WorldWideScience

Sample records for stringy white rot

  1. Water relations in untreated and modified wood under brown-rot and white-rot decay

    DEFF Research Database (Denmark)

    Thybring, Emil Engelund

    2017-01-01

    from several literature sources, the water relations of untreated and modified wood decayed by brown-rot and white-rot fungi are examined. The aim is to investigate to what extent observations and assumptions regarding brown-rot and white-rot decay can explain changes in water relations observed during...... and after decay. Although the available experimental data for modified wood is scarce, it indicates that brown-rot and white-rot decay of non-resistant modified wood occurs by similar degradation mechanisms with similar effects on water relations as for untreated wood. From simplistic, mathematical...... modelling, it is shown that changes in water relations during decay can be partly explained by accompanying changes in chemical composition and void volume....

  2. Changes in cation concentrations in red spruce wood decayed by brown rot and white rot fungi

    Science.gov (United States)

    A. Ostrofsky; J. Jellison; K.T. Smith; W.C. Shortle

    1997-01-01

    Red spruce (Picea rubens Sarg.) wood blocks were incubated in modified soil block jars and inoculated with one of nine white rot or brown rot basidiomycetes. Concentrations of calcium, magnesium, potassium, iron, and aluminum were determined using inductively coupled plasma emission spectroscopy in wood incubated 0, 1.5, 4, and 8 months after...

  3. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi

    Science.gov (United States)

    Robert Riley; Asaf A. Salamov; Daren W. Brown; Laszlo G. Nagy; Dimitrios Floudas; Benjamin W. Held; Anthony Levasseur; Vincent Lombard; Emmanuelle Morin; Robert Otillar; Erika A. Lindquist; Hui Sun; Kurt M. LaButti; Jeremy Schmutz; Dina Jabbour; Hong Luo; Scott E. Baker; Antonio G. Pisabarro; Jonathan D. Walton; Robert A. Blanchette; Bernard Henrissat; Francis Martin; Daniel Cullen; David S. Hibbett; Igor V. Grigoriev

    2014-01-01

    Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic...

  4. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/brown rot paradigm for wood decay fungi

    Science.gov (United States)

    Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade ...

  5. Changes in Molecular Size Distribution of Cellulose during Attack by White Rot and Brown Rot Fungi

    OpenAIRE

    Kleman-Leyer, Karen; Agosin, Eduardo; Conner, Anthony H.; Kirk, T. Kent

    1992-01-01

    The kinetics of cotton cellulose depolymerization by the brown rot fungus Postia placenta and the white rot fungus Phanerochaete chrysosporium were investigated with solid-state cultures. The degree of polymerization (DP; the average number of glucosyl residues per cellulose molecule) of cellulose removed from soil-block cultures during degradation by P. placenta was first determined viscosimetrically. Changes in molecular size distribution of cellulose attacked by either fungus were then det...

  6. in vitro technique for selecting onion for white rot disease

    African Journals Online (AJOL)

    ACSS

    and Simmonds, D.H. 2003. Partial resistance to white mold in a transgenic soybean line. Crop Science 43: 92-95. Coventry, E., Noble, R., Mead, A. and Whipps,. J.M. 2005. Suppression of Allium white rot. (Sclerotium cepivorum) in different soils using vegetable wastes. European Journal of Plant Pathology 111: 101-112.

  7. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR

    Energy Technology Data Exchange (ETDEWEB)

    D`Souza, T.M.; Boominathan, K.; Reddy, C.A. [Michigan State Univ., East Lansing, MI (United States)

    1996-10-01

    Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequences of each of the PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum, Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. 36 refs., 6 figs., 2 tabs.

  8. Production and optimization of ligninolytic enzymes by white rot ...

    African Journals Online (AJOL)

    The present study deals with production of ligninolytic enzymes from an indigenous white rot fungus Schizophyllum commune IBL-06 by using banana stalk as substrate through the process of solid state fermentation. The production process was further improved by optimizing a number of physical parameters such as ...

  9. OXIDATION OF PERSISTANT ENVIRONMENTAL POLLUTANTS BY A WHITE ROT FUNGUS

    Science.gov (United States)

    The white rot fungus Phanerochaete chrysosporium degraded DDT [1,1,-bis(4-chlorophenyl)-2,2,2-trichloroethane], 3,4,3',4'-tetrachlorobiphenyl, 2,4,5,2',-4',5'-hexachlorobiphenyl, 2,3,7,8-tetrachlorodibenzo-p-dioxin, lindane (1,2,3,4,5,6-hexachlorocylohexane), and benzo[a]pyrene t...

  10. Autochthonous white rot fungi from the tropical forest: Potential of ...

    African Journals Online (AJOL)

    Autochthonous white rot fungi from the tropical forest: Potential of Cuban strains for dyes and textile industrial effluents decolourisation. MI Sánchez-López, SF Vanhulle, V Mertens, G Guerra, SH Figueroa, C Decock, A Corbisier, MJ Penninckx ...

  11. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/ brown rot paradigm for wood decay fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitris; Held, Benjamin; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika; Sun, Hui; LaButti, Kurt; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio; Walton, Jonathan D.; Blanchette, Robert; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David; Grigoriev, Igor V.

    2014-03-14

    Basidiomycota (basidiomycetes) make up 32percent of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white rot/brown rot classification paradigm we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically-informed Principal Components Analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs, but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown rot fungi. Our results suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.

  12. Increased delignification by white rot fungi after pressure refining Miscanthus.

    Science.gov (United States)

    Baker, Paul W; Charlton, Adam; Hale, Mike D C

    2015-01-01

    Pressure refining, a pulp making process to separate fibres of lignocellulosic materials, deposits lignin granules on the surface of the fibres that could enable increased access to lignin degrading enzymes. Three different white rot fungi were grown on pressure refined (at 6 bar and 8 bar) and milled Miscanthus. Growth after 28 days showed highest biomass losses on milled Miscanthus compared to pressure refined Miscanthus. Ceriporiopsis subvermispora caused a significantly higher proportion of lignin removal when grown on 6 bar pressure refined Miscanthus compared to growth on 8 bar pressure refined Miscanthus and milled Miscanthus. RM22b followed a similar trend but Phlebiopsis gigantea SPLog6 did not. Conversely, C. subvermispora growing on pressure refined Miscanthus revealed that the proportion of cellulose increased. These results show that two of the three white rot fungi used in this study showed higher delignification on pressure refined Miscanthus than milled Miscanthus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Biological Control of White Rot in Garlic Using Burkholderia pyrrocinia CAB08106-4

    Directory of Open Access Journals (Sweden)

    Kwang Seop Han

    2013-03-01

    Full Text Available White rot caused by Sclerotium cepivorum was reported to be severe soil-born disease on garlic. Disease progress of white rot of garlic (Allium sativum L. was investigated during the growing season of 2009 to 2011 at Taean and Seosan areas. The white rot disease on bulb began to occur from late April and peaked in late May. The antifungal bacteria, Burkholderia pyrrocinia CAB08106-4 was tested in field bioassay for suppression of white rot disease. As a result of the nucleotide sequence of the gene 16S rRNA, CAB008106-4 strain used in this study has been identified as B. pyrrocinia. B. pyrrocinia CAB080106-4 isolate suppressed the white rot with 69.6% control efficacy in field test. These results suggested that B. pyrrocinia CAB08106-4 isolate could be an effective biological control agent against white rot of garlic.

  14. Removal of phenanthrene in contaminated soil by combination of alfalfa, white-rot fungus, and earthworms.

    Science.gov (United States)

    Deng, Shuguang; Zeng, Defang

    2017-03-01

    The aim of this study was to investigate the removal of phenanthrene by combination of alfalfa, white-rot fungus, and earthworms in soil. A 60-day experiment was conducted. Inoculation with earthworms and/or white-rot fungus increased alfalfa biomass and phenanthrene accumulation in alfalfa. However, inoculations of alfalfa and white-rot fungus can significantly decrease the accumulation of phenanthrene in earthworms. The removal rates for phenanthrene in soil were 33, 48, 66, 74, 85, and 93% under treatments control, only earthworms, only alfalfa, earthworms + alfalfa, alfalfa + white-rot fungus, and alfalfa + earthworms + white-rot fungus, respectively. The present study demonstrated that the combination of alfalfa, earthworms, and white-rot fungus is an effective way to remove phenanthrene in the soil. The removal is mainly via stimulating both microbial development and soil enzyme activity.

  15. Energy balance associated with the degradation of lignocellulosic material by white-rot and brown-rot fungi.

    Science.gov (United States)

    Derrien, Delphine; Bédu, Hélène; Buée, Marc; Kohler, Annegret; Goodell, Barry; Gelhaye, Eric

    2017-04-01

    Forest soils cover about 30% of terrestrial area and comprise between 50 and 80% of the global stock of soil organic carbon (SOC). The major precursor for this forest SOC is lignocellulosic material, which is made of polysaccharides and lignin. Lignin has traditionally been considered as a recalcitrant polymer that hinders access to the much more labile structural polysaccharides. This view appears to be partly incorrect from a microbiology perspective yet, as substrate alteration depends on the metabolic potential of decomposers. In forest ecosystems the wood-rotting Basidiomycota fungi have developed two different strategies to attack the structure of lignin and gain access to structural polysaccharides. White-rot fungi degrade all components of plant cell walls, including lignin, using enzymatic systems. Brown-rot fungi do not remove lignin. They generate oxygen-derived free radicals, such as the hydroxyl radical produced by the Fenton reaction, that disrupt the lignin polymer and depolymerize polysaccharides which then diffuse out to where the enzymes are located The objective of this study was to develop a model to investigate whether the lignin relative persistence could be related to the energetic advantage of brown-rot degradative pathway in comparison to white-rot degradative pathway. The model simulates the changes in substrate composition over time, and determines the energy gained from the conversion of the lost substrate into CO2. The energy cost for the production of enzymes involved in substrate alteration is assessed using information derived from genome and secretome analysis. For brown-rot fungus specifically, the energy cost related to the production of OH radicals is also included. The model was run, using data from the literature on populous wood degradation by Trametes versicolor, a white-rot fungus, and Gloeophyllum trabeum, a brown-rot fungus. It demonstrates that the brown-rot fungus (Gloeophyllum trabeum) was more efficient than the white-rot

  16. Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi.

    Science.gov (United States)

    Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying

    2011-09-28

    The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.

  17. Conversion of sorghum stover into animal feed with white-rot fungi ...

    African Journals Online (AJOL)

    Treatment of crop residues with some species of white-rot fungi can enhance the nutritive value. After the fungal treatment of sorghum (Sorghum bicolor) stover with two white-rot fungi in a solid state fermentation, the chemical composition and in vitro digestibility of the resultant substrate was determined. The results show a ...

  18. Conversion of sorghum stover into animal feed with white-rot fungi ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... white-rot fungi: Pleurotus ostreatus and Pleurotus ... the fungal treatment of sorghum (Sorghum bicolor) stover with two white-rot fungi in a solid state ..... Rumen degradation and In vitro gas production parameters in some browse forages, grasses and maize stover from Kenya. J. Food Agric. Environ.

  19. Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document

    International Nuclear Information System (INIS)

    Luey, J.; Brouns, T.M.; Elliott, M.L.

    1990-11-01

    The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable for the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs

  20. Microsomal transformation of organophosphorus pesticides by white rot fungi.

    Science.gov (United States)

    Jauregui, Juan; Valderrama, Brenda; Albores, Arnulfo; Vazquez-Duhalt, Rafael

    2003-12-01

    The enzymatic mechanism for the transformation of organophosphorus pesticides (OPPs) by different white-rot fungi strains was studied. With the exception of Ganoderma applanatum 8168, all strains from a collection of 17 different fungi cultures were able to deplete parathion. Three strains showing the highest activities were selected for further studies: Bjerkandera adusta 8258, Pleurotus ostreatus 7989 and Phanerochaete chrysosporium 3641. These strains depleted 50 to 96% of terbufos, azinphos-methyl, phosmet and tribufos after four-days exposure to the pesticides. In order to identify the cellular localization of the transformation activity, the extracellular and microsomal fractions of Pleuronts ostreatus 7989 were evaluated in vitro. While the activities of ligninolytic enzymes (lignin peroxidase, manganese peroxidase and laccase) were detected in the extracellular fraction, no enzymatic modification of any of the five pesticides tested could be found, suggesting the intracellular origin of the transformation activity. In accordance with this observation the microsomal fraction was found able to transform three OPPs with the following rates: 10 micromol mg prot(-1) h(-1) for phosmet, 5.7 micromol mg prot(-1) h(-1) for terbufos, and 2.2 micromol mg prot(-1) h(-1) for azinphos-methyl. The products from these reactions and from the transformation of trichlorfon and malathion, were identified by mass-spectrometry. These results, supported by specific inhibition experiments and the stringent requirement for NADPH during the in vitro assays suggest the involvement of a cytochrome P450.

  1. Solubilization and Mineralization of Lignin by White Rot Fungi

    Science.gov (United States)

    Boyle, C. David; Kropp, Bradley R.; Reid, Ian D.

    1992-01-01

    The white rot fungi Lentinula edodes, Phanerochaete chrysosporium, Pleurotus sajor-caju, Flammulina velutipes, and Schizophyllum commune were grown in liquid media containing 14C-lignin-labelled wood, and the formation of water-soluble 14C-labelled products and 14CO2, the growth of the fungi, and the activities of extracellular lignin peroxidase, manganese peroxidase, and laccase were measured. Conditions that affect the rate of lignin degradation were imposed, and both long-term (0- to 16-day) and short-term (0- to 72-h) effects on the production of the two types of product and on the activities of the enzymes were monitored. The production of 14CO2-labelled products from the aqueous ones was also investigated. The short-term studies showed that the different conditions had different effects on the production of the two products and on the activities of the enzymes. Nitrogen sources inhibited the production of both products by all species when differences in growth could be discounted. Medium pH and manganese affected lignin degradation by the different species differently. With P. chrysosporium, the results were consistent, with lignin peroxidase playing a role in lignin solubilization and manganese peroxidase being important in subsequent CO2 production. PMID:16348781

  2. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Mileski, G.J.; Bumpus, J.A.; Jurek, M.A.; Aust, S.D.

    1988-01-01

    Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [ 14 C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [ 14 C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact that the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [ 14 C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 μM) prevented growth when fungal cultures were identified by inoculation with spores. The lethal effects of PCP could, however, be the circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [ 14 C]PCP at concentrations as high as 500 mg/liter (1.9 mM)

  3. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi.

    Science.gov (United States)

    Hastrup, Anne Christine Steenkjær; Howell, Caitlin; Larsen, Flemming Hofmann; Sathitsuksanoh, Noppadon; Goodell, Barry; Jellison, Jody

    2012-10-01

    Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Functional Genomics of Lignocellulose Degradation in the Basidiomycete White Rot Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A. [Joint Genome Inst., Walnut Creek, CA (United States); Tegelaar, Martin [Utrecht Univ. (Netherlands); Henrissat, Bernard [Univ. of Marseille (France); Brewer, Heather M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purvine, Samuel O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wosten, Han A. B. [Utrecht Univ. (Netherlands); Grigoriev, Igor V. [Joint Genome Inst., Walnut Creek, CA (United States); Lugones, Luis G. [Utrecht Univ. (Netherlands)

    2013-03-01

    White and brown rot fungi are among the most important wood decayers in nature. Although more than 50 genomes of Basidiomycete white and brown rots have been sequenced by the Joint Genome Institute, there is still a lot to learn about how these fungi degrade the tough polymers present in wood. In particular, very little is known about how these fungi regulate the expression of genes involved in lignocellulose degradation. Here, we used transcriptomics, proteomics, and promoter analysis in an effort to gain insight into the process of lignocellulose degradation.

  5. Degradation of lipophilic wood extractive constituents in Pinus sylvestris by the white-rot fungi Bjerkandera sp. and Trametes versicolor

    NARCIS (Netherlands)

    Dorado, J.; Beek, van T.A.; Claassen, F.W.; Sierra-Alvarez, R.

    2001-01-01

    The white-rot fungi Trametes versicolor and Bjerkandera spp. are among the most frequent decomposers of angiosperm wood in forest ecosystems and in wood products in service. Wood extractives have a major impact on wood properties and wood utilization. This work evaluated the ability of two white-rot

  6. Modification of wheat straw lignin by solid state fermentation with white-rot fungi

    NARCIS (Netherlands)

    Dinis, M.J.; Bezerra, R.M.F.; Nunes, F.; Dias, A.A.; Guedes, C.; Ferreira, L.M.M.; Cone, J.W.; Marques, G.S.M.; Barros, A.R.N.; Rodrigues, M.A.M.

    2009-01-01

    The potential of crude enzyme extracts, obtained from solid state cultivation of four white-rot fungi (Trametes versicolor, Bjerkandera adusta, Ganoderma applanatum and Phlebia rufa), was exploited to modify wheat straw cell wall. At different fermentation times, manganese-dependent peroxidase

  7. Decolorization of textile dyes and their effluents using white rot fungi ...

    African Journals Online (AJOL)

    Reactive dyes are important chemical pollutants from textile industries .The two species of white rot fungi were evaluated for their ability to decolorize Blue CA, Black B133, Corazol Violet SR. Trametes hirsuta and Pleurotus florida displayed the greatest extent of decolorization. Laccase is the ligneolytic enzyme from these ...

  8. Mechanism of antibacterial activity of the white-rot fungus Hypholoma fasciculare colonizing wood

    NARCIS (Netherlands)

    De Boer, W.; Folman, L.B.; Klein Gunnewiek, P.J.A.; Svensson, T.; Bastviken, D.; Oberg, G.; Del Rio, J.C.; Boddy, L.

    2010-01-01

    In a previous study it was shown that the number of wood-inhabiting bacteria was drastically reduced after colonization of beech (Fagus sylvatica) wood blocks by the white-rot fungus Hypholoma fasciculare, or sulfur tuft (Folman et al. 2008). Here we report on the mechanisms of this fungal-induced

  9. HORMONAL ACTIVITIES OF NOVEL BROMINATED FLAME RETARDANTS AND THEIR BIODEGRADATION BY WHITE ROT FUNGI

    Czech Academy of Sciences Publication Activity Database

    Ezechiáš, Martin; Svobodová, Kateřina; Cajthaml, Tomáš

    2012-01-01

    Roč. 11, č. 3 (2012), s. 233-233 ISSN 1843-3707. [Environmental Microbiology and Biotechnology. 10.04.2012-12.04.2012, Bologna] R&D Projects: GA TA ČR TA01020804 Institutional research plan: CEZ:AV0Z50200510 Keywords : white rot fungi Subject RIV: EE - Microbiology, Virology

  10. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis

    Science.gov (United States)

    Biological pretreatment of lignocellulosic biomass by white-rot fungus can represent a low-cost and eco-friendly alternative to harsh physical, chemical or physico-chemical pretreatment methods to facilitate enzymatic hydrolysis. However, fungal pretreatment can cause carbohydrate loss and it is, th...

  11. Lignin degrading system of white-rot fungi and its exploitation for dye decolorization

    Czech Academy of Sciences Publication Activity Database

    Shah, V.; Nerud, František

    2002-01-01

    Roč. 48, - (2002), s. 857-870 ISSN 0008-4166 R&D Projects: GA ČR GA526/01/0915 Institutional research plan: CEZ:AV0Z5020903 Keywords : lignin degradation * white-rot fungi * laccase Subject RIV: EE - Microbiology, Virology Impact factor: 1.080, year: 2002

  12. Irpex lacteus, a white-rot fungus with biotechnological potential — review

    Czech Academy of Sciences Publication Activity Database

    Novotný, Čeněk; Cajthaml, Tomáš; Svobodová, Kateřina; Šušla, Martin; Šašek, Václav

    2009-01-01

    Roč. 5, č. 5 (2009), s. 375-390 ISSN 0015-5632 R&D Projects: GA AV ČR IAAX00200901 Institutional research plan: CEZ:AV0Z50200510 Keywords : White-rot fungi * degradation * irpex lacteus Subject RIV: EE - Microbiology, Virology Impact factor: 0.978, year: 2009

  13. Improving ruminal degradability of oil palm fronds using white rot fungi

    NARCIS (Netherlands)

    Rahman, M.M.; Lourenco, M.; Hassim, H.A.; Baars, J.J.P.; Sonnenberg, A.S.M.; Cone, J.W.; Boever, de J.L.; Fievez, V.

    2011-01-01

    The use of oil palm fronds (OPF) in livestock production is limited as up to 0.20 of their dry biomass is lignin. White rot fungi (WRF) are very effective basidiomycetes for biological pre-treatment as they degrade lignin extensively. Ten WRF were screened for their potential to increase OPF

  14. Bioremoval of humic acid from water by white rot fungi: exploring the removal mechanisms

    NARCIS (Netherlands)

    Zahmatkesh, M.; Spanjers, H.L.F.M.; Toran, M. J.; Blánquez, P.; van Lier, J.B.

    2016-01-01

    © 2016, The Author(s).Twelve white rot fungi (WRF) strains were screened on agar plates for their ability to bleach humic acid (HA). Four fungal strains were selected and tested in liquid media for removal of HA. Bioremediation was investigated by HA color removal and changes in the concentration

  15. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium (1988)

    Science.gov (United States)

    Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble met...

  16. Draft genome sequence of the white-rot fungus Obba rivulosa 3A-2

    Science.gov (United States)

    Otto Miettinen; Robert Riley; Kerrie Barry; Daniel Cullen; Ronald P. de Vries; Matthieu Hainaut; Annele Hatakka; Bernard Henrissat; Kristiina Hilden; Rita Kuo; Kurt LaButti; Anna Lipzen; Miia R. Makela; Laura Sandor; Joseph W. Spatafora; Igor V. Grigoriev; David S. Hibbett

    2016-01-01

    We report here the first genome sequence of the white-rot fungus Obba rivulsa (Polyporales, Basidiomycota), a polypore known for its lignin-decomposing ability. The genome is based on the homokaryon 3A-2 originating in Finland. The genome is typical in size and carbohydrate active enzyme (CAZy) content for wood-decomposing basidiomycetes.

  17. A Highly Diastereoselective Oxidant Contributes to Ligninolysis by the White Rot Basidiomycete Ceriporiopsis subvermispora

    Science.gov (United States)

    Daniel J. Yelle; Alexander N. Kapich; Carl J. Houtman; Fachuang Lu; Vitaliy I. Timokhin; Raymond C. Fort Jr.; John Ralph; Kenneth E. Hammel

    2014-01-01

    The white rot basidiomycete Ceriporiopsis subvermispora delignifies wood selectively and has potential biotechnological applications. Its ability to remove lignin before the substrate porosity has increased enough to admit enzymes suggests that small diffusible oxidants contribute to delignification. A key question is whether these unidentified...

  18. Biobleaching of oxygen delignified kraft pulp by several white rot fungal strains.

    NARCIS (Netherlands)

    Moreira, M.T.; Feijoo, G.; Sierra-Alvarez, R.; Lema, J.; Field, J.A.

    1997-01-01

    Twenty-five white rot fungal strains were tested for their ability to bleach Eucalyptus globulus oxygen delignified kraft pulp (OKP). Under nitrogen-limited culture conditions, eight outstanding biobleaching strains were identified that increased the brightness of OKP by more than 10 ISO units

  19. Polycyclic aromatic hydrocarbon degradation by the white rot fungus Bjerkandera sp. strain BOS55

    NARCIS (Netherlands)

    Kotterman, M.

    1998-01-01

    Outline of this thesis
    In this thesis the conditions for optimal PAH oxidation by the white rot fungus Bjerkandera sp. strain BOS55 were evaluated. In Chapter 2, culture conditions like aeration and cosubstrate concentrations,

  20. Efficacy of pinosylvins against white-rot and brown-rot fungi

    Science.gov (United States)

    Catherine C. Celimene; Jessie A. Micales; Leslie Ferge; Raymond A. Young

    1999-01-01

    Three stilbenes, pinosylvin (PS), pinosylvin monomethyl ether (PSM) and pinosylvin dimethyl ether (PSD), were extracted from white spruce (Picea glauca), jack pine (Pinus banksiana), and red pine (Pinus resinosa) pine cones, and their structures were confirmed by spectroscopic and chromatographic (HPLC, GC/MS, NMR and FTIR) analysis. PS, PSM, PSD or a 1:1:1 mixture of...

  1. BIODEGRADATION OF ENVIRONMENTAL POLLUTANTS BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOPORIUM: INVOLVEMENT OF THE LIGNIN DEGRADING SYSTEM

    Science.gov (United States)

    The white-rot fungus Phanrochaete chrysosporium has the ability to degrade a wide variety of structurally diverse organic compounds, including a number of environmentally persistent organopollutants. The unique biodegradative abilities of this fungus appears to be depend...

  2. Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process

    Czech Academy of Sciences Publication Activity Database

    Aggelis, G.; Ehaliotis, C.; Nerud, František; Stoychev, I.

    2002-01-01

    Roč. 59, - (2002), s. 353-360 ISSN 0175-7598 Institutional research plan: CEZ:AV0Z5020903 Keywords : white * rot * detoxification Subject RIV: EE - Microbiology, Virology Impact factor: 1.744, year: 2002

  3. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot1[OPEN

    Science.gov (United States)

    Collins, Thomas S.; Vicente, Ariel R.; Doyle, Carolyn L.; Ye, Zirou; Allen, Greg; Heymann, Hildegarde

    2015-01-01

    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. PMID:26450706

  4. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.

    Science.gov (United States)

    Blanco-Ulate, Barbara; Amrine, Katherine C H; Collins, Thomas S; Rivero, Rosa M; Vicente, Ariel R; Morales-Cruz, Abraham; Doyle, Carolyn L; Ye, Zirou; Allen, Greg; Heymann, Hildegarde; Ebeler, Susan E; Cantu, Dario

    2015-12-01

    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. The GSTome Reflects the Chemical Environment of White-Rot Fungi.

    Directory of Open Access Journals (Sweden)

    Aurélie Deroy

    Full Text Available White-rot fungi possess the unique ability to degrade and mineralize all the different components of wood. In other respects, wood durability, among other factors, is due to the presence of extractives that are potential antimicrobial molecules. To cope with these molecules, wood decay fungi have developed a complex detoxification network including glutathione transferases (GST. The interactions between GSTs from two white-rot fungi, Trametes versicolor and Phanerochaete chrysosporium, and an environmental library of wood extracts have been studied. The results demonstrate that the specificity of these interactions is closely related to the chemical composition of the extracts in accordance with the tree species and their localization inside the wood (sapwood vs heartwood vs knotwood. These data suggest that the fungal GSTome could reflect the chemical environment encountered by these fungi during wood degradation and could be a way to study their adaptation to their way of life.

  6. The GSTome Reflects the Chemical Environment of White-Rot Fungi

    Science.gov (United States)

    Deroy, Aurélie; Saiag, Fanny; Kebbi-Benkeder, Zineb; Touahri, Nassim; Hecker, Arnaud; Morel-Rouhier, Mélanie; Colin, Francis; Dumarcay, Stephane; Gérardin, Philippe; Gelhaye, Eric

    2015-01-01

    White-rot fungi possess the unique ability to degrade and mineralize all the different components of wood. In other respects, wood durability, among other factors, is due to the presence of extractives that are potential antimicrobial molecules. To cope with these molecules, wood decay fungi have developed a complex detoxification network including glutathione transferases (GST). The interactions between GSTs from two white-rot fungi, Trametes versicolor and Phanerochaete chrysosporium, and an environmental library of wood extracts have been studied. The results demonstrate that the specificity of these interactions is closely related to the chemical composition of the extracts in accordance with the tree species and their localization inside the wood (sapwood vs heartwood vs knotwood). These data suggest that the fungal GSTome could reflect the chemical environment encountered by these fungi during wood degradation and could be a way to study their adaptation to their way of life. PMID:26426695

  7. The delignification effects of white-rot fungal pretreatment on thermal characteristics of moso bamboo.

    Science.gov (United States)

    Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying

    2012-06-01

    Moso bamboo (Phyllostachys pubesescens) is a major bamboo species which is widely used for temporary scaffolding in China. Its fast growing and low ash content make moso bamboo a potential renewable energy resource. In present work, thermal behaviors of moso bamboo and its lignocellulosic fractions were investigated using thermogravimetric analysis. Furthermore, to understand whether the delignification effect of white-rot fungi can promote the thermal decomposition of bamboo especially the lignin component, the changes in lignocellulose components as well as thermal behaviors of bamboo and acid detergent lignin were investigated. The results showed that the white-rot fungal pretreatment is advantageous to thermal decomposition of lignin in bamboo. The weight losses of ADL samples became greater and the thermal processes were accelerated after biopretreatment. The total pyrolysis weight loss increased from 57.14% to 65.07% for Echinodontium taxodii 2538 treated bamboo ADL sample. Copyright © 2011. Published by Elsevier Ltd.

  8. CHARACTERIZATION OF THE OXIDATIVE ENZYME POTENTIAL IN WILD WHITE ROT FUNGI FROM MISIONES (ARGENTINA)

    OpenAIRE

    Maria Isabel FONSECA; Pedro Darío ZAPATA; Laura Lidia VILLALBA; Julia Inés FARIÑA

    2015-01-01

    This research aimed to evaluate the potential of several native white rot fungi (WRF) isolated from subtropical environments of Misiones (Argentina) to produce different ligninolytic enzymes. Coriolus versicolor f. antarcticus BAFC 266, Pycnoporus sanguineus BAFC 2126 and Phlebia brevispora BAFC 633 showed the highest phenoloxidase activity. Ganoderma applanatum strain E, P. sanguineus BAFC 2126 and P. brevispora BAFC 633 revealed marked laccase and peroxidase activity. C. versicolor f. antar...

  9. Characterization of the oxidative enzyme potential in wild white rot fungi from misiones (argentina)

    OpenAIRE

    FONSECA, Maria Isabel; ZAPATA, Pedro Darío; VILLALBA, Laura Lidia; FARIÑA, Julia Inés

    2014-01-01

    This research aimed to evaluate the potential of several native white rot fungi (WRF) isolated from subtropical environments of Misiones (Argentina) to produce different ligninolytic enzymes. Coriolus versicolor f. antarcticus BAFC 266, Pycnoporus sanguineus BAFC 2126 and Phlebia brevispora BAFC 633 showed the highest phenoloxidase activity. Ganoderma applanatum strain E, P. sanguineus BAFC 2126 and P. brevispora BAFC 633 revealed marked laccase and peroxidase activity. C. versicolor f. antar...

  10. Treatment of micropollutants in municipal wastewater using white-rot fungi

    OpenAIRE

    Margot, Jonas; Vargas, Micaela; Contijoch, Andreu; Barry, David Andrew; Holliger, Christof

    2014-01-01

    Treatment of micropollutants such as pharmaceuticals and pesticides in municipal wastewater is challenging due to their very low concentrations (ng/l to µg/l), their relatively low biodegradability, and their different physico-chemical characteristics. One potential way to improve micropollutant biodegradation in wastewater treatment plant (WWTP) effluent is by using microorganisms such as white-rot fungi that produce powerful unspecific oxidative exo-enzymes (laccase, peroxidase) that are ab...

  11. Screening Wood Decayed by White Rot Fungi for Preferential Lignin Degradation †

    OpenAIRE

    Blanchette, Robert A.

    1984-01-01

    A screening procedure in which scanning electron microscopy was used indicated that 26 white rot fungi selectively removed lignin from various coniferous and hardwood tree species. Delignified wood from field collections had distinct micromorphological characteristics that were easily differentiated from other types of decay. The middle lamella was degraded, and the cells were separated from one another. Secondary cell wall layers that remained had a fibrillar appearance. Chemical analyses of...

  12. Degradation of Phenanthrene by a chilean white rot fungus Anthracophyllum discolor

    International Nuclear Information System (INIS)

    Acevedo, F.; Cuevas, R.; Rubilar, O.; Tortella, G.; Diez, M. C.

    2009-01-01

    Anthracophyllum discolor, a white rot fungus of southern Chile, has been an efficient degrader of clorophenols and azo dyes. This fungus produces ligninolytic enzymes being manganese peroxidase (Mn)) the major one produced. The main purpose of this study was to evaluate the effect of phenanthrene concentration of ligninolytic activity of A. Discolor measured by poly R-478 decolorazation, and to evaluate the potential of this fungus for degrading phenanthrene in liquid media. (Author)

  13. Holography inspired stringy hadrons

    Science.gov (United States)

    Sonnenschein, Jacob

    2017-01-01

    Holography inspired stringy hadrons (HISH) is a set of models that describe hadrons: mesons, baryons and glueballs as strings in flat four dimensional space-time. The models are based on a "map" from stringy hadrons of holographic confining backgrounds. In this note we review the "derivation" of the models. We start with a brief reminder of the passage from the AdS5 ×S5 string theory to certain flavored confining holographic models. We then describe the string configurations in holographic backgrounds that correspond to a Wilson line, a meson, a baryon and a glueball. The key ingredients of the four dimensional picture of hadrons are the "string endpoint mass" and the "baryonic string vertex". We determine the classical trajectories of the HISH. We review the current understanding of the quantization of the hadronic strings. We end with a summary of the comparison of the outcome of the HISH models with the PDG data about mesons and baryons. We extract the values of the tension, masses and intercepts from best fits, write down certain predictions for higher excited hadrons and present attempts to identify glueballs.

  14. Stringy effects in scrambling

    International Nuclear Information System (INIS)

    Shenker, Stephen H.; Stanford, Douglas

    2015-01-01

    In (http://dx.doi.org/10.1007/JHEP03(2014)067) we gave a precise holographic calculation of chaos at the scrambling time scale. We studied the influence of a small perturbation, long in the past, on a two-sided correlation function in the thermofield double state. A similar analysis applies to squared commutators and other out-of-time-order one-sided correlators (http://dx.doi.org/10.1007/JHEP12(2014)046, http://dx.doi.org/10.1007/JHEP03(2015)051A). The essential bulk physics is a high energy scattering problem near the horizon of an AdS black hole. The above papers used Einstein gravity to study this problem; in the present paper we consider stringy and Planckian corrections. Elastic stringy corrections play an important role, effectively weakening and smearing out the development of chaos. We discuss their signature in the boundary field theory, commenting on the extension to weak coupling. Inelastic effects, although important for the evolution of the state, leave a parametrically small imprint on the correlators that we study. We briefly discuss ways to diagnose these small corrections, and we propose another correlator where inelastic effects are order one.

  15. Preliminary study on antifungal effect of commercial essential oils against white rot fungi

    Science.gov (United States)

    Khalid, Nurul Izzaty; Baharum, Azizah; Daud, Fauzi

    2015-09-01

    Protecting and preserving wood plastic composite from deterioration caused by fungal attack is a high challenge issue to cater nowadays. The objective of this study was to carry out a screening test towards antifungal effect of essential oil and to investigate the potential of raw materials that will be used as basic material for manufacturing wood plastic composite against white rot fungi. Essential oils from four types of natural products comprising cinnamon, lemongrass, lavender and geranium have been screened for their ability to inhibit five types of white rot fungi species which are Lentinus squarrosulus, Pleuorotus pulmonarius, Lentinus sp., Pleuorotus sajor-caju and Lignosus rhinocerus. The antifungal evaluation showed that no inhibitory effect against tested white rot fungi since the mycelia completely filled the plates. From the observation, mycelia of L. squarrosulus, P. pulmonarius and Lentinus sp. were found to filled the surface of falcon tubes with rubber sawdust after 15 days. Mycelia of L. squarrosulus and P. pulmonarius also were found to completely covered the surface of media that contain polypropylene and maleic anhydride grafted polypropylene on it. Therefore, this report proved that the main materials that will be applicable in manufacturing of wood plastic composite had potential to be degraded by this type of fungal attack.

  16. [Ligninolytic enzyme production by white rot fungi during paraquat (herbicide) degradation].

    Science.gov (United States)

    Camacho-Morales, Reyna L; Gerardo-Gerardo, José Luis; Guillén Navarro, Karina; Sánchez, José E

    Paraquat is a widely used herbicide in agriculture. Its inappropriate use and wide distribution represents a serious pollution problem for soil and water. White rot fungi are capable of degrading pollutants having a similar structure to that of lignin, such as paraquat. This study evaluated the degradation effect of paraquat on the production of ligninolytic enzymes by white rot fungi isolated from the South of Mexico. Six fungal strains showed tolerance to the herbicide in solid culture. Three of the six evaluated strains showed levels of degradation of 32, 26 and 47% (Polyporus tricholoma, Cilindrobasidium laeve and Deconica citrispora, respectively) after twelve days of cultivation in the presence of the xenobiotic. An increase in laccase and manganese peroxidase (MnP) activities was detected in the strains showing the highest percentage of degradation. Experiments were done with enzyme extracts from the extracellular medium with the two strains showing more degradation potential and enzyme production. After 24hours of incubation, a degradation of 49% of the initial paraquat concentration was observed for D. citrispora. These results suggest that paraquat degradation can be attributed to the presence of extracellular enzymes from white rot fungi. In this work the first evidence of the biodegradation potential of D. citrispora and Cilindrobasidium leave is shown. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Natural decomposition of hornbeam wood decayed by the white rot fungus Trametes versicolor.

    Science.gov (United States)

    Karim, Maryam; Daryaei, Mehrdad Ghodskhah; Torkaman, Javad; Oladi, Reza; Ghanbary, Mohammad Ali Tajick; Bari, Ehsan; Yilgor, Nural

    2017-01-01

    The impacts of white-rot fungi on altering wood chemistry have been studied mostly in vitro. However, in vivo approaches may enable better assessment of the nature of interactions between saprotrophic fungi and host tree in nature. Hence, decayed and sound wood samples were collected from a naturally infected tree (Carpinus betulus L.). Fruiting bodies of the white rot fungus Trametes versicolor grown on the same tree were identified using rDNA ITS sequencing. Chemical compositions (cellulose and lignin) of both sound and infected wood were studied. FT-IR spectroscopy was used to collect spectra of decayed and un-decayed wood samples. The results of chemical compositions indicated that T. versicolor reduced cellulose and lignin in similar quantities. Fungal activities in decayed wood causes serious decline in pH content. The amount of alcohol-benzene soluble extractives was severely decreased, while a remarkable increase was found in 1% sodium hydroxide soluble and hot water extractive contents in the decayed wood samples, respectively. FT-IR analyses demonstrated that T. versicolor causes simultaneous white rot in the hornbeam tree in vivo which is in line with in vitro experiments.

  18. Optimization of Laccase Production using White Rot Fungi and Agriculture Wastes in Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Hendro Risdianto

    2012-07-01

    Full Text Available Laccase has been produced in a solid state fermentation (SSF using white rot fungi and various lignocellulosic based substrates. White rot fungi used were Marasmius sp, Trametes hirsuta, Trametes versicolor and Phanerochaete crysosporium. The solid substrates employed in this research were collected from agriculture waste which were empty fruit bunches (EFB, rice straw, corn cob, and rice husk. The objective of this research was to determine the most promising fungus, the best solid substrate and the optimal conditions for the production of laccase. The results showed that Marasmius sp. on all solid substrates displayed higher laccase activity than that of any other strain of white rot fungi. Marasmius sp. and solid substrate of rice straw demonstrated the highest laccase activity of 1116.11 U/L on day 10. Three significant factors, i.e. pH, temperature and yeast extract concentration were studied by response surface method on laccase production using Marasmius sp and rice straw. The optimized conditions were pH, temperature and yeast extract concentration of 4.9, 31ºC and 0.36 g/L respectively. The fermentation of Marasmius sp. in SSF on agricultural waste shows a great potential for the production of laccase.

  19. Natural decomposition of hornbeam wood decayed by the white rot fungus Trametes versicolor

    Directory of Open Access Journals (Sweden)

    MARYAM KARIM

    2017-12-01

    Full Text Available ABSTRACT The impacts of white-rot fungi on altering wood chemistry have been studied mostly in vitro. However, in vivo approaches may enable better assessment of the nature of interactions between saprotrophic fungi and host tree in nature. Hence, decayed and sound wood samples were collected from a naturally infected tree (Carpinus betulus L.. Fruiting bodies of the white rot fungus Trametes versicolor grown on the same tree were identified using rDNA ITS sequencing. Chemical compositions (cellulose and lignin of both sound and infected wood were studied. FT-IR spectroscopy was used to collect spectra of decayed and un-decayed wood samples. The results of chemical compositions indicated that T. versicolor reduced cellulose and lignin in similar quantities. Fungal activities in decayed wood causes serious decline in pH content. The amount of alcohol-benzene soluble extractives was severely decreased, while a remarkable increase was found in 1% sodium hydroxide soluble and hot water extractive contents in the decayed wood samples, respectively. FT-IR analyses demonstrated that T. versicolor causes simultaneous white rot in the hornbeam tree in vivo which is in line with in vitro experiments.

  20. Screening wood decayed by white rot fungi for preferential lignin degradation.

    Science.gov (United States)

    Blanchette, R A

    1984-09-01

    A screening procedure in which scanning electron microscopy was used indicated that 26 white rot fungi selectively removed lignin from various coniferous and hardwood tree species. Delignified wood from field collections had distinct micromorphological characteristics that were easily differentiated from other types of decay. The middle lamella was degraded, and the cells were separated from one another. Secondary cell wall layers that remained had a fibrillar appearance. Chemical analyses of delignified wood indicated that the cells were composed primarily of cellulose. Only small percentages of lignin and hemicellulose were evident. Delignified wood was not uniformly distributed throughout the decayed wood samples. White-pocket and white-mottled areas of the various decayed wood examined contained delignified cells, but adjacent wood had a nonselective removal of lignin where all cell wall components had been degraded simultaneously. This investigation demonstrates that selective delignification among white rot fungi is more prevalent than previously realized and identifies a large number of fungi for use in studies of preferential lignin degradation.

  1. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum

    Energy Technology Data Exchange (ETDEWEB)

    D/Souza, T.M.; Merritt, C.S.; Reddy, C.A.

    1999-12-01

    Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen shaken cultures were much greater than those seen in low-nitrogen, malt extract, or wool-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HM cultures showed two laccase activity bands, where as isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, and 5.1. Low levels of MnP activity were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.

  2. Improvement of garlic resistance to white rot disease and its productivity and storability using gamma radiation

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Mir Ali, N.; Arabi, M.I.D.

    1999-01-01

    A mutation program was conducted to improve garlic (Allium sativum) resistance to white rot (Sclerotium cepivorum) and to improve its storability under natural conditions. Cloves of two local garlic cultivars (Kisswany and Yabroudy) were irradiated with gamma ray doses 4, 5, 6 and 7 gray. The cloves were then planted in the the field and plants were advanced for 4 generations in order to isolate mutations in stable form. The results indicated that the cultivar Yabroudy was more sensitive to gamma irradiation than Kisswany. Rate of morphological mutants increased with increasing gamma ray dosage. Selection pressure against white rot disease was applied starting in the second generation by adding infected garlic leaves to the soil. In the third and fourth generations, however, full selection pressure was applied by inoculating the cloves with the fungus sclerotic and planting them in a soil previously planted with infected garlic plants. Healthy garlic bulbs were harvested and stored under natural conditions and then planted to obtain the next generation. By the end of the fourth generation, we have been able to improve garlic resistance to white rot disease and its storability. Twenty four mutant lines from each garlic cultivar have been selected. Out of the selected lines, twelve lines from cultivar Kisswany had only 3% infection percentage as compared to 29% in the control, and twelve lines from cultivar Yabroudy had less than 5% infection percentage as compared to 20% in the control. Also, we have been able to improve storability under natural conditions. Weight loss during storage decreased from 8.25% in the control to only 4% in some Kisswany lines and from 10% to 3% in some Yabroudy lines. However, we have not been able to increase the bulb weight over the control but the weights of the selected lines were comparable to those of the control. (authors)

  3. In vitro decomposition of Sphagnum by some microfungi resembles white rot of wood.

    Science.gov (United States)

    Rice, Adrianne V; Tsuneda, Akihiko; Currah, Randolph S

    2006-06-01

    The abilities of some ascomycetes (Myxotrichaceae) from a Sphagnum bog in Alberta to degrade cellulose, phenolics, and Sphagnum tissue were compared with those of two basidiomycetes. Most Myxotrichaceae degraded cellulose and tannic acid, and removed cell-wall components simultaneously from Sphagnum tissues, whereas the basidiomycetes degraded cellulose and insoluble phenolics, and preferentially removed the polyphenolic matrix from Sphagnum cell walls. Mass losses from Sphagnum varied from up to 50% for some ascomycetes to a maximum of 35% for the basidiomycetes. The decomposition of Sphagnum by the Myxotrichaceae was analogous to the white rot of wood and indicates that these fungi have the potential to cause significant mineralization of carbon in bogs.

  4. Genome sequence of a white rot fungus Schizopora paradoxa KUC8140 for wood decay and mycoremediation.

    Science.gov (United States)

    Min, Byoungnam; Park, Hongjae; Jang, Yeongseon; Kim, Jae-Jin; Kim, Kyoung Heon; Pangilinan, Jasmyn; Lipzen, Anna; Riley, Robert; Grigoriev, Igor V; Spatafora, Joseph W; Choi, In-Geol

    2015-10-10

    Schizopora paradoxa KUC8140 is a white rot wood degrader commonly found in Korea. Tolerance to heavy metals and polycyclic aromatic hydrocarbons and dye decolorization activity make this strain a potential candidate for mycoremediation. We report the genome sequence of S. paradoxa KUC8140 containing 44.4Mbp. Based on ab initio gene prediction, homology search and RNA-seq, total 17,098 gene models were annotated. We identified 17 lignin-modifying peroxidases and other 377 carbohydrate-active enzymes for modeling lignocellulose deconstruction and mycoremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Variation in oxalate and oxalate decarboxylase production by six species of brown and white rot fungi

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Oliver, Jason; Howell, Caitlin

    cell lumen where it quickly dissociates into hydrogen ions and oxalate, resulting in a pH decrease of the environment, and oxalate-cation complexes. Generally, brown rot fungi accumulate larger quantities of oxalic acid in the wood than white rot fungi. The amount of oxalic acid has been shown to vary......  Oxalic acid (C2O4H2), the strongest of the organic acids is produced by both brown and white rot decay fungi and has been connected to various aspects of brown- and white rot decay including the Fenton reaction (Green and Highley, 1997; Munir et al.,2001). Oxalic acid is secreted into the wood...

  6. A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell

    International Nuclear Information System (INIS)

    Wu, Chao; Liu, Xian-Wei; Li, Wen-Wei; Sheng, Guo-Ping; Zang, Guo-Long; Cheng, Yuan-Yuan; Shen, Nan; Yang, Yi-Pei; Yu, Han-Qing

    2012-01-01

    White-rot fungus is able to secrete laccase, which can reduce O 2 to H 2 O and has been widely used in enzymatic fuel cells. In this work, a strain of white-rot fungus, Coriolus versicolor, is inoculated in the cathodic chamber of a microbial fuel cell (MFC) to improve cathode reduction efficiency for better electricity generation. 2,2′-Azino-bis(3-ethylbenzothazoline-6-sulfonate), as a redox mediator, is added to the catholyte to facilitate the electron transfer between the electrode and the laccase. The results show that the fungus-based biocathode has better performance than the conventional abiotic cathode, with approximately seven-orders higher power density achieved. This is the first report that white-rot fungus is used to constitute the biocathode of an MFC for improved electricity generation.

  7. White-rot fungi capable of decolourising textile dyes under alkaline conditions.

    Science.gov (United States)

    Ottoni, Cristiane A; Santos, Cledir; Kozakiewicz, Zofia; Lima, Nelson

    2013-05-01

    Twelve white-rot fungal strains belonging to seven different species were screened on plates under alkaline condition to study the decolourisation of the textile dyes Reactive Black 5 and Poly R-478. Three strains of Trametes versicolor (Micoteca da Universidade do Minho (MUM) 94.04, 04.100 and 04.101) and one strain of Phanerochaete chrysosporium (MUM 94.15) showed better decolourisation results. These four strains were used for decolourisation studies in liquid culture medium. All four selected strains presented more efficient decolourisation rates on Reactive Black 5 than on Poly R-478. For both dyes on solid and liquid culture media, the decolourisation capability exhibited by these strains depended on dye concentration and pH values of the media. Finally, the decolourisation of Reactive Black 5 by T. versicolor strains MUM 94.04 and 04.100 reached 100 %. In addition, the highest white-rot fungi ligninolytic enzyme activities were found for these two strains.

  8. Use of Swine Wastewater as Alternative Substrate for Mycelial Bioconversion of White Rot Fungi.

    Science.gov (United States)

    Lee, Jangwoo; Shin, Seung Gu; Ahn, Jinmo; Han, Gyuseong; Hwang, Kwanghyun; Kim, Woong; Hwang, Seokhwan

    2017-02-01

    Seven white rot fungal species were tested for growth as mycelia using swine wastewater (SW), an agro-waste with tremendous environmental footprint, as the sole nutrient source. The SW contained high concentrations of carbon and nitrogen components, which could support nutritional requirements for mycelial growth. Out of the seven species, Pleurotus ostreatus and Hericium erinaceus were successfully cultivated on the SW medium using solid-state fermentation. Response surface methodology was employed to determine the combination of pH, temperature (T), and substrate concentration (C) that maximizes mycelial growth rate (Kr) for the two species. The optimum condition was estimated as pH = 5.8, T = 28.8 °C, and C = 11.2 g chemical oxygen demand (COD)/L for P. ostreatus to yield Kr of 11.0 mm/day, whereas the greatest Kr (3.1 mm/day) was anticipated at pH = 4.6, T = 25.5 °C, and C = 11.9 g COD/L for H. erinaceus. These Kr values were comparable to growth rates obtained using other substrates in the literature. These results demonstrate that SW can be used as an effective substrate for mycelial cultivation of the two white rot fungal species, suggesting an alternative method to manage SW with the production of potentially valuable biomass.

  9. Impact of armillaria root rot in intensively managed white spruce/aspen stands

    Energy Technology Data Exchange (ETDEWEB)

    Blenis, P.V.; Mallet, K.I.; Titus, S.J.

    1995-12-31

    The Western Boreal Growth and Yield (WESBOGY) experiment was initiated to determine the growth and yield of aspen and white spruce when the two species occur in mixtures at different densities. Armillaria root rot may play an important role in mixedwood management because the fungus can attack both spruce and aspen, and the spatial distribution of trees influences the spread of these pathogens. The ultimate objective of WESBOGY is to determine the effect of the different densities on the impact of Armillaria root rot. However, as Armillaria may be distributed irregularly across the landscape, it is necessary to know the initial pathogen population so that it can be used as a covariate to adjust estimated treatment effects to account for different starting levels of Armillaria. This paper reports on a project to determine the distribution of Armillaria in two replicates of the WESBOGY trial. Armillaria distribution was determined by inserting trap logs into the soil between the planted spruces in July 1993 and examining the logs a year later for the distinctive white mycelium typical of Armillaria.

  10. Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor

    International Nuclear Information System (INIS)

    Shirkavand, Ehsan; Baroutian, Saeid; Gapes, Daniel J.; Young, Brent R.

    2017-01-01

    Highlights: • Fungal pretreatment by two New Zealand native white rot fungi was proposed. • Trametes versicolor was more efficient in selective degradation of pine wood chips. • Both fungal strains significantly decreased crystallinity index of biomass only after week 7 of degradation. • Structural analysis showed that Trametes versicolor and Stereum hirsutum increased porous surface area of woody biomass. - Abstract: Stereum hirsutum and Trametes versicolor, were studied over a period of 3–7 weeks for pretreatment of radiata pine wood chips. Chemical analysis of pretreated biomass showed that the two studied strains were able to selectively degrade lignin. Selective lignin degradation was greater in week 3 of the pretreatment by Trametes versicolor compared to the other strain. Lengthening pretreatment time increased both lignin and cellulose losses which caused a reduction in selective lignin degradation for both strains. X-ray diffractometry showed that after seven weeks of pretreatment, the crystallinity of the woody biomass was decreased significantly. It decreased from 46% for untreated wood chips to 37% and 44% for Stereum hirsutum and Trametes versicolor treated biomass, respectively. The pretreatment with these two white rot fungi showed that 3-week pretreatment provided a cellulose rich biomass with the minimum cellulose loss compared to the other time of pretreatment.

  11. Biological treatment of paper pulp effluents: the application of ligninolytic white rot-fungi

    International Nuclear Information System (INIS)

    Martin, C; Fajardo, S.; Manzanares, P.

    1996-01-01

    Biological treatments using white-rot fungi, based in their ability to degrade lignin, can constitute an interesting approach to remove colour and toxic compounds usually contained in paper pulp effluents due to the presence of recalcitrant lignin derived molecules. In this work, strains A-137 and A-136 (IJFM collection, CIB-CSIC, Madrid) of Trameles versicolor, a ligninolytic white-rot fungus that have been frequently reported in relation to degradation of lignin, have been used for decolorisation studies of the straw alkaline-pulping effluent from SAICA factory (Zaragoza, Spain). From results obtained it can be concluded that decolorisation percentages about 80% can be obtained in 4-6 days (for maximum initial colour effluent between 12,000 and 15,000 CU) and total phenolics content can be reduced in about 90%. Mn-dependent peroxidase (about 20 IU/I) and high values of laccase activities (up to 700 IU/I) were produced, what may be of great interest to set up ligninolytic enzymes production processes for industrial uses. (Author) 19 refs

  12. Biological treatment of paper pulp effluents: the application of ligninolytic white rot-fungi

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C; Fajardo, S.; Manzanares, P.

    1996-07-01

    Biological treatments using white-rot fungi, based in their ability to degrade lignin, can constitute an interesting approach to remove colour and toxic compounds usually contained in paper pulp effluents due to the presence of recalcitrant lignin derived molecules. In this work, strains A-137 and A-136 (IJFM collection, CIB-CSIC, Madrid) of Trameles versicolor, a ligninolytic white-rot fungus that have been frequently reported in relation to degradation of lignin, have been used for decolorisation studies of the straw alkaline-pulping effluent from SAICA factory (Zaragoza, Spain). From results obtained it can be concluded that decolorisation percentages about 80% can be obtained in 4-6 days (for maximum initial colour effluent between 12,000 and 15,000 CU) and total phenolics content can be reduced in about 90%. Mn-dependent peroxidase (about 20 IU/I) and high values of laccase activities (up to 700 IU/I) were produced, what may be of great interest to set up ligninolytic enzymes production processes for industrial uses. (Author) 19 refs.

  13. Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yen San; Mat Don, Mashitah, E-mail: chmashitah@eng.usm.my

    2013-01-01

    Five species of white rot fungi were screened for their capability to synthesize Ag nanoparticles (AgNPs). Three modes of AgNP bioreduction were developed. Pycnoporus sanguineus is found as a potential candidate for the synthesis of AgNPs with a yield at 98.9%. The synthesized AgNPs were characterized using UV-vis spectroscopy, DLS, FTIR, TEM, and SEM. Results showed that AgNP absorption band was located at a peak of 420 nm. Both the SEM and TEM confirmed that the formation of AgNPs were mainly spherical with average diameters of 52.8-103.3 nm. The signals of silver atoms' presence in the mycelium were observed by SEM-EDS spectrum. - Highlights: Black-Right-Pointing-Pointer Pycnoporus sanguineus was found to be most capable for AgNP production compared to other screened white rot fungi. Black-Right-Pointing-Pointer 98.9% yield of AgNP production was identified in the extracellular synthesis by Pycnoporus sanguineus. Black-Right-Pointing-Pointer FTIR spectra confirmed that proteins from the mycelial surface are responsible for the bioreduction of AgNPs.

  14. Stringy instanton counting and topological strings

    Science.gov (United States)

    Manabe, Masahide

    2015-07-01

    We study the stringy instanton partition function of four dimensional U( N) supersymmetric gauge theory which was obtained by Bonelli et al. in 2013. In type IIB string theory on , the stringy U( N) instantons of charge k are described by k D1-branes wrapping around the bound to N D5-branes on . The KK corrections induced by compactification of the give the stringy corrections. We find a relation between the stringy instanton partition function whose quantum stringy corrections have been removed and the K-theoretic instanton partition function, or by geometric engineering, the refined topological A-model partition function on a local toric Calabi-Yau threefold. We also study the quantum stringy corrections in the stringy instanton partition function which is not captured by the refined topological strings.

  15. The potential of white-rot fungi to degrade phorbol esters of Jatropha curcas L. seed cake

    NARCIS (Netherlands)

    Barros, de C.R.M.; Ferreira, L.M.M.; Nunes, F.M.; Bezerra, R.M.F.; Dias, A.A.; Guedes, C.; Cone, J.W.; Marques, G.S.M.; Rodrigues, M.A.M.

    2011-01-01

    The potential of solid-state cultivation, with three white-rot fungi (Bjerkandera adusta, Ganoderma resinaceum and Phlebia rufa), to decrease phorbol esters concentration of Jatropha curcas L. was evaluated in this study. Incubation was conducted in 250¿mL Erlenmeyer flasks without agitation at 28°C

  16. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta

    NARCIS (Netherlands)

    Okamoto, Kenji; Nitta, Yasuyuki; Maekawa, Nitaro; Yanase, Hideshi

    2011-01-01

    The white rot fungus Trametes hirsuta produced ethanol from a variety of hexoses: glucose, mannose, cellobiose and maltose, with yields of 0.49. 0.48, 0.47 and 0.47 g/g of ethanol per sugar utilized, respectively. In addition, this fungus showed relatively favorable xylose consumption and ethanol

  17. Seedling mortality and development of root rot in white pine seedlings in two bare-root nurseries

    Science.gov (United States)

    J. Juzwik; D. J. Rugg

    1996-01-01

    Seedling mortality and development of root rot in white pine (Pinus strobus) were followed across locations and over time within three operational nursery fields with loamy sand soils at a provincial nursery in southwestern Ontario, Canada, and a state nursery in southern Wisconsin, USA. One Ontario field was fumigated with dazomet; the other was not...

  18. White rot of garlic and onion (Causal agent, Sclerotium cepivorum): A status report from the Pacific Northwest

    Science.gov (United States)

    There is evidence from literature, state department of agriculture documents, and recent diagnoses that Sclerotium cepivorum, causal agent of white rot of garlic and onion, is spreading and/or becoming more established in the Pacific Northwest. Previously documented distributions are summarized, an...

  19. Fungal treatment of humic-rich industrial wastewater : application of white rot fungi in remediation of food-processing wastewater

    NARCIS (Netherlands)

    Zahmatkesh, M.; Spanjers, H.L.F.M.; van Lier, J.B.

    2017-01-01

    This paper presents the results of fungal treatment of a real industrial wastewater (WW), providing insight into the main mechanisms involved and clarifying some ambiguities and uncertainties in the previous reports. In this regard, the mycoremediation potentials of four strains of white rot

  20. Draft Genome Sequence of Methylobacterium sp. Strain ARG-1 Isolated from the White-Rot Fungus Armillaria gallica.

    Science.gov (United States)

    Collins, Caitlin; Kowalski, Caitlin; Zebrowski, Jessica; Tulchinskaya, Yevgeniya; Tai, Albert K; James-Pederson, Magdalena; Hirst, Rachel

    2016-06-02

    Methylobacterium sp. strain ARG-1 was isolated from a cell culture of hyphal tips of the white-rot fungus Armillaria gallica We describe here the sequencing, assembly, and annotation of its genome, confirming the presence of genes involved in methylotrophy. This is the first genome announcement of a strain of Methylobacterium associated with A. gallica. Copyright © 2016 Collins et al.

  1. Mechanical properties and chemical composition of beech wood exposed for 30 and 120 days to white-rot fungi

    Science.gov (United States)

    Ehsan Bari; Hamid Reza Taghiyari; Behbood Mohebby; Carol A. Clausen; Olaf Schmidt; Mohammad Ali Tajick Ghanbary; Mohammad Javad Vaseghi

    2015-01-01

    The effects of exposing specimens of Oriental beech [Fagus sylvatica subsp. orientalis (Lipsky) Greuter and Burdet] to the white-rot fungi Pleurotus ostreatus (Jacq.: Fr.) Kummer and Trametes versicolor (L.: Fr.) Pilát strain 325 have been studied concerning the mechanical properties and...

  2. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Pinto, P.; Bezerra, R.M.F.; Dias, A.A.; Guedes, C.M.; Cone, J.W.

    2008-01-01

    A series of in vitro experiments were completed to evaluate the potential of enzyme extracts, obtained from the white-rot fungi Trametes versicolor (TV1, TV2), Bjerkandera adusta (BA) and Fomes fomentarius (FF), to increase degradation of cell wall components of wheat straw. The studies were

  3. Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation.

    Directory of Open Access Journals (Sweden)

    Darcy Young

    Full Text Available Fungal lignocellulolytic enzymes are promising agents for oxidizing pollutants. This study investigated degradation of Number 6 "Bunker C" fuel oil compounds by the white-rot fungi Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus (Basidiomycota, Agaricomycetes. Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene, respectively were degraded after 180 days of fungal growth on pine media. This study also investigated whether Bunker C oil induces changes in gene expression in the white-rot fungus Punctularia strigosozonata, for which a complete reference genome is available. After 20 days of growth, a monokaryon P. strigosozonata strain degraded 99% of the initial C10 alkane in both pine and aspen media but did not affect the amounts of the C14 alkane or phenanthrene. Differential gene expression analysis identified 119 genes with ≥ log2(2-fold greater expression in one or more treatment comparisons. Six genes were significantly upregulated in media containing oil; these genes included three enzymes with potential roles in xenobiotic biotransformation. Carbohydrate metabolism genes showing differential expression significantly accumulated transcripts on aspen vs. pine substrates, perhaps reflecting white-rot adaptations to growth on hardwood substrates. The mechanisms by which P. strigosozonata may degrade complex oil compounds remain obscure, but degradation results of the 180-day cultures suggest that diverse white-rot fungi have promise for bioremediation of petroleum fuels.

  4. Genetic bases of fungal white rot wood decay predicted by phylogenomic analysis of correlated gene-phenotype evolution

    Science.gov (United States)

    László G. Nagy; Robert Riley; Philip J. Bergmann; Krisztina Krizsán; Francis M. Martin; Igor V. Grigoriev; Dan Cullen; David S. Hibbett

    2016-01-01

    Fungal decomposition of plant cell walls (PCW) is a complex process that has diverse industrial applications and huge impacts on the carbon cycle. White rot (WR) is a powerful mode of PCW decay in which lignin and carbohydrates are both degraded. Mechanistic studies of decay coupled with comparative genomic analyses have provided clues to the enzymatic components of WR...

  5. Biodelignification of Lemon Grass and Citronella Bagasse by White-Rot Fungi

    Science.gov (United States)

    Rolz, C.; de Leon, R.; de Arriola, M. C.; de Cabrera, S.

    1986-01-01

    Twelve white-rot fungi were grown in solid-state culture on lemon grass (Cymbopogon citratus) and citronella (Cymbopogon winterianus) bagasse. The two lignocellulosic substrates had 11% permanganate lignin and a holocellulose fraction of 58%. After 5 to 6 weeks at 20°C, nine fungi produced a solid residue from lemon grass with a higher in vitro dry matter enzyme digestibility than the original bagasse; seven did the same for citronella. The best fungus for both substrates was Bondarzewia berkeleyi; it increased the in vitro dry matter enzyme digestibility to 22 and 24% for lemon grass and citronella, respectively. The increases were correlated with weight loss and lignin loss. All fungi decreased lignin contents: 36% of the original value for lemon grass and 28% for citronella. Practically all fungi showed a preference for hemicellulose over cellulose. PMID:16347155

  6. Analytical methodology for the study of endosulfan bioremediation under controlled conditions with white rot fungi.

    Science.gov (United States)

    Rivero, Anisleidy; Niell, Silvina; Cesio, Verónica; Cerdeiras, M Pía; Heinzen, Horacio

    2012-10-15

    A general procedure to study the biodegradation of endosulfan under laboratory conditions by white rot fungi isolated from native sources growing in YNB (yeast nitrogen base) media with 1% of glucose is presented. The evaluation of endosulfan biodegradation as well as endosulfan sulfate, endosulfan ether and endosulfan alcohol production throughout the whole bioremedation process was performed using an original and straightforward validated analytical procedure with recoveries between 78 and 112% at all concentration levels studied except for endosulfan sulfate at 50 mg L(-1) that yielded 128% and RSDsendosulfan after 27 days, 6 mg kg(-1) of endosulfan diol were determined; endosulfan ether and endosulfan sulfate were produced below 1 mg kg(-1) (LOQ, limit of quantitation). Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Lignin Biodegradation in Pulp-and-Paper Mill Wastewater by Selected White Rot Fungi

    Directory of Open Access Journals (Sweden)

    Stefania Costa

    2017-12-01

    Full Text Available An investigation has been carried out to explore the lignin-degrading ability of white rot fungi, as B. adusta and P. crysosporium, grown in different media containing (i glucose and mineral salts; (ii a dairy residue; (iii a dairy residue and mineral salts. Both fungi were then used as inoculum to treat synthetic and industrial pulp-and-paper mill wastewater. On synthetic wastewater, up to 97% and 74% of lignin degradation by B. adusta and P. crysosporium, respectively, have been reached. On industrial wastewater, both fungal strains were able to accomplish 100% delignification in 8–10 days, independent from pH control, with a significant reduction of total organic carbon (TOC of the solution. Results have confirmed the great biotechnological potential of both B. adusta and P. crysosporium for complete lignin removal in industrial wastewater, and can open the way to next industrial applications on large scale.

  8. Degradation of 3,3',4,4'-tetrachlorobiphenyl by selected white rot fungi

    International Nuclear Information System (INIS)

    Vyas, B.R.M.; Šašek, V.; Matucha, M.; Bubner, M.

    1994-01-01

    N-limited stationary cultures of the white rot fungi Phanerochaete chrysosporium, Trametes versicolor, and Coriolopsis polysona mineralized 1.393 ± 0.353 (0.301 ± 0.023) and 0.398 ± 0.061 (0.112 ± 0.010), and 0.015 ± 0.004 (0.002 ± 0.0008) % of the originally supplied 30.14 nmol (513.7 nmol) of 3,3′,4,4′-tetrachloro[U- 14 C]biphenyl (PCB 77) during 4 weeks. The extent of PCB 77 degradation was followed by 14 C-radioactivity partitioning into aqueous, organic soluble, biomass associated, aqueous (intracellular) and organic soluble (intracellular) fractions. After four weeks incubation the pattern of distribution of radioactivity was similar in P. chrysosporium and C. polysona at higher dose but not at the lower dose of PCB 77. T. versicolor differed in the distribution pattern of radiolabel

  9. Sunflower inbred lines screening for tolerance to white rot on stalk

    Directory of Open Access Journals (Sweden)

    Dedić Boško

    2011-01-01

    Full Text Available Seventy sunflower (Helianthus annuus L inbred lines were screened for tolerance to white rot on stalk. Plants were inoculated at the budding stage with 4-day old Sclerotinia mycelium grown on PDA medium. Mycelium was placed on the leaf top and covered with tin foil, and the leaf was put into transparent nylon bag in order to maintain high humidity. Spot length on leaf was measured and plant tolerance was determined at the full flowering stage. Obtained results were analyzed by analysis of variance. Tested lines showed significant variability in response to disease. Eleven lines had lesion length less than 50% compared to susceptible control, so they could be considered tolerant and potentially interesting for breeding program.

  10. The complete mitochondrial genome of the white-rot fungus Ganoderma meredithiae (Polyporales, Basidiomycota).

    Science.gov (United States)

    Wang, Xin-Cun; Wu, Kai; Chen, Haimei; Shao, Junjie; Zhang, Nana; Chen, Xiangdong; Lan, Jin; Liu, Chang

    2016-11-01

    Complete nucleotide sequence of the 78,447 bp mitochondrial genome of the white-rotting fungus Ganoderma meredithiae Adask. & Gilb. has been determined by next-generation sequencing technology. The circular molecule encodes a set of mitochondrial protein and RNA genes, including 15 conserved proteins, 29 tRNAs, large and small ribosomal RNAs, and 18 homing endonucleases, with a GC content of 26.14%. All structural genes are located on the same strand except trnW-CCA. Compared with previously sequenced mtDNAs of G. lucidum and G. sinense, the gene order of protein and rRNA genes among the three mitogenomes is highly conserved; however, the tRNA composition is slightly different. The mitochondrial genome of G. meredithiae will contribute to understanding the phylogeny and evolution of Ganoderma and Ganodermataceae, the group containing many species with high medicinal values.

  11. Effects of glucose on the Reactive Black 5 (RB5 decolorization by two white rot basidiomycetes

    Directory of Open Access Journals (Sweden)

    Tony Hadibarata

    2011-11-01

    Full Text Available The capacities of glucose in the decolorization process of an azo dye, Reactive Black 5 (RB5, by two white rot basidiomycetes, Pleurotus sp. F019 and Trametes sp. F054 were investigated. The results indicated that the dye degradation by the two fungi was extremely correlated with the presence of glucose in the culture and the process of fungi growth. Decolorization of 200 mg dye/l was increased from 62% and 69% to 100% within 20–25 h with the increase of glucose from 5 to 15 g/l, and the activity of manganese dependent peroxidase (MnP increased by 2–9 fold in this case. Hydrogen peroxide of 0.55 mg/l and 0.43 mg/l were detected in 10 h in Pleurotus sp. F019 and Trametes sp. F054 cultures.

  12. The preventive Control of White Root Rot Disease in Small Holder Rubber Plantation Using Botanical, Biological and Chemical Agents

    Directory of Open Access Journals (Sweden)

    Joko Prasetyo

    2014-03-01

    Full Text Available The preventive control of white root rot disease in small holder plantation using botanical, biological, and chemical agents. A field and laboratory experiment were conducted from June 2008 to December 2009 in Panumangan, Tulang Bawang - Lampung. The  field experiment was intended to evaluate the effect of  botanical plants (Alpinia galanga, Sansiviera auranthii, and Marantha arundinacea, biological agents (organic matter and Trichoderma spp., and chemical agents (lime and natural sulphur on the incidence of white root rot disease and population of some soil microbes. The laboratory experiment was conducted  to observe the mechanism of botanical agents  in controlling white root rot disease. In the field experiment, the treatments were applied  in the experimental plot with cassava plant infection as the indicator. The variables  examined were the incidence of  white root rot and population of soil microbes. In the laboratory experiment, culture of R. microporus was grown in PDA containing root exudate of the antagonistic plant (botanical agent. The variable examined was colony diameter of R. microporus growing in the PDA plates. The results of the  field experiment  showed that planting of the botanical agents, and application of Trichoderma spp., as well as natural sulphur, decreased the incidence of white root rot disease. The effectiveness of M. arundinacea and Trichoderma spp. was comparable to natural  sulphur. The laboratory experiment showed only root exudate of  A. galanga and  S. auranthii that were significantly inhibit the growth of R. microporus.

  13. Toxicity of organic and inorganic nanoparticles to four species of white-rot fungi

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, T.P.S., E-mail: pgalindo@ua.pt [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pereira, R. [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 4169-007 Porto (Portugal); Freitas, A.C.; Santos-Rocha, T.A.P. [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); ISEIT, Instituto Piaget Viseu, Estrada do Alto do Gaio, Lordosa, 3515-776 Viseu (Portugal); Rasteiro, M.G.; Antunes, F. [Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra (Portugal); Rodrigues, D. [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); ISEIT, Instituto Piaget Viseu, Estrada do Alto do Gaio, Lordosa, 3515-776 Viseu (Portugal); Soares, A.M.V.M.; Gonçalves, F. [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); and others

    2013-08-01

    The rapid development of nanoparticles (NP) for industrial applications and large-volume manufacturing, with its subsequent release into the environment, raised the need to understand and characterize the potential effects of NP to biota. Accordingly, this work aimed to assess sublethal effects of five NP to the white-rot fungi species Trametes versicolor, Lentinus sajor caju, Pleurotus ostreatus, and Phanerochaete chrysosporium. Each species was exposed to serial dilutions of the following NP: organic-vesicles of SDS/DDAB and of Mo/NaO; gold-NP, quantum dot CdSe/ZnS, and Fe/Co. Fungi growth rate was monitored every day, and at the end of assay the mycelium from each replicate was collected to evaluate possible changes in its chemical composition. For all NP-suspensions the following parameters were characterized: hydrodynamic diameter, surface charge, aggregation index, zeta potential, and conductivity. All tested NP tended to aggregate when suspended in aqueous media. The obtained results showed that gold-NP, CdSe/ZnS, Mo/NaO, and SDS/DDAB significantly inhibited the growth of fungi with effects on the mycelium chemical composition. Among the tested NP, gold-NP and CdSe/ZnS were the ones exerting a higher effect on the four fungi. Finally to our knowledge, this is the first study reporting that different types of NP induce changes in the chemical composition of fungi mycelium. - Highlights: • Nanoparticles (NP) tend to aggregate when in aqueous suspensions. • Chemical composition revealed to be very important in the ecotoxicity of NP. • Observed effects suggested diversified modes of action of different NP. • White-rot fungi species exhibit great differences in their sensitivity to NP.

  14. Toxicity of organic and inorganic nanoparticles to four species of white-rot fungi

    International Nuclear Information System (INIS)

    Galindo, T.P.S.; Pereira, R.; Freitas, A.C.; Santos-Rocha, T.A.P.; Rasteiro, M.G.; Antunes, F.; Rodrigues, D.; Soares, A.M.V.M.; Gonçalves, F.

    2013-01-01

    The rapid development of nanoparticles (NP) for industrial applications and large-volume manufacturing, with its subsequent release into the environment, raised the need to understand and characterize the potential effects of NP to biota. Accordingly, this work aimed to assess sublethal effects of five NP to the white-rot fungi species Trametes versicolor, Lentinus sajor caju, Pleurotus ostreatus, and Phanerochaete chrysosporium. Each species was exposed to serial dilutions of the following NP: organic-vesicles of SDS/DDAB and of Mo/NaO; gold-NP, quantum dot CdSe/ZnS, and Fe/Co. Fungi growth rate was monitored every day, and at the end of assay the mycelium from each replicate was collected to evaluate possible changes in its chemical composition. For all NP-suspensions the following parameters were characterized: hydrodynamic diameter, surface charge, aggregation index, zeta potential, and conductivity. All tested NP tended to aggregate when suspended in aqueous media. The obtained results showed that gold-NP, CdSe/ZnS, Mo/NaO, and SDS/DDAB significantly inhibited the growth of fungi with effects on the mycelium chemical composition. Among the tested NP, gold-NP and CdSe/ZnS were the ones exerting a higher effect on the four fungi. Finally to our knowledge, this is the first study reporting that different types of NP induce changes in the chemical composition of fungi mycelium. - Highlights: • Nanoparticles (NP) tend to aggregate when in aqueous suspensions. • Chemical composition revealed to be very important in the ecotoxicity of NP. • Observed effects suggested diversified modes of action of different NP. • White-rot fungi species exhibit great differences in their sensitivity to NP

  15. EVALUATION OF ENDOGLUCANASE, EXOGLUCANASE, LACCASE, AND LIGNIN PEROXIDASE ACTIVITIES ON TEN WHITE-ROT FUNGI

    Directory of Open Access Journals (Sweden)

    Sandra Montoya B

    2014-12-01

    Full Text Available This paper presents a way of tracking the production of lignocellulolytic enzymes in ten species of white rot fungi: Lentinula edodes, Schizophyllum commune, Trametes trogii, Coriolus versicolor, Pycnoporus sanguineus, Ganoderma applanatum, Ganoderma lucidum, Grifola frondosa, Pleurotus ostreatus and Auricularia delicata. These species were first screened on solid culture media containing carboxymethyl cellulose, crystalline cellulose, ABTS (2,2´-azino-bis(3-ethylbenzothiazoline-6-sulphonate and azure B, which showed the production of endoglucanase, exoglucanase, laccase and lignin peroxidase (LiP enzymes. Cellulolytic activities were detected after five days of incubation with congo red indicator, forming a clear-white halo in areas where cellulose was degraded. For ligninases, the tracking consisted of the monitoring in the formation of green halos due to ABTS oxidation for laccase, and decolorization halos on azure B for LiP during 14 days of incubation. From this qualitative screening, four strains were selected (G. lucidum, L. edodes, C. versicolor and T. trogii as the best producers of cellulolytic and ligninolytic enzymes. These four species were inoculated on a substrate of sawdust oak, yielding 51,8% of lignin degraded by L. edodes and 22% of cellulose degraded by C. versicolor.

  16. Bio-Treatment of Energetic Materials Using White-Rot Fungus

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Manish M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    1998-11-12

    The nitramine explosive, octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine (HMX), is used by militaries around the world in high yield munitions and often in combination with hexahydro-l ,3,5-trinitro-1,3,5- triazine (RDX). Improper handling and disposal of manufacturing wastewater may lead to environmental contamination. In the past wastewater was collected in disposal lagoons where it evaporated, and deposited large amounts of explosives on the lagoon floor. Although lagoon disposal is no longer practiced, thousands of acres have been already contaminated. RDX and, to a lesser extent, HMX have leached through the soil subsurface and contaminated groundwater (1,2). Likewise, burning of substandard material or demilitarization of out-of-date munitions has also led to environmental contamination. The current stockpile of energetic materials at DOE sites requires resource recovery or disposition (RRD). A related challenge exists in the clean-up of the DOE sites where soil and ground water are contaminated with explosives. Current technologies such as incineration, molten ·salt process, supercritical water oxidation are expensive and have technical hurdles. Open burning and open detonation(OB/OD) is not encouraged by regulatory agencies for disposal of explosives. Hence, there is need for a safe technology to degrade these contaminants. The fungal process does not employ open burning or open detonation to destroy energetic materials. The fungal process can be used by itself, or it can augment or · support other technologies for the treatment of energetic materials. The proposed enzyme technology will not release any air pollutants and will meet the regulations of Clean Air Act amendments, the Resource Conservation and Recovery Act, and the Federal Facilities Compliance Act. The goal for this project was to test the ability of white-rot fungus to degrade HMX. In our study, we investigated the biodegradation ofHMX using white-rot fungus in liquid and solid cultures

  17. Bio-Treatment of Energetic Materials Using White-Rot Fungus

    Energy Technology Data Exchange (ETDEWEB)

    MM Shah

    1998-11-12

    The nitramine explosive, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), is used by militaries around the world in high yield munitions and often in combination with hexahydro- 1,3,5-trirdtro- 1,3,5- triazine (RDX). Improper handling and disposal of manufacturing wastewater may lead to environmental contamination. In the past wastewater was collected in disposal lagoons where it evaporated, and deposited large amounts of explosives on the lagoon floor. Although lagoon disposal is no longer practiced, thousands of acres have been already contaminated. RDX and, to a lesser extent, HMX have leached through the soil subsurface and contaminated groundwater ( 1,2). Likewjse, burning of substandard material or demilitarization of out-of-date muriitions has also led to environmental contamination. The current stockpile of energetic materials at DOE sites requires resource recovery or disposition (RRD). A related challenge exists in the clean-up of the DOE sites where soil and ground water are contaminated with explosives. Current technologies such as incineration, molten salt process, supercritical water oxidation are expensive and have technical hurdles. Open burning and open detonation(OB/OD) is not encouraged by regulatory agencies for disposal of explosives. Hence, there is need for a safe . technology to degrade these contaminants. The fi.mgal process does not employ open burning or open detonation to destroy energetic materials. The fimgal process can be used by itself, or it can augment or support other technologies for the treatment of energetic materials. The proposed enzyme technology will not release any air pollutants and will meet the regulations of Clean Air Act amendments, the Resource Conservation and Recovery Act, and the Federal. Facilities Compliance Act. The goal for this project was to test the ability of white-rot fungus to degrade HMX. In our study, we investigated the biodegradation of HMX using white-rot fungus in liquid and solid cultures

  18. Solid-state fermentation of rapeseed meal with the white-rot fungi trametes versicolor and Pleurotus ostreatus.

    Science.gov (United States)

    Żuchowski, Jerzy; Pecio, Łukasz; Jaszek, Magdalena; Stochmal, Anna

    2013-12-01

    Rapeseed meal is valuable high-protein forage, but its nutritional value is significantly reduced by the presence of a number of antinutrients, including phenolic compounds. Solid-state fermentation with white-rot fungi was used to decrease the sinapic acid concentration of rapeseed meal. After 7 days of growth of Trametes versicolor and Pleurotus ostreatus, the sinapic acid content of rapeseed meal was reduced by 59.9 and 74.5 %, respectively. At the end of the experiment, sinapic acid concentration of T. versicolor cultures decreased by 93%of the initial value; in the case of cultures of P. ostreatus, 93.2 % reduction was observed. Moreover, cultivation of white-rot fungi on rapeseed meal resulted in the intensive production of extracellular laccase, particularly strong during the late phases of growth of T. versicolor. The obtained results confirm that both fungal species may effectively be used to decompose antinutritional phenolics of rapeseed meal. Rapeseed meal may also find use as an inexpensive and efficient substrate for a biotechnological production of laccase by white-rot fungi.

  19. Comparative modeling and molecular docking analysis of white, brown and soft rot fungal laccases using lignin model compounds for understanding the structural and functional properties of laccases.

    Science.gov (United States)

    Kameshwar, Ayyappa Kumar Sista; Barber, Richard; Qin, Wensheng

    2018-01-01

    Extrinsic catalytic properties of laccase enable it to oxidize a wide range of aromatic (phenolic and non-phenolic) compounds which makes it commercially an important enzyme. In this study, we have extensively compared and analyzed the physico-chemical, structural and functional properties of white, brown and soft rot fungal laccases using standard protein analysis software. We have computationally predicted the three-dimensional comparative models of these laccases and later performed the molecular docking studies using the lignin model compounds. We also report a customizable rapid and reliable protein modelling and docking pipeline for developing structurally and functionally stable protein structures. We have observed that soft rot fungal laccases exhibited comparatively higher structural variation (higher random coil) when compared to brown and white rot fungal laccases. White and brown rot fungal laccase sequences exhibited higher similarity for conserved domains of Trametes versicolor laccase, whereas soft rot fungal laccases shared higher similarity towards conserved domains of Melanocarpus albomyces laccase. Results obtained from molecular docking studies showed that aminoacids PRO, PHE, LEU, LYS and GLN were commonly found to interact with the ligands. We have also observed that white and brown rot fungal laccases showed similar docking patterns (topologically monomer, dimer and trimer bind at same pocket location and tetramer binds at another pocket location) when compared to soft rot fungal laccases. Finally, the binding efficiencies of white and brown rot fungal laccases with lignin model compounds were higher compared to the soft rot fungi. These findings can be further applied in developing genetically efficient laccases which can be applied in growing biofuel and bioremediation industries. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Biotechnological Wood Modification with Selective White-Rot Fungi and Its Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Cornelia Gradinger

    2007-01-01

    Full Text Available Microbial mechanisms of lignin degradation may be utilised for solid-state fermentations other than biopulping, during which the selective conversion of lignin is required. The current paper reviews current work into selective lignin conversion, with emphasis on the contributions made by our research group, which consists of researchers from five different laboratories. Three of them cooperate within Wood K plus. The recent research of this group has focussed on fermentations utilising the unique metabolism of selective white-rot fungi to modify wood surfaces during relatively short fermentation times of less than one week and on research into the molecular mechanisms causing these modifications. Lignin degradation by selective fungi (e.g. Ceriporiopsis subvermispora and species of the genus Phlebia on the wood surfaces was significant after three days. After seven days the overall lignin content of spruce wood shavings was reduced by more than 3.5 %. Lignin loss was accompanied by an increase of extractable substances. To evaluate small changes and to trace the fungal modification processes, Fourier transform infrared spectroscopic (FTIR techniques and electron paramagnetic resonance (EPR spectroscopy were applied and adapted. The spectra recorded in the near infrared region (FT-NIR turned out to be very useful for kinetic studies of the biopulping/biomodification processes and a good method to evaluate the capabilities of fungi to modify wood surfaces within this short period.

  1. Grape stalks as substrate for white rot fungi, lignocellulolytic enzyme production and dye decolorization.

    Science.gov (United States)

    Levin, Laura; Diorio, Luis; Grassi, Emanuel; Forchiassin, Flavia

    2012-01-01

    The aim of this work was to evaluate the potential of grape stalks, an agroindustrial waste, for growth and lignocellulolytic enzyme production via solid-state fermentation, using the following three white rot fungi: Trametes trogii, Stereum hirsutum and Coriolus antarcticus. The decolorization of several dyes by the above mentioned cultures was also investigated. Similar values of dry weight loss of the substrate were measured after 60 days (33-43 %). C. antarcticus produced the highest laccase and Mn-peroxidase activities (33.0 and 1.6 U/g dry solid). The maximum endoglucanase production was measured in S. hirsutum cultures (10.4 U/g), while the endoxylanase peak corresponded to T. trogii (14.6 U/g). The C. antarcticus/grape stalk system seems potentially competitive in bioremediation of textile processing effluents, attaining percentages of decolorization of 93, 86, 82, 82, 77, and 58% for indigo carmine, malachite green, azure B, remazol brilliant blue R, crystal violet and xylidine, respectively, in 5 h.

  2. The multigene family of fungal laccases and their expression in the white rot basidiomycete Flammulina velutipes.

    Science.gov (United States)

    Wang, Wei; Liu, Fang; Jiang, Yuji; Wu, Guangmei; Guo, Lixian; Chen, Renliang; Chen, Bingzhi; Lu, Yuanping; Dai, Yucheng; Xie, Baogui

    2015-06-01

    Fungal laccases play important roles in matrix degradation. Eleven laccase genes, including three novel ones (designated lac1, lac2 and lac4) were identified after sequencing the entire genome of the edible, white-rot fungus Flammulina velutipes. Analysis using bioinformatics revealed that all of the laccases, except lac3, possess a signal peptide. These laccase proteins consist of 502-670 amino acids and have predicted molecular weights ranging from 55kDa to 74kDa. These proteins each contain four copper-binding sites, except for Lac10. Transcriptomes were sequenced at different developmental stages and in different fruiting body tissues to analyze if there was differential expression of laccase genes. The novel laccase gene lac4 exhibited the highest expression levels among all of the observed laccases at every developmental stage and in all fruiting body tissues examined. We conclude that laccases in F. velutipes play a role not only in lignin degradation, but also in fruiting body formation and development. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Coriolopsis rigida, a potential model of white-rot fungi that produce extracellular laccases.

    Science.gov (United States)

    Saparrat, Mario C N; Balatti, Pedro A; Arambarri, Angélica M; Martínez, María J

    2014-04-01

    In the last two decades, a significant amount of work aimed at studying the ability of the white-rot fungus Coriolopsis rigida strain LPSC no. 232 to degrade lignin, sterols, as well as several hazardous pollutants like dyes and aliphatic and aromatic fractions of crude oil, including polycyclic aromatic hydrocarbons, has been performed. Additionally, C. rigida in association with arbuscular mycorrhizal fungi appears to enhance plant growth, albeit the physiological and molecular bases of this effect remain to be elucidated. C. rigida's ability to degrade lignin and lignin-related compounds and the capacity to transform the aromatic fraction of crude oil in the soil might be partially ascribed to its ligninolytic enzyme system. Two extracellular laccases are the only enzymatic components of its lignin-degrading system. We reviewed the most relevant findings regarding the activity and role of C. rigida LPSC no. 232 and its laccases and discussed the work that remains to be done in order to assess, more precisely, the potential use of this fungus and its extracellular enzymes as a model in several applied processes.

  4. Modification of wheat straw lignin by solid state fermentation with white-rot fungi.

    Science.gov (United States)

    Dinis, Maria J; Bezerra, Rui M F; Nunes, Fernando; Dias, Albino A; Guedes, Cristina V; Ferreira, Luís M M; Cone, John W; Marques, Guilhermina S M; Barros, Ana R N; Rodrigues, Miguel A M

    2009-10-01

    The potential of crude enzyme extracts, obtained from solid state cultivation of four white-rot fungi (Trametes versicolor, Bjerkandera adusta, Ganoderma applanatum and Phlebia rufa), was exploited to modify wheat straw cell wall. At different fermentation times, manganese-dependent peroxidase (MnP), lignin peroxidase (LiP), laccase, carboxymethylcellulase (CMCase), avicelase, xylanase and feruloyl esterase activities were screened and the content of lignin as well as hydroxycinnamic acids in fermented straw were determined. All fungi secreted feruloyl esterase while LiP was only detected in crude extracts from B. adusta. Since no significant differences (P>0.05) were observed in remaining lignin content of fermented straw, LiP activity was not a limiting factor of enzymatic lignin removal process. The levels of esterified hydroxycinnamic acids degradation were considerably higher than previous reports with lignocellulosic biomass. The data show that P. rufa, may be considered for more specific studies as higher ferulic and p-coumaric acids degradation was observed for earlier incubation times.

  5. Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus Phanerochaete sordida.

    Science.gov (United States)

    Mori, Toshio; Wang, Jianqiao; Tanaka, Yusuke; Nagai, Kaoru; Kawagishi, Hirokazu; Hirai, Hirofumi

    2017-01-05

    Clothianidin (CLO) is a member of the neonicotinoid pesticides, which have been widely used worldwide over the last two decades. However, its toxicity for bees and neurological toxicity for humans are urgent problems. Here, the degradation of CLO by the white-rot fungus Phanerochaete sordida was examined in nitrogen-limited liquid medium. After incubation for 20days at 30°C, 37% of CLO was degraded in the cultures. High-resolution ESI-MS and NMR analyses of the culture supernatant identified N-(2-chlorothiazol-5-yl-methyl)-N'-methylurea (TZMU) as a metabolite of CLO degradation. The addition of cytochrome P450 inhibitors to the culture medium markedly reduced the degradation of CLO by P. sordida. And manganese peroxidase, a major ligninolytic enzyme secreted by this fungus, were not carried out CLO degradation. The effects of CLO and TZMU on the viability of the neuronal cell line Neuro2a demonstrated that P. sordida effectively degrades CLO into a metabolite that lacks neurotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Bioremediation of Direct Blue 14 and Extracellular Ligninolytic Enzyme Production by White Rot Fungi: Pleurotus Spp.

    Science.gov (United States)

    Singh, M. P.; Vishwakarma, S. K.; Srivastava, A. K.

    2013-01-01

    In the present investigation, four species of white rot fungi (Pleurotus), that is, P. flabellatus, P. florida, P. ostreatus and P. sajor-caju were used for decolorization of direct blue 14 (DB14). Among all four species of Pleurotus, P. flabellatus showed the fastest decolorization in petri plates on different concentration, that is, 200 mg/L, 400 mg/L, and 600 mg/L. All these four species were also evaluated for extracellular ligninolytic enzymes (laccase and manganese peroxidase) production and it was observed that the twelve days old culture of P. flabellatus showed the maximum enzymatic activity, that is, 915.7 U/mL and 769.2 U/mL of laccase and manganese peroxidase, respectively. Other three Pleurotus species took more time for dye decolorization and exhibited less enzymatic activities. The rate of decolorization of DB14 dye solution (20 mg/L) by crude enzymes isolated from P. flabellatus was very fast, and it was observed that up to 90.39% dye solution was decolorized in 6 hrs of incubation. PMID:23841054

  7. Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies

    Directory of Open Access Journals (Sweden)

    Krishna Gudikandula

    2017-01-01

    Full Text Available The advanced research and development of silver nanoparticles (AgNPs is vast due to their incredible applications today. In this work, research was focused on the production, characterization and antibacterial studies of silver nanoparticles (AgNPs. We used an environmentally friendly extracellular biosynthetic method for the production of the AgNPs. The reducing agents used to produce the nanoparticles were from culture filtrate extracts made from two white rot fungi. Synthesis of colloidal AgNPs was monitored by UV-Visible spectroscopy. The UV-Visible spectrum showed a peak between 419 and 421 nm corresponding to the Plasmon absorbance of the AgNPs. The characterization of the AgNPs such as their size and shape was performed by Transmission Electron Microscopy (TEM techniques which indicated a size range of 15–25 nm. The anti-bacterial activity of AgNPs was investigated by using four Gram-negative and four Gram-positive bacteria. All the bacterial strains are showing good antibacterial activity.

  8. Identification of naphthalene metabolism by white rot fungus Armillaria sp. F022.

    Science.gov (United States)

    Hadibarata, Tony; Yusoff, Abdull Rahim Mohd; Aris, Azmi; Kristanti, Risky Ayu

    2012-01-01

    Armillaria sp. F022, a white rot fungus isolated from tropical rain forest (Samarinda, Indonesia) was used to biodegrade naphthalene in cultured medium. Transformation of naphthalene by Armillaria sp. F022 which is able to use naphthalene, a two ring-polycyclic aromatic hydrocarbon (PAH) as a source of carbon and energy was investigated. The metabolic pathway was elucidated by identifying metabolites, biotransformation studies and monitoring enzyme activities in cell-free extracts. The identification of metabolites suggests that Armillaria sp. F022 initiates its attack on naphthalene by dioxygenation at its C-1 and C-4 positions to give 1,4-naphthoquinone. The intermediate 2-hydroxybenzaldehyde and salicylic acid, and the characteristic of the meta-cleavage of the resulting diol were identified in the long-term incubation. A part from typical metabolites of naphthalene degradation known from mesophiles, benzoic acid was identified as the next intermediate for the naphthalene pathway of this Armillaria sp. F022. Neither phthalic acid, catechol and cis,cis-muconic acid metabolites were detected in culture extracts. Several enzymes (manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase and 2,3-dioxygenase) produced by Armillaria sp. F022 were detected during the incubation.

  9. Carbon Dioxide and Methane Formation in Norway Spruce Stems Infected by White-Rot Fungi

    Directory of Open Access Journals (Sweden)

    Ari M. Hietala

    2015-09-01

    Full Text Available Globally, billions of tons of carbon sequestered in trees are annually recycled back to the atmosphere through wood decomposition by microbes. In Norway, every fifth Norway spruce shows at final harvest infection by pathogenic white-rot fungi in the genera Heterobasidion and Armillaria. As these fungi can mineralize all components of wood, we predicted that they have a significant carbon footprint. Gas samples taken from infected stems were analyzed for CO2 and CH4 concentrations, and wood samples from different parts of the decay columns were incubated under hypoxic (4% O2 and anoxic laboratory conditions. In spring and summer the stem concentrations of CO2 were generally two times higher in trees with heartwood decay than in healthy trees. For most of the healthy trees and trees with heartwood decay, mean stem concentrations of CH4 were comparable to ambient air, and only some Armillaria infected trees showed moderately elevated CH4. Consistently, low CH4 production potentials were recorded in the laboratory experiment. Up-scaling of CO2 efflux due to wood decay in living trees suggests that the balance between carbon sequestration and emission may be substantially influenced in stands with high frequency of advanced root and stem heartwood decay.

  10. Transcriptional response of lignin-degrading enzymes to 17α-ethinyloestradiol in two white rots

    Science.gov (United States)

    Přenosilová, L; Křesinová, Z; Amemori, A Slavíková; Cajthaml, T; Svobodová, K

    2013-01-01

    Fungal, ligninolytic enzymes have attracted a great attention for their bioremediation capabilities. A deficient knowledge of regulation of enzyme production, however, hinders the use of ligninolytic fungi in bioremediation applications. In this work, a transcriptional analyses of laccase and manganese peroxidase (MnP) production by two white rots was combined with determination of pI of the enzymes and the evaluation of 17α-ethinyloestradiol (EE2) degradation to study regulation mechanisms used by fungi during EE2 degradation. In the cultures of Trametes versicolor the addition of EE2 caused an increase in laccase activity with a maximum of 34.2 ± 6.7 U g−1 of dry mycelia that was observed after 2 days of cultivation. It corresponded to a 4.9 times higher transcription levels of a laccase-encoding gene (lacB) that were detected in the cultures at the same time. Simultaneously, pI values of the fungal laccases were altered in response to the EE2 treatment. Like T. versicolor, Irpex lacteus was also able to remove 10 mg l−1 EE2 within 3 days of cultivation. While an increase to I. lacteus MnP activity and MnP gene transcription levels was observed at the later phase of the cultivation. It suggests another metabolic role of MnP but EE2 degradation. PMID:23170978

  11. Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium.

    Science.gov (United States)

    Chen, Guiqiu; Yi, Bin; Zeng, Guangming; Niu, Qiuya; Yan, Ming; Chen, Anwei; Du, Jianjian; Huang, Jian; Zhang, Qihua

    2014-05-01

    This study details a novel method for the extracellular microbial synthesis of cadmium sulfide (CdS) quantum dots (QDs) by the white rot fungus Phanerochaete chrysosporium. P. chrysosporium was incubated in a solution containing cadmium nitrate tetrahydrate, which became yellow from 12h onwards, indicating the formation of CdS nanocrystals. The purified solution showed a maximum absorbance peak between 296 and 298 nm due to CdS particles in the quantum size regime. The fluorescence emission at 458 nm showed the blue fluorescence of the nanoparticles. X-ray analysis of the nanoparticles confirmed the production of CdS with a face-centered cubic (fcc) crystal structure. The average grain size of the nanoparticles was approximately 2.56 nm, as determined from the full width at half-maximum (FWHM) measurement of the most intense peak using Scherer's equation. Transmission electron microscopic analysis showed the nanoparticles to be of a uniform size with good crystallinity. The changes to the functional groups on the biomass surface were investigated through Fourier transform infrared spectroscopy. Furthermore, the secretion of cysteine and proteins was found to play an important role in the formation and stabilization of CdS QDs. In conclusion, our study outlines a chemical process for the molecular synthesis of CdS nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens.

    Directory of Open Access Journals (Sweden)

    Johanna Rytioja

    Full Text Available White rot fungus Dichomitus squalens is an efficient lignocellulose degrading basidiomycete and a promising source for new plant cell wall polysaccharides depolymerizing enzymes. In this work, we focused on cellobiohydrolases (CBHs of D. squalens. The native CBHI fraction of the fungus, consisting three isoenzymes, was purified and it maintained the activity for 60 min at 50°C, and was stable in acidic pH. Due to the lack of enzyme activity assay for detecting only CBHII activity, CBHII of D. squalens was produced recombinantly in an industrially important ascomycete host, Trichoderma reesei. CBH enzymes of D. squalens showed potential in hydrolysis of complex lignocellulose substrates sugar beet pulp and wheat bran, and microcrystalline cellulose, Avicel. Recombinant CBHII (rCel6A of D. squalens hydrolysed all the studied plant biomasses. Compared to individual activities, synergistic effect between rCel6A and native CBHI fraction of D. squalens was significant in the hydrolysis of Avicel. Furthermore, the addition of laccase to the mixture of CBHI fraction and rCel6A significantly enhanced the amount of released reducing sugars from sugar beet pulp. Especially, synergy between individual enzymes is a crucial factor in the tailor-made enzyme mixtures needed for hydrolysis of different plant biomass feedstocks. Our data supports the importance of oxidoreductases in improved enzyme cocktails for lignocellulose saccharification.

  13. [Induction and measurement of cytochrome P450 in white rot fungi].

    Science.gov (United States)

    Ning, Da-liang; Wang, Hui; Li, Dong

    2009-08-15

    The induction and measurement of cytochrome P450 in white rot fungus Phanerochaete chrysosporium were studied in this work. The spectrophotometric results demonstrated that n-hexane was able to induce the fungal P450 to high level, which facilitated isolation and measurement of microsomal P450. The highest concentration of microsomal P450 could reach 140-160 pmol/mg after 6-h-induction by addition of 2 microL/mL hexane each hour, and the concentration of hexane and incubation time had significant effect on the induction of P450s. After effective induction, the method for isolation and measurement of microsomal P450 with CO difference spectrum was studied and the optimized method was obtained as followed. High-speed disperser and glass homogenizer were used to disrupt cells, which obtained higher amount of microsomal P450 than those from cells disrupted by glass homogenizer, ultrasonicator and bead-beater respectively. To record CO difference spectrum,the sample was bubbled with CO for 40 s at a rate of 3 mL/min (300 microL sample), and the reference cuvette was bubbled with N2 to the same extent. Then, the reducer sodium dithionite was added to a concentration 0.4 mol/L.

  14. Stringy instanton counting and topological strings

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, Masahide [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland)

    2015-07-20

    We study the stringy instanton partition function of four dimensional N=2U(N) supersymmetric gauge theory which was obtained by Bonelli et al. in 2013. In type IIB string theory on ℂ{sup 2}×T{sup ∗}ℙ{sup 1}×ℂ, the stringy U(N) instantons of charge k are described by k D1-branes wrapping around the ℙ{sup 1} bound to N D5-branes on ℂ{sup 2}×ℙ{sup 1}. The KK corrections induced by compactification of the ℙ{sup 1} give the stringy corrections. We find a relation between the stringy instanton partition function whose quantum stringy corrections have been removed and the K-theoretic instanton partition function, or by geometric engineering, the refined topological A-model partition function on a local toric Calabi-Yau threefold. We also study the quantum stringy corrections in the stringy instanton partition function which is not captured by the refined topological strings.

  15. Effect of soya lecithin on the enzymatic system of the white-rot fungi Anthracophyllum discolor.

    Science.gov (United States)

    Bustamante, M; González, M E; Cartes, A; Diez, M C

    2011-01-01

    The present work optimized the initial pH of the medium and the incubation temperature for ligninolytic enzymes produced by the white-rot fungus Anthracophyllum discolor. Additionally, the effect of soya lecithin on mycelial growth and the production of ligninolytic enzymes in static batch cultures were evaluated. The critical micelle concentration of soya lecithin was also studied by conductivity. The effects of the initial pH (3, 4, and 5) and incubation temperature (20, 25, and 30°C) on different enzymatic activities revealed that the optimum conditions to maximize ligninolytic activity were 26°C and pH 5.5 for laccase and manganese peroxidase (MnP) and 30°C and pH 5.5 for manganese-independent peroxidase (MiP). Under these culture conditions, the maximum enzyme production was 10.16, 484.46, and 112.50 U L(-1) for laccase, MnP, and manganese-independent peroxidase MiP, respectively. During the study of the effect of soya lecithin on A. discolor, we found that the increase in soya lecithin concentration from 0 to 10 g L(-1) caused an increase in mycelial growth. On the other hand, in the presence of soya lecithin, A. discolor produced mainly MnP, which reached a maximum concentration of 30.64 ± 4.61 U L(-1) after 25 days of incubation with 1 g L(-1) of the surfactant. The other enzymes were produced but to a lesser extent. The enzymatic activity of A. discolor was decreased when Tween 80 was used as a surfactant. The critical micelle concentration of soya lecithin calculated in our study was 0.61 g L(-1).

  16. Improvement of dry matter digestibility of water hyacinth by solid state fermentation using white rot fungi.

    Science.gov (United States)

    Mukherjee, R; Ghosh, M; Nandi, B

    2004-08-01

    Feeding value of water hyacinth biomass colonized by three species of white rot fungi during solid-state fermentation was investigated. All three organisms proved to be efficient degraders and enhanced dry matter digestibility. Loss of organic matter was maximum (23.6+/-0.1% dry wt) after 48 days by P. ostreatus. C. indica showed maximum cellulose degradation (18.5+/-0.1% dry wt) than other two fungi after 48 days of incubation. In all cases, an extensive removal of hemicellulose at the initial growth period and a delayed degradation of lignin were observed. Hemicellulolysis was maximum (46.3+/-0.1% dry wt) by C. indica, but delignification (14.2+/-0.2% dry wt) by P. sajor-caju after 48 days. The amount of reducing sugar in the degraded biomass decreased at early stages, but increased as degradation progressed in all three cases (maximum 1.1+/-0.05% dry wt after 48 days by C. indica). Soluble nitrogen content increased only during 16-32 days of incubation (highest 1.1+/-0.1% dry wt after 32 days by P. sajor-caju). Crude protein of the bioconverted biomass increased gradually up to 32 days but decreased thereafter (maximum 10.3+/-0.1% dry wt after 32 days by P. sajor - caju). Per cent change in in vitro dry matter digestibility of degraded substrates enhanced gradually after 8 days and reached maximum after 32 days but thereafter decreased (highest + 20.4+/-0.3% dry wt by P. sajor-caju). The results demonstrated the efficient degrading capacity of the test fungi and their potential use in conversion of water hyacinth biomass into mycoprotein-rich ruminant feed, more so by P. sajor-caju.

  17. Biological composting of petroleum waste organics using the white rot fungus Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    McFarland, M.J.; Xiu J, Qiu; Aprill, W.A.; Sims, R.C.

    1990-01-01

    Environmental enrichment of the white rot fungus Phanerochaete chrysosporium in biological compost soil reactors was effective in enhancing the rates of Benzo(a)pyrene removal over that observed under natural soil conditions. In contaminated soil compost systems amended with fungal inoculum and primary substrate, maximum Benzo(a)pyrene removal rates of 0.31 mg B(a)p/kg compost material-day (0.25 mgB(a)p/kg soil-day) were observed while in unamended soil conditions, maximum removal rates of 0.13 mg B(a)p/kg soil-day were recorded. Additions of primary substrate without any fungal inoculum gave compound removal rates similar to soil only conditions (i.e., 14 mg B(a)p/kg soil-day). Differences in contaminant and radioactivity ( 14 C) removal rates indicated that Benzo(a)pyrene derived carbon was being incorporated into nonvolatile materials within the compost environment. Contaminated soil pH had a significant effect on Benzo(a)pyrene removal rates during composting treatment. With acid soils (pH-4.8), a maximum Benzo(a)pyrene removal rate of 0.11 mg B(a)p/kg compost material-day was determined compared to 0.31 mg B(a)p/kg compost material-day in alkaline (pH-8.0) soil. Oxygen availability appeared to be one of the most important process variables influencing both fungal growth and Benzo(a)pyrene removal. Periodic pulses of oxygen equivalent to a three volume turnover of reactor headspace every three days resulted in increasing the Benzo(a)pyrene removal rate from 0.31 mg B(a)p/kg compost material-day to 0.85 mg B(a)p/kg compost material day

  18. Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane.

    Science.gov (United States)

    Kaur, Harsimran; Kapoor, Shammi; Kaur, Gaganjyot

    2016-10-01

    Lindane, a broad-spectrum organochlorine pesticide, has caused a widespread environmental contamination along with other pesticides due to wrong agricultural practices. The high efficiency, sustainability and eco-friendly nature of the bioremediation process provide an edge over traditional physico-chemical remediation for managing pesticide pollution. In the present study, lindane degradation was studied by using a white-rot fungus, Ganoderma lucidum GL-2 strain, grown on rice bran substrate for ligninolytic enzyme induction at 30 °C and pH 5.6 after incorporation of 4 and 40 ppm lindane in liquid as well as solid-state fermentation. The estimation of lindane residue was carried out by gas chromatography coupled to mass spectrometry (GC-MS) in the selected ion monitoring mode. In liquid-state fermentation, 100.13 U/ml laccase, 50.96 U/ml manganese peroxidase and 17.43 U/ml lignin peroxidase enzymes were obtained with a maximum of 75.50 % lindane degradation on the 28th day of incubation period, whereas under the solid-state fermentation system, 156.82 U/g laccase, 80.11 U/g manganese peroxidase and 18.61 U/g lignin peroxidase enzyme activities with 37.50 % lindane degradation were obtained. The lindane incorporation was inhibitory to the production of ligninolytic enzymes and its own degradation but was stimulatory for extracellular protein production. The dialysed crude enzyme extracts of ligninolytic enzymes were though efficient in lindane degradation during in vitro studies, but their efficiencies tend to decrease with an increase in the incubation period. Hence, lindane-degrading capabilities of G. lucidum GL-2 strain make it a potential candidate for managing lindane bioremediation at contaminated sites.

  19. Stationary black holes with stringy hair

    Science.gov (United States)

    Boos, Jens; Frolov, Valeri P.

    2018-01-01

    We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.

  20. Improvement of garlic (Allium Sativum L.) resistance to white rot and storability using gamma irradiation induced mutations

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Mirali, N.; Arabi, M. I. E.

    2001-01-01

    A mutation program was conducted to improve garlic (Allium sativum) resistance to white rot (Sclerotium cepivorum) and to improve its storability under natural conditions. Cloves of two local garlic cultivars (Kisswany and Yabroudy) were irradiated with gamma ray doses 4, 5, 6, and 7 gray. The cloves were then planted in the field and plants were advanced for 4 generations in order to isolate mutations in stable form. The results indicated that the cultivar Yabroudy was more sensitive to gamma irradiation than Kisswany. Rate of morphological mutants increased with increasing gamma ray dosage. Selection pressure against white rot disease was applied starting in the second generation by adding infected garlic leaves to the soil. In the third and fourth generations, however, full selection pressure was applied by inoculating the cloves with the fungus sclerotia and planting them in a soil previously planted with infected garlic plants. healthy garlic bulbs were harvested and stored under natural conditions and then planted to obtain the next generation. By the end of the fourth generation, we have been able to improve garlic resistance to white rot disease and its storability. Twenty four mutant lines from each garlic cultivar have been selected. Out of the selected lines, twelve lines from cultivar Kisswany had only 3% infection percentage as compared to 29% in the control, and twelve lines from cultivar Yabroudy had less than 5% infection percentage as compared to 20% in the control. Also, we have been able to improve storability under natural conditions. Weight loss during storage decreased from 8.25% in the control to only 4% in some Kisswany lines and from 10% to 3% in some Yabroudy lines. However, we have not been able to increase the bulb weight over the control but the weights of the selected lines were comparable to those of the control. (author)

  1. Conidioma production of the white root rot fungus [Rosellinia] in axenic culture under near-ultraviolet light radiation

    International Nuclear Information System (INIS)

    Nakamura, H.; Ikeda, K.; Arakawa, M.; Matsumoto, N.

    2002-01-01

    Conidiomata of the white root rot fungus were produced in axenic culture under near-ultraviolet light radiation. Pieces of sterilized Japanese pear twigs were placed on 7-day-old oatmeal agar culture in plates. The plates were further incubated for 5 days and then illuminated by near-ultraviolet light. Synnemata developed on the twigs within 5 weeks in 19 of 20 isolates tested, and conidia were observed in 12 of the 19 isolates. The synnemata and conidia produced were morphologically identical to those of Dematophora necatrix

  2. White-rot fungal response to fresh and photolytically-weathered pyrogenic organic matter

    Science.gov (United States)

    Gibson, C. D.; Berry, T. D.; Wang, R.; Bird, J. A.; Filley, T. R.

    2013-12-01

    Pyrogenic organic matter (PyOM or biochar) is the product of the incomplete combustion of biomass. A better understanding of the microbial-mediated degradation of PyOM is critical to assess its role in soil C sequestration and to serve as an agricultural amendment. Recent studies have shown that PyOM additions can prime native soil C but results have been inconsistent, with studies reporting no effect, an increase, or decrease in C mineralization. This study investigated the ability of saprotrophic white-rot fungus, Trametes versicolor, to decompose an unaltered 'fresh' PyOM and a photo-oxidized PyOM. In addition, we measured PyOM-induced priming effects on the mineralization of malt extract agar media (MEA). Enriched (13C) Pinus banksiana-derived PyOM, produced at 450oC under N2, was added fresh and after 4 weeks exposure to 254 nm light to MEA. Vials containing the various types of media were then monitored for CO2 evolution and oxidative enzyme activity. We found that MEA C respired was stimulated (positive priming) by photolyzed PyOM and was inhibited with fresh PyOM addition (negative priming) relative to controls. Vetryl alcohol addition, a laccase production stimulant, resulted in less activity in the presence of PyOM compared with a control, indicating PyOM may disrupt enzyme induction processes. Loss of PyOM-13CO2 was 0.2% (× 0.001) for fresh PyOM and 1.2% (×0.001) for photolyzed PyOM C during 10 weeks averaged across media treatments. While MEA C mineralization decreased after fresh PyOM addition, both oxidative (laccase and manganese peroxidase) and hydrolytic (β glucosidase) enzyme production increased with fresh PyOM in the absence of veratryl alcohol. However, there was a decrease in its presence. These results suggest that the physiological response of this common wood decay fungus to PyOM is complex and responsive to enzymatic triggers but that PyOM itself can act to promote or suppress overall litter or soil decay by fungi.

  3. Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Yang, Shufan; Kang, Jinguo; Leusch, Frederic D L; Roddick, Felicity; Price, William E; Nghiem, Long D

    2013-11-01

    The degradation of 30 trace organic contaminants (TrOC) by a white-rot fungus-augmented membrane bioreactor (MBR) was investigated. The results show that white-rot fungal enzyme (laccase), coupled with a redox mediator (1-hydroxy benzotriazole, HBT), could degrade TrOC that are resistant to bacterial degradation (e.g. diclofenac, triclosan, naproxen and atrazine) but achieved low removal of compounds (e.g. ibuprofen, gemfibrozil and amitriptyline) that are well removed by conventional activated sludge treatment. Overall, the fungus-augmented MBR showed better TrOC removal compared to a system containing conventional activated sludge. The major role of biodegradation in removal by the MBR was noted. Continuous mediator dosing to MBR may potentially enhance its performance, although not as effectively as for mediator-enhanced batch laccase systems. A ToxScreen3 assay revealed no significant increase in the toxicity of the effluent during MBR treatment of the synthetic wastewater comprising TrOC, confirming that no toxic by-products were produced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. White-rot fungi pretreatment combined with alkaline/oxidative pretreatment to improve enzymatic saccharification of industrial hemp.

    Science.gov (United States)

    Xie, Chunliang; Gong, Wenbing; Yang, Qi; Zhu, Zuohua; Yan, Li; Hu, Zhenxiu; Peng, Yuande

    2017-11-01

    White-rot fungi combined with alkaline/oxidative (A/O) pretreatments of industrial hemp woody core were proposed to improve enzymatic saccharification. In this study, hemp woody core were treated with only white rot fungi, only A/O and combined with the two methods. The results showed that Pleurotus eryngii (P. eryngii) was the most effective fungus for pretreatment. Reducing sugars yield was 329mg/g with 30 Filter Paper Unit (FPU)/g cellulase loading when treated 21day. In the A/O groups, the results showed that when treated with 3% NaOH and 3% H 2 O 2 , the yield of reducing sugars was 288mg/g with 30FPU/g cellulase loading. After combination pretreatment with P. eryngii and A/O pretreatment, the reducing sugar yield from enzymatic hydrolysis of combined sample increased 1.10-1.29-fold than that of bio-treated or A/O pretreatment sample at the same conditions, suggesting that P. eryngii combined with A/O pretreatment was an effective method to improve enzyme hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B

    Directory of Open Access Journals (Sweden)

    S. Senthilkumar

    2014-12-01

    Full Text Available Synthetic azo dyes are extensively used in textile industry and are not easily degraded into the environment due to their complex structure. Due to the low degree of fixation of these dyes to fabrics, more than 10–15% of the dye does not bind to fabrics during colour processing and release into water bodies as effluent cause serious environmental pollution. White-rot fungus is found to be capable of degrading lignin which has a complex structure similar to azo dyes. In this study, the decolourization potential of white-rot fungus Phanerochaete chrysosporium, which is capable of decolourizing synthetic dye bath effluent, was investigated. Maximum decolourization of 98% was achieved on the third day under normal conditions. The rate of decolourization carried out at different concentrations revealed that the increase in dye effluent concentration suppresses the percentage decolourization. The optimized amounts of nutrients were found to be 0.5%, 0.1% and 0.5% of glucose, manganese sulphate and ammonium salts, respectively. The addition of inducers such as starch and lignin increased enzyme production and the rate of decolourization.

  6. Trametes meyenii possesses elevated dye degradation abilities under normal nutritional conditions compared to other white rot fungi

    Science.gov (United States)

    2014-01-01

    Several species of white-rot fungi were investigated for their utility in prolonged decolouration of the recalcitrant sulfonated azo dye, amaranth. Trametes pubescens, T. multicolor, T. meyenii and T. versicolor decoloured amaranth azo-dye best on low-nitrogen agar-solidified media whereas Bjerkandera adusta and Phlebia radiata were most effective in low nitrogen medium supplemented with manganese. Trametes cotonea did not decolour effectively under any condition. The decolouring Trametes species were also effective in liquid culture whereas B. adusta and P. radiata were not. Trametes meyenii, T. pubescens and T. multicolor were equal to or better than commonly employed T. versicolor at decolouring amaranth. This is the first study to show the dye decolouration potential of T. meyenii, T. pubescens, and T. multicolor. Supplementing with Mn(II) increased assayable manganese peroxidase activity, but not long-term decolouration, indicating that laccase is the main decolourizing enzyme in these Trametes species. This appears to be because of inadequate Mn3+ chelation required by manganese peroxidase because adding relatively low amounts of malonate enhanced decolouration rates. The ability of Trametes meyenii to simultaneously decolour dye over prolonged periods of time while growing in relatively nutrient-rich medium appears to be unique amongst white-rot fungi, indicating its potential in wastewater bioremediation. PMID:25401075

  7. Induction of Laccase, Lignin Peroxidase and Manganese Peroxidase Activities in White-Rot Fungi Using Copper Complexes

    Directory of Open Access Journals (Sweden)

    Martina Vrsanska

    2016-11-01

    Full Text Available Ligninolytic enzymes, such as laccase, lignin peroxidase and manganese peroxidase, are biotechnologically-important enzymes. The ability of five white-rot fungal strains Daedaleopsis confragosa, Fomes fomentarius, Trametes gibbosa, Trametes suaveolens and Trametes versicolor to produce these enzymes has been studied. Three different copper(II complexes have been prepared ((Him[Cu(im4(H2O2](btc·3H2O, where im = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid, [Cu3(pmdien3(btc](ClO43·6H2O and [Cu3(mdpta3(btc](ClO43·4H2O, where pmdien = N,N,N′,N′′,N′′-pentamethyl-diethylenetriamine and mdpta = N,N-bis-(3-aminopropylmethyl- amine, and their potential application for laccase and peroxidases induction have been tested. The enzyme-inducing activities of the complexes were compared with that of copper sulfate, and it has been found that all of the complexes are suitable for the induction of laccase and peroxidase activities in white-rot fungi; however, the newly-synthesized complex M1 showed the greatest potential for the induction. With respect to the different copper inducers, this parameter seems to be important for enzyme activity, which depends also on the fungal strains.

  8. Spatial mapping of extracellular oxidant production by a white rot basidiomycete on wood reveals details of ligninolytic mechanism.

    Science.gov (United States)

    Hunt, Christopher G; Houtman, Carl J; Jones, Don C; Kitin, Peter; Korripally, Premsagar; Hammel, Kenneth E

    2013-03-01

    Oxidative cleavage of the recalcitrant plant polymer lignin is a crucial step in global carbon cycling, and is accomplished most efficiently by fungi that cause white rot of wood. These basidiomycetes secrete many enzymes and metabolites with proposed ligninolytic roles, and it is not clear whether all of these agents are physiologically important during attack on natural lignocellulosic substrates. One new approach to this problem is to infer properties of ligninolytic oxidants from their spatial distribution relative to the fungus on the lignocellulose. We grew Phanerochaete chrysosporium on wood sections in the presence of oxidant-sensing beads based on the ratiometric fluorescent dye BODIPY 581/591. The beads, having fixed locations relative to the fungal hyphae, enabled spatial mapping of cumulative extracellular oxidant distributions by confocal fluorescence microscopy. The results showed that oxidation gradients occurred around the hyphae, and data analysis using a mathematical reaction-diffusion model indicated that the dominant oxidant during incipient white rot had a half-life under 0.1 s. The best available hypothesis is that this oxidant is the cation radical of the secreted P. chrysosporium metabolite veratryl alcohol. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  9. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi

    International Nuclear Information System (INIS)

    Bonnarme, P.; Jeffries, T.W.

    1990-01-01

    Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of 14 CO 2 from 14 C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of 14 CO 2 release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini

  10. Information Retention by Stringy Black Holes

    CERN Document Server

    Ellis, John

    2015-01-01

    Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.

  11. CHARACTERIZATION OF THE OXIDATIVE ENZYME POTENTIAL IN WILD WHITE ROT FUNGI FROM MISIONES (ARGENTINA

    Directory of Open Access Journals (Sweden)

    Maria Isabel FONSECA

    2015-01-01

    Full Text Available This research aimed to evaluate the potential of several native white rot fungi (WRF isolated from subtropical environments of Misiones (Argentina to produce different ligninolytic enzymes. Coriolus versicolor f. antarcticus BAFC 266, Pycnoporus sanguineus BAFC 2126 and Phlebia brevispora BAFC 633 showed the highest phenoloxidase activity. Ganoderma applanatum strain E, P. sanguineus BAFC 2126 and P. brevispora BAFC 633 revealed marked laccase and peroxidase activity. C. versicolor f. antarcticus, G. applanatum (strain A and Trametes villosa, gave high positive reactions with 2,6-dimethoxyphenol oxidation at the lowest tested pH. C. versicolor f. antarcticus, G. applanatum strains D and F, T. elegans BAFC 2127and T. villosa, showed the highest manganese peroxidase activity. C. versicolor f. antarcticus also produced the highest lignin peroxidase activity. Tyrosinase activity was mostly evident in G. applanatum strains (D and F and Phanerochaete chrysosporium HHB 11741. Kraft liquor decolorization results were variable and depended on the fungus and the liquor concentration. Some fungi with moderate ligninolytic activity showed high decolorization rates (e.g. Pleurotus sajor-caju and Steccherinium sp. BAFC 1171 indicating the significance of additional approach to evaluate a potential biotechnological application.  Caracterización del potencial enzimático oxidativo de cepas nativas de hongos de pudrición blanca de la selva subtropical de Misiones (Argentina El objetivo de este trabajo fue evaluar el potencial para producir enzimas ligninolíticas de diversas cepas de hongos de pudrición blanca, nativas de la Provincia de Misiones (Argentina. Coriolus versicolor v. antarcticus BAFC 266, Pycnoporus sanguineus BAFC 2126 y Phlebia brevispora BAFC 633 mostraron un gran potencial para producir fenoloxidasas. En Ganoderma applanatum cepa E, P. sanguineus BAFC 2126  y P. brevispora BAFC 633 se observó una marcada actividad lacasa y peroxidasa. C

  12. BIODEGRADATION OF DDT [1,1,1-TRICHLORO-2,2-BIS(4- CHLOROPHENYL) ETHANE] BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    Science.gov (United States)

    Extensive biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of [14C]DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the form...

  13. BIODEGRATION OF 2,4,5-TRICHLOROPHENOXYACETIC ACID IN LIQUID CULTURE AND IN SOIL BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    Science.gov (United States)

    Extensive biodegradation of [14C]-2,4,5-trichlorophenoxyacetic acid ([[14C]-2,4,5-T) by the white rot fungus Phanerochaete chrysosporium was demonstrated in nutrient nitrogen-limited aqueous cultures and in [14C]-2,4,5-T-contaminated soil inoculat...

  14. Immobilized Inocula of White-Rot Fungi Accelerate both Detoxification and Organic Matter Transformation in Two-Phase Dry Olive-Mill Residue

    Czech Academy of Sciences Publication Activity Database

    Sampedro, I.; Cajthaml, Tomáš; Marinari, S.; Stazi, S. R.; Grego, S.; Petruccioli, M.; Federici, F.; D´Annibale, A.

    2009-01-01

    Roč. 57, č. 12 (2009), s. 5452-5460 ISSN 0021-8561 Institutional research plan: CEZ:AV0Z50200510 Keywords : White -rot fungi * immobilized inocula * phenols Subject RIV: EE - Microbiology, Virology Impact factor: 2.469, year: 2009

  15. A novel approach for application of white rot fungi in wastewater treatment under non-sterile conditions : immobilization of fungi on sorghum

    NARCIS (Netherlands)

    Zahmatkesh, M.; Spanjers, H.L.F.M.; van Lier, J.B.

    2017-01-01

    In this study, we tested a new approach to facilitate the application of white rot fungi (WRF) under non-sterile conditions, by introducing grain sorghum as carrier and sole carbon and nutrient source for WRF. To this end, Trametes versicolor was immobilized on sorghum, and its ability to remove

  16. Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60.

    Science.gov (United States)

    Kamei, Ichiro; Hirota, Yoshiyuki; Meguro, Sadatoshi

    2012-12-01

    We propose a new process of unified aerobic delignification and anaerobic saccharification and fermentation of wood by a single microorganism, the white-rot fungus Phlebia sp. MG-60. This fungus is able to selectively degrade lignin under aerobic solid state fermentation conditions, and to produce ethanol directly from delignified oak wood under semi-aerobic liquid culture conditions. After 56 d aerobic incubation, 40.7% of initial lignin and negligible glucan were degraded. Then under semi-aerobic conditions without the addition of cellulase, 43.9% of theoretical maximum ethanol was produced after 20 d. Changing from aerobic conditions (biological delignification pretreatment) to semi-aerobic conditions (saccharification and fermentation) enabled the fermentation of wood by solely biological processes. This is the first report of ethanol production from woody biomass using a single microorganism without addition of chemicals or enzymes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The integrative omics of white-rot fungus Pycnoporus coccineus reveals co-regulated CAZymes for orchestrated lignocellulose breakdown.

    Directory of Open Access Journals (Sweden)

    Shingo Miyauchi

    Full Text Available Innovative green technologies are of importance for converting plant wastes into renewable sources for materials, chemicals and energy. However, recycling agricultural and forestry wastes is a challenge. A solution may be found in the forest. Saprotrophic white-rot fungi are able to convert dead plants into consumable carbon sources. Specialized fungal enzymes can be utilized for breaking down hard plant biopolymers. Thus, understanding the enzymatic machineries of such fungi gives us hints for the efficient decomposition of plant materials. Using the saprotrophic white-rot fungus Pycnoporus coccineus as a fungal model, we examined the dynamics of transcriptomic and secretomic responses to different types of lignocellulosic substrates at two time points. Our integrative omics pipeline (SHIN+GO enabled us to compress layers of biological information into simple heatmaps, allowing for visual inspection of the data. We identified co-regulated genes with corresponding co-secreted enzymes, and the biological roles were extrapolated with the enriched Carbohydrate-Active Enzyme (CAZymes and functional annotations. We observed the fungal early responses for the degradation of lignocellulosic substrates including; 1 simultaneous expression of CAZy genes and secretion of the enzymes acting on diverse glycosidic bonds in cellulose, hemicelluloses and their side chains or lignin (i.e. hydrolases, esterases and oxido-reductases; 2 the key role of lytic polysaccharide monooxygenases (LPMO; 3 the early transcriptional regulation of lignin active peroxidases; 4 the induction of detoxification processes dealing with biomass-derived compounds; and 5 the frequent attachments of the carbohydrate binding module 1 (CBM1 to enzymes from the lignocellulose-responsive genes. Our omics combining methods and related biological findings may contribute to the knowledge of fungal systems biology and facilitate the optimization of fungal enzyme cocktails for various

  18. On the stringy Hartle-Hawking state

    International Nuclear Information System (INIS)

    Ben-Israel, Roy; Giveon, Amit; Itzhaki, Nissan; Liram, Lior

    2016-01-01

    We argue that non-perturbative α ′ stringy effects render the Hartle-Hawking state associated with the SL(2)/U(1) eternal black hole singular at the horizon. We discuss implications of this observation on firewalls in string theory.

  19. Pyrolysis characteristics and kinetics of lignin derived from enzymatic hydrolysis residue of bamboo pretreated with white-rot fungus.

    Science.gov (United States)

    Yan, Keliang; Liu, Fang; Chen, Qing; Ke, Ming; Huang, Xin; Hu, Weiyao; Zhou, Bo; Zhang, Xiaoyu; Yu, Hongbo

    2016-01-01

    The lignocellulose biorefinery based on the sugar platform usually focuses on polysaccharide bioconversion, while lignin is only burned for energy recovery. Pyrolysis can provide a novel route for the efficient utilization of residual lignin obtained from the enzymatic hydrolysis of lignocellulose. The pyrolysis characteristics of residual lignin are usually significantly affected by the pretreatment process because of structural alteration of lignin during pretreatment. In recent years, biological pretreatment using white-rot fungi has attracted extensive attention, but there are only few reports on thermal conversion of lignin derived from enzymatic hydrolysis residue (EHRL) of the bio-pretreated lignocellulose. Therefore, the study investigated the pyrolysis characteristics and kinetics of EHRL obtained from bamboo pretreated with Echinodontium taxodii in order to evaluate the potential of thermal conversion processes of EHRL. Fourier transform infrared spectroscopy spectra showed that EHRL of bamboo treated with E. taxodii had the typical lignin structure, but aromatic skeletal carbon and side chain of lignin were partially altered by the fungus. Thermogravimetric analysis indicated that EHRL pyrolysis at different heating rates could be divided into two depolymerization stages and covered a wide temperature range from 500 to 900 K. The thermal decomposition reaction can be well described by two third-order reactions. The kinetics study indicated that the EHRL of bamboo treated with white-rot fungus had lower apparent activation energies, lower peak temperatures of pyrolysis reaction, and higher char residue than the EHRL of raw bamboo. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) was applied to characterize the fast pyrolysis products of EHRL at 600 ℃. The ratios of guaiacyl-type to syringyl-type derivatives yield (G/S) and guaiacyl-type to p-hydroxy-phenylpropane-type derivatives yield (G/H) for the treated sample were increased by 33.18 and

  20. Isolation and characterization of novel pI 4.8 MnP isoenzyme from white-rot fungus Irpex lacteus

    Czech Academy of Sciences Publication Activity Database

    Sklenář, Jan; Niku-Paavola, M.; L.; Santos, S.; Man, Petr; Kruus, K.; Novotný, Čeněk

    2010-01-01

    Roč. 46, č. 7 (2010), s. 550-556 ISSN 0141-0229 R&D Projects: GA AV ČR IAAX00200901; GA ČR GP310/08/P258; GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : Solid-support growth * White-rot fungus * Irpex lacteus Subject RIV: EE - Microbiology, Virology Impact factor: 2.287, year: 2010

  1. A novel approach for application of white rot fungi in wastewater treatment under non-sterile conditions: immobilization of fungi on sorghum

    OpenAIRE

    Zahmatkesh, M.; Spanjers, H.L.F.M.; van Lier, J.B.

    2017-01-01

    In this study, we tested a new approach to facilitate the application of white rot fungi (WRF) under non-sterile conditions, by introducing grain sorghum as carrier and sole carbon and nutrient source for WRF. To this end, Trametes versicolor was immobilized on sorghum, and its ability to remove humic acid (HA) from synthetic and real industrial wastewater was studied. HA removal was measured as colour reduction and also analysed via size exclusion chromatography (SEC). Under sterile conditio...

  2. Application of Asymetrical and Hoke Designs for Optimization of Laccase Production by the White-Rot Fungus Fomes fomentarius in Solid-State Fermentation

    OpenAIRE

    Neifar, Mohamed; Kamoun, Amel; Jaouani, Atef; Ellouze-Ghorbel, Raoudha; Ellouze-Chaabouni, Semia

    2011-01-01

    Statistical approaches were employed for the optimization of different cultural parameters for the production of laccase by the white rot fungus Fomes fomentarius MUCL 35117 in wheat bran-based solid medium. first, screening of production parameters was performed using an asymmetrical design 2533//16, and the variables with statistically significant effects on laccase production were identified. Second, inoculum size, CaCl2 concentration, CuSO4 concentration, and incubation time were selected...

  3. Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta.

    Science.gov (United States)

    Aydin, Sevcan

    2016-07-01

    While anaerobic treatment is capable of treating pharmaceutical wastewater and removing antibiotics in liquid phases, solid phases may still contain significant amounts of antibiotics following this treatment. The main goal of this study was to evaluate the use of white-rot fungi to remove erythromycin, sulfamethoxazole, and tetracycline combinations from biosolids. The degradation potential of Trametes versicolor and Bjerkandera adusta was evaluated via the sequential treatment of anaerobic sludge. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses were used to identify competition between the autochthonous microbial communities and white-rot fungi. Solid-phase treatment using white-rot fungi substantially reduced antibiotic concentrations and toxicity in sludge. According to PCR-DGGE results, there is an association between species of fungus and antibiotic type as a result of the different transformation pathways of fungal strains. Fungal post-treatment of sludge represents a promising method of removing antibiotic combinations, therefore holding a significant promise as an environmentally friendly means of degrading the antibiotics present in sludge.

  4. Root rots

    Science.gov (United States)

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  5. Efficacy of Oryza sativa husk and Quercus phillyraeoides extracts for the in vitro and in vivo control of fungal rot disease of white yam (Dioscorea rotundata Poir).

    Science.gov (United States)

    Dania, Victor Ohileobo; Fadina, Olubunmi Omowunmi; Ayodele, Maria; Kumar, P Lava

    2014-01-01

    Tuber rot disease is a major constraint to white yam (Dioscorea rotundata) production, accounting for 50-60% of annual yield losses in Nigeria. The main method of control using synthetic fungicides is being discouraged due to human and environmental health hazards. The potential of Oryza sativa husk (OSH) and Quercus phillyraeoides (QP) extracts for the in vitro and in vivo control of six virulent rot-causing fungal pathogens, Lasiodiplodia theobromae, Aspergillus niger, Rhizoctonia solani, Penicillium oxalicum, Sclerotium rolfsii, and Fusarium oxysporum was evaluated, using five different extract concentrations of 0.5%, 1.0%, 1.5%, 2.5%, and 3.5% w/v. These fungi were isolated from rotted tubers of D. rotundata, across three agroecological zones in Nigeria-the Humid rainforest, Derived savanna, and southern Guinea savanna. All treatments were subjected to three methods of inoculation 48 hours before the application of both extracts and stored at 28 ± 2°C for 6 months. Radial mycelial growth of the test pathogens was effectively inhibited at concentrations ≤ 3.5% w/v in vitro for both OSH and QP extracts. Rotting was significantly reduced (P ≤ 0.05) to between 0 to 18.8% and 0% to 20.9% for OSH and QP extracts respectively. The extracts significantly (P ≤ 0.05) inhibited percent rot of the test pathogens at 3.5% concentration w/v in vivo. Rot incidence was, however, lower in replicate tubers that were inoculated, treated with extracts and exposed than treatments that were covered. Phytochemical analysis of OSH and QP extracts revealed the presence of secondary metabolites such as alkaloids, flavonoids, saponins, tannins, ferulic acid, phlobatanins, Terpenoids, phenols, anthraquinone and pyroligneous acid. The efficacy of both extracts in reducing rot in this study recommends their development as prospective biopesticide formulation and use in the management of post-harvest rot of yam tubers.

  6. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Nakamura, Tomofumi; Ichinose, Hirofumi; Wariishi, Hiroyuki

    2010-01-01

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD + -binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  7. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tomofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135 (Japan); Ichinose, Hirofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Wariishi, Hiroyuki, E-mail: hirowari@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  8. Effects of white rot fungi on the composition and in vitro digestibility of crop by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, M.N.M.; Pearce, G.R.

    Eleven species of white rot fungi were inoculated on to samples of barley straw, pea straw, sugar cane bagasse and sunflower hulls and incubated at room temperature (14-25 degrees C) for 21 days. In barley straw, Peniophora gigantea caused the greatest depression in lignin content of the dry matter and the greatest increase in in vitro dry matter digestibility (IVDMD) (10 units). Sporotrichum priunosum caused the greatest depression in cellulose content and the greatest depression in IVDMD (13 units). In pea straw, Ganoderma lucidum caused the greatest depression in lignin content and the greatest increase in IVDMD (8 units); Peniophora gigantea caused the greatest depression in cellulose content but Sporotrichum pruinosum caused the greatest depression in IVDMD (2 units). In bagasse, Peniophora gigantea caused the greatest depression in lignin content and the greatest increase in IVDMD (7 units). Grifola berkleyi caused the greatest depression in cellulose content and the greatest depression in IVDMD (12 units). In sunflower hulls, Stereum frustulatum caused the greatest depression in lignin content but Peniophora cremea caused the greatest increase in IVDMD (7 units). Peniophora gigantea caused the greatest depression in cellulose content and the greatest depression in IVDMD (3 units). It was concluded that fungi needed to be selected specifically for particular by-products and that some control over the conditions of incubation may need to be exercised in order to achieve more substantial increases in digestibility.

  9. Production of Ligninolytic Enzymes by White-Rot Fungus Datronia sp. KAPI0039 and Their Application for Reactive Dye Removal

    Directory of Open Access Journals (Sweden)

    Pilanee Vaithanomsat

    2010-01-01

    Full Text Available This study focused on decolorization of 2 reactive dyes; Reactive Blue 19 (RBBR and Reactive Black 5 (RB5, by selected white-rot fungus Datronia sp. KAPI0039. The effects of reactive dye concentration, fungal inoculum size as well as pH were studied. Samples were periodically collected for the measurement of color unit, Laccase (Lac, Manganese Peroxidase (MnP, and Lignin Peroxidase (LiP activity. Eighty-six percent of 1,000 mg L−1 RBBR decolorization was achieved by 2% (w/v Datronia sp. KAPI0039 at pH 5. The highest Lac activity (759.81 UL−1 was detected in the optimal condition. For RB5, Datronia sp. KAPI0039 efficiently performed (88.01% decolorization at 2% (w/v fungal inoculum size for the reduction of 600 mg L−1 RB5 under pH 5. The highest Lac activity (178.57 UL−1 was detected, whereas the activity of MnP and LiP was absent during this hour. The result, therefore, indicated that Datronia sp. KAPI0039 was obviously able to breakdown both reactive dyes, and Lac was considered as a major lignin-degradation enzyme in this reaction.

  10. Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6.

    Science.gov (United States)

    Chakraborty, Samayita; Basak, Bikram; Dutta, Subhasish; Bhunia, Biswanath; Dey, Apurba

    2013-11-01

    A novel white rot fungus Alternaria alternata CMERI F6 decolorized 99.99% of 600 mg/L congo red within 48 h in yeast extract-glucose medium at 25 °C, pH 5 and 150 rpm. Physicochemical parameters like carbon and nitrogen sources, temperature, pH and aeration were optimized to develop faster decolorization process. Dye decolorization rate was maximal (20.21 mg/L h) at 25 °C, pH 5, 150 rpm and 800 mg/L dye, giving 78% final decolorization efficiency. Scanning electron microscopy and X-ray Diffraction analysis revealed that the fungus become amorphous after dye adsorption. HPLC and FTIR analysis of the extracted metabolites suggested that the decolorization occurred through biosorption and biodegradation. Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and acid-alkali and 70% ethanol treatment revealed the efficient dye retention capability of the fungus. The foregoing results justify the applicability of the strain in removal of congo red from textile wastewaters and their safe disposal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Fungal treatment of humic-rich industrial wastewater: application of white rot fungi in remediation of food-processing wastewater.

    Science.gov (United States)

    Zahmatkesh, Mostafa; Spanjers, Henri; van Lier, Jules B

    2017-11-01

    This paper presents the results of fungal treatment of a real industrial wastewater (WW), providing insight into the main mechanisms involved and clarifying some ambiguities and uncertainties in the previous reports. In this regard, the mycoremediation potentials of four strains of white rot fungi (WRF): Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus and Pleurotus pulmonarius were tested to remove humic acids (HA) from a real humic-rich industrial treated WW of a food-processing plant. The HA removal was assessed by color measurement and size-exclusion chromatography (SEC) analysis. T. versicolor showed the best decolorization efficiency of 90% and yielded more than 45% degradation of HA, which was the highest among the tested fungal strains. The nitrogen limitation was studied and results showed that it affected the fungal extracellular laccase and manganese peroxidase (MnP) activities. The results of the SEC analysis revealed that the mechanism of HA removal by WRF involves degradation of large HA molecules to smaller molecules, conversion of HA to fulvic acid-like molecules and also biosorption of HA by fungal mycelia. The effect of HS on the growth of WRF was investigated and results showed that the inhibition or stimulation of growth differs among the fungal strains.

  12. Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022.

    Science.gov (United States)

    Hadibarata, Tony; Kristanti, Risky Ayu

    2012-03-01

    Armillaria sp. F022, a white-rot fungus isolated from a tropical rain forest in Samarinda, Indonesia, was used to biodegrade benzo[a]pyrene (BaP). Transformation of BaP, a 5-ring polycyclic aromatic hydrocarbon (PAH), by Armillaria sp. F022, which uses BaP as a source of carbon and energy, was investigated. However, biodegradation of BaP has been limited because of its bioavailability and toxicity. Five cosubstrates were selected as cometabolic carbon and energy sources. The results showed that Armillaria sp. F022 used BaP with and without cosubstrates. A 2.5-fold increase in degradation efficiency was achieved after addition of glucose. Meanwhile, the use of glucose as a cosubstrate could significantly stimulate laccase production compared with other cosubstrates and not using any cosubstrate. The metabolic pathway was elucidated by identifying metabolites, conducting biotransformation studies, and monitoring enzyme activities in cell-free extracts. The degradation mechanism was determined through the identification of several metabolites: benzo[a]pyrene-1,6-quinone, 1-hydroxy-2-benzoic acid, and benzoic acid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Potential use of cowpea (Vigna unguiculata (L.) Walp.) stover treated with white-rot fungi as rabbit feed.

    Science.gov (United States)

    Andrade, Ederson; Pinheiro, Victor; Gonçalves, Alexandre; Cone, John W; Marques, Guilhermina; Silva, Valéria; Ferreira, Luis; Rodrigues, Miguel

    2017-10-01

    Lignin inhibitory effects within the cell wall structure constitute a serious drawback in maximizing the utilization of fibrous feedstuffs in animal feeding. Therefore treatments that promote efficient delignification of these materials must be applied. This study evaluated the potential of white-rot fungi to upgrade the nutritive value of cowpea stover for rabbit feeding. There was an increase in the crude protein content of all substrates as a result of fungi treatments, reaching a net gain of 13% for Pleurotus citrinopileatus incubation. Overall, net losses of dry and organic matter occurred during fungi treatments. Although the fiber content remained identical, higher consumption of cell wall contents was measured for P. citrinopileatus incubation (between 40 and 45%). The incubation period did not influence lignin degradation for any of the fungi treatments. Differences within the fungal degradation mechanisms indicate that P. citrinopileatus treatment was most effective, enhancing in vitro organic matter digestibility by around 30% compared with the control. Treatment of cowpea stover with P. citrinopileatus led to an efficient delignification process which resulted in higher in vitro organic matter digestibility, showing its potential in the nutritional valorization of this feedstuff. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Degradation of C60 Fullerol by White-Rot Basidiomycete Fungi: Implications for Environmental Release of Nanomaterials

    Science.gov (United States)

    Schreiner, K. M.; Filley, T. R.; Bolskar, R. D.; Blanchette, R. A.

    2008-12-01

    Industrially produced carbon-based nanomaterials, including fullerenes and fullerols, will be introduced into the environment in increasing amounts over the next century. Oxygenated fullerenes are likely to be produced in the environment through both biotic and abiotic weathering, and yet the environmental fate of compounds like hydroxylated fullerenes are almost unknown. This study examines the ability of two white rot basidiomycete fungi (Phlebia tremellosa and Trametes versicolor) to metabolize and degrade 13C-labeled C60 fullerol. Both of these fungi were shown to degrade fullerol to CO2 both in the presence of wood tissue and without, and incorporate trace amounts of the carbon into fungal biomass. Absorbance data also indicate that a significant portion of the original fullerol was broken down into small molecular weight metabolites. Phlebia tremellosa proved to be, in general, more aggressive towards fullerol degradation than Trametes versicolor. These findings represent the report of fungal degradation of this important nanomaterial and also provide valuable information about the possible environmental fates of this compound.

  15. Metabolization and degradation kinetics of the urban-use pesticide fipronil by white rot fungus Trametes versicolor.

    Science.gov (United States)

    Wolfand, Jordyn M; LeFevre, Gregory H; Luthy, Richard G

    2016-10-12

    Fipronil is a recalcitrant phenylpyrazole-based pesticide used for flea/tick treatment and termite control that is distributed in urban aquatic environments via stormwater and contributes to stream toxicity. We discovered that fipronil is rapidly metabolized (t 1/2 = 4.2 d) by the white rot fungus Trametes versicolor to fipronil sulfone and multiple previously unknown fipronil transformation products, lowering fipronil concentration by 96.5%. Using an LC-QTOF-MS untargeted metabolomics approach, we identified four novel fipronil fungal transformation products: hydroxylated fipronil sulfone, glycosylated fipronil sulfone, and two compounds with unresolved structures. These results are consistent with identified enzymatic detoxification pathways wherein conjugation with sugar moieties follows initial ring functionalization (hydroxylation). The proposed pathway is supported by kinetic evidence of transformation product formation. Fipronil loss by sorption, hydrolysis, and photolysis was negligible. When T. versicolor was exposed to the cytochrome P450 enzyme inhibitor 1-aminobenzotriazole, oxidation of fipronil and production of hydroxylated and glycosylated transformation products significantly decreased (p = 0.038, 0.0037, 0.0023, respectively), indicating that fipronil is metabolized intracellularly by cytochrome P450 enzymes. Elucidating fipronil transformation products is critical because pesticide target specificity can be lost via structural alteration, broadening classes of impacted organisms. Integration of fungi in engineered natural treatment systems could be a viable strategy for pesticide removal from stormwater runoff.

  16. Transformation of 2,4,6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor.

    Science.gov (United States)

    Leontievsky, A A; Myasoedova, N M; Baskunov, B P; Evans, C S; Golovleva, L A

    2000-01-01

    The toxicity of thirteen isomers of mono-, di-, tri- and pentachlorophenols was tested in potato-dextrose agar cultures of the white rot fungi Panus tigrinus and Coriolus versicolor. 2,4,6-Trichlorophenol (2,4,6-TCP) was chosen for further study of its toxicity and transformation in liquid cultures of these fungi. Two schemes of 2,4,6-TCP addition were tested to minimize its toxic effect to fungal cultures: stepwise addition from the moment of inoculation and single addition after five days of growth. In both cases the ligninolytic enzyme systems of both fungi were found to be responsible for 2,4,6-TCP transformation. 2,6-Dichloro-1,4-hydroquinol and 2,6-dichloro-1,4-benzoquinone were found as products of primary oxidation of 2,4,6-TCP by intact fungal cultures and purified ligninolytic enzymes, Mn-peroxidases and laccases of both fungi. However, primary attack of 2,4,6-TCP in P. tigrinus culture was conducted mainly by Mn-peroxidase, while in C. versicolor it was catalyzed predominantly by laccase, suggesting a different mode of regulation of these enzymes in the two fungi.

  17. Direct lactic acid production from beech wood by transgenic white-rot fungus Phanerochaete sordida YK-624.

    Science.gov (United States)

    Mori, Toshio; Kako, Hiroko; Sumiya, Tomoki; Kawagishi, Hirokazu; Hirai, Hirofumi

    2016-12-10

    A lactic acid (LA)-producing strain of the hyper-lignin-degrading fungus Phanerochaete sordida YK-624 with the lactate dehydrogenase-encoding gene from Bifidobacterium longum (Blldh) was constructed. When the endogenous pyruvate decarboxylase gene-knocked down and Blldh-expressing transformant was cultured with beech wood meal, the transformant was able to successively delignify and ferment the substrate. Supplementation of calcium carbonate into the culture medium, significantly increased the level of LA accumulation. Direct LA production (at 0.29g/l) from wood was confirmed, and additional inclusion of exogenous cellulase in this fermentation yielded significant further improvement in LA accumulation (up to 1.44g/l). This study provides the first report of direct production of LA by fermentation from woody biomass by a single microorganism, and indicates that transgenic white-rot fungi have a potential use for development of simple/easy applications for wood biorefinery. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The optimization of propagation medium for the increase of laccase production by the white-rot fungus Pleurotus ostreatus

    Directory of Open Access Journals (Sweden)

    Hazuchová Miroslava

    2017-12-01

    Full Text Available The lignocellulolytic enzymes are routinely produced by submerged fermentation using lignocellulosic material, but for more effective production, it would be suitable to precede the production phase on the lignocellulose by propagation phase in the nutrition medium suitable for growth of the fungi. Therefore, the aim of this study was to increase the laccase production by the white-rot fungus Pleurotus ostreatus by two-step cultivation strategy. In the first step, propagation medium was optimized for the maximal biomass growth, the second step included the laccase production by produced fungal biomass in media with the selected lignocellulosic material (pine sawdust, alfalfa steam and corn straw. From our experiments, parameters such as glucose concentration, yeast extract concentration and pH of propagation medium were selected as key factors affecting growth of P. ostreatus. The optimal conditions of propagation medium for maximal fungal growth determined by response surface methodology were: glucose concentration 102.68 g/L, yeast extract concentration 43.65 g/L and pH of propagation medium 7.24. These values were experimentally verified and used statistical model of biomass production prediction was appropriate adjusted. Thus prepared fungal biomass produced in the media with lignocellulose approximately 9-16 times higher concentrations of the laccase in 3 times shorter time than the fungal biomass without propagation phase in optimized propagation medium.

  19. The tropical white rot fungus, Lentinus squarrosulus Mont.: lignocellulolytic enzymes activities and sugar release from cornstalks under solid state fermentation.

    Science.gov (United States)

    Isikhuemhen, Omoanghe S; Mikiashvili, Nona A; Adenipekun, Clementina O; Ohimain, Elijah I; Shahbazi, Ghasem

    2012-05-01

    Lentinus squarrosulus Mont., a high temperature tolerant white rot fungus that is found across sub-Saharan Africa and many parts of Asia, is attracting attention due to its rapid mycelia growth and potential for use in food and biodegradation. A solid state fermentation (SSF) experiment with L. squarrosulus (strain MBFBL 201) on cornstalks was conducted. The study evaluated lignocellulolytic enzymes activity, loss of organic matter (LOM), exopolysaccharide content, and the release of water soluble sugars from degraded substrate. The results showed that L. squarrosulus was able to degrade cornstalks significantly, with 58.8% LOM after 30 days of SSF. Maximum lignocellulolytic enzyme activities were obtained on day 6 of cultivation: laccase = 154.5 U/L, MnP = 13 U/L, peroxidase = 27.4 U/L, CMCase = 6.0 U/mL and xylanase = 14.5 U/mL. L. squarrosulus is a good producer of exopolysaccharides (3.0-5.13 mg/mL). Glucose and galactose were the most abundant sugars detected in the substrate during SSF, while fructose, xylose and trehalose, although detected on day zero of the experiment, were absent in treated substrates. The preference for hemicellulose over cellulose, combined with the high temperature tolerance and the very fast growth rate characteristics of L. squarrosulus could make it an ideal candidate for application in industrial pretreatment and biodelignification of lignocellulosic biomass.

  20. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Hitoshi; MacDonald, Jacqueline; Syed, Khajamohiddin; Salamov, Asaf; Hori, Chiaki; Aerts, Andrea; Henrissat, Bernard; Wiebenga, Ad; vanKuyk, Patricia A.; Barry, Kerrie; Lindquist, Erika; LaButti, Kurt; Lapidus, Alla; Lucas, Susan; Coutinho, Pedro; Gong, Yunchen; Samejima, Masahiro; Mahadevan, Radhakrishnan; Abou-Zaid, Mamdouh; de Vries, Ronald P.; Igarashi, Kiyohiko; Yadav, Jagit S.; Grigoriev, Igor V.; Master, Emma R.

    2012-02-17

    Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.

  1. Recalcitrant Compounds Removal in Raw Leachate and Synthetic Effluents Using the White-Rot Fungus Bjerkandera adusta

    Directory of Open Access Journals (Sweden)

    Alessandra Bardi

    2017-10-01

    Full Text Available Recalcitrant compounds limit the efficiency of conventional biological processes for wastewater treatment, representing one of the major issues in the field. This study focused on the treatment of three effluents with White-Rot-Fungus (WRF Bjerkandera adusta MUT 2295 in batch tests, with biomass cultivated in attached form on polyurethane foam cubes (PUFs to test its efficiency in the removal of the target effluents’ recalcitrant fraction. Treatment efficiency of B. adusta was evaluated on landfill leachate (Canada and two solutions containing synthetic recalcitrant compounds, which were prepared with tannic and humic acid. Chemical Oxygen Demand (COD and color removal, the production of manganese peroxidases, and the consumption of a co-substrate (glucose were monitored during the experiment. Biological Oxygen Demand (BOD5 and fungal dry weight were measured at the beginning and at the end of the experiment. After co-substrate addition, effluent COD was 2300 ± 85, 2545 ± 84, and 2580 ± 95 (mg/L in raw leachate and tannic and humic acids, respectively. COD removal of 48%, 61%, and 48% was obtained in raw leachate and in the synthetic effluents containing tannic and humic acids, respectively. Color removal of 49%, 25%, and 42% was detected in raw leachate and in tannic and humic acid solutions, respectively. COD and color removals were associated with the increase of fungal dry weight, which was observed in all the trials. These results encourage the use of the selected fungal strain to remove tannic acid, while further investigations are required to optimize leachate and humic acid bioremediation.

  2. Physiological Peculiarities of Lignin-Modifying Enzyme Production by the White-Rot Basidiomycete Coriolopsis gallica Strain BCC 142

    Directory of Open Access Journals (Sweden)

    Vladimir Elisashvili

    2017-11-01

    Full Text Available Sixteen white-rot Basidiomycota isolates were screened for production of lignin-modifying enzymes (LME in glycerol- and mandarin peel-containing media. In the synthetic medium, Cerrena unicolor strains were the only high laccase (Lac (3.2–9.4 U/mL and manganese peroxidase (MnP (0.56–1.64 U/mL producers while one isolate Coriolopsis gallica was the only lignin peroxidase (LiP (0.07 U/mL producer. Addition of mandarin peels to the synthetic medium promoted Lac production either due to an increase in fungal biomass (Funalia trogii, Trametes hirsuta, and T. versicolor or enhancement of enzyme production (C. unicolor, Merulius tremellosus, Phlebia radiata, Trametes ochracea. Mandarin peels favored enhanced MnP and LiP secretion by the majority of the tested fungi. The ability of LiP activity production by C. gallica, C. unicolor, F. trogii, T. ochracea, and T. zonatus in the medium containing mandarin-peels was reported for the first time. Several factors, such as supplementation of the nutrient medium with a variety of lignocellulosic materials, nitrogen source or surfactant (Tween 80, Triton X-100 significantly influenced production of LME by a novel strain of C. gallica. Moreover, C. gallica was found to be a promising LME producer with a potential for an easy scale up cultivation in a bioreactor and high enzyme yields (Lac-9.4 U/mL, MnP-0.31 U/mL, LiP-0.45 U/mL.

  3. Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.

    Science.gov (United States)

    Aguiar, André; Gavioli, Daniela; Ferraz, André

    2014-11-01

    Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m(-)(1)). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m(-)(1)) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m(-)(1)). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe(3+)-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe(3+)-reducing activity, which was restored in the cultures after the first week of biodegradation. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait.

    Science.gov (United States)

    González-Sánchez, M Á; Pérez-Jiménez, R M; Pliego, C; Ramos, C; de Vicente, A; Cazorla, F M

    2010-07-01

    This study was undertaken to study bacterial strains obtained directly for their efficient direct control of the avocado white root rot, thus avoiding prescreening by any other possible mechanism of biocontrol which could bias the selection. A collection of 330 bacterial isolates was obtained from the roots and soil of healthy avocado trees. One hundred and forty-three representative bacterial isolates were tested in an avocado/Rosellinia test system, resulting in 22 presumptive protective strains, all of them identified mainly as Pseudomonas and Bacillus species. These 22 candidate strains were screened in a more accurate biocontrol trial, confirming protection of some strains (4 out of the 22). Analyses of the potential bacterial traits involved in the biocontrol activity suggest that different traits could act jointly in the final biocontrol response, but any of these traits were neither sufficient nor generalized for all the active bacteria. All the protective strains selected were antagonistic against some fungal root pathogens. Diverse bacteria with biocontrol activity could be obtained by a direct plant protection strategy of selection. All the biocontrol strains finally selected in this work were antagonistic, showing that antagonism is a prevalent trait in the biocontrol bacteria selected by a direct plant protection strategy. This is the first report on the isolation of biocontrol bacterial strains using direct plant protection strategy in the system avocado/Rosellinia. Characterization of selected biocontrol bacterial strains obtained by a direct plant protection strategy showed that antagonism is a prevalent trait in the selected strains in this experimental system. This suggests that antagonism could be used as useful strategy to select biocontrol strains. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  5. Monitoring of white-rot fungus during bioremediation of polychlorinated dioxin-contaminated fly ash.

    Science.gov (United States)

    Suhara, H; Daikoku, C; Takata, H; Suzuki, S; Matsufuji, Y; Sakai, K; Kondo, R

    2003-10-01

    Bioremediation is a low-cost treatment alternative for the cleanup of polychlorinated-dioxin-contaminated soils and fly ash when pollution spread is wide-ranging. An interesting fungus, Ceriporia sp. MZ-340, with a high ability to degrade dioxin, was isolated from white rotten wood of a broadleaf tree from Kyushu Island in Japan. We have attempted to use the fungus for bioremediation of polychlorinated-dioxin-contaminated soil on site. However, we have to consider that this trial has the potential problem of introducing a biohazard to a natural ecosystem if this organism is naturalized. We have therefore developed a monitoring system for the introduced fungus as a part of the examination and evaluation of bioremediation in our laboratory. We have also developed a PCR-based assay to reliably detect the fungus at the bioremediation site. DNA isolated from the site was amplified by PCR using a specific primer derived from internal transcribed spacer region (ITS: ITS1, 5.8S rDNA and ITS2) sequences of Ceriporia sp. MZ-340. We successfully monitored Ceriporia sp. MZ-340 down to 100 fg/ micro l DNA and down to 2 mg/g mycelium. We also successfully monitored the fungus specifically at the bioremediation site. The polychlorinated dibenzo- p-dioxin and polychlorinated dibenzofuran content was observed to decrease in response to treatment with the fungus. The species-specific PCR technique developed in the present work is useful in evaluating the possibility of on-site bioremediation using the fungus Ceriporia sp. MZ-340.

  6. Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767

    Directory of Open Access Journals (Sweden)

    Yang Dong-Dong

    2012-06-01

    Full Text Available Abstract Background The white-rot fungus Phanerochaete chrysosporium is among the small group of fungi that can degrade lignin to carbon dioxide while leaving the crystalline cellulose untouched. The efficient lignin oxidation system of this fungus requires cyclic redox reactions involving the reduction of aryl-aldehydes to the corresponding alcohols by aryl-alcohol dehydrogenase. However, the biochemical properties of this enzyme have not been extensively studied. These are of most interest for the design of metabolic engineering/synthetic biology strategies in the field of biotechnological applications of this enzyme. Results We report here the cloning of an aryl-alcohol dehydrogenase cDNA from the white-rot fungus Phanerochaete chrysosporium, its expression in Escherichia coli and the biochemical characterization of the encoded GST and His6 tagged protein. The purified recombinant enzyme showed optimal activity at 37°C and at pH 6.4 for the reduction of aryl- and linear aldehydes with NADPH as coenzyme. NADH could also be the electron donor, while having a higher Km (220 μM compared to that of NADPH (39 μM. The purified recombinant enzyme was found to be active in the reduction of more than 20 different aryl- and linear aldehydes showing highest specificity for mono- and dimethoxylated Benzaldehyde at positions 3, 4, 3,4 and 3,5. The enzyme was also capable of oxidizing aryl-alcohols with NADP + at 30°C and an optimum pH of 10.3 but with 15 to 100-fold lower catalytic efficiency than for the reduction reaction. Conclusions In this work, we have characterized the biochemical properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. We show that this enzyme functions in the reductive sense under physiological conditions and that it displays relatively large substrate specificity with highest activity towards the natural compound Veratraldehyde.

  7. FIBER QUALITIES OF PRETREATED BETUNG BAMBOO (Dendrocalamusasper BY MIXED CULTURE OF WHITE-ROT FUNGI WITH RESPECT TO ITS USE FOR PULP/PAPER

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2013-10-01

    Full Text Available Previous research on anatomical structures of pretreated large (betung bamboo (Dendrocalamusasper using single culture of white-rot fungi has been investigated, which revealed that the pretreatment caused the decrease in the Runkel ratioas well as the coefficient rigidity and the increase in the flexibility ratio of their corresponding bamboo fibers. However, there is no study reported on the anatomical structure changes of them caused by pretreatment using mixed culture of white-rot fungi. This paper reports the results of the research on paper/pulp quality after different treatments. Pretreatment that used Trametes versicolor fungi and lasted for 45 days inflicted intensive fiber damages compared with those of untreated bamboo (control. Fresh and barkless large (betung bamboo chips of 2 year's old, and 1.6 cm in length, were inoculated by 10% of mixed culture of white-rot fungi inoculums stock for 30 and 45 days in room temperature. There were four treatment groups of mixed culture, i.e T. versi color and P. ostreatus (TVPO; P. ostreatus and P. chrysosporium (POPC; P. chrysosporium and T.versi color (PCTV; and P.chrysosporium,  T.versicolorand  P.ostreatus  (TVPCPO.After  the  inoculation  period,  the  chips  weremacerated into separate fibers using Scultze method to analyze the fiber dimension and its derived values. The fibers were then observed regarding their macro and microscopic structures by optical microscope. Mixed culture pretreatment of white-rot fungi accelerated improvement of fiber morphology and fiber derived value characteristics, except for Muhlsteph ratio. The fiber derived values oftreated bamboo tended to improve compared to those of untreated bamboo, there by requiring milder pulping conditions. Accordingly, the treated bamboo would indicatively produce a good quality pulp (grade I based on FAO and LPHH (Forest Product Research Report requirements. Co-culture treatment using P. chrysosporium and P. ostreatus for

  8. A Simple Method That Uses Differential Staining and Light Microscopy To Assess the Selectivity of Wood Delignification by White Rot Fungi

    Science.gov (United States)

    Srebotnik, Ewald; Messner, Kurt

    1994-01-01

    Cryostat microtome sections of birch wood degraded by white rot fungi were examined by light microscopy after treatment with two stains: astra-blue, which stains cellulose blue only in the absence of lignin, and safranin, which stains lignin regardless of whether cellulose is present. The method provided a simple and reliable screening procedure that distinguishes between fungi that cause decay by selectively removing lignin and those that degrade both cellulose and lignin simultaneously. Moreover, morphological characteristics specific to selective delignification were revealed. Images PMID:16349245

  9. Stringy Gravity: Solving the Dark Problems at `short' distance

    Science.gov (United States)

    Park, Jeong-Hyuck

    2018-01-01

    Dictated by Symmetry Principle, string theory predicts not General Relativity but its own gravity which assumes the entire closed string massless sector to be geometric and thus gravitational. In terms of R/(MG), i.e. the dimensionless radial variable normalized by mass, Stringy Gravity agrees with General Relativity toward infinity, but modifies it at short distance. At far short distance, gravitational force can be even repulsive. These may solve the dark matter and energy problems, as they arise essentially from small R/(MG) observations: long distance divided by much heavier mass. We address the pertinent differential geometry for Stringy Gravity, stringy Equivalence Principle, stringy geodesics and the minimal coupling to the Standard Model. We highlight the notion of `doubled-yet-gauged' coordinate system, in which a gauge orbit corresponds to a single physical point and proper distance is defined between two gauge orbits by a path integral.

  10. Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk.

    Science.gov (United States)

    Su, Yulong; Xian, He; Shi, Sujuan; Zhang, Chengsheng; Manik, S M Nuruzzaman; Mao, Jingjing; Zhang, Ge; Liao, Weihong; Wang, Qian; Liu, Haobao

    2016-11-21

    identified with GC-MS, besides the chemicals produced in the degradation of lignin and nicotine, some small molecular valuable chemicals and fatty acid were also detected. Our study developed a new method for the degradation and detoxification of tobacco stalk by fermentation with white rot fungi Phanerochaete chrysosporium and Trametes hirsute. The different oxidative enzymes and chemical products detected during the degradation indicated a possible pathway for the utilization of tobacco stalk.

  11. The decay width of stringy hadrons

    Directory of Open Access Journals (Sweden)

    Jacob Sonnenschein

    2018-02-01

    We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K⁎, ϕ, D, and Ds⁎, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A=0.095±0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark–diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.

  12. Degradation and mineralization of azo dye reactive blue 222 by sequential Photo-Fenton's oxidation followed by aerobic biological treatment using white rot fungi.

    Science.gov (United States)

    Kiran, Shumaila; Ali, Shaukat; Asgher, Muhammad

    2013-02-01

    A two stage sequential Photo-Fenton's oxidation followed by aerobic biological treatment using two white rot fungi P. ostreatus IBL-02 (PO) and P. chrysosporium IBL-03 (PC) was performed to check decolorization and to enhance mineralization of azo dye Reactive Blue 222 (RB222). In the first stage, selected dye was subjected to Photo-Fenton's oxidation with decolorization percentage ≈90 % which was further increased to 96.88 % and 95.23 % after aerobic treatment using two white rot fungi P. ostreatus IBL-02 (PO) and P. chrysosporium IBL-03 (PC), respectively. Mineralization efficiency was accessed by measuring the water quality assurance parameters like COD, TOC, TSS and Phenolics estimation. Reduction in COD, TOC, TSS and Phenolics were found to be 95.34 %, 90.11 %, 90.84 % and 92.22 %, respectively in two stage sequential processes. The degradation products were characterized by UV-visible and FTIR spectral techniques and their toxicity was measured. The results provide evidence that both fungal strains were able to oxidize and mineralize the selected azo dye into non-toxic metabolites.

  13. Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white-rot fungi

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, B.E. [Centre for Chemistry and Chemical Engineering, Dept. of Biotechnology, Lund Univ. (Sweden); Henrysson, T. [Centre for Chemistry and Chemical Engineering, Dept. of Biotechnology, Lund Univ. (Sweden)

    1996-12-31

    The white-rot fungi Trametes versicolor PRL 572, Trametes versicolor MUCL 28407, Pleurotus ostreatus MUCL 29527, Pleurotus sajor-caju MUCL 29757 and Phanerochaete chrysosporium DSM 1556 were investigated for their ability to degrade the polycyclic aromatic hydrocarbons (PAH) anthracene, benz[a]anthracene and dibenz[a, h]anthracene in soil. The fungi were grown on wheat straw and mixed with artificially contaminated soil. The results of this study show that, in a heterogeneous soil environment, the fungi have different abilities to degrade PAH, with Trametes showing little or no accumulation of dead-end metabolites and Phanerochaete and Pleurotus showing almost complete conversion of anthracene to 9,10-anthracenedione. In contrast to earlier studies, Phanerochaete showed the ability to degrade the accumulated 9,10-anthracenedione while Pleurotus did not. This proves that, in a heterogeneous soil system, the PAH degradation pattern for white-rot fungi can be quite different from that in a controlled liquid system. (orig.)

  14. The chemical inducer, BTH (benzothiadiazole) and root colonization by mycorrhizal fungi (Glomus spp.) trigger resistance against white rot (Sclerotinia sclerotiorum) in sunflower.

    Science.gov (United States)

    Bán, Rita; Baglyas, Gellért; Virányi, Ferenc; Barna, Balázs; Posta, Katalin; Kiss, József; Körösi, Katalin

    2017-03-01

    White rot caused by Sclerotinia sclerotiorum (SS) is one of the most devastating plant diseases of sunflower. Controlling this pathogen by available tools hardly result in acceptable control. The aim of this study was to elucidate the effects of plant resistance inducers, BTH (benzothiadiazole in Bion 50 WG) and arbuscular mycorrhizal fungi (AMF) on disease development of white rot in three sunflower genotypes. Defence responses were characterized by measuring the disease severity and identifying cellular/histological reactions (e.g. autofluorescence) of host plants upon infection. Depending on the host genotype, a single application of inducers reduced disease symptoms. Histological examination of host responses revealed that BTH and/or AMF pre-treatments significantly impeded the development of pathogenic hyphae in Iregi szürke csíkos and P63LE13 sunflower plants and it was associated with intensive autofluorescence of cells. Both localized and systemic induction of resistance was observed. Importantly, the frequency of mycorrhization of hybrid P63LE13 and PR64H41 was significantly increased upon BTH treatment, so it had a positive effect on the formation of plant-mycorrhiza interactions in sunflower. To our knowledge, this is the first report on the additive effect of BTH on mycorrhization and the positive effect of these inducers against SS in sunflower.

  15. Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode

    International Nuclear Information System (INIS)

    Lai, Chi-Yung; Wu, Chih-Hung; Meng, Chui-Ting; Lin, Chi-Wen

    2017-01-01

    Highlights: • A laccase-producing fungus on cathode of MFC was used to enhance degradation of azo dye. • Laccase-producing fungal cathodes performed better than laccase-free control cathodes. • A maximum power density of 13.38 mW/m 2 and an >90% decolorization of acid orange 7 were obtained. • Growing a fungal culture with continuous laccase production improved MFC’s electricity generation. - Abstract: Wood-degrading white-rot fungi produce many extracellular enzymes, including the multi-copper oxidative enzyme laccase (EC 1.10.3.2). Laccase uses atmospheric oxygen as the electron acceptor to catalyze a one-electron oxidation reaction of phenolic compounds and therefore has the potential to simultaneously act as a cathode catalyst in a microbial fuel cell (MFC) and degrade azo dye pollutants. In this study, the laccase-producing white-rot fungus Ganoderma lucidum BCRC 36123 was planted on the cathode surface of a single-chamber MFC to degrade the azo dye acid orange 7 (AO7) synergistically with an anaerobic microbial community in the anode chamber. In a batch culture, the fungus used AO7 as the sole carbon source and produced laccase continuously, reaching a maximum activity of 20.3 ± 0.3 U/L on day 19 with a 77% decolorization of the dye (50 mg/L). During MFC operations, AO7 in the anolyte diffused across a layer of polyvinyl alcohol-hydrogel that separated the cathode membrane from the anode chamber, and served as a carbon source to support the growth of, and production of laccase by, the fungal mycelium that was planted on the cathode. In such MFCs, laccase-producing fungal cathodes outperformed laccase-free controls, yielding a maximum open-circuit voltage of 821 mV, a closed-circuit voltage of 394 mV with an external resistance of 1000 Ω, a maximum power density of 13.38 mW/m 2 , a maximum current density of 33 mA/m 2 , and a >90% decolorization of AO7. This study demonstrates the feasibility of growing a white-rot fungal culture with continuous

  16. Incidência de podridão-branca em frutos de macieira com e sem ferimentos Incidence of white rot in apple fruits with and without wounds

    Directory of Open Access Journals (Sweden)

    Janaína Pereira dos Santos

    2008-03-01

    Full Text Available Este estudo teve como objetivo avaliar a incidência da podridão-branca (Botryosphaeria dothidea em frutos de dois genótipos de macieira submetidos à inoculação artificial, na ausência e na presença de ferimentos provocados pela mosca-das-frutas (Anastrepha fraterculus e por estilete. O experimento foi conduzido no laboratório de Entomologia da Epagri/Estação Experimental de Caçador, na safra 2005/2006. No estudo, foram utilizados frutos da cv. Catarina (grupo 'Fuji' e da seleção M-13/00 (grupo 'Gala'. Os tratamentos foram os seguintes: (1 frutos feridos por mosca-das-frutas; (2 frutos feridos com estilete; (3 frutos sem ferimentos, e (4 frutos sem ferimentos pulverizados com água destilada (testemunha. Os tratamentos 1; 2 e 3 foram inoculados com B. dothidea. O delineamento experimental foi inteiramente casualizado, com quatro repetições, de quatro frutos por parcela. Na cv. Catarina, o número de lesões de podridão-branca foi maior em relação à M-13/00. Os ferimentos nos frutos favoreceram o estabelecimento e o desenvolvimento de lesões da doença.The relationship between damages of wounds, fruit fly and the incidence of white rot (Botryosphaeria dothidea, inoculated artificially in two apple genotypes was studied. The experiment was carried out at the laboratory of Entomology at Epagri/Caçador Experimental Station, during the 2005/2006 season. 'Catarina' (group 'Fuji' and the selection M-13/00 (group 'Gala' were tested with the following treatments: (1 fruit submitted to fruit fly; (2 fruit submitted to wounds by needle; (3 fruit without wounds; (4 fruit without wounds sprayed with distilled water (control. The treatments 1, 2 and 3 were inoculated with B. dothidea. The experiment was conducted under completely randomized design with four replications of four apple fruits each. The frequency of lesions of white rot was larger on cv. Catarina compared to M-13/00. Fruit wounds stimulate the establishment and the

  17. ACCELERATED LABORATORY TEST OF THREE AMAZONIAN WOOD SPECIES CALLED TAUARI, EXPOSED TO WHITE- AND BROWN-ROT FUNGI AND COLOR RESPONSE ACCORDING TO CIE L* A* B* SYSTEM

    Directory of Open Access Journals (Sweden)

    Esmeralda Yoshico Arakaki Okino

    2015-01-01

    Full Text Available The purposes of this study were to: evaluate de natural durability of three species of tauari ( Couratari guianensis Aublet , Couratari oblongifolia Ducke & R.Knuth and Couratari stellata A.C.Smith, report the colorimetric parameters according to CIE L*a*b* 1976 system and also show the appearance of control and attacked wood blocks. Two brown-rot [ Gloeophyllum trabeum (Persoon ex Fries Murril. and Lentinus lepideus Fr.] and two white-rot [ Trametes versicolor (Linnaeus ex Fries Pilat and Ganoderma applanatum (Pers. ex Wallr.] fungi were used . Tauari wood was classed as “moderately resistant” to “resistant” when exposed to Gloeophyllum trabeum, Trametes versicolor and Ganoderma applanatum fungi. All extractives’ contents of attacked samples decreased when compared with the control (sound wood, except Couratari stellata exposed to Ganoderma applanatum. Conversely, all ash contents increased when compared with the control, except Couratari stellata exposed to Gloeophyllum trabeum. All attacked wood blocks and wood meal samples were darker, except wood meal from Couratari stellata exposed to Trametes versicolor , and redder than the control. The ∆ E* mean value in attacked wood blocks and wood meal samples attained 29.5 and 14.3, respectively.

  18. Do stringy corrections stabilize colored black holes?

    International Nuclear Information System (INIS)

    Kanti, P.; Winstanley, E.

    2000-01-01

    We consider hairy black hole solutions of Einstein-Yang-Mills-dilaton theory, coupled to a Gauss-Bonnet curvature term, and we study their stability under small, spacetime-dependent perturbations. We demonstrate that stringy corrections do not remove the sphaleronic instabilities of colored black holes with the number of unstable modes being equal to the number of nodes of the background gauge function. In the gravitational sector and in the limit of an infinitely large horizon, colored black holes are also found to be unstable. Similar behavior is exhibited by magnetically charged black holes while the bulk of neutral black holes are proved to be stable under small, gauge-dependent perturbations. Finally, electrically charged black holes are found to be characterized only by the existence of a gravitational sector of perturbations. As in the case of neutral black holes, we demonstrate that for the bulk of electrically charged black holes no unstable modes arise in this sector. (c) 2000 The American Physical Society

  19. Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting.

    Science.gov (United States)

    Zhang, Chaosheng; Xu, Ying; Zhao, Meihua; Rong, Hongwei; Zhang, Kefang

    2018-02-15

    White-rot fungi, Phanerochaete chrysosporium was inoculated to sewage sludge composting. Its effect on transformation of organic matter and mobility of heavy metals (Zn, Pb, Cu, and Ni) was studied. Detailed sampling was performed to measure C contents in humic extracts (HE), humic acids (HAs), fulvic acids (FAs), humin and distribution of heavy metals, including acid exchangeable fraction (AE), reducible fraction (RED), oxidization fraction (OXI) and residual fraction (RES). In our study, it is evident that the HE, HAs increased obviously and hydrolyzed humin decreased markedly in inoculation. The stabilization rate ((OXI+RES)/(AE+RED)) of Zn, Pb, Cu, and Ni was 20.31%, 7%, 14.3% and 19.79% higher in inoculating reactor. Additionally, the changes of heavy metals fractions could be explained by the organic variables. The results of this study demonstrated that Phanerochaete chrysosporium passivates the heavy metal by provoking the formation of humus. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Effects of microbial pretreatment of kenaf stalk by the white-rot fungus Pleurotus sajor-caju on bioconversion of fuel ethanol production].

    Science.gov (United States)

    Ruan, Qicheng; Qi, Jianmin; Hu, Kaihui; Fang, Pingping; Lin, Haihong; Xu, Jiantang; Tao, Aifen; Lin, Guolong; Yi, Lifu

    2011-10-01

    Kenaf stalk was pretreated by the white-rot fungus Pleurotus sajor-caju incubated in solid-state kenaf stalk cultivation medium. Delignification and subsequent enzymatic saccharification and fermentation of kenaf stalk were investigated in order to evaluate effects of microbial pretreatment on bioconversion of kenaf lignocellulose to fuel ethanol production. The highest delignification rate of 50.20% was obtained after 25-35 days cultivation by P. sajor-caju, which could improve subsequent enzymatic hydrolysis efficiency of kenaf cellulose. And the saccharification rate of pretreated kenaf stalk reached 69.33 to 78.64%, 4.5-5.1 times higher than the control. Simultaneous saccharification and fermentation (SSF) with microbial-pretreatment kenaf stalk as substrate was performed. The highest overall ethanol yield of 68.31% with 18.35 to 18.90 mg/mL was achieved after 72 h of SSF.

  1. Production of xylooligosaccharides from enzymatic hydrolysis of xylan by white-rot fungi Pleurotus - DOI: 10.4025/actascitechnol.v32i1.7648

    Directory of Open Access Journals (Sweden)

    Cristiano Ragagnin de Menezes

    2009-12-01

    Full Text Available Hemicellulose consists of non-cellulosic polysaccharides, with xylans and mannans as their main examples. In nature, xylan can be first degraded to xylooligosaccharides and finally to xylose by certain microorganisms. White-rot fungi basidiomycetes Pleurotus sp. BCCB068 and Pleurotus tailandia were used to degrade oat-spelts xylan under submerged fermentation for a period of 40 days. The study obtained activities of endo-1,4-ß-xylanase and ß-xylosidase and determination of xylan products by degradation. The fungi reached significant levels of xylan degradation by Pleurotus sp. BCCB068 (75.1% and P. tailandia (73.4%, following formations of xylooligosaccharides and sugar monomers. These Pleurotus strains proved to be a feasible alternative for biotechnological processes related to degradation of hemicellulose sources.

  2. Application of Asymetrical and Hoke Designs for Optimization of Laccase Production by the White-Rot Fungus Fomes fomentarius in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Mohamed Neifar

    2011-01-01

    Full Text Available Statistical approaches were employed for the optimization of different cultural parameters for the production of laccase by the white rot fungus Fomes fomentarius MUCL 35117 in wheat bran-based solid medium. first, screening of production parameters was performed using an asymmetrical design 2533//16, and the variables with statistically significant effects on laccase production were identified. Second, inoculum size, CaCl2 concentration, CuSO4 concentration, and incubation time were selected for further optimization studies using a Hoke design. The application of the response surface methodology allows us to determine a set of optimal conditions (CaCl2, 5.5 mg/gs, CuSO4, 2.5 mg/gs, inoculum size, 3 fungal discs (6 mm Ø, and 13 days of static cultivation. Experiments carried out under these conditions led to a laccase production yield of 150 U/g dry substrate.

  3. Application of Asymetrical and Hoke Designs for Optimization of Laccase Production by the White-Rot Fungus Fomes fomentarius in Solid-State Fermentation.

    Science.gov (United States)

    Neifar, Mohamed; Kamoun, Amel; Jaouani, Atef; Ellouze-Ghorbel, Raoudha; Ellouze-Chaabouni, Semia

    2011-01-01

    Statistical approaches were employed for the optimization of different cultural parameters for the production of laccase by the white rot fungus Fomes fomentarius MUCL 35117 in wheat bran-based solid medium. first, screening of production parameters was performed using an asymmetrical design 2(5)3(3)//16, and the variables with statistically significant effects on laccase production were identified. Second, inoculum size, CaCl(2) concentration, CuSO(4) concentration, and incubation time were selected for further optimization studies using a Hoke design. The application of the response surface methodology allows us to determine a set of optimal conditions (CaCl(2), 5.5 mg/gs, CuSO(4), 2.5 mg/gs, inoculum size, 3 fungal discs (6 mm Ø), and 13 days of static cultivation). Experiments carried out under these conditions led to a laccase production yield of 150 U/g dry substrate.

  4. The decay width of stringy hadrons

    Science.gov (United States)

    Sonnenschein, Jacob; Weissman, Dorin

    2018-02-01

    In this paper we further develop a string model of hadrons by computing their strong decay widths and comparing them to experiment. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as Γ = π/2 ATL where T and L are the tension and length of the string and A is a dimensionless universal constant. We show that this result holds for a bosonic string not only in the critical dimension. The partial width of a given decay mode is given by Γi / Γ =Φi exp ⁡ (- 2 πCmsep2 / T) where Φi is a phase space factor, msep is the mass of the "quark" and "antiquark" created at the splitting point, and C is a dimensionless coefficient close to unity. Based on the spectra of hadrons we observe that their (modified) Regge trajectories are characterized by a negative intercept. This implies a repulsive Casimir force that gives the string a "zero point length". We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K*, ϕ, D, and Ds*, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A = 0.095 ± 0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.

  5. $W_\\infty$ Algebras, Hawking Radiation and Information Retention by Stringy Black Holes

    CERN Document Server

    Ellis, John; Nanopoulos, Dimitri V

    2016-01-01

    We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (whose singular regions are represented by appropriate Wess-Zumino-Witten models) is retained by quantum $W$-symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from $W_\\infty$ generators in its vertex function. The latter correspond to delocalised, non-propagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (Stringy black hole) + infalling matter $\\rightarrow $ (Stringy black hole)$^\\star$, where the black hole is viewed as a stringy state with a specific configuration of $W_\\infty$ charges...

  6. Evidence that the Ceratobasidium-like white-thread blight and black rot fungal pathogens from persimmon and tea crops in the Brazilian Atlantic Forest agroecosystem are two distinct phylospecies

    OpenAIRE

    Ceresini, Paulo C. [UNESP; Costa-Souza, Elaine [UNESP; Zala, Marcello; Furtado, Edson Luiz [UNESP; Souza, Nilton L. [UNESP

    2012-01-01

    The white-thread blight and black rot (WTBR) caused by basidiomycetous fungi of the genus Ceratobasidium is emerging as an important plant disease in Brazil, particularly for crop species in the Ericales such as persimmon (Diospyros kaki) and tea (Camellia sinensis). However, the species identity of the fungal pathogen associated with either of these hosts is still unclear. In this work, we used sequence variation in the internal transcribed spacer regions, including the 5.8S coding region of...

  7. White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations.

    Science.gov (United States)

    Lu, Ruoying; Ma, Li; He, Feng; Yu, Dong; Fan, Ruozhi; Zhang, Yangming; Long, Zheping; Zhang, Xiaoyu; Yang, Yang

    2016-03-01

    The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green.

  8. Selection of white-rot basidiomycetes for bioconversion of mustard (Brassica compestris) straw under solid-state fermentation into energy substrate for rumen micro-organism.

    Science.gov (United States)

    Tripathi, M K; Mishra, A S; Misra, A K; Vaithiyanathan, S; Prasad, R; Jakhmola, R C

    2008-03-01

    Selection of white-rot fungi of bio-conversion of mustard straw (MS) into feed for ruminants. Mustard straw was cultured with Ganoderma applanatum, Coriolus versicolor and Phanerochaete chrysosporium for solid-state fermentation at 35 degrees C from 7 to 63 days for delignification and for 21 days to study dry matter digestibility and protein enrichment. Lignin loss in fungus cultured straw varied between 100 and 470 g kg(-1) lignin. Delignification was higher between 7 and 28 days fermentation with C. versicolor. Among the three fungi P. chrysosporium was the most effective in degrading lignin for longer fermentation. In-vitro dry matter digestibility (IVDMD) and crude protein content was higher in C. versicolor cultured straw. Large quantity of straw was cultured by C. versicolor for 21 days, for in vivo evaluation. Mean pH and metabolites of rumen fermentation were not different while, pH and volatile fatty acid increased at 6 h postfermentation on cultured straw feeding. Cultured straw fermentation increased (P = 0.001) small holotricks and reduced (P = 0.005) large holotricks population. Fungus cultures straw did not improve microbial enzyme concentration. Coriolus versicolor and P. chrysosporium were the promising fungus for MS bio-delignification. Coriolus versicolor treated MS improved dry matter digestibility and protein content.

  9. Xylem defense wood of Norway spruce compromised by the pathogenic white-rot fungus Heterobasidion parviporum shows a prolonged period of selective decay.

    Science.gov (United States)

    Nagy, Nina Elisabeth; Ballance, Simon; Kvaalen, Harald; Fossdal, Carl Gunnar; Solheim, Halvor; Hietala, Ari M

    2012-10-01

    Heterobasidion parviporum, a common pathogenic white-rot fungus in managed Norway spruce forests in northern and central Europe, causes extensive decay columns within stem heartwood of the host tree. Infected trees combat the lateral spread of decay by bordering the heartwood with a fungistatic reaction zone characterized by elevated pH and phenol content. To examine the mode of fungal feeding in the reaction zone of mature Norway spruce trees naturally infected by H. parviporum, we conducted spatial profiling of pectin and hemicellulose composition, and established transcript levels of candidate fungal genes encoding enzymes involved in degradation of the different cell wall components of wood. Colonized inner heartwood showed pectin and hemicellulose concentrations similar to those of healthy heartwood, whereas the carbohydrate profiles of compromised reaction zone, irrespective of the age of fungal activity in the tissue, indicated selective fungal utilization of galacturonic acid, arabinose, xylose and mannose. These data show that the rate of wood decay in the reaction zone is slow. While the up-regulation of genes encoding pectinases and hemicellulases preceded that of the endoglucanase gene during an early phase of fungal interaction with xylem defense, the manganese peroxidase gene showed similar transcript levels during different phases of wood colonization. It seems plausible that the reaction zone components of Norway spruce interfere with both lignin degradation and the associated co-hydrolysis of hemicelluloses and pectin, resulting in a prolonged phase of selective decay.

  10. Impact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rot.

    Science.gov (United States)

    Polonio, Álvaro; Vida, Carmen; de Vicente, Antonio; Cazorla, Francisco M

    2017-06-01

    The biocontrol rhizobacterium Pseudomonas chlororaphis PCL1606 has the ability to protect avocado plants against white root rot produced by the phytopathogenic fungus Rosellinia necatrix. Moreover, PCL1606 displayed direct interactions with avocado roots and the pathogenic fungus. Thus, nonmotile (flgK mutant) and non-chemotactic (cheA mutant) derivatives of PCL1606 were constructed to emphasize the importance of motility and chemotaxis in the biological behaviour of PCL1606 during the biocontrol interaction. Plate chemotaxis assay showed that PCL1606 was attracted to the single compounds tested, such as glucose, glutamate, succinate, aspartate and malate, but no chemotaxis was observed to avocado or R. necatrix exudates. Using the more sensitive capillary assay, it was reported that smaller concentrations (1 mM) of single compounds elicited high chemotactic responses, and strong attraction was confirmed to avocado and R. necatrix exudates. Finally, biocontrol experiments revealed that the cheA and fglK derivative mutants reduced root protection against R. necatrix, suggesting an important role for these biological traits in biocontrol by P. chlororaphis PCL1606. [Int Microbiol 20(2):94-104 (2017)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  11. Olive mill wastewater biodegradation potential of white-rot fungi--Mode of action of fungal culture extracts and effects of ligninolytic enzymes.

    Science.gov (United States)

    Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Merhautová, Věra; Zervakis, Georgios I

    2015-01-01

    Forty-nine white-rot strains belonging to 38 species of Basidiomycota were evaluated for olive-mill wastewater (OMW) degradation. Almost all fungi caused high total phenolics (>60%) and color (⩽ 70%) reduction, while COD and phytotoxicity decreased to a lesser extent. Culture extracts from selected Agrocybe cylindracea, Inonotus andersonii, Pleurotus ostreatus and Trametes versicolor strains showed non-altered physicochemical and enzymatic activity profiles when applied to raw OMW in the presence or absence of commercial catalase, indicating no interaction of the latter with fungal enzymes and no competition for H2O2. Hydrogen peroxide's addition resulted in drastic OMW's decolorization, with no effect on phenolic content, suggesting that oxidation affects colored components, but not necessarily phenolics. When fungal extracts were heat-treated, no phenolics decrease was observed demonstrating thus their enzymatic rather than physicochemical oxidation. Laccases added to OMW were reversibly inhibited by the effluent's high phenolic load, while peroxidases were stable and active during the entire process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biotreatment of tannin-rich beer-factory wastewater with white-rot basidiomycete Coriolopsis gallica monitored by pyrolysis/gas chromatography/mass spectrometry.

    Science.gov (United States)

    Yagüe, S; Terrón, M C; González, T; Zapico, E; Bocchini, P; Galletti, G C; González, A E

    2000-01-01

    Some fractions of beer-factory wastewaters represent an important environmental concern owing to their high content of polyphenols and dark-brown color. The capacity of Coriolopsis gallica to preferentially degrade lignin has been successfully applied in our laboratory to the biotreatment and decolorization of paper-industry effluents. In this work, the ability of this white-rot fungus to degrade high-tannin-containing wastewaters is evaluated. Under all the conditions studied, effluent decolorization and chemical oxygen demand reduction achieved by C. gallica at day 12 of incubation were close to 50 and 65%, respectively. No adhesion of dark color to the fungal mycelium was observed suggesting that decolorization could be ascribed to C. gallica degradation systems. Mycelium dry-weight values showed that C. gallica is tolerant to relatively high tannin content present in the effluent samples. In the sample containing the highest effluent concentration (60% v/v), dry-weight values suggested an inhibition of fungal growth at day 6 of incubation and a further adaptation of the fungus to the stressing tannin effect at day 12 of fungal treatment. Pyrolysis/gas chromatography/mass spectrometry results showed a decrease of polyphenols pyrolysis products, mainly phenol and guaiacol, with the incubation time. All these results indicate the potential use of C. gallica in bioremediation of tannin-containing industrial wastewaters and in other applications where a reduction in polyphenols content is required. Copyright 2000 John Wiley & Sons, Ltd.

  13. On Stringy Thresholds in SYM/AdS Thermodynamics

    CERN Document Server

    Barbón, José L F; Rabinovici, Eliezer

    1999-01-01

    We consider aspects of the role of stringy scales and Hagedorn temperatures in the correspondence between various field theories and AdS-type spaces. The boundary theory is set on a toroidal world-volume to enable small scales to appear in the supergravity backgrounds also for low field-theory temperatures. We find that thermodynamical considerations tend to favour background manifolds with no string-size characteristic scales. The gravitational dynamics censors the reliable exposure of Hagedorn physics on the supergravity side, and the system does not allow the study of the Hagedorn scale by low-temperature field theories. These results are obtained following some heuristic assumptions on the character of stringy modifications to the gravitational backgrounds. A rich phenomenology appears on the supergravity side, with different string backgrounds dominating in different regions, which should have field-theoretic consequences. Six-dimensional world volumes turn out to be borderline cases from several points ...

  14. A stringy test of the fate of the conifold

    International Nuclear Information System (INIS)

    Vafa, C.

    1995-01-01

    By studying string loop corrections to the superpotential of Type II strings compactified on Calabi-Yau threefolds we find a quantum stringy test and a confirmation of a recent proposal of Strominger on the fate of the conifold singularity. We also propose a connection between the spectrum of Bogomolnyi saturated solitons and the one-loop string partition function of N=2 topological strings. (orig.)

  15. Olive mill wastewater biodegradation potential of white-rot fungi - Mode of action of fungal culture extracts and effects of ligninolytic enzymes

    Czech Academy of Sciences Publication Activity Database

    Ntougias, S.; Baldrian, Petr; Ehaliotis, C.; Nerud, František; Merhautová, Věra; Zervakis, G.

    2015-01-01

    Roč. 189, č. 1 (2015), s. 121-130 ISSN 0960-8524 Institutional support: RVO:61388971 Keywords : Wood-rot fungi * Laccase * Peroxidase Subject RIV: EE - Microbiology, Virology Impact factor: 4.917, year: 2015

  16. Heterologous expression and structural characterization of two low pH laccases from a biopulping white-rot fungus Physisporinus rivulosus.

    Science.gov (United States)

    Hildén, Kristiina; Mäkelä, Miia R; Lundell, Taina; Kuuskeri, Jaana; Chernykh, Alexey; Golovleva, Ludmila; Archer, David B; Hatakka, Annele

    2013-02-01

    The lignin-degrading, biopulping white-rot fungus Physisporinus rivulosus secretes several laccases of distinct features such as thermostability, extremely low pH optima and thermal activation for oxidation of phenolic substrates. Here we describe the cloning, heterologous expression and structural and enzymatic characterisation of two previously undescribed P. rivulosus laccases. The laccase cDNAs were expressed in the methylotrophic yeast Pichia pastoris either with the native or with Saccharomyces cerevisiae α-factor signal peptide. The specific activity of rLac1 and rLac2 was 5 and 0.3 μkat/μg, respectively. However, mutation of the last amino acid in the rLac2 increased the specific laccase activity by over 50-fold. The recombinant rLac1 and rLac2 enzymes demonstrated low pH optima with both 2,6-dimethoxyphenol (2,6-DMP) and 2,2'-azino-bis(3-ethylbenzathiazoline-6-sulfonate). Both recombinant laccases showed moderate thermotolerance and thermal activation at +60 °C was detected with rLac1. By homology modelling, it was deduced that Lac1 and Lac2 enzymes demonstrate structural similarity with the Trametes versicolor and Trametes trogii laccase crystal structures. Comparison of the protein architecture at the reducing substrate-binding pocket near the T1-Cu site indicated the presence of five amino acid substitutions in the structural models of Lac1 and Lac2. These data add up to our previous reports on laccase production by P. rivulosus during biopulping and growth on Norway spruce. Heterologous expression of the novel Lac1 and Lac2 isoenzymes in P. pastoris enables the detailed study of their properties and the evaluation of their potential as oxidative biocatalysts for conversion of wood lignin, lignin-like compounds and soil-polluting xenobiotics.

  17. Preparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes

    Science.gov (United States)

    Vršanská, Martina; Voběrková, Stanislava; Jiménez Jiménez, Ana María; Strmiska, Vladislav; Adam, Vojtěch

    2017-01-01

    The key to obtaining an optimum performance of an enzyme is often a question of devising a suitable enzyme and optimisation of conditions for its immobilization. In this study, laccases from the native isolates of white rot fungi Fomes fomentarius and/or Trametes versicolor, obtained from Czech forests, were used. From these, cross-linked enzyme aggregates (CLEA) were prepared and characterised when the experimental conditions were optimized. Based on the optimization steps, saturated ammonium sulphate solution (75 wt.%) was used as the precipitating agent, and different concentrations of glutaraldehyde as a cross-linking agent were investigated. CLEA aggregates formed under the optimal conditions showed higher catalytic efficiency and stabilities (thermal, pH, and storage, against denaturation) as well as high reusability compared to free laccase for both fungal strains. The best concentration of glutaraldehyde seemed to be 50 mM and higher efficiency of cross-linking was observed at a low temperature 4 °C. An insignificant increase in optimum pH for CLEA laccases with respect to free laccases for both fungi was observed. The results show that the optimum temperature for both free laccase and CLEA laccase was 35 °C for T. versicolor and 30 °C for F. fomentarius. The CLEAs retained 80% of their initial activity for Trametes and 74% for Fomes after 70 days of cultivation. Prepared cross-linked enzyme aggregates were also investigated for their decolourisation activity on malachite green, bromothymol blue, and methyl red dyes. Immobilised CLEA laccase from Trametes versicolor showed 95% decolourisation potential and CLEA from Fomes fomentarius demonstrated 90% decolourisation efficiency within 10 h for all dyes used. These results suggest that these CLEAs have promising potential in dye decolourisation. PMID:29295505

  18. Impact of wastewater derived dissolved interfering compounds on growth, enzymatic activity and trace organic contaminant removal of white rot fungi - A critical review.

    Science.gov (United States)

    Asif, Muhammad B; Hai, Faisal I; Hou, Jingwei; Price, William E; Nghiem, Long D

    2017-10-01

    White-rot fungi (WRF) and their ligninolytic enzymes have been investigated for the removal of a broad spectrum of trace organic contaminants (TrOCs) mostly from synthetic wastewater in lab-scale experiments. Only a few studies have reported the efficiency of such systems for the removal of TrOCs from real wastewater. Wastewater derived organic and inorganic compounds can inhibit: (i) WRF growth and their enzyme production capacity; (ii) enzymatic activity of ligninolytic enzymes; and (iii) catalytic efficiency of both WRF and enzymes. It is observed that essential metals such as Cu, Mn and Co at trace concertation (up to 1 mM) can improve the growth of WRF species, whereas non-essential metal such as Pb, Cd and Hg at 1 mM concentration can inhibit WRF growth and their enzyme production. In the case of purified enzymes, most of the tested metals at 1-5 mM concentration do not significantly inhibit the activity of laccases. Organic interfering compounds such as oxalic acid and ethylenediaminetetraacetic acid (EDTA) at 1 mM concentration are potent inhibitors of WRF and their extracellular enzymes. However, inhibitory effects induced by interfering compounds are strongly influenced by the type of WRF species as well as experimental conditions (e.g., incubation time and TrOC type). In this review, mechanisms and factors governing the interactions of interfering compounds with WRF and their ligninolytic enzymes are reviewed and elucidated. In addition, the performance of WRF and their ligninolytic enzymes for the removal of TrOCs from synthetic and real wastewater is critically summarized. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme.

    Science.gov (United States)

    Piumi, François; Levasseur, Anthony; Navarro, David; Zhou, Simeng; Mathieu, Yann; Ropartz, David; Ludwig, Roland; Faulds, Craig B; Record, Eric

    2014-12-01

    Data on glucose dehydrogenases (GDHs) are scarce and availability of these enzymes for application purposes is limited. This paper describes a new GDH from the fungus Pycnoporus cinnabarinus CIRM BRFM 137 that is the first reported GDH from a white-rot fungus belonging to the Basidiomycota. The enzyme was recombinantly produced in Aspergillus niger, a well-known fungal host producing an array of homologous or heterologous enzymes for industrial applications. The full-length gene that encodes GDH from P. cinnabarinus (PcGDH) consists of 2,425 bp and codes for a deduced protein of 620 amino acids with a calculated molecular mass of 62.5 kDa. The corresponding complementary DNA was cloned and placed under the control of the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter. The signal peptide of the glucoamylase prepro sequence of A. niger was used to target PcGDH secretion into the culture medium, achieving a yield of 640 mg L(-1), which is tenfold higher than any other reported value. The recombinant PcGDH was purified twofold to homogeneity in a one-step procedure with a 41 % recovery using a Ni Sepharose column. The identity of the recombinant protein was further confirmed by immunodetection using western blot analysis and N-terminal sequencing. The molecular mass of the native PcGDH was 130 kDa, suggesting a homodimeric form. Optimal pH and temperature were found to be similar (5.5 and 60 °C, respectively) to those determined for the previously characterized GDH, i.e., from Glomerella cingulata. However PcGDH exhibits a lower catalytic efficiency of 67 M(-1) s(-1) toward glucose. This substrate is by far the preferred substrate, which constitutes an advantage over other sugar oxidases in the case of blood glucose monitoring. The substrate-binding domain of PcGDH turns out to be conserved as compared to other glucose-methanol-choline (GMCs) oxidoreductases. In addition, the ability of PcGDH to reduce oxidized quinones or radical

  20. REVISIÓN: DEGRADACIÓN DE PLAGUICIDAS MEDIANTE HONGOS DE LA PUDRICIÓN BLANCA DE LA MADERA PESTICIDES DEGRADATION BY WHITE ROT FUNGI: A REVIEW

    Directory of Open Access Journals (Sweden)

    Juan Carlos Quintero Díaz

    2011-06-01

    Full Text Available Los hongos de la pudrición blanca de la madera, se han caracterizado por su capacidad para degradar y mineralizar la lignina empleando un sistema enzimático extracelular compuesto principalmente de tres enzimas Ligninoperoxidasa (LiP, Manganeso peroxidasa (MnP y Lacasa. Durante los últimos veinte años se ha orientado la atención a estos hongos y su sistema enzimático ligninolítico para estudiar la capacidad para degradar un amplio rango de compuestos xenobióticos como plaguicidas, colorantes, explosivos, etc. Sin embargo, se ha observado que gran número de compuestos entre ellos los plaguicidas no responden al proceso degradativo de las enzimas ligninoliticas y esto ha permitido descubrir recientemente nuevos mecanismos empleados por estos hongos como son los sistemas oxidativos de las monooxigenasas del citocromo P-450 y reductivo de las transferasas, ya ampliamente conocidos en animales superiores e identificados como fase I y fase II del metabolismo. En esta revisión se describen estos tres tipos de mecanismos degradativos hasta ahora conocidos que son empleados por los hongos para la degradación de contaminantes ambientales y se analizan algunos casos de plaguicidas donde se involucran estos mecanismos en su degradación.Wood white rot fungi are characterized by their capacity of degradation and mineralization of lignin by means of an enzymatic extracellular system, which mainly consists of lignin peroxidase (LiP, Manganese peroxidase (MnP and Laccase. During the last twenty years, these fungi and their enzymatic ligninolytic system have been the focus of attention to study the degradation capacity of a wide range of xenobiotics as pesticides, dyes, explosives, etc. However, a large number of xenobiotics are not responding to ligninolytic enzymes biodegradation process. This situation has permitted the discovering of new mechanisms used by fungi as citochrome P-450 monooxygenases oxidation system, and transferases’ reductive

  1. Kinematics of geodesic flows in stringy black hole backgrounds

    International Nuclear Information System (INIS)

    Dasgupta, Anirvan; Nandan, Hemwati; Kar, Sayan

    2009-01-01

    We study the kinematics of timelike geodesic congruences in two and four dimensions in spacetime geometries representing stringy black holes. The Raychaudhuri equations for the kinematical quantities (namely, expansion, shear, and rotation) characterizing such geodesic flows are written down and subsequently solved analytically (in two dimensions) and numerically (in four dimensions) for specific geodesic flows. We compare between geodesic flows in dual (electric and magnetic) stringy black hole backgrounds in four dimensions, by showing the differences that arise in the corresponding evolutions of the kinematic variables. The crucial role of initial conditions and the spacetime curvature on the evolution of the kinematical variables is illustrated. Some novel general conclusions on caustic formation and geodesic focusing are obtained from the analytical and numerical findings. We also propose a new quantifier in terms of the time (affine parameter) of approach to a singularity, which may be used to distinguish between flows in different geometries. In summary, our quantitative findings bring out hitherto unknown features of the kinematics of geodesic flows, which, otherwise, would have remained overlooked, if we confined ourselves to only a qualitative analysis.

  2. Superradiant instability of the charged scalar field in stringy black hole mirror system

    OpenAIRE

    Li, Ran; Zhao, Junkun

    2014-01-01

    It has been shown that the mass of a charged scalar field in the background of a charged stringy black hole is never able to generate a potential well outside the event horizon to trap the superradiant modes. This is to say that the charged stringy black hole is stable against massive charged scalar perturbations. In this paper we will study the superradiant instability of the massless scalar field in the background of charged stringy black hole due to a mirror-like boundary condition. The an...

  3. Lectures on Warped Compactifications and Stringy Brane Constructions

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit

    2001-07-26

    In these lectures, two different aspects of brane world scenarios in 5d gravity or string theory are discussed. In the first two lectures, work on how warped compactifications of 5d gravity theories can change the guise of the hierarchy problem and the cosmological constant problem is reviewed, and a discussion of several issues which remain unclear in this context is provided. In the next two lectures, microscopic constructions in string theory which involve D-branes wrapped on cycles of Calabi-Yau manifolds are described. The focus is on computing the superpotential in the brane worldvolume field theory. Such calculations may be a necessary step towards understanding e.g. supersymmetry breaking and moduli stabilization in stringy realizations of such scenarios, and are of intrinsic interest as probes of the quantum geometry of the Calabi-Yau space.

  4. Stringy origin of diboson and dijet excesses at the LHC

    Directory of Open Access Journals (Sweden)

    Luis A. Anchordoqui

    2015-10-01

    Full Text Available Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8–2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W− pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U(1 field with very small coupling to leptons. The Drell–Yan bounds are then readily avoided because of the leptophobic nature of the massive Z′ gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau–Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Zγ topology would become a signature consistent only with a stringy origin.

  5. Radion stabilization by stringy effects in general relativity

    International Nuclear Information System (INIS)

    Patil, Subodh P.; Brandenberger, Robert

    2005-01-01

    We consider the effects of a gas of closed strings (treated quantum mechanically) on a background where one dimension is compactified on a circle. After we address the effects of a time-dependent background on aspects of the string spectrum that concern us, we derive the energy-momentum tensor for a string gas and investigate the resulting space-time dynamics. We show that a variety of trajectories are possible for the radius of the compactified dimension, depending on the nature of the string gas, including a demonstration within the context of general relativity (i.e. without a dilaton) of a solution where the radius of the extra dimension oscillates about the self-dual radius, without invoking matter that violates the various energy conditions. In particular, we find that in the case where the string gas is in thermal equilibrium, the radius of the compactified dimension dynamically stabilizes at the self-dual radius, after which a period of usual Friedmann-Robertson-Walker cosmology of the three uncompactified dimensions can set in. We show that our radion stabilization mechanism requires a stringy realization of inflation as scalar field driven inflation invalidates our mechanism. We also show that our stabilization mechanism is consistent with observational bounds

  6. Biodegradation of 2,4,6-TCA by the white-rot fungus Phlebia radiata is initiated by a phase I (O-demethylation)-phase II (O-conjugation) reactions system: implications for the chlorine cycle.

    Science.gov (United States)

    Campoy, Sonia; Alvarez-Rodríguez, María Luisa; Recio, Eliseo; Rumbero, Angel; Coque, Juan-José R

    2009-01-01

    Thirteen species of white-rot fungi tested have been shown to efficiently biodegrade 1 mM 2,4,6-trichloroanisole (2,4,6-TCA) in liquid cultures. The maximum biodegradation rate (94.5% in 10-day incubations) was exhibited by a Phlebia radiata strain. The enzymes of the ligninolytic complex, laccase, lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP) were not able to transform 2,4,6-TCA in in vitro reactions, indicating that the ligninolytic complex was not involved in the initial attack to 2,4,6-TCA. Instead, the first biodegradative steps were carried out by a phase I and phase II reactions system. Phase I reaction consisted on a O-demethylation catalysed by a microsomal cytochrome P-450 monooxygenase to produce 2,4,6-trichlorophenol (2,4,6-TCP). Later, in a phase II reaction catalysed by a microsomal UDP-glucosyltransferase, 2,4,6-TCP was detoxified by O-conjugation with D-glucose to produce 2,4,6-TCP-1-O-d-glucoside (TCPG). This compound accumulated in culture supernatants, reaching its maximum concentration between 48 and 72 h of growth. TCPG levels decreased constantly by the end of fermentation, indicating that it was subsequently metabolized. A catalase activity was able to break in vitro the glycosidic link to produce 2,4,6-TCP, whereas ligninolytic enzymes did not have a significant effect on the biotransformation of that compound. Once formed, 2,4,6-TCP was further degraded as detected by a concomitant release of 2.6 mol of chloride ions by 1 mol of initial 2,4,6-TCA, indicating that this compound underwent almost a complete dehalogenation and biodegradation. It was concluded that P. radiata combines two different degradative mechanisms in order to biodegrade 2,4,6-TCA. The significance of the capability of white-rot fungi to O-demethylate chloroanisoles for the global chlorine cycle is discussed.

  7. Time domain analysis of superradiant instability for the charged stringy black hole–mirror system

    Directory of Open Access Journals (Sweden)

    Ran Li

    2015-11-01

    Full Text Available It has been proved that the charged stringy black holes are stable under the perturbations of massive charged scalar fields. However, superradiant instability can be generated by adding the mirror-like boundary condition to the composed system of charged stringy black hole and scalar field. The unstable boxed quasinormal modes have been calculated by using both analytical and numerical methods. In this paper, we further provide a time domain analysis by performing a long time evolution of charged scalar field configuration in the background of the charged stringy black hole with the mirror-like boundary condition imposed. We have used the ingoing Eddington–Finkelstein coordinates to derive the evolution equation, and adopted Pseudo-spectral method and the forth-order Runge–Kutta method to evolve the scalar field with the initial Gaussian wave packet. It is shown by our numerical scheme that Fourier transforming the evolution data coincides well with the unstable modes computed from frequency domain analysis. The existence of the rapid growth mode makes the charged stringy black hole a good test ground to study the nonlinear development of superradiant instability.

  8. Evaluation of Trichoderma spp. and Acibenzolar-S-Methyl (Bion® as resistance inducers in garlic (Allium sativum L. agains white rot Sclerotium cepivorum Berk. under field conditions

    Directory of Open Access Journals (Sweden)

    Jiménez María A

    2012-08-01

    Full Text Available Inducers of biotic and abiotic resistance emerge as an alternative for the management of garlic white rot caused by the fungus Sclerotium cepivorum Berk. To evaluate the effect of these inducers on crop yield variables, final disease incidence (DI, the area under the curve of disease progress (AUDPC and variables associated with plant growth and yield of garlic, and experiment was set, using the fungi Trichoderma harzianum and T. koningiopsis with Bion® under field conditions in a randomized block design with eight treatments and four replications were incorporated. The treatments were conformed as follows: control, Trichoderma harzianum under commercial formulas Tricobiol® (Tri, Subiol® (S, T. koningiopsis (Tk, Bion® (B, T. koningiopsis + Bion (Tk+ B, Subiol Bion (S+B and Bion +Tricobiol (Tri+ B. The higher yields and growth variables correspond to those plants treated with Tk+ B treatment and coincided with some of the lowest AUDPC. The lower (DI was observed when applied Tk, Tk +B and Tri. These results indicated that the greatest protection against the disease was achieved with the combination of the antagonist with the chemical reflected in a decrease of AUDPC and a delay in the peak of infection. The total yield of garlic increased in the treatments in which both inducers and that stimulated plant productivity and thus the development and defense.

  9. Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products.

    Science.gov (United States)

    Gros, Meritxell; Cruz-Morato, Carles; Marco-Urrea, Ernest; Longrée, Philipp; Singer, Heinz; Sarrà, Montserrat; Hollender, Juliane; Vicent, Teresa; Rodriguez-Mozaz, Sara; Barceló, Damià

    2014-09-01

    This paper describes the degradation of the X-ray contrast agent iopromide (IOP) and the antibiotic ofloxacin (OFLOX) by the white-rot-fungus Trametes versicolor. Batch studies in synthetic medium revealed that between 60 and 80% of IOP and OFLOX were removed when spiked at approximately 12 mg L(-1) and 10 mg L(-1), respectively. A significant number of transformation products (TPs) were identified for both pharmaceuticals, confirming their degradation. IOP TPs were attributed to two principal reactions: (i) sequential deiodination of the aromatic ring and (ii) N-dealkylation of the amide at the hydroxylated side chain of the molecule. On the other hand, OFLOX transformation products were attributed mainly to the oxidation, hydroxylation and cleavage of the piperazine ring. Experiments in 10 L-bioreactor with fungal biomass fluidized by air pulses operated in batch achieved high percentage of degradation of IOP and OFLOX when load with sterile (87% IOP, 98.5% OFLOX) and unsterile (65.4% IOP, 99% OFLOX) hospital wastewater (HWW) at their real concentration (μg L(-1) level). Some of the most relevant IOP and OFLOX TPs identified in synthetic medium were also detected in bioreactor samples. Acute toxicity tests indicated a reduction of the toxicity in the final culture broth from both experiments in synthetic medium and in batch bioreactor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Etiology of phomopsis root rot in soybean

    Directory of Open Access Journals (Sweden)

    Valéria Cecília Ghissi

    2014-09-01

    Full Text Available In a survey of damages caused by soybean root rot to crops in the south of Brazil for several years, a root rot caused by Phomopsis sp has been found with increasing frequency. The primary symptoms are seen when the main root is cut longitudinally, including the death of the wood which shows white coloration and well-defined black lines that do not have a defined format. Thus, based on similarity, it has been called geographic root rot due to its aspect resembling irregular lines that separate regions on a map. In isolations, colonies and alpha spores of Phomopsis have prevailed. Pathogenicity test was done by means of inoculation in the crown of plants cultivated in a growth chamber. The geographic symptoms were reproduced in plants and the fungus Phomopsis sp. was reisolated. In soybean stems naturally infected with pod and stem blight, geographic symptoms caused by Phomopsis phaseoli are found. To the known symptoms on stems, pods and grains, that of root rot caused by P. phaseoli is now added.

  11. Production of xylooligosaccharides from enzymatic hydrolysis of xylan by white-rot fungi Pleurotus = Produção de xilooligossacarídeos pela hidrólise enzimática de xylana por fungos Pleurotus

    Directory of Open Access Journals (Sweden)

    Cristiano Ragagnin de Menezes

    2010-01-01

    Full Text Available Hemicellulose consists of non-cellulosic polysaccharides, with xylans and mannans as their main examples. In nature, xylan can be first degraded to xylooligosaccharides and finally to xylose by certain microorganisms. White-rot fungi basidiomycetes Pleurotus sp. BCCB068 and Pleurotus tailandia were used to degrade oat-spelts xylan under submerged fermentation for a period of 40 days. The study obtained activities of endo-1,4-β-xylanase and β-xylosidase and determination of xylan products by degradation. The fungi reached significant levels of xylan degradation by Pleurotus sp. BCCB068 (75.1% and P. tailandia (73.4%, following formations of xylooligosaccharides and sugar monomers. These Pleurotus strains proved to be a feasible alternative for biotechnological processes related to degradation of hemicellulose sources. A hemicelulose é um polissacarídeo não-celulósico, tendo como exemplos principais as xilanas e mananas. Na natureza, as xilanas podem ser degradadas por microrganismos, primeiramente a xilooligossacarídeos e finalmente a xilose. Fungos basidiomicetos Pleurotus sp. BCCB068 e Pleurotus tailandia foram utilizados para degradar xilana de aveia em fermentação submersa durante o período de 40 dias. Foram obtidas as atividades de endo-1,4-β-xilanase e β-xilosidase e a determinação dos produtos de degradação da xilana. Os fungos atingiram níveis significativos de degradação da xilana porPleurotus sp. BCCB068 (75.1% and P. tailandia (73.4%, seguido da formação de xilooligossacarídeos e monômeros de açúcar. Essas cepas de Pleurotus demonstraram ser uma alternativa viável para os processos biotecnológicos relacionados à degradação de fontes dehemicelulose.

  12. Numerical study of superradiant instability for charged stringy black hole–mirror system

    Directory of Open Access Journals (Sweden)

    Ran Li

    2015-01-01

    Full Text Available We numerically study the superradiant instability of charged massless scalar field in the background of charged stringy black hole with mirror-like boundary condition. We compare the numerical result with the previous analytical result and show the dependencies of this instability upon various values of black hole charge Q, scalar field charge q, and mirror radius rm. Especially, we have observed that imaginary part of BQN frequencies grows with the scalar field charge q rapidly.

  13. Numerical study of superradiant instability for charged stringy black hole-mirror system

    OpenAIRE

    Li, Ran; Zhao, Junkun

    2014-01-01

    We numerically study the superradiant instability of charged massless scalar field in the background of charged stringy black hole with mirror-like boundary condition. We compare the numerical result with the previous analytical result and show the dependencies of this instability upon various parameters of black hole charge $Q$, scalar field charge $q$, and mirror radius $r_m$. Especially, we have observed that imaginary part of BQN frequencies grows with the scalar field charge $q$ rapidly.

  14. Effect of irradiation and insect pest control on rots and sensory ...

    African Journals Online (AJOL)

    The coffee bean weevil, Araecerus fasciculatus Degeer (Coleoptera: Curculionidae) is associated with rots in stored yam tubers. The current study was designed to assess the effect of irradiation and other insect pest control strategies on rots and sensory quality of stored yams. 450 tubers each of two varieties of white yam ...

  15. Armillaria root rot

    Science.gov (United States)

    First described on grapevines in California in the 1880s, Armillaria root rot occurs in all major grape-growing regions of the state. The causal fungus, Armillaria mellea, infects woody grapevine roots and the base of the trunk (the root collar), resulting in a slow decline and eventual death of the...

  16. Butt Rot of Southern Hardwoods

    Science.gov (United States)

    F. I. McCracken

    1977-01-01

    Butt rot is the most serious cause of cull throughout the South, and affects all hardwood species. Defined as any decay at the base of a living tree, butt rot accounts for the loss of millions of board feet of southern hardwood timber annually. In one study of loess and alluvial hardwood sites in the Midsouth, butt rot was found in 40 percent of the trees being...

  17. Disease notes - Bacterial root rot

    Science.gov (United States)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  18. Derivation of a Vacuum Refractive Index in a Stringy Space-Time Foam Model

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, D V

    2008-01-01

    It has been suggested that energetic photons propagating in vacuo should experience a non-trivial refractive index due to the foamy structure of space-time induced by quantum-gravitational fluctuations. The sensitivity of recent astrophysical observations, particularly of AGN Mk501 by the MAGIC Collaboration, approaches the Planck scale for a refractive index depending linearly on the photon energy. We present here a new derivation of this quantum-gravitational vacuum refraction index, based on a stringy analogue of the interaction of a photon with internal degrees of freedom in a conventional medium. We model the space-time foam as a gas of D-particles in the bulk space-time of a higher-dimensional cosmology where the observable Universe is a D3-brane. The interaction of an open string representing a photon with a D-particle stretches and excites the string, which subsequently decays and re-emits the photon with a time delay that increases linearly with the photon energy and is related to stringy uncertainty...

  19. CHARACTERIZATION OF WOOD DECAY BY ROT FUNGI USING COLORIMETRY AND INFRARED SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Mírian de Almeida Costa

    2011-09-01

    Full Text Available Wood samples of marupá (Simarouba amara and andiroba (Carapa guianenis were submitted to Trametes versicolor (white rot and Gloeophylum trabeum (brown rot fungi attack. Colorimetry was used to determine the color of the wood before and after wood decaying fungi. To evaluate the changes in chemical compounds levels in the wood samples, the diffuse reflectance medium infrared spectroscopy was used. Both wood were non resistant against white rot fungus, while with brown rot attack andiroba was resistant and marupá was not. After Gloeophyllum trabeum attack both woods changed to a darken color, and after Trametes versicolor attack andiroba changed to a lighter color and marupá darkened slightly, The analysis showed a reduction in the peak intensity of cellulose, hemicellulose and lignin, for both species, after Trametes versicolor attack and a reduction in the peak intensity of cellulose after Gloeophyllum trabeum attack.

  20. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by white ...

    African Journals Online (AJOL)

    ... activity, and Pseudotrametes gibbosa had significant potential due to its higher laccase production and more potent degradation of PAHs. This study provides technical support for pollution amelioration using aboriginal white-rot fungus. Key words: White-rot fungus, laccase, polycyclic aromatic hydrocarbons, degradation.

  1. Using the Resistograph®to distinguish different types of wood rot on living silver fir in Molise (Italy

    Directory of Open Access Journals (Sweden)

    Lasserre B

    2010-10-01

    Full Text Available he study was performed in two silver-fir forests (Abies alba Mill. located in Alto Molise, Province of Isernia: Collemeluccio, near Pescolanciano and Abeti Soprani near Capracotta. The aim of this work was to distinguish different types of wood rot on living silver fir individuals by using the Resistograph® (IML-RESI E400, a device that allows to estimate the variation of wood density by measuring the resistance to micro-perforation. The occurrence of different types of wood rot (white rot and brown rot in living trees was pointed out and discriminated by the device. In the detected deteriorated zones, fungal pathogens and decomposers were isolated and identified, causing either white (Phellinus hartigii, Ganoderma adspersum, Heterobasidion abietinum and Armillaria ostoyae or brown rot (Fomitopsis pinicola.

  2. First Report of Sclerotium Rot on Cymbidium Orchids Caused by Sclerotium rolfsii in Korea

    Science.gov (United States)

    Lee, Seong-Chan; Lee, Jung-Sup; Soh, Jae-Woo; Kim, Su

    2012-01-01

    Sclerotium rot was found on Cymbidium orchids at Seosan-si, Chungcheongnam-do, Korea, in July, 2010. Symptoms occurred on low leaves, which turned yellowish, after which the entire plant wilted. Severely infected plants were blighted and eventually died. White mycelial mats and sclerotia appeared on pseudobulbs. Based on the mycological characteristics and pathogenicity, the causal fungus was identified as Sclerotium rolfsii. This is the first report of new Sclerotium rot on Cymbidium spp. caused by S. rolfsii in Korea. PMID:23323053

  3. Stringy space-time foam, Finsler-like metrics and dark matter relics

    International Nuclear Information System (INIS)

    Mavromatos, Nick E.; Sarkar, Sarben; Vergou, Ariadne

    2011-01-01

    We discuss modifications of the thermal dark matter (DM) relic abundances in stringy cosmologies with D-particle space-time foamy backgrounds. As a result of back-reaction of massive DM on the background space-time, owing to its interaction with D-particle defects in the foam, quantum fluctuations are induced in the space-time metric. We demonstrate that these lead to the presence of extra source terms in the Boltzmann equation used to determine the thermal dark matter relic abundances. The source terms are determined by the specific form of the induced metric deformations; the latter depend on the momentum transfer of the DM particle during its interactions with the D-particle defects and so are akin to Finsler metrics. In the case of low string scales, arising from large extra dimensions, our results may have phenomenological implications for the search of viable supersymmetric models.

  4. Stringy Space-Time Foam and High-Energy Cosmic Photons

    CERN Document Server

    Mavromatos, Nick E

    2011-01-01

    In this review, I discuss briefly stringent tests of Lorentz-violating quantum space-time foam models inspired from String/Brane theories, provided by studies of high energy Photons from intense celestial sources, such as Active Galactic Nuclei or Gamma Ray Bursts. The theoretical models predict modifications to the radiation dispersion relations, which are quadratically suppressed by the string mass scale, and time delays in the arrival times of photons (assumed to be emitted more or less simultaneously from the source), which are proportional to the photon energy, so that the more energetic photons arrive later. Although the astrophysics at the source of these energetic photons is still not understood, and such non simultaneous arrivals, that have been observed recently, might well be due to non simultaneous emission as a result of conventional physics effects, nevertheless, rather surprisingly, the observed time delays can also fit excellently the stringy space-time foam scenarios, provided the space-time ...

  5. Root rot diseases of sugar beet

    Directory of Open Access Journals (Sweden)

    Jacobsen Barry J.

    2006-01-01

    Full Text Available Root rot diseases of sugar beet caused by Rhizoctonia solani (AG 2-2 IIIB and AG 2-2 IV, R. crocorum, Aphanomyces cochlioides, Phoma betae, Macrophomina phaeseolina, Fusarium oxysporum f.sp. radicis-betae, Pythium aphanidermatum Phytophthora drechsleri, Rhizopus stolonifer, R. arrhizus and Sclerotium rolfsii cause significant losses wherever sugar beets are grown. However, not all these soil-borne pathogens have been reported in all sugar beet production areas. Losses include reduced harvestable tonnage and reduced white sugar recovery. Many of these pathogens also cause post harvest losses in storage piles. Control for diseases caused by these pathogens include disease resistant cultivars, avoidance of stresses, cultural practices such as water management and the use of fungicides.

  6. Corm Rot and Yellows of Gladiolus and Its Biomanagement

    Directory of Open Access Journals (Sweden)

    M. Khan

    2005-08-01

    Full Text Available A corm dressing containing Trichoderma harzianum (T014 and Pseudomonas fluorescens (PS07 cultured on a bagasse-soil-molasses mixture was tested for its efficacy against corm rot and yellows caused by Fusarium oxysporum f. sp. gladioli on the gladiolus (Gladiolus psittacinus L. cv. White Prosperity (WP, King Lear (KL, Friendship (FR, Her Majesty (HM and American Beauty (AB in a pot culture experiment. The effectiveness of the biocontrol agents was compared with that of the fungicide carbendazim (200 ppm. All cultivars were susceptible to the pathogenic fungus and developed the characteristic symptoms of corm rot and yellows. Cultivars HM and AB were highly susceptible, scoring 2.9–3.2 on a corm rot and yellows scale (0–5 scale; compared with 1.5–2.9 for the other cultivars. Fungal infection reduced plant growth and flowering significantly, with a 15–28% decrease in the number of florets/spike. Application of carbendazim, T. harzianum (P=0.001 and P. fluorescens (P=0.05 decreased the corm rot and yellows scores and the soil population of the pathogen, and increased plant growth and flowering. The greatest improvement in the flower variables of infected plants was recorded with P. fluorescens (+18–31% over control. The soil population of the bioagents increased significantly over time, both in the presence and in the absence of the pathogenic fungus, but more in its absence.

  7. Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol

    Science.gov (United States)

    Shrestha, Prachand

    This research aims at developing a biorefinery platform to convert corn-ethanol coproduct, corn fiber, into fermentable sugars at a lower temperature with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum) and soft-rot (Trichoderma reesei) fungi were used in this research to biologically break down cellulosic and hemicellulosic components of corn fiber into fermentable sugars. Laboratory-scale simultaneous saccharification and fermentation (SSF) process proceeded by in-situ cellulolytic enzyme induction enhanced overall enzymatic hydrolysis of hemi/cellulose from corn fiber into simple sugars (mono-, di-, tri-saccharides). The yeast fermentation of hydrolyzate yielded 7.1, 8.6 and 4.1 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest corn-to-ethanol yield (8.6 g ethanol/100 g corn fiber) was equivalent to 42 % of the theoretical ethanol yield from starch and cellulose in corn fiber. Cellulase, xylanase and amylase activities of these fungi were also investigated over a week long solid-substrate fermentation of corn fiber. G. trabeum had the highest activities for starch (160 mg glucose/mg protein.min) and on day three of solid-substrate fermentation. P. chrysosporium had the highest activity for xylan (119 mg xylose/mg protein.min) on day five and carboxymethyl cellulose (35 mg glucose/mg protein.min) on day three of solid-substrate fermentation. T. reesei showed the highest activity for Sigma cell 20 (54.8 mg glucose/mg protein.min) on day 5 of solid-substrate fermentation. The effect of different pretreatments on SSF of corn fiber by fungal processes was examined. Corn fiber was treated at 30 °C for 2 h with alkali [2% NaOH (w/w)], alkaline peroxide [2% NaOH (w/w) and 1% H2O 2 (w/w)], and by steaming at 100 °C for 2 h. Mild pretreatment resulted in improved ethanol yields for brown- and soft-rot SSF, while white-rot and Spezyme CP SSFs showed

  8. Control of lettuce bottom rot by isolates of Trichoderma spp

    Directory of Open Access Journals (Sweden)

    Zayame Vegette Pinto

    2014-06-01

    Full Text Available Bottom rot, caused by Rhizoctonia solani AG 1-IB, is an important disease affecting lettuce in Brazil, where its biological control with Trichoderma was not developed yet. The present study was carried out with the aim of selecting Trichoderma isolates to be used in the control of lettuce bottom rot. Forty-six Trichoderma isolates, obtained with baits containing mycelia of the pathogen, were evaluated in experiments carried out in vitro and in vivo in a greenhouse in two steps. In the laboratory, the isolates were evaluated for their capabilities of parasitizing and producing toxic metabolic substances that could inhibit the pathogen mycelial growth. In the first step of the in vivo experiments, the number and the dry weight of lettuce seedlings of the cultivar White Boston were evaluated. In the second step, 12 isolates that were efficient in the first step and showed rapid growth and abundant sporulation in the laboratory were tested for their capability of controlling bottom rot in two repeated experiments, and had their species identified. The majority of the isolates of Trichoderma spp. (76% showed high capacity for parasitism and 50% of them produced toxic metabolites capable of inhibiting 60-100% of R. solani AG1-IB mycelial growth. Twenty-four isolates increased the number and 23 isolates increased the dry weight of lettuce seedlings inoculated with the pathogen in the first step of the in vivo experiments.In both experiments of the second step, two isolates of T. virens, IBLF 04 and IBLF 50, reduced the severity of bottom rot and increased the number and the dry weight of lettuce seedlings inoculated with R. solani AG1-IB. These isolates had shown a high capacity for parasitism and production of toxic metabolic substances, indicating that the in vitro and in vivo steps employed in the present study were efficient in selecting antagonists to be used for the control of lettuce bottom rot.

  9. Gene cloning and heterologous expression of pyranose 2-oxidase from the brown-rot fungus, Gloeophyllum trabeum

    Science.gov (United States)

    Diane Dietrich; Casey Crooks

    2009-01-01

    A pyranose 2-oxidase gene from the brown-rot basidiomycete Gloeophyllum trabeum was isolated using homology-based degenerate PCR. The gene structure was determined and compared to that of several pyranose 2-oxidases cloned from white-rot fungi. The G. trabeum pyranose 2-oxidase gene consists of 16 coding exons with canonical promoter CAAT and TATA elements in the 5’UTR...

  10. Canker Rots in Southern Hardwoods

    Science.gov (United States)

    F.I. McCracken

    1978-01-01

    Canker-rot fungi cause serious degrade and cull in southern hardwoods, especially the red oaks. Heartwood decay is the most serious form of damage, but the fungi also kill the cambium and decay the sapwood for as much as 3 feet (.91 m) above and below the entrance point into the tree. The ability of these fungi to kill the cambium and cause cankers distinguishes them...

  11. Fusarium basal rot in the Netherlands

    NARCIS (Netherlands)

    Visser, de C.L.M.; Broek, van den R.C.F.M.; Brink, van den L.

    2006-01-01

    Fusarium basal rot of onion, caused by Fusarium oxysporum f.sp. cepae, is a steadily increasing problem in The Netherlands. Financial losses for Dutch farmers confronted with Fusarium basal rot is substantial, due to yield reduction and high storage costs. This paper describes the development and

  12. Sclerotinia Rot on Basil Caused by Sclerotinia sclerotiorum in Korea

    Directory of Open Access Journals (Sweden)

    Soo Sang Hahm

    2017-03-01

    Full Text Available During growing season of 2011 to 2013, Sclerotinia rot symptoms consistently have been observed on basil in Yesan-gun, Chungcheongnam-do in Korea. The typical symptom formed initially brownish spot on leaf and stem, and then advancing margins, wilting the whole plant and blighting, eventually died. On the surface of diseased lesions was observed cottony, white, dense mat of mycelial growth, and sclerotia (30–100 µm diameter formed on stem and leaf. Morphological and cultural characteristic on potato dextrose agar, color of colony was white and colorless chocolate, sclerotium of irregular shape of the oval was black and 5–50 µm diameter in size. In pathogenicity test, necrosis and wilt of the inoculated stem were observed in all plants and the pathogen was reisolated from stems. On the basis of mycological characteristics, pathogenicity, and internal transcribed spacer rDNA sequence analysis, this fungus was identified as Sclerotinia sclerotiorum. This is the first report of Sclerotinia rot on basil caused by S. sclerotiorum in Korea.

  13. Complex Structure of the Four-Dimensional Kerr Geometry: Stringy System, Kerr Theorem, and Calabi-Yau Twofold

    Directory of Open Access Journals (Sweden)

    Alexander Burinskii

    2013-01-01

    Full Text Available The 4D Kerr geometry displays many wonderful relations with quantum world and, in particular, with superstring theory. The lightlike structure of fields near the Kerr singular ring is similar to the structure of Sen solution for a closed heterotic string. Another string, open and complex, appears in the complex representation of the Kerr geometry initiated by Newman. Combination of these strings forms a membrane source of the Kerr geometry which is parallel to the structure of M-theory. In this paper we give one more evidence of this relationship, emergence of the Calabi-Yau twofold (K3 surface in twistorial structure of the Kerr geometry as a consequence of the Kerr theorem. Finally, we indicate that the Kerr stringy system may correspond to a complex embedding of the critical N = 2 superstring.

  14. KEEPING QUALITY OF A FRESH STRINGY CHESE. APPLICATION OF TRADITIONAL METHODS AND ANALYSIS WITH A SMART NOSE SYSTEM

    Directory of Open Access Journals (Sweden)

    F. Conte

    2011-01-01

    Full Text Available The study was applied to samples of a fresh stringy cheese from bovine, ewe and goat milk obtained from a small dairy in Siciliy. Cheese samples, vacuum packaged and without package, were stored at 5±1°C and evaluated from 0 to 15 days. Keeping quality was studied using evaluated with a SMart Nose System (SN and by a Solid Phase Micro Extraction.Gas Chromatography (SPME/GCMS procedure. The obtained data allowed to give a shelf life of 10 days for packaged cheese; a 3 days period was considered for non packaged samples. The study of volatiles by SPME-GC/MS gave a useful information about samples profile; nevertheless the results were not related to cheese durability. The evaluation of the odour profile by SN allowed an objective and rapid measurement of volatiles that can be easily related to the shelf life for routine quality control of cheese.

  15. Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees.

    Science.gov (United States)

    Chung, Chia-Lin; Lee, Tracy J; Akiba, Mitsuteru; Lee, Hsin-Han; Kuo, Tzu-Hao; Liu, Dang; Ke, Huei-Mien; Yokoi, Toshiro; Roa, Marylette B; Lu, Mei-Yeh J; Chang, Ya-Yun; Ann, Pao-Jen; Tsai, Jyh-Nong; Chen, Chien-Yu; Tzean, Shean-Shong; Ota, Yuko; Hattori, Tsutomu; Sahashi, Norio; Liou, Ruey-Fen; Kikuchi, Taisei; Tsai, Isheng J

    2017-11-01

    The order Hymenochaetales of white rot fungi contain some of the most aggressive wood decayers causing tree deaths around the world. Despite their ecological importance and the impact of diseases they cause, little is known about the evolution and transmission patterns of these pathogens. Here, we sequenced and undertook comparative genomic analyses of Hymenochaetales genomes using brown root rot fungus Phellinus noxius, wood-decomposing fungus Phellinus lamaensis, laminated root rot fungus Phellinus sulphurascens and trunk pathogen Porodaedalea pini. Many gene families of lignin-degrading enzymes were identified from these fungi, reflecting their ability as white rot fungi. Comparing against distant fungi highlighted the expansion of 1,3-beta-glucan synthases in P. noxius, which may account for its fast-growing attribute. We identified 13 linkage groups conserved within Agaricomycetes, suggesting the evolution of stable karyotypes. We determined that P. noxius has a bipolar heterothallic mating system, with unusual highly expanded ~60 kb A locus as a result of accumulating gene transposition. We investigated the population genomics of 60 P. noxius isolates across multiple islands of the Asia Pacific region. Whole-genome sequencing showed this multinucleate species contains abundant poly-allelic single nucleotide polymorphisms with atypical allele frequencies. Different patterns of intra-isolate polymorphism reflect mono-/heterokaryotic states which are both prevalent in nature. We have shown two genetically separated lineages with one spanning across many islands despite the geographical barriers. Both populations possess extraordinary genetic diversity and show contrasting evolutionary scenarios. These results provide a framework to further investigate the genetic basis underlying the fitness and virulence of white rot fungi. © 2017 John Wiley & Sons Ltd.

  16. Pseudomonads associated with midrib rot and soft rot of butterhead lettuce and endive.

    Science.gov (United States)

    Cottyn, B; Vanhouteghem, K; Heyrman, J; Bleyaert, P; Van Vaerenbergh, J; De Vos, P; Höfte, M; Maes, M

    2005-01-01

    During the past ten years, bacterial soft rot and midrib rot of glasshouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) and field-grown endive (Cichorium endivia L.) has become increasingly common in the region of Flanders, Belgium. Severe losses and reduced market quality caused by bacterial rot represent an important economical threat for the production sector. Symptoms of midrib rot are a brownish rot along the midrib of one or more inner leaves, often accompanied by soft rot of the leaf blade. Twenty-five symptomatic lettuce and endive samples were collected from commercial growers at different locations in Flanders. Isolations of dominant bacterial colony types on dilution plates from macerated diseased tissue extracts yielded 282 isolates. All isolates were characterized by colony morphology and fluorescence on pseudomonas agar F medium, oxidase reaction, and soft rot ability on detached chicory leaves. Whole-cell fatty acid methyl esters profile analyses identified the majority of isolates (85%) as belonging to the Gammaproteobacteria, which included members of the family Enterobacteriaceae (14%) and of the genera Pseudomonas (73%), Stenotrophomonas (9%), and Acinetobacter (3%). Predominant bacteria were a diverse group of fluorescent Pseudomonas species. They were further differentiated based on the non-host hypersensitive reaction on tobacco and the ability to rot potato slices into 4 phenotypic groups: HR-/P- (57 isolates), HR-/P+ (54 isolates), HR+/P (16 isolates) and HR+/P+ (35 isolates). Artificial inoculation of suspensions of HR-, pectolytic fluorescent pseudomonads in the leaf midrib of lettuce plants produced various symptoms of soft rot, but they did not readily cause symptoms upon spray inoculation. Fluorescent pseudomonads with phenotype HR+ were consistently isolated from typical dark midrib rot symptoms, and selected isolates reproduced the typical midrib rot symptoms when spray-inoculated onto healthy lettuce plants.

  17. Relationship between plant nutrition and severity of damage caused by white rot desease on onion (Allium cepa Relación entre la nutrición mineral y la severidad del daño ocasionado por pudrición blanca en cebolla de bulbo

    Directory of Open Access Journals (Sweden)

    Piraneque G Nelson Virgilio

    2006-12-01

    Full Text Available

    In a comercial onion crop (Allium cepa located in Tibasosa, Boyacá, Colombia, the relationship between plant nutrition and severity of damage caused by white rot disease was studied. The soil was classified as sulfic endoamept. At 20 days before sowing (DAS and at 45, 90 and 120 days after sowing soil samples and esclerotium were taken plant tissue analysis at 45, 90 and 120 DAS was carried out. Also association among soil chemical parameters and plant percentage of damage was estudied. Results showed direct relationship among cooper content in soil (r=0.71, nitrogen in leaves (r=0.46 and magnesium in leaves (r=0.66 with percentage o damage caused by S. cepivorum. Calcium content in leaves (r=0.52, boron in leaves (r=-0.49 and esclerocios in soil Elg (r=0.56 were inversely proportional to percentage of damage. The treatment with the highest percentage of damage had higher contents of N, P and S in leaves and lower K, Ca, Mg, B, Mn, Cu and Zn.

    Key words: Allium cepa; Sclerotium cepivorum; plant nutrition.

    En un cultivo comercial de cebolla de bulbo (Allium cepa situado en el municipio de Tibasosa, Boyacá-Colombia, se recolectaron muestras de suelos (sulfic endoaquepts yesclerocios 20 días antes de la siembra, 45, 90 y 120 días después de la siembra (DDS; los análisis de tejidos se realizaron a los 45, 90 y 120 DDS. Se determinó la asociación entre parámetros químicos del suelo y de la planta con el porcentaje de daño. Se estableció asociación directa entre las variables, contenido de cobre en suelo Cu (r=0.71, nitrógeno foliar Nf(r=0.46 y magnesio foliar Mgf (r=0.66 con el porcentaje de daño causado por S. cepivorum. El contenido de calcio foliar Caf (r=-0.52, boro foliar Bf (r=-0.49 y esclerocios por gramo de suelo ES/g (r=-0.56 fueron inversamente proporcionales con el porcentaje de daño. El tratamiento con mayor porcentaje de daño presentó contenidos altos de N, P y S en tejidos y menores

  18. Uso del escobajo como sustrato para el crecimiento de hongos de la pudrición blanca, la producción de enzimas ligninolíticas y la decoloración de tinturas Grape stalks as substrate for white rot fungi, lignocellulolytic enzyme production and dye decolorization

    Directory of Open Access Journals (Sweden)

    Laura Levin

    2012-06-01

    Full Text Available El objetivo de este trabajo fue evaluar el potencial del escobajo, un residuo agroindustrial, como sustrato para el crecimiento y la producción de enzimas lignocelulósicas de tres hongos causantes de pudrición blanca en la madera: Trametes trogii, Stereum hirsutum y Coriolus antarcticus. Para ello se utilizaron técnicas de fermentación en estado sólido. También se ensayó la decoloración de colorantes industriales sobre estos cultivos. La pérdida de peso seco del sustrato fue similar después del día 60 (33-43 %. C. antarcticus produjo las mayores actividades de lacasa y Mn-peroxidasa (33,0 y 1,6 U/g peso seco. La mayor actividad endoglucanasa fue medida en cultivos de S. hirsutum (10,4 U/g, y la mayor actividad endoxilanasa en T. trogii (14,6 U/g. El sistema C. antarcticus/escobap mostró un importante potencial para su aplicación en la biorremediación de efluentes textiles, con porcentajes de decoloración de 93, 86, 82, 82, 77 y 58 % para índigo carmín, verde de malaquita, azure B, azul R brillante de remazol, cristal violeta y xilidina, respectivamente, en 5 h.The aim of this work was to evaluate the potential of grape stalks, an agroindustrial waste, for growth and lignocellulolytic enzyme production via solid-state fermentation, using the following three white rot fungi: Trametes trogii, Stereum hirsutum and Coriolus antarcticus. The decolorization of several dyes by the above mentioned cultures was also investigated. Similar values of dry weight loss of the substrate were measured after 60 days (33-43 %. C. antarcticus produced the highest laccase and Mn-peroxldase activities (33.0 and 1.6 U/g dry solid. The maximum endoglucanase production was measured in S. hirsutum cultures (10.4 U/g, while the endoxylanase peak corresponded to T. trogii (14.6 U/g. The C. antarcticus/grape stalk system seems potentially competitive in bioremediation of textile processing effluents, attaining percentages of decolorization of 93, 86, 82, 82

  19. Autochthonous white rot fungi from the tropical forest: Potential of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... Louvain, Croix du Sud 3 boîte 6, B-1348 Louvain-la-Neuve, Belgium. 3Mycothèque de l'Université catholique .... error less than 10%. Cluster analysis. Cluster analysis of hierarchical order, based on Euclidian distances, ..... Fungi for Decolourisation of Olive Oil Mill Wastewaters. Enzyme. Microbiol. Technol.

  20. Microbial desulphurization of Turkish lignites by White Rot Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Pinar Aytar; Mesut Sam; Ahmet Cabuk [Balikesir University, Balikesir (Turkey). Department of Biology, Faculty of Arts and Science

    2008-03-15

    Biodesulphurization experiments were carried out with Tuncbilek lignite, characterized by high sulfur content (2.59%) by using Trametes versicolor ATCC 200801 and Phanerochaete chrysosporium ME 446. At fungal biomass studies, the effects of various parameters on fungal desulphurization of coals such as pH, temperature, pulp density, incubation time, and sterilization were investigated for both microorganisms. The maximum desulphurization (40%) was observed after 6 days of incubation at 35{sup o}C for T. versicolor. The optimum pH was measured at 6, and the agitation rate was fixed at 125 rpm. The pulp density was found as 5% (w/v) for the high extent of desulphurization. Also, calorific value did not change during this experiment. However, the ash and metal contents of coal were eliminated. 30 refs., 6 figs., 2 tabs.

  1. Production of manganese peroxidase by white rot fungi from potato ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-18

    Jan 18, 2010 ... production from wheat grains were used (Songulashvili et al., 2007). Moreover, in the case of Phanerochaete flavido-alba, the two olive mill wastewater components. (monomeric aromatic compounds and a brownish polymeric pigment) affected the ligninolytic enzyme production (Ruiz et al., 2002).

  2. Production of manganese peroxidase by white rot fungi from potato ...

    African Journals Online (AJOL)

    phenylalanine and L-tyrosine blocked the MnP biosynthetic pathway. Ammonium ion released from the L-phenylalanine by the L-phenylalanine ammonia-lyase participated in the repression of the MnP biosynthetic pathway of the strain L-25.

  3. M-theory and stringy corrections to anti-de Sitter black holes and conformal field theories

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Klemm, Dietmar

    1999-01-01

    We consider black holes in anti-de Sitter space AdS p+2 (p = 2, 3, 5), which have hyperbolic, flat or spherical event horizons. The O(α' 3 ) corrections (or the leading corrections in powers of the eleven-dimensional Planck length, in the case of M-theory compactifications) to the black hole metrics are computed for the various topologies and dimensions. We investigate the consequences of the stringy or M-theory corrections for the black hole thermodynamics. In particular, we show the emergence of a stable branch of small spherical black holes. Surprisingly, for any of the considered dimension and topologies, the corrected thermodynamical quantities turn out to coincide with those calculated within a simplified approach, which uses only the unperturbed metric. We obtain the corrected Hawking-Page transition temperature for black holes with spherical horizons, and show that for p = 3 this phase transition disappears at a value of α' considerably smaller than that estimated previously by Gao and Li. Using the AdS/CFT correspondence, we determine the S 1 x S 3 N = 4 SYM phase diagram for sufficiently large 't Hooft coupling, and show that the critical point at which the Hawking-Page transition disappears (the correspondence point of Horowitz-Polchinski), occurs at g 2 YM N ∼ 20.5. The d = 4 and d = 7 black hole phase diagrams are also determined, and connection is made with the corresponding boundary CFTs. Finally, for flat and hyperbolic horizons, we show that the leading stringy or M-theory corrections do not give rise to any phase transition. However, if the horizon is compactified to a torus T p or to a quotient of hyperbolic space, H p /Γ, the appearance of light winding modes around non-contractible cycles signal new phase transitions, which in the toroidal case have previously been discussed by Barbon et al. We comment on these phase transitions for SYM on H p /Γ and on T p , when the moduli of the torus are taken into account

  4. Foot Rot of Ulluco Caused by Pythium aphanidermatum

    OpenAIRE

    Keisuke, TOMIOKA; Toyozo, SATO; Tateo, NAKANISHI; National Agricultural Research Center for Western Region; National Institute of Agrobiological Sciences; National Agricultural Research Center for Western Region

    2002-01-01

    Severe rot of stem bases caused by Pythium aphanidermatum was found on ulluco (Ullucus tuberosus) grown in Kagawa Prefecture, Japan, in September 1999. The name "foot rot of ulluco" is proposed for this new disease.

  5. Response of the Andean diversity panel to root rot in a root rot nursery in Puerto Rico

    Science.gov (United States)

    The Andean Diversity Panel (ADP) was evaluated under low-fertility and root rot conditions in two trials conducted in 2013 and 2015 in Isabela, Puerto Rico. About 246 ADP lines were evaluated in the root rot nursery with root rot and stem diseases caused predominantly by Fusarium solani, which cause...

  6. Effects of bunch rot (Botrytis cinerea) and powdery mildew (Erysiphe necator) fungal diseases on wine aroma

    Science.gov (United States)

    Lopez Pinar, Angela; Rauhut, Doris; Ruehl, Ernst; Buettner, Andrea

    2017-03-01

    This study aimed to characterize the effects of bunch rot and powdery mildew on the primary quality parameter of wine, the aroma. The influence of these fungal diseases was studied by comparative Aroma Extract Dilution Analyses (AEDA) and sensory tests. The effect of bunch rot was investigated on three grape varieties, namely White Riesling, Red Riesling and Gewürztraminer and that of powdery mildew on the hybrid Gm 8622-3; thereby, samples were selected that showed pronounced cases of infection to elaborate potential currently unknown effects. Both infections revealed aromatic differences induced by these fungi. The sensory changes were not associated with one specific compound only, but were due to quantitative variations of diverse substances. Bunch rot predominantly induced an increase in the intensities of peach-like/fruity, floral and liquor-like/toasty aroma notes. These effects were found to be related to variations in aroma substance composition as monitored via AEDA, mainly an increase in the FD factors of lactones and a general moderate increase of esters and alcohols. On the other hand, powdery mildew decreased the vanilla-like character of the wine while the remaining sensory attributes were rather unaffected. Correspondingly, FD factors of the main aroma constituents were either the same or only slightly modified by this disease. Moreover, bunch rot influenced the aroma profiles of the three varieties studied to a different degree. In hedonic evaluation, bunch rot-affected samples were rated as being more pleasant in comparison to their healthy controls in all three varieties while the powdery mildew-affected sample was rated as being less pleasant than its healthy control.

  7. Isolamento e seleção de fungos causadores da podridão-branca da madeira em florestas de Eucalyptus spp. com potencial de degradação de cepas e raízes Isolation and screening of wood white rot fungi from Eucalyptus spp. forests with potential for use in degradation of stumps and roots

    Directory of Open Access Journals (Sweden)

    Sandra Kunieda de Alonso

    2007-02-01

    Full Text Available Este trabalho objetivou isolar fungos causadores da podridão-branca da madeira, a partir de basidiocarpos e de fragmentos de madeira de eucalipto coletados em várias regiões do país, bem como testar seu potencial de degradação de cepas e raízes mortas em plantios comerciais de eucalipto, após o corte raso. Para o isolamento dos fungos foi desenvolvido um meio de cultura de serragem de eucalipto-ágar. Dentre 292 isolados obtidos e submetidos ao teste de Bavendamm, 144 foram classificados como causadores de podridão-branca, capazes de produzir fenoloxidases. Dentre as nove relações C/N testadas, observou-se uma tendência de ocorrer maior degradação de cavacos naquelas iguais a 60 : 1, 200 : 1 e 300 : 1. Utilizando a relação C/N igual a 60 : 1, realizaram-se dois experimentos para avaliar a degradação de cavacos de Eucalyptus saligna por isolados fúngicos de podridão-branca. No primeiro experimento, avaliado aos 90 dias de incubação, foram selecionados sete isolados, que causaram perda de peso em cavacos superior ou igual à causada por Trametes versicolor, usado para comparação. No segundo experimento foram testados 46 isolados fúngicos. Dentre os mais eficientes estavam os sete isolados selecionados no primeiro teste, além de outros quatro isolados. Baseado na análise de DNA, seis isolados foram identificados, sendo três pertencentes à espécie Pycnoporus sanguineus, um ao gênero Peniophora sp., um ao gênero Pestalotiopsis sp. e um ao gênero Ganoderma sp.The aim of this work was to isolate native wood white-rot fungi from fungal fruit-bodies and eucalyptus wood fragments from different regions of Brazil and to test their potential for degrading dead stumps and roots in Eucalyptus plantings after harvest. Fungi isolates were obtained in a culture medium composed by Eucalyptus sawdust and agar. Among 292 isolates submitted to the Banvedamm test, 144 were classified as phenoloxidases producing isolates. Among nine C

  8. Estimación de curvas de progreso de la incidencia de podredumbre blanca (Sclerotium cepivorum Berk. en cultivos de ajo mediante un modelo no lineal mixto Estimation of incidence progress curves of white rot (Sclerotium cepivorum Berk. in garlic crops using a nonlinear mixed model

    Directory of Open Access Journals (Sweden)

    M. Y. Conles

    2011-06-01

    Full Text Available En este trabajo se modela la curva de progreso de la podredumbre blanca en cultivos de ajo, mediante modelos no lineales mixtos que contemplan el efecto de factores concomitantes en el desarrollo de las epidemias. Entre 2001 y 2003 en Cruz del Eje y Jesús María, Argentina, se evaluaron la densidad inicial de esclerocios (DIE y la incidencia de la enfermedad quincenalmente hasta cosecha. Con DIE alta (>15 esclerocios/100 g de suelo la incidencia final fue alta (64-100% y con DIE baja (≤15 esclerocios/100 g de suelo varió entre 0-100%. El modelo logístico mixto seleccionado tuvo “interceptos” y pendientes aleatorias y diferentes para cada combinación de “ambiente” (localidad y año y categoría de DIE (altas y bajas. La representación de las curvas epidémicas se hizo mediante tres curvas específicas de sitio, la típica con efecto aleatorio cero, que expresa la forma general del modelo y las percentiles Q1 (0,25 y Q3 (0,75 que expresan la variabilidad. El 50% de las curvas tuvo pendientes entre r±0,67 v. La variabilidad de los “interceptos” y pendientes dependió solamente de la DIE, y fue menor en los “interceptos” con DIE “altas” que en aquellos con DIE “bajas”; en las pendientes se observó el efecto opuesto.This paper models the progress curve of white rot in garlic crops using nonlinear mixed models taking into account the effect of concomitant factors in the development of epidemics. Between 2001 and 2003 in Cruz del Eje and Jesus Maria, Argentina, the initial density of sclerotia (DIE and the incidence of the disease were evaluated every two weeks until harvest. With DIE high (>15 sclerotia/100 g of soil the final incidence was high (64-100%, while with DIE low (≤15 g soil sclerotia/100 the final incidence ranged from 0-100%. The mixed logistic model that was selected had random “intercepts” and rates which were different for each combination of “environment” (location and year and DIE category

  9. Studies on storage rot of cocoyam

    African Journals Online (AJOL)

    uc network

    Department of Botany, University of Nigeria, Nsukka, Nigeria, were employed for this study. These were fungal organisms which had earlier been established as the major rot pathogens of cocoyam corms during storage. Pathogenicity assessment studies of fungal organisms: To assess the potency of the fungal organisms.

  10. Laminated Root Rot of Western Conifers

    Science.gov (United States)

    E.E. Nelson; N.E. Martin; R.E. Williams

    1981-01-01

    Laminated root rot is caused by the native fungus Phellinus weirii (Murr.) Gilb. It occurs throughout the Northwestern United States and in southern British Columbia, Canada. The disease has also been reported in Japan and Manchuria. In the United States, the pathogen is most destructive in pure Douglas-fir stands west of the crest of the Cascade Range in Washington...

  11. Postharvest Rhizopus rot on sugar beet

    Science.gov (United States)

    Rhizopus species have been reported as a minor post-harvest rot on sugar beet, particularly under temperatures above 5 deg C. In 2010, Rhizopus was isolated from beets collected from Michigan storage piles in February at a low frequency. However, recent evidence from Michigan has found a high incide...

  12. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi.

    Science.gov (United States)

    Cheng, Sen-Sung; Liu, Ju-Yun; Chang, Ed-Haun; Chang, Shang-Tzen

    2008-07-01

    In this study, the antifungal activities of cinnamaldehyde and eugenol congeners against white-rot fungus Lenzites betulina and brown-rot fungus Laetiporus sulphureus were evaluated and the relationships between the antifungal activity and the chemical structures were also examined. Results from antifungal tests revealed that cinnamaldehyde, alpha-methyl cinnamaldehyde, (E)-2-methylcinnamic acid, eugenol and isoeugenol exhibited strong antifungal activity against all fungi tested. Results derived from the chemical structure-antifungal activity relationship study suggested that compounds with an aldehyde group or an acid group, a conjugated double bond and a length of CH chain outside the ring affect their antifungal properties. Furthermore, the presence of the methyl moiety in the ortho position may have a considerable influence on the inhibitory action against L. betulina and L. sulphureus. In addition, the lipophilicity may play, in part, a crucial role in determining the toxicity of phenylpropenes.

  13. Soft rot erwiniae: from genes to genomes.

    Science.gov (United States)

    Toth, Ian K; Bell, Kenneth S; Holeva, Maria C; Birch, Paul R J

    2003-01-01

    SUMMARY The soft rot erwiniae, Erwinia carotovora ssp. atroseptica (Eca), E. carotovora ssp. carotovora (Ecc) and E. chrysanthemi (Ech) are major bacterial pathogens of potato and other crops world-wide. We currently understand much about how these bacteria attack plants and protect themselves against plant defences. However, the processes underlying the establishment of infection, differences in host range and their ability to survive when not causing disease, largely remain a mystery. This review will focus on our current knowledge of pathogenesis in these organisms and discuss how modern genomic approaches, including complete genome sequencing of Eca and Ech, may open the door to a new understanding of the potential subtlety and complexity of soft rot erwiniae and their interactions with plants. The soft rot erwiniae are members of the Enterobacteriaceae, along with other plant pathogens such as Erwinia amylovora and human pathogens such as Escherichia coli, Salmonella spp. and Yersinia spp. Although the genus name Erwinia is most often used to describe the group, an alternative genus name Pectobacterium was recently proposed for the soft rot species. Ech mainly affects crops and other plants in tropical and subtropical regions and has a wide host range that includes potato and the important model host African violet (Saintpaulia ionantha). Ecc affects crops and other plants in subtropical and temperate regions and has probably the widest host range, which also includes potato. Eca, on the other hand, has a host range limited almost exclusively to potato in temperate regions only. Disease symptoms: Soft rot erwiniae cause general tissue maceration, termed soft rot disease, through the production of plant cell wall degrading enzymes. Environmental factors such as temperature, low oxygen concentration and free water play an essential role in disease development. On potato, and possibly other plants, disease symptoms may differ, e.g. blackleg disease is associated

  14. MANAGEMENT OF ROOT ROT IN AVOCADO TREES

    Directory of Open Access Journals (Sweden)

    SIMONE RODRIGUES DA SILVA

    Full Text Available ABSTRACT Root rot (Phytophthora cinnamomi Rands is one of the most restrictive factors to avocado growing in main producing regions worldwide. In Brazil, scientific reports on the effectiveness of control methods are scarce. The objective of this study was to evaluate the efficiency of gypsum applications and dolomitic limestone to the soil and potassium phosphite sprays in controlling this disease in ‘Hass’ avocado, grown without irrigation. The application of dolomitic limestone or gypsum alone is not effective to recover plants affected by root rot. The application of potassium phosphite, combined or not with dolomitic lime or gypsum enables the partial recovery ‘Hass’ avocado plants affected by the disease.

  15. MANAGEMENT OF ROOT ROT IN AVOCADO TREES

    OpenAIRE

    SILVA, SIMONE RODRIGUES DA; CANTUARIAS-AVILÉS, TATIANA; BREMER NETO, HORST; MOURÃO FILHO, FRANCISCO DE ASSIS ALVES; MEDINA, RICARDO BORDIGNON

    2016-01-01

    ABSTRACT Root rot (Phytophthora cinnamomi Rands) is one of the most restrictive factors to avocado growing in main producing regions worldwide. In Brazil, scientific reports on the effectiveness of control methods are scarce. The objective of this study was to evaluate the efficiency of gypsum applications and dolomitic limestone to the soil and potassium phosphite sprays in controlling this disease in ‘Hass’ avocado, grown without irrigation. The application of dolomitic limestone or gypsum...

  16. Sheath rot of rice in Iran.

    Science.gov (United States)

    Naeimi, S; Okhovvat, S M; Hedjaroude, G A; Khosravi, V

    2003-01-01

    Sheath rot of rice occurs in most rice-growing regions of the world. It usually causes yield losses from 20 to 85%. Sheath rot was reported from Iran in 1993. Year after year, the number of diseased plants increased in the Northern Iran. In summer of 2001, these symptoms were observed in most fields: lesions occur on the upper leaf sheaths, especially the flag leaf sheath. As the disease progresses, lesions enlarge and coalesce and may cover most of the leaf sheath. Panicle may fail to completely or at all. Brown or partially brown not filled or partially filled grain is also associated with infection of the panicle. A whitish powdery growth may be found inside affected sheaths. Infected plants were collected and trasferred to laboratory. Small pieces of diseased tissues were washed under tap water for one hour. Then tissues were placed on WA and incubated at 25 degrees C. These isolates were purified and identified as: Sarocladium oryzae, Fusarium udum, F. semitectum, F. avenaceum, F. flocciferum, F. graminearum, Bipolaris oryzae, Alternaria padwickii, Rhizoctonia solani, Paecilomyces sp., Nigrospora sp. and Trichoderma sp. This is the first report of F. udum in Iran. Also this is the first report that rice is the host for F. semitectum, F. avenaceum and F. flocciferum in Iran. Pathogenicity tests were conducted in glass house. Following species were found to be associated with sheath rot of rice: S. oryzae, F. graminearum, F. udum, F. avenaceum, B. oryzae, A. padwickii. This is the first report in the world that F. udum and A. padwickii are the causal agents of the sheath rot on rice plants.

  17. Stand tending and root rot in Norway spruce stands - economical effects caused by root rot at different thinning regimes

    International Nuclear Information System (INIS)

    Johansson, Mats

    1997-01-01

    This report is divided into three parts: 1) a literature study describing the most common fungi causing rot in wood and descriptions of various strategies to reduce economic loss from root rot, 2) a check of a model describing the development of butt rot in pure Norway spruce plantations in southern Sweden, and 3) simulated economic effects of root rot in stands with various stand tending. The rot model was used to estimate future rot frequencies in the economic calculations. In order to avoid overestimations of rot frequencies, the calculations were also executed when assuming slower growth of rot than shown in the model. When analysing the economical effects of rot, the following three thinning programmes were used: Program 1: thinning at the ages of 30- and 45 years. Final felling at the ages 50-, 55-, 60-, 65-, and 70 years. Program 2: thinning at the ages of 40- and 60- years. Final felling at the ages 65 and 75 years. Program 3: thinning at the ages of 30-, 40-, 55-, and 70 years. Final felling at the ages 80 and 90 years. With an interest rate of 3%, programme 2 (final felling at the age of 65 years) had the highest value at present. This result was valid when presuming butt rot in the stand as well as when presuming no butt rot in the stand. There was a small difference between the value at present in programme 1 (final felling at the age of 60 years) and in programme 3 (final felling at the age of 80 years). When presuming butt rot in the stand, the value at present in programme 3 decreased somewhat more in comparison to the value at present in programme 1. Compared to no butt rot in the stand, the optimal final felling time appeared five to ten years earlier when assuming butt rot in the stand. Stand tending programme 1 and an interest rate of 3% were used. Interest rates 2 and 4% did not indicate shorter rotation. The calculated optimal time of final felling appeared at the same stand age whether assuming rot preset or not. The results in this study

  18. Improvement of resistance to Fusarium root rot through gene ...

    African Journals Online (AJOL)

    Fusarium root rot (FRR), caused by Fusarium solani f.sp. , is one of the most serious root rot diseases of common bean (Phaseolus vulgaris L.) throughout the world. Yield losses of up to 84% have been attributed to the disease. Development and deployment of resistant materials is the most feasible approach to managing ...

  19. ( Azadirachta Indica ) Leaf Extracts on the Rot Fungus ( Fusarium ...

    African Journals Online (AJOL)

    The storage lifespan of kola nuts is challenged by the problem of decay of nuts in storage as a result of the attack by the rot fungus (Fusarium spp). The effect of the neem leaf (Azadirachta indica) extracts on the rot fungus was investigated in order to aid extended kola nuts storage. The aqueous and ethanolic leaf extracts of ...

  20. Resistance to charcoal rot identified in ancestral soybean germplasm

    Science.gov (United States)

    Charcoal rot, caused by the fungal pathogen Macrophomina phaseolina, is an economically important disease on soybean and other crops including maize, sorghum, and sunflowers. Without effective cultural or chemical options to control charcoal rot in soybean, finding sources of genetic resistance is o...

  1. RESISTANCE TO POST-HARVEST MICROBIAL ROT IN YAM ...

    African Journals Online (AJOL)

    ACSS

    Rot from microbial infection of healthy yam tubers reduces their table quality and renders them unappealing to consumers. A study was carried out at Bimbilla in the Nanumba North District of Ghana to evaluate possible interactions of yam genotypes and storage methods for controlling internal rot in yam. Four local varieties.

  2. Impact of management strategies in the basal rot, charcoal rots epidemiology and Phaseolus vulgaris L. yield.

    Directory of Open Access Journals (Sweden)

    Ulacio Osorio Dilcia

    2013-02-01

    Full Text Available The effect of chemical, physical, biologycal and cultural strategies individually or combinated were evaluated in the epidemiology of the basal rot (Sclerotium rolfsii, charcoal rot (Macrophomina phaseolina and the Phaseolus vulgaris cv Tacarigua yield at Barinas state from Venezuela. In the experiment, Tebuconazole (Teb was applicated at seed (1 L/Ton and at soil, a los 30 y 60 days after of the sow (1 L/ha; Trichoderma harzianum (Tri was applicated at seed (15 g for each 1.5 k and to 15, 30, 45 y 60 days after of the sow (30 g/10 L of water. On the other hand, soil was solarizated (Sol during 15 days and calcium nitrate (Ca (60 g/10 L of water was applicated each 15 days until 60 days of growth of cultivated plants. Basal rot was registered as far as 42 days after of the sow, showing less of 5.3% in Teb y the combination SolTeb. The hightest incidence of this disease was observed in the treatment Tri with 28.5%, being highter that control (14.5%. Last to 42 days predominated the charcoal rot in the rest of the plants for a total of 100% of incidente in everything the treatments. Nevertheless, Teb showed the hightest yield with 555 k/ha, being different estatistically at treatment TriCa, which showed the lowest yield with 31 k/ha, however, the roots not formed nodules nitrogen uptake in these replications with the fungicide and Ca. It is concluded that S. rolfsii was sensible at action of some of the treatments; but not M. phaseolina; nevertheless, the plants were capables to produce seeds health apparently in treatments in which observed less severity of charcoal rot.

  3. Diagnostic of dry rot in living trees

    International Nuclear Information System (INIS)

    Schaetzler, H.P.

    1978-01-01

    The γ-desorption method has been used in the early diagnosis of dry rot in trees. The attenuation of a 60 keV γ-beam ( 241 Am) has been measured on eleven healthy spruce disks. It is seen that early diagnostic of rotten trees is limited by natural density variation of the wood itself, but for a 95% confidence level that the wood is diseased, a tree must have an average of less than 0.59 g./cm 3 . (Auth/C.F.)

  4. Medical Council of India : the rot within.

    Science.gov (United States)

    Pandya, Sunil K

    2009-01-01

    The Medical Council of India is a statutory national agency charged with several responsibilities. Sadly, it is plagued by inefficiency, arbitrariness and lack of transparency. It has been functioning for some years as the fiefdom of one person--Dr Ketan Desai. He has been re-elected president of the council despite strictures against him by the High Court of New Delhi. This essay provides data that may help the reader identify the rot within the Council. Permitted optimism, we may hope that this essay and similar observations by others will prompt a change for the better. At present such optimism is not justified.

  5. Biosorption of Foron turquoise SBLN using mixed biomass of white ...

    African Journals Online (AJOL)

    In the present study, biosorption of Foron turquoise SBLN using mixed biomass of white rot fungi was investigated in batch mode. The effect of process parameters such as pH of solution, medium temperature, biosorbent concentration, dye initial concentration, contact time etc. was investigated for enhanced removal of the ...

  6. Extracellular oxidases and the transformation of solubilised low-rank coal by wood-rot fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J.P. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences; Graham, L.A. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences; Catcheside, D.E.A. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences

    1996-12-31

    The involvement of extracellular oxidases in biotransformation of low-rank coal was assessed by correlating the ability of nine white-rot and brown-rot fungi to alter macromolecular material in alkali-solubilised brown coal with the spectrum of oxidases they produce when grown on low-nitrogen medium. The coal fraction used was that soluble at 3.0{<=}pH{<=}6.0 (SWC6 coal). In 15-ml cultures, Gloeophyllum trabeum, Lentinus lepideus and Trametes versicolor produced little or no lignin peroxidase, manganese (Mn) peroxidase or laccase activity and caused no change to SWC6 coal. Ganoderma applanatum and Pycnoporus cinnabarinus also produced no detectable lignin or Mn peroxidases or laccase yet increased the absorbance at 400 nm of SWC6 coal. G. applanatum, which produced veratryl alcohol oxidase, also increased the modal apparent molecular mass. SWC6 coal exposed to Merulius tremellosus and Perenniporia tephropora, which secreted Mn peroxidases and laccase and Phanerochaete chrysosporium, which produced Mn and lignin peroxidases was polymerised but had unchanged or decreased absorbance. In the case of both P. chrysosporium and M. tremellosus, polymerisation of SWC6 coal was most extensive, leading to the formation of a complex insoluble in 100 mM NaOH. Rigidoporus ulmarius, which produced only laccase, both polymerised and reduced the A{sub 400} of SWC6 coal. P. chrysosporium, M. tremellosus and P. tephropora grown in 10-ml cultures produced a spectrum of oxidases similar to that in 15-ml cultures but, in each case, caused more extensive loss of A{sub 400}, and P. chrysosporium depolymerised SWC6 coal. It is concluded that the extracellular oxidases of white-rot fungi can transform low-rank coal macromolecules and that increased oxygen availability in the shallower 10-ml cultures favours catabolism over polymerisation. (orig.)

  7. EXTRACELLULAR POLYSACCHARIDES OF POTATO RING ROT PATHOGEN

    Directory of Open Access Journals (Sweden)

    Shafikova Т.N.

    2006-03-01

    Full Text Available Many bacteria, including phytopathogenic ones produce extracellular polysaccharides or exopolysaccharides which are universal molecules. Causal agent of potato ring rot, Clavibacter michiganensis subspecies sepedonicus, secretes exopolysaccharides which role in pathogenesis is poorly investigated. The aim of our research is to ascertain the composition and structure of Clavibacter michiganensis subspecies sepedonicus exopolysaccharides. Exopolysaccharides of Clavibacter michiganensis subspecies sepedonicus are determined to consist of 4-6 anionic and neutral components which have molecular weights from 700 kDa. Glucose is a major monomer of polysaccharides and arabinose, rhamnose and mannose are minor monomers. Glucose is present in α-Dglucopyranose and β-D-glucopyranose configurations. Calcium is determined to be a component of exopolysaccharides. Components of exopolysaccharides of potato ring rot pathogen are probably capableto associate via calcium ions and other ionic interactions that may result in a change of their physiological activity. Further studies of Clavibacter michiganensis subspecies sepedonicus exopolysaccharides composition and structure can serve a base for the synthesis of their chemical analogues with elicitor action.

  8. Nonextremal stringy black hole

    International Nuclear Information System (INIS)

    Suzuki, K.

    1997-01-01

    We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society

  9. Screening stringy horizons

    Energy Technology Data Exchange (ETDEWEB)

    Giribet, Gaston [Universite Libre de Bruxelles and International Solvay Institutes, Brussels (Belgium); Universidad de Buenos Aires and IFIBA-CONICET Ciudad Universitaria, Departamento de Fisica, Buenos Aires (Argentina); Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Ranjbar, Arash [Universite Libre de Bruxelles and International Solvay Institutes, Brussels (Belgium); Centro de Estudios Cientificos (CECs), Valdivia (Chile)

    2015-10-15

    It has been argued recently that string theory effects qualitatively modify the effective black hole geometry experienced by modes with radial momentum of order 1/√(α'). At tree level, these α' effects can be explicitly worked out in two-dimensional string theory and have a natural explanation in the T-dual description as coming from the integration of the zero mode of the linear dilaton, which yields a contribution that affects the scattering phase shift in a peculiar manner. It has also been argued that the phase-shift modification has its origin in a region of the moduli space that does not belong to the exterior black hole geometry, leading to the conclusion that at high energy the physics of the problem is better described by the dual model. Here, we elaborate on this argument. We consider the contribution of world-sheet instantons in the two-dimensional Euclidean black hole σ-model and study its influence on the phase shift at high energy. (orig.)

  10. Stringy horizons II

    Energy Technology Data Exchange (ETDEWEB)

    Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Itzhaki, Nissan [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Kutasov, David [EFI and Department of Physics, University of Chicago,5640 S. Ellis Av., Chicago, IL 60637 (United States)

    2016-10-28

    We show that the spectrum of normalizable states on a Euclidean SL(2, R)/U(1) black hole exhibits a duality between oscillator states and wound strings. This duality generalizes the identification between a normalizable mode of dilaton gravity on the cigar and a mode of the tachyon with winding number one around the Euclidean time circle, which plays an important role in the FZZ correspondence. It implies that normalizable states on a large Euclidean black hole have support at widely separated scales. In particular, localized states that are extended over the cap of the cigar (the Euclidian analog of the black hole atmosphere) have a component that is localized near the tip of the cigar (the analog of the stretched horizon). As a consequence of this duality, the states exhibit a transition as a function of radial excitation level. From the perspective of a low energy probe, low lying states are naturally thought of as oscillator states in the black hole atmosphere, while at large excitation level they are naturally described as wound strings. As the excitation level increases, the size of the states first decreases and then increases. This behavior is expected to be a general feature of black hole horizons in string theory.

  11. Comparative Assessment of Pathogenicity of Storage Rot Causing ...

    African Journals Online (AJOL)

    L)Schott) corms were assessed for their potency in causing rot of the corms during storage. The isolates were Sclerotium rolfsii Sacc., Botryodiplodia theobromae Pat., Fusarium solanii (Mart) Sac., Fusarium SP. and Rhizopus stolonifer (Ehren ...

  12. Erwinia carotovora extracellular proteases : characterization and role in soft rot

    OpenAIRE

    Kyöstiö, Sirkka R. M.

    1990-01-01

    Erwinia carotovora subsp. carotovora (Ecc) strain EC14, a Gram-negative bacterium, causes soft rot on several crops, including potato. Maceration of potato tuber tissue is caused by secreted pectolytic enzymes. Other cell-degrading enzymes may also have roles in pathogenesis, including cellulases, phospholipases, and protease(s). The objectives of this research were to (1) characterize Ecc extracellular protease (Prt) and (2) elucidate its role in potato soft rot. A gene enc...

  13. Association of Pectolytic Fluorescent PSeudomonas with Postharvest Rots of Onion

    OpenAIRE

    H.H. El-Hendawy

    2004-01-01

    Five isolates of pectolytic fluorescent pseudomonads were obtained from a rotted onion bulb and identified as Pseudomonas marginalis. At both 4 and 25oC, all isolates caused soft rot to detached plant parts of onion and to carrot, celery, cucumber, pepper, spinach, tomato and turnip (but not garlic). They did not however cause any symptoms in living plants of these same species. These results suggest that the onion isolates are a postharvest pathogen which is not destructive in th...

  14. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi

    Science.gov (United States)

    Fungi of the phylum Basidiomycota (basidiomycetes) make up some 37% of the described fungi and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprotrophs including the majority of wood decaying and ectomycorrhizal species. To b...

  15. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot

    OpenAIRE

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-01-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30??C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other impo...

  16. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    Science.gov (United States)

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs.

  17. Quantification of the changes in potent wine odorants as induced by bunch rot (Botrytis cinerea) and powdery mildew (Erysiphe necator)

    Science.gov (United States)

    Lopez Pinar, Angela; Rauhut, Doris; Ruehl, Ernst; Buettner, Andrea

    2017-08-01

    Fungal infections are detrimental for viticulture since they may reduce harvest yield and wine quality. This study aimed to characterize the effects of bunch rot and powdery mildew on wine aroma by quantification of representative aroma compounds using Stable Isotope Dilution Analysis (SIDA). For this purpose, samples affected to a high degree by each fungus were compared with a healthy sample in each case; to this aim, the respective samples were collected and processed applying identical conditions. Thereby, the effects of bunch rot were studied in three different grape varieties: White Riesling, Red Riesling and Gewürztraminer whereas the influence of powdery mildew was studied on the hybrid Gm 8622-3. Analyses revealed that both fungal diseases caused significant changes in the concentration of most target compounds. Thereby, the greatest effects were increases in the concentration of phenylacetic acid, acetic acid and γ-decalactone for both fungi and all grape varieties. Regarding other compounds, however, inconsistent effects of bunch rot were observed for the three varieties studied.

  18. Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l.

    Science.gov (United States)

    Asiegbu, Fred O; Adomas, Aleksandra; Stenlid, Jan

    2005-07-01

    ). Disease symptoms: symptoms (e.g. exhudation of resin, crown deterioration) due to Heterobasidion root rot in living trees are not particularly characteristic and in most cases cannot be distinguished from those caused by other root pathogens. Heterobasidion annosum s.l. is a white rot fungus. Initial growth in wood causes a stain that varies in colour depending on host tree species. Incipient decay is normally pale yellow and it develops into a light brown decay to become a white pocket rot with black flecks in its advanced stage. silvicultural methods (e.g. stump removal), chemicals (urea, borates) and biological control agent (Phlebiopsis gigantea, marketed as PG Suspension(R) in the UK, PG IBL(R) in Poland and Rotstop(R) in Fennoscandia) are commonly used approaches for minimizing the disease spread.

  19. Genetic variation between Phytophthora cactorum isolates differing in their ability to cause crown rot in strawberry.

    Science.gov (United States)

    Eikemo, Håvard; Klemsdal, Sonja S; Riisberg, Ingvild; Bonants, Peter; Stensvand, Arne; Tronsmo, Anne M

    2004-03-01

    Analysis of 44 isolates of Phytophthora cactorum, isolated from strawberry and other hosts, by AFLP showed that the crown rot pathotype is different from leather rot isolates and from P. cactorum isolated from other hosts. 16 of 23 crown rot isolates, including isolates from Europe, Japan, Australia, and New Zealand, were identical in an analysis based on 96 polymorphic bands from seven primer combinations. Leather rot isolates of strawberry could not be distinguished from isolates from other hosts. The pathogenicity test of all 44 isolates on strawberry plants mostly gave unambiguous results, except for three American isolates, which seemed to have reduced aggressiveness compared to the crown rot isolates. These isolates also differed in the AFLP analysis. Comparing information on the origin of the isolates with results from the pathogenicity test, showed that isolates from strawberry fruits or petioles could be either leather rot or crown rot pathotypes. None of the isolates from hosts other than strawberry caused crown rot symptoms in strawberry.

  20. ROTS: An R package for reproducibility-optimized statistical testing.

    Science.gov (United States)

    Suomi, Tomi; Seyednasrollah, Fatemeh; Jaakkola, Maria K; Faux, Thomas; Elo, Laura L

    2017-05-01

    Differential expression analysis is one of the most common types of analyses performed on various biological data (e.g. RNA-seq or mass spectrometry proteomics). It is the process that detects features, such as genes or proteins, showing statistically significant differences between the sample groups under comparison. A major challenge in the analysis is the choice of an appropriate test statistic, as different statistics have been shown to perform well in different datasets. To this end, the reproducibility-optimized test statistic (ROTS) adjusts a modified t-statistic according to the inherent properties of the data and provides a ranking of the features based on their statistical evidence for differential expression between two groups. ROTS has already been successfully applied in a range of different studies from transcriptomics to proteomics, showing competitive performance against other state-of-the-art methods. To promote its widespread use, we introduce here a Bioconductor R package for performing ROTS analysis conveniently on different types of omics data. To illustrate the benefits of ROTS in various applications, we present three case studies, involving proteomics and RNA-seq data from public repositories, including both bulk and single cell data. The package is freely available from Bioconductor (https://www.bioconductor.org/packages/ROTS).

  1. Genetic variation between Phytophthora cactorum isolates differing in their ability to cause crown rot in strawberry

    OpenAIRE

    Eikemo, H.; Klemsdal, S.S.; Riisberg, I.; Bonants, P.J.M.; Stensvand, A.; Tronsmo, A.M.

    2004-01-01

    Analysis of 44 isolates of Phytophthora cactorum, isolated from strawberry and other hosts, by AFLP showed that the crown rot pathotype is different from leather rot isolates and from P. cactorum isolated from other hosts. 16 of 23 crown rot isolates, including isolates from Europe, Japan, Australia, and New Zealand, were identical in an analysis based on 96 polymorphic bands from seven primer combinations. Leather rot isolates of strawberry could not be distinguished from isolates from other...

  2. Persistence of Gliocephalotrichum spp. causing fruit rot of rambutan (Nephelium lappaceum L.) in Puerto Rico

    Science.gov (United States)

    Worldwide, fruit rot of rambutan is an important problem that limits the storage, marketing and long-distance transportation of the fruit. A complex of pathogens has been reported to cause fruit rot of rambutan and significant post-harvest economic losses. During 2009 and 2011 rambutan fruit rot was...

  3. First report of Fusarium proliferatum causing dry rot in Michigan commercial potato (Solanum tuberosum) production

    Science.gov (United States)

    Fusarium dry rot of potato is a postharvest disease caused by several Fusarium spp. and is of worldwide importance. Thirteen Fusarium spp. have been implicated in fungal dry rots of potatoes worldwide. Among them, 11 species have been reported causing potato dry rot of seed tubers in the northern Un...

  4. Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides

    Science.gov (United States)

    Fusarium dry rot of potato (Solanum tuberosum L.) is a postharvest disease that can be caused by several Fusarium spp. A survey was conducted to establish the composition of Fusarium species causing dry rot of seed tubers in Michigan. A total of 370 dry rot symptomatic tubers were collected in 2009 ...

  5. Occurrence of wood-and root- rot basidiomycetes on trees in Bayero ...

    African Journals Online (AJOL)

    Several death and decays or rots of tropical trees are as result of infection caused by wood and root rot 'parasitic basidiomycetes. In the present study, survey of parasitic homobasidiomycetes causing wood and root rot on woody trees in Bayero University, Kano (two campuses) was carried out between April – September ...

  6. Genetic variation between Phytophthora cactorum isolates differing in their ability to cause crown rot in strawberry

    NARCIS (Netherlands)

    Eikemo, H.; Klemsdal, S.S.; Riisberg, I.; Bonants, P.J.M.; Stensvand, A.; Tronsmo, A.M.

    2004-01-01

    Analysis of 44 isolates of Phytophthora cactorum, isolated from strawberry and other hosts, by AFLP showed that the crown rot pathotype is different from leather rot isolates and from P. cactorum isolated from other hosts. 16 of 23 crown rot isolates, including isolates from Europe, Japan,

  7. Pathogenic characterization of lasiodplodia causing stem end rot of mango and its control using botanicals

    International Nuclear Information System (INIS)

    Ullah, S. F.; Hussain, Y.; Iram, S.

    2017-01-01

    Two widely cultivated mango fruit varieties White chounsa and Sindhri were collected from two major mango growing areas of Punjab and Sindh Provinces of Pakistan. This study was focused on pathological characterization of predominant postharvest diseases such as stem end rot of mango (Mangifera indica) caused by Lasiodiplodia theobromae, and evaluation of bio-control activity by different plant extracts. L. theobromae aggressiveness of isolates was tested by artificial inoculations under controlled conditions, all isolates proved pathogenic in varying degree of aggressiveness on (Sindhri and White chounsa) with reference to control. Calculated standard error mean varied in lesion area produced by pathogens 6-63cm/sup 2/ (Sindhri) and 60-170 cm/sup 2/ (White chounsa). Re-isolation of respective fungi verified the Koch's postulates. Plant extract of Datura stramonium, Aloe-vera, Eucalyptus camaldulensis, were used to control the radial growth of L. theobromae. Comparative analysis showed D. Stramonium and E. camaldulensis extracts most efficiently reduced the growth of Lasiodiplodia isolates, in comparison to Aloe-vera extract, restrict the 15-20% growth. All pathological results and treatments were significant at p<0.05 through ANOVA. This study emphasizes the behavior of pathogens which could be helpful in mango breeding to introduce resistance toward Lasiodiplodia and referred plants provide the best alternative of chemical fungicides. (author)

  8. Evaluation of common bean (Phaseolus vulgaris) response to charcoal rot

    Science.gov (United States)

    Charcoal rot in common beans (Phaseolus vulgaris L.), caused by Macrophomina phaseolina (Tassi) Gold. (Mph), is an endemic disease in the prevailing hot and dry conditions in southern Puerto Rico. This study evaluated the 120 bean genotypes that compose the BASE 120 panel under screenhouse conditio...

  9. improvement of resistance to fusarium root rot through gene

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    PhD. Thesis. University of KwaZulu-Natal, Pietmeritzburg,. South Africa. Navarro, F., Sass, M.E. and Nienhuis, J. 2003. Identification and mapping bean root rot resistance in an 'Eagle x Puebla 152' population. Annual Report of the Bean. Improvement Cooperative 47:83–84. Park, S.J. and Tu, J.C. 1994. Genetic segregation.

  10. Biodegrading effects of some rot fungi on Pinus caribaea wood

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... degradation was peculiar with each fungus. Wood decay varied along the tree bole but was not related to height above the ground. The results indicated that biodegradation by rot fungi differs in intensity according to the fungus species and this suggested that preservative impregnation and retention may.

  11. Physiological studies of Sclerotium rolfsii Sacc. causing collar rot of ...

    African Journals Online (AJOL)

    In vitro studies were conducted on the effect of temperature, pH levels, carbon, nitrogen and amino acids on the mycelial growth and biomass production of Sclerotium rofsii Sacc. causing collar rot of mint. The results reveal that the growth of S. rolfsii was maximum at 30°C which was reduced significantly below 20°C and ...

  12. Botanicals to Control Soft Rot Bacteria of Potato

    Directory of Open Access Journals (Sweden)

    M. M. Rahman

    2012-01-01

    Full Text Available Extracts from eleven different plant species such as jute (Corchorus capsularis L., cheerota (Swertia chiraita Ham., chatim (Alstonia scholaris L., mander (Erythrina variegata, bael (Aegle marmelos L., marigold (Tagetes erecta, onion (Allium cepa, garlic (Allium sativum L., neem (Azadiracta indica, lime (Citrus aurantifolia, and turmeric (Curcuma longa L. were tested for antibacterial activity against potato soft rot bacteria, E. carotovora subsp. carotovora (Ecc P-138, under in vitro and storage conditions. Previously, Ecc P-138 was identified as the most aggressive soft rot bacterium in Bangladeshi potatoes. Of the 11 different plant extracts, only extracts from dried jute leaves and cheerota significantly inhibited growth of Ecc P-138 in vitro. Finally, both plant extracts were tested to control the soft rot disease of potato tuber under storage conditions. In a 22-week storage condition, the treated potatoes were significantly more protected against the soft rot infection than those of untreated samples in terms of infection rate and weight loss. The jute leaf extracts showed more pronounced inhibitory effects on Ecc-138 growth both in in vitro and storage experiments.

  13. Huanglongbing increases Diplodia Stem End Rot in Citrus sinensis

    Science.gov (United States)

    Huanglongbing (HLB), one of the most devastating diseases of citrus is caused by the a-Proteobacteria Candidatus Liberibacter. Diplodia natalensis Pole-Evans is a fungal pathogen which has been known to cause a postharvest stem-end rot of citrus, the pathogen infects citrus fruit under the calyx, an...

  14. Fungi associated with base rot disease of aloe vera (Aloe ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... Fungi associated with base rot disease of Aloe vera (syn. Aloe barbadensis) were investigated in Niger. Delta Area of Nigeria. Fungi and their percentage frequency were Aspergillus verocosa 28.03%,. Fusarium oxysporium 24.24%, Plectosphaerella cucumerina 16.67%, Mammeria ehinobotryoides 15.91 ...

  15. Inflorescence rot disease of date palm is caused by Fusarium ...

    African Journals Online (AJOL)

    Zulfiqar-Ali

    2012-05-01

    May 1, 2012 ... inflorescence rot disease in southern part of Iraq is Fusarium proliferatum. Pathogenecity test confirmed the ... Key words: Fusarium proliferatum, ITS1, ITS4, pathogenecity, PCR, isolates, phylogeny. INTRODUCTION ..... ITS rRNA Region for Identification of Fusarium spp. from Ocular. Sources. Investigative ...

  16. Advancing our understanding of charcoal rot in soybeans

    Science.gov (United States)

    Charcoal rot (Macrophomina phaseolina (Tassi) Goid ) of soybean [Glycine max (L.) Merr.], is an important but commonly misidentified disease, and very few summary articles exist on this pathosystem. Research conducted over the last 10 years has improved our understanding of the environment conducive...

  17. Fungi associated with base rot disease of aloe vera ( Aloe ...

    African Journals Online (AJOL)

    Fungi associated with base rot disease of Aloe vera (syn. Aloe barbadensis) were investigated in Niger Delta Area of Nigeria. Fungi and their percentage frequency were Aspergillus verocosa 28.03%, Fusarium oxysporium 24.24%, Plectosphaerella cucumerina 16.67%, Mammeria ehinobotryoides 15.91% and Torula ...

  18. Inflorescence rot disease of date palm caused by Fusarium ...

    African Journals Online (AJOL)

    Date palm is one of the important income sources for many farmers in different parts of several countries, including Iraq, Iran, Saudi Arabia, North Africa etc. Inflorescence rot is a serious disease of date palm which limits its yield. The identification of the causal organism is a key step to tackling this disease, and such studies ...

  19. Root rots of common and tepary beans in Puerto Rico

    Science.gov (United States)

    Root rots are a disease complex affecting common bean and can be severe in bean growing areas in the tropics and subtropics. The presence of several pathogens makes it difficult to breed for resistance because of the synergistic effect of the pathogens in the host and the interaction of soil factors...

  20. Evaluating host resistance to Macrophomina crown rot in strawberry

    Science.gov (United States)

    Macrophomina crown rot, caused by the soilborne fungus Macrophomina phaseolina, is an emerging pathogen in California strawberry production. When established, the pathogen can cause extensive plant decline and mortality. Host resistance will be a critical tool for managing this disease and guiding ...

  1. Detecting cotton boll rot with an electronic nose

    Science.gov (United States)

    South Carolina Boll Rot is an emerging disease of cotton, Gossypium hirsutum L., caused by the opportunistic bacteria, Pantoea agglomerans (Ewing and Fife). Unlike typical fungal diseases, bolls infected with P. agglomerans continue to appear normal externally, complicating early and rapid detectio...

  2. Factors contributing to bacterial bulb rots of onion

    Science.gov (United States)

    The incidence of bacterial rots of onion bulbs is increasing and has become a serious problem for growers. This increase is likely due to a combination of factors, such as high bacterial populations in soils and irrigation water, heavy rains flooding production fields, higher temperatures, etc. It m...

  3. Evaluation of antagonistic fungi against charcoal rot of sunflower ...

    African Journals Online (AJOL)

    user

    Results showed reduction in disease incidence of charcoal rot on sunflower cultivar G-66 with antagonist, A. flavus (100%) followed by A. niger (64.86%) P. capsulatum (63.79%) and T. viride (31.89%) over control. Decrease in disease incidence over control was 100% where seed was treated with combination of A. niger ...

  4. Calonectria species associated with cutting rot of Eucalyptus

    NARCIS (Netherlands)

    Lombard, L.; Zhou, X.D.; Crous, P.W.; Wingfield, B.D.; Wingfield, M.J.

    2010-01-01

    Decline in the productivity of Eucalyptus hybrid cutting production in the Guangdong Province of China is linked to cutting rot associated with several Calonectria spp. The aim of this study was to identify these fungi using morphological and DNA sequence comparisons. Two previously undescribed

  5. Management of Potato Soft Rot by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abd El-Ghany, H.; Moussa, Z.; Abd El-Rahman, A.F.; Salem, E.A.

    2017-01-01

    This investigation aims to apply a safe practice to minimize potato losses due to soft rot disease of tubers kept under ambient temperature. In this regard, gamma irradiation was used to extend keeping quality through its effect on soft rot bacteria. Eight bacterial isolates were recovered on Logan’s medium from kitchen kept tubers with symptoms of soft rot disease. Five isolates were found pathogenic and tentatively identified as Pectobacterium atrosepticum and Pectobacterium carotovorum sub sp. brasiliense on the basis of the usual bacteriological methods. A molecular method using 16SrDNA sequence analysis for verification of the identity of two isolates was made. The two bacterial isolates, Pectobacterium atrosepticum and Pectobacterium carotovorum sub sp. brasiliense, were irradiated by different doses of gamma rays. Complete inhibition occurred at doses 2.5 and 2.0 KGy for high densities (Approximately 4.0x10 9 CFU/ml) of P. atrosepticum and P. carotovorum sub sp. brasiliense, respectively. The D10 value of gamma irradiation was 0.24 KGy for P. atrosepticum and 0.20 KGy for P. carotovorum subsp. brasiliense. Irradiation of artificially infected tubers with soft rot bacteria using the two mentioned D10 doses for the two bacterial species increased the shelf life of tubers kept under ambient temperature. The internal chemical quality of tubers was shown to be improved by keeping the tubers under ambient temperature after irradiation by the two D10 doses 0.24 and 0.20 KGy

  6. Antagonistic Effect of Native Bacillus Isolates against Black Root Rot ...

    African Journals Online (AJOL)

    Faba bean (Vicia faba L.) is one of the most important pulse crops grown in eastern Africa. Black root rot (Fusarium solani) is known to cause great yield losses in faba bean, especially in the highlands of Ethiopia. The objective of this study was to evaluate the biological control ability of native Bacillus species on the basis of ...

  7. The influence of root rot incidence on cassava genotype on ...

    African Journals Online (AJOL)

    28 panelists were asked to indicate their degree of preference for the colour, odour and taste of each gari sample by choosing the appropriate category in the hedonic scale. The results were compared with the tuberous root rot incidence and severity of genotypes in the field. All experiments were repeated and the data ...

  8. Resistance of particleboard panels made of agricultural residues and bonded with synthetic resins or PVC plastic to wood-rotting fungi

    Directory of Open Access Journals (Sweden)

    Divino Eterno Teixeira

    2009-12-01

    Full Text Available This study aims to evaluate the resistance of three types of particleboard panel to biodeterioration, two of which bonded with synthetic resins and one bonded with PVC plastic. Composite panels were made using sugar cane straw particles as raw material which were bonded together with urea-formaldehyde (UF, tannin-formaldehyde (TANI and PVC plastic (PVC resins. Decay tests were performed following procedures outlined in the ASTM D2017-81/1994 standard, whereby sample specimens were subjected to attack by white rot fungus Trametes versicolor and brown rot fungus Gloeophyllum trabeum using pine (Pinus sp. and embaúba (Cecropia sp. as reference timber. Panels bonded with PVC resin were rated ‘resistant’ to attack by both fungi while those bonded with UF and TANI resins were rated ‘slightly resistant’ to their attack.

  9. Root rot of sugarbeet in the Vojvodina Province

    Directory of Open Access Journals (Sweden)

    Stojšin Vera B.

    2006-01-01

    Full Text Available Large changes introduced in the sugar beet production technology in the Vojvodina Province over last 40 years resulted in changes in the etiology and harmfulness of different agents of sugar beet root diseases. Improvements in cultivation practices reduced the harmfulness of some diseases while increased the harmfulness of others. Some disease agents became obsolete, but others gained importance. New agents of root diseases were found. The most frequent damages, persisting over long periods of time were caused by seedling damping-off, Fusarium root rot, charcoal root rot, parasitic (Rhizomania and non-parasitic root bearding. The parasitic damping-off caused by several fungal species but most frequently by Phoma betae occurred at the time when multigerm seeds were used in combination with extensive cultural practices. The agents of seedling diseases completely lost their significance as the consequence of switching to fungicide - treated monogerm seeds, earlier planting and improved soil tillage. In the period of intensive use of agricultural chemicals, seedling damping-off occurred frequently due to the phytotoxic action of chemicals (insecticides, herbicides and mineral fertilizers. In some years, frosts caused damping- off of sugar beet seedlings on a large scale in the Vojvodina Province. Poor sugar beet germination and emergence were frequently due to spring droughts. Sometimes they were due to strong winds. The occurrence of Fusarium root rot and charcoal root rot intensified on poor soils. Fusariosis symptoms were exhibited as plant wilting and different forms of root rot. In recent years root tip rot has occurred frequently in the first part of the growing season causing necrosis and dying of plants. Lateral roots tended to proliferate from the healthy tissue, giving the root a bearded appearance similar to Rhizomania. Fusarium oxysporum was the most frequent agent of this fusariosis. F. graminearum, F. equiseti, F. solani have also been

  10. Mycolytic enzymes produced by Streptomyces violaceusniger and their role in antagonism towards wood-rotting fungi.

    Science.gov (United States)

    Nagpure, Anand; Choudhary, Bharti; Gupta, Rajinder K

    2014-05-01

    Extracellular mycolytic enzymes produced under submerged fermentation by the fungal antagonist Streptomyces violaceusniger MTCC 3959 were characterized. This streptomycete produced higher amounts of extracellular chitinase and protease during late exponential phase, whereas β-1,3-glucanase production was at peak in mid-stationary phase. Cell-free culture filtrate (CCF) exhibited a broad range of antifungal activity against both white rot and brown rot fungi. The inhibitory activity was completely lost after treatment with proteinase K and heat, indicating that extracellular antifungal metabolites are heat labile and proteinaceous in nature. Optimum pH and temperature for enzyme activity were: 9.0 and 60 °C for chitinase; 6.0 and 60 °C for β-1,3-glucanase; and 9.0 and 70 °C for protease. Mycolytic enzymes were moderately thermostable, and had a wide pH stability range extending from pH 5.0 to 10.0. The zymogram analysis of CCF revealed five chitinase isoenzymes with an apparent molecular weight of 20.8, 33.3, 45.6, 67.4, and 114.8 kDa, one β-1,3-glucanase appeared as a single band of ∼131.8 kDa and four protease isoenzymes with approximate molecular weights of 22.8, 62.52, 74.64, and 120.5 kDa. S. violaceusniger MTCC 3959 produced mycolytic enzymes that can be effectively used for suppression of phytopathogenic basidiomycetes. It has the potential to be an effective biofungicide. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fusarium rot of onion and possible use of bioproduct

    Directory of Open Access Journals (Sweden)

    Klokočar-Šmit Zlata

    2008-01-01

    Full Text Available Several species of Fusarium are causal agents of onion rot in field and storage. Most prevalent are F. oxysporum f. sp. cepae and F. solani, and recently F. proliferatum, a toxigenic species. Most frequently isolated fungi in our field experiments were F. solani and F. proliferatum with different pathogenicity. Certain differences in antagonistic activity of Trichoderma asperellum on different isolates of F. proliferatum and F. solani have been found in in vitro study in dual culture, expressed as a slower inhibition of growth of the former, and faster of the latter pathogen. Antagonistic abilities of species from genus Trichoderma (T. asperellum are important, and have already been exploited in formulated biocontrol products in organic and conventional production, in order to prevent soil borne pathogens inducing fusarium wilt and rot. The importance of preventing onion infection by Fusarium spp., possible mycotoxin producers, has been underlined.

  12. Association of Pectolytic Fluorescent PSeudomonas with Postharvest Rots of Onion

    Directory of Open Access Journals (Sweden)

    H.H. El-Hendawy

    2004-12-01

    Full Text Available Five isolates of pectolytic fluorescent pseudomonads were obtained from a rotted onion bulb and identified as Pseudomonas marginalis. At both 4 and 25oC, all isolates caused soft rot to detached plant parts of onion and to carrot, celery, cucumber, pepper, spinach, tomato and turnip (but not garlic. They did not however cause any symptoms in living plants of these same species. These results suggest that the onion isolates are a postharvest pathogen which is not destructive in the field but becomes a threat to fresh vegetables stored at low-temperature. Analysis of cellulosolytic and pectic enzymes revealed that pectic lyases, but not polygalacturonases, pectin methyl esterases and cellulases were produced in culture by each isolate.

  13. The post-harvest fruit rots of tomato (Lycopersicum esculentum) in Nigeria.

    Science.gov (United States)

    Fajola, A O

    1979-01-01

    A survey of the post-harvest fruit rot diseases of tomato was conducted in five states of Nigeria. During severe infections, the diseases could cause 25% loss at harvest and 34% loss of the remaining product in transit, storage and market stalls; thus giving an overall loss of about 50% of the product. Two types of rots, soft and dry were recognised. The soft rot was found to account for about 85% and the dry rot about 15% of the overall loss. Erwinia carotovora, Rhizopus oryzae, R. stolonifer, Fusarium equiseti, F. nivale and F. oxysporum were established as the soft rot pathogens; while Aspergillus aculeatus, A. flavus, Cladosporium tenuissimum, Corynespora cassiicola, Curvularia lunata, Penicillium expansum P. multicolor and Rhizoctonia solani were established as the dry rot pathogens of tomato fruits in Nigeria.

  14. Fungal hydroquinones contribute to brown rot of wood

    Science.gov (United States)

    Melissa R. Suzuki; Christopher G. Hunt; Carl J. Houtman; Zachary D. Dalebroux; Kenneth E. Hammel

    2006-01-01

    The fungi that cause brown rot of wood initiate lignocellulose breakdown with an extracellular Fenton system in which Fe2+ and H2O2 react to produce hydroxyl radicals (•OH), which then oxidize and cleave the wood holocellulose. One such fungus, Gloeophyllum trabeum, drives Fenton chemistry on defined media by reducing Fe3+ and O2 with two extracellular hydroquinones,...

  15. Trichoderma spp. decrease Fusarium root rot in common bean

    Directory of Open Access Journals (Sweden)

    Hudson Teixeira

    2012-12-01

    Full Text Available The effectiveness of six Trichoderma-based commercial products (TCP in controlling Fusarium root rot (FRR in common bean was assessed under field conditions. Three TCP, used for seed treatment or applied in the furrow, increased seedling emergence as much as the fungicide fludioxonil. FRR incidence was not affected, but all TCP and fludioxonil reduced the disease severity, compared to control. Application of Trichoderma-based products was as effective as that of fludioxonil in FRR management.

  16. The presence and survival of soft rot (Erwinia) in flower bulb production systems

    OpenAIRE

    Doorn, van, J.; Vreeburg, P.J.M.; Leeuwen, van, P.J.; Dees, R.H.L.

    2011-01-01

    Soft rot is causing increasing damage in the flower bulb industry. Bulbous ornamentals such as Hyacinthus, Dahlia, Iris, Muscari, Freesia and Zantedeschia can be infected. Soft rot in flower bulbs is mainly caused by Dickeya spp. (Dickeya spp.) and Erwinia carotovora subsp. carotovora (Pectobacterium carotovorum spp. carotovorum).To identify and detect these soft rot bacterial species in several bulbous ornamentals, standard PCR methods were used. During the last four years, research was dire...

  17. Cellulose Degradation by Cellulose-Clearing and Non-Cellulose-Clearing Brown-Rot Fungi

    OpenAIRE

    Highley, Terry L.

    1980-01-01

    Cellulose degradation by four cellulose-clearing brown-rot fungi in the Coniophoraceae—Coniophora prasinoides, C. puteana, Leucogyrophana arizonica, and L. olivascens—is compared with that of a non-cellulose-clearing brown-rot fungus, Poria placenta. The cellulose- and the non-cellulose-clearing brown-rot fungi apparently employ similar mechanisms to depolymerize cellulose; most likely a nonenzymatic mechanism is involved.

  18. White House

    Science.gov (United States)

    ... to navigation the WHITE HOUSE President Donald J. Trump Get in Touch Home Briefing Room From the ... Americans The Administration The Administration President Donald J. Trump Vice President Mike Pence First Lady Melania Trump ...

  19. Morphological and molecular identification of Fusarium tricinctum and Fusarium acuminatum as causal agents of garlic bulbs rot in Serbia

    Directory of Open Access Journals (Sweden)

    Ignjatov Maja V.

    2017-01-01

    Full Text Available Garlic (Allium sativum L. is considered to be one of the oldest crops in the world. During 2016, infected garlic bulbs occurred in storages on several localities of the Province of Vojvodina. Symptomatic cloves showed typical rot symptoms such as softened and spongy areas covered with white fungal growth with deep lesions formed on the cloves which became dry over time. A total of 36 isolates of Fusarium species were obtained from diseased cloves of garlic. Colony morphology and microscopic properties of isolated Fusarium species were recorded from the cultures grown on PDA and CLA, respectively. Identification of two chosen isolates was performed by sequencing the EF-1α gene. The TEF sequence of isolate JBL12 showed 100% similarity with several F. tricinctum sequences and sequence of JBL539 showed 99% identity with several F. acuminatum sequences and they were deposited in the NCBI GenBank. Based on the results of the morphological and molecular identification, isolates JBL12 and JBL539 were identified as F. tricinctum and F. acuminatum, respectively, as new causal agents of garlic bulbs rot in Serbia. Specific primers were designed for the PCR identification of the F. tricinctum. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR31030

  20. Cloning and characterization of a laccase gene from Ganoderma spp. causing basal stem rot disease in coconut

    Directory of Open Access Journals (Sweden)

    Lingan Rajendran

    2008-10-01

    Full Text Available Basal stem rot disease in coconut is caused by the white-rot fungus Ganoderma lucidum, which is soilborne in nature. Its degree of virulence is governed by the activity of the laccase enzyme. Of twenty-five isolates belonging to the genus Ganoderma obtained from different host species, the isolate from Silent Valley (SV showed the greatest laccase activity in vitro, followed by the isolate from Veppankulam (CRS-1. These two isolates also reacted positively in the laccase assay in vitro. The laccase-positive SV and CRS-1 isolates were further amplified by polymerase chain reaction (PCR using degenerate primers for the partial sequence, which showed the fragment size of 200 bp. The highly virulent SV isolate was cloned in a plasmid vector and sequenced. It was confirmed as a partial-length laccase gene and submitted to the GenBank database. The nucleotide sequence of the DNA of this isolate showed high homology with those of the laccase genes of other basidiomycetes.

  1. Effect of different cultivation conditions for the production of ligninolytic enzymes by the white-root Fungi Anthracophyllum discolor

    International Nuclear Information System (INIS)

    Bustamante, M.; Tortella, G. R.; Diez, M. C.

    2009-01-01

    At present, the study of the ligninolytic enzyme from white-rot fungi to degrade ligninolytic compounds has increased. Until now, most studies have been focused on the enzymatic system of Phanerochaete chrysosporium and Trametes versicolor due to its rapid growth, easy growing conditions and ligninolytic properties. (Author)

  2. Effect of different cultivation conditions for the production of ligninolytic enzymes by the white-root Fungi Anthracophyllum discolor

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, M.; Tortella, G. R.; Diez, M. C.

    2009-07-01

    At present, the study of the ligninolytic enzyme from white-rot fungi to degrade ligninolytic compounds has increased. Until now, most studies have been focused on the enzymatic system of Phanerochaete chrysosporium and Trametes versicolor due to its rapid growth, easy growing conditions and ligninolytic properties. (Author)

  3. Fungi associated with storage rots of cocoyams (Colocasia spp.) in Nsukka, Nigeria.

    Science.gov (United States)

    Ugwuanyi, J O; Obeta, J A

    1996-04-01

    Cocoyam (Colocasia spp.) corms and cormels showing spoilage symptoms were collected from many stores in Nsukka locality and examined for rot and associated fungal pathogens. Aspergillus niger, Botryodiplodia theobromae, Corticium rolfsii, Geotrichum candidum, Fusarium oxysporum, and F. solani were recovered from rotten cocoyams. The representative isolates of these species caused cocoyam rot in pathogenicity tests. The rot due to A. niger, B. theobromae and C. rolfsii was extensive resulting in complete maceration of cocoyam tissue. Potassium sorbate (0.1 mg/ml) protected cocoyams from fungal rot with the exception of C. rolfsii.

  4. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry.

    Directory of Open Access Journals (Sweden)

    Martin C Krueger

    Full Text Available Synthetic polymers often pose environmental hazards due to low biodegradation rates and resulting accumulation. In this study, a selection of wood-rotting fungi representing different lignocellulose decay types was screened for oxidative biodegradation of the polymer polystyrene sulfonate (PSS. Brown-rot basidiomycetes showed PSS depolymerisation of up to 50 % reduction in number-average molecular mass (Mn within 20 days. In-depth investigations with the most efficient depolymeriser, a Gloeophyllum trabeum strain, pointed at extracellular hydroquinone-driven Fenton chemistry responsible for depolymerisation. Detection of hydroxyl radicals present in the culture supernatants showed good compliance with depolymerisation over the time course of PSS degradation. 2,5-Dimethoxy-1,4-hydroquinone (2,5-DMHQ, which was detected in supernatants of active cultures via liquid chromatography and mass spectrometry, was demonstrated to drive the Fenton processes in G. trabeum cultures. Up to 80% reduction in Mn of PSS where observed when fungal cultures were additionally supplemented with 2,5-dimethoxy benzoquinone, the oxidized from of 2,5-DMHQ. Furthermore, 2,5-DMHQ could initiate the Fenton's reagent-mediated PSS depolymerisation in cell-free systems. In contrast, white-rot fungi were unable to cause substantial depolymerising effects despite the expression of lignin-modifying exo-enzymes. Detailed investigations with laccase from Trametes versicolor revealed that only in presence of certain redox mediators limited PSS depolymerisation occurred. Our results indicate that brown-rot fungi might be suitable organisms for the biodegradation of recalcitrant synthetic polymeric pollutants.

  5. Mister White

    OpenAIRE

    Leis, Raúl

    2016-01-01

    Mister Jonathan Stephen White recorre diariamente los quinientos metros de calle que separan su casa de la tienda del chino, sin que necesariamente tenga algo que comprar. Lo hace muy lentamente pues no tiene alternativa. Mister White, después de jubilarse de la Compañía del Canal, sufrió un derrame cerebral que le paralizó el lado derecho de su cuerpo, fatigado y erosionado por el trabajo rudo. Él mismo talló con su mano sana su rústico bastón de palo de guayaba, que ahora es el apoyo imp...

  6. Transcriptional response of lignin-degrading enzymes to 17 alpha-ethinyloestradiol in two white rots

    Czech Academy of Sciences Publication Activity Database

    Přenosilová, Lenka jr.; Křesinová, Zdena; Slavíková-Anemori, Anna; Cajthaml, Tomáš; Svobodová, Kateřina

    2013-01-01

    Roč. 6, č. 3 (2013), s. 300-306 ISSN 1751-7907 R&D Projects: GA ČR GAP503/10/0408; GA TA ČR TA01020804 Institutional support: RVO:61388971 Keywords : LACCASE GENE-EXPRESSION * TRAMETES SP AH28-2 * MANGANESE PEROXIDASE Subject RIV: EE - Microbiology, Virology Impact factor: 3.023, year: 2013

  7. Structural studies of two thermostable laccases from the white-rot fungus Pycnoporus sanguineus.

    Science.gov (United States)

    Orlikowska, Marta; de J Rostro-Alanis, Magdalena; Bujacz, Anna; Hernández-Luna, Carlos; Rubio, Rodrigo; Parra, Roberto; Bujacz, Grzegorz

    2018-02-01

    Laccases are enzymes that have the ability to catalyze the oxidation of a wide spectrum of phenolic compounds with the four-electron reduction of molecular oxygen to water. The active site of those proteins contains four copper ions, classified into three types. Laccases are interesting enzymes for study from the point of view of their structure, function and application because of their role in lignin degradation. Structural studies of two thermostable laccases produced by the strain Pycnoporus sanguineus CS43 (PsLacI and PsLacII) were performed. Both isoforms of PsLac show high thermal stability, at 60°C and 50°C, respectively, and they remained active at a high concentration of organic solvents. However, PsLacI has a higher thermal and pH stability and tolerance against inhibitors, and is a more efficient catalyst for ABTS and DMP (laccases substrate) than PsLacII. Based on the determined crystal structures we achieved insights into the structural factors relevant for the enzymatic properties of PsLacI and PsLacII. N-glycosylation site Asn354, which is very often present in structures of fungal laccases from other species, was not present in PsLac. This observation may be of particular significance due to the close distance between Asn354 and the substrate-binding pocket. This results in better access to the hydrophobic cavity for a particular substrate. Furthermore, we identified significant differences in the region of substrate-binding pocket, which confer PsLacI a markedly better performance than PsLacII. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina).

    Science.gov (United States)

    Fonseca, María I; Shimizu, Ernesto; Zapata, Pedro D; Villalba, Laura L

    2010-05-05

    Fungi may be selected as models for gene expression studies and further adaptation for biotechnological enzyme production. The aim of this work was to evaluate laccase production and to analyze the effect of Cu(2+) on selected fungi natives of Misiones, Ganoderma applanatum (strain F), Peniophora sp. (BAFC 633), Pycnoporus sanguineus (BAFC 2126) and Coriolus versicolor f. antarcticus (BAFC 266). Fungi secretion system of G. applanatum, Peniophora sp., P. sanguineus and C. versicolor f. antarcticus is sensitive to stimulation by copper. Biomass values of G. applanatum, Peniophora sp. and C. versicolor f. antarcticus did not show differences between treatments. P. sanguineus biomass underwent a dramatic growth inhibition with 1mM Cu(2+) and marked delay in growth with 0.5mM Cu(2+). Proteins were increased with copper in Peniophora sp., C. versicolor and G. applanatum. G. applanatum and Peniophora sp. reached the highest enzyme activity at 10th day equivalent to 49.2-fold and 19.7-fold higher than the control samples, respectively. Copper produced an increase of constitutive laccases in all fungi and an additional inducible isoenzyme in Peniophora sp., C. versicolor f. antarcticus and G. applanatum. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. In vitro technique for selecting onion for white rot disease resistance ...

    African Journals Online (AJOL)

    This is due to its ability to isolate plants with the desired character(s), either by applying a selection agent on the culture media to drive the selection of somaclones with the required character(s), or by establishing particular conditions that change in the genomes of somaclones toward the required character. The objective of ...

  10. Hydrolysis of residuals of barley straw using white-rot basidiomycetes

    International Nuclear Information System (INIS)

    Lazaro-Anell, A. C.; Arana-Cuenca, A.; Tellez-Jurado, A.

    2009-01-01

    The imminent term of the fossil fuels has generated different initiatives focused to the development of a alternative fuels in the entire world, one of the main alternatives for the bio combustible production is the agricultural waste, all they have as main characteristic those of being compound for 3 biopolymers that represent, one of the biggest renewable sources of energy. (Author)

  11. Decolorization of Dyes using White-rot Fungi and Radical-generating Reactions

    Czech Academy of Sciences Publication Activity Database

    Nerud, František; Baldrian, Petr; Eichlerová, Ivana; Merhautová, Věra; Gabriel, Jiří; Homolka, Ladislav

    2004-01-01

    Roč. 22, 5/6 (2004), s. 325-330 ISSN 1024-2422 R&D Projects: GA AV ČR IBS5020306; GA MŠk LN00B030; GA AV ČR IAA6020411; GA ČR GP206/02/D119 Institutional research plan: CEZ:AV0Z5020903 Keywords : Hydroxyl radicals * ligninolytic enzymes * pleurotus ostreatus Subject RIV: EE - Microbiology, Virology Impact factor: 1.053, year: 2004

  12. Biological pretreatment of corn stover with white-rot fungus for enzymatic hydrolysis and bioethanol production

    Science.gov (United States)

    Pretreatment, as the first step towards conversion of lignocellulosic feedstocks to biofuels and/or chemicals remains one of the main barriers to commercial success. Typically, harsh methods are used to pretreat lignocellulosic biomass prior to its breakdown to sugars by enzymes, which also result ...

  13. Variability of Laccase Activity in the White-Rot Basidiomycete Pleurotus ostreatus

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Gabriel, Jiří

    2002-01-01

    Roč. 47, č. 4 (2002), s. 385-390 ISSN 0015-5632 R&D Projects: GA ČR GP204/02/P100 Institutional research plan: CEZ:AV0Z5020903 Keywords : laccase * pleurotus ostreatus Subject RIV: EE - Microbiology, Virology Impact factor: 0.979, year: 2002

  14. Production of lignocellulolytic enzymes from three white-rot fungi by ...

    African Journals Online (AJOL)

    The objective of the work was to evaluate the effect of the media formulation on the production of lignocellulolytic enzymes and degradation of lignocellulosic components by the three fungal species. C. versicolor exhibited the highest ability to degrade the three main polymers of the lignocellulosic waste materials employed ...

  15. Effect of yeasts on biodegradation potential of immobilized cultures of white rot fungi

    Czech Academy of Sciences Publication Activity Database

    Šlosarčíková, P.; Novotný, Čeněk; Malachová, K.; Válková, H.; Fojtík, J.

    2017-01-01

    Roč. 589, JUL 1 (2017), s. 146-152 ISSN 0048-9697 Institutional support: RVO:61388971 Keywords : Mixed culture * Fungal biofilm * Yeasts Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.900, year: 2016

  16. Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022.

    Science.gov (United States)

    Hadibarata, Tony; Zubir, Meor Mohd Fikri Ahmad; Rubiyatno; Chuang, Teh Zee; Yusoff, Abdull Rahim Mohd; Salim, Mohd Razman; Fulazzaky, Mohammad Ali; Seng, Bunrith; Nugroho, Agung Endro

    2013-09-01

    Characterization of anthracene metabolites produced by Armillaria sp. F022 was performed in the enzymatic system. The fungal culture was conducted in 100-mL Erlenmeyer flask containing mineral salt broth medium (20 mL) and incubated at 120 rpm for 5-30 days. The culture broth was then centrifuged at 10,000 rpm for 45 min to obtain the extract. Additionally, the effect of glucose consumption, laccase activity, and biomass production in degradation of anthracene were also investigated. Approximately, 92 % of the initial concentration of anthracene was degraded within 30 days of incubation. Dynamic pattern of the biomass production was affected the laccase activity during the experiment. The biomass of the fungus increased with the increasing of laccase activity. The isolation and characterization of four metabolites indicated that the structure of anthracene was transformed by Armillaria sp. F022 in two routes. First, anthracene was oxidized to form anthraquinone, benzoic acid, and second, converted into other products, 2-hydroxy-3-naphthoic acid and coumarin. Gas chromatography-mass spectrometry analysis also revealed that the molecular structure of anthracene was transformed by the action of the enzyme, generating a series of intermediate compounds such as anthraquinone by ring-cleavage reactions. The ligninolytic enzymes expecially free extracellular laccase played an important role in the transformation of anthracene during degradation period.

  17. Fluorene biodegradation and identification of transformation products by white-rot fungus Armillaria sp. F022.

    Science.gov (United States)

    Hadibarata, Tony; Kristanti, Risky Ayu

    2014-06-01

    A diverse surfactant, including the nonionic Tween 80 and Brij 30, the anionic sodium dodecyl sulphate, the cationic surfactant Tetradecyltrimethylammonium bromide, and biosurfactant Rhamnolipid were investigated under fluorine-enriched medium by Armilaria sp. F022. The cultures were performed at 25 °C in malt extract medium containing 1 % of surfactant and 5 mg/L of fluorene. The results showed among the tested surfactants, Tween-80 harvested the highest cell density and obtained the maximum specific growth rate. This due Tween-80 provide a suitable carbon source for fungi. Fluorane was also successfully eliminated (>95 %) from the cultures within 30 days in all flasks. During the experiment, laccase production was the highest among other enzymes and Armillaria sp. F022-enriched culture containing Non-ionic Tween 80 showed a significant result for laccase activity (1,945 U/L). The increased enzyme activity was resulted by the increased biodegradation activity as results of the addition of suitable surfactants. The biotransformation of fluorene was accelerated by Tween 80 at the concentration level of 10 mg/L. Fluorene was initially oxidized at C-2,3 positions resulting 9-fluorenone. Through oxidative decarboxylation, 9-fluorenone subjected to meta-cleavage to form salicylic acid. One metabolite detected in the end of experiment, was identified as catechol. Armillaria sp. F022 evidently posses efficient, high effective degrader and potential for further application on the enhanced bioremediation technologies for treating fluorene-contaminated soil.

  18. Biodegradation of organics in landfill leachate by immobilized white rot fungi, Trametes versicolor BCC 8725.

    Science.gov (United States)

    Saetang, Jenjira; Babel, Sandhya

    2012-12-01

    Immobilized Trametes versicolor BCC 8725 was evaluated for the biodegradation of the organic components of four different types of landfill leachate collected at different time periods and locations from the Nonthaburi landfill site of Thailand in batch treatment. The effects of carbon source, ammonia and organic loading on colour, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removal, and the reuse of immobilized fungi were investigated. It was found that fungi can remove 78% of colour, reduce BOD by 68% and reduce COD by 57% in leachate within 15 days at optimum conditions. Organic loading and ammonia were the factors that affected the biodegradation. When immobilized T versicolor on polyurethane foam (PUF) was subjected to repeated use for treatment over the course of three cycles, the decolourization efficiency of the first and the second cycle was very similar, whereas the third cycle was about 20% lower than the first cycle under similar conditions. The obtained removal of colour, BOD and COD indicates the effectiveness of fungi for leachate treatment with high organic loading and varied leachate characteristics.

  19. Biological Pretreatment of Oil Palm Frond Fiber Using White-Rot Fungi for Enzymatic Saccharification

    Directory of Open Access Journals (Sweden)

    Euis Hermiati

    2013-09-01

    Full Text Available Oil palm frond is one type of lignocellulosic biomass abundantly and daily available in Indonesia. It contains cellulose which can be converted to glucose, and further processed to produce different kinds of value –added products. The aim of this research is to study the effects of biological pretreatment of oil palm frond (OPF fiber using Phanerochaete chrysosporium and Trametes versicolor on the enzymatic saccharification of the biomass. The OPF fiber (40-60 mesh sizes was inoculated with cultures of the two fungi and incubated at 27 °C for 4 weeks. The samples were taken after 1, 2, 3, and 4 weeks of incubation. Chemical components of the biomass after pretreatment were analyzed. The saccharification of the pretreated samples using cellulase and β-glucosidase was performed in a water bath shaker at 50 °C for 48 hours. The concentration of reducing sugar increased with increasing of incubation time, either in those pretreated with culture of P. chrysosporium or with T. versicolor. Pretreatment of OPF fiber using single culture of T. versicolor for 4 weeks gave the highest reducing sugar yield (12.61% of dry biomass.

  20. Evaluation of the individuality of white rot macro fungus for the decolorization of synthetic dye.

    Science.gov (United States)

    Pandey, Priyanka; Singh, Ram Praksh; Singh, Kailash Nath; Manisankar, Paramasivam

    2013-01-01

    A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green. For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also. Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin-Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model. The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm(-1). Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye-biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.

  1. Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium

    KAUST Repository

    Espinosa-Ortiz, Erika J.

    2014-10-24

    The ability of Phanerochaete chrysosporium to reduce the oxidized forms of selenium, selenate and selenite, and their effects on the growth, substrate consumption rate, and pellet morphology of the fungus were assessed. The effect of different operational parameters (pH, glucose, and selenium concentration) on the response of P. chrysosporium to selenium oxyanions was explored as well. This fungal species showed a high sensitivity to selenium, particularly selenite, which inhibited the fungal growth and substrate consumption when supplied at 10 mg L−1 in the growth medium, whereas selenate did not have such a strong influence on the fungus. Biological removal of selenite was achieved under semi-acidic conditions (pH 4.5) with about 40 % removal efficiency, whereas less than 10 % selenium removal was achieved for incubations with selenate. P. chrysosporium was found to be a selenium-reducing organism, capable of synthesizing elemental selenium from selenite but not from selenate. Analysis with transmission electron microscopy, electron energy loss spectroscopy, and a 3D reconstruction showed that elemental selenium was produced intracellularly as nanoparticles in the range of 30–400 nm. Furthermore, selenite influenced the pellet morphology of P. chrysosporium by reducing the size of the fungal pellets and inducing their compaction and smoothness.

  2. A novel expansin protein from the white-rot fungus Schizophyllum commune.

    Directory of Open Access Journals (Sweden)

    Omar Eduardo Tovar-Herrera

    Full Text Available A novel expansin protein (ScExlx1 was found, cloned and expressed from the Basidiomycete fungus Schizophylum commune. This protein showed the canonical features of plant expansins. ScExlx1 showed the ability to form "bubbles" in cotton fibers, reduce the size of avicel particles and enhance reducing sugar liberation from cotton fibers pretreated with the protein and then treated with cellulases. ScExlx1 was able to bind cellulose, birchwood xylan and chitin and this property was not affected by different sodium chloride concentrations. A novel property of ScExlx1 is its capacity to enhance reducing sugars (N-acetyl glucosamine liberation from pretreated chitin and further added with chitinase, which has not been reported for any expansin or expansin-like protein. To the best of our knowledge, this is the first report of a bona fide fungal expansin found in a basidiomycete and we could express the bioactive protein in Pichia pastoris.

  3. Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor

    Czech Academy of Sciences Publication Activity Database

    Leitner, CH.; Volc, Jindřich; Haltrich, D.

    2001-01-01

    Roč. 67, č. 8 (2001), s. 3636-3644 ISSN 0099-2240 R&D Projects: GA ČR GA206/99/1191 Institutional research plan: CEZ:AV0Z5020903 Keywords : pyranose oxidase * Trametes multicolor Subject RIV: EE - Microbiology, Virology Impact factor: 3.688, year: 2001

  4. Bioremediation of long-term PCB-contaminated soil by white-rot fungi

    Czech Academy of Sciences Publication Activity Database

    Stella, Tatiana; Covino, Stefano; Čvančarová, Monika; Filipová, Alena; Petruccioli, M.; D´Annibale, A.; Cajthaml, Tomáš

    2017-01-01

    Roč. 324, FEB 15 PART B (2017), s. 701-710 ISSN 0304-3894 R&D Projects: GA TA ČR TE01020218; GA ČR(CZ) GA15-02328S Institutional support: RVO:61388971 Keywords : Pleurotus ostreatus * Ligninolytic fungi * Polychlorinated biphenyls Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 6.065, year: 2016

  5. Bioconversion of ferulic acid and 4-vinylguaiacol by a white-rot ...

    African Journals Online (AJOL)

    vinylguaiacol, which is then metabolized further to acetovanillone. Both products have potential use in the chemical manufacturing and pharmaceutical industries and these results contribute to our knowledge of the biotransformation of ferulic acid.

  6. Mechanism of Reactive Orange 16 degradation with the white rot fungus Irpex lacteus

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Kateřina; Senholdt, M.; Novotný, Čeněk; Rehorek, A.

    2007-01-01

    Roč. 42, - (2007), s. 1279-1284 ISSN 1359-5113 R&D Project s: GA ČR GP526/06/P102; GA MŠk LC06066; GA AV ČR IAA6020411 Grant - others:XE(XE) European STREP project ULTRATEC No. NMP2-CT-2003-505892 Institutional research plan: CEZ:AV0Z50200510 Source of funding: R - rámcový projekt EK Keywords : irpex lacteus * reactive orange 16 * degradation Subject RIV: EE - Microbiology, Virology Impact factor: 2.336, year: 2007

  7. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation

    Czech Academy of Sciences Publication Activity Database

    Novotný, Čeněk; Erbanová, Pavla; Cajthaml, Tomáš; Rothschild, N.; Dosoretz, C.; Šašek, Václav

    2000-01-01

    Roč. 54, - (2000), s. 850-853 ISSN 0175-7598 R&D Projects: GA ČR GA526/99/0519; GA ČR GA526/00/1303 Institutional research plan: CEZ:AV0Z5020903 Keywords : bioremediation * Irpex lacteus Subject RIV: EH - Ecology, Behaviour Impact factor: 1.505, year: 2000

  8. Frequency stability characterization of a broadband fiber Fabry-Pérot interferometer.

    Science.gov (United States)

    Jennings, Jeff; Halverson, Samuel; Terrien, Ryan; Mahadevan, Suvrath; Ycas, Gabriel; Diddams, Scott A

    2017-07-10

    An optical etalon illuminated by a white light source provides a broadband comb-like spectrum that can be employed as a calibration source for astronomical spectrographs in radial velocity (RV) surveys for extrasolar planets. For this application the frequency stability of the etalon is critical, as its transmission spectrum is susceptible to frequency fluctuations due to changes in cavity temperature, optical power and input polarization. In this paper we present a laser frequency comb measurement technique to characterize the frequency stability of a custom-designed fiber Fabry-Pérot interferometer (FFP). Simultaneously probing the stability of two etalon resonance modes, we assess both the absolute stability of the etalon and the long-term stability of the cavity dispersion. We measure mode positions with MHz precision, which corresponds to splitting the FFP resonances by a part in 500 and to RV precision of ≈ 1 m s -1 . We address limiting systematic effects, including the presence of parasitic etalons, that need to be overcome to push the metrology of this system to the equivalent RV precision of 10 cm s -1 . Our results demonstrate a means to characterize environmentally-driven perturbations of etalon resonance modes across broad spectral bandwidths, as well as motivate the benefits and challenges of FFPs as spectrograph calibrators.

  9. Stringy bounces and gradient instabilities

    CERN Document Server

    Giovannini, Massimo

    2017-01-01

    Bouncing solutions are obtained from a generally covariant action characterized by a potential which is a nonlocal functional of the dilaton field at two separated space-time points. Gradient instabilities are shown to arise in this context but they are argued to be nongeneric. After performing a gauge-invariant and frame-invariant derivation of the evolution equations of the fluctuations, a heuristic criterium for the avoidance of pathological instabilities is proposed and corroborated by a number of explicit examples that turn out to be compatible with a quasi-flat spectrum of curvature inhomogeneities for typical wavelengths larger than the Hubble radius.

  10. The stringy instanton partition function

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, Giulio [International School of Advanced Studies (SISSA),via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste,Trieste (Italy); I.C.T.P.,Strada Costiera 11, 34014 Trieste (Italy); Sciarappa, Antonio; Tanzini, Alessandro; Vasko, Petr [International School of Advanced Studies (SISSA),via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste,Trieste (Italy)

    2014-01-09

    We perform an exact computation of the gauged linear sigma model associated to a D1-D5 brane system on a resolved A{sub 1} singularity. This is accomplished via supersymmetric localization on the blown-up two-sphere. We show that in the blow-down limit ℂ{sup 2}/ℤ{sub 2} the partition function reduces to the Nekrasov partition function evaluating the equivariant volume of the instanton moduli space. For finite radius we obtain a tower of world-sheet instanton corrections, that we identify with the equivariant Gromov-Witten invariants of the ADHM moduli space. We show that these corrections can be encoded in a deformation of the Seiberg-Witten prepotential. From the mathematical viewpoint, the D1-D5 system under study displays a twofold nature: the D1-branes viewpoint captures the equivariant quantum cohomology of the ADHM instanton moduli space in the Givental formalism, and the D5-branes viewpoint is related to higher rank equivariant Donaldson-Thomas invariants of ℙ{sup 1}×ℂ{sup 2}.

  11. Characterizing butt-rot fungi on USA-affiliated islands in the western Pacific

    Science.gov (United States)

    Phil Cannon; Ned B. Klopfenstein; Robert L. Schlub; Mee-Sook Kim; Yuko Ota; Norio Sahashi; Roland J. Quitugua; John W. Hanna; Amy L. Ross-Davis; J. D. Sweeney

    2014-01-01

    Ganoderma and Phellinus are genera that commonly cause tree butt-rot on USA-affiliated islands of the western Pacific. These fungal genera can be quite prevalent, especially in older mangrove stands. Although the majority of infections caused by these fungi lead to severe rotting of the heartwood, they typically do not directly kill the living tissues of the sapwood,...

  12. The persistence of Gliocephalotrichum bulbilium and G. simplex causing fruit rot of rambutan in Puerto Rico

    Science.gov (United States)

    Fruit rot of rambutan (Nephelium lappaceum L.) is a pre and post-harvest disease problem that affects fruit quality. Significant post-harvest losses have occurred worldwide and several pathogens have been identified in Malaysia, Costa Rica, Hawaii, Thailand, and Puerto Rico. In 2011, fruit rot was o...

  13. First report of Calonectria hongkongensis causing fruit rot of rambutan (Nephelium lappaceum L.)

    Science.gov (United States)

    Fruit rot is a major pre- and post-harvest disease problem in rambutan orchards. In 2011, fruit rot was observed at the USDA-TARS orchards in Mayaguez, Puerto Rico. Infected fruit were collected and tissue sections (1 mm2) were superficially sterilized with 70% ethanol and 0.5% sodium hypochlorite. ...

  14. First report of Colletotrichum fructicola and C. queenslandicum causing fruit rot of rambutan (Nephelium lappaceum L.)

    Science.gov (United States)

    In rambutan production, fruit rot is the main pre- and post-harvest disease of concern. In a 2008-2013 fruit disease survey, fruit rot was observed in eight orchards in Puerto Rico. Infected fruit were collected and 1 mm2 tissue sections were surface disinfested with 70% ethanol followed by 0.5% sod...

  15. Preparation and Characterization of Novolak Phenol Formaldehyde Resin from Liquefied Brown-Rotted Wood

    Science.gov (United States)

    Gai-Yun Li; Chung-Yun Hse; Te-Fu Qin

    2012-01-01

    The brown-rotted wood was liquefied in phenol with phosphoric acid as catalyst and the resulting liquefied products were condensed with formaldehyde to yield novolak liquefied wood-based phenol formaldehyde resin (LWPF). The results showed that brown-rotted wood could be more easily liquefied than sound wood in phenol. The residue content of liquefied wood decreased...

  16. Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi

    Science.gov (United States)

    Anne Christine Steenkjær Hastrup; Frederick Green III; Patricia K. Lebow; Bo Jensen

    2012-01-01

    Oxalic acid is a key component in the initiation of brown-rot decay and it has been suggested that it plays multiple roles during the degradation process. Oxalic acid is accumulated to varying degrees among brown-rot fungi; however, details on active regulation are scarce. The accumulation of oxalic acid was measured in this study from wood degraded by the four brown-...

  17. Antifungal Effects Of Botanical Leaf Extracts On Tuber Rots Of Yam ...

    African Journals Online (AJOL)

    The fungicidal effects of dry and fresh leaf extracts of Axardirachta indica (L) and Ocimum grattissimum on the rot of yam tubers were investigated. Fusaruim oxysporium, Rhjzopus stolonifer, Botryodiplodia theobromae and Aspergillus Niger (root pathogens) were isolated from the rotted yam. Both dry and fresh leaf extracts ...

  18. Biocontrol of charcoal-rot of sorghum by actinomycetes isolated from ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Streptomyces but with different species in BLAST analysis. This study indicates that the selected actinomycetes have the potential for PGP and control of charcoal-rot disease in sorghum. Key words: Antagonistic actinomycetes, biocontrol, charcoal-rot, Macrophomina phaseolina. INTRODUCTION.

  19. First report of Fusarium redolens causing crown rot of wheat (Triticum spp.) in Turkey

    Science.gov (United States)

    Fusarium crown rot, caused by a complex of Fusarium spp., is a yield-limiting disease of wheat world-wide, especially in dry Mediterranean climates. In order to identify Fusarium species associated with crown rot of wheat, a survey was conducted in summer 2013 in the major wheat growing regions of T...

  20. Potassium and Phosphorus effects on disease severity of charcoal rot of soybean

    Science.gov (United States)

    The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...

  1. Potassium and phosphorus have no effects on severity of charcoal rot of soybean

    Science.gov (United States)

    The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...

  2. Studies on the epidemiology of spear rot in oil palm (Elaeis guineensis Jacq.) in Suriname

    NARCIS (Netherlands)

    Lande, van de H.L.

    1993-01-01

    The epidemiology of spear rot, an infectious disease of unknown etiology, was studied over 10 years at three government-owned oil palm plantations in Suriname. As with other and similar diseases, amarelecimento fatal in Brazil and pudrición del cogollo in Latin America, which too show rot

  3. First Report of Calonectria hongkongensis Causing Fruit Rot of Rambutan (Nephelium lappaceum)

    NARCIS (Netherlands)

    Serrato-Diaz, L.M.; Latoni-Brailowsky, E.I.; Rivera-Vargas, L.I.; Goenaga, R.J.; Crous, P.W.; French-Monar, R.D.

    2013-01-01

    Fruit rot of rambutan is a pre- and post-harvest disease problem of rambutan orchards. In 2011, fruit rot was observed at USDA-ARS orchards in Mayaguez, Puerto Rico. Infected fruit were collected and 1 mm2 tissue sections were surface disinfested with 70% ethanol followed by 0.5% sodium

  4. Potential of bulb-associated bacteria for biocontrol of hyacinth soft rot caused by Dickeya zeae

    NARCIS (Netherlands)

    Jafra, S.; Przysowa, J.; Gwizdek-Wisniewska, A.; Wolf, van der J.M.

    2009-01-01

    Dickeya zeae is a pectinolytic bacterium responsible for soft rot disease in flower bulb crops. In this study, the possibility of controlling soft rot disease in hyacinth by using antagonistic bacteria isolated from hyacinth bulbs was explored. Bacterial isolates with potential for biocontrol were

  5. The presence and survival of soft rot (Erwinia) in flower bulb production systems

    NARCIS (Netherlands)

    Doorn, van J.; Vreeburg, P.J.M.; Leeuwen, van P.J.; Dees, R.H.L.

    2011-01-01

    Soft rot is causing increasing damage in the flower bulb industry. Bulbous ornamentals such as Hyacinthus, Dahlia, Iris, Muscari, Freesia and Zantedeschia can be infected. Soft rot in flower bulbs is mainly caused by Dickeya spp. (Dickeya spp.) and Erwinia carotovora subsp. carotovora

  6. Fungicide rotation schemes for managing Phytophthora fruit rot of watermelon across southeastern United States

    Science.gov (United States)

    Southeastern states produce about 50% of the watermelons in the United States (U.S.) where conditions are optimal for development of Phytophthora fruit rot prevail. Phytophthora fruit rot significantly limits watermelon production by causing serious yield losses to growers before and after harvest. ...

  7. Interaction of Rhizoctonia solani and Rhizopus stolonifer Causing Root Rot of Sugar Beet

    Science.gov (United States)

    In recent years, growers in Michigan and other sugar beet production areas of the United States have reported increasing incidence of root rot with little or no crown or foliar symptoms in sugar beet with Rhizoctonia crown and root rot. In addition, Rhizoctonia-resistant beets have been reported wit...

  8. The effect of long term storage on bacterial soft rot resistance in potato

    Science.gov (United States)

    Bacterial soft rot is a serious disease in potato (Solanum tuberosum L.), causing rapid tuber tissue maceration and, consequently, marketable yield loss. Soft rot bacteria, especially Pectobacterium carotovorum subsp. carotovorum (Pbc), are favored by moist conditions, which are prevalent in large p...

  9. Copper tolerance of brown-rot fungi : time course of oxalic acid production

    Science.gov (United States)

    Frederick Green; Carol A. Clausen

    2003-01-01

    The increase in the use of non-arsenical copper-based wood preservatives in response to environmental concerns has been accompanied by interest in copper-tolerant decay fungi. Oxalic acid production by brown-rot fungi has been proposed as one mechanism of copper tolerance. Fifteen brown-rot fungi representing the genera Postia, Wolfiporia, Meruliporia, Gloeophyllum,...

  10. Fungicides reduce Rhododendron root rot and mortality caused by Phytophthora cinnamomi, but not by P. plurivora

    Science.gov (United States)

    Rhododendron root rot, caused by several Phytophthora species, can cause devastating losses in nursery-grown plants. Most research on chemical control of root rot has focused on Phytophthora cinnamomi. However, it is unknown whether treatments recommended for P. cinnamomi are also effective for othe...

  11. Nonchemical, cultural management strategies to suppress phytophthora root rot in northern highbush blueberry

    Science.gov (United States)

    Phytophthora cinnamomi causes root rot of highbush blueberry and decreases plant growth, yield, and profitability for growers. Fungicides can suppress root rot, but cannot be used in certified organic production systems and fungicide resistance may develop. Alternative, non-chemical, cultural manag...

  12. Resistance to post-harvest microbial rot in yam: Integration of ...

    African Journals Online (AJOL)

    Post-harvest microbial rot is an important disease that causes severe losses in yam (Dioscorea spp.) storage. Rot from microbial infection of healthy yam tubers reduces their table quality and renders them unappealing to consumers. A study was carried out at Bimbilla in the Nanumba North District of Ghana to evaluate ...

  13. European Whiteness?

    DEFF Research Database (Denmark)

    Blaagaard, Bolette

    2008-01-01

    Born out of the United States’ (U.S.) history of slavery and segregation and intertwined with gender studies and feminism, the field of critical whiteness studies does not fit easily into a European setting and the particular historical context that entails. In order for a field of European...

  14. First report of in-vitro fludioxonil-resistant isolates of Fusarium spp. causing potato dry rot in Michigan

    Science.gov (United States)

    Fusarium dry rot of potato (Solanum tuberosum) is a postharvest disease caused by several Fusarium species and is of worldwide importance. Measures for controlling dry rot in storage are limited. Dry rot has been managed primarily by reducing tuber bruising, providing conditions for rapid wound heal...

  15. Moniliophthora roreri, causal agent of cacao frosty pod rot.

    Science.gov (United States)

    Bailey, Bryan A; Evans, Harry C; Phillips-Mora, Wilbert; Ali, Shahin S; Meinhardt, Lyndel W

    2017-12-01

    Taxonomy: Moniliophthora roreri (Cif.) H.C. Evans et al. ; Phylum Basidiomycota; Class Agaricomycetes; Order Agaricales; Family Marasmiaceae; Genus Moniliophthora. Biology: Moniliophthora roreri attacks Theobroma and Herrania species causing frosty pod rot. Theobroma cacao (cacao) is the host of major economic concern. Moniliophthora roreri is a hemibiotroph with a long biotrophic phase (45-90 days). Spore masses, of apparent asexual origin, are produced on the pod surface after initiation of the necrotrophic phase. Spores are spread by wind, rain and human activity. Symptoms of the biotrophic phase can include necrotic flecks and, in some cases, pod malformation, but pods otherwise remain asymptomatic. Relationship to Moniliophthora perniciosa: Moniliophthora roreri and Moniliophthora perniciosa, causal agent of witches' broom disease of cacao, are closely related. Their genomes are similar, including many of the genes they carry which are considered to be important in the disease process. Moniliophthora perniciosa, also a hemibiotroph, has a typical basidiomycete lifestyle and morphology, forming clamp connections and producing mushrooms. Basidiospores infect meristematic tissues including flower cushions, stem tips and pods. Moniliophthora roreri does not form clamp connections or mushrooms and infects pods only. Both pathogens are limited to the Western Hemisphere and are a threat to cacao production around the world. Agronomic importance: Disease losses caused by frosty pod rot can reach 90% and result in field abandonment. Moniliophthora roreri remains in the invasive phase in the Western Hemisphere, not having reached Brazil, some islands within the Caribbean and a few specific regions within otherwise invaded countries. The disease can be managed by a combination of cultural (for example, maintenance of tree height and removal of infected pods) and chemical methods. These methods benefit from regional application, but can be cost prohibitive. Breeding for

  16. Perfect Undetectable Acoustic Device from Fabry-Pérot Resonances

    Science.gov (United States)

    Chen, Huanyang; Zhou, Yangyang; Zhou, Mengying; Xu, Lin; Liu, Qing Huo

    2018-02-01

    Transformation acoustics is a method to design novel acoustic devices, while the complexity of the material parameters hinders its progress. In this paper, we analytically present a three-dimensional perfect undetectable acoustic device from Fabry-Pérot resonances and confirm its functionality from Mie theory. Such a mechanism goes beyond the traditional transformation acoustics. In addition, such a reduced version can be realized by holey-structured metamaterials. Our theory paves a way to the implementation of three-dimensional transformation acoustic devices.

  17. Bacteriophages of Soft Rot Enterobacteriaceae-a minireview.

    Science.gov (United States)

    Czajkowski, Robert

    2016-01-01

    Soft rot Enterobacteriaceae (Pectobacterium spp. and Dickeya spp., formerly pectinolytic Erwinia spp.) are ubiquitous necrotrophic bacterial pathogens that infect a large number of different plant species worldwide, including economically important crops. Despite the fact that these bacteria have been studied for more than 50 years, little is known of their corresponding predators: bacteriophages, both lytic and lysogenic. The aim of this minireview is to critically summarize recent ecological, biological and molecular research on bacteriophages infecting Pectobacterium spp. and Dickeya spp. with the main focus on current and future perspectives in that field. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Serpula lacrymans, The Dry Rot Fungus and Tolerance Towards Copper-Based Wood Preservatives

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Jensen, Bo; Clausen, Carol

    2005-01-01

    -rot fungi is thought to be due in part to oxalic acid production and accumulation. Oxalic acid has been implicated in copper tolerance by the formation of copper oxalate crystals. Twelve isolates of the dry rot fungus, S. lacrymans and four other brown rot species were evaluated for weight loss on wood......Serpula lacrymans (Wulfen : Fries) Schröter, the dry rot fungus, is considered the most (Wulfen : Fries) Schröterthe dry rot fungus, is considered the most economically important wood decay fungus in temperate regions of the world i.e. northern Europe, Japan and Australia. Previously copper based...... wood preservatives were the most commonly used preservatives for pressure treatment of wood for building constructions. Because of a suspicion about tolerance toward copper components, a soil block test was undertaken to clarify the effect of two copper based preservatives, copper citrate and ACQ...

  19. Role of Rot in bacterial autolysis regulation of Staphylococcus aureus NCTC8325.

    Science.gov (United States)

    Chu, Xinmin; Xia, Rui; He, Nianan; Fang, Yuting

    2013-09-01

    Autolysis is an important process in cell wall turnover in Staphylococcus aureus, performed by several peptidoglycan hydrolases or so-called autolysins and controlled by many regulators. Rot is a global regulator that regulates numerous virulence genes, including genes encoding lipase, hemolysins, proteases and genes related to cell surface adhesion. The aim of our study was to determine whether Rot has the ability to regulate autolysis. We compared Triton-X-100-induced autolysis of S. aureus NCTC8325 and its rot knock-out mutant. We found that the rot mutant showed increased autolysis rates. By examining the transcript level of several autolysins and some known regulators responsible for regulating autolysis using real-time RT-PCR assays, we found that transcription of two autolysins (lytM, lytN) and one regulatory operon (lrgAB) was changed in the rot mutant. An in vitro approach was undertaken to determine which of these genes are directly controlled by Rot. Rot proteins were overproduced in Escherichia coli and purified. Gel mobility shift DNA binding assays were used and showed that in-vitro-purified Rot can directly bind to the promoter region of lytM, lytN, lrgA and lytS. We also tested biofilm formation of the rot mutant, and it showed enhancement in biofilm formation. Taken together, our results reveal that Rot affects autolysis by directly regulating autolysins LytM and LytN, and, via a regulatory system, LrgAB. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. White Rock

    Science.gov (United States)

    2005-01-01

    14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples. Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  1. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.

    Science.gov (United States)

    Okamoto, Kenji; Kanawaku, Ryuichi; Masumoto, Masaru; Yanase, Hideshi

    2012-02-10

    The efficient production of bioethanol on an industrial scale requires the use of renewable lignocellulosic biomass as a starting material. A limiting factor in developing efficient processes is identifying microorganisms that are able to effectively ferment xylose, the major pentose sugar found in hemicellulose, and break down carbohydrate polymers without pre-treatment steps. Here, a basidiomycete brown rot fungus was isolated as a new biocatalyst with unprecedented fermentability, as it was capable of converting not only the 6-carbon sugars constituting cellulose, but also the major 5-carbon sugar xylose in hemicelluloses, to ethanol. The fungus was identified as Neolentinus lepideus and was capable of assimilating and fermenting xylose to ethanol in yields of 0.30, 0.33, and 0.34 g of ethanol per g of xylose consumed under aerobic, oxygen-limited, and anaerobic conditions, respectively. A small amount of xylitol was detected as the major by-product of xylose metabolism. N. lepideus produced ethanol from glucose, mannose, galactose, cellobiose, maltose, and lactose with yields ranging from 0.34 to 0.38 g ethanol per g sugar consumed, and also exhibited relatively favorable conversion of non-pretreated starch, xylan, and wheat bran. These results suggest that N. lepideus is a promising candidate for cost-effective and environmentally friendly ethanol production from lignocellulosic biomass. To our knowledge, this is the first report on efficient ethanol fermentation from various carbohydrates, including xylose, by a naturally occurring brown rot fungus. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Effect of Environment and Sugar Beet Genotype on Root Rot Development and Pathogen Profile During Storage.

    Science.gov (United States)

    Liebe, Sebastian; Varrelmann, Mark

    2016-01-01

    Storage rots represent an economically important factor impairing the storability of sugar beet by increasing sucrose losses and invert sugar content. Understanding the development of disease management strategies, knowledge about major storage pathogens, and factors influencing their occurrence is crucial. In comprehensive storage trials conducted under controlled conditions, the effects of environment and genotype on rot development and associated quality changes were investigated. Prevalent species involved in rot development were identified by a newly developed microarray. The strongest effect on rot development was assigned to environment factors followed by genotypic effects. Despite large variation in rot severity (sample range 0 to 84%), the spectrum of microorganisms colonizing sugar beet remained fairly constant across all treatments with dominant species belonging to the fungal genera Botrytis, Fusarium, and Penicillium. The intensity of microbial tissue necrotization was strongly correlated with sucrose losses (R² = 0.79 to 0.91) and invert sugar accumulation (R² = 0.91 to 0.95). A storage rot resistance bioassay was developed that could successfully reproduce the genotype ranking observed in storage trials. Quantification of fungal biomass indicates that genetic resistance is based on a quantitative mechanism. Further work is required to understand the large environmental influence on rot development in sugar beet.

  3. Simultaneous Detection of Brown Rot- and Soft Rot-Causing Bacterial Pathogens from Potato Tubers Through Multiplex PCR.

    Science.gov (United States)

    Ranjan, R K; Singh, Dinesh; Baranwal, V K

    2016-11-01

    Ralstonia solanacearum (Smith) Yabuuchi et al. and Erwinia carotovora subsp. carotovora (Jones) Bergey et al. (Pectobacterium carotovorum subsp. carotovorum) are the two major bacterial pathogens of potato causing brown rot (wilt) and soft rot diseases, respectively, in the field and during storage. Reliable and early detection of these pathogens are keys to avoid occurrence of these diseases in potato crops and reduce yield loss. In the present study, multiplex polymerase chain reaction (PCR) protocol was developed for simultaneous detection of R. solanacearum and E. carotovora subsp. carotovora from potato tubers. A set of oligos targeting the pectatelyase (pel) gene of E. carotovora subsp. carotovora and the universal primers based on 16S r RNA gene of R. solanacearum were used. The standardized multiplex PCR protocol could detect R. solanacearum and E. carotovora subsp. carotovora up to 0.01 and 1.0 ng of genomic DNA, respectively. The protocol was further validated on 96 stored potato tuber samples, collected from different potato-growing states of India, viz. Uttarakhand, Odisha, Meghalaya and Delhi. 53.1 % tuber samples were positive for R. solanacearum, and 15.1 % of samples were positive for E. carotovora subsp. carotovora, and both the pathogens were positive in 26.0 % samples when BIO-PCR was used. This method offers sensitive, specific, reliable and fast detection of two major bacterial pathogens from potato tubers simultaneously, particularly pathogen-free seed certification in large scale.

  4. Distribution and prevalence of crown rot pathogens affecting wheat crops in southern Chile

    OpenAIRE

    Ernesto Moya-Elizondo; Nolberto Arismendi; María Paz Castro; Herman Doussoulin

    2015-01-01

    Crown rot pathogens are associated with higher losses for wheat crop farmers, but information about the distribution and prevalence of these pathogens in Chile is inadequate. Distribution and prevalence of wheat (Triticum aestivum L.) crown rot pathogens were examined in a survey of 48 commercial fields from December 2011 to February 2012 in southern Chile. These fields were located between Collipulli (37°56'00" S; 72°26'39" W) and Purranque (40°50'30" S; 73°22'03" W). Severity of crown rot d...

  5. Armillaria root rot -- rev. revised edition. Information leaflet No. LFC 14E

    Energy Technology Data Exchange (ETDEWEB)

    Lachance, D.

    1996-11-01

    Armillaria root rot is a disease of the roots of plants and is caused by a fungus belonging to the genus `Armillaria spp.`. Most tree species in both the temperate and tropical zones can be affected by this disease; however, the damage is most notable and probably greatest in plantations. Armillaria root rot can be controlled, albeit with difficulty. This document looks at armillaria root rot and looks at the following points: Hosts and extent of the disease; the pathogens; symptoms and signs; infection and development; control; prevention; compromise solution; and, bibliography.

  6. Neofusicoccum luteum associated with leaf necrosis and fruit rot of olives in New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    V. Sergeeva

    2009-09-01

    Full Text Available Neofusicoccum luteum is reported for the first time from olives (Olea europaea, causing fruit rot and leaf necrosis. Affected fruits initially became brown with pycnidia developing on the surface, later drying out and becoming mummified. The fungus was shown to be pathogenic on both fruits and leaves. The association of Botryosphaeriaceae with rotting olive fruits in Mediterranean regions and in New South Wales, Australia indicates that these fungi play a significant role in fruit rots of olives and deserve greater attention.

  7. Control of Ralstonia Solanacearum The Causal Agent of Brown Rot in Potato Using Essential Oils

    International Nuclear Information System (INIS)

    Salem, E.A.

    2011-01-01

    Five essential oils, namely peppermint (Mentha piperita L.), caraway (Carium carvum L.), fennel (Foeniculum vulgare Mill.), lemongrass (Cymbopogon citratus Staph.) and thyme (Thymus vulgaris), were used separately against Ralstonia solanacearum; the causal agent of brown rot in potato. The most two effective oils (peppermint and thyme) were used in vitro and in vivo after testing their effects on potato tubers buds germination. Peppermint inhibited buds germination but thyme have no effects on buds germination. In vivo, the control of brown rot using thyme oil in glass house experiment reduced the percentage of brown rot infection to 30.6% and reduced the severity of disease from 5 to 3.

  8. Plasmonic coaxial Fabry-Pérot nanocavity color filter

    Science.gov (United States)

    Si, G. Y.; Leong, E. S. P.; Danner, A. J.; Teng, J. H.

    2010-08-01

    Plamonic coaxial structures have drawn considerable attetion recently because of their unique properties. They exhibit different mechanisms of extraordinary optical transmission observed from subwavelength holes and they can support localized Fabry-Pérot plasmon modes. In this work, we experimentally demonstrate color filters based on coaxial structures fabricated in optically thick metallic films. Using nanogaps with different apertures from 160 nm down to only 40 nm, we show varying color outputs when the annular aperture arrays are illuminated with a broadband light source. Effective color-filter function is demonstrated in the optical regime. Different color outputs are observed and optical spectra are measured. In such structures, it is the propagating mode playing an important role rather than the evanescent. Resonances depend strongly on ring apertures, enabling devices with tunability of output colors using simple geometry control.

  9. Stem base rot of winter wheat by Fusarium spp. - causes and effects

    Directory of Open Access Journals (Sweden)

    Małgorzata Narkiewicz-Jodko

    2012-12-01

    Full Text Available The aim of the work was to determine the influence of weather conditions and a degree of weed infestation on the incidence of stem bases rot (Fusarium spp. of winter wheat cultivars as well as their yield. The winter wheat cultivars (Kobra, Korweta, Mikon, Zyta were investigated (2000-2002 in the field where the following herbicides: Apyros 75 WG + Atpolan, Affinity 50,75 WG, Attribut 70 WG were applied. It has been shown the occurrence of stem base rot (Fusarium spp. depended mainly on weather conditions. The application of the herbicides improved the plant health. The stem base rot on winter wheat was caused by Fusarium spp., specially F. culmorum. The decrease in winter wheat yield depended on weather conditions, weed infestation and the occurrence of stem base rot (Fusarium spp..

  10. Efficacy of four plant extracts in the control of root rot disease of ...

    African Journals Online (AJOL)

    Garcinia cola) and neem (Azadirachta indica) extracts in the control of root rot of cowpea caused by Pythium aphanidermatum was carried out in vitro and in the field (in vivo). They were evaluated for their antifungal activity over P.

  11. First Report of Postharvest Gray Mold Rot on Carrot Caused by Botrytis cinerea in Korea

    Directory of Open Access Journals (Sweden)

    Md. Aktaruzzaman

    2014-06-01

    Full Text Available In February 2014, gray mold rotting symptoms were observed in carrots in cold storage at Gangneung, Gangwon province, Korea. The typical symptom of gray mold rot showed abundant blackish gray mycelia and conidia was observed on the infected root. The pathogen was isolated from infected root and cultured on PDA for further fungal morphological observation and confirming its pathogenicity according to Koch’s postulates. Results of morphological data, pathogenicity test and rDNA internal transcribed spacer (ITS 1 and 4 sequence showed that the postharvest gray mold rot of carrot was caused by Botyrtis cinerea. This is the first report of postharvest gray mold rot on carrot in Korea.

  12. Zwalczanie zgnilizny powodowanej przez grzyby z rodzaju Penicillium [Control of Penicillium apple rot

    Directory of Open Access Journals (Sweden)

    H. Borecka

    2015-06-01

    Full Text Available Control of Pezicula spp. fungi reduced Penicillium apple rot. The Penicillium apple rot process began slowly under the modified atmosphere of 5% CO2 and 3% O2. The lower concentration of Benlate – 0.05% did not influence this fungicide's effectiveness, The lower concentration– 0.05% of Topsin M decreased the effectiveness of this fungicide. The resistant strains of Penicillium spp. to benzimidazole fungicides under laboratory conditions were obtained.

  13. Molecular diagnosis of Phytophthora cinnamomi associated with root rot in avocado producing areas of Ecuador

    OpenAIRE

    Diana Elizabeth Toapanta-Gallegos; Luis Eduardo Morillo-Velastegui; William Fernando Viera-Arroyo

    2017-01-01

    One of the most damaging diseases in cultivation of avocado (Persea americana Mill.) is root rot associated with Phytophthora cinnamomi Rands. This disease causes progressive wilt and even death of the tree. The objective of this study was to identify the presence of P. cinnamomi in two productive areas of avocado in Ecuador using the molecular technique PCR-RFLP. Tree root samples were obtained with root rot symptoms in the production areas,...

  14. Distribution and prevalence of crown rot pathogens affecting wheat crops in southern Chile

    Directory of Open Access Journals (Sweden)

    Ernesto Moya-Elizondo

    2015-03-01

    Full Text Available Crown rot pathogens are associated with higher losses for wheat crop farmers, but information about the distribution and prevalence of these pathogens in Chile is inadequate. Distribution and prevalence of wheat (Triticum aestivum L. crown rot pathogens were examined in a survey of 48 commercial fields from December 2011 to February 2012 in southern Chile. These fields were located between Collipulli (37°56'00" S; 72°26'39" W and Purranque (40°50'30" S; 73°22'03" W. Severity of crown rot disease was determined through visual assessment of the first internode of 20 tillers obtained from each field. Incidence of crown rot pathogens per field was determined by plating the 20 tillers on Petri plates with 20% potato dextrose agar amended with lactic acid (aPDA medium. Resulting fungal colonies from monoxenic culture were identified by morphological or molecular-assisted identification. Severity of crown rot varied between 11.3% and 80% for individual fields. Culture plate analysis showed 72.2% of stems were infected with some fungus. Fusarium avenaceum, F. graminearum, and F. culmorum, pathogens associated with Fusarium crown rot disease were isolated from 13.5% of tillers. Gaeumannomyces graminis, causal agent of take-all disease in cereals, was isolated from 11.1% of culms. Phaeosphaeria sp., an endophyte and possibly a non-pathogenic fungus, was isolated from 13.9% of tillers. Pathogenic fungi such as Rhizoctonia spp. and Microdochium nivale, other saprophyte, and several unidentified non-sporulating fungi were isolated at frequencies lower than 3% of the total. Fusarium crown rot and take-all were the most prevalent and distributed crown rot diseases present in wheat crops in southern Chile.

  15. Thermal control of some post-harvest rot pathogens of Irish potato (solanum tuberosum l.)

    OpenAIRE

    Salami Olusola Abiodun; Popoola Omololu Olumide

    2007-01-01

    Thermal control effect on the incidence of some post-harvest rot pathogens of Solanum tuberosum (potato) was investigated in this study. Three cultivars of potato tuber whose local names are, Patiska, Mai Bawondoya and Nicola were used for the study. Five pathogenic fungi viz: Botryodiplodia theobromae, Fusarium redolens, Fusarium oxysporum, Penicillium sp. and Rhizopus oryzae associated with post harvest storage rot of root-tubers, were isolated from diseased potatoes. Among the three specie...

  16. Identification of Quorum Quenching Bacteria and Its Biocontrol Potential Against Soft Rot Disease Bacteria, Dickeya Dadantii

    OpenAIRE

    Khoiri, Syaiful; Damayanti, Tri Asmira; Giyanto, Giyanto

    2017-01-01

    Dickeya dadantii is one of newly found bacteria causing soft rot on orchids in Indonesia. Infected plants showed severe rot rapidly only in few days. An effort to control the bacteria was conducted by utilizing selected quorum quenching (QQ) inducer bacteria which produce AHL-lactonase by aiiA gene. The aims of this research were to screen and identify of quorum quenching bacteria, and also assayed their biocontrol potential ability against D. dadantii in laboratory. The screening of QQ bacte...

  17. No Reported Species, Botrytis aclada Causing Gray Mold Neck Rot Disease on Onion Bulbs in Korea

    OpenAIRE

    Hwang, Sun–Kyoung; Lee, Seung–Yeol; Back, Chang–Gi; Kang, In–Kyu; Lee, Hyang–Burm; Jung, Hee-Young; Ohga, Shoji; Oga, Shoji

    2016-01-01

    Gray mold neck rot was observed on onion bulbs (Allium cepa L.) in low–temperature warehouses in Changnyeong–gun, Korea. The causative pathogen was isolated from rotted onion bulb lesions and identified as Botrytis aclada based on morphological and culture characteristics, the sequences of three nuclear genes (G3PDH, HSP60, and RPB2), and polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) for Botrytis spp. identification. Although onion gray mold disease caused by B...

  18. First Report of Postharvest Gray Mold Rot on Carrot Caused by Botrytis cinerea in Korea

    OpenAIRE

    Md. Aktaruzzaman; Joon-Young Kim; Sheng-Jun Xu; Byung-Sup Kim

    2014-01-01

    In February 2014, gray mold rotting symptoms were observed in carrots in cold storage at Gangneung, Gangwon province, Korea. The typical symptom of gray mold rot showed abundant blackish gray mycelia and conidia was observed on the infected root. The pathogen was isolated from infected root and cultured on PDA for further fungal morphological observation and confirming its pathogenicity according to Koch’s postulates. Results of morphological data, pathogenicity test and rDNA internal transcr...

  19. Effectiveness of Neutral Electrolyzed Water on Incidence of Fungal Rot on Tomato Fruits ( Solanum lycopersicum L.).

    Science.gov (United States)

    Vásquez-López, Alfonso; Villarreal-Barajas, Tania; Rodríguez-Ortiz, Gerardo

    2016-10-01

    We assessed the effect of neutral electrolyzed water (NEW) on the incidence of rot on tomato ( Solanum lycopersicum L.) fruits inoculated with Fusarium oxysporum , Galactomyces geotrichum , and Alternaria sp. at sites with lesions. The inoculated fruits were treated with NEW at 10, 30, and 60 mg liter -1 active chlorine, with copper oxychloride fungicide, and with sterile distilled water (control) for 3, 5, and 10 min. In the experiment with F. oxysporum , 50 to 80% of the control fruits and 50 to 60% of the fruits treated with the fungicide exhibited symptoms of rot at the inoculated sites. The lowest incidence recorded was 30% for fruits treated with NEW at 60 mg liter -1 active chlorine with an immersion time of 5 min. In the experiment with G. geotrichum , incidence of rot on control fruits was 70 to 90%, and for treatment with fungicide rot incidence was 50 to 90%. NEW at 60 mg liter -1 active chlorine significantly reduced incidence of symptomatic fruit: only 30% of the inoculated fruits washed for 5 min had damage from rot. In the experiment with Alternaria sp., 60 to 90% of the fruits in the control group and 60 to 70% of the fruits in the fungicide group were symptomatic. The lowest incidence was recorded for the treatment in which the fruits were submerged in NEW with 60 mg liter -1 active chlorine for 3 min. In this group, 40 to 50% of the fruits exhibited symptoms of rot. These results were obtained 8 days after inoculation. NEW, with 60 mg liter -1 active chlorine, significantly reduced incidence of rot symptoms on fruits inoculated with one of the experimental fungi relative to the control (P ≤ 0.05). NEW at 60 mg liter -1 is effective in the control of fungal rot in tomatoes.

  20. Zwalczanie zgnilizny powodowanej przez grzyby z rodzaju Penicillium [Control of Penicillium apple rot

    OpenAIRE

    H. Borecka

    2015-01-01

    Control of Pezicula spp. fungi reduced Penicillium apple rot. The Penicillium apple rot process began slowly under the modified atmosphere of 5% CO2 and 3% O2. The lower concentration of Benlate – 0.05% did not influence this fungicide's effectiveness, The lower concentration– 0.05% of Topsin M decreased the effectiveness of this fungicide. The resistant strains of Penicillium spp. to benzimidazole fungicides under laboratory conditions were obtained.

  1. Root rot diseases of sugarbeet (Beta vulgaris L as affected by defloliation intensity

    Directory of Open Access Journals (Sweden)

    Karadimos Dimitros A.

    2006-01-01

    Full Text Available The aim of this work was to study the effect of sugar beet re-growth after water stress defoliation on root rots of three cultivars (Europa, Rival Corsica, which were spring sown in Thessaly, central Greece, for two growing seasons (2003-04. At the beginning of July, sugar beets were subjected to water deficit with irrigation withholding. A month later, three defoliation levels (control - C, moderate - MD, severe - SD and irrigation were applied. Thus, sugar beets were forced to re-grow and three harvests (15, 30 and 40 days after defoliation - DAD were conducted. Rotted roots per hectare were counted and pathogens were identified. Data were analyzed as a four-factor randomized complete block design with years, defoliation levels, sampling times and cultivars as main factors. The number of rotted roots was increased with the defoliation level and was significantly higher for SD sugar beets (3748 roots ha–1. No significant differences were found between C and MD treatments (1543 and 2116 roots ha–1, respectively. Rival was the most susceptible cultivar to root rots. Sugar beets were more susceptible to rotting 15 and 40 DAD (2778 and 2998 roots ha–1. The causal agents of root rots were the fungi, Fusarium spp., Rhizopus stolonifer, Macrophomina phaseolina and Rhizoctonia solani.

  2. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.J.K.; Worrall, J.J. (State Univ. of New York, Syracuse, NY (United States). Coll. of Environmental Science and Forestry)

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers.

  3. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles

    International Nuclear Information System (INIS)

    Wang, C.J.K.; Worrall, J.J.

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers

  4. Morphoanatomy and histochemistry analyses of cassava roots do not discriminate resistant from susceptible genotypes to soft root rot

    OpenAIRE

    SILVA, Jonny Lucio Sousa; MOURA, Elisa Ferreira; ILKIU-BORGES, Fernanda; GALVÃO, Jessivaldo Rodrigues; FARIAS-NETO, João Tomé de; SILVA, Gisele Barata da; RÊGO, Marcela Cristiane Ferreira; CUNHA, Roberto Lisboa

    2017-01-01

    ABSTRACT Cassava is an important culture in Brazil and in the North of the country, and soft root rot has affected root production. The aim of this work was to identify root morphoanatomic and histochemical characters associated with root rot resistance. In areas with no occurrence of the disease, nine cassava genotypes were tested, four of which were resistant, and five were susceptible to root rot. Root harvest was carried out twelve months after sowing, and thickness of suber, suber and co...

  5. Narrative Constructions of Whiteness among White Undergraduates

    Science.gov (United States)

    Foste, Zak

    2017-01-01

    This critical narrative inquiry was guided by two overarching research questions. First, this study examined how white undergraduates interpreted and gave meaning to their white racial identities. This line of inquiry sought to understand how participants made sense of their white racial selves, the self in relation to people of color, and the…

  6. The chaperone ClpX stimulates expression of Staphylococcus aureus protein A by rot dependent and independent pathways

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Ingmer, Hanne; Valihrach, Lukás

    2010-01-01

    at pinpointing the role of ClpX in Rot synthesis revealed that ClpX is required for translation of Rot. Interestingly, translation of the spa mRNA was, like the rot mRNA, enhanced by ClpX. These data demonstrate that ClpX performs dual roles in regulating Protein A expression, as ClpX stimulates transcription...... of spa by enhancing translation of Rot, and that ClpX additionally is required for full translation of the spa mRNA. The current findings emphasize that ClpX has a central role in fine-tuning virulence regulation in S. aureus....

  7. Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a Tomato Soft Rot.

    Science.gov (United States)

    George, Andrée S; Cox, Clayton E; Desai, Prerak; Porwolik, Steffen; Chu, Weiping; de Moraes, Marcos H; McClelland, Michael; Brandl, Maria T; Teplitski, Max

    2018-03-01

    Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum ) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot. IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility

  8. Resistance mechanisms to toxin-mediated charcoal rot infection in maturity group III soybean: role of seed phenol lignin soflavones sugars and seed minerals in charcoal rot resistance

    Science.gov (United States)

    Charcoal rot is a disease caused by the fungus Macrophomina phaseolina (Tassi) Goid, and thought to infect the plants through roots by a toxin-mediated mechanism, resulting in yield loss and poor seed quality, especially under drought conditions. The mechanism by which this infection occurs is not y...

  9. Association mapping in sunflower for sclerotinia head rot resistance

    Directory of Open Access Journals (Sweden)

    Fusari Corina M

    2012-06-01

    Full Text Available Abstract Background Sclerotinia Head Rot (SHR is one of the most damaging diseases of sunflower in Europe, Argentina, and USA, causing average yield reductions of 10 to 20 %, but leading to total production loss under favorable environmental conditions for the pathogen. Association Mapping (AM is a promising choice for Quantitative Trait Locus (QTL mapping, as it detects relationships between phenotypic variation and gene polymorphisms in existing germplasm without development of mapping populations. This article reports the identification of QTL for resistance to SHR based on candidate gene AM. Results A collection of 94 sunflower inbred lines were tested for SHR under field conditions using assisted inoculation with the fungal pathogen Sclerotinia sclerotiorum. Given that no biological mechanisms or biochemical pathways have been clearly identified for SHR, 43 candidate genes were selected based on previous transcript profiling studies in sunflower and Brassica napus infected with S. sclerotiorum. Associations among SHR incidence and haplotype polymorphisms in 16 candidate genes were tested using Mixed Linear Models (MLM that account for population structure and kinship relationships. This approach allowed detection of a significant association between the candidate gene HaRIC_B and SHR incidence (P  Conclusions These results suggest that AM will be useful in dissecting other complex traits in sunflower, thus providing a valuable tool to assist in crop breeding.

  10. Identification of some saffron corm rot fungi and their control

    Directory of Open Access Journals (Sweden)

    Ayatollah Saeedizadeh

    2014-10-01

    Full Text Available In order to isolation and identification of causal agents of corm rot and their control, the sampling was done from corms in farms of Bushroueye, southern Khorasan province. After culturing of sections of infected corms, the fungi, Penicillium digitatum, Aspergillus niger, and Rhizopus stolonifer were isolated and identified. For their control test, four concentrations of Pseudomonas fluorescens CHAO, Trichoderma harzianum Bi, and four concentrations of fungicides, cupper oxichlorore and benomil,were used with four replications. The control effect of antagonists and fungicides were determined by measurement of diameter of pathogens colony on medium. The results showed that the maximum of control of antagonistic fungus were obtained in concentrations of 1×107 and 1×108, and in the case of antagonistic bacterium wereshown in concentrations of 1×109 and 1×1010. The fungicides had maximum control in concentrations of 3×10-3 and 4×10-3. In general, among of the treatments, T. harzianumwas most effective to reducing the growth of pathogenic fungi.

  11. Sour rot-damaged grapes are sources of wine spoilage yeasts.

    Science.gov (United States)

    Barata, André; González, Sara; Malfeito-Ferreira, Manuel; Querol, Amparo; Loureiro, Virgílio

    2008-11-01

    Yeast species of sound and sour rot-damaged grapes were analysed during fermentation and grape ripening in the vineyard, using general and selective culture media. During 2003 and 2004 vintages, microvinifications were carried out with sound grapes to which different amounts of grapes with sour rot were added. The wine spoilage species Zygosaccharomyces bailii was only recovered during fermentations with sour rot, reaching 5.00 log CFU mL(-1) (2003) and 2.48 log CFU mL(-1) (2004) at the end of fermentation. The study of yeast populations during the sour rot ripening process (2005 vintage) showed that the veraison-damaged grapes always exhibited higher total yeast counts and a much greater diversity of species. From a total of 22 ascomycetous species, 17 were present only in damaged grapes. The most frequent species were Issatchenkia occidentalis and Zygoascus hellenicus. The spoilage species Z. bailii and Zygosaccharomyces bisporus were consistently isolated exclusively from damaged grapes. This work demonstrates that one of the most dangerous wine spoilage species, Z. bailii, is strongly associated with sour rot grapes and survives during fermentation with Saccharomyces cerevisiae. The use of selective media provides a more accurate characterization of grape contamination species.

  12. Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt

    Science.gov (United States)

    Hassan, Naglaa; Shimizu, Masafumi

    2014-01-01

    Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt. PMID:24808737

  13. PHOTOSYNTHETIC RESPONSES OF Eucalyptus nitens Maiden AT INITIAL STAGES OF ROOT-ROT INFECTION

    Directory of Open Access Journals (Sweden)

    Luciasih Agustini

    2015-04-01

    Full Text Available Root-rots are known to be latent diseases that may be present in plants for an extended period without any noticeable expression of symptoms above ground. Photosynthetic responses of Eucalyptus nitens saplings artificially inoculated with the root-rot pathogen, Armillaria luteobubalina were examined to characterize the initial stages of root-rot infection. This paper studies three photosynthetic parameters, i.e. photosystem II yield (Fv/Fm, chlorophyll content and photosynthetic capacity (Amax for two strains of A. luteobubalina over a seven-month period. Root systems were either wounded or left intact before inoculation. A significant difference was observed in the Fv/Fm ratio between the uninoculated control and inoculated saplings. Photosystem II yield was considered the most sensitive parameter for the early detection of root-rot disease. Chlorophyll content and Amax decreased for all trees, including controls, during the period of the experiment, and most likely reflected host responses to seasonal change rather than treatment effects. Fungal re-isolations from symptomatic roots of inoculated trees confirmed the presence of A. luteobubalina. Findings from this preliminary trial indicated that there were detectable physiological changes associated with early infection of root-rot. However, to detect more widespread physiological changes an experiment of longer duration is needed.

  14. Involvement of phenolic compounds in the susceptibility of bananas to crown rot. A review

    Directory of Open Access Journals (Sweden)

    Lassois, L.

    2012-01-01

    Full Text Available Crown rot of bananas, caused by a fungal parasitic complex, is one of the main quality defects of exported bananas. Major variations in the susceptibility of bananas to crown rot have been observed in different production zones. The physiological state of the banana fruit at harvest is said to influence its response to pathogenic attack and thus to modulate its susceptibility to crown rot. The susceptibility of bananas to this disease, however, appears to be influenced by many pre-harvest factors, although the underlying defense mechanisms have not been clearly identified. A recent report based on molecular analyses suggests that phenolic compounds might be involved in the different variations in the susceptibility of bananas to crown rot. Results of other earlier studies point to an involvement of phenolic compounds in the defensive reactions of banana plants against various pathogens. The present paper reviews the current state of knowledge on the variations in the susceptibility of bananas to crown rot and takes stock of what is known about phenolic compounds in relation to their potential involvement in the defense mechanisms of the banana plant.

  15. Phenotypic and genotypic characteristics of Iranian soft rot bacteria isolates from different hosts

    Directory of Open Access Journals (Sweden)

    Rasool REZAEI

    2010-09-01

    Full Text Available During 2005–2006, 42 soft rot bacterial strains were isolated from the infected tubers of potato, roots of carrot, sugar beet and turnip, and the leaves of lettuce and cabbage with soft rot symptoms in Iran. The isolates were rod-shaped, motile with peritrichous flagella, gram negative, facultative anaerobe, oxidase and urease negative and they rotted potato tuber slices. Of the 42 isolates, 20 were identified as Pectobacterium carotovorum subsp. carotovorum (Pcc, 6 as P. carotovorum subsp. odoriferum (Pco, 4 as P. betavasculorum (Pb and 12 strains as Dickeya dadantii (Dda. PCR amplification of fingerprints of repetitive bacterial DNA elements using the REP, ERIC and BOX primers differentiated the soft rot bacteria to the species and subspecieslevel. Strains of Pcc and Dda were phenotypically and genotypically highly variable, but Pb and Pco strains had low variability. REP-PCR was found to be a promising genotypic tool for the rapid and reliable speciation and typing of soft rot bacteria.

  16. Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune.

    Science.gov (United States)

    Horisawa, Sakae; Ando, Hiromasa; Ariga, Osamu; Sakuma, Yoh

    2015-12-01

    In the present study, ethanol production from polysaccharides or wood chips was conducted in a single reactor under anaerobic conditions using the white rot fungus Schizophyllum commune NBRC 4928, which produces enzymes that degrade lignin, cellulose and hemicellulose. The ethanol yields produced from glucose and xylose were 80.5%, and 52.5%, respectively. The absolute yields of ethanol per microcrystalline cellulose (MCC), xylan and arabinogalactan were 0.26g/g-MCC, 0.0419g/g-xylan and 0.0508g/g-arabinogalactan, respectively. By comparing the actual ethanol yields from polysaccharides with monosaccharide fermentation, it was shown that the rate of saccharification was slower than that in fermentation. S. commune NBRC 4928 is concluded to be suitable for CBP because it can produce ethanol from various types of sugar. From the autoclaved cedar chip, only little ethanol was produced by S. commune NBRC 4928 alone but ethanol production was enhanced by combined use of ethanol fermenting and lignin degrading fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Characterizing forest root‐ and butt‐rot fungi in Yap, Palau, Pohnpei, Kosrae, Guam and Saipan [Chapter III

    Science.gov (United States)

    Phil Cannon; Ned B. Klopfenstein; Mee-Sook Kim; Yuko Ota; Norio Sahashi; Robert L. Schlub; Roger Brown; Sara M. Ashiglar; Amy L. Ross-Davis; John W. Hanna

    2014-01-01

    Ganoderma and Phellinus are two common fungal genera causing butt-rot on trees growing on USA-affiliated islands of the western Pacific. Although these fungi can be quite prevalent, especially in some older mangrove stands, it appears that the majority of infections caused by these fungi leads to severe rotting of the heartwood but do not kill the living...

  18. Formation of dry gram-negative bacteria biocontrol products and small pilot tests against potato dry rot

    Science.gov (United States)

    Pseudomonas fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 reduce important potato maladies in storage including dry rot, late blight, pink rot, and sprouting. Experiments were conducted to identify methods for producing a dried, efficacious biological control product from one or more of these...

  19. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review

    NARCIS (Netherlands)

    Czajkowski, R.L.; Pérombelon, M.C.M.; Jafra, S.; Lojkowska, E.; Potrykus, M.; Wolf, van der J.M.; Sledz, W.

    2015-01-01

    The soft rot Enterobacteriaceae (SRE) Pectobacterium and Dickeya species (formerly classified as pectinolytic Erwinia spp.) cause important diseases on potato and other arable and horticultural crops. They may affect the growing potato plant causing blackleg and are responsible for tuber soft rot in

  20. Multiplex detection and identification of bacterial pathogens causing potato blackleg and soft rot in Europe, using padlock probes

    NARCIS (Netherlands)

    Slawiak, M.; Doorn, van R.; Szemes, M.; Speksnijder, A.G.C.L.; Waleron, M.; Wolf, van der J.M.; Lojkowska, E.; Schoen, C.D.

    2013-01-01

    The objective of this study was to develop a multiplex detection and identification protocol for bacterial soft rot coliforms, namely Pectobacterium wasabiae (Pw), Pectobacterium atrosepticum (Pba) and Dickeya spp., responsible for potato blackleg and tuber soft rot. The procedures were derived from

  1. rDNA-based characterization of a new binucleate Rhizoctonia spp. causing root rot on kale in Brazil

    NARCIS (Netherlands)

    Kuramae, E.E.; Buzeto, A.L.; Nakatani, A.K.; Souza, N.L.

    2007-01-01

    In this paper we present the first report of the occurrence of a binucleate Rhizoctonia spp. causing hypocotyl and root rot in kale in Brazil. Rhizoctonia spp. were isolated from kale (Brassica oleracea var. acephala) with symptoms of hypocotyl and root rot. The isolates, characterized as binucleate

  2. Screening preharvest/postharvest strategies to prevent fruit rot decay.

    Science.gov (United States)

    Vorstermans, B; Creemers, P

    2007-01-01

    In fruit growing preharvest sprayings in the orchard are mainly applied to protect fruit from decaying. Next to multisite fungicides (captan, thiram, tolylfluanid) the most commonly used products recognized for the Belgium market are Bellis (pyraclostrobin & boscalid) and the combination of Topsin M (thiophanate-methyl) and Frugico (diethofencarb). In general the spraying schedule varies depending on weather conditions (infection risk), preharvest interval of available fungicides, fruitgrower and cultivar of pome fruit (apple/pear). Facing the climatological conditions before picking the residue loading on the fruit surface can differ enormously. Also wet (pre)grading is considered to decrease the product residue resulting to fruits which are less protected before entering the cold storage room. In this context a partially replacement of the preharvest treatments by one postharvest application could offer a reliable alternative to the PPP reduction program (Plant Protection Products) in the orchard. A standardized application method by dipping or drenching will cover the fruits homogenically resulting in a rationalized fungicide use compared to the preharvest sprayings in the orchard. For the Belgium market Philabuster (imazalil & pyrimethanil) is registered for postharvest treatments since for this product a proper solution for the waste water of postharvest uses was developed to protect surface waters (Funds technology). Philabuster provides an advanced mould control towards fruit rot pathogens Gloeosporium spp., Botrytis cinerea and Penicillium spp. In this context several trials were set up to evaluate the biological efficacy of Philabuster alone or in combination with preharvest sprayings in the orchard. In concrete different preharvest spraying schedules were applied in the last six weeks before harvest on apple and pear facing parameters as rational fungicide use, antifungal effectiveness and cost price. The purpose was to select the optimal combination in

  3. Molecular Basis of Resistance to Fusarium Ear Rot in Maize

    Directory of Open Access Journals (Sweden)

    Alessandra Lanubile

    2017-10-01

    Full Text Available The impact of climate change has been identified as an emerging issue for food security and safety, and the increased incidence of mycotoxin contamination in maize over the last two decades is considered a potential emerging hazard. Disease control by chemical and agronomic approaches is often ineffective and increases the cost of production; for this reason the exploitation of genetic resistance is the most sustainable method for reducing contamination. The review focuses on the significant advances that have been made in the development of transcriptomic, genetic and genomic information for maize, Fusarium verticillioides molds, and their interactions, over recent years. Findings from transcriptomic studies have been used to outline a specific model for the intracellular signaling cascade occurring in maize cells against F. verticillioides infection. Several recognition receptors, such as receptor-like kinases and R genes, are involved in pathogen perception, and trigger down-stream signaling networks mediated by mitogen-associated protein kinases. These signals could be orchestrated primarily by hormones, including salicylic acid, auxin, abscisic acid, ethylene, and jasmonic acid, in association with calcium signaling, targeting multiple transcription factors that in turn promote the down-stream activation of defensive response genes, such as those related to detoxification processes, phenylpropanoid, and oxylipin metabolic pathways. At the genetic and genomic levels, several quantitative trait loci (QTL and single-nucleotide polymorphism markers for resistance to Fusarium ear rot deriving from QTL mapping and genome-wide association studies are described, indicating the complexity of this polygenic trait. All these findings will contribute to identifying candidate genes for resistance and to applying genomic technologies for selecting resistant maize genotypes and speeding up a strategy of breeding to contrast disease, through plants

  4. Molecular diagnosis of Phytophthora cinnamomi associated with root rot in avocado producing areas of Ecuador

    Directory of Open Access Journals (Sweden)

    Diana Elizabeth Toapanta-Gallegos

    2017-05-01

    Full Text Available One of the most damaging diseases in cultivation of avocado (Persea americana Mill. is root rot associated with Phytophthora cinnamomi Rands. This disease causes progressive wilt and even death of the tree. The objective of this study was to identify the presence of P. cinnamomi in two productive areas of avocado in Ecuador using the molecular technique PCR-RFLP. Tree root samples were obtained with root rot symptoms in the production areas, from which 10 isolates were morphologically identified with Phytophthora spp. infection. To distinguish among the various Phytophthora species, a molecular analysis was performed using molecular markers in the ITSregion of the ribosomal DNA (rDNA. The ITSdigestion fragment obtained by PCR with the Ta qI enzyme confirmed the presence of Phytophthora cinnamomi in the isolated samples, and its association with root rot in the sampled production areas.

  5. Survey of root rot diseases of sugar bett in Central Greece

    Directory of Open Access Journals (Sweden)

    Karadimos Dimitros A.

    2006-01-01

    Full Text Available An extensive survey was conducted during the summer and autumn of 2004 in sugar beet fields in the area of Larissa, Thessaly region, with plants showing symptoms of root rot diseases. The aim of the monitoring was to identify the causal agents of root rot diseases. In total, 76 sugar beet fields were surveyed and 5-10 diseased roots were examined from each field. Isolations, carried out on PDA, showed that two main fungal pathogens causing root rot were Rhizoctonia solani and Phytophthora cryptogea. The former was isolated in 46% of the fields and the latter in 38% of the fields. In addition, Rhizopus stolonifer, Fusarium spp., Scerotium rolfsii and Rhizoctonia violacea were isolated in 14%, 7%, 4% and 1% of the fields respectively. In most of the surveyed fields only one pathogen species was isolated and only in a few of them more than one fungal species was identified.

  6. Suppression of crown and root rot of wheat by the rhizobacterium Paenibacillus polymyxa

    Directory of Open Access Journals (Sweden)

    Lamia LOUNACI

    2017-01-01

    Full Text Available A seedling bioassay was developed for screening a wheat root-associated rhizobacterial strain of Paenibacillus polymyxa for ability to suppress crown and root rot pathogens of wheat. The primary aim was to evaluate the ability of P. polymyxa to suppress Fusarium graminearum, F. culmorum, F. verticillioides and Microdochium nivale, the fungal pathogens responsible for Fusarium crown and root rot and head blight of wheat in Algeria. Bioassays conducted under controlled conditions indicated that seed treatments with P. polymyxa strain SGK2 significantly reduced disease symptoms caused by all four fungal pathogens. Plant growth promotion (increased shoot and root dry weights, however, depended on the pathogen tested. Our results indicate that seed treatments with a biocontrol agent could be an additional strategy for management of wheat crown and root rot pathogens.

  7. Model of Fabry-Pérot-type electromagnetic modes of a cylindrical nanowire

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2010-01-01

    The rigorous theory of normal electromagnetic modes of a cylindrical nanowire of finite length is developed. The exact integral equation which determines the solution of Maxwell's equations obeying the boundary conditions at the whole nanowire surface is derived. The nanowire normal (Fabry......-Pérot) modes are defined as non-trivial solutions of the source-free equation. The approach is considered in more detail for elongated nanowires whose length is much larger than their diameter. The resonance condition obtained for a single-mode nanowire resembles the formula for the Fabry-Pérot resonator...

  8. New record of Phytophthora root and stem rot of Lavandula angustifolia

    Directory of Open Access Journals (Sweden)

    Leszek B. Orlikowski

    2013-12-01

    Full Text Available Phytophthora cinnamomi was isolated from rotted root and stem parts of lavender as well as from soil taken from containers with diseased plants. Additionally Botrytis cinerea, Fusarium spp. and Sclerotinia sclerotiorum were often isolated from diseased tissues. P. cinnamomi colonised leaves and stem parts of 4 lavender species in laboratory trials and caused stem rot of plants in greenhouse experiments. Cardinal temperature for in vitro growth were about 7,5 and 32°C with optimum 25-27,5°C. The species colonised stem tissues at temperature ranged from 10° to 32°C.

  9. Characterisation of Alternaria species-groups associated with core rot of apples in South Africa

    DEFF Research Database (Denmark)

    Serdani, M.; Kang, J.C.; Andersen, Birgitte

    2002-01-01

    Alternaria core rot of red apple cultivars is a serious post-harvest disease in South Africa. Thirty isolates of Alternaria spp. previously isolated from apple, together with reference isolates of A. alternata and A. infectoria, were characterised and grouped according to their sporulation patterns...... the other species-groups, as all isolates had a distinction of 35 base pair insertions and 6 base pair deletions in the ITS regions. The results obtained in the present study showed that the major pathogens associated with core rot disease of Top Red apples in South Africa belong to the A. tenuissima...

  10. Control of Root-rot Diseases of Phaseolus vulgaris Using Gliotoxin

    Directory of Open Access Journals (Sweden)

    Aliaa, R. E.

    2008-01-01

    Full Text Available Effect of the antifungal antibiotic gliotoxin on root-rot diseases caused by Fusarium solani and its influence on population of fungal flora in soil were investigated. Bean seeds were treated with different concentrations of gliotoxin before sowing. The results obtained from the green house application of bioagent indicated that soaking seeds in different concentrations of gliotoxin from 1µg/mL to 15µg/mL (for 60 minutes significantly reduced the percentage of damping off and root rot as compared with control (pathogen only. Also 10µg/mL of gliotoxin was significantly decreased the population of fungal flora as compared with control.

  11. Phytophthora Root and Crown Rot on Apples in Bulgaria

    Directory of Open Access Journals (Sweden)

    Mariana Nakova

    2010-01-01

    Full Text Available Phytophthora is a genus of Oomycota responsible for some of the most serious diseases with great economic impact (Judelson and Blanco, 2005. While 54 species were found in the 20th century (Erwin and Ribeiro, 1996 another 51-54 new species have been identified(Brasier, 2008 since the year 2000. They are spread worldwide and have broad range of host plants – fruit trees, citrus, forest and park species. Phytophthora can cause serious damages in orchards and nurseries of apples, cherries, etc. In Bulgaria they have been found first on young apples and cherries (1998-1999 in Plovdiv region (Nakova, 2003. Surveys have been done for discovering disease symptoms in Plovdiv and Kjustendil regions. Isolates have been obtained from infected plant material (roots and stem bases applying baiting bioassay (green apples, variety Granny Smith and/or PARP 10 selective media. Phytophthora strains were identified based on standard morphology methods – types of colonies on PDA, CMA, V 8, type and size of sporangia, oogonia and antheridia, andoospores. Cardial temperatures for their growth were tested on CMA and PDA.For molecular studies, DNA was extracted from mycelium using the DNA extraction kit.DNA was amplified using universal primers ITS 6 and ITS 4. Amplification products concentrations were estimated by comparison with the standard DNA. Sequencing was done at the Scottish Crop Research Institute (SCRI, Dundee, Scotland. Phytophthora root and crown rot symptoms first appear in early spring. Infected trees show bud break delay, have small chlorotic leaves, and branches die all of a sudden. Later symptoms are found in August-September. Leaves of the infected trees show reddish discoloration and drop down. Both symptoms are connected with lesions (wet, necrotic in appearance at stem bases of the trees.Disease spread was 2-3% in most gardens, only in an apple orchard in Bjaga (Plovdiv region it was up to 8-10%. Morphologically, the isolates acquired from

  12. Short-Read Sequencing for Genomic Analysis of the Brown Rot Fungus Fibroporia radiculosa

    Science.gov (United States)

    J. D. Tang; A. D. Perkins; T. S. Sonstegard; S. G. Schroeder; S. C. Burgess; S. V. Diehl

    2012-01-01

    The feasibility of short-read sequencing for genomic analysis was demonstrated for Fibroporia radiculosa, a copper-tolerant fungus that causes brown rot decay of wood. The effect of read quality on genomic assembly was assessed by filtering Illumina GAIIx reads from a single run of a paired-end library (75-nucleotide read length and 300-bp fragment...

  13. Distribution of cranberry fruit-rotting fungi in new jersey and evidence for nonspecific host resistance.

    Science.gov (United States)

    Stiles, C M; Oudemans, P V

    1999-03-01

    ABSTRACT A survey was conducted over a 3-year period to determine the frequencies and distributions of fruit-rotting fungi in New Jersey cranberry beds. In the first 2 years of the study, Physalospora vaccinii and Glomerella cingulata were the most prevalent and widespread field-rotting fungi. In the third year, the frequency of G. cingulata declined markedly. Other species such as Coleophoma empetri, Phyllosticta vaccinii, and Phomopsis vaccinii were isolated at high frequencies from a limited number of locations. Storage-rotting fungi including Allantophomopsis cytisporea and A. lycopodina were isolated at low frequencies, but were widely distributed within the growing region. On sound fruit, a somewhat different profile emerged. Fungi such as Phyllosticta elongata, Alternaria spp., and Physalospora vaccinii were commonly isolated. In comparisons among different cranberry cultivars, no differences in the fungal profiles were seen. This was interpreted to indicate that if differences in fruit-rot resistance exist, they are likely to be general forms of resistance rather than fungal species-specific mechanisms.

  14. A single dominant Ganoderma species is responsible for root rot of ...

    African Journals Online (AJOL)

    Ganoderma root rot is the most serious disease affecting commercially planted Acacia mangium in plantations in Indonesia. Numerous Ganoderma spp. have been recorded from diseased trees of this species and to a lesser extent Eucalyptus, causing confusion regarding the primary cause of the disease. In this study, a ...

  15. Differential stress-induced regulation of two quinone reductases in the brown rot Basidiomycete Gloeophyllum trabeum

    Science.gov (United States)

    Roni Cohen; Melissa R. Suzuki; Kenneth E. Hammel

    2004-01-01

    Quinone reductases (QRDs) have two important functions in the basidiomycete Gloeophyllum trabeum, which causes brown rot of wood. First, a QRD is required to generate biodegradative hydroxyl radicals via redox cycling between two G. trabeum extracellular metabolites, 2,5-dimethoxyhydroquinone (2,5-DMHQ) and 2,5-dimethoxy-1,4-benzoquinone (2,5- DMBQ). Second, because 2,...

  16. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot Basidiomycete Gloeophyllum trabeum

    Science.gov (United States)

    Roni Cohen; Melissa R. Suzuki; Kenneth E. Hammel

    2005-01-01

    Brown rot basidiomycetes have long been thought to lack the processive cellulases that release soluble sugars from crystalline cellulose. On the other hand, these fungi remove all of the cellulose, both crystalline and amorphous, from wood when they degrade it. To resolve this discrepancy, we grew Gloeophyllum trabeum on microcrystalline cellulose (Avicel) and purified...

  17. First report of Gliocephalotrichum bulbilium and G. simplex causing fruit rot of rambutan in Puerto Rico

    Science.gov (United States)

    Worldwide, significant post-harvest disease losses of rambutan (Nephelium lappaceum L.) have been reported and several pathogens have been associated with fruit rot. Even though rambutan was introduced to Puerto Rico in 1927, it was not until 1998 that commercial farms were established in the wester...

  18. Chemical compositions, infrared spectroscopy, and X-ray diffractometry study on brown-rotted woods

    Science.gov (United States)

    Gai-Yun Li; Luo-Hua Huang; Chung Hse; Te-Fu Qin

    2011-01-01

    The effect of brown-rot decay on the chemical composition and crystallinity of Masson pine was studied by exposing it to Wolfiporia cocos (Schwein.) Ryvarden and Gilbn. for durations of up to 15 weeks in the field. The holocellulose content, α-cellulose content, and wood crystallinity decreased slowly in the initial stage, followed by a significant reduction...

  19. Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex

    NARCIS (Netherlands)

    Cabral, A.; Groenewald, J.Z.; Rego, C.; Oliveira, H.; Crous, P.W.

    2012-01-01

    Ilyonectria radicicola and its Cylindrocarpon-like anamorph represent a species complex that is commonly associated with root rot disease symptoms on a range of hosts. During the course of this study, several species could be distinguished from I. radicicola sensu stricto based on morphological and

  20. The role of chemical transport in the brown-rot decay resistance of modified wood

    Science.gov (United States)

    Samuel Zelinka; R. Ringman; A. Pilgard; E. E. Thybring; Joseph Jakes; K. Richter

    2016-01-01

    Chemical modification of wood increases decay resistance but the exact mechanisms remain poorly understood. Recently, Ringman and coauthors examined established theories addressing why modified wood has increased decay resistance and concluded that the most probable cause of inhibition and/or delay of initiation of brown-rot decay is lowering the equilibrium moisture...

  1. Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose

    Science.gov (United States)

    Roni Cohen; Kenneth A. Jensen; Carl J. Houtman; Kenneth E. Hammel

    2002-01-01

    It is often proposed that brown rot basidiomycetes use extracellular reactive oxygen species (ROS) to accomplish the initial depolymerization of cellulose in wood, but little evidence has been presented to show that the fungi produce these oxidants in physiologically relevant quantities. We used [14C]phenethyl polyacrylate as a radical trap to estimate extracellular...

  2. Dry Rot of Raphia hookeri and its Effect on Proximate Composition ...

    African Journals Online (AJOL)

    Prof. Ogunji

    for planting. Proximate analyses of the healthy and infected mesocarps of the fruit was carried out using the methods described by the Association of Official Analytical ... composition of R. hookeri fruits, there is therefore the need to study the effect of the dry rot disease ..... Trace heavy metal contents of some spices and.

  3. Organics and mineral fertilizers and biological control on the incidence of stalk rot and corn yield

    Directory of Open Access Journals (Sweden)

    Elena Blume

    2014-06-01

    Full Text Available The expansion of area under maize (Zea mays L. and the use of no tillage have favored the incidence of stalk rot on this crop. The study aimed to evaluate the organic fertilizers and the treatment of corn seeds with Trichoderma spp. on the production of dry matter (DM of shoot, incidence of stalk rot and corn yield. The experiment consisted in a factorial with split-plot in strips, on the randomized block design with four replicates, and the fertilization treatments (pig slurry; swine deep bedding; cattle slurry; mineral fertilizer; control treatment were applied to the plots and the seeds treatment (with and without Trichoderma spp. in the subplots. At the flowering stage, three corn plants per subplot were collected for the assessment of DM production. At physiological maturity stage, the incidence of stalk rot was assessed, and the ears of corn harvested for productivity assessment. The organic and mineral fertilizers increased the production of DM and productivity of corn. Trichoderma spp. increased the production of DM of corn, but had no reflection on productivity. The incidence of stalk rot in corn was higher in treatments with organic and mineral fertilization. Organic fertilizers increase dry matter production of shoot and corn yield, and Trichoderma spp. provides an increase in dry matter production of shoot.

  4. Distribution of Rhizoctonia Bare Patch and Root Rot in Eastern Washington and Relation to Climatic Variables

    Science.gov (United States)

    Rhizoctonia is a fungus that attacks the roots of wheat and barley, causing a root rot and bare patch in the dryland wheat cropping area of the inland Pacific Northwest. Over the last 7 years, we have been investigating the distribution of this pathogen, using molecular methods based on extracting a...

  5. Serpula lacrymans, the dry rot fungus and tolerance towards copper-based wood preservatives

    Science.gov (United States)

    Anne Christine Steenkjaer Hastrup; Frederick Green; Carol Clausen; Bo Jensen

    2005-01-01

    Serpula lacrymans (Wulfen : Fries) Schröter, the dry rot fungus, is considered the most economically important wood decay fungus in temperate regions of the world i.e. northern Europe, Japan and Australia. Previously copper based wood preservatives were the most commonly used preservatives for pressure treatment of wood for building constructions. Because of a...

  6. Root rot peas in the Netherlands : fungal pathogens, inoculum potential and soil receptivity

    NARCIS (Netherlands)

    Oyarzun, P.J.

    1994-01-01

    Fungi associated to pea (Pisum sativum L.) root rot were studied. Fusarium and Oomycetes were most common. Fusarium solani f. sp. pisi, Fsp, was widely distributed and the most frequent

  7. Post Harvest Control of Tomato Fruit Rot Caused by Fusarium solani ...

    African Journals Online (AJOL)

    Fusarium Solani is an important rot-causing organism of tomato fruit in storage. Alcohol and water extracts of bark, rootand leaves of the neem plant (Azadirachta indica) were tested against the pathogen both in vitro and in vivo. The alcoholextract of different parts, especially the bark of the plant, gave the highest growth ...

  8. First report of anthracnose fruit rot of blueberry caused by Colletotrichum fioriniae in New Jersey

    Science.gov (United States)

    Anthracnose fruit rot is the most important disease of blueberry in New Jersey. Most fungicide applications in New Jersey and other blueberry growing regions is for the control of this disease. The causal agent of this disease has been reported to be Colletotrichum acutatum and other species in the ...

  9. Interaction between N-fertilizer and water availability on borer-rot complex in sugarcane

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo da Rocha Pannuti

    2015-03-01

    Full Text Available This study aimed to evaluate the effects of nitrogen availability in fertigation and rainfed management, as well as their interactions with the incidence of and damage caused by D. saccharalis and red rot in sugarcane. The experiment consisted of four treatments (0 and 150 kg ha–1 of N-fertilizer with irrigation; 0 and 150 kg ha–1 of N-fertilizer in rainfed management in a randomized complete block design with four replications. The evaluated parameters were the number of holes and internodes with red rot per meter of cultivation, stalk yield and sugar content. In the laboratory (T = 25 ± 2 °C; R.H. = 70 ± 10%: 12:12-L:D, we evaluated the attractiveness and consumption of fragments of stalks from the different treatments for fourth instar larvae through choice and no-choice tests in a randomized complete block design with ten replications. Nitrogen fertilization via irrigation has favorable effects on borer-rot complex and leads to higher gains in stalk and sugar yields when compared to rainfed management. The increments of stalk and sugar yields due to nitrogen fertilization compensates for the increase in borer-rot complex infestation. In laboratory tests, D. saccharalis larvae were similarly attracted to all treatments regardless of the doses of N-fertilizer or the water regimes evaluated. However, fragments of sugarcane stalks produced with nitrogen fertilization were consumed more by D. saccharalis in both water regimes.

  10. Draft genome sequence of a monokaryotic model brown-rot fungus Postia (Rhodonia) placenta SB12

    Science.gov (United States)

    Jill Gaskell; Phil Kersten; Luis F. Larrondo; Paulo Canessa; Diego Martinez; David Hibbett; Monika Schmoll; Christian P. Kubicek; Angel T. Martinez; Jagjit Yadav; Emma Master; Jon Karl Magnuson; Debbie Yaver; Randy Berka; Kathleen Lail; Cindy Chen; Kurt LaButti; Matt Nolan; Anna Lipzen; Andrea Aerts; Robert Riley; Kerrie Barry; Bernard Henrissat; Robert Blanchette; Igor V. Grigoriev; Dan Cullen

    2017-01-01

    We report the genome of Postia (Rhodonia) placenta MAD-SB12, a homokaryotic wood decay fungus (Basidiomycota, Polyporales). Intensively studied as a representative brown rot decayer, the gene complement is consistent with the rapid depolymerization of cellulose but not lignin.

  11. Control of yam tuber rot with leaf extracts of Xylopia aethiopica and ...

    African Journals Online (AJOL)

    JOHN

    orthiophenylphenate, borax, captan, thiobendazole, benomyl, bleach (sodium hypochlorite) have been found to significantly reduce storage rot in yam (Booth, 1974;. Noon, 1978,). Other control methods involve the use of microorganism such as Trichoderma viride and Bacillus subtilis (Okigbo and Ikediugwu, 2000; Okigbo, ...

  12. Biodiversity of Fusarium species causing ear rot of maize in Germany

    NARCIS (Netherlands)

    Görtz, A.; Oerke, E.C.; Steiner, U.; Waalwijk, C.; Vries, de P.M.; Dehne, H.W.

    2008-01-01

    In Germany, maize is one of the most important agriculture commodities, a major component in animal feed as well as an essential substrate producing biogas. Maize car rot poses a major impact worldwide as it is caused by several Fusarium spp., most of which have the ability to produce mycotoxins.

  13. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta

    Science.gov (United States)

    Jiwei Zhang; Gerald N. Presley; Kenneth E. Hammel; Jae-San Ryu; Jon R. Menke; Melania Figueroa; Dehong Hu; Galya Orr; Jonathan S. Schilling

    2016-01-01

    Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside...

  14. Effect of Charcoal Rot on Selected Putative Drought Resistant Soybean Genotypes and Yield.

    Science.gov (United States)

    Charcoal rot (CR), caused by the fungus Macrophomina phaseolina (Tassi) Goid. is a pervasive disease of economic significance on soybeans ([(Glycine max (L.) Merr.) that is exacerbated when plants are under stress, especially under heat and drought condition. Thus, the objective of this research was...

  15. Potato brown rot incidence and severity under different management and amendment regimes in different soil types

    NARCIS (Netherlands)

    Messiha, N.A.S.; Bruggen, van A.H.C.; Diepeningen, van A.D.; Vos, de O.J.; Termorshuizen, A.J.; Tjou-Tam-Sin, N.N.A.; Janse, J.D.

    2007-01-01

    Ralstonia solanacearum race 3 biovar 2, the causative agent of potato brown rot (bacterial wilt), is an economically important disease in tropical, subtropical and temperate regions of the world. In view of previous reports on suppression of the disease by organic amendments, and the expansion of

  16. Armillaria root rot in the Canadian prairie provinces. Information report No. -X-329

    Energy Technology Data Exchange (ETDEWEB)

    Mallet, K.I.

    1992-01-01

    Armillaria root rot is one of the most important diseases of forest trees in the prairie provinces of Canada. Information on symptoms, detection, and damage caused by the disease is given. The Armillaria species in the prairie provinces, their geographic distribution and host range is discussed. Means of spread and control of the disease are described.

  17. Armillaria root rot of tea in Kenya : characterization of the pathogen and approaches to disease management

    NARCIS (Netherlands)

    Otieno, W.

    2002-01-01

    The rare occurrence of basidiomata and rhizomorphs constrains diagnosis of Armillaria root rot and identification of Armillaria species in Africa. This has had a negative impact on taxonomic research on the genus Armillaria in the continent, where the

  18. FOOT ROT DISEASE IDENTIFICATION FOR VELLAIKODI VARIETY OF BETELVINE PLANTS USING DIGITAL IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    J. Vijayakumar

    2012-11-01

    Full Text Available Betelvine plants are infected variety of diseases in the complete plantation without any premature warning of the diseases. The aim of this paper is to detection of foot rot disease in the vellaikodi variety of betelvine plants using digital image processing techniques. The digital images of the uninfected or normal betelvine leaves and the digital images of the infected in foot rot diseased betelvine leaves at different stages are collected from different Betelvine plants using a high resolution digital camera and collected betelvine images are stored with JPEG format. The digital images of the betelvine leaves analyses are done using the image processing toolbox in MATLAB which gives the normal patterns of the digital images. Using RGB encoding process, the RGB components of the betelvine leaves are separated. The mean and median values for all sample leaves are computed and calculated values are stored in the system. The mean and median values of test leaves are computed and compared with the stored values. As the result of this comparison, it is identified whether test leaves are affected by foot rot disease or not. Finally this analysis helps to recognize the foot rot disease can be identified before it spreads to entire crop.

  19. Phytophthora megakarya, a causal agent of black pod rot in Africa

    Science.gov (United States)

    In most parts of the world where Theobroma cacao is grown, Phytophthora palmivora is the major concern for causing black pod rot (BPR). Phytophthora megakarya, on the other hand, occurs only in Africa, but represents a major threat to cacao production, the countries of West Africa being the largest ...

  20. Host resistance to Botrytis bunch rot in Vitis spp. and its correlation with Botrytis leaf spot

    Science.gov (United States)

    Botrytis cinerea, the causal agent of Botrytis bunch rot, is the number one postharvest disease of fresh grapes in the U.S. Fungicide applications are used to manage the disease, but resistant isolates are common and postharvest losses occur annually. Host resistance is needed for long-term manageme...

  1. Genome Sequence of the Banana Pathogen Dickeya zeae Strain MS1, Which Causes Bacterial Soft Rot.

    Science.gov (United States)

    Zhang, Jing-Xin; Lin, Bi-Run; Shen, Hui-Fang; Pu, Xiao-Ming

    2013-06-13

    We report a draft genome sequence of Dickeya zeae strain MS1, which is the causative agent of banana soft rot in China, and we show several of its specific properties compared with those of other D. zeae strains. Genome sequencing provides a tool for understanding the genomic determination of the pathogenicity and phylogeny placement of this pathogen.

  2. Genome Sequence of the Banana Pathogen Dickeya zeae Strain MS1, Which Causes Bacterial Soft Rot

    OpenAIRE

    Zhang, Jing-Xin; Lin, Bi-Run; Shen, Hui-Fang; Pu, Xiao-Ming

    2013-01-01

    We report a draft genome sequence of Dickeya zeae strain MS1, which is the causative agent of banana soft rot in China, and we show several of its specific properties compared with those of other D.?zeae strains. Genome sequencing provides a tool for understanding the genomic determination of the pathogenicity and phylogeny placement of this pathogen.

  3. Creating prescription maps from satellite imagery for site-specific management of cotton root rot

    Science.gov (United States)

    Cotton root rot is a century-old cotton disease that can now be controlled with Topguard Terra Fungicide. However, as this disease tends to occur in the same general areas within fields year after year, site-specific treatment can be more effective and economical. The objective of this study was to ...

  4. Plectosphaerella species associated with root and collar rots of horticultural crops in southern Italy

    NARCIS (Netherlands)

    Carlucci, A.; Raimondo, M.L.; Santos, J.; Phillips, A.J.L.

    2012-01-01

    Plectosphaerella cucumerina, most frequently encountered in its Plectosporium state, is well known as a pathogen of several plant species causing fruit, root and collar rot, and collapse. It is considered to pose a serious threat to melon (Cucumis melo) production in Italy. In the present study, an

  5. Evaluation of rhizobacterial indicators of tobacco black root rot suppressiveness in farmers' fields

    Czech Academy of Sciences Publication Activity Database

    Kyselková, Martina; Almario, J.; Kopecký, J.; Ságová-Marečková, M.; Haurat, J.; Muller, D.; Grundmann, G.L.; Moënne-Loccoz, Y.

    2014-01-01

    Roč. 6, č. 4 (2014), s. 346-353 ISSN 1758-2229 Institutional support: RVO:60077344 Keywords : rhizobacterial indicators * tobacco black root rot suppressiveness * farmers' fields Subject RIV: EH - Ecology, Behaviour Impact factor: 3.293, year: 2014

  6. Phylogenetic, morphological and pathogenic characterization of Alternaria species associated with fruit rots of blueberry in California

    Science.gov (United States)

    Fruit rot caused by Alternaria spp. is one of the most important factors affecting the postharvest quality and shelf life of blueberry fruits. Alternaria spp. isolates were collected from decayed fruits of blueberry in the Central Valley of California during 2012 and 2013. The aims of this study wer...

  7. Evaluation of watermelon varieties for tolerance to powdery mildew and Phytophthora fruit rot, 2014

    Science.gov (United States)

    This experiment was conducted at the U.S. Vegetable Laboratory farm in Charleston, SC. The soil was Yonges loamy fine sand. This study was undertaken to determine the performance of seeded and seedless commercial watermelon varieties for tolerance to powdery mildew (PM) and Phytophthora fruit rot as...

  8. Mechanisms of qualitative and quantitative resistance to Aphanomyces root rot in alfalfa

    Science.gov (United States)

    Aphanomyces root rot (ARR), caused by Aphanomyces euteiches, is one of the most important diseases of alfalfa (Medicago sativa) in the United States. Two races of the pathogen are currently recognized. Most modern alfalfa cultivars have high levels of resistance to race 1 but few cultivars have resi...

  9. First report of truncatella angustata causing postharvest rot on ‘topaz’ apples in the Netherlands

    NARCIS (Netherlands)

    Wenneker, M.; Pham, K.T.K.; Boekhoudt, L.C.; Boer, de F.A.; Leeuwen, van P.J.; Hollinger, T.C.; Thomma, B.P.H.J.

    2017-01-01

    In the Netherlands, about 30% of the organic apple (Malus domestica Borkh.) production consists of apple scab resistant cultivars, such as Topaz and Santana. However, organic ‘Topaz’ apples show a high incidence of fungal rot after storage. Hot-water treatment (HWT) of freshly harvested apple

  10. Genome-wide association analysis of ear rot resistance caused by Fusarium verticillioides in maize.

    Science.gov (United States)

    de Jong, Guilherme; Pamplona, Andrezza Kellen Alves; Von Pinho, Renzo Garcia; Balestre, Marcio

    2017-12-06

    The identification of causal regions associated with resistance to Fusarium verticillioides can be useful to understand resistance mechanisms and further be used in breeding programs. In this study, a genome-wide association study (GWAS) was conducted to identify candidate markers associated with resistance to the ear rot caused by the fungus F. verticillioides. A total of 242 maize inbred lines were genotyped with 23,153 DArT-seq markers. A total of 12 DArTs were associated with ear rot resistance. Some DArTs were localized close to genes with functions directly related to ear rot resistance, such as a gene responsible for the innate immune response that belongs to the class of NBS-LRR receptors. Some markers were also found to be closely associated with genes that synthesize transcription factors (nactf11 and nactf61), genes responsible for the oxidation-reduction process and peroxidase activity. These results are encouraging since some candidate markers can present functional relationship with ear rot resistance in maize. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Identification of markers associated with race-specific resistance to Aphanomyces root rot in alfalfa

    Science.gov (United States)

    Aphanomyces root rot, caused by Aphanomyces euteiches, is one of the most important diseases of alfalfa in the United States. Two races of the pathogen are recognized and although most cultivars are resistant to race 1, fewer have resistance to race 2, the predominant race in North America. Molecula...

  12. Rhizoctonia crown and root rot resistance evaluation of Beta PIs in Fort Collins, CO, 2014

    Science.gov (United States)

    Thirty-six sugar beet (Beta vulgaris subsp. vulgaris) germplasm from the USDA-Agricultural Research Service pre-breeding program at Fort Collins, Colorado were screened for resistance to Rhizoctonia crown and root rot (RCRR) at the Colorado State University ARDEC facility in Fort Collins, CO. There...

  13. Control of potato soft rot caused by Pectobacterium carotovorum and Pectobacterium atrosepticum by Moroccan actinobacteria isolates.

    Science.gov (United States)

    Baz, M; Lahbabi, D; Samri, S; Val, F; Hamelin, G; Madore, I; Bouarab, K; Beaulieu, C; Ennaji, M M; Barakate, Mustapha

    2012-01-01

    Pectobacterium carotovorum and Pectobacterium atrosepticum are dreadful causal agents of potato soft rot. Actually, there are no efficient bactericides used to protect potato against Pectobacterium spp. Biological control using actinobacteria could be an interesting approach to manage this disease. Thus, two hundred actinobacteria isolated from Moroccan habitats were tested for their ability to inhibit in vitro 4 environmental Pectobacterium strains and the two reference strains (P. carotovorum CFBP 5890 and P. atrosepticum CFBP 5889). Eight percent of these isolates were active against at least one of the tested pathogens and only 2% exhibited an antimicrobial activity against all tested Pectobacterium strains. Four bioactive isolates having the greatest pathogen inhibitory capabilities and classified as belonging to the genus Streptomyces species through 16S rDNA analysis were subsequently tested for their ability to reduce in vivo soft rot symptoms on potato slices of Bintje, Yukon Gold, Russet and Norland cultivars caused by the two pathogens P. carotovorum and P. atrosepticum. This test was carried out by using biomass inoculums and culture filtrate of the isolates as treatment. Among these, strain Streptomyces sp. OE7, reduced by 65-94% symptom severity caused by the two pathogens on potato slices. Streptomyces OE7 showed a potential for controlling soft rot on potato slices and could be useful in an integrated control program against potato soft rot pathogens in the objective to reduce treatments with chemical compounds.

  14. Pectobacterium carotovorum. subsp. brasiliense is a causal agent of bacterial leaf rot of tobacco in China

    Science.gov (United States)

    A new leaf rot disease of tobacco was found in fields of the Shaowu region, Fujian Province of China in 2015. A typical symptom was necrosis along the main or lateral veins of tobacco leaves, eventually causing wilting and death of the leaves, while the necrosis spread no further than the epidermis ...

  15. Draft Genome Sequence of a Virulent Pectobacterium carotovorum subsp. brasiliense Isolate Causing Soft Rot of Cucumber.

    Science.gov (United States)

    Onkendi, Edward M; Ramesh, Aadi Moolam; Kwenda, Stanford; Naidoo, Sanushka; Moleleki, Lucy

    2016-01-07

    Pectobacterium carotovorum subsp. brasiliense causes soft rot and blackleg diseases on potatoes, ornamentals, and other crops of economic importance. Here, we report a draft genome sequence of a highly virulent P. carotovorum subsp. brasiliense strain, PcbHPI01, isolated from a cucumber in South Africa. Copyright © 2016 Onkendi et al.

  16. Root Rot Disease of Five Fruit Tree Seedlings in the Nursery ...

    African Journals Online (AJOL)

    The incidence of root rot disease in the nursery of Chrysophyllum albidun Dacryodes edulis, persea Americana, Irvingia gabonensis and Annona muricala was assessed. Ten fungal pathogen were isolated using serial dilution and pathogenicity tests were carried out on the 5 fruit trees with the 10 isolated fungi. The 5 fruit ...

  17. Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot

    NARCIS (Netherlands)

    Messiha, N.A.S.; Diepeningen, van A.D.; Farag, N.S.; Abdallah, S.A.; Janse, J.D.; Bruggen, van A.H.C.

    2007-01-01

    Stenotrophomonas maltophilia was isolated from the rhizosphere of eggplant in the Nile Delta of Egypt, and its antagonistic potential against Ralstonia solanacearum race 3 biovar 2, the causal agent of potato brown rot, was in vitro evaluated on KB agar medium and in vivo on potato plants. In vitro,

  18. Comparing methods for inducing root rot of Rhododendron with Phytophthora cinnamomi and P. plurivora

    Science.gov (United States)

    Root rot, caused by Phytophthora cinnamomi and P. plurivora in containerized Rhododendron, can cause significant losses in the nursery industry. Studies commonly use a 48 h flooding event to stimulate root infection. While flooding rarely occurs in container nurseries, plants may sit in a shallow pu...

  19. Site-specific management of cotton root rot using historical remote sensing imagery

    Science.gov (United States)

    Cotton root rot can now be effectively controlled with Topguard Terra Fungicide, but site-specific application of the fungicide can greatly reduce treatment cost as only portions of the field are infested with the disease. The overall goal of this three-year project was to demonstrate how to use his...

  20. First report of frosty pod rot caused by Moniliophthora roreri on cacao in Bolivia

    Science.gov (United States)

    Frosty pod rot (FPR) is a devastating cacao disease caused by the basidiomycete Moniliophthora roreri (Aime and Phillips-Mora, 2005). The disease is confined to 13 countries in Central and South America and constitutes a permanent threat for cacao cultivation worldwide. In July 2012, FPR was detect...

  1. Evaluation of Gliocladium species for control of Botrytis corm rot of ...

    African Journals Online (AJOL)

    Botrytis corm rot (Botrytis gladiolorum) is one of the most important and destructive diseases of gladiolus and poses a major constraint in production of flowers and corms all over the world. An In vivo experiment was conducted to determine the efficacy, antagonistic potential and disease reduction capacity of four ...

  2. Combining fuzzy set theory and nonlinear stretching enhancement for unsupervised classification of cotton root rot

    Science.gov (United States)

    Cotton root rot is a destructive disease affecting cotton production. Accurate identification of infected areas within fields is useful for cost-effective control of the disease. The uncertainties caused by various infection stages and newly infected plants make it difficult to achieve accurate clas...

  3. Genetic Architecture of Charcoal Rot (Macrophomina phaseolina) Resistance in Soybean Revealed Using a Diverse Panel

    Science.gov (United States)

    Charcoal rot disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methodologies available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient ...

  4. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults.

    Science.gov (United States)

    Steel, Christopher C; Blackman, John W; Schmidtke, Leigh M

    2013-06-05

    Bunch rot of grape berries causes economic loss to grape and wine production worldwide. The organisms responsible are largely filamentous fungi, the most common of these being Botrytis cinerea (gray mold); however, there are a range of other fungi responsible for the rotting of grapes such as Aspergillus spp., Penicillium spp., and fungi found in subtropical climates (e.g., Colletotrichum spp. (ripe rot) and Greeneria uvicola (bitter rot)). A further group more commonly associated with diseases of the vegetative tissues of the vine can also infect grape berries (e.g., Botryosphaeriaceae, Phomopsis viticola ). The impact these fungi have on wine quality is poorly understood as are remedial practices in the winery to minimize wine faults. Compounds found in bunch rot affected grapes and wine are typically described as having mushroom, earthy odors and include geosmin, 2-methylisoborneol, 1-octen-3-ol, 2-octen-1-ol, fenchol, and fenchone. This review examines the current state of knowledge about bunch rot of grapes and how this plant disease complex affects wine chemistry. Current wine industry practices to minimize wine faults and gaps in our understanding of how grape bunch rot diseases affect wine production and quality are also identified.

  5. The BASA-ROT table: an arithmetic-hypothetical concept for easy BMI-, age-, and sex-adjusted bedside estimation of energy expenditure.

    Science.gov (United States)

    Valentini, Luzia; Roth, Erich; Jadrna, Klara; Postrach, Elisa; Schulzke, Jörg Dieter

    2012-07-01

    The rule of thumb (ROT) method is used to estimate energy expenditure (EE) at bedside. ROTs are fixed numbers of calories given daily per kilogram of body weight. Textbooks nevertheless indicate that age and body mass index (BMI) affect EE. This should also affect ROTs. We thus scrutinized the impact of BMI, age, and sex on ROTs, compared the results to the often used 25 kcal/kg ROT, and calculated a BMI-, age-, and sex-adjusted ROT table containing calories per kilogram in the basal state. We based calculations on the Harris-Benedict equation corrected for systematic error in women and obesity obtained in previous validation studies and used age, weight, and height of 676 consecutively admitted patients from five hospitals. The calculated ROTs continuously decreased from normal weight (20.8 ± 2.2 kcal/kg) to overweight (18.9 ± 1.8 kcal/kg) and obese patients (15.5 ± 1.6 kcal/kg, P age reduced the ROT significantly within each BMI category (P 35 kg/m²), resulting in a BMI- and age-adjusted ROT spectrum of 12-27 kcal/kg in the total population. The 25-kcal ROT, even when used with normal ("ideal") body weight, overestimated calculated ROTs in more than 95% of patients. We found that both BMI and age significantly impacted ROT estimates. Thus, using one single fixed ROT for all patients independent of age and BMI does not seem appropriate. We consequently suggest a calculated table of BMI-, age-, and sex-adjusted ROTs where the results of resting EE were multiplied with 1.1, 1.2, and 1.3 and separately listed in the table to account for activity/stress factors. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Pulsating white dwarfs

    Science.gov (United States)

    Kepler, S. O.; Romero, Alejandra D.

    2017-09-01

    The Sloan Digital Sky Survey has allowed us to increase the number of known white dwarfs by a factor of five and consequently the number of known pulsating white dwarfs also by a factor of five. It has also led to the discovery of new types of variable white dwarfs, as the variable hot DQs, and the pulsating Extremely Low Mass white dwarfs. With the Kepler Mission, it has been possible to discover new phenomena, the outbursts present in a few pulsating white dwarfs.

  7. Scholarly context not found: one in five articles suffers from reference rot.

    Directory of Open Access Journals (Sweden)

    Martin Klein

    Full Text Available The emergence of the web has fundamentally affected most aspects of information communication, including scholarly communication. The immediacy that characterizes publishing information to the web, as well as accessing it, allows for a dramatic increase in the speed of dissemination of scholarly knowledge. But, the transition from a paper-based to a web-based scholarly communication system also poses challenges. In this paper, we focus on reference rot, the combination of link rot and content drift to which references to web resources included in Science, Technology, and Medicine (STM articles are subject. We investigate the extent to which reference rot impacts the ability to revisit the web context that surrounds STM articles some time after their publication. We do so on the basis of a vast collection of articles from three corpora that span publication years 1997 to 2012. For over one million references to web resources extracted from over 3.5 million articles, we determine whether the HTTP URI is still responsive on the live web and whether web archives contain an archived snapshot representative of the state the referenced resource had at the time it was referenced. We observe that the fraction of articles containing references to web resources is growing steadily over time. We find one out of five STM articles suffering from reference rot, meaning it is impossible to revisit the web context that surrounds them some time after their publication. When only considering STM articles that contain references to web resources, this fraction increases to seven out of ten. We suggest that, in order to safeguard the long-term integrity of the web-based scholarly record, robust solutions to combat the reference rot problem are required. In conclusion, we provide a brief insight into the directions that are explored with this regard in the context of the Hiberlink project.

  8. Occurrence, characterization and management of fruit rot of immature cucumber fruits under arid greenhouse conditions

    Directory of Open Access Journals (Sweden)

    ABDULLAH M AL-SADI

    2012-01-01

    Full Text Available A study was undertaken to characterize and manage pathogens associated with fruit rot of immature cucumber fruits in greenhouses in Oman. A survey over 5 growing seasons from 2008 to 2010 in 99 different greenhouses in Oman showed that the disease is prevalent in 91 (92% greenhouses and results in losses of 10 to 60% (avg. 33% of immature fruits per plant. Incidence of the disease was not found to be affected by growing seasons, which could be attributed to the limited fluctuations in ambient temperatures in greenhouses. Isolations from diseased cucumber fruits yielded Alternaria alternata (isolation frequency = 52%, Fusarium equiseti (40%, Cladosporium tenuissium (27%, Botrytis cinerea (6%, Fusarium solani (6%, Corynespora cassiicola (3%, Aspergillus spp. (2%, Curvularia sp. (1% and Bipolaris sp. (1%. With the exception of Curvularia and Bipolaris species, all other fungi were pathogenic on cucumber fruits, with Fusarium equiseti being the most aggressive, followed by Corynespora cassiicola, Botrytis cinerea and Alternaria alternata. Cladosporium and Aspergillus spp. were found to be weakly pathogenic. Comparing the efficacy of foliar and soil applications of carbendazim fungicide on fruit rot of cucumber showed that foliar applications significantly reduced fruit rot and increased cucumber yield when compared to soil application or to control (P < 0.01. This appears to be the first report of the association of Corynespora cassiicola and Fusarium equiseti with fruit rot of immature greenhouse cucumbers. This is also the first report in Oman for the association of Cladosporium tenuissimum with fruit rot of immature cucumbers. Findings are discussed in terms of factors affecting disease control in greenhouses using carbendazim.

  9. Selection of maize inbred lines and gene expression for resistance to ear rot.

    Science.gov (United States)

    Pereira, G S; Pinho, R G V; Pinho, E V R V; Pires, L P M; Bernardo Junior, L A Y; Pereira, J L A; Melo, M P

    2017-07-06

    In recent years, there has been a large incidence of fungi causing "ear rot" in maize in Brazil, the main fungus being Fusarium verticillioides. The most efficient and competitive alternative for control of this disease consists of using maize hybrids resistant to this pathogen. Thus, the aims of this study were to analyze the genetic variability of maize inbred lines in regard to resistance to ear rot to observe if there is a maternal effect to resistance to ear rot, to study genetic control of the traits evaluated in hybrids originating from inbred lines of the maize breeding program at the Agriculture Department of Universidade Federal de Lavras (Lavras, MG, Brazil), and characterize the gene expression pattern related to the plant defense mechanism against F. verticillioides. High genetic availability was observed for resistance to this disease among the inbred lines evaluated. Considering combined diallel analysis, it was observed that the mean square of general combining ability (GCA) was not significant for the characteristic under study. However, specific combining ability (SCA) was significant, which indicates the predominance of non-additive effects involved in control of the characteristic for the population evaluated. A maternal effect was not observed for the characteristic of ear rot resistance in this study. Inbred lines 22, 58, and 91 showed potential for use in breeding programs aiming at resistance to F. verticillioides. Only two genes, LOX8 and Hsp82, had a satisfactory result that was able to be related to a plant defense mechanism when there is ear rot infection, though expression of these genes was observed in only one susceptible genotype. Thus, the genes LOX8 and Hsp82 are potential molecular markers for selection of maize inbred lines resistant to F. verticillioides.

  10. Carvacrol and eugenol effectively inhibit Rhizopus stolonifer and control postharvest soft rot decay in peaches.

    Science.gov (United States)

    Zhou, D; Wang, Z; Li, M; Xing, M; Xian, T; Tu, K

    2018-01-01

    This study aimed to investigate the antifungal mechanism of carvacrol and eugenol to inhibit Rhizopus stolonifer and the control of postharvest soft rot decay in peaches. To investigate the antifungal mechanism, the effects of carvacrol and eugenol on the mycelium growth, leakages of cytoplasmic contents, mycelium morphology, cell membrane and membrane composition of R. stolonifer were studied. Carvacrol and eugenol both exhibited dose-dependent antifungal activity against R. stolonifer, carvacrol at a concentration of 2 μl per plant and eugenol at a concentration of 4 μl per plant inhibited fungal growth completely. The two essential oils (EOs) increased cell membrane penetrability and caused the leakage of cytoplasm, nucleic acid and protein content. The observation using scanning electron microscopy and fluorescent microscopy showed modification of the hyphal morphology and breakage of the cell plasma membrane. Decreased ergosterol contents confirmed that the two EOs could destroy the membrane of R. stolonifer. For the in vivo test, the inhibition of soft rot disease and the induction of defence-related enzymes were investigated. Carvacrol and eugenol significantly reduced the incidence and severity of soft rot decay in inoculated peaches. The best treatments for controlling soft rot decay were obtained at 0·5 μl l -1 for carvacrol and 1 μl l -1 for eugenol. The activities of defence-related enzymes in peaches were also enhanced by fumigation with two EOs. This study showed that carvacrol and eugenol could effectively inhibit the growth of R. stolonifer in vitro and successfully control the incidence of soft rot decay in honey peaches. The above findings may be the main antifungal mechanism of carvacrol and eugenol on R. stolonifer. Furthermore, carvacrol and eugenol are helpful for their commercial application on the preservation of fresh fruit. © 2017 The Society for Applied Microbiology.

  11. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol.

    Science.gov (United States)

    Cazorla, Francisco M; Duckett, Simon B; Bergström, Ed T; Noreen, Sadaf; Odijk, Roeland; Lugtenberg, Ben J J; Thomas-Oates, Jane E; Bloemberg, Guido V

    2006-04-01

    A collection of 905 bacterial isolates from the rhizospheres of healthy avocado trees was obtained and screened for antagonistic activity against Dematophora necatrix, the cause of avocado Dematophora root rot (also called white root rot). A set of eight strains was selected on the basis of growth inhibitory activity against D. necatrix and several other important soilborne phytopathogenic fungi. After typing of these strains, they were classified as belonging to Pseudomonas chlororaphis, Pseudomonas fluorescens, and Pseudomonas putida. The eight antagonistic Pseudomonas spp. were analyzed for their secretion of hydrogen cyanide, hydrolytic enzymes, and antifungal metabolites. P. chlororaphis strains produced the antibiotic phenazine-1-carboxylic acid and phenazine-1-carboxamide. Upon testing the biocontrol ability of these strains in a newly developed avocado-D. necatrix test system and in a tomato-F oxysporum test system, it became apparent that P. fluorescens PCL1606 exhibited the highest biocontrol ability. The major antifungal activity produced by strain P. fluorescens PCL1606 did not correspond to any of the major classes of antifungal antibiotics produced by Pseudomonas biocontrol strains. This compound was purified and subsequently identified as 2-hexyl 5-propyl resorcinol (HPR). To study the role of HPR in biocontrol activity, two Tn5 mutants of P. fluorescens PCL1606 impaired in antagonistic activity were selected. These mutants were shown to impair HRP production and showed a decrease in biocontrol activity. As far as we know, this is the first report of a Pseudomonas biocontrol strain that produces HPR in which the production of this compound correlates with its biocontrol activity.

  12. [Isolation and characterization of humin-like substances produced by wood-degrading fungi causing white rot].

    Science.gov (United States)

    Iavmetdinov, I S; Stepanova, E V; Gavrilova, V P; Lokshin, B V; Perminova, I V; Koroleva, O V

    2003-01-01

    Three samples of high-molecular-weight humin-like substances were obtained by solid-phase cultivation of Coriolus hirsutus and/or Cerrena maxima on oat straw. The yield of humin-like substances amounted to 1.38-2.26% of the weight of the plant substrate consumed. These substances, produced both by individual and mixed cultures of the basidiomycetes, were shown to be similar in their structure and physicochemical properties. According to the data of IR and 13C-NMR spectroscopy, the substances contained aromatic fragments and were close to soil humic acids. Studies of the dynamics of laccase production suggested that the humin-like substances were produced bia direct degradation of lignin macromolecules with direct involvement of extracellular laccase.

  13. High level secretion of laccase (LccH from a newly isolated white rot basidiomycete, Hexagonia hirta MSF2

    Directory of Open Access Journals (Sweden)

    Sujatha eKandhasamy

    2016-05-01

    Full Text Available Newer and novel laccases attract considerable attention due to its promising and valuable multiple applications in biotech industry. This present investigation documents, for the first time, on high level extracellular secretion of laccase (LccH in newly isolated wood-degrading basidiomycete Hexagonia hirta MSF2. LccH was optimally active at 40°C in citrate phosphate buffer with a pH of 3.4. Optimized Cu2+ in glucose yeast extract (GY medium enhanced the LccH production by H. hirta to 1944.44 U.ml-1. A further increment in LccH activity of 5671.30 U.ml-1 was achieved by the addition of a phenolic inducer, 2,5 Xylidine. Zymogram and sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE analysis of LccH revealed that LccH is a monomer with a molecular mass of 66 kDa. MALDI-TOF-MS based peptide mass fingerprinting and comparative modelling of the amino acid sequence of LccH showed that it was closer to Trametes sp. AH28-2 (PDB: 3KW7 with 48% identity, 95% coverage, 0.011 alignment score and RMSD of 0.497Å. Crude LccH delignified lignocellulosic biomass such as wood and corncob, to a level of 28.6 and 16.5 % respectively. Such high level secretion, thermal and solvent stability of LccH make H.hirta a potential candidate not only for LccH production and biodelignification but also generation of lignin derived aromatic feed stock chemicals for industrial and environmental applications.

  14. Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor

    Czech Academy of Sciences Publication Activity Database

    Hiscox, J.; Baldrian, Petr; Rogers, H. J.; Boddy, L.

    2010-01-01

    Roč. 47, č. 6 (2010), s. 562-571 ISSN 1087-1845 Institutional research plan: CEZ:AV0Z50200510 Keywords : Interactions * Basidiomycetes * Trametes Subject RIV: EE - Microbiology, Virology Impact factor: 3.333, year: 2010

  15. BIODEGRADATION OF SUGARCANE VINASSES BY THE WHITE-ROT FUNGI Pleurotus ostreatus IN A PACKED BED REACTOR

    Directory of Open Access Journals (Sweden)

    W.A. Tapie

    2016-08-01

    Full Text Available Sugarcane vinasses are considered a complex effluent because of its organic load, low pH, high temperature, and by the presence of recalcitrant substances such as melanoidins and phenolic compounds. The aim of this work was to evaluate the potential of the fungus Pleurotus ostreatus to carry out the biodegradation of sugarcane vinasses in a fixed-bed bioreactor. The experiments evidence the potential of the fungus Pleurotus ostreatus to carry out the decolorization (83%, the removal of the Chemical Oxygen Demand (COD=87% and the Biochemical Oxygen Demand (BOD5=92%, the reduction of total suspended solids (83% and volatile suspended solids (72% of vinasses. The technical simplicity of the proposed alternative as well as process performance reveals the potential of the fungus Pleurotus ostreatus for the treatment of sugarcane mill effluents.

  16. Optimization of laccase production in the white-rot fungus Pleurotus ostreatus (ACCC 52857 induced through yeast extract and copper

    Directory of Open Access Journals (Sweden)

    Changwei Zhu

    2016-03-01

    Full Text Available Different inducers for laccase production in Pleurotus ostreatus (ACCC 52857 were screened: carbon and nitrogen source, phenolic compounds and metal ions. Among the tested substances, yeast extract and copper showed the strongest effect on laccase activity. Laccase activity increased during the early phase of cultivation in the presence of yeast extract, peaking on the 6th day and decreasing thereafter. Copper-induced laccase activity increased both in a dose-dependent and a time-dependent manner. The highest laccase activity was obtained with 2 mmol/L Cu2+, while the mycelial growth was inhibited approximately 27%. Thus, the time-dependent effect of copper on laccase activity was examined. The results showed that the best laccase production was induced when copper was added during the mid-logarithmic phase of cultivation (the 5th day. A positive synergistic effect of yeast extract and copper on the laccase production was observed. Laccase activity dramatically increased upon the addition of copper to medium containing 1% yeast extract on the 5th day of cultivation. The highest activity (8533.33 ± 1228.94 U/mL was observed on the 13th day of cultivation, increased more than 80 folds compared to the original level.

  17. Effect of cellulose as co-substrate on old landfill leachate treatment using white-rot fungi.

    Science.gov (United States)

    Bardi, A; Yuan, Q; Siracusa, G; Chicca, I; Islam, M; Spennati, F; Tigini, V; Di Gregorio, S; Levin, D B; Petroni, G; Munz, G

    2017-10-01

    Conventional wastewater treatment technologies are ineffective for remediation of old LandFill Leachate (LFL), and innovative approaches to achieve satisfactory removal of this recalcitrant fraction are needed. This study focused on old LFL treatment with a selected fungal strain, Bjerkandera adusta MUT 2295, through batch and continuous tests, using packed-bed bioreactors under non-sterile conditions. To optimize the process performance, diverse types of co-substrates were used, including milled cellulose from beverage cups waste material. Extracellular enzyme production was assayed, in batch tests, as a function of a) cellulose concentration, b) leachate initial Chemical Oxygen Demand (COD) and Soluble COD (sCOD), and c) co-substrate type. Bioreactors were dosed with an initial start-up of glucose (Rg) or cellulose (Rc). An additional glucose dosage was provided in both reactors, leading to significant performance increases. The highest COD and sCOD removals were i) 63% and 53% in Rg and ii) 54% and 51% in Rc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Maturation of green waste compost as affected by inoculation with the white-rot fungi Trametes versicolor and Phanerochaete chrysosporium.

    Science.gov (United States)

    Gong, Xiaoqiang; Li, Suyan; Sun, Xiangyang; Zhang, Lu; Zhang, Tao; Wei, Le

    2017-04-01

    Green waste was separately inoculated on day 0 and day 14 with either Trametes versicolor or Phanerochaete chrysosporium to determine their effects on composting time and compost quality. Inoculation with T. versicolor and P. chrysosporium caused more rapid and higher increases in compost temperatures, increased the duration of the thermophilic temperature stage, and reduced the maturity time. Inoculation with T. versicolor and P. chrysosporium greatly increased the quality of the final composts in terms of pH, electrical conductivity, organic matter concentration, C/N ratio, germination index, and nutrient content. Inoculation with T. versicolor and P. chrysosporium also significantly increased the degradation of lignin by 7.1% and 8.2%, respectively, and increased the degradation of cellulose by 10.6% and 13.6%, respectively.

  19. CHARACTERIZATION OF THE OXIDATIVE ENZYME POTENTIAL IN WILD WHITE ROT FUNGI FROM THE SUBTROPICAL FOREST OF MISIONES (ARGENTINA)

    OpenAIRE

    María Isabel FONSECA; Pedro Darío ZAPATA; Laura Lidia VILLALBA; Julia Inés FARIÑA

    2015-01-01

    El objetivo de este trabajo fue evaluar el potencial para producir enzimas ligninolíticas de diversas cepas de hongos de pudrición blanca, nativas de la Provincia de Misiones (Argentina). Coriolus versicolor v. antarcticus BAFC 266, Pycnoporus sanguineus BAFC 2126 y Phlebia brevispora BAFC 633 mostraron un gran potencial para producir fenoloxidasas. En Ganoderma applanatum cepa E, P. sanguineus BAFC 2126 y P. brevispora BAFC 633 se observó una marcada actividad lacasa y peroxidasa. C . versic...

  20. Extracellular Enzymes of the White-Rot Fungus Fomes fomentarius and Purification of 1,4-beta-Glucosidase

    Czech Academy of Sciences Publication Activity Database

    Větrovský, Tomáš; Baldrian, Petr; Gabriel, Jiří

    2013-01-01

    Roč. 169, č. 1 (2013), s. 100-109 ISSN 0273-2289 R&D Projects: GA MŠk(CZ) LA10001; GA MŠk OC08050 Institutional support: RVO:61388971 Keywords : Cellulose * 1,4-beta-glucosidase * Glycosyl hydrolase Subject RIV: EE - Microbiology, Virology Impact factor: 1.687, year: 2013