air at the interventional reference point, it is necessary to consider effective energy, the ratio of the mass-energy absorption coefficient for skin and air, and the backscatter factor. In addition, since automatic exposure control is installed in medical X-ray equipment with flat panel detectors, it is necessary to know the characteristics of control to estimate exposure dose. In order to calculate entrance skin dose under various conditions, we investigated clinical parameters such as tube voltage, tube current, pulse width, additional filter, and focal spot size, as functions of patient body size. We also measured the effective energy of X-ray exposure for the patient as a function of clinical parameter settings. We found that the conversion factor from air kerma in free air to entrance skin dose is about 1.4 for protection. (author)

  14. Review of techniques and detectors used in instruments for field measurement of beta doses and dose rates

    International Nuclear Information System (INIS)

    Jones, A.R.

    1983-01-01

    Generally, field measurements are required to assess the hazard from #betta#-rays before personnel are allowed to occupy a working space or perform a task. Occasionally, the measurements are required for an assessment after a #betta#-ray exposure is suspected to have occurred. Until recently the dose or dose rate have been the quantities of interest but there is now felt to be a need to characterize the energies and directions of the #betta#-rays as well. The purpose of #betta#-dosimetry is the assessment of hazard to superficial tissues (within approx. 10 mm of the surface) and that these tissues may also be exposed simultaneously to other ionizing radiations. The #betta#-dosimetry technique must take account of this. With these uses of field instruments in mind the following detectors, and associated techniques will be discussed in terms of the measurement principles, advantages and limitations: thin-walled ion chambers (sometimes in combination with thick-walled ones or with covers thick enough to prevent penetration of #betta#-particles); thin scintillators, nearly tissue equivalent, to provide a detector analogous to skin; scintillators, thick enough to absorb all the energy of the #betta#-particles (circuitry is required to count pulses according to size to permit calculation of dose or dose rate); silicon diodes with thin detection layers operated as photocurrent generators; silicon diodes, reversed biassed, with pulses counted according to size; and simple pulse counters (e.g., GM counters or silicon diodes with thin windows)

  15. Assessment of radiation doses from residential smoke detectors that contain americium-241

    International Nuclear Information System (INIS)

    O'Donnell, F.R.; Etnier, E.L.; Holton, G.A.; Travis, C.C.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 μCi) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 μrem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 μSv (0.0006 to 8 mrem) to total body and from 0.06 to 800 μSv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated

  16. Measurement of spatial dose-rate distribution using a position sensitive detector

    International Nuclear Information System (INIS)

    Emoto, T.; Torii, T.; Nozaki, T.; Ando, H.

    1994-01-01

    Recently, the radiation detectors using plastic scintillation fibers (PSF) have been developed to measure the positions exposed to radiation such as neutrons and high energy charged particles. In particular, the time of flight (TOF) method for measuring the difference of time that two directional signals of scintillation light reach both ends of a PSF is a rather simple method for the measurement of the spatial distribution of fast neutron fluence rate. It is possible to use the PSF in nuclear facility working areas because of its flexibility, small diameter and long length. In order to apply TOF method to measure spatial gamma dose rate distribution, the characteristic tests of a detector using PSFs were carried out. First, the resolution of irradiated positions and the counting efficiency were measured with collimated gamma ray. The sensitivity to unit dose rate was also obtained. The measurement of spatial dose rate distribution was also carried out. The sensor is made of ten bundled PSFs, and the experimental setup is described. The experiment and the results are reported. It was found that the PSF detector has the good performance to measure spatial gamma dose rate distribution. (K.I.)

  17. First charge collection and position-precision data on the medium-resistivity silicon strip detectors before and after neutron irradiation up to 2x1014 n/cm2

    International Nuclear Information System (INIS)

    Li Zheng; Dezillie, B.; Eremin, V.; Li, C.J.; Verbitskaya, E.

    1999-01-01

    Test strip detectors of 125 μm, 500 μm, and 1 mm pitches with about 1 cm 2 areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 kΩ cm). Detectors of 500 μm pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2x10 14 n/cm 2 ) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 kΩ cm (300 μm thick) can be fully depleted before and after an irradiation of 2x10 14 n/cm 2 . For a 500 μm pitch strip detector made of 2.7 kΩ cm tested with an 1030 nm laser light with 200 μm spot size, the position reconstruction error is about 14 μm before irradiation, and 17 μm after about 1.7x10 13 n/cm 2 irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 μm absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction

  18. Photosensitive Strip RETHGEM

    CERN Document Server

    Peskov, Vladimir; Nappi, E.; Oliveira, R.; Paic, G.; Pietropaolo, F.; Picchi, P.

    2008-01-01

    An innovative photosensitive gaseous detector, consisting of a GEM like amplification structure with double layered electrodes (instead of commonly used metallic ones) coated with a CsI reflective photocathode, is described. In one of our latest designs, the inner electrode consists of a metallic grid and the outer one is made of resistive strips; the latter are manufactured by a screen printing technology on the top of the metallic strips grid The inner metallic grid is used for 2D position measurements whereas the resistive layer provides an efficient spark protected operation at high gains - close to the breakdown limit. Detectors with active areas of 10cm x10cm and 10cm x20cm were tested under various conditions including the operation in photosensitive gas mixtures containing ethylferrocene or TMAE vapors. The new technique could have many applications requiring robust and reliable large area detectors for UV visualization, as for example, in Cherenkov imaging devices.

  19. Processing of n{sup +}/p{sup −}/p{sup +} strip detectors with atomic layer deposition (ALD) grown Al{sub 2}O{sub 3} field insulator on magnetic Czochralski silicon (MCz-si) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, J., E-mail: jaakko.harkonen@helsinki.fi [Helsinki Institute of Physics (Finland); Tuovinen, E. [Helsinki Institute of Physics (Finland); VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T. [Helsinki Institute of Physics (Finland); Junkes, A. [Institute for Experimental Physics, University of Hamburg (Germany); Wu, X. [VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Picosun Oy, Tietotie 3, FI-02150 Espoo Finland (Finland); Li, Z. [School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2016-08-21

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n{sup +} segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO{sub 2} interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al{sub 2}O{sub 3}) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current–voltage and capacitance−voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×10{sup 15} n{sub eq}/cm{sup 2} proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  20. SU-E-T-602: Patient-Specific Online Dose Verification Based On Transmission Detector Measurements

    International Nuclear Information System (INIS)

    Thoelking, J; Yuvaraj, S; Jens, F; Lohr, F; Wenz, F; Wertz, H; Wertz, H

    2015-01-01

    Purpose: Intensity modulated radiotherapy requires a comprehensive quality assurance program in general and ideally independent verification of dose delivery. Since conventional 2D detector arrays allow only pre-treatment verification, there is a debate concerning the need of online dose verification. This study presents the clinical performance, including dosimetric plan verification in 2D as well as in 3D and the error detection abilities of a new transmission detector (TD) for online dose verification of 6MV photon beam. Methods: To validate the dosimetric performance of the new device, dose reconstruction based on TD measurements were compared to a conventional pre-treatment verification method (reference) and treatment planning system (TPS) for 18 IMRT and VMAT treatment plans. Furthermore, dose reconstruction inside the patient based on TD read-out was evaluated by comparing various dose volume indices and 3D gamma evaluations against independent dose computation and TPS. To investigate the sensitivity of the new device, different types of systematic and random errors for leaf positions and linac output were introduced in IMRT treatment sequences. Results: The 2D gamma index evaluation of transmission detector based dose reconstruction showed an excellent agreement for all IMRT and VMAT plans compared to reference measurements (99.3±1.2)% and TPS (99.1±0.7)%. Good agreement was also obtained for 3D dose reconstruction based on TD read-out compared to dose computation (mean gamma value of PTV = 0.27±0.04). Only a minimal dose underestimation within the target volume was observed when analyzing DVH indices (<1%). Positional errors in leaf banks larger than 1mm and errors in linac output larger than 2% could clearly identified with the TD. Conclusion: Since 2D and 3D evaluations for all IMRT and VMAT treatment plans were in excellent agreement with reference measurements and dose computation, the new TD is suitable to qualify for routine treatment plan

  1. SU-E-T-602: Patient-Specific Online Dose Verification Based On Transmission Detector Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thoelking, J; Yuvaraj, S; Jens, F; Lohr, F; Wenz, F; Wertz, H; Wertz, H [University Medical Center Mannheim, University of Heidelberg, Mannheim, Baden-Wuerttemberg (Germany)

    2015-06-15

    Purpose: Intensity modulated radiotherapy requires a comprehensive quality assurance program in general and ideally independent verification of dose delivery. Since conventional 2D detector arrays allow only pre-treatment verification, there is a debate concerning the need of online dose verification. This study presents the clinical performance, including dosimetric plan verification in 2D as well as in 3D and the error detection abilities of a new transmission detector (TD) for online dose verification of 6MV photon beam. Methods: To validate the dosimetric performance of the new device, dose reconstruction based on TD measurements were compared to a conventional pre-treatment verification method (reference) and treatment planning system (TPS) for 18 IMRT and VMAT treatment plans. Furthermore, dose reconstruction inside the patient based on TD read-out was evaluated by comparing various dose volume indices and 3D gamma evaluations against independent dose computation and TPS. To investigate the sensitivity of the new device, different types of systematic and random errors for leaf positions and linac output were introduced in IMRT treatment sequences. Results: The 2D gamma index evaluation of transmission detector based dose reconstruction showed an excellent agreement for all IMRT and VMAT plans compared to reference measurements (99.3±1.2)% and TPS (99.1±0.7)%. Good agreement was also obtained for 3D dose reconstruction based on TD read-out compared to dose computation (mean gamma value of PTV = 0.27±0.04). Only a minimal dose underestimation within the target volume was observed when analyzing DVH indices (<1%). Positional errors in leaf banks larger than 1mm and errors in linac output larger than 2% could clearly identified with the TD. Conclusion: Since 2D and 3D evaluations for all IMRT and VMAT treatment plans were in excellent agreement with reference measurements and dose computation, the new TD is suitable to qualify for routine treatment plan

  2. The evaluation of dose of TSEI with TLD and diode detector of the uterine cervix cancer

    International Nuclear Information System (INIS)

    Je, Young Wan; Na, Keyung Su; Yoon, Il Kyu; Park, Heung Deuk

    2005-01-01

    To evaluate radiation dose and accuracy with TLD and diode detector when treat total skin with electron beam. Using Stanford Technique, we treated patient with Mycosis Fungoides. 6 MeV electron beam of LINAC was used and the SSD was 300 cm. Also, acrylic speller(0.8 cm) was used. The patient position was 6 types and the gantry angle was 64, 90 and 116 degree. The patient's skin dose and the output were detected 5 to 6 times with TLD and diode. The deviations of dose detected with TLD from tumor dose were CA + 6%, thigh + 8%, umbilicus + 4%, calf - 8%, vertex - 74.4%, deep axillae - 10.2%, anus and testis - 87%, sole - 86% and nails shielded with 4 mm lead + 4%. The deviations of dose detected with diode were - 4.5% ∼ + 5% at the patient center and - 1.1% ∼ + 1% at the speller. The deviation of total skin dose was + 8% ∼ - 8% and that deviation was within the acceptable range(±10%). The boost dose was irradiated for the low dose areas(vertex, anus, sole). The electron beam output detected at the sootier was stable. It is thought that the deviation of dose at patient center detected with diode was induced by detection point and patient position.

  3. Proton dose distribution measurements using a MOSFET detector with a simple dose‐weighted correction method for LET effects

    Science.gov (United States)

    Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-01-01

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth‐dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high‐bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L‐shaped bolus. The dose reproducibility, angular dependence and depth‐dose response were evaluated using a 190 MeV proton beam. Depth‐output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose‐weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L‐shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors. PACS number: 87.56.‐v

  4. Dose-equivalent response CR-39 track detector for personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Oda, K.; Ito, M.; Yoneda, H.; Miyake, H.; Yamamoto, J.; Tsuruta, T.

    1991-01-01

    A dose-equivalent response detector based on CR-39 has been designed to be applied for personnel neutron dosimetry. The intrinsic detection efficiency of bare CR-39 was first evaluated from irradiation experiments with monoenergetic neutrons and theoretical calculations. In the second step, the radiator effect was investigated for the purpose of sensitization to fast neutrons. A two-layer radiator consisting of deuterized dotriacontane (C 32 D 66 ) and polyethylene (CH 2 ) was designed. Finally, we made the CR-39 detector sensitive to thermal neutrons by doping with orthocarbone (B 10 H 12 C 2 ), and also estimated the contribution of albedo neutrons. It was found that the new detector - boron-doped CR-39 with the two-layer radiator - would have a flat response with an error of about 70% in a wide energy region, ranging from thermal to 15 MeV. (orig.)

  5. 2D dose distribution images of a hybrid low field MRI-γ detector

    Energy Technology Data Exchange (ETDEWEB)

    Abril, A., E-mail: ajabrilf@unal.edu.co; Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co [Medical Physics Group, Physics department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the {sup 99m}Tc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  6. High dose-rate brachytherapy source localization: positional resolution using a diamond detector

    International Nuclear Information System (INIS)

    Nakano, T; Suchowerska, N; Bilek, M M; McKenzie, D R; Ng, N; Kron, T

    2003-01-01

    A potential real-time source position verification process for high dose-rate (HDR) brachytherapy treatment is described. This process is intended to provide immediate confirmation that a treatment is proceeding according to plan, so that corrective action can be taken if necessary. We show that three dosimeters are in principle sufficient and demonstrate the feasibility of the process using a diamond detector and an Ir-192 source. An error analysis including all identified sources of error shows that this detector is capable of locating the distance to the source to within 2 mm for distances up to 12 cm. This positional accuracy is less than the diameter of typical HDR catheters indicating that a diamond detector can be used to accurately determine the distance to the source. The uncertainty in the distance is found to increase with distance

  7. 2D dose distribution images of a hybrid low field MRI-γ detector

    International Nuclear Information System (INIS)

    Abril, A.; Agulles-Pedrós, L.

    2016-01-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the "9"9"mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  8. 2D dose distribution images of a hybrid low field MRI-γ detector

    Science.gov (United States)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  9. Review of techniques and detectors used in instruments for field measurement of β doses and dose rates

    International Nuclear Information System (INIS)

    Jones, A.R.

    1984-01-01

    Generally, field measurements are required to assess the hazard from β-rays before personnel are allowed to occupy a working space or perform a task. Occasionally, the measurements are required for an assessment after a β-ray exposure is suspected to have occurred. With these uses of field instruments in mind, the following detectors and associated techniques will be discussed in terms of the measurement principles, advantages, and limitations: 1) thin-walled ion chambers (sometimes in combination with thick-walled ones or with covers thick enough to prevent penetration of β-particles); 2) thin scintillators, nearly tissue equivalent, to provide a detector analogous to skin; 3) scintillators, thick enough to absorb all the energy of the β-particles. Circuitry is required to count pulses according to size to permit calculation of dose or dose rate; 4) silicon diodes with thin detection layers operated as photocurrent generators; 5) silicon diodes, reversed biassed, with pulses counted according to size; 6) simple pulse counters (e.g., GM counters or silicon diodes with thin windows)

  10. Study of the physical processes involved in the operating mode of the micro-strips gas detector Micromegas; Analyse des phenomenes physiques lies au fonctionnement du detecteur gazeux a micropistes micromegas

    Energy Technology Data Exchange (ETDEWEB)

    Barouch, G

    2001-04-01

    Micromegas is a micro-strip gaseous detector invented in 1996. It consists of two volumes of gas separated by a micro-mesh. The first volume of gas, 3 mm thick, is used to liberate ionization electrons from the incident charged particle. In the second volume, only 100 {mu}m thick, an avalanche phenomenon amplifies the electrons produced in the first volume. Strips printed on an insulating substrate collect the electrons from the avalanche. The geometrical configuration of Micromegas showed many advantages. The short anode-cathode distance combined with a high granularity provide high rate capabilities due to a fast collection of ions produced during the avalanche development. Moreover, the possibility to localize the avalanche with strips printed about every hundreds of micrometers allows to measure the position of the incident particle with a good resolution. In this work, experimental tests of Micromegas are presented along with detailed Monte Carlo simulations used to understand and optimize the detector's performances. The prototypes were tested several times at the PS accelerator at CERN. The analysis of the date showed a stable and efficient behavior of Micromegas combined with an excellent space resolution. In fact, spatial resolutions of less than 15 {mu}m were obtained. In parallel with the in-beam tests, several simulations have been developed in order to gain a better understanding of the detector's response. (author)

  11. Magnetic field influences on the lateral dose response functions of photon-beam detectors: MC study of wall-less water-filled detectors with various densities.

    Science.gov (United States)

    Looe, Hui Khee; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2017-06-21

    The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.

  12. Alanine and TLD coupled detectors for fast neutron dose measurements in neutron capture therapy (NCT)

    Energy Technology Data Exchange (ETDEWEB)

    Cecilia, A.; Baccaro, S.; Cemmi, A. [ENEA-FIS-ION, Casaccia RC, Via Anguillarese 301, 00060 Santa Maria di Galeria, Rome (Italy); Colli, V.; Gambarini, G. [Dept. of Physics of the Univ., INFN, Via Celoria 16, 20133 Milan (Italy); Rosi, G. [ENEA-FIS-ION, Casaccia RC, Via Anguillarese 301, 00060 Santa Maria di Galeria, Rome (Italy); Scolari, L. [Dept. of Physics of the Univ., INFN, Via Celoria 16, 20133 Milan (Italy)

    2004-07-01

    A method was investigated to measure gamma and fast neutron doses in phantoms exposed to an epithermal neutron beam designed for neutron capture therapy (NCT). The gamma dose component was measured by TLD-300 [CaF{sub 2}:Tm] and the fast neutron dose, mainly due to elastic scattering with hydrogen nuclei, was measured by alanine dosemeters [CH{sub 3}CH(NH{sub 2})COOH]. The gamma and fast neutron doses deposited in alanine dosemeters are very near to those released in tissue, because of the alanine tissue equivalence. Couples of TLD-300 and alanine dosemeters were irradiated in phantoms positioned in the epithermal column of the Tapiro reactor (ENEA-Casaccia RC). The dosemeter response depends on the linear energy transfer (LET) of radiation, hence the precision and reliability of the fast neutron dose values obtained with the proposed method have been investigated. Results showed that the combination of alanine and TLD detectors is a promising method to separate gamma dose and fast neutron dose in NCT. (authors)

  13. Radiation dose assessment in a 320-detector-row CT scanner used in cardiac imaging

    International Nuclear Information System (INIS)

    Goma, Carles; Ruiz, Agustin; Jornet, Nuria; Latorre, Artur; Pallerol, Rosa M.; Carrasco, Pablo; Eudaldo, Teresa; Ribas, Montserrat

    2011-01-01

    Purpose: In the present era of cone-beam CT scanners, the use of the standardized CTDI 100 as a surrogate of the idealized CTDI is strongly discouraged and, consequently, so should be the use of the dose-length product (DLP) as an estimate of the total energy imparted to the patient. However, the DLP is still widely used as a reference quantity to normalize the effective dose for a given scan protocol mainly because the CTDI 100 is an easy-to-measure quantity. The aim of this article is therefore to describe a method for radiation dose assessment in large cone-beam single axial scans, which leads to a straightforward estimation of the total energy imparted to the patient. The authors developed a method accessible to all medical physicists and easy to implement in clinical practice in an attempt to update the bridge between CT dosimetry and the estimation of the effective dose. Methods: The authors used commercially available material and a simple mathematical model. The method described herein is based on the dosimetry paradigm introduced by the AAPM Task Group 111. It consists of measuring the dose profiles at the center and the periphery of a long body phantom with a commercial solid-state detector. A weighted dose profile is then calculated from these measurements. To calculate the CT dosimetric quantities analytically, a Gaussian function was fitted to the dose profile data. Furthermore, the Gaussian model has the power to condense the z-axis information of the dose profile in two parameters: The single-scan central dose, f(0), and the width of the profile, σ. To check the energy dependence of the solid-state detector, the authors compared the dose profiles to measurements made with a small volume ion chamber. To validate the overall method, the authors compared the CTDI 100 calculated analytically to the measurement made with a 100 mm pencil ion chamber. Results: For the central and weighted dose profiles, the authors found a good agreement between the

  14. Radiation dose assessment in a 320-detector-row CT scanner used in cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goma, Carles; Ruiz, Agustin; Jornet, Nuria; Latorre, Artur; Pallerol, Rosa M.; Carrasco, Pablo; Eudaldo, Teresa; Ribas, Montserrat [Servei de Radiofisica i Radioproteccio, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona (Spain)

    2011-03-15

    Purpose: In the present era of cone-beam CT scanners, the use of the standardized CTDI{sub 100} as a surrogate of the idealized CTDI is strongly discouraged and, consequently, so should be the use of the dose-length product (DLP) as an estimate of the total energy imparted to the patient. However, the DLP is still widely used as a reference quantity to normalize the effective dose for a given scan protocol mainly because the CTDI{sub 100} is an easy-to-measure quantity. The aim of this article is therefore to describe a method for radiation dose assessment in large cone-beam single axial scans, which leads to a straightforward estimation of the total energy imparted to the patient. The authors developed a method accessible to all medical physicists and easy to implement in clinical practice in an attempt to update the bridge between CT dosimetry and the estimation of the effective dose. Methods: The authors used commercially available material and a simple mathematical model. The method described herein is based on the dosimetry paradigm introduced by the AAPM Task Group 111. It consists of measuring the dose profiles at the center and the periphery of a long body phantom with a commercial solid-state detector. A weighted dose profile is then calculated from these measurements. To calculate the CT dosimetric quantities analytically, a Gaussian function was fitted to the dose profile data. Furthermore, the Gaussian model has the power to condense the z-axis information of the dose profile in two parameters: The single-scan central dose, f(0), and the width of the profile, {sigma}. To check the energy dependence of the solid-state detector, the authors compared the dose profiles to measurements made with a small volume ion chamber. To validate the overall method, the authors compared the CTDI{sub 100} calculated analytically to the measurement made with a 100 mm pencil ion chamber. Results: For the central and weighted dose profiles, the authors found a good

  15. Design and development of a silicon-segmented detector for 2D dose measurements in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menichelli, David [Department of Clinical Phisiopathology, University of Florence, v.le Morgagni, 85-50134 Florence (Italy); INFN, Florence division, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy)], E-mail: david.menichelli@cern.ch; Bruzzi, Mara [Department of Energetics, University of Florence, via S. Marta, 3-50139 Florence (Italy); INFN, Florence division, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Bucciolini, Marta; Talamonti, Cinzia; Casati, Marta; Marrazzo, Livia [Department of Clinical Phisiopathology, University of Florence, v.le Morgagni, 85-50134 Florence (Italy); INFN, Florence division, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Tesi, Mauro [Department of Energetics, University of Florence, via S. Marta, 3-50139 Florence (Italy); Piemonte, Claudio; Pozza, Alberto; Zorzi, Nicola [ITC-irst, via Sommarive, 18-38050 Trento (Italy); Brianzi, Mirko [INFN, Florence division, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); De Sio, Antonio [Department of Astronomy and Space Science, University of Florence, L.go E. Fermi, 2-50125 Florence (Italy)

    2007-12-11

    Modern radiotherapy treatment techniques, such as intensity Modulated Radiation Therapy (IMRT) and protontherapy, require detectors with specific features, usually not available in conventional dosimeters. IMRT dose measurements, for instance, must face non-uniform beam fluences as well as a time-varying dose rate. Two-dimensional detectors present a great interest for dosimetry in beams with steep dose gradients, but they must satisfy a number of requirements and, in particular, they must exhibit high spatial resolution. With the aim of developing a dosimetric system adequate for 2D pre-treatment dose verifications, we designed a modular dosimetric device based on a monolithic silicon-segmented module. State and results of this work in progress are described in this article. The first 441 pixels, 6.29x6.29 cm{sup 2} silicon module has been produced by ion implantation on a 50 {mu}m thick p-type epitaxial layer. This sensor has been connected to a discrete readout electronics performing current integration, and has been tested with satisfactory results. In the final configuration, nine silicon modules will be assembled together to cover an area close to 20x20 cm{sup 2} with 3969 channels. In this case, the readout electronics will be based on an ASIC capable to read 64 channels by performing current-to-frequency conversion.

  16. Characterization of MOSFET detectors for in vivo dosimetry in interventional radiology and for dose reconstruction in case of overexposure.

    Science.gov (United States)

    Bassinet, Céline; Huet, Christelle; Baumann, Marion; Etard, Cécile; Réhel, Jean-Luc; Boisserie, Gilbert; Debroas, Jacques; Aubert, Bernard; Clairand, Isabelle

    2013-04-01

    As MOSFET (Metal Oxide Semiconductor Field Effect Transistor) detectors allow dose measurements in real time, the interest in these dosimeters is growing. The aim of this study was to investigate the dosimetric properties of commercially available TN-502RD-H MOSFET silicon detectors (Best Medical Canada, Ottawa, Canada) in order to use them for in vivo dosimetry in interventional radiology and for dose reconstruction in case of overexposure. Reproducibility of the measurements, dose rate dependence, and dose response of the MOSFET detectors have been studied with a Co source. Influence of the dose rate, frequency, and pulse duration on MOSFET responses has also been studied in pulsed x-ray fields. Finally, in order to validate the integrated dose given by MOSFET detectors, MOSFETs and TLDs (LiF:Mg,Cu,P) were fixed on an Alderson-Rando phantom in the conditions of an interventional neuroradiology procedure, and their responses have been compared. The results of this study show the suitability of MOSFET detectors for in vivo dosimetry in interventional radiology and for dose reconstruction in case of accident, provided a well-corrected energy dependence, a pulse duration equal to or higher than 10 ms, and an optimized contact between the detector and the skin of the patient are achieved.

  17. Test-beam evaluation of heavily irradiated silicon strip modules for ATLAS Phase-II Strip Tracker Upgrade

    CERN Document Server

    Blue, Andrew; The ATLAS collaboration

    2018-01-01

    The planned HL-LHC (High Luminosity LHC) is being designed to maximise the physics potential of the LHC with 10 years of operation at instantaneous luminosities of 7.5x1034cm−2s−1. A consequence of this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron equivalences to over 1x1015 1 MeV neutron equivalent per cm2 in the ATLAS Strips system. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II and CERN SPS test beam facilities to investigate the detailed performance of a strip module with both 2.5cm and 5cm length strips before and after irradiation with 8x1014neqcm−2 protons and a total ionising dose of 37.2MRad. The DURA...

  18. Development of a hotspot detector with an acrylic filter and dose rate survey meters

    International Nuclear Information System (INIS)

    Shirakawa, Yoshiyuki; Yamano, Toshiya; Kobayashi, Yusuke; Hara, Masaki

    2013-01-01

    Fukushima and adjacent regions still have a large number of high dose rate areas called hotspots. It is necessary to know these hotspots for efficient decontamination of radioactive substances such as 137 Cs and for relief of residents coming home. To find the hotspots rapidly, we have to specify the direction of the area where the dose rate is at least 1μSv/h higher than those of surroundings. We have developed a detector that consists of an acrylic filter and three NaI(Tl) scintillation survey meters, and the detector can be expected to indicate the direction of the hotspot in the short time. A basic performance of the detector was examined by using acrylic filters of 10, 15, 20 and 25cm diameter and a tiny sealed 137 Cs source of 3 MBq as the alternative of a hotspot. It demonstrated the possibility of identifying the direction of γ-rays emitted from the source in 90 seconds. (author)

  19. High-Dose Neutron Detector Development Using 10B Coated Cells

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    During FY16 the boron-lined parallel-plate technology was optimized to fully benefit from its fast timing characteristics in order to enhance its high count rate capability. To facilitate high count rate capability, a novel fast amplifier with timing and operating properties matched to the detector characteristics was developed and implemented in the 8” boron plate detector that was purchased from PDT. Each of the 6 sealed-cells was connected to a fast amplifier with corresponding List mode readout from each amplifier. The FY16 work focused on improvements in the boron-10 coating materials and procedures at PDT to significantly improve the neutron detection efficiency. An improvement in the efficiency of a factor of 1.5 was achieved without increasing the metal backing area for the boron coating. This improvement has allowed us to operate the detector in gamma-ray backgrounds that are four orders of magnitude higher than was previously possible while maintaining a relatively high counting efficiency for neutrons. This improvement in the gamma-ray rejection is a key factor in the development of the high dose neutron detector.

  20. Silicon diodes as an alternative to diamond detectors for depth dose curves and profile measurements of photon and electron radiation.

    Science.gov (United States)

    Scherf, Christian; Peter, Christiane; Moog, Jussi; Licher, Jörg; Kara, Eugen; Zink, Klemens; Rödel, Claus; Ramm, Ulla

    2009-08-01

    Depth dose curves and lateral dose profiles should correspond to relative dose to water in any measured point, what can be more or less satisfied with different detectors. Diamond as detector material has similar dosimetric properties like water. Silicon diodes and ionization chambers are also commonly used to acquire dose profiles. The authors compared dose profiles measured in an MP3 water phantom with a diamond detector 60003, unshielded and shielded silicon diodes 60008 and 60012 and a 0.125-cm(3) thimble chamber 233642 (PTW, Freiburg, Germany) for 6- and 25-MV photons. Electron beams of 6, 12 and 18 MeV were investigated with the diamond detector, the unshielded diode and a Markus chamber 23343. The unshielded diode revealed relative dose differences at the water surface below +10% for 6-MV and +4% for 25-MV photons compared to the diamond data. These values decreased to less than 1% within the first millimeters of water depth. The shielded diode was only required to obtain correct data of the fall-off zones for photon beams larger than 10 x 10 cm(2) because of important contributions of low-energy scattered photons. For electron radiation the largest relative dose difference of -2% was observed with the unshielded silicon diode for 6 MeV within the build-up zone. Spatial resolutions were always best with the small voluminous silicon diodes. Relative dose profiles obtained with the two silicon diodes have the same degree of accuracy as with the diamond detector.

  1. Verification of the plan dosimetry for high dose rate brachytherapy using metal-oxide-semiconductor field effect transistor detectors

    International Nuclear Information System (INIS)

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Lu Jie; Lerch, Michael; Cutajar, Dean; Rosenfeld, Anatoly

    2007-01-01

    The feasibility of a recently designed metal-oxide-semiconductor field effect transistor (MOSFET) dosimetry system for dose verification of high dose rate (HDR) brachytherapy treatment planning was investigated. MOSFET detectors were calibrated with a 0.6 cm 3 NE-2571 Farmer-type ionization chamber in water. Key characteristics of the MOSFET detectors, such as the energy dependence, that will affect phantom measurements with HDR 192 Ir sources were measured. The MOSFET detector was then applied to verify the dosimetric accuracy of HDR brachytherapy treatments in a custom-made water phantom. Three MOSFET detectors were calibrated independently, with the calibration factors ranging from 0.187 to 0.215 cGy/mV. A distance dependent energy response was observed, significant within 2 cm from the source. The new MOSFET detector has a good reproducibility ( 2 =1). It was observed that the MOSFET detectors had a linear response to dose until the threshold voltage reached approximately 24 V for 192 Ir source measurements. Further comparison of phantom measurements using MOSFET detectors with dose calculations by a commercial treatment planning system for computed tomography-based brachytherapy treatment plans showed that the mean relative deviation was 2.2±0.2% for dose points 1 cm away from the source and 2.0±0.1% for dose points located 2 cm away. The percentage deviations between the measured doses and the planned doses were below 5% for all the measurements. The MOSFET detector, with its advantages of small physical size and ease of use, is a reliable tool for quality assurance of HDR brachytherapy. The phantom verification method described here is universal and can be applied to other HDR brachytherapy treatments

  2. Neutron spectrometry by means of threshold detectors - Neutron spectrometry by means of activation detectors. Studies of the method of approximation by polygonal function. Application to dose determination

    International Nuclear Information System (INIS)

    Bricka, M.

    1962-03-01

    This report addresses the problem of determination of neutron spectrum by using a set of detectors. The spectrum approximation method based on a polygonal function is more particularly studied. The author shows that the coefficients of the usual mathematical model can be simply formulated and assessed. The study of spectra approximation by a polygonal function shows that dose can be expressed by a linear function of the activity of the different detectors [fr

  3. BeO-OSL detectors for dose measurements in cell cultures

    International Nuclear Information System (INIS)

    Andreeff, M.; Freudenberg, R.; Kotzerke, J.; Sommer, D.; Reichelt, U.; Henniger, J.

    2009-01-01

    Aim: The absorbed dose is an important parameter in experiments involving irradiation of cells in vitro with unsealed radionuclides. Typically, this is estimated with a model calculation, although the results thus obtained cannot be verified. Generally used real-time measurement methods are not applicable in this setting. A new detector material with in vitro suitability is the subject of this work. Methods: Optically-stimulated luminescence (OSL) dosimeters based on beryllium oxide (BeO) were used for dose measurement in cell cultures exposed to unsealed radionuclides. Their qualitative properties (e. g. energy-dependent count rate sensitivity, fading, contamination by radioactive liquids) were determined and compared to the results of a Monte Carlo simulation (using AMOS software). OSL dosimeters were tested in common cell culture setups with a known geometry. Results: Dose reproducibility of the OSL dosimeters was ± 1.5%. Fading at room temperature was 0.07% per day. Dose loss (optically-stimulated deletion) under ambient lighting conditions was 0.5% per minute. The Monte Carlo simulation for the relative sensitivity at different beta energies provided corresponding results to those obtained with the OSL dosimeters. Dose profile measurements using a 6 well plate and 14 ml PP tube showed that the geometry of the cell culture vessel has a marked influence on dose distribution with 188 Re. Conclusion: A new dosimeter system was calibrated with β-emitters of different energy. It turned out as suitable for measuring dose in liquids. The dose profile measurements obtained are suitably precise to be used as a check against theoretical dose calculations. (orig.)

  4. Manufacturing of different gel detectors and their calibration for spatial radiation dose measurements

    International Nuclear Information System (INIS)

    Bero, M.

    2008-05-01

    Three types of gel dosemeter have been made and their most important properties for radiation dosimetry were studied. The comparison between the three categories helps to widen knowledge in each of these detectors and to establish a method for the preparation as well as testing of this radiation sensitive materials. Experiments show the technical application possibility for using these gel detectors to measure the spatial radiation dose distribution in the range of doses given for cancer treatment. The experimental results give some important characteristic for the three gel dosemeter used in comparison to that of the traditional dosimetry systems. It also shows the simplicity of manufacturing the dosemeter from low cost materials and its radiation response to ionizing. The relationships between the dosemeter response and the dose rate as well as the radiation energy were also investigated. Important subjects that have been also taken into consideration are the effects of ambient conditions and storage likelihood of the studied materials. Recommendation was made for the use of these materials in practical applications and for handling as well as their long term storage possibility. (author)

  5. Low-dose electron energy-loss spectroscopy using electron counting direct detectors.

    Science.gov (United States)

    Maigné, Alan; Wolf, Matthias

    2018-03-01

    Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.

  6. Direct detector radiography versus dual reading computed radiography: feasibility of dose reduction in chest radiography

    International Nuclear Information System (INIS)

    Gruber, Michael; Uffmann, Martin; Weber, Michael; Balassy, Csilla; Schaefer-Prokop, Cornelia; Prokop, Mathias

    2006-01-01

    The image quality of dual-reading computed radiography and dose-reduced direct radiography of the chest was compared in a clinical setting. The study group consisted of 50 patients that underwent three posteroanterior chest radiographs within minutes, one image obtained with a dual read-out computed radiography system (CR; Fuji 5501) at regular dose and two images with a flat panel direct detector unit (DR; Diagnost, Philips). The DR images were obtained with the same and with 50% of the dose used for the CR images. Images were evaluated in a blinded side-by-side comparison. Eight radiologists ranked the visually perceivable difference in image quality using a three-point scale. Then, three radiologists scored the visibility of anatomic landmarks in low and high attenuation areas and image noise. Statistical analysis was based on Friedman tests and Wilcoxon rank sum tests at a significance level of P<0.05. DR was judged superior to CR for the delineation of structures in high attenuation areas of the mediastinum even when obtained with 50% less dose (P<0.001). The visibility of most pulmonary structures was judged equivalent with both techniques, regardless of acquisition dose and speed level. Scores for image noise were lower for DR compared with CR, with the exception of DR obtained at a reduced dose. Thus, in this clinical preference study, DR was equivalent or even superior to the most modern dual read-out CR, even when obtained with 50% dose. A further dose reduction does not appear to be feasible for DR without significant loss of image quality. (orig.)

  7. Application of the dose rate spectroscopy to the dose-to-curie conversion method using a NaI(Tl) detector

    International Nuclear Information System (INIS)

    JI, Young-Yong; Chung, Kun Ho; Kim, Chang-Jong; Kang, Mun Ja; Park, Sang Tae

    2015-01-01

    Dose rate spectroscopy is a very useful method to directly calculate the individual dose rate from the converted energy spectrum for the dose rate using the G-factor which is related to the used detector response function. A DTC conversion method for the estimation of the radioactivity based on the measured dose rate from the radioactive materials can then be modified into a simple equation using the dose rate spectroscopy. In order to make the method validation of the modified DTC conversion method, experimental verifications using a 3″φx3″ NaI(Tl) detector were conducted at the simple geometry of the point source located onto a detector and more complex geometries which mean the assay of the simulated radioactive material. In addition, the linearity about the results from the modified DTC conversion method was also estimated by increasing the distance between source positions and a detector to confirm the method validation in the energy, dose rate, and distance range of the gamma nuclides. - Highlights: • A modified DTC conversion method using the dose rate spectroscopy was established. • In-situ calibration factors were calculated from the MCNP simulation. • Radioactivities of the disk sources were accurately calculated using a modified DTC conversion method. • A modified DTC conversion method was applied to the assay of the radioactive material

  8. Physical changes associated with gamma doses of PM-555 solid-state nuclear track detector

    International Nuclear Information System (INIS)

    Nouh, S.A.

    2004-01-01

    The effect of gamma irradiation on the electrical, molecular and structural properties of copolymers of methacrylic esters and olefins, PM-555 solid-state nuclear track detector was investigated. DC conductivity measurements were studied in the temperature range 293-417 K using solid-state samples of the PM-555 polymer. These samples were irradiated with gamma doses in the range 5-63 kGy. Furthermore, the activation energy was measured, at various temperatures, as a function of the gamma dose. It was found that many changes in electrical resistance of PM-555 polymer could be produced by gamma irradiation via the degradation mechanism. Also, the gamma dose gives an advantage for the increasing correlation between the DC conductivity and the number and mobility of the charge carriers created by the ionizing effect of gamma radiation. Moreover, solutions of different loadings (0.2%, 0.4%, 0.6% and 0.8%) were prepared from the irradiated and non irradiated sheets using pure chloroform as a solvent. The effect of both temperature and gamma dose on the intrinsic viscosity of the liquid samples, as a measure of the mean molecular mass of the PM-555 polymer, were studied. In addition, structural and optical property studies using X-ray diffraction and refractive index measurements were performed on all irradiated and non irradiated PM-555 samples. The results indicate that both the degree of ordering or disordering and the anisotropic character of the PM-555 polymer are dependent on the gamma dose

  9. Reconstruction of high resolution MLC leaf positions using a low resolution detector for accurate 3D dose reconstruction in IMRT

    NARCIS (Netherlands)

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-01-01

    In pre-treatment dose verification, low resolution detector systems are unable to identify shifts of individual leafs of high resolution multi leaf collimator (MLC) systems from detected changes in the dose deposition. The goal of this study was to introduce an alternative approach (the shutter

  10. Poster - 43: Analysis of SBRT and SRS dose verification results using the Octavius 1000SRS detector

    Energy Technology Data Exchange (ETDEWEB)

    Cherpak, Amanda [Nova Scotia Cancer Centre, Nova Scotia Health Authority, Halifax, NS, Department of Radiation Oncology, Dalhousie University, Halifax, NS, Department of Physics and Atmospheric Sciences, Dalhousie University, Halifax, NS (Canada)

    2016-08-15

    Purpose: The Octavius 1000{sup SRS} detector was commissioned in December 2014 and is used routinely for verification of all SRS and SBRT plans. Results of verifications were analyzed to assess trends and limitations of the device and planning methods. Methods: Plans were delivered using a True Beam STx and results were evaluated using gamma analysis (95%, 3%/3mm) and absolute dose difference (5%). Verification results were analyzed based on several plan parameters including tumour volume, degree of modulation and prescribed dose. Results: During a 12 month period, a total of 124 patient plans were verified using the Octavius detector. Thirteen plans failed the gamma criteria, while 7 plans failed based on the absolute dose difference. When binned according to degree of modulation, a significant correlation was found between MU/cGy and both mean dose difference (r=0.78, p<0.05) and gamma (r=−0.60, p<0.05). When data was binned according to tumour volume, the standard deviation of average gamma dropped from 2.2% – 3.7% for the volumes less than 30 cm{sup 3} to below 1% for volumes greater than 30 cm{sup 3}. Conclusions: The majority of plans and verification failures involved tumour volumes smaller than 30 cm{sup 3}. This was expected due to the nature of disease treated with SBRT and SRS techniques and did not increase rate of failure. Correlations found with MU/cGy indicate that as modulation increased, results deteriorated but not beyond the previously set thresholds.

  11. Neutron dose study with bubble detectors aboard the International Space Station as part of the Matroshka-R experiment

    International Nuclear Information System (INIS)

    Machrafi, R.; Garrow, K.; Ing, H.; Smith, M. B.; Andrews, H. R.; Akatov, Yu; Arkhangelsky, V.; Chernykh, I.; Mitrikas, V.; Petrov, V.; Shurshakov, V.; Tomi, L.; Kartsev, I.; Lyagushin, V.

    2009-01-01

    As part of the Matroshka-R experiments, a spherical phantom and space bubble detectors (SBDs) were used on board the International Space Station to characterise the neutron radiation field. Seven experimental sessions with SBDs were carried out during expeditions ISS-13, ISS-14 and ISS-15. The detectors were positioned at various places throughout the Space Station, in order to determine dose variations with location and on/in the phantom in order to establish the relationship between the neutron dose measured externally to the body and the dose received internally. Experimental data on/in the phantom and at different locations are presented. (authors)

  12. Experimental determination of the lateral dose response functions of detectors to be applied in the measurement of narrow photon-beam dose profiles.

    Science.gov (United States)

    Poppinga, D; Meyners, J; Delfs, B; Muru, A; Harder, D; Poppe, B; Looe, H K

    2015-12-21

    This study aims at the experimental determination of the detector-specific 1D lateral dose response function K(x) and of its associated rotational symmetric counterpart K(r) for a set of high-resolution detectors presently used in narrow-beam photon dosimetry. A combination of slit-beam, radiochromic film, and deconvolution techniques served to accomplish this task for four detectors with diameters of their sensitive volumes ranging from 1 to 2.2 mm. The particular aim of the experiment was to examine the existence of significant negative portions of some of these response functions predicted by a recent Monte-Carlo-simulation (Looe et al 2015 Phys. Med. Biol. 60 6585-607). In a 6 MV photon slit beam formed by the Siemens Artiste collimation system and a 0.5 mm wide slit between 10 cm thick lead blocks serving as the tertiary collimator, the true cross-beam dose profile D(x) at 3 cm depth in a large water phantom was measured with radiochromic film EBT3, and the detector-affected cross-beam signal profiles M(x) were recorded with a silicon diode, a synthetic diamond detector, a miniaturized scintillation detector, and a small ionization chamber. For each detector, the deconvolution of the convolution integral M(x)  =  K(x)  ∗  D(x) served to obtain its specific 1D lateral dose response function K(x), and K(r) was calculated from it. Fourier transformations and back transformations were performed using function approximations by weighted sums of Gaussian functions and their analytical transformation. The 1D lateral dose response functions K(x) of the four types of detectors and their associated rotational symmetric counterparts K(r) were obtained. Significant negative curve portions of K(x) and K(r) were observed in the case of the silicon diode and the diamond detector, confirming the Monte-Carlo-based prediction (Looe et al 2015 Phys. Med. Biol. 60 6585-607). They are typical for the perturbation of the secondary electron field by a detector with

  13. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    Science.gov (United States)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  14. Dose assessment of head CT examination by volume scanning with 320-area-detector

    International Nuclear Information System (INIS)

    Suzuki, Shoichi; Kobayashi, Masanao

    2009-01-01

    CT with the 320-area-detector (320-ADCT), first presented in 2007, still requires further basic studies, particularly in the field of dose assessment, as the CT has been widely spread in clinic due to its many advantages compared with the usual spiral CT. In this paper, the assessment in the title was thereby done in human phantom and a patient with suspicious acute cerebral infarction under different scanning modes (non-spiral, spiral and volume) for their comparison. Machines for 320-ADCT, and non-spiral and spiral CT were Toshiba Aquilion ONE, and Aquilion 64-MD, respectively. Scanning of the phantom and patient was individually conducted under similar conditions of tube voltage/ current, rotation time and length with the same field of view with defined nominal slice thicknesses. Alderson human body phantom in which 240 thermoluminescent dosimeters were indwelled, was used; doses were read by the thermoluminescence dosimeter (TLD) reader model 3000 (Kyokko Co.) after scanning; and effective doses were calculated with reference to ICRP publ. 102/103 equations for patient's head to be 4.2 (64-MDCT) and 6.6 (320-ADCT) mSv, which were respectively 6.4 and 5.4 mSv when estimated using the conversion coefficient and DLP (dose length product) in the texts. It was suggested that the exposure dose at the volume scanning by 320-ADCT can be reduced in the routine examination, and in the exact diagnosis, possibly increases. These doses can be reduced further by optimization of scanning conditions by additional basic investigations. (K.T.)

  15. Design,construction and commissioning of a cylinder of double-sided silicon micro-strips detectors for the Star experiment at RHIC; Developpement et mise en oeuvre de detecteurs silicium a micropistes pour l'experience star

    Energy Technology Data Exchange (ETDEWEB)

    Guedon, M

    2005-05-15

    This study has been performed in the frame of quark gluon plasma physics research in the STAR experiment at RHIC. It deals with the design, the construction and the commissioning of a barrel of silicon-strip detectors (SSD). Added to the Silicon Vertex Tracker (SVT) of the STAR detector, it extends the capabilities of track reconstruction for charged particles emitted in ultra-relativistic heavy-ion collisions. It also contributes to the general study of the quark-gluon plasma production undertaken at STAR. The SSD is a cylinder of 1 m long and of 23 cm radius, and it is composed of 320 compact identical modules. Each module includes one double-sided silicon micro-strip detector, 12 readout chips ALICE 128C, 12 TAB ribbons, 2 COSTAR control chips and 2 hybrids supporting all the components. The document explains why the SSD is an important and relevant element, and justifies the technological choices as well as their validation by in-beam characterization. All component functionalities, characteristics and test procedures are presented. The data and test results are stored in a database for tracing purpose. Component and module production is described. Two parallel studies have been performed, analysed and described. One on the temperature dependence of the module performances and the other one on the optimal adjustments of the analogue blocks inside the ALICE 128C chip. The SSD installation on the RHIC site as well as the commissioning are presented together with the first data takings. (author)

  16. Design,construction and commissioning of a cylinder of double-sided silicon micro-strips detectors for the Star experiment at RHIC; Developpement et mise en oeuvre de detecteurs silicium a micropistes pour l'experience star

    Energy Technology Data Exchange (ETDEWEB)

    Guedon, M

    2005-05-15

    This study has been performed in the frame of quark gluon plasma physics research in the STAR experiment at RHIC. It deals with the design, the construction and the commissioning of a barrel of silicon-strip detectors (SSD). Added to the Silicon Vertex Tracker (SVT) of the STAR detector, it extends the capabilities of track reconstruction for charged particles emitted in ultra-relativistic heavy-ion collisions. It also contributes to the general study of the quark-gluon plasma production undertaken at STAR. The SSD is a cylinder of 1 m long and of 23 cm radius, and it is composed of 320 compact identical modules. Each module includes one double-sided silicon micro-strip detector, 12 readout chips ALICE 128C, 12 TAB ribbons, 2 COSTAR control chips and 2 hybrids supporting all the components. The document explains why the SSD is an important and relevant element, and justifies the technological choices as well as their validation by in-beam characterization. All component functionalities, characteristics and test procedures are presented. The data and test results are stored in a database for tracing purpose. Component and module production is described. Two parallel studies have been performed, analysed and described. One on the temperature dependence of the module performances and the other one on the optimal adjustments of the analogue blocks inside the ALICE 128C chip. The SSD installation on the RHIC site as well as the commissioning are presented together with the first data takings. (author)

  17. Using two detectors concurrently to monitor ambient dose equivalent rates in vehicle surveys of radiocesium contaminated land.

    Science.gov (United States)

    Takeishi, Minoru; Shibamichi, Masaru; Malins, Alex; Kurikami, Hiroshi; Murakami, Mitsuhiro; Saegusa, Jun; Yoneya, Masayuki

    2017-10-01

    In response to the accident at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP), vehicle-borne monitoring was used to map radiation levels for radiological protection of the public. By convention measurements from vehicle-borne surveys are converted to the ambient dose equivalent rate at 1 m height in the absence of the vehicle. This allows for comparison with results from other types of survey, including surveys with hand-held or airborne instruments. To improve the accuracy of the converted results from vehicle-borne surveys, we investigated combining measurements from two detectors mounted on the vehicle at different heights above the ground. A dual-detector setup was added to a JAEA monitoring car and compared against hand-held survey meter measurements in Fukushima Prefecture. The results obtained by combining measurements from two detectors were within ±20% of the hand-held reference measurements. The mean absolute percentage deviation from the reference measurements was 7.2%. The combined results from the two detectors were more accurate than those from either the roof-mounted detector, or the detector inside the vehicle, taken alone. One issue with vehicle-borne surveys is that ambient dose equivalent rates above roads are not necessarily representative of adjacent areas. This is because radiocesium is often deficient on asphalt surfaces, as it is easily scrubbed off by rain, wind and vehicle tires. To tackle this issue, we investigated mounting heights for vehicle-borne detectors using Monte Carlo gamma-ray simulations. When radiocesium is deficient on a road compared to the adjacent land, mounting detectors high on vehicles yields results closer to the values adjacent to the road. The ratio of ambient dose equivalent rates reported by detectors mounted at different heights in a dual-detector setup indicates whether radiocesium is deficient on the road compared to the adjacent land. Copyright © 2017 Elsevier Ltd. All rights

  18. Development of a phoswich detector for neutron dose rate measurements in the Earth's atmosphere

    International Nuclear Information System (INIS)

    Doensdorf, Esther Miriam

    2014-01-01

    The Earth is constantly exposed to a stream of energetic particles from outer space. Through the interaction of this radiation with the Earth's magnetosphere and atmosphere a complex radiation field is formed which varies with the location inside the Earth's atmosphere. This radiation field consists of charged and uncharged particles leading to the constant exposure of human beings to radiation. As this ionizing radiation can be harmful for humans, it is necessary to perform dose rate measurements in different altitudes in the Earth's atmosphere. Due to their higher biological effectiveness the exposure to neutrons is more harmful than the exposure to γ-rays and charged particles, which is why the determination of neutron dose rates is the focus of this work. In this work the prototype of a Phoswich detector called PING (Phoswich Instrument for Neutrons and Gammas) is developed to determine dose rates caused by neutrons in the Earth's atmosphere and to distinguish these from γ-rays. The instrument is composed of two different scintillators optically coupled to each other and read out by one common photomultiplier tube. The scintillator package consists of an inner plastic scintillator made of the material BC-412 and a surrounding anti-coincidence made of sodium doped caesium iodide (CsI(Na)). In this work the instrument is calibrated, tested and flown and a procedure for a pulse shape analysis for this instrument is developed. With this analysis it is possible to distinguish pulses from the plastic scintillator and pulses from the CsI(Na). The pulses from the plastic scintillator are mainly due to the interaction of neutrons but there is an energy-dependent contribution of γ-rays to these events. Measurements performed on board an airplane show that the dose rates measured with the developed detector are in the same order of magnitude as results of other instruments. During measurements on board stratospheric balloons the altitude dependence of count rates and

  19. Dose efficiency and low-contrast detectability of an amorphous silicon x-ray detector for digital radiography

    International Nuclear Information System (INIS)

    Aufrichtig, Richard

    2000-01-01

    The effect of dose reduction on low-contrast detectability is investigated theoretically and experimentally for a production grade amorphous silicon (a-Si) x-ray detector and compared with a standard thoracic screen-film combination. A non-prewhitening matched filter observer model modified to include a spatial response function and internal noise for the human visual system (HVS) is used to calculate a signal-to-noise ratio (SNR) related to object detectability. Other inputs to the SNR calculation are the detective quantum efficiency (DQE) and the modulation transfer function (MTF) of the imaging system. Besides threshold detectability, the model predicts the equivalent perception dose ratio (EPDR), which is the fraction of the screen-film exposure for which the digital detector provides equal detectability. Images of a contrast-detail phantom are obtained with the digital detector at dose levels corresponding to 27%, 41%, 63% and 100% of the dose used for screen-film. The images are used in a four-alternative forced choice (4-AFC) observer perception study in order to measure threshold detectability. A statistically significant improvement in contrast detectability is measured with the digital detector at 100% and 63% of the screen-film dose. There is no statistical difference between screen-film and digital at 41% of the dose. On average, the experimental EPDR is 44%, which agrees well with the model prediction of 40%. (author)

  20. Apparatus for measuring profile thickness of strip material

    International Nuclear Information System (INIS)

    Hold, A.C.

    1982-01-01

    Apparatus for measuring the thickness profile of steel strip comprises a radiation source reciprocally movable in a stepwise fashion (by a belt) across the strip width on one side thereof and a single elongated detector on the other side of the strip aligned with the scanning source. This detector may be a fluorescent scintillator detector or an ionisation chamber. Means are provided for sensing the degree of excitation in the detector in synchronism with the scanning source whereby to provide an output representative of the thickness profile of the strip. (author)

  1. Silicon diodes as an alternative to diamond detectors for depth dose curves and profile measurements of photon and electron radiation

    International Nuclear Information System (INIS)

    Scherf, Christian; Moog, Jussi; Licher, Joerg; Kara, Eugen; Roedel, Claus; Ramm, Ulla; Peter, Christiane; Zink, Klemens

    2009-01-01

    Background: Depth dose curves and lateral dose profiles should correspond to relative dose to water in any measured point, what can be more or less satisfied with different detectors. Diamond as detector material has similar dosimetric properties like water. Silicon diodes and ionization chambers are also commonly used to acquire dose profiles. Material and Methods: The authors compared dose profiles measured in an MP3 water phantom with a diamond detector 60003, unshielded and shielded silicon diodes 60008 and 60012 and a 0.125-cm 3 thimble chamber 233642 (PTW, Freiburg, Germany) for 6- and 25-MV photons. Electron beams of 6, 12 and 18 MeV were investigated with the diamond detector, the unshielded diode and a Markus chamber 23343. Results: The unshielded diode revealed relative dose differences at the water surface below +10% for 6-MV and +4% for 25-MV photons compared to the diamond data. These values decreased to less than 1% within the first millimeters of water depth. The shielded diode was only required to obtain correct data of the fall-off zones for photon beams larger than 10 x 10 cm 2 because of important contributions of low-energy scattered photons. For electron radiation the largest relative dose difference of -2% was observed with the unshielded silicon diode for 6 MeV within the build-up zone. Spatial resolutions were always best with the small voluminous silicon diodes. Conclusion: Relative dose profiles obtained with the two silicon diodes have the same degree of accuracy as with the diamond detector. (orig.)

  2. Analysis of small field percent depth dose and profiles: Comparison of measurements with various detectors and effects of detector orientation with different jaw settings

    Directory of Open Access Journals (Sweden)

    Henry Finlay Godson

    2016-01-01

    Full Text Available The advent of modern technologies in radiotherapy poses an increased challenge in the determination of dosimetric parameters of small fields that exhibit a high degree of uncertainty. Percent depth dose and beam profiles were acquired using different detectors in two different orientations. The parameters such as relative surface dose (DS, depth of dose maximum (Dmax, percentage dose at 10 cm (D10, penumbral width, flatness, and symmetry were evaluated with different detectors. The dosimetric data were acquired for fields defined by jaws alone, multileaf collimator (MLC alone, and by MLC while the jaws were positioned at 0, 0.25, 0.5, and 1.0 cm away from MLC leaf-end using a Varian linear accelerator with 6 MV photon beam. The accuracy in the measurement of dosimetric parameters with various detectors for three different field definitions was evaluated. The relative DS(38.1% with photon field diode in parallel orientation was higher than electron field diode (EFD (27.9% values for 1 cm ×1 cm field. An overestimation of 5.7% and 8.6% in D10depth were observed for 1 cm ×1 cm field with RK ion chamber in parallel and perpendicular orientation, respectively, for the fields defined by MLC while jaw positioned at the edge of the field when compared to EFD values in parallel orientation. For this field definition, the in-plane penumbral widths obtained with ion chamber in parallel and perpendicular orientation were 3.9 mm, 5.6 mm for 1 cm ×1 cm field, respectively. Among all detectors used in the study, the unshielded diodes were found to be an appropriate choice of detector for the measurement of beam parameters in small fields.

  3. Radiation-damage studies, irradiations and high-dose dosimetry for LHC detectors

    CERN Document Server

    Coninckx, F; León-Florián, E; Leutz, H; Schönbacher, Helmut; Sonderegger, P; Tavlet, Marc; Sopko, B; Henschel, H; Schmidt, H U; Boden, A; Bräunig, D; Wulf, F; Cramariuc, R; Ilie, D; Fattibene, P; Onori, S; Miljanic, S; Paic, G; Razen, B; Razem, D; Rendic, D; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    The proposal is divided into a main project and special projects. The main project consists of a service similar to the one given in the past to accelerator construction projects at CERN (ISR,SPS,LEP) on high-dose dosimetry, material irradiations, irradiations tests, standardization of test procedures and data compilations. Large experience in this field and numerous radiation damage test data of insulating and structural materials are available. The special projects cover three topics which are of specific interest for LHC detector physicists and engineers at CERN and in other high energy physics institutes, namely: Radiation effects in scintillators; Selection of radiation hard optical fibres for data transmission; and Selection and testing of radiation hard electronic components.

  4. Stripping Voltammetry

    Science.gov (United States)

    Lovrić, Milivoj

    Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact

  5. Spatial resolution of 2D ionization chamber arrays for IMRT dose verification: single-detector size and sampling step width

    International Nuclear Information System (INIS)

    Poppe, Bjoern; Djouguela, Armand; Blechschmidt, Arne; Willborn, Kay; Ruehmann, Antje; Harder, Dietrich

    2007-01-01

    The spatial resolution of 2D detector arrays equipped with ionization chambers or diodes, used for the dose verification of IMRT treatment plans, is limited by the size of the single detector and the centre-to-centre distance between the detectors. Optimization criteria with regard to these parameters have been developed by combining concepts of dosimetry and pattern analysis. The 2D-ARRAY Type 10024 (PTW-Freiburg, Germany), single-chamber cross section 5 x 5 mm 2 , centre-to-centre distance between chambers in each row and column 10 mm, served as an example. Additional frames of given dose distributions can be taken by shifting the whole array parallel or perpendicular to the MLC leaves by, e.g., 5 mm. The size of the single detector is characterized by its lateral response function, a trapezoid with 5 mm top width and 9 mm base width. Therefore, values measured with the 2D array are regarded as sample values from the convolution product of the accelerator generated dose distribution and this lateral response function. Consequently, the dose verification, e.g., by means of the gamma index, is performed by comparing the measured values of the 2D array with the values of the convolution product of the treatment planning system (TPS) calculated dose distribution and the single-detector lateral response function. Sufficiently small misalignments of the measured dose distributions in comparison with the calculated ones can be detected since the lateral response function is symmetric with respect to the centre of the chamber, and the change of dose gradients due to the convolution is sufficiently small. The sampling step width of the 2D array should provide a set of sample values representative of the sampled distribution, which is achieved if the highest spatial frequency contained in this function does not exceed the 'Nyquist frequency', one half of the sampling frequency. Since the convolution products of IMRT-typical dose distributions and the single-detector

  6. Search for heavy lepton resonances decaying to a Z boson and a lepton in proton-proton collisions at √(s)=8 TeV with the ATLAS detector and investigations of radiation tolerant silicon-strip detectors for the high-luminosity LHC upgrade of the ATLAS inner detector

    Energy Technology Data Exchange (ETDEWEB)

    Wiik-Fuchs, Liv

    2017-03-09

    The success of particle physics experiments, like those at the Large Hardon Collider (LHC) at CERN, relies on a worldwide interdisciplinary collaboration in a variety of different fields. This thesis contributes to two vital aspects in this area of research:in the first part of a search for heavy trilepton resonances decaying to a Z boson and an electron or muon is presented, while the second part focusses on research and development of radiation tolerant silicon tracking detectors designed for the upgrade of the ATLAS detector for the future luminosity upgrade of the LHC. The search for trilepton resonances is based on pp collision data taken at a centre-of-mass energy of 8 TeV by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 20.3 fb{sup -1}. To reconstruct the narrow resonance, events with at least three leptons (electrons or muons) with a high-transverse momentum are selected. Two of these leptons are required to be consistent with originating from a Z boson decay. Since no significant excess above Standard Model background predictions is observed, 95% confidence level upper limits on the production cross section of trilepton resonances beyond the Standard Model are derived. The results of this analysis are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 113-176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100-474 GeV are excluded. The second part of this thesis focusses on the development of radiation-tolerant silicon strip detectors for the luminosity upgrade of the ATLAS detector envisaged to commence in the year 2016. This thesis includes the results of several studies which contribute to multiple key aspects required for a successful upgrade of the silicon strip detector of the ATLAS Inner Tracker. Among these are the results of a beam test providing the first comparative results between

  7. Search for heavy lepton resonances decaying to a Z boson and a lepton in proton-proton collisions at √(s)=8 TeV with the ATLAS detector and investigations of radiation tolerant silicon-strip detectors for the high-luminosity LHC upgrade of the ATLAS inner detector

    International Nuclear Information System (INIS)

    Wiik-Fuchs, Liv

    2017-01-01

    The success of particle physics experiments, like those at the Large Hardon Collider (LHC) at CERN, relies on a worldwide interdisciplinary collaboration in a variety of different fields. This thesis contributes to two vital aspects in this area of research:in the first part of a search for heavy trilepton resonances decaying to a Z boson and an electron or muon is presented, while the second part focusses on research and development of radiation tolerant silicon tracking detectors designed for the upgrade of the ATLAS detector for the future luminosity upgrade of the LHC. The search for trilepton resonances is based on pp collision data taken at a centre-of-mass energy of 8 TeV by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 20.3 fb"-"1. To reconstruct the narrow resonance, events with at least three leptons (electrons or muons) with a high-transverse momentum are selected. Two of these leptons are required to be consistent with originating from a Z boson decay. Since no significant excess above Standard Model background predictions is observed, 95% confidence level upper limits on the production cross section of trilepton resonances beyond the Standard Model are derived. The results of this analysis are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 113-176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100-474 GeV are excluded. The second part of this thesis focusses on the development of radiation-tolerant silicon strip detectors for the luminosity upgrade of the ATLAS detector envisaged to commence in the year 2016. This thesis includes the results of several studies which contribute to multiple key aspects required for a successful upgrade of the silicon strip detector of the ATLAS Inner Tracker. Among these are the results of a beam test providing the first comparative results between

  8. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    Science.gov (United States)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  9. 6LiF sandwich type detectors for low dose individual monitoring in mixed neutron-photon fields

    International Nuclear Information System (INIS)

    Olko, P.; Budzanowski, M.; Bilski, P.; Burgkhardt, B.; Piesch, E.

    1994-01-01

    ICRP Publication 60 recommends the reduction of the annual dose limit for occupational exposure from 50 to 20 mSv and a doubling of the quality factor for medium energy neutrons. If occupational doses are evaluated every month (which is obligatory e.g. in Germany and in Poland), the individual neutron dosemeter will have to measure neutron doses in the range of 100 μSv. No commercially available, automatic individual dosimetry monitoring system exists that fulfils this requirement. Some of the parameters which influence the evaluation of the neutron dose from readings of TL dosemeters have been studied in order to decrease the variance of the measured neutron signal. In mixed neutron-photon fields, clear separation of the neutron component from the total reading depends also on the uncertainty of the gamma dose measurements. While the thermal albedo neutrons are absorbed mostly at the surface of the 6 LiF detector, the reduction of the detector thickness results in a decrease of its photon sensitivity, while its neutron sensitivity is almost principally maintained. As a consequence, the uncertainty of gamma dose contributes with lower weight to the variance of the evaluated neutron signal. First tests of an optimised 200 μm thick sandwich detector and 0.9 mm thick standard LiF chips were made at low neutron and photon dose ranges using different readers, in order to determine the uncertainty versus dose for different neutron-photon combinations. The conditions under which the new sandwich type detectors may improve albedo neutron dosimetry are demonstrated. (Author)

  10. Positioning of the detectors inside an anthropomorphic phantom in order to measure the effective dose at workplace

    International Nuclear Information System (INIS)

    Furstoss, C.; Menard, S.

    2006-01-01

    Passive and active dosimeters worn on the trunk by the workers exposed to radiation fields at their workplaces measure the personal dose equivalent Hp(10), which was introduced by ICRP 60 to provide an appropriate estimate of the protection quantity: the effective dose E. However, the angular and energy distributions of the radiation fields encountered at workplaces can generate an over or an under-estimation of E because of the response of the dosimeters or/and because of the definition of H p(10) itself. That is why the Institute for Radiological Protection and Nuclear Safety (I.R.S.N.) is evaluating the possibility of the measurement of the effective dose E using an instrumented anthropomorphic phantom. The determination of the effective dose E in mixed neutron/photon fields requires to identify the nature and the energy distribution of the incident fields in order to apply the right radiation weighting factor to the mean absorbed doses. So electronic detectors will have to be placed on the surface and inside the phantom in order to identify the nature of the radiation field and to measure the mean absorbed dose within the organs. The positions and the technical characteristics of the detectors are determined by simulating the spatial distributions of the energy losses within organs and tissues of the phantom. The simulations are carried out with the Monte Carlo code M.C.N.P.X. using mesh tallies (virtual grid superimposed to the phantom geometry) and a mathematical model of an anthropomorphic phantom based on the specifications of Cristy and Eckerman. The processing of the first numerical results corresponding to photon irradiations in standard configurations (A.P., P.A. and L.A.T.) shows that for the following organs: the lungs, the liver, the small intestine and the brain, just one detector is enough and that this detector is not necessarily located at the center of the organ. On the other hand, the determination of the energy deposited in the red bone marrow

  11. TL detectors for gamma-ray dose measurements in critically accidents

    International Nuclear Information System (INIS)

    Miljanic, S.; Knezevic, Z.; Zorko, B.; Gregori, B.

    2005-01-01

    Full text: Determination of gamma-ray dose in mixed neutron + gamma-ray fields is still a challenging task. Dosemeters used for gamma-ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e. on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosimeter responses to gamma-rays. To reduce all these influences, design of dosemeter holders is of special importance. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma-ray dose determination in mixed fields were examined. Dosemeters were from three different institutions: Ruder Boscovic Institute (RBI), Croatia, Jozef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. At that exercise three accidental scenarios were reproduced: bare reactor, free evolution; lead shielded reactor, steady state; and lead shielded reactor, free evolution. In each irradiation dosemeters were exposed placed on the front of phantom and 'free-in-air'. Also, dosemeters were irradiated in a pure gamma ray field of 60 Co source. Following types of TLDs were used: 7 LiF (TLD-700), CaF 2 :Mn and AI 2 O 3 :Mg,Y - all from RBI; CaF 2 :Mn from JSI and 7 LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the mean participants' values. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed. (author)

  12. Comparison of radiation dose estimates, image noise, and scan duration in pediatric body imaging for volumetric and helical modes on 320-detector CT and helical mode on 64-detector CT

    International Nuclear Information System (INIS)

    Johnston, Jennifer H.; Podberesky, Daniel J.; Larson, David B.; Alsip, Christopher; Yoshizumi, Terry T.; Angel, Erin; Barelli, Alessandra; Toncheva, Greta; Egelhoff, John C.; Anderson-Evans, Colin; Nguyen, Giao B.; Frush, Donald P.; Salisbury, Shelia R.

    2013-01-01

    Advanced multidetector CT systems facilitate volumetric image acquisition, which offers theoretic dose savings over helical acquisition with shorter scan times. Compare effective dose (ED), scan duration and image noise using 320- and 64-detector CT scanners in various acquisition modes for clinical chest, abdomen and pelvis protocols. ED and scan durations were determined for 64-detector helical, 160-detector helical and volume modes under chest, abdomen and pelvis protocols on 320-detector CT with adaptive collimation and 64-detector helical mode on 64-detector CT without adaptive collimation in a phantom representing a 5-year-old child. Noise was measured as standard deviation of Hounsfield units. Compared to 64-detector helical CT, all acquisition modes on 320-detector CT resulted in lower ED and scan durations. Dose savings were greater for chest (27-46%) than abdomen/pelvis (18-28%) and chest/abdomen/pelvis imaging (8-14%). Noise was similar across scanning modes, although some protocols on 320-detector CT produced slightly higher noise. Dose savings can be achieved for chest, abdomen/pelvis and chest/abdomen/pelvis examinations on 320-detector CT compared to helical acquisition on 64-detector CT, with shorter scan durations. Although noise differences between some modes reached statistical significance, this is of doubtful diagnostic significance and will be studied further in a clinical setting. (orig.)

  13. Visual grading analysis of digital neonatal chest phantom X-ray images: Impact of detector type, dose and image processing on image quality.

    Science.gov (United States)

    Smet, M H; Breysem, L; Mussen, E; Bosmans, H; Marshall, N W; Cockmartin, L

    2018-07-01

    To evaluate the impact of digital detector, dose level and post-processing on neonatal chest phantom X-ray image quality (IQ). A neonatal phantom was imaged using four different detectors: a CR powder phosphor (PIP), a CR needle phosphor (NIP) and two wireless CsI DR detectors (DXD and DRX). Five different dose levels were studied for each detector and two post-processing algorithms evaluated for each vendor. Three paediatric radiologists scored the images using European quality criteria plus additional questions on vascular lines, noise and disease simulation. Visual grading characteristics and ordinal regression statistics were used to evaluate the effect of detector type, post-processing and dose on VGA score (VGAS). No significant differences were found between the NIP, DXD and CRX detectors (p>0.05) whereas the PIP detector had significantly lower VGAS (pProcessing did not influence VGAS (p=0.819). Increasing dose resulted in significantly higher VGAS (plevels but not image post-processing changes. VGA showed a DAK/image value above which perceived IQ did not improve, potentially useful for commissioning. • A VGA study detects IQ differences between detectors and dose levels. • The NIP detector matched the VGAS of the CsI DR detectors. • VGA data are useful in setting initial detector air kerma level. • Differences in NNPS were consistent with changes in VGAS.

  14. Performance of irradiated CVD diamond micro-strip sensors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; Plano, R.; Somalwar, S.V.; Thomson, G.B.

    2002-01-01

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a β-source and the performance before and after intense (>10 15 /cm 2 ) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2x10 15 p/cm 2 lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9x10 15 π/cm 2 lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations

  15. Performance of irradiated CVD diamond micro-strip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D. E-mail: dirk.meier@cern.ch; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; Plano, R.; Somalwar, S.V.; Thomson, G.B

    2002-01-11

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a {beta}-source and the performance before and after intense (>10{sup 15}/cm{sup 2}) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2x10{sup 15} p/cm{sup 2} lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9x10{sup 15} {pi}/cm{sup 2} lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.

  16. Performance of irradiated CVD diamond micro-strip sensors

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Krammer, Manfred; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Noomen, J; Oh, A; Pan, L S; Pernicka, Manfred; Peitz, A; Perera, L P; Pirollo, S; Procario, M; Riester, J L; Roe, S; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S R; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trischuk, W; Tromson, D; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Wetstein, M; White, C; Zeuner, W; Zöller, M

    2002-01-01

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a $\\beta$-source and the performance before and after intense ($>10^{15}/{\\rm cm^2}$) proton- and pion-irradiations. We find that low dose irradiations increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiations with protons ($2.2\\times 10^{15}~p/{\\rm cm^2}$) lowers the signal-to-noise ratio slightly. Intense irradiation with pions ($2.9\\times 10^{15}~\\pi/{\\rm cm^2}$) lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.

  17. Performance of irradiated CVD diamond micro-strip sensors

    Science.gov (United States)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; Plano, R.; Somalwar, S. V.; Thomson, G. B.

    2002-01-01

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a β-source and the performance before and after intense (>10 15/cm 2) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2×10 15 p/ cm2 lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9×10 15 π/ cm2 lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.

  18. Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dae Kyo; Lee, Sang Chul; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2012-06-15

    The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. The effective dose was the highest for Somatom Sensation 10 (425.84 {mu}Sv), followed by AZ3000CT (332.4 {mu}Sv), Somatom Emotion 6 (199.38 {mu}Sv), and 3D eXaM (111.6 {mu}Sv); it was the lowest for Implagraphy (83.09 {mu}Sv). The CBCT showed significant variation in dose level with different device. The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

  19. Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

    International Nuclear Information System (INIS)

    Jeong, Dae Kyo; Lee, Sang Chul; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul

    2012-01-01

    The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. The effective dose was the highest for Somatom Sensation 10 (425.84 μSv), followed by AZ3000CT (332.4 μSv), Somatom Emotion 6 (199.38 μSv), and 3D eXaM (111.6 μSv); it was the lowest for Implagraphy (83.09 μSv). The CBCT showed significant variation in dose level with different device. The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

  20. Dose response of commercially available optically stimulated luminescent detector, Al2O3:C for megavoltage photons and electrons.

    Science.gov (United States)

    Kim, Dong Wook; Chung, Weon Kuu; Shin, Dong Oh; Yoon, Myonggeun; Hwang, Ui-Jung; Rah, Jeong-Eun; Jeong, Hojin; Lee, Sang Yeob; Shin, Dongho; Lee, Se Byeong; Park, Sung Yong

    2012-04-01

    This study examined the dose response of an optically stimulated luminescence dosemeter (OSLD) to megavoltage photon and electron beams. A nanoDot™ dosemeter was used to measure the dose response of the OSLD. Photons of 6-15 MV and electrons of 9-20 MeV were delivered by a Varian 21iX machine (Varian Medical System, Inc. Milpitas, CA, USA). The energy dependency was dose was linear until 200 cGy. The superficial dose measurements revealed photon irradiation to have an angular dependency. The nanoDot™ dosemeter has potential use as an in vivo dosimetric tool that is independent of the energy, has dose linearity and a rapid response compared with normal in vivo dosimetric tools, such as thermoluminescence detectors. However, the OSLD must be treated very carefully due to the high angular dependency of the photon beam.

  1. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  2. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  3. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    International Nuclear Information System (INIS)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-01-01

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  4. Comparison of neutron dose measured by Albedo TLD and etched tracks detector at PNC plutonium fuel facilities

    International Nuclear Information System (INIS)

    Tsujimura, N.; Momose, T.; Shinohara, K.; Ishiguro, H.

    1996-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) has fabricated Plutonium and Uranium Mixed OXide (MOX) fuel for FBR MONJU at Tokai works. In this site, PNC/Panasonic albedo TLDs/1/ are used for personnel neutron monitoring. And a part of workers wore Etched Tracks Detector (ETD) combined with TLD in order to check the accuracy of the neutron dose estimated by albedo TLD. In this paper, the neutron dose measured by TLD and ETD in the routine monitoring is compared at PNC plutonium fuel facilities. (author)

  5. High-efficiency detector of secondary and backscattered electrons for low-dose imaging in the ESEM

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém; Tihlaříková, Eva; Runštuk, Jiří; Hudec, Jiří

    2018-01-01

    Roč. 184 (2018), s. 1-11 ISSN 0304-3991 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : detectors * scintillators * low-dose imaging * energy filtration * MC simulations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 2.843, year: 2016

  6. Dose-rate effects on the bulk etch-rate of CR-39 track detector exposed to low-LET radiations

    CERN Document Server

    Yamauchi, T; Oda, K; Ikeda, T; Honda, Y; Tagawa, S

    1999-01-01

    The effect of gamma-rays and pulsed electrons has been investigated on the bulk etch rate of CR-39 detector at doses up to 100 kGy under various dose-rate between 0.0044 and 35.0 Gy/s. The bulk etch rate increased exponentially with the dose at every examined dose-rates. It was reveled to be strongly depend on the dose-rate: the bulk etch rate was decreased with increasing dose-rate at the same total dose. A primitive model was proposed to explain the dose-rate effect in which oxygen dissolved was assumed to dominate the damage formation process.

  7. Short p-type silicon microstrip detectors in 3D-stc technology

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S. [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder Strasse 3b, D-79104 Freiburg i. Br. (Germany)], E-mail: simon.eckert@physik.uni-freiburg.de; Jakobs, K.; Kuehn, S.; Parzefall, U. [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder Strasse 3b, D-79104 Freiburg i. Br. (Germany); Dalla-Betta, G.-F.; Zoboli, A. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita degli Studi di Trento, via Sommarive 14, I-38050 Povo di Trento (Italy); Pozza, A.; Zorzi, N. [FBK-irst Trento, Microsystems Division, via Sommarive 18, I-38050 Povo di Trento (Italy)

    2008-10-21

    The luminosity upgrade of the Large Hadron Collider (LHC), the sLHC, will constitute an extremely challenging radiation environment for tracking detectors. Significant improvements in radiation hardness are needed to cope with the increased radiation dose, requiring new tracking detectors. In the upgraded ATLAS detector the region from 20 to 50 cm distance to the beam will be covered by silicon strip detectors (SSD) with short strips. These will have to withstand a 1 MeV neutron equivalent fluence of about 1x10{sup 15}n{sub eq}/cm{sup 2}, hence extreme radiation resistance is necessary. For the short strips, we propose to use SSD realised in the radiation tolerant 3D technology, where rows of columns-etched into the silicon bulk-are joined together to form strips. To demonstrate the feasibility of 3D SSD for the sLHC, we have built prototype modules using 3D-single-type-column (stc) SSD with short strips and front-end electronics from the present ATLAS SCT. The modules were read out with the SCT Data Acquisition system and tested with an IR-laser. We report on the performance of these 3D modules, in particular the noise at 40 MHz which constitutes a measurement of the effective detector capacitance. Conclusions about options for using 3D SSD detectors for tracking at the sLHC are drawn.

  8. Doses of Coronary Study in 64 Channel Multi-Detector Computed Tomography : Reduced Radiation Dose According to Varity of Examnination Protocols

    International Nuclear Information System (INIS)

    Kim, Moon Chan

    2009-01-01

    To compare radiation dose for coronary CT angiography (CTA) obtained with 6 examination protocols such as a retrospectively ECG gated helical scan, a prospectively ECG gated sequential scan, low kVp technique, and cardiac dose modulation technique. Coronary CTA was performed by using 6 current clinical protocols to evaluate effective dose and organ dose in primary beam area with anthropomorphic female phantom and glass dosimetric system in 64 channel multi-detector CT. After acquiring topograms of frontal and lateral projection with 80 kVp and 10 mA, main coronary scan was done with 0.35 sec tube rotation time, 40 mm collimation (0.625 mm x 64 ea), small scan field of view (32 cm diameter), 105 mm scan length. Heart beat rate of phantom was maintained 60 bpm in ECG gating. In constant mAs technique 120 kVp, 600 mA was used, and 100 kVp for low kVp technique. In a retrospectively ECG gated helical CT technique 0.22 pitch was used, peak mA (600 mA) was adopted in range of 40-80% of R-R interval and 120 mA (80% reduction) in others with cardiac dose modulation. And 210 mAs was used without cardiac dose modulation. In a prospectively ECG gated sequential CT technique data were acquired at 75% R-R interval (middle diastolic phase in cardiac cycle), and 120 msec additional padding of the tube-on time was used. For effective dose calculation region specific conversion factor of dose length product in thorax was used, which was recommended by EUR 16262. The mean effective dose for conventional coronary CTA without cardiac dose modulation in a retrospectively ECG gated helical scan was 17.8 mSv, and mean organ dose of heart was 103.8 mGy. With low kVp and cardiac dose modulation the mean effective dose showed 54.5% reduction, and heart dose showed 52.3% reduction, compared with that of conventional coronary CTA. And at the sequential scan(SnapShot pulse mode) under prospective ECG gating the mean effective dose was 4.9 mSv, this represents an 72.5% reduction compared with

  9. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC); Conception d'un algorithme de reconstruction de vertex pour les donnees de CMS. Etude de detecteurs gazeux (MSGC) et silicium a micropistes

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, St

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  10. TH-C-19A-03: Characterization of the Dose Per Pulse Dependence of Various Detectors Used in Quality Assurance of FFF Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Karan, T [Stronach Regional Cancer Center, Newmarket, ON (Canada); Viel, F; Atwal, P; Gete, E; Camborde, M; Horwood, R; Strgar, V; Duzenli, C [British Columbia Cancer Agency, Vancouver, BC (Canada)

    2014-06-15

    Purpose: To present the dose per pulse dependence of various QA devices under Flattening Filter Free (FFF) conditions. Methods: Air and liquid filled ion chamber arrays, diode arrays, radiochromic film and optically stimulated luminescence detectors were investigated. All detectors were irradiated under similar conditions of varying dose per pulse on a TrueBeam linac. Dose per pulse was controlled by varying SSD from 70 to 160 cm providing a range from ~0.5 to ~3 mGy per pulse. MU rates of up to 2400 MU/min for 10X FFF and 1400 MU/min for the 6X FFF beam were used. Beam pulses were counted using the Profiler™ diode array and pulse timing was confirmed by examining linac node files. Delivered doses were calculated with the Eclipse™ treatment planning system. Results: The detectors show a range of behaviors depending on the detector type, as expected. Diode arrays show up to 4% change in sensitivity (sensitivity increases with increasing dose per pulse) over the range tested. Air and liquid ion chambers arrays show a change in sensitivity of up to 3% (air) and 6% (liquid) (sensitivity decreases with increasing dose per pulse) while film and OSLD do not demonstrate a dependence on dose per pulse. Conclusion: Dependence of detector response on dose per pulse varies considerably depending on detector design. Interplay between dose per pulse and MU rate also exists for some detectors. Due diligence is required to characterize detector response prior to implementation of a QA protocol for FFF treatment delivery. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. We intend to further investigate the implications of this for VMAT FFF patient specific quality assurance. T Karan and F Viel have received partial funding through the Varian Research program.

  11. TH-C-19A-03: Characterization of the Dose Per Pulse Dependence of Various Detectors Used in Quality Assurance of FFF Treatment Plans

    International Nuclear Information System (INIS)

    Karan, T; Viel, F; Atwal, P; Gete, E; Camborde, M; Horwood, R; Strgar, V; Duzenli, C

    2014-01-01

    Purpose: To present the dose per pulse dependence of various QA devices under Flattening Filter Free (FFF) conditions. Methods: Air and liquid filled ion chamber arrays, diode arrays, radiochromic film and optically stimulated luminescence detectors were investigated. All detectors were irradiated under similar conditions of varying dose per pulse on a TrueBeam linac. Dose per pulse was controlled by varying SSD from 70 to 160 cm providing a range from ~0.5 to ~3 mGy per pulse. MU rates of up to 2400 MU/min for 10X FFF and 1400 MU/min for the 6X FFF beam were used. Beam pulses were counted using the Profiler™ diode array and pulse timing was confirmed by examining linac node files. Delivered doses were calculated with the Eclipse™ treatment planning system. Results: The detectors show a range of behaviors depending on the detector type, as expected. Diode arrays show up to 4% change in sensitivity (sensitivity increases with increasing dose per pulse) over the range tested. Air and liquid ion chambers arrays show a change in sensitivity of up to 3% (air) and 6% (liquid) (sensitivity decreases with increasing dose per pulse) while film and OSLD do not demonstrate a dependence on dose per pulse. Conclusion: Dependence of detector response on dose per pulse varies considerably depending on detector design. Interplay between dose per pulse and MU rate also exists for some detectors. Due diligence is required to characterize detector response prior to implementation of a QA protocol for FFF treatment delivery. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. We intend to further investigate the implications of this for VMAT FFF patient specific quality assurance. T Karan and F Viel have received partial funding through the Varian Research program

  12. Application of the dose conversion factor for a NaI(Tl) detector to the radwaste drum assay

    International Nuclear Information System (INIS)

    Ji, Young-Yong; Hong, Dae-Seok; Kim, Tae-Kuk; Kwak, Kyung-Kil; Ryu, Woo-Seog

    2011-01-01

    The dose-to-curie (DTC) conversion method has been known that there could be extremely high uncertainty associated with establishing the radioactivity of gamma emitters in a drum. However, the DTC conversion method is still an effective assay method to calculate the radioisotope inventory because of the simple and easy procedures to be applied. In order to make the DTC conversion method practical, numerous assumptions and limitations placed on its use. These assumptions and limitations are related to the dose rate measurement and the relative abundance of gamma emitters in a drum. However, these two variables were generally obtained from the different detection mechanisms even using the different radwaste each other. Unfortunately, that expanded the limitation of using the DTC conversion method. In order to obtain two variables in a drum to be assayed at once, the dose conversion factor for a NaI(Tl) detector was first calculated from the MCNP code. The pulse height spectrum from a simulated drum inserted into a standard source was measured by a NaI(Tl) detector, and then, two variables were calculated from the dose conversion factor and the net count rate of detected gamma emitters in the pulse height spectrum.

  13. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    Science.gov (United States)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  14. Effective dose to patient measurements in flat-detector and multislice computed tomography: a comparison of applications in neuroradiology

    International Nuclear Information System (INIS)

    Struffert, Tobias; Hauer, Michael; Doerfler, Arnd; Banckwitz, Rosemarie; Koehler, Christoph; Royalty, Kevin

    2014-01-01

    Flat-detector CT (FD-CT) is used for a variety of applications. Additionally, 3D rotational angiography (3D DSA) is used to supplement digital subtraction angiography (DSA) studies. The aim was to measure and compare the dose of (1) standard DSA and 3D DSA and (2) analogous FD-CT and multislice CT (MSCT) protocols. Using an anthropomorphic phantom, the effective dose to patients (according to ICRP 103) was measured on an MSCT and a flat-detector angiographic system using standard protocols as recommended by the manufacturer. (1) Evaluation of DSA and 3D DSA angiography protocols: ap.-lat. Standard/low-dose series 1/0.8 mSv, enlarged oblique projection 0.3 mSv, 3D DSA 0.9 mSv (limited coverage length 0.3 mSv). (2) Comparison of FD-CT and MSCT: brain parenchyma imaging 2.9 /1.4 mSv, perfusion imaging 2.3/4.2 mSv, temporal bone 0.2 /0.2 mSv, angiography 2.9/3.3 mSv, limited to the head using collimation 0.5/0.5 mSv. The effective dose for an FD-CT application depends on the application used. Using collimation for FD-CT applications, the dose may be reduced considerably. Due to the low dose of 3D DSA, we recommend using this technique to reduce the number of DSA series needed to identify working projections. (orig.)

  15. Evaluation of linear array MOSFET detectors for in vivo dosimetry to measure rectal dose in HDR brachytherapy.

    Science.gov (United States)

    Haughey, Aisling; Coalter, George; Mugabe, Koki

    2011-09-01

    The study aimed to assess the suitability of linear array metal oxide semiconductor field effect transistor detectors (MOSFETs) as in vivo dosimeters to measure rectal dose in high dose rate brachytherapy treatments. The MOSFET arrays were calibrated with an Ir192 source and phantom measurements were performed to check agreement with the treatment planning system. The angular dependence, linearity and constancy of the detectors were evaluated. For in vivo measurements two sites were investigated, transperineal needle implants for prostate cancer and Fletcher suites for cervical cancer. The MOSFETs were inserted into the patients' rectum in theatre inside a modified flatus tube. The patients were then CT scanned for treatment planning. Measured rectal doses during treatment were compared with point dose measurements predicted by the TPS. The MOSFETs were found to require individual calibration factors. The calibration was found to drift by approximately 1% ±0.8 per 500 mV accumulated and varies with distance from source due to energy dependence. In vivo results for prostate patients found only 33% of measured doses agreed with the TPS within ±10%. For cervix cases 42% of measured doses agreed with the TPS within ±10%, however of those not agreeing variations of up to 70% were observed. One of the most limiting factors in this study was found to be the inability to prevent the MOSFET moving internally between the time of CT and treatment. Due to the many uncertainties associated with MOSFETs including calibration drift, angular dependence and the inability to know their exact position at the time of treatment, we consider them to be unsuitable for in vivo dosimetry in rectum for HDR brachytherapy.

  16. Evaluation of linear array MOSFET detectors for in vivo dosimetry to measure rectal dose in DHR brachytherapy

    International Nuclear Information System (INIS)

    Haughey, A.; Coalter, G.; Mugabe, K.

    2011-01-01

    Full text: The study aimed to assess the suitability of linear array metal oxide semiconductor field effect transistor detectors (MOSFETs) as in vivo dosimeters to measure rectal dose in high dose rate brachytherapy treatments. The MOSFET arrays were calibrated with an Ir192 source and phantom measurements were performed to check agreement with the treatment planning system. The angular dependence, linearity and constancy of the detectors were evaluated. For in vivo measurements two sites were investigated, transperineal needle implants for prostate cancer and Fletcher suites for cervical cancer. The MOSFETs were inserted into the patients' rectum in theatre inside a modified flatus tube. The patients were then CT scanned for treatment planning. Measured rectal doses during treatment were compared with point dose measurements predicted by the TPS. The MOSFETs were found to require individual calibration factors. The calibration was found to drift by approximately 1% ±0.8 per 500 mV accumulated and varies with distance from source due to energy dependence. In vivo results for prostate patients found only 33% of measured doses agreed with the TPS within ±1O%. For cervix cases 42% of measured doses agreed with the TPS within ± 10%, however of those not agreeing variations of up to 70% were observed. One of the most limiting factors in this study was found to be the inability to prevent the MOSFET moving internally between the time of CT and treatment. Due to the many uncertainties associated with MOSFETs including calibration drift, angular dependence and the inability to know their exact position at the time of treatment, we consider them to be unsuitable for in vivo dosimetry in rectum for HDR brachytherapy. (author)

  17. Effective dose to patient measurements in flat-detector and multislice computed tomography: a comparison of applications in neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Struffert, Tobias; Hauer, Michael; Doerfler, Arnd [University of Erlangen-Nuremberg, Department of Neuroradiology, Erlangen (Germany); Banckwitz, Rosemarie; Koehler, Christoph [Siemens AG, Healthcare Sector, Forchheim (Germany); Royalty, Kevin [Siemens Medical Solutions, USA, Inc, Hoffman Estates, IL (United States); University of Wisconsin, Department of Biomedical Engineering and School of Medicine and Public Health, Madison, WI (United States)

    2014-06-15

    Flat-detector CT (FD-CT) is used for a variety of applications. Additionally, 3D rotational angiography (3D DSA) is used to supplement digital subtraction angiography (DSA) studies. The aim was to measure and compare the dose of (1) standard DSA and 3D DSA and (2) analogous FD-CT and multislice CT (MSCT) protocols. Using an anthropomorphic phantom, the effective dose to patients (according to ICRP 103) was measured on an MSCT and a flat-detector angiographic system using standard protocols as recommended by the manufacturer. (1) Evaluation of DSA and 3D DSA angiography protocols: ap.-lat. Standard/low-dose series 1/0.8 mSv, enlarged oblique projection 0.3 mSv, 3D DSA 0.9 mSv (limited coverage length 0.3 mSv). (2) Comparison of FD-CT and MSCT: brain parenchyma imaging 2.9 /1.4 mSv, perfusion imaging 2.3/4.2 mSv, temporal bone 0.2 /0.2 mSv, angiography 2.9/3.3 mSv, limited to the head using collimation 0.5/0.5 mSv. The effective dose for an FD-CT application depends on the application used. Using collimation for FD-CT applications, the dose may be reduced considerably. Due to the low dose of 3D DSA, we recommend using this technique to reduce the number of DSA series needed to identify working projections. (orig.)

  18. Evaluation of the influence of parameters that determine the mean glandular dose in mammography using different detectors

    International Nuclear Information System (INIS)

    Costa, K.; Nogueira, M. S.

    2015-10-01

    Full text: Mammography is a test used for early detection of breast cancer. The mean glandular dose (MGD) is dosimetric greatness accepted as indicative of carcinogenic risk induced by ionizing radiation in the breasts of women undergoing mammography exams. MGD value is estimated from the incident air kerma (k i), associated with conversion factors which depend on the half-value layer (HVL), the breast composition and thickness compressed breast. This study aims to evaluate the influence of the parameters used to determine the MGD using different measurement detectors. Measurements were performed on a Siemens Mammomat Model 300 Nova mammography equipment; this has the combinations Anode/Filter of Mo/Mo, Mo/Rh and W/Rh. Detectors used were the ionization chamber Model 10X6-6M manufactured by Radcal Co., two solid-state detectors, one Model AGMS-M manufactured by Radcal Co. and other Model Xi Mammo manufactured by UNFORS. The detectors measures were compared and the MGD value was estimated; differences between measurements and the reference values were higher in HVL and k i parameters. The results are displayed according to other published works. (Author)

  19. A scintillating GEM detector for 2D dose imaging in hadron therapy

    NARCIS (Netherlands)

    Seravalli, E.

    2008-01-01

    The main aim of radiotherapy techniques is to deliver the dose to the target volume while sparing as much as possible the healthy tissue. Dose verifications prior the treatment of the patient are mandatory in order to guarantee high accuracy to the treatment. We have developed a 2D dose imaging

  20. Estimating Effective Dose from Phantom Dose Measurements in Atrial Fibrillation Ablation Procedures and Comparison of MOSFET and TLD Detectors in a Small Animal Dosimetry Setting

    Science.gov (United States)

    Anderson-Evans, Colin David

    Two different studies will be presented in this work. The first involves the calculation of effective dose from a phantom study which simulates an atrial fibrillation (AF) ablation procedure. The second involves the validation of metal-oxide semiconducting field effect transistors (MOSFET) for small animal dosimetry applications as well as improved characterization of the animal irradiators on Duke University's campus. Atrial Fibrillation is an ever increasing health risk in the United States. The most common type of cardiac arrhythmia, AF is associated with increased mortality and ischemic cerebrovascular events. Managing AF can include, among other treatments, an interventional procedure called catheter ablation. The procedure involves the use of biplane fluoroscopy during which a patient can be exposed to radiation for as much as two hours or more. The deleterious effects of radiation become a concern when dealing with long fluoroscopy times, and because the AF ablation procedure is elective, it makes relating the risks of radiation ever more essential. This study hopes to quantify the risk through the derivation of dose conversion coefficients (DCCs) from the dose-area product (DAP) with the intent that DCCs can be used to provide estimates of effective dose (ED) for typical AF ablation procedures. A bi-plane fluoroscopic and angiographic system was used for the simulated AF ablation procedures. For acquisition of organ dose measurements, 20 diagnostic MOSFET detectors were placed at selected organs in a male anthropomorphic phantom, and these detectors were attached to 4 bias supplies to obtain organ dose readings. The DAP was recorded from the system console and independently validated with an ionization chamber and radiochromic film. Bi-plane fluoroscopy was performed on the phantom for 10 minutes to acquire the dose rate for each organ, and the average clinical procedure time was multiplied by each organ dose rate to obtain individual organ doses. The

  1. Development of Computational Procedure for Assessment of Patient Dose in Multi-Detector Computed Tomography

    International Nuclear Information System (INIS)

    Park, Dong Wook

    2007-02-01

    Technological development to improve the quality and speed with which images are obtained have fostered the growth of frequency and collective effective dose of CT examination. Especially, High-dose x-ray technique of CT has increased in the concern of patient dose. However CTDI and DLP in CT dosimetry leaves something to be desired to evaluate patient dose. And even though the evaluation of effective dose in CT practice is required for comparison with other radiography, it's not sufficient to show any estimation because it's not for medical purpose. Therefore the calculation of effective dose in CT procedure is needed for that purpose. However modelling uncertainties will be due to insufficient information from manufacturing tolerances. Therefore the purpose of this work is development of computational procedure for assessment of patient dose through the experiment for getting essential information in MDCT. In order to obtain exact absorbed dose, normalization factors must be created to relate simulated dose values with CTDI air measurement. The normalization factors applied to the calculation of CTDI 100 using axial scanning and organ effective dose using helical scanning. The calculation of helical scanning was compared with the experiment of Groves et al.(2004). The result has a about factor 2 of the experiment. It seems because AEC is not simulated. In several studies, when AEC applied to a CT examination, approximately 20-30% dose reduction was appeared. Therefore the study of AEC simulation should be added and modified

  2. Estimation of eye absorbed doses in head & neck radiotherapy practices using thermoluminescent detectors

    Directory of Open Access Journals (Sweden)

    Gh Bagheri

    2011-09-01

    Full Text Available  Determination of eye absorbed dose during head & neck radiotherapy is essential to estimate the risk of cataract. Dose measurements were made in 20 head & neck cancer patients undergoing 60Co radiotherapy using LiF(MCP thermoluminescent dosimeters. Head & neck cancer radiotherapy was delivered by fields using SAD & SSD techniques. For each patient, 3 TLD chips were placed on each eye. Head & neck dose was about 700-6000 cGy in 8-28 equal fractions. The range of eye dose is estimated to be (3.49-639.1 mGy with a mean of maximum dose (98.114 mGy, which is about 3 % of head & neck dose. Maximum eye dose was observed for distsnces of about 3 cm from edge of the field to eye.

  3. Variation of absorbed doses onboard of ISS Russian Service Module as measured with passive detectors

    Czech Academy of Sciences Publication Activity Database

    Jadrníčková, Iva; Tateyama, R.; Yasuda, N.; Kawashima, H.; Kurano, M.; Uchihori, Y.; Kitamura, H.; Akatov, YU.; Shurshakov, V.; Kobayashi, I.; Ohguchi, H.; Koguchi, Y.; Spurný, František

    2009-01-01

    Roč. 44, 9-10 (2009), s. 901-904 ISSN 1350-4487. [International Conference on Nuclear Tracks in Solids /24./. Bologna, 01.09.2008-05.09.2008] R&D Projects: GA AV ČR KJB100480901; GA ČR GA205/09/0171 Institutional research plan: CEZ:AV0Z10480505 Keywords : space dosimetry * International Space Station * passive detector * track etch detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.973, year: 2009

  4. Poker-camp: a program for calculating detector responses and phantom organ doses in environmental gamma fields

    International Nuclear Information System (INIS)

    Koblinger, L.

    1981-09-01

    A general description, user's manual and a sample problem are given in this report on the POKER-CAMP adjoint Monte Carlo photon transport program. Gamma fields of different environmental sources which are uniformly or exponentially distributed sources or plane sources in the air, in the soil or in an intermediate layer placed between them are simulated in the code. Calculations can be made on flux, kerma and spectra of photons at any point; and on responses of point-like, cylindrical, or spherical detectors; and on doses absorbed in anthropomorphic phantoms. (author)

  5. Photovoltaic radiation detector element

    International Nuclear Information System (INIS)

    Agouridis, D.C.

    1980-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips

  6. Feasibility study of a dual detector configuration concept for simultaneous megavoltage imaging and dose verification in radiotherapy

    International Nuclear Information System (INIS)

    Deshpande, Shrikant; McNamara, Aimee L.; Holloway, Lois; Metcalfe, Peter; Vial, Philip

    2015-01-01

    Purpose: To test the feasibility of a dual detector concept for comprehensive verification of external beam radiotherapy. Specifically, the authors test the hypothesis that a portal imaging device coupled to a 2D dosimeter provides a system capable of simultaneous imaging and dose verification, and that the presence of each device does not significantly detract from the performance of the other. Methods: The dual detector configuration comprised of a standard radiotherapy electronic portal imaging device (EPID) positioned directly on top of an ionization-chamber array (ICA) with 2 cm solid water buildup material (between EPID and ICA) and 5 cm solid backscatter material. The dose response characteristics of the ICA and the imaging performance of the EPID in the dual detector configuration were compared to the performance in their respective reference clinical configurations. The reference clinical configurations were 6 cm solid water buildup material, an ICA, and 5 cm solid water backscatter material as the reference dosimetry configuration, and an EPID with no additional buildup or solid backscatter material as the reference imaging configuration. The dose response of the ICA was evaluated by measuring the detector’s response with respect to off-axis position, field size, and transit object thickness. Clinical dosimetry performance was evaluated by measuring a range of clinical intensity-modulated radiation therapy (IMRT) beams in transit and nontransit geometries. The imaging performance of the EPID was evaluated quantitatively by measuring the contrast-to-noise ratio (CNR) and spatial resolution. Images of an anthropomorphic phantom were also used for qualitative assessment. Results: The measured off-axis and field size response with the ICA in both transit and nontransit geometries for both dual detector configuration and reference dosimetry configuration agreed to within 1%. Transit dose response as a function of object thickness agreed to within 0.5%. All

  7. Evaluation of dose distributions in gamma chamber using glass plate detector

    Directory of Open Access Journals (Sweden)

    Narayan Pradeep

    2008-01-01

    Full Text Available A commercial glass plate of thickness 1.75 mm has been utilized for evaluation of dose distributions inside the irradiation volume of gamma chamber using optical densitometry technique. The glass plate showed linear response in the dose range 0.10 Kilo Gray (kGy to 10 kGy of cobalt-60 gamma radiation with optical sensitivity 0.04 Optical Density (OD /kGy. The change in the optical density at each identified spatial dose matrix on the glass plate in relation to the position in the irradiation volume has been presented as dose distributions inside the gamma chamber. The optical density changes have been graphically plotted in the form of surface diagram of color washes for different percentage dose rate levels as isodose distributions in gamma chamber. The variation in dose distribution inside the gamma chamber unit, GC 900, BRIT India make, using this technique has been observed within ± 15%. This technique can be used for routine quality assurances and dose distribution validation of any gamma chamber during commissioning and source replacement. The application of commercial glass plate for dose mapping in gamma chambers has been found very promising due to its wider dose linearity, quick measurement, and lesser expertise requirement in application of the technique.

  8. Maximum skin dose assessment in interventional cardiology: large area detectors and calculation methods

    International Nuclear Information System (INIS)

    Quail, E.; Petersol, A.

    2002-01-01

    Advances in imaging technology have facilitated the development of increasingly complex radiological procedures for interventional radiology. Such interventional procedures can involve significant patient exposure, although often represent alternatives to more hazardous surgery or are the sole method for treatment. Interventional radiology is already an established part of mainstream medicine and is likely to expand further with the continuing development and adoption of new procedures. Between all medical exposures, interventional radiology is first of the list of the more expansive radiological practice in terms of effective dose per examination with a mean value of 20 mSv. Currently interventional radiology contribute 4% to the annual collective dose, in spite of contributing to total annual frequency only 0.3% but considering the perspectives of this method can be expected a large expansion of this value. In IR procedures the potential for deterministic effects on the skin is a risk to be taken into account together with stochastic long term risk. Indeed, the International Commission on Radiological Protection (ICRP) in its publication No 85, affirms that the patient dose of priority concern is the absorbed dose in the area of skin that receives the maximum dose during an interventional procedure. For the mentioned reasons, in IR it is important to give to practitioners information on the dose received by the skin of the patient during the procedure. In this paper maximum local skin dose (MSD) is called the absorbed dose in the area of skin receiving the maximum dose during an interventional procedure

  9. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    International Nuclear Information System (INIS)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A.A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.

    2016-01-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  10. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    Science.gov (United States)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.

    2016-09-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  11. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Fadeyev, V., E-mail: fadeyev@ucsc.edu [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Galloway, Z.; Grabas, H.; Grillo, A.A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Affolder, A.; Buckland, M.; Meng, L. [Department of Physics, University of Liverpool, O. Lodge Laboratory, Oxford Street, Liverpool L69 7ZE (United Kingdom); Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I. [Department of Physics, Oxford University, Oxford (United Kingdom); and others

    2016-09-21

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  12. Investigations of doses on board commercial passenger aircraft using CR-39 and thermoluminescent detectors

    Czech Academy of Sciences Publication Activity Database

    Horwacik, T.; Bilski, P.; Olko, P.; Spurný, František; Turek, Karel

    2004-01-01

    Roč. 110, 1-4 (2004), s. 377-380 ISSN 0144-8420 Grant - others:EC project(XE) FIGM-CT2000-00068 Institutional research plan: CEZ:AV0Z1048901 Keywords : Aircrew * thermoluminescent detectors * environmental measurements Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.617, year: 2003

  13. Noise analysis due to strip resistance in the ATLAS SCT silicon strip module

    International Nuclear Information System (INIS)

    Kipnis, I.

    1996-08-01

    The module is made out of four 6 cm x 6 cm single sided Si microstrip detectors. Two detectors are butt glued to form a 12 cm long mechanical unit and strips of the two detectors are electrically connected to form 12 cm long strips. The butt gluing is followed by a back to back attachment. The module in this note is the Rφ module where the electronics is oriented parallel to the strip direction and bonded directly to the strips. This module concept provides the maximum signal-to-noise ratio, particularly when the front-end electronics is placed near the middle rather than at the end. From the noise analysis, it is concluded that the worst-case ΔENC (far-end injection) between end- and center-tapped modules will be 120 to 210 el. rms (9 to 15%) for a non-irradiated detector and 75 to 130 el. rms (5 to 9%) for an irradiated detector, for a metal strip resistance of 10 to 20 Ω/cm

  14. Variation in X-ray dose quantity using an amorphous selenium based flat-panel detector - a study on the dose reduction rate up to the limit of diagnostical utilization

    International Nuclear Information System (INIS)

    Lehnert, T.; Wohlers, J.; Manegold, K.; Wetter, A.; Jacobi, V.; Mack, M.G.; Vogl, T.J.; Streng, W.

    2006-01-01

    Purpose: To evaluate the diagnostic quality and minimum required dose to obtain acceptable images for diagnostic purposes in the field of musculoskeletal radiology. Materials and methods: A critical comparison of the image quality produced by a novel flat panel detector and the conventional screen/film system using a contrast-detail phantom was performed in phase I. Images from both systems were obtained with the same dose and displayed with similar contrast and density. In phase II images of significant anatomical structures in cadaver extremities obtained using the digital detector system and the standard film/screen system were critically evaluated. After a successive reduction in the X-ray dose for 84 patients in phase III, eight independent radiologists compared the image quality of the screen/film system to that of the novel flat panel detector. Results: Phases I and II revealed a difference in the image quality achieved by the standard screen/film system and the digital detector system to the advantage of the digital detector system. In 77 of 84 patients (91.7%), phase III showed equal image quality after a 50% reduction in the X-ray dose. In 3 cases (3.6%) the image quality and the level of contrast were better. No unified statement could be made for 4 patients (4.7%). Conclusion: Digital imaging of skeletal disorders using the novel flat panel detector makes it possible to reduce the X-ray dose by 50% with equal or even better image quality. (orig.)

  15. Using smartphone as a motion detector to collect time-microenvironment data for estimating the inhalation dose

    International Nuclear Information System (INIS)

    Hoi, Tran Xuan; Phuong, Huynh Truc; Van Hung, Nguyen

    2016-01-01

    During the production of iodine-131 from neutron irradiated tellurium dioxide by the dry distillation, a considerable amount of "1"3"1I vapor is dispersed to the indoor air. People who routinely work at the production area may result in a significant risk of exposure to chronic intake by inhaled "1"3"1I. This study aims to estimate the inhalation dose for individuals manipulating the "1"3"1I at a radioisotope production. By using an application installed on smartphones, we collected the time-microenvironment data spent by a radiation group during work days in 2015. Simultaneously, we used a portable air sampler combined with radioiodine cartridges for grabbing the indoor air samples and then the daily averaged "1"3"1I concentration was calculated. Finally, the time-microenvironment data jointed with the concentration to estimate the inhalation dose for the workers. The result showed that most of the workers had the annual internal dose in 1÷6 mSv. We concluded that using smartphone as a motion detector is a possible and reliable way instead of the questionnaires, diary or GPS-based method. It is, however, only suitable for monitoring on fixed indoor environments and limited the targeted people. - Highlights: • We constructed the time-microenvironment patterns with 1-min resolution by using a smartphone application. • Exposure to "1"3"1I at the dry distillation areas may lead to an acute inhalation dose significantly. • Using smartphone as a motion detector in indoor exposure monitoring is a reliable method.

  16. Abdominal multi-detector row CT: Effectiveness of determining contrast medium dose on basis of body surface area

    International Nuclear Information System (INIS)

    Onishi, Hiromitsu; Murakami, Takamichi; Kim, Tonsok; Hori, Masatoshi; Osuga, Keigo; Tatsumi, Mitsuaki; Higashihara, Hiroki; Maeda, Noboru; Tsuboyama, Takahiro; Nakamoto, Atsushi; Tomoda, Kaname; Tomiyama, Noriyuki

    2011-01-01

    Purpose: To investigate the validity of determining the contrast medium dose based on body surface area (BSA) for the abdominal contrast-enhanced multi-detector row CT comparing with determining based on body weight (BW). Materials and methods: Institutional review committee approval was obtained. In this retrospective study, 191 patients those underwent abdominal contrast-enhanced multi-detector row CT were enrolled. All patients received 96 mL of 320 mg I/mL contrast medium at the rate of 3.2 mL. The iodine dose required to enhance 1 HU of the aorta at the arterial phase and that of liver parenchyma at portal venous phase per BSA were calculated (EU BSA ) and evaluated the relationship with BSA. Those per BW were also calculated (EU BW ) and evaluated. Estimated enhancement values (EEVs) of the aorta and liver parenchyma with two protocols for dose decision based on BSA and BW were calculated and patient-to-patient variability was compared between two protocols using the Levene test. Results: The mean of EU BSA and EU BW were 0.0621 g I/m 2 /HU and 0.00178 g I/kg/HU for the aorta, and 0.342 g I/m 2 /HU and 0.00978 g I/kg/HU for the liver parenchyma, respectively. In the aortic enhancement, EU BSA was almost constant regardless of BSA, and the mean absolute deviation of the EEV with the BSA protocol was significantly lower than that with the BW protocol (P < .001), although there was no significant difference between two protocols in the hepatic parenchymal enhancement (P = .92). Conclusion: For the aortic enhancement, determining the contrast medium dose based on BSA was considered to improve patient-to-patient enhancement variability.

  17. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  18. Varicose vein stripping

    Science.gov (United States)

    ... stripping; Venous reflux - vein stripping; Venous ulcer - veins Patient Instructions Surgical wound care - open Varicose veins - what to ask your doctor Images Circulatory system References American Family Physician. Management of varicose veins. www.aafp.org/afp/2008/ ...

  19. Technical Note: Out-of-field dose measurement at near surface with plastic scintillator detector.

    Science.gov (United States)

    Bourgouin, Alexandra; Varfalvy, Nicolas; Archambault, Louis

    2016-09-08

    Out-of-field dose depends on multiple factors, making peripheral dosimetry com-plex. Only a few dosimeters have the required features for measuring peripheral dose. Plastic scintillator dosimeters (PSDs) offer numerous dosimetric advantages as required for out-of-field dosimetry. The purpose of this study is to determine the potential of using PSD as a surface peripheral dosimeter. Measurements were performed with a parallel-plate ion chamber, a small volume ion chamber, and with a PSD. Lateral-dose measurements (LDM) at 0.5 cm depth and depth-dose curve (PDD) were made and compared to the dose calculation provided by a treatment planning system (TPS). This study shows that a PSD can measure a dose as low as 0.51 ± 0.17 cGy for photon beam and 0.58 ± 0.20 cGy for electron beam with a difference of 0.2 and 0.1 cGy compared to a parallel-plate ion chamber. This study demonstrates the potential of using PSD as an out-of-field dosimeter since measure-ments with PSD avoid averaging over a too-large depth, at 1 mm diameter, and can make precise measurement at very low dose. Also, electronic equilibrium is easier to reach with PSD due to its small sensitive volume and its water equivalence. © 2016 The Authors.

  20. Half-dose non-contrast CT in the investigation of urolithiasis: image quality improvement with third-generation integrated circuit CT detectors.

    Science.gov (United States)

    Wang, Jun; Kang, Tony; Arepalli, Chesnal; Barrett, Sarah; O'Connell, Tim; Louis, Luck; Nicolaou, Savvakis; McLaughlin, Patrick

    2015-06-01

    The objective of this study is to establish the effect of third-generation integrated circuit (IC) CT detector on objective image quality in full- and half-dose non-contrast CT of the urinary tract. 51 consecutive patients with acute renal colic underwent non-contrast CT of the urinary tract using a 128-slice dual-source CT before (n = 24) and after (n = 27) the installation of third-generation IC detectors. Half-dose images were generated using projections from detector A using the dual-source RAW data. Objective image noise in the liver, spleen, right renal cortex, and right psoas muscle was compared between DC and IC cohorts for full-dose and half-dose images reconstructed with FBP and IR algorithms using 1 cm(2) regions of interest. Presence and size of obstructing ureteric calculi were also compared for full-dose and half-dose reconstructions using DC and IC detectors. No statistical difference in age and lateral body size was found between patients in the IC and DC cohorts. Radiation dose, as measured by size-specific dose estimates, did not differ significantly either between the two cohorts (10.02 ± 4.54 mGy IC vs. 12.28 ± 7.03 mGy DC). At full dose, objective image noise was not significantly lower in the IC cohort as compared to the DC cohort for the liver, spleen, and right psoas muscle. At half dose, objective image noise was lower in the IC cohort as compared to DC cohort at the liver (21.32 IC vs. 24.99 DC, 14.7% decrease, p 0.05 for all comparisons). Third-generation IC detectors result in lower objective image noise at full- and half-radiation dose levels as compared with traditional DC detectors. The magnitude of noise reduction was greater at half-radiation dose indicating that the benefits of using novel IC detectors are greater in low and ultra-low-dose CT imaging.

  1. Optimal density assignment to 2D diode array detector for different dose calculation algorithms in patient specific VMAT QA

    International Nuclear Information System (INIS)

    Park, So Yeon; Park, Jong Min; Choi, Chang Heon; Chun, MinSoo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In

    2017-01-01

    The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were 97.2%±2.3%, and 99.4%±1.1%, respectively while those for 15 MV were 98.5%±0.85% and 99.8%±0.2%, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device

  2. High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: preliminary clinical results

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Genovesi, Dario; Giorgetti, Assuero; Marzullo, Paolo [CNR, Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Bottai, Matteo [University of South Carolina, Division of Biostatistics, Columbia, SC (United States); Karolinska Institutet, Division of Biostatistics, Stockholm (Sweden); Di Martino, Fabio [AOUP, UO Fisica Sanitaria, Pisa (Italy)

    2012-01-15

    Appropriate use of SPECT imaging is regulated by evidence-based guidelines and appropriateness criteria in an effort to limit the burden of radiation administered to patients. We aimed at establishing whether the use of a low dose for stress-rest single-day nuclear myocardial perfusion imaging on an ultrafast (UF) cardiac gamma camera using cadmium-zinc-telluride solid-state detectors could be used routinely with the same accuracy obtained with standard doses and conventional cameras. To this purpose, 137 consecutive patients (mean age 61 {+-} 8 years) with known or suspected coronary artery disease (CAD) were enrolled. They underwent single-day low-dose stress-rest myocardial perfusion imaging using UF SPECT and invasive coronary angiography. Patients underwent the first scan with a 7-min acquisition time 10 min after the end of the stress protocol (dose range 185 to 222 MBq of {sup 99m}Tc-tetrofosmin). The rest scan (dose range 370 to 444 MBq of {sup 99m}Tc-tetrofosmin) was acquired with a 6-min acquisition time. The mean summed stress scores (SSS) and mean summed rest scores (SRS) were obtained semiquantitatively. Coronary angiograms showed significant epicardial CAD in 83% of patients. Mean SSS and SRS were 10 {+-} 5 and 3 {+-} 3, respectively. Overall the area under the ROC curve for the SSS values was 0.904, while the areas under the ROC curves for each vascular territory were 0.982 for the left anterior descending artery, 0.931 for the left circumflex artery and 0.889 for the right coronary artery. This pilot study demonstrated the feasibility of a low-dose single-day stress-rest fasting protocol performed using UF SPECT, with good sensitivity and specificity in detecting CAD at low patient exposure, opening new perspectives in the use of myocardial perfusion in ischaemic patients. (orig.)

  3. High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: preliminary clinical results

    International Nuclear Information System (INIS)

    Gimelli, Alessia; Genovesi, Dario; Giorgetti, Assuero; Marzullo, Paolo; Bottai, Matteo; Di Martino, Fabio

    2012-01-01

    Appropriate use of SPECT imaging is regulated by evidence-based guidelines and appropriateness criteria in an effort to limit the burden of radiation administered to patients. We aimed at establishing whether the use of a low dose for stress-rest single-day nuclear myocardial perfusion imaging on an ultrafast (UF) cardiac gamma camera using cadmium-zinc-telluride solid-state detectors could be used routinely with the same accuracy obtained with standard doses and conventional cameras. To this purpose, 137 consecutive patients (mean age 61 ± 8 years) with known or suspected coronary artery disease (CAD) were enrolled. They underwent single-day low-dose stress-rest myocardial perfusion imaging using UF SPECT and invasive coronary angiography. Patients underwent the first scan with a 7-min acquisition time 10 min after the end of the stress protocol (dose range 185 to 222 MBq of 99m Tc-tetrofosmin). The rest scan (dose range 370 to 444 MBq of 99m Tc-tetrofosmin) was acquired with a 6-min acquisition time. The mean summed stress scores (SSS) and mean summed rest scores (SRS) were obtained semiquantitatively. Coronary angiograms showed significant epicardial CAD in 83% of patients. Mean SSS and SRS were 10 ± 5 and 3 ± 3, respectively. Overall the area under the ROC curve for the SSS values was 0.904, while the areas under the ROC curves for each vascular territory were 0.982 for the left anterior descending artery, 0.931 for the left circumflex artery and 0.889 for the right coronary artery. This pilot study demonstrated the feasibility of a low-dose single-day stress-rest fasting protocol performed using UF SPECT, with good sensitivity and specificity in detecting CAD at low patient exposure, opening new perspectives in the use of myocardial perfusion in ischaemic patients. (orig.)

  4. Optimal density assignment to 2D diode array detector for different dose calculation algorithms in patient specific VMAT QA

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Yeon; Park, Jong Min; Choi, Chang Heon; Chun, MinSoo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were 97.2%±2.3%, and 99.4%±1.1%, respectively while those for 15 MV were 98.5%±0.85% and 99.8%±0.2%, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device.

  5. Systematic characterization and quality assurance of silicon micro-strip sensors for the Silicon Tracking System of the CBM experiment

    Science.gov (United States)

    Ghosh, P.

    2014-07-01

    The Silicon Tracking System (STS) is the central detector of the Compressed Baryonic Matter (CBM) experiment at future Facility for Anti-proton and Ion Research (FAIR) at Darmstadt. The task of the STS is to reconstruct trajectories of charged particles originating at relatively high multiplicities from the high rate beam-target interactions. The tracker comprises of 300 μm thick silicon double-sided micro-strip sensors. These sensors should be radiation hard in order to reconstruct charged particles up to a maximum radiation dose of 1 × 1014neqcm-2. Systematic characterization allows us to investigate the sensor response and perform quality assurance (QA) tests. In this paper, systematic characterization of prototype double-sided silicon micro-strip sensors will be discussed. This procedure includes visual, passive electrical, and radiation hardness test. Presented results include tests on three different prototypes of silicon micro-strip sensors.

  6. Systematic characterization and quality assurance of silicon micro-strip sensors for the Silicon Tracking System of the CBM experiment

    International Nuclear Information System (INIS)

    Ghosh, P

    2014-01-01

    The Silicon Tracking System (STS) is the central detector of the Compressed Baryonic Matter (CBM) experiment at future Facility for Anti-proton and Ion Research (FAIR) at Darmstadt. The task of the STS is to reconstruct trajectories of charged particles originating at relatively high multiplicities from the high rate beam-target interactions. The tracker comprises of 300 μm thick silicon double-sided micro-strip sensors. These sensors should be radiation hard in order to reconstruct charged particles up to a maximum radiation dose of 1 × 10 14 n eq cm −2 . Systematic characterization allows us to investigate the sensor response and perform quality assurance (QA) tests. In this paper, systematic characterization of prototype double-sided silicon micro-strip sensors will be discussed. This procedure includes visual, passive electrical, and radiation hardness test. Presented results include tests on three different prototypes of silicon micro-strip sensors

  7. Development of a phoswich detector for neutron dose rate measurements in the Earth's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Doensdorf, Esther Miriam

    2014-04-30

    The Earth is constantly exposed to a stream of energetic particles from outer space. Through the interaction of this radiation with the Earth's magnetosphere and atmosphere a complex radiation field is formed which varies with the location inside the Earth's atmosphere. This radiation field consists of charged and uncharged particles leading to the constant exposure of human beings to radiation. As this ionizing radiation can be harmful for humans, it is necessary to perform dose rate measurements in different altitudes in the Earth's atmosphere. Due to their higher biological effectiveness the exposure to neutrons is more harmful than the exposure to γ-rays and charged particles, which is why the determination of neutron dose rates is the focus of this work. In this work the prototype of a Phoswich detector called PING (Phoswich Instrument for Neutrons and Gammas) is developed to determine dose rates caused by neutrons in the Earth's atmosphere and to distinguish these from γ-rays. The instrument is composed of two different scintillators optically coupled to each other and read out by one common photomultiplier tube. The scintillator package consists of an inner plastic scintillator made of the material BC-412 and a surrounding anti-coincidence made of sodium doped caesium iodide (CsI(Na)). In this work the instrument is calibrated, tested and flown and a procedure for a pulse shape analysis for this instrument is developed. With this analysis it is possible to distinguish pulses from the plastic scintillator and pulses from the CsI(Na). The pulses from the plastic scintillator are mainly due to the interaction of neutrons but there is an energy-dependent contribution of γ-rays to these events. Measurements performed on board an airplane show that the dose rates measured with the developed detector are in the same order of magnitude as results of other instruments. During measurements on board stratospheric balloons the altitude dependence

  8. SU-E-T-196: Comparative Analysis of Surface Dose Measurements Using MOSFET Detector and Dose Predicted by Eclipse - AAA with Varying Dose Calculation Grid Size

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; Nejaiman, S; Pokhrel, D; Jiang, H; Kumar, P [University of Kansas Medical Center, Kansas City, KS (United States)

    2015-06-15

    Purpose: Skin dose can be the limiting factor and fairly common reason to interrupt the treatment, especially for treating head-and-neck with Intensity-modulated-radiation-therapy(IMRT) or Volumetrically-modulated - arc-therapy (VMAT) and breast with tangentially-directed-beams. Aim of this study was to investigate accuracy of near-surface dose predicted by Eclipse treatment-planning-system (TPS) using Anisotropic-Analytic Algorithm (AAA)with varying calculation grid-size and comparing with metal-oxide-semiconductor-field-effect-transistors(MOSFETs)measurements for a range of clinical-conditions (open-field,dynamic-wedge, physical-wedge, IMRT,VMAT). Methods: QUASAR™-Body-Phantom was used in this study with oval curved-surfaces to mimic breast, chest wall and head-and-neck sites.A CT-scan was obtained with five radio-opaque markers(ROM) placed on the surface of phantom to mimic the range of incident angles for measurements and dose prediction using 2mm slice thickness.At each ROM, small structure(1mmx2mm) were contoured to obtain mean-doses from TPS.Calculations were performed for open-field,dynamic-wedge,physical-wedge,IMRT and VMAT using Varian-21EX,6&15MV photons using twogrid-sizes:2.5mm and 1mm.Calibration checks were performed to ensure that MOSFETs response were within ±5%.Surface-doses were measured at five locations and compared with TPS calculations. Results: For 6MV: 2.5mm grid-size,mean calculated doses(MCD)were higher by 10%(±7.6),10%(±7.6),20%(±8.5),40%(±7.5),30%(±6.9) and for 1mm grid-size MCD were higher by 0%(±5.7),0%(±4.2),0%(±5.5),1.2%(±5.0),1.1% (±7.8) for open-field,dynamic-wedge,physical-wedge,IMRT,VMAT respectively.For 15MV: 2.5mm grid-size,MCD were higher by 30%(±14.6),30%(±14.6),30%(±14.0),40%(±11.0),30%(±3.5)and for 1mm grid-size MCD were higher by 10% (±10.6), 10%(±9.8),10%(±8.0),30%(±7.8),10%(±3.8) for open-field, dynamic-wedge, physical-wedge, IMRT, VMAT respectively.For 6MV, 86% and 56% of all measured values

  9. Evaluation of imaging quality for flat-panel detector based low dose C-arm CT system

    International Nuclear Information System (INIS)

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Sungchae; Huh, Young

    2015-01-01

    The image quality associated with the extent of the angle of gantry rotation, the number of projection views, and the dose of X-ray radiation was investigated in flat-panel detector (FPD) based C-arm cone-beam computed tomography (CBCT) system for medical applications. A prototype CBCT system for the projection acquisition used the X-ray tube (A-132, Varian inc.) having rhenium-tungsten molybdenum target and flat panel a-Si X-ray detector (PaxScan 4030CB, Varian inc.) having a 397 x 298 mm active area with 388 μm pixel pitch and 1024 x 768 pixels in 2 by 2 binning mode. The performance comparison of X-ray imaging quality was carried out using the Feldkamp, Davis, and Kress (FDK) reconstruction algorithm between different conditions of projection acquisition. In this work, head-and-dental (75 kVp/20 mA) and chest (90 kVp/25 mA) phantoms were used to evaluate the image quality. The 361 (30 fps x 12 s) projection data during 360 deg. gantry rotation with 1 deg. interval for the 3D reconstruction were acquired. Parke weighting function were applied to handle redundant data and improve the reconstructed image quality in a mobile C-arm system with limited rotation angles. The reconstructed 3D images were investigated for comparison of qualitative image quality in terms of scan protocols (projection views, rotation angles and exposure dose). Furthermore, the performance evaluation in image quality will be investigated regarding X-ray dose and limited projection data for a FPD based mobile C-arm CBCT system. (authors)

  10. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy

    International Nuclear Information System (INIS)

    McMullan, G.; Faruqi, A.R.; Clare, D.; Henderson, R.

    2014-01-01

    Low dose electron imaging applications such as electron cryo-microscopy are now benefitting from the improved performance and flexibility of recently introduced electron imaging detectors in which electrons are directly incident on backthinned CMOS sensors. There are currently three commercially available detectors of this type: the Direct Electron DE-20, the FEI Falcon II and the Gatan K2 Summit. These have different characteristics and so it is important to compare their imaging properties carefully with a view to optimise how each is used. Results at 300 keV for both the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are presented. Of these, the DQE is the most important in the study of radiation sensitive samples where detector performance is crucial. We find that all three detectors have a better DQE than film. The K2 Summit has the best DQE at low spatial frequencies but with increasing spatial frequency its DQE falls below that of the Falcon II. - Highlights: • Three direct electron detectors offer better DQE than film at 300 keV. • Recorded 300 keV electron events on the detectors have very similar Landau distributions. • The Gatan K2 Summit detector has the highest DQE at low spatial frequency. • The FEI Falcon II detector has the highest DQE beyond one half the Nyquist frequency. • The Direct Electron DE-20 detector has the fastest data acquisition rate

  11. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McMullan, G., E-mail: gm2@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH (United Kingdom); Faruqi, A.R. [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH (United Kingdom); Clare, D. [Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX (United Kingdom); Henderson, R. [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH (United Kingdom)

    2014-12-15

    Low dose electron imaging applications such as electron cryo-microscopy are now benefitting from the improved performance and flexibility of recently introduced electron imaging detectors in which electrons are directly incident on backthinned CMOS sensors. There are currently three commercially available detectors of this type: the Direct Electron DE-20, the FEI Falcon II and the Gatan K2 Summit. These have different characteristics and so it is important to compare their imaging properties carefully with a view to optimise how each is used. Results at 300 keV for both the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are presented. Of these, the DQE is the most important in the study of radiation sensitive samples where detector performance is crucial. We find that all three detectors have a better DQE than film. The K2 Summit has the best DQE at low spatial frequencies but with increasing spatial frequency its DQE falls below that of the Falcon II. - Highlights: • Three direct electron detectors offer better DQE than film at 300 keV. • Recorded 300 keV electron events on the detectors have very similar Landau distributions. • The Gatan K2 Summit detector has the highest DQE at low spatial frequency. • The FEI Falcon II detector has the highest DQE beyond one half the Nyquist frequency. • The Direct Electron DE-20 detector has the fastest data acquisition rate.

  12. Assessment of fast and thermal neutron ambient dose equivalents around the KFUPM neutron source storage area using nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abu-Jarad, F. [Radiation Protection Unit, Environmental Protection Department, Saudi Aramco, P. O. Box 13027, Dhahran 31311 (Saudi Arabia); Qureshi, M.A. [Center for Applied Physical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    A set of five {sup 241}Am-Be neutron sources are utilized in research and teaching at King Fahd University of Petroleum and Minerals (KFUPM). Three of these sources have an activity of 16Ci each and the other two are of 5Ci each. A well-shielded storage area was designed for these sources. The aim of the study is to check the effectiveness of shielding of the KFUPM neutron source storage area. Poly allyl diglycol carbonate (PADC) Nuclear track detectors (NTDs) based fast and thermal neutron area passive dosimeters have been utilized side by side for 33 days to assess accumulated low ambient dose equivalents of fast and thermal neutrons at 30 different locations around the source storage area and adjacent rooms. Fast neutron measurements have been carried out using bare NTDs, which register fast neutrons through recoils of protons, in the detector material. NTDs were mounted with lithium tetra borate (Li{sub 2}B{sub 4}O{sub 7}) converters on their surfaces for thermal neutron detection via B10(n,{alpha})Li6 and Li6(n,{alpha})H3 nuclear reactions. The calibration factors of NTD both for fast and thermal neutron area passive dosimeters were determined using thermoluminescent dosimeters (TLD) with and without a polyethylene moderator. The calibration factors for fast and thermal neutron area passive dosimeters were found to be 1.33 proton tracks cm{sup -2}{mu}Sv{sup -1} and 31.5 alpha tracks cm{sup -2}{mu}Sv{sup -1}, respectively. The results show variations of accumulated dose with the locations around the storage area. The fast neutron dose equivalents rates varied from as low as 182nSvh{sup -1} up to 10.4{mu}Svh{sup -1} whereas those for thermal neutron ranged from as low as 7nSvh{sup -1} up to 9.3{mu}Svh{sup -1}. The study indicates that the area passive neutron dosimeter was able to detect dose rates as low as 7 and 182nSvh{sup -1} from accumulated dose for thermal and fast neutrons, respectively, which were not possible to detect with the available active neutron

  13. Measurement of Rectal Radiation dose in the Patients with Uterine Cervix fencer using In Vivo Dosimetry(Diode Detector)

    International Nuclear Information System (INIS)

    Kim, Sung Kee; Kim, Wan Sun

    2004-01-01

    A rectum and a bladder should be carefully considered in order to decrease side effects when HDR patient of uterine cervix cancer. Generally speaking, the value of dosimeter at a rectum and a bladder only depends on the value of a planning equipment, while some analyses of the value of dosimetry at rectum with TLD has been reported Or the contrary, it is hardly to find a report with in vivo dosimetry(diode detector). On this thesis, we would like to suggest the following. When a patient of uterine cervix cancer is in therapy, it is helpful to put a diode detector inside of a rectum in order to measure the rectal dose Based upon the result of the dosimetry, the result can be used as basic data at decreasing side effects. Six patients of uterine cervix cancer(four with tandem and ovoid, one with cylinder, and the other one with tandem and cylinder) who had been irradiated with HDR. Ir-192 totally 28 times from February 2003 to June 2003. We irradiated twice in the same distant spots with anterior film and lateral film whenever we measured with a diode detector. Then we did planning and compared each film. The result of the measurement 4 patients with a diode detector is the following. The average and deviation from 3 patients with tandem and ovoid were 274±13.4 cGy, from 1 patient with tandem and ovoid were 126.1±7.2 cGy, from 1 patient with cylinder were 99.7±7.1 cGy, and from 1 patient with tandem and cylinder were 77.7±11.5 cGy. It is difficult to predict how the side effect of a rectum since the result of measurement with a diode detector depends on the state of a rectum. According to the result of the study, it is effective to use a TLD or an in vivo dosimetry and measure a rectum in order to consider the side effect. It is very necessary to decrease the amount of irradiation by controlling properly the duration of the irradiation and gauze packing, and by using shield equipment especially when side effects can be expected.

  14. Comparison of dose and image quality of a Flat-panel detector and an image intensifier

    International Nuclear Information System (INIS)

    Lazzaro, M.; Friedrich, B.Q.; Luz, R.M. da; Silva, A.M.M. da

    2016-01-01

    With the development of new technologies, have emerged new conversion methods of X-ray image, such as flat panel detectors. The aim of this work is the comparison of entrance surface air kerma (ESAK) and image quality between an image intensifier type of detector (A) and a flat panel (B). The ESAK was obtained by placing a ionization chamber under PMMA simulators of 10, 20 and 30 cm and the image quality was obtained by using the TOR "1"8FG simulator. The ESAK to the equipment A is higher when compared to the equipment B. The high contrast resolution is better for the equipment A for all thicknesses of simulators. The equipment A has low contrast resolution with a better viewing threshold for thicknesses of 10 and 20 cm, and a worse performance for 30 cm. It is concluded that the equipment B has ESAK smaller and despite having lower resolution, in almost all cases, have appropriate image quality for diagnosis. (author)

  15. 3D automatic exposure control for 64-detector row CT: Radiation dose reduction in chest phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Keiko, E-mail: palm_kei@yahoo.co.jp [Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Department of Radiology, Yamanashi University, Shimokato, Yamanashi (Japan); Ohno, Yoshiharu; Koyama, Hisanobu; Kono, Atsushi [Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Inokawa, Hiroyasu [Toshiba Medical Systems, Ohtawara, Tochigi (Japan); Onishi, Yumiko [Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Nogami, Munenobu [Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Image-Based Medicine, Institute of Biomedical Research and Innovation, Kobe, Hyogo (Japan); Takenaka, Daisuke [Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Araki, Tsutomu [Department of Radiology, Yamanashi University, Shimokato, Yamanashi (Japan); Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan)

    2011-03-15

    Purpose: The purpose of this study was to determine the utility of three-dimensional (3D) automatic exposure control (AEC) for low-dose CT examination in a chest phantom study. Materials and methods: A chest CT phantom including simulated focal ground-glass opacities (GGOs) and nodules was scanned with a 64-detector row CT with and without AEC. Performance of 3D AEC included changing targeted standard deviations (SDs) of image noise from scout view. To determine the appropriate targeted SD number for identification, the capability of overall identification with the CT protocol adapted to each of the targeted SDs was compared with that obtained with CT without AEC by means of receiver operating characteristic analysis. Results: When targeted SD values equal to or higher than 250 were used, areas under the curve (Azs) of nodule identification with CT protocol using AEC were significantly smaller than that for CT protocol without AEC (p < 0.05). When targeted SD numbers at equal to or more than 180 were adapted, Azs of CT protocol with AEC had significantly smaller than that without AEC (p < 0.05). Conclusion: This phantom study shows 3D AEC is useful for low-dose lung CT examination, and can reduce the radiation dose while maintaining good identification capability and good image quality.

  16. CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT

    International Nuclear Information System (INIS)

    Gervaise, Alban; Osemont, Benoit; Lecocq, Sophie; Blum, Alain; Noel, Alain; Micard, Emilien; Felblinger, Jacques

    2012-01-01

    To evaluate the impact of Adaptive Iterative Dose Reduction (AIDR) on image quality and radiation dose in phantom and patient studies. A phantom was examined in volumetric mode on a 320-detector CT at different tube currents from 25 to 550 mAs. CT images were reconstructed with AIDR and with Filtered Back Projection (FBP) reconstruction algorithm. Image noise, Contrast-to-Noise Ratio (CNR), Signal-to-Noise Ratio (SNR) and spatial resolution were compared between FBP and AIDR images. AIDR was then tested on 15 CT examinations of the lumbar spine in a prospective study. Again, FBP and AIDR images were compared. Image noise and SNR were analysed using a Wilcoxon signed-rank test. In the phantom, spatial resolution assessment showed no significant difference between FBP and AIDR reconstructions. Image noise was lower with AIDR than with FBP images with a mean reduction of 40%. CNR and SNR were also improved with AIDR. In patients, quantitative and subjective evaluation showed that image noise was significantly lower with AIDR than with FBP. SNR was also greater with AIDR than with FBP. Compared to traditional FBP reconstruction techniques, AIDR significantly improves image quality and has the potential to decrease radiation dose. (orig.)

  17. Using smartphone as a motion detector to collect time-microenvironment data for estimating the inhalation dose.

    Science.gov (United States)

    Hoi, Tran Xuan; Phuong, Huynh Truc; Van Hung, Nguyen

    2016-09-01

    During the production of iodine-131 from neutron irradiated tellurium dioxide by the dry distillation, a considerable amount of (131)I vapor is dispersed to the indoor air. People who routinely work at the production area may result in a significant risk of exposure to chronic intake by inhaled (131)I. This study aims to estimate the inhalation dose for individuals manipulating the (131)I at a radioisotope production. By using an application installed on smartphones, we collected the time-microenvironment data spent by a radiation group during work days in 2015. Simultaneously, we used a portable air sampler combined with radioiodine cartridges for grabbing the indoor air samples and then the daily averaged (131)I concentration was calculated. Finally, the time-microenvironment data jointed with the concentration to estimate the inhalation dose for the workers. The result showed that most of the workers had the annual internal dose in 1÷6mSv. We concluded that using smartphone as a motion detector is a possible and reliable way instead of the questionnaires, diary or GPS-based method. It is, however, only suitable for monitoring on fixed indoor environments and limited the targeted people. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. WE-DE-201-07: Measurement of Real-Time Dose for Tandem and Ovoid Brachytherapy Procedures Using a High Precision Optical Fiber Radiation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Belley, MD [Duke University, Durham, NC (United States); Current Address Rhode Island Hospital, Providence, RI (United States); Faught, A; Subashi, E; Chino, JP; Craciunescu, O [Duke University Medical Center, Durham, NC (United States); Moore, B; Langloss, B; Therien, MJ [Duke University, Durham, NC (United States); Yoshizumi, TT [Duke University, Durham, NC (United States); Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: Development of a novel on-line dosimetry tool is needed to move toward patient-specific quality assurance measurements for Ir-192 HDR brachytherapy to verify accurate dose delivery to the intended location. This work describes the development and use of a nano-crystalline yttrium oxide inorganic scintillator based optical-fiber detector capable of acquiring real-time high-precision dose measurements during tandem and ovoid (T&O) gynecological (GYN) applicator Ir-192 HDR brachytherapy procedures. Methods: An optical-fiber detector was calibrated by acquiring light output measurements in liquid water at 3, 5, 7, and 9cm radial source-detector-distances from an Ir-192 HDR source. A regression model was fit to the data to describe the relative light output per unit dose (TG-43 derived) as a function of source-detector-distance. Next, the optical-fiber detector was attached to a vaginal balloon fixed to a Varian Fletcher-Suit-Delclos-style applicator (to mimic clinical setup), and localized by acquiring high-resolution computed tomography (CT) images. To compare the physical point dose to the TPS calculated values (TG-43 and Acuros-BV), a phantom measurement was performed, by submerging the T&O applicator in a liquid water bath and delivering a treatment template representative of a clinical T&O procedure. The fiber detector collected scintillation signal as a function of time, and the calibration data was applied to calculate both real-time dose rate, and cumulative dose. Results: Fiber cumulative dose values were 100.0cGy, 94.3cGy, and 348.9cGy from the tandem, left ovoid, and right ovoid dwells, respectively (total of 443.2cGy). A plot of real time dose rate during the treatment was also acquired. The TPS values at the fiber location were 458.4cGy using TG-43, and 437.6cGy using Acuros-BV calculated as Dm,m (per TG-186). Conclusion: The fiber measured dose value agreement was 3% vs TG-43 and −1% vs Acuros-BV. This fiber detector opens up new possibilities

  19. IMRT implementation and patient specific dose verification with film and ion chamber array detectors

    International Nuclear Information System (INIS)

    Saminathan, S.; Manickam, R.; Chandraraj, V.; Supe, S. S.; Keshava, S. L.

    2009-01-01

    Implementation of Intensity Modulation Radiotherapy (IMRT) and patient dose verification was carried out with film and I'mariXX using linear accelerator with 120-leaf Millennium dynamic multi leaf collimator (dMLC). The basic mechanical and electrical commissioning and quality assurance tests of linear accelerator were carried out. The leaf position accuracy and leaf position repeatability checks were performed for static MLC positions. Picket fence test and garden fence test were performed to check the stability of the dMLC and the reproducibility of the gap between leaves. The radiation checks were performed to verify the position accuracy of MLCs in the collimator system. The dMLC dosimetric checks like output stability, average leaf transmission and dosimetric leaf separation were also investigated. The variation of output with gravitation at different gantry angles was found to be within 0.9%. The measured average leaf transmission for 6 MV was 1.6% and 1.8% for 18 MV beam. The dosimetric leaf separation was found to be 2.2 mm and 2.3 mm for 6 MV and 18 MV beams. In order to check the consistency of the stability and the precision of the dMLC, it is necessary to carryout regular weekly and monthly checks. The dynalog files analysis for Garden fence, leaf gap width and step wedge test patterns carried out weekly were in good agreement. Pretreatment verification was performed for 50 patients with ion chamber and I'matiXX device. The variations of calculated absolute dose for all treatment fields with the ion chamber measurement were within the acceptable criterion. Treatment Planning System (TPS) calculated dose distribution pattern was comparable with the I'matriXX measured dose distribution pattern. Out of 50 patients for which the comparison was made, 36 patients were agreed with the gamma pixel match of>95% and 14 patients were with the gamma pixel match of 90-95% with the criteria of 3% delta dose (DD) and 3 mm distance-to-agreement (DTA). Commissioning and

  20. SU-F-T-549: Validation of a Method for in Vivo 3D Dose Reconstruction for SBRT Using a New Transmission Detector

    Energy Technology Data Exchange (ETDEWEB)

    Nakaguchi, Y; Shimohigashi, Y; Onizuka, R; Ohno, T [Kumamoto University Hospital, Kumamoto, Kumamoto (Japan)

    2016-06-15

    Purpose: Recently, there has been increased clinical use of stereotactic body radiation therapy (SBRT). SBRT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. In vivo dose measurements, a commercially available quality assurance platform which is able to correlate the delivered dose to the patient’s anatomy and take into account tissue inhomogeneity, is the COMPASS system (IBA Dosimetry, Germany) using a new transmission detector (Dolphin, IBA Dosimetry). In this work, we evaluate a method for in vivo 3D dose reconstruction for SBRT using a new transmission detector, which was developed for in vivo dose verification for intensity-modulated radiation therapy (IMRT). Methods: We evaluated the accuracy of measurement for SBRT using simple small fields (2×2−10×10 cm2), a multileaf collimator (MLC) test pattern, and clinical cases. The dose distributions from the COMPASS were compared with those of EDR2 films (Kodak, USA) and the Monte Carlo simulations (MC). For clinical cases, we compared MC using dose-volume-histograms (DVHs) and dose profiles. Results: The dose profiles from the COMPASS for small fields and the complicated MLC test pattern agreed with those of EDR2 films, and MC within 3%. This showed the COMPASS with Dolphin system showed good spatial resolution and can measure small fields which are required for SBRT. Those results also suggest that COMPASS with Dolphin is able to detect MLC leaf position errors for SBRT. In clinical cases, the COMPASS with Dolphin agreed well with MC. The Dolphin detector, which consists of ionization chambers, provided stable measurement. Conclusion: COMPASS with Dolphin detector showed a useful in vivo 3D dose reconstruction for SBRT. The accuracy of the results indicates that this approach is suitable for clinical implementation.

  1. SU-F-T-549: Validation of a Method for in Vivo 3D Dose Reconstruction for SBRT Using a New Transmission Detector

    International Nuclear Information System (INIS)

    Nakaguchi, Y; Shimohigashi, Y; Onizuka, R; Ohno, T

    2016-01-01

    Purpose: Recently, there has been increased clinical use of stereotactic body radiation therapy (SBRT). SBRT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. In vivo dose measurements, a commercially available quality assurance platform which is able to correlate the delivered dose to the patient’s anatomy and take into account tissue inhomogeneity, is the COMPASS system (IBA Dosimetry, Germany) using a new transmission detector (Dolphin, IBA Dosimetry). In this work, we evaluate a method for in vivo 3D dose reconstruction for SBRT using a new transmission detector, which was developed for in vivo dose verification for intensity-modulated radiation therapy (IMRT). Methods: We evaluated the accuracy of measurement for SBRT using simple small fields (2×2−10×10 cm2), a multileaf collimator (MLC) test pattern, and clinical cases. The dose distributions from the COMPASS were compared with those of EDR2 films (Kodak, USA) and the Monte Carlo simulations (MC). For clinical cases, we compared MC using dose-volume-histograms (DVHs) and dose profiles. Results: The dose profiles from the COMPASS for small fields and the complicated MLC test pattern agreed with those of EDR2 films, and MC within 3%. This showed the COMPASS with Dolphin system showed good spatial resolution and can measure small fields which are required for SBRT. Those results also suggest that COMPASS with Dolphin is able to detect MLC leaf position errors for SBRT. In clinical cases, the COMPASS with Dolphin agreed well with MC. The Dolphin detector, which consists of ionization chambers, provided stable measurement. Conclusion: COMPASS with Dolphin detector showed a useful in vivo 3D dose reconstruction for SBRT. The accuracy of the results indicates that this approach is suitable for clinical implementation.

  2. Large strip RPCs for the LEPS2 TOF system

    Energy Technology Data Exchange (ETDEWEB)

    Tomida, N., E-mail: natsuki@scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Niiyama, M. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Ohnishi, H. [RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198 (Japan); Tran, N. [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047 (Japan); Hsieh, C.-Y.; Chu, M.-L.; Chang, W.-C. [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Chen, J.-Y. [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China)

    2014-12-01

    High time-resolution resistive plate chambers (RPCs) with large-size readout strips are developed for the time-of-flight (TOF) detector system of the LEPS2 experiment at SPring-8. The experimental requirement is a 50-ps time resolution for a strip size larger than 100 cm{sup 2}/channel. We are able to achieve 50-ps time resolutions with 2.5×100 cm{sup 2} strips by directly connecting the amplifiers to strips. With the same time resolution, the number of front-end electronics (FEE) is also reduced by signal addition. - Highlights: • Find a way to achieve a good time resolution with a large strip RPC. • 2.5 cm narrow strips have better resolutions than 5.0 cm ones. • The 0.5 mm narrow strip interval shows flat time resolutions between strips. • FEEs directly connected to strips make the signal reflection at the strip edge small. • A time resolution of 50 ps was achieved with 2.5 cm×100 cm strips.

  3. Development of a stable and sensitive semiconductor detector by using a mixture of lead(II) iodide and lead monoxide for NDT radiation dose detection

    Science.gov (United States)

    Heo, Y. J.; Kim, K. T.; Han, M. J.; Moon, C. W.; Kim, J. E.; Park, J. K.; Park, S. K.

    2018-03-01

    Recently, high-energy radiation has been widely used in various industrial fields, including the medical industry, and increasing research efforts have been devoted to the development of radiation detectors to be used with high-energy radiation. In particular, nondestructive industrial applications use high-energy radiation for ships and multilayered objects for accurate inspection. Therefore, it is crucial to verify the accuracy of radiation dose measurements and evaluate the precision and reproducibility of the radiation output dose. Representative detectors currently used for detecting the dose in high-energy regions include Si diodes, diamond diodes, and ionization chambers. However, the process of preparing these detectors is complex in addition to the processes of conducting dosimetric measurements, analysis, and evaluation. Furthermore, the minimum size that can be prepared for a detector is limited. In the present study, the disadvantages of original detectors are compensated by the development of a detector made of a mixture of polycrystalline PbI2 and PbO powder, which are both excellent semiconducting materials suitable for detecting high-energy gamma rays and X-rays. The proposed detector shows characteristics of excellent reproducibility and stable signal detection in response to the changes in energy, and was analyzed for its applicability. Moreover, the detector was prepared through a simple process of particle-in-binder to gain control over the thickness and meet the specific value designated by the user. A mixture mass ratio with the highest reproducibility was determined through reproducibility testing with respect to changes in the photon energy. The proposed detector was evaluated for its detection response characteristics with respect to high-energy photon beam, in terms of dose-rate dependence, sensitivity, and linearity evaluation. In the reproducibility assessment, the detector made with 15 wt% PbO powder showed the best characteristics of 0

  4. Design and development of an anthropomorphic phantom equipped with detectors in order to evaluate the effective dose E at workplaces: feasibility study

    International Nuclear Information System (INIS)

    Furstoss, Ch.

    2006-11-01

    My PhD study aims to determine the feasibility to design and develop, for photon fields, an anthropomorphic phantom equipped with detectors in order to evaluate the effective dose E at workplaces. First of all, the energy losses within the organs are calculated using the M.C.N.P.X. Monte Carlo code, in order to determine the detection positions within the different organs. Then, to decrease the number of detection positions, the organ contribution to the effective dose is studied. Finally, the characteristics of the detectors to insert and the characteristics of the phantom to use are deduced. The results show that 24 or 23 detection positions, according to the wT values (publication 60 or new recommendations of the ICRP), give a E estimation with an uncertainty of ±15 % from 50 keV to 4 MeV. Moreover, the interest of such an instrument is underlined while comparing the E estimation by the personal dose equivalent Hp to the E estimation by the instrumented phantom when the phantom is irradiated by point sources (worker in front of a glove box for example). Last, after the detector and phantom characteristic determination, two types of detectors and one type of phantom are selected. However, for the detectors mainly, developments are necessary. Follow up this study, the characterization and the adaptation of the detectors to the project would be interesting. Furthermore, the study to mixed photon-neutrons would be required the needs of the radiological protection community. (author)

  5. MUST detector

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.

    1999-01-01

    The IPN-Orsay, in collaboration with the SPhN-Saclay and the DPTA Bruyeres, has built an array of 8 telescopes based on Si-strip technology for the study of direct reactions induced by radioactive beams. The detectors are described, along with the compact high density VXI electronics and the stand-alone data acquisition system developed in the laboratory. One telescope was tested using an 40 Ar beam and the measured performances are discussed. (authors)

  6. Reduction of the unnecessary dose from the over-range area with a spiral dynamic z-collimator: comparison of beam pitch and detector coverage with 128-detector row CT.

    Science.gov (United States)

    Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi

    2012-01-01

    Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan l