WorldWideScience

Sample records for stringy gauge symmetries

  1. Stringy symmetries and their high-energy limits

    International Nuclear Information System (INIS)

    Chan, C.-T.; Lee, J.-C.

    2005-01-01

    We derive stringy symmetries with conserved charges of arbitrarily high spins from the decoupling of two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. These symmetries are valid to all energy α ' and all loop orders χ in string perturbation theory. The high-energy limit α ' ->∞ of these stringy symmetries can then be used to fix the proportionality constants between scattering amplitudes of different string states algebraically without referring to Gross and Mende's saddle point calculation of high-energy string-loop amplitudes. These proportionality constants are, as conjectured by Gross, independent of the scattering angle φ CM and the order χ of string perturbation theory. However, we also discover some new nonzero components of high-energy amplitudes not found previously by Gross and Manes. These components are essential to preserve massive gauge invariances or decouple massive zero-norm states of string theory. A set of massive scattering amplitudes and their high energy limit are calculated explicitly to justify our results

  2. Stringy instanton corrections to N=2 gauge couplings

    CERN Document Server

    Billo', Marco; Fucito, Francesco; Lerda, Alberto; Morales, Jose F; Poghosyan, Rubik

    2010-01-01

    We discuss a string model where a conformal four-dimensional N=2 gauge theory receives corrections to its gauge kinetic functions from "stringy" instantons. These contributions are explicitly evaluated by exploiting the localization properties of the integral over the stringy instanton moduli space. The model we consider corresponds to a setup with D7/D3-branes in type I' theory compactified on T4/Z2 x T2, and possesses a perturbatively computable heterotic dual. In the heteoric side the corrections to the quadratic gauge couplings are provided by a 1-loop threshold computation and, under the duality map, match precisely the first few stringy instanton effects in the type I' setup. This agreement represents a very non-trivial test of our approach to the exotic instanton calculus.

  3. Zero-norm states and stringy symmetries

    International Nuclear Information System (INIS)

    Chan, C.-T.; Ho, P.-M.; Lee, J.-C.; Yang Yi; Teraguchi, Shunsuke

    2006-01-01

    We identify spacetime symmetry charges of string theory from an infinite number of zero-norm states (ZNS) with arbitrary high spin in the old covariant first quantized string spectrum. We give various evidences to support this identification. These include massive sigma-model calculation, Witten string field theory calculation, 2D string theory calculation and, most importantly, three methods of high-energy stringy scattering amplitude calculation. The last calculations explicitly prove Gross's conjectures in 1988 on high energy symmetry of string theory

  4. Zero-norm states and stringy symmetries

    International Nuclear Information System (INIS)

    Chan, C-T; Ho, P-M; Lee, J-C; Teraguchi, Shunsuke; Yang Yi

    2006-01-01

    We identify spacetime symmetry charges of 26D open bosonic string theory from an infinite number of zero-norm states (ZNS) with arbitrary high spin in the old covariant first quantized string spectrum. We give various evidences to support this identification. These include massive sigma-model calculation, Witten string field theory calculation, 2D string theory calculation and, most importantly, three methods of high-energy stringy scattering amplitude calculations. The last calculations explicitly prove Gross's conjectures in 1988 on high energy symmetry of string theory

  5. Gauging away a big bang

    Science.gov (United States)

    Krishnan, Chethan; Raju, Avinash

    2017-08-01

    We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.

  6. Gauge symmetry breaking

    International Nuclear Information System (INIS)

    Weinberg, S.

    1976-01-01

    The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy

  7. Parastatistics and gauge symmetries

    International Nuclear Information System (INIS)

    Govorkov, A.B.

    1982-01-01

    A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed

  8. Information Retention by Stringy Black Holes

    CERN Document Server

    Ellis, John

    2015-01-01

    Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.

  9. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  10. Hidden gauge symmetry

    International Nuclear Information System (INIS)

    O'Raifeartaigh, L.

    1979-01-01

    This review describes the principles of hidden gauge symmetry and of its application to the fundamental interactions. The emphasis is on the structure of the theory rather than on the technical details and, in order to emphasise the structure, gauge symmetry and hidden symmetry are first treated as independent phenomena before being combined into a single (hidden gauge symmetric) theory. The main application of the theory is to the weak and electromagnetic interactions of the elementary particles, and although models are used for comparison with experiment and for illustration, emphasis is placed on those features of the application which are model-independent. (author)

  11. Spontaneous emergence of gauge symmetry

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1987-05-01

    Within the framework of the random dynamics project we have demonstrated several mechanisms for breakdown of a preexisting exact gauge symmetry. This note concerns and reviews a mechanism which works essentially in the opposite direction, leading from am accidental approximate symmetry to an exact formal gauge symmetry. It was shown that although this symmetry is a priori only strictly formal, it can under certain circumstances lead to a physical consequence: the corresponding gauge boson becomes massless. In the chaotic models typical for our random dynamics project there is, of course, a strong competition between this mechanism and mechanisms which temd to destroy the symmetry and give mass(es) to the gauge boson(s). (orig.)

  12. Discrete symmetries and their stringy origin

    International Nuclear Information System (INIS)

    Mayorga Pena, Damian Kaloni

    2014-05-01

    Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.

  13. From physical symmetries to emergent gauge symmetries

    International Nuclear Information System (INIS)

    Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.

    2016-01-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  14. Gauge symmetry breaking in gauge theories -- in search of clarification

    NARCIS (Netherlands)

    Friederich, Simon

    2013-01-01

    The paper investigates the spontaneous breaking of gauge symmetries in gauge theories from a philosophical angle, taking into account the fact that the notion of a spontaneously broken local gauge symmetry, though widely employed in textbook expositions of the Higgs mechanism, is not supported by

  15. Tracking gauge symmetry factorizability on intervals

    International Nuclear Information System (INIS)

    Ngoc-Khanh Tran

    2006-01-01

    We track the gauge symmetry breaking pattern by boundary conditions on fifth and higher-dimensional intervals. It is found that, with Dirichlet-Neumann boundary conditions, the Kaluza-Klein decomposition in five-dimension for arbitrary gauge group can always be factorized into that for separate subsets of at most two gauge symmetries, and so is completely solvable. Accordingly, we present a simple and systematic geometric method to unambiguously identify the gauge breaking/mixing content by general set of Dirichlet-Neumann boundary conditions. We then formulate a limit theorem on gauge symmetry factorizability to recapitulate this interesting feature. Albeit the breaking/mixing, a particularly simple check of orthogonality and normalization of fields' modes in effective 4-dim picture is explicitly obtained. An interesting chained-mixing of gauge symmetries in higher dimensions by Dirichlet-Neumann boundary conditions is also explicitly constructed. This study has direct applications to higgsless/GUT model building

  16. Geometric phases and hidden local gauge symmetry

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo

    2005-01-01

    The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies physical observables. The choice of a basis set which specifies the coordinate in the functional space is arbitrary in the second quantization, and a subclass of coordinate transformations, which keeps the form of the action invariant, is recognized as the gauge symmetry. We discuss the implications of this hidden local gauge symmetry in detail by analyzing geometric phases for cyclic and noncyclic evolutions. It is shown that the hidden local symmetry provides a basic concept alternative to the notion of holonomy to analyze geometric phases and that the analysis based on the hidden local gauge symmetry leads to results consistent with the general prescription of Pancharatnam. We however note an important difference between the geometric phases for cyclic and noncyclic evolutions. We also explain a basic difference between our hidden local gauge symmetry and a gauge symmetry (or equivalence class) used by Aharonov and Anandan in their definition of generalized geometric phases

  17. Symmetry gauge theory for paraparticles

    International Nuclear Information System (INIS)

    Kursawe, U.

    1986-01-01

    In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de

  18. Gauge origin of discrete flavor symmetries in heterotic orbifolds

    Directory of Open Access Journals (Sweden)

    Florian Beye

    2014-09-01

    Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.

  19. Symmetry breaking in superstring theories: applications in cosmology and particle physics

    International Nuclear Information System (INIS)

    Catelin-Julien, T.

    2008-10-01

    This thesis is devoted to the study of some applications of superstring theory in cosmology and in particle physics. The unifying principle of our work is the stringy spontaneous (super)symmetry breaking mechanism. Our manuscript starts with a general overview of string theory, where the emphasis is put on the aspects that will be important throughout our work. We introduce then our first work, in which we exhibit a new symmetry of the vacua of N = 1 heterotic string theory, exchanging the vectorial and spinorial representations of the grand unified gauge group. In a second part, we consider stringy cosmological evolutions, at non-zero temperature and in the presence of a supersymmetry breaking scale. We also give arguments for a stabilization of the compactification moduli. (author)

  20. $W_\\infty$ Algebras, Hawking Radiation and Information Retention by Stringy Black Holes

    CERN Document Server

    Ellis, John; Nanopoulos, Dimitri V

    2016-01-01

    We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (whose singular regions are represented by appropriate Wess-Zumino-Witten models) is retained by quantum $W$-symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from $W_\\infty$ generators in its vertex function. The latter correspond to delocalised, non-propagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (Stringy black hole) + infalling matter $\\rightarrow $ (Stringy black hole)$^\\star$, where the black hole is viewed as a stringy state with a specific configuration of $W_\\infty$ charges...

  1. Gauging hidden symmetries in two dimensions

    International Nuclear Information System (INIS)

    Samtleben, Henning; Weidner, Martin

    2007-01-01

    We initiate the systematic construction of gauged matter-coupled supergravity theories in two dimensions. Subgroups of the affine global symmetry group of toroidally compactified supergravity can be gauged by coupling vector fields with minimal couplings and a particular topological term. The gauge groups typically include hidden symmetries that are not among the target-space isometries of the ungauged theory. The gaugings constructed in this paper are described group-theoretically in terms of a constant embedding tensor subject to a number of constraints which parametrizes the different theories and entirely encodes the gauged Lagrangian. The prime example is the bosonic sector of the maximally supersymmetric theory whose ungauged version admits an affine e 9 global symmetry algebra. The various parameters (related to higher-dimensional p-form fluxes, geometric and non-geometric fluxes, etc.) which characterize the possible gaugings, combine into an embedding tensor transforming in the basic representation of e 9 . This yields an infinite-dimensional class of maximally supersymmetric theories in two dimensions. We work out and discuss several examples of higher-dimensional origin which can be systematically analyzed using the different gradings of e 9

  2. Is CP a gauge symmetry?

    International Nuclear Information System (INIS)

    Choi, K.; Kaplan, D.B.; Nelson, A.E.

    1993-01-01

    Conventional solutions to the strong CP problem all require the existence of global symmetries. However, quantum gravity may destroy global symmetries, making it hard to understand why the electric dipole moment of the neutron (EDMN) is so small. We suggest here that CP is actually a discrete gauge symmetry, and is therefore not violated by quantum gravity. We show that four-dimensional CP can arise as a discrete gauge symmetry in theories with dimensional compactification, if the original number of Minkowski dimensions equals 8k+1, 8k+2 or 8k+3, and if there are certain restrictions on the gauge group; these conditions are met by superstrings. CP may then be broken spontaneously below 10 9 GeV, explaining the observed CP violation in the kaon system without inducing a large EDMN. We discuss the phenomenology of such models, as well as the peculiar properties of cosmic 'SP strings' which could be produced at the compactification scale. Such strings have the curious property that a particle carried around the string is turned into its CP conjugate. A single CP string renders four-dimensional space-time nonorientable. (orig.)

  3. Gauge symmetries, topology, and quantisation

    International Nuclear Information System (INIS)

    Balachandran, A.P.

    1994-01-01

    The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem

  4. Dark discrete gauge symmetries

    International Nuclear Information System (INIS)

    Batell, Brian

    2011-01-01

    We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

  5. Singlets of fermionic gauge symmetries

    NARCIS (Netherlands)

    Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.

    1989-01-01

    We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and κ-symmetry and

  6. Effective lagrangian description on discrete gauge symmetries

    International Nuclear Information System (INIS)

    Banks, T.

    1989-01-01

    We exhibit a simple low-energy lagrangian which describes a system with a discrete remnant of a spontaneously broken continuous gauge symmetry. The lagrangian gives a simple description of the effects ascribed to such systems by Krauss and Wilczek: black holes carry discrete hair and interact with cosmic strings, and wormholes cannot lead to violation of discrete gauge symmetries. (orig.)

  7. Restoration of the local gauge symmetry and color confinement in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Hata, Hiroyuki

    1982-01-01

    Restoration of the local gauge symmetry and its connection to color confinement is investigated in non-Abelian gauge theories with covariant gauge fixing. We consider the Noether current J sub(μ,#betta#)sup(a) of the local gauge transformation with transformation functions #betta#sup(b)(x) linear in x sub(μ); #betta#sup(b)(x) = delta sup(ab)x sub(#betta#). This current is conserved only in the physical subspace of the state vector space and in perturbation theory contains a massless pole communicating to the gauge field. We define the local gauge symmetry restoration as the disappearance of this massless ''Goldstone'' pole from J sub(μ,#betta#)sup(a). The restoration condition is obtained and it coincides exactly with the color confinement criterion proposed earlier by Kugo and Ojima. Quarks and other colored particles are shown to be confined in the local gauge symmetry restored phase by using the Ward identities of J sub(μ,#betta#)sup(a). (author)

  8. Spontaneous symmetry breakdown in gauge theories

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1982-01-01

    The dynamical theory of spontaneous breakdown correctly predicts the bound states and relates the order parameters of electron-photon superconductivity and quark-gluon chiral symmetry. A similar statement cannot be made for the standard electro-weak gauge symmetry. (author)

  9. Gauge-Higgs Unification Models in Six Dimensions with S2/Z2 Extra Space and GUT Gauge Symmetry

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Chiang

    2012-01-01

    Full Text Available We review gauge-Higgs unification models based on gauge theories defined on six-dimensional spacetime with S2/Z2 topology in the extra spatial dimensions. Nontrivial boundary conditions are imposed on the extra S2/Z2 space. This review considers two scenarios for constructing a four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12 gauge symmetry with a special symmetry condition imposed on the gauge field, whereas the other employs the E6 gauge symmetry without requiring the additional symmetry condition. Both models lead to a standard model-like gauge theory with the SU(3×SU(2L×U(1Y(×U(12 symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed. The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson masses are obtained.

  10. On the gauge symmetries of Maxwell-like higher-spin Lagrangians

    International Nuclear Information System (INIS)

    Francia, Dario; Lyakhovich, Simon L.; Sharapov, Alexey A.

    2014-01-01

    In their simplest form, metric-like Lagrangians for higher-spin massless fields are usually assumed to display constrained gauge symmetries, unless auxiliary fields are introduced or locality is foregone. Specifically, in its standard incarnation, gauge invariance of Maxwell-like Lagrangians relies on parameters with vanishing divergence. We find an alternative form of the corresponding local symmetry involving unconstrained gauge parameters of mixed-symmetry type, described by rectangular two-row Young diagrams and entering high-derivative gauge transformations. The resulting gauge algebra appears to be reducible and we display the full pattern of gauge-for-gauge parameters, testing its correctness via the corresponding counting of degrees of freedom. The algebraic techniques applied in this work also allow us to elucidate some general properties of linear gauge systems. In particular, we establish the general fact that any linear local field theory always admits unconstrained, local, and finitely reducible parametrization of the gauge symmetry. Incidentally, this shows that massless higher spins admit a local unconstrained formulation with no need for auxiliary fields

  11. To see symmetry in a forest of trees

    International Nuclear Information System (INIS)

    Chan, Chuan-Tsung; Kawamoto, Shoichi; Tomino, Dan

    2014-01-01

    The exact symmetry identities among four-point tree-level amplitudes of bosonic open string theory as derived by G.W. Moore are re-examined. The main focuses of this work are: (1) Explicit construction of kinematic configurations and a new polarization basis for the scattering processes. These setups simplify greatly the functional forms of the exact symmetry identities, and help us to extract easily high-energy limits of stringy amplitudes appearing in the exact identities. (2) Connection and comparison between D.J. Gross's high-energy stringy symmetry and the exact symmetry identities as derived by G.W. Moore. (3) Observation of symmetry patterns of stringy amplitudes with respect to the order of energy dependence in scattering amplitudes

  12. Space-time and Local Gauge Symmetries

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Symmetries of Particle Physics: Space-time and Local Gauge Symmetries. Sourendu Gupta. General Article Volume 6 Issue 2 February 2001 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. New Methods in Supersymmetric Theories and Emergent Gauge Symmetry

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    It is remarkable that light or even massless spin 1 particles can be composite. Consequently, gauge invariance is not fundamental but emergent. This idea can be realized in detail in supersymmetric gauge theories. We will describe the recent development of non-perturbative methods that allow to test this idea. One finds that the emergence of gauge symmetry is linked to some results in contemporary mathematics. We speculate on the possible applications of the idea of emergent gauge symmetry to realistic models.

  14. Entanglement entropy and nonabelian gauge symmetry

    International Nuclear Information System (INIS)

    Donnelly, William

    2014-01-01

    Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang–Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity. (paper)

  15. 2T Physics, Weyl Symmetry and the Geodesic Completion of Black Hole Backgrounds

    Science.gov (United States)

    Araya Quezada, Ignacio Jesus

    In this thesis, we discuss two different contexts where the idea of gauge symmetry and duality is used to solve the dynamics of physical systems. The first of such contexts is 2T-physics in the worldline in d+2 dimensions, where the principle of Sp(2,R) gauge symmetry in phase space is used to relate different 1T systems in (d -- 1) + 1 dimensions, such as a free relativistic particle, and a relativistic particle in an arbitrary V(x2) potential. Because each 1T shadow system corresponds to a particular gauge of the underlying symmetry, there is a web of dualities relating them. The dualities between said systems amount to canonical transformations including time and energy, which allows the different systems to be described by different Hamiltonians, and consequently, to correspond to different dynamics in the (d -- 1)+1 phase space. The second context, corresponds to a Weyl invariant scalar-tensor theory of gravity, obtained as a direct prediction of 2T gravity, where the Weyl symmetry is used to obtain geodesically complete dynamics both in the context of cosmology and black hole (BH) backgrounds. The geodesic incompleteness of usual Einstein gravity, in the presence of singularities in spacetime, is related to the definition of the Einstein gauge, which fixes the sign and magnitude of the gravitational constant GN, and therefore misses the existence of antigravity patches, which are expected to arise generically just beyond gravitational singularities. The definition of the Einstein gauge can be generalized by incorporating a sign flip of the gravitational constant GN at the transitions between gravity and antigravity. This sign is a key aspect that allows us to define geodesically complete dynamics in cosmology and in BH backgrounds, particularly, in the case of the 4D Schwarzschild BH and the 2D stringy BH. The complete nature of particle geodesics in these BH backgrounds is exhibited explicitly at the classical level, and the extension of these results to the

  16. Unveiling a spinor field classification with non-Abelian gauge symmetries

    Science.gov (United States)

    Fabbri, Luca; da Rocha, Roldão

    2018-05-01

    A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) gauge symmetries-based Lounesto's classification. Here, a more general classification, contrary to the Lounesto's one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. The Lounesto's classification of spinors is shown to arise as a Pauli's singlet, into this more general classification.

  17. On the character of scale symmetry breaking in gauge theories

    International Nuclear Information System (INIS)

    Gusijnin, V.P.; Kushnir, V.A.; Miransky, V.A.

    1988-01-01

    The problem of scale symmetry breaking in gauge theories is discussed. It is shown that the phenomenon of spontaneous breaking of scale symmetry in gauge theories is incompatible with the PCAAC dynamics. 12 refs

  18. Pauli-Guersey symmetry in gauge theories

    International Nuclear Information System (INIS)

    Stern, J.

    1983-05-01

    Gauge theories with massless or massive fermions in a selfcontragredient representation exhibit global symmetries of Pauli-Guersey type. Some of them are broken spontaneously leading to a difermion Goldstone bosons. An example of a boson version of the Pauli-Guersey symmetry is provided by the Weinberg-Salam model in the limit THETAsub(w)→O

  19. Unified gauge theories with spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    MacDowell, S.W.

    1975-01-01

    Unified gauge theories with spontaneous symmetry breaking are studied with a view to renormalize quantum field theory. Georgi-Glashow and Weinberg-Salam models to unify weak and electromagnetic interactions are discussed in detail. Gauge theories of strong interactions are also considered [pt

  20. Abelian gauge symmetries in F-theory and dual theories

    Science.gov (United States)

    Song, Peng

    In this dissertation, we focus on important physical and mathematical aspects, especially abelian gauge symmetries, of F-theory compactifications and its dual formulations within type IIB and heterotic string theory. F-theory is a non-perturbative formulation of type IIB string theory which enjoys important dualities with other string theories such as M-theory and E8 x E8 heterotic string theory. One of the main strengths of F-theory is its geometrization of many physical problems in the dual string theories. In particular, its study requires a lot of mathematical tools such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests among mathematicians, and is a vivid area of research within both the physics and the mathematics community. Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory has been rarely studied, until recently. Within the mathematics community, in 2009, Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison and Park first made a major advancement by constructing general F-theory compactifications with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point. Subsequent developments have been made by Cvetic, Klevers and Piragua extended the works of Morrison and Park and constructed general F-theory compactifications with U(1) x U(1) abelian gauge symmetry. They found that in the U(1) x U(1) abelian gauge symmetry case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of this dissertation, I bring this a step further by

  1. Coarse-graining free theories with gauge symmetries: the linearized case

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Dittrich, Bianca; He Song

    2011-01-01

    Discretizations of continuum theories often do not preserve the gauge symmetry content. This occurs in particular for diffeomorphism symmetry in general relativity, which leads to severe difficulties in both canonical and covariant quantization approaches. We discuss here the method of perfect actions, which attempts to restore gauge symmetries by mirroring exactly continuum physics on a lattice via a coarse graining process. Analytical results can only be obtained via a perturbative approach, for which we consider the first step, namely the coarse graining of the linearized theory. The linearized gauge symmetries are exact also in the discretized theory; hence, we develop a formalism to deal with gauge systems. Finally, we provide a discretization of linearized gravity as well as a coarse graining map and show that with this choice the three-dimensional (3D) linearized gravity action is invariant under coarse graining.

  2. Symmetry breaking in gauge glasses

    International Nuclear Information System (INIS)

    Hansen, K.

    1988-09-01

    In order to explain why nature selects the gauge groups of the Standard Model, Brene and Nielsen have proposed a way to break gauge symmetry which does not rely on the existence of a Higgs field. The observed gauge groups will in this scheme appear as the only surviving ones when this mechanism is applied to a random selection of gauge groups. The essential assumption is a discrete space-time with random couplings. Some working assumptions were made for computational reasons of which the most important is that quantum fluctuations were neclected. This work presents an example which under the same conditions show that a much wider class of groups than predicted by Brene and Nielsen will be broken. In particular no possible Standard Model Group survives unbroken. Numerical calculations support the analytical result. (orig.)

  3. V A Fock and gauge symmetry

    International Nuclear Information System (INIS)

    Okun, Lev B

    2010-01-01

    V A Fock, in 1926, was the first to have the idea of an Abelian gradient transformation and to discover that the electromagnetic interaction of charged particles has a gradient invariance in the framework of quantum mechanics. These transformation and invariance were respectively named Eichtransformation and Eichinvarianz by H Weyl in 1929 (the German verb zu eichen means to gauge). The first non-Abelian gauge theory was suggested by O Klein in 1938; and in 1954, C N Yang and R L Mills rediscovered the non-Abelian gauge symmetry. Gauge invariance is the underlying principle of the current Standard Model of strong and electroweak interactions. (from the history of physics)

  4. Local E11 and the gauging of the trombone symmetry

    International Nuclear Information System (INIS)

    Riccioni, Fabio

    2010-01-01

    In any dimension, the positive level generators of the very extended Kac-Moody algebra E 11 with completely antisymmetric spacetime indices are associated with the form fields of the corresponding maximal supergravity. We consider the local E 11 algebra, that is the algebra obtained by enlarging these generators of E 11 in such a way that the global E 11 symmetries are promoted to gauge symmetries. These are the gauge symmetries of the corresponding massless maximal supergravity. We show the existence of a new type of deformation of the local E 11 algebra, which corresponds to the gauging of the symmetry under rescaling of the fields. In particular, we show how the gauged IIA theory of Howe, Lambert and West is obtained from an 11-dimensional group element that only depends on the 11th coordinate via a linear rescaling. We then show how this results in ten dimensions in a deformed local E 11 algebra of a new type.

  5. Field-theoretical investigations in nonlinear realizations of gauge symmetry

    International Nuclear Information System (INIS)

    Lee, Chenhan.

    1989-01-01

    A review of both linear realization and non-linear realization of gauge symmetries is given and the connection between the two recipes is carefully examined. The author then constructs both linear and non-linear realizations for of supersymmetric theories. The supermultiplets of the Goldstone modes contain Goldstone bosons, quasi-Goldstone bosons and quasi-Goldstone fermions. He makes an attempt to construct a specific model of a supersymmetric non-linear realization for the Nambu-Goldstone superfields and the quasi-Goldstone fermions are identified with the quarks and leptons. Further, he discusses a mechanism by which the components of the Nambu-Goldstone supermultiplets are given non-zero mass splittings by the coupling to a hidden sector. Next, he turns to anti-symmetric tensor gauge theories, which are shown to be classically equivalent to the non-linear models describing the complete symmetry breakdown. To study the quantum mechanical equivalence of these two models, he carries out the tensor gauge fixing and the quantization procedures for the anti-symmetric tensor theories and establish the global symmetry currents which connect the two models. He then builds the supersymmetric extensions of the anti-symmetric tensor gauge theories in both abelian and non-abelian versions. Such super-tensor gauge theories are shown, by using the superfield equations of motion, to be equivalent to the fully doubled supersymmetric non-linear models of complete symmetry breakdown

  6. Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models

    International Nuclear Information System (INIS)

    Luhn, C.

    2006-05-01

    Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z N symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z 6 symmetry, proton hexality P 6 , which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH u LH u . In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1) X FN models in which the Z 3 symmetry baryon triality, B 3 , arises from U(1) X breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B 3 -conserving FN models. (orig.)

  7. Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models

    Energy Technology Data Exchange (ETDEWEB)

    Luhn, C.

    2006-05-15

    Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z{sub N} symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z{sub 6} symmetry, proton hexality P{sub 6}, which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH{sub u}LH{sub u}. In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1){sub X} FN models in which the Z{sub 3} symmetry baryon triality, B{sub 3}, arises from U(1){sub X} breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B{sub 3}-conserving FN models. (orig.)

  8. Anomaly-free gauged R-symmetry in local supersymmetry

    International Nuclear Information System (INIS)

    Chamseddine, A.H.; Dreiner, H.

    1996-01-01

    We discuss local R-symmetry as a potentially powerful new model building tool. We first review and clarify that a U(1) R-symmetry can only be gauged in local and not in global supersymmetry. We determine the anomaly-cancellation conditions for the gauged R-symmetry. For the standard superpotential these equations have no solution, independently of how many Standard Model singlets are added to the model. There is also no solution when we increase the number of families and the number of pairs of Higgs doublets. When the Green-Schwarz mechanism is employed to cancel the anomalies, solutions only exist for a large number of singlets. We find many anomaly-free family-independent models with an extra SU(3) c octet chiral superfield. We consider in detail the conditions for an anomaly-free family-dependent U(1) R and find solutions with one, two, three and four extra singlets. Only with three and four extra singlets do we naturally obtain sfermion masses of the order of the weak scale. For these solutions we consider the spontaneous breaking of supersymmetry and the R-symmetry in the context of local supersymmetry. In general the U(1) R gauge group is broken at or close to the Planck scale. We consider the effects of the R-symmetry on baryon- and lepton-number violation in supersymmetry. There is no logical connection between a conserved R-symmetry and a conserved R-parity. For conserved R-symmetry we have models for all possibilities of conserved or broken R-parity. Most models predict dominant effects which could be observed at HERA. (orig.)

  9. Gauge Symmetry and Slavnov-Taylor Identities for Randomly Stirred Fluids

    International Nuclear Information System (INIS)

    Berera, Arjun; Hochberg, David

    2007-01-01

    The path integral for randomly forced incompressible fluids is shown to have an underlying Becchi-Rouet-Stora (BRS) symmetry as a consequence of Galilean invariance. This symmetry must be respected to have a consistent generating functional, free from both an overall infinite factor and spurious relations amongst correlation functions. We present a procedure for respecting this BRS symmetry, akin to gauge fixing in quantum field theory. Relations are derived between correlation functions of this gauge-fixed, BRS symmetric theory, analogous to the Slavnov-Taylor identities of quantum field theory

  10. Gauging the twisted Poincare symmetry as a noncommutative theory of gravitation

    International Nuclear Information System (INIS)

    Chaichian, M.; Tureanu, A.; Oksanen, M.; Zet, G.

    2009-01-01

    Einstein's theory of general relativity was formulated as a gauge theory of Lorentz symmetry by Utiyama in 1956, while the Einstein-Cartan gravitational theory was formulated by Kibble in 1961 as the gauge theory of Poincare transformations. In this framework, we propose a formulation of the gravitational theory on canonical noncommutative space-time by covariantly gauging the twisted Poincare symmetry, in order to fulfil the requirement of covariance under the general coordinate transformations, an essential ingredient of the theory of general relativity. It appears that the twisted Poincare symmetry cannot be gauged by generalizing the Abelian twist to a covariant non-Abelian twist, nor by introducing a more general covariant twist element. The advantages of such a formulation as well as the related problems are discussed and possible ways out are outlined.

  11. Noncommutative gauge theory and symmetry breaking in matrix models

    International Nuclear Information System (INIS)

    Grosse, Harald; Steinacker, Harold; Lizzi, Fedele

    2010-01-01

    We show how the fields and particles of the standard model can be naturally realized in noncommutative gauge theory. Starting with a Yang-Mills matrix model in more than four dimensions, an SU(n) gauge theory on a Moyal-Weyl space arises with all matter and fields in the adjoint of the gauge group. We show how this gauge symmetry can be broken spontaneously down to SU(3) c xSU(2) L xU(1) Q [resp. SU(3) c xU(1) Q ], which couples appropriately to all fields in the standard model. An additional U(1) B gauge group arises which is anomalous at low energies, while the trace-U(1) sector is understood in terms of emergent gravity. A number of additional fields arise, which we assume to be massive, in a pattern that is reminiscent of supersymmetry. The symmetry breaking might arise via spontaneously generated fuzzy spheres, in which case the mechanism is similar to brane constructions in string theory.

  12. Novel symmetries in Weyl-invariant gravity with massive gauge field

    Energy Technology Data Exchange (ETDEWEB)

    Abhinav, K. [S.N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata (India); Shukla, A.; Panigrahi, P.K. [Indian Institute of Science Education and Research Kolkata, Mohanpur (India)

    2016-11-15

    The background field method is used to linearize the Weyl-invariant scalar-tensor gravity, coupled with a Stueckelberg field. For a generic background metric, this action is found not to be invariant, under both a diffeomorphism and generalized Weyl symmetry, the latter being a combination of gauge and Weyl transformations. Interestingly, the quadratic Lagrangian, emerging from a background of Minkowski metric, respects both transformations independently. The Becchi-Rouet-Stora-Tyutin symmetry of scalar-tensor gravity coupled with a Stueckelberg-like massive gauge particle, possessing a diffeomorphism and generalized Weyl symmetry, reveals that in both cases negative-norm states with unphysical degrees of freedom do exist. We then show that, by combining diffeomorphism and generalized Weyl symmetries, all the ghost states decouple, thereby removing the unphysical redundancies of the theory. During this process, the scalar field does not represent any dynamic mode, yet modifies the usual harmonic gauge condition through non-minimal coupling with gravity. (orig.)

  13. Off-shell Ward identities and gauge symmetries in string theory

    International Nuclear Information System (INIS)

    Porrati, M.

    1989-01-01

    I describe a new method of obtaining gauge-symmetry transformation laws for the effective lagrangian of an arbitrary string theory. The method applies to exact as well as spontaneously broken gauge symmetries. The transformation laws, exact to all orders in α' are determined inductively in the number of fields by the corresponding off-shell Ward identities. The case of broken supersymmetry is examined in some detail. (orig.)

  14. Lagrangian formalism for constrained systems. 2. Gauge symmetries

    International Nuclear Information System (INIS)

    Pyatov, P.N.

    1990-01-01

    Using the Lagrangian formalism for constrained systems all gauge symmetries peculiar for a given Lagrangian system and in establishing the relation between them and the constraints are constructed. Besides, the question about the possible dependence of gauge transformations on accelerations and other higher order time derivatives of coordinates is clarified. 14 refs

  15. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study

    Energy Technology Data Exchange (ETDEWEB)

    Zohar, Erez, E-mail: erez.zohar@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Wahl, Thorsten B. [Rudolf Peierls Centre for Theoretical Physics, Oxford, 1 Keble Road, OX1 3NP (United Kingdom); Burrello, Michele, E-mail: michele.burrello@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Cirac, J. Ignacio [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany)

    2016-11-15

    Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.

  16. Nonlinear symmetries of black hole entropy in gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Dietmar [Dipartimento di Fisica, Università di Milano,and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marrani, Alessio [Museo Storico della Fisica e Centro Studi e Ricerche ‘Enrico Fermi’,Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova,and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Petri, Nicolò; Rabbiosi, Marco [Dipartimento di Fisica, Università di Milano,and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy)

    2017-04-04

    Freudenthal duality in N=2, D=4 ungauged supergravity is generated by an anti-involutive operator that acts on the electromagnetic fluxes, and results to be a symmetry of the Bekenstein-Hawking entropy. We show that, with a suitable extension, this duality can be generalized to the abelian gauged case as well, even in presence of hypermultiplets. By defining Freudenthal duality along the scalar flow, one can prove that two configurations of charges and gaugings linked by the Freudenthal operator share the same set of values of the scalar fields at the black hole horizon. Consequently, Freudenthal duality is promoted to a nonlinear symmetry of the black hole entropy. We explicitly show this invariance for the model with prepotential F=−iX{sup 0}X{sup 1} and Fayet-Iliopoulos gauging.

  17. A Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    International Nuclear Information System (INIS)

    Wang Dianfu; Song Heshan

    2005-01-01

    A generalized Yang-Mills model, which contains, besides the vector part V μ , also a scalar part S, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of Nambu-Jona-Lasinio (NJL) mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills model. The combination of the generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  18. Flavored gauge mediation with discrete non-Abelian symmetries

    Science.gov (United States)

    Everett, Lisa L.; Garon, Todd S.

    2018-05-01

    We explore the model building and phenomenology of flavored gauge-mediation models of supersymmetry breaking in which the electroweak Higgs doublets and the S U (2 ) messenger doublets are connected by a discrete non-Abelian symmetry. The embedding of the Higgs and messenger fields into representations of this non-Abelian Higgs-messenger symmetry results in specific relations between the Standard Model Yukawa couplings and the messenger-matter Yukawa interactions. Taking the concrete example of an S3 Higgs-messenger symmetry, we demonstrate that, while the minimal implementation of this scenario suffers from a severe μ /Bμ problem that is well known from ordinary gauge mediation, expanding the Higgs-messenger field content allows for the possibility that μ and Bμ can be separately tuned, allowing for the possibility of phenomenologically viable models of the soft supersymmetry-breaking terms. We construct toy examples of this type that are consistent with the observed 125 GeV Higgs boson mass.

  19. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  20. Decoupling Subtraction Conserving Full Gauge Symmetries : Particles and Fields

    OpenAIRE

    Noriyasu, OHTSUBO; Hideo, MIYATA; Department of Phycics, Kanazawa Technical College; Department of Information Science, Kanazawa Institute of Technolgy

    1984-01-01

    A new subtraction scheme (^^^) which realizes the decoupling and conserves the symmetries of full gauge group simultaneously, is proposed. One particle irreducible Green's functions subtracted by ^^^ reveal the effective low energy symmetries at -p^2≪M^2 and the full symmetries at -p^2≫M^2, where M denotes a heavy mass. Also discussed are conditions in order to carry out ^^^ under two-loop approximation.

  1. New gauge symmetries in Witten's Ramond string field theory

    International Nuclear Information System (INIS)

    Kugo, Taichiro; Terao, Haruhiko

    1988-01-01

    Witten's Raymond string field theory is observed to possess new gauge symmetries, which guarantee the consistency and the equivalence of Witten's theory to the other formulation based on the constrained string field. The projection operator into the gauge-invariant sector is explicitly constructed using an operator similar to the picture changing operator. (orig.)

  2. Antisymmetric tensor Zp gauge symmetries in field theory and string theory

    International Nuclear Information System (INIS)

    Berasaluce-González, Mikel; Ramírez, Guillermo; Uranga, Angel M.

    2014-01-01

    We consider discrete gauge symmetries in D dimensions arising as remnants of broken continuous gauge symmetries carried by general antisymmetric tensor fields, rather than by standard 1-forms. The lagrangian for such a general Z p gauge theory can be described in terms of a r-form gauge field made massive by a (r−1)-form, or other dual realizations, that we also discuss. The theory contains charged topological defects of different dimensionalities, generalizing the familiar charged particles and strings in D=4. We describe realizations in string theory compactifications with torsion cycles, or with background field strength fluxes. We also provide examples of non-abelian discrete groups, for which the group elements are associated with charged objects of different dimensionality

  3. Anatomy of zero-norm states in string theory

    International Nuclear Information System (INIS)

    Chan, C.-T.; Lee, J.-C.; Yi Yang

    2005-01-01

    We calculate and identify the counterparts of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string in two other quantization schemes of string theory, namely, the light-cone Del Giudice-Di Vecchia-Fubine zero-norm states and the off-shell Becchi-Rouet-Stora-Tyutin (BRST) zero-norm states (with ghost) in the Witten string field theory (WSFT). In particular, special attention is paid to the interparticle zero-norm states in all quantization schemes. For the case of the off-shell BRST zero-norm states, we impose the no-ghost conditions and recover exactly two types of on-shell zero-norm states in the OCFQ string spectrum for the first few low-lying mass levels. We then show that off-shell gauge transformations of WSFT are identical to the on-shell stringy gauge symmetries generated by two types of zero-norm states in the generalized massive σ-model approach of string theory. The high-energy limit of these stringy gauge symmetries was recently used to calculate the proportionality constants, conjectured by Gross, among high-energy scattering amplitudes of different string states. Based on these zero-norm state calculations, we have thus related gauge symmetry of WSFT to the high-energy stringy symmetry of Gross

  4. Reduced modular symmetries of threshold corrections and gauge coupling unification

    Energy Technology Data Exchange (ETDEWEB)

    Bailin, David; Love, Alex [Department of Physics & Astronomy, University of Sussex,Brighton, BN1 9QH (United Kingdom)

    2015-04-01

    We revisit the question of gauge coupling unification at the string scale in orbifold compactifications of the heterotic string for the supersymmetric Standard Model. In the presence of discrete Wilson lines threshold corrections with modular symmetry that is a subgroup of the full modular group arise. We find that reduced modular symmetries not previously reported are possible. We conjecture that the effects of such threshold corrections can be simulated using sums of terms built from Dedekind eta functions to obtain the appropriate modular symmetry. For the cases of the ℤ{sub 8}-I orbifold and the ℤ{sub 3}×ℤ{sub 6} orbifold it is easily possible to obtain gauge coupling unification at the “observed” scale with Kähler moduli T of approximately one.

  5. A model with isospin doublet U(1)D gauge symmetry

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-05-01

    We propose a model with an extra isospin doublet U(1)D gauge symmetry, in which we introduce several extra fermions with odd parity under a discrete Z2 symmetry in order to cancel the gauge anomalies out. A remarkable issue is that we impose nonzero U(1)D charge to the Standard Model Higgs, and it gives the most stringent constraint to the vacuum expectation value of a scalar field breaking the U(1)D symmetry that is severer than the LEP bound. We then explore relic density of a Majorana dark matter candidate without conflict of constraints from lepton flavor violating processes. A global analysis is carried out to search for parameters which can accommodate with the observed data.

  6. Extended BRST symmetries in the gauge field theory

    International Nuclear Information System (INIS)

    Babalean, Aurel; Constantinescu, Radu; Ionescu, Carmen

    2001-01-01

    The BRST procedure provides one of the most powerful methods for the quantum description of the gauge field theories. As already stated, the unphysical degrees of freedom that appear in this case can be easily canceled by the introduction of the ghost type variables. In the Hamiltonian formalism, the structure of the ghost that must be used mainly depends on two factors: - the type of the theory, that this the relations among the constraints of the theory; - the extension of the symmetry to be implemented. The paper presents the structure of the extended phase space suitable for the BRST canonical quantization of a 1- reducible gauge theory in the frame of a BRST symmetry of order three. The corresponding BRST charges and the extended Hamiltonian are also constructed. (authors)

  7. Heavy axions from strong broken horizontal gauge symmetry

    International Nuclear Information System (INIS)

    Elliott, T.; King, S.F.

    1993-01-01

    We study the consequences of the existence and breaking of a Peccei-Quinn symmetry within the context of a dynamical model of electroweak symmetry breaking based on broken gauged flavour symmetries. We perform an estimate of the axion mass by including flavour instanton effects and show that, for low cut-offs, the axion is sufficiently massive to prevent it from being phenomenologically unacceptable. We conclude with an examination of the strong CP problem and show that our axion cannot solve the problem, though we indicate ways in which the model can be extended so that the strong CP problem is solved. (orig.)

  8. On the large-N dynamics of gauge symmetry breaking

    International Nuclear Information System (INIS)

    Karchev, N.I.

    1983-07-01

    We consider a Gsub(W)xUsub(TC)(N) gauge theory. A method of colour singlet bilocal collective coordinates is proposed to show, large-N colour dynamics is responsible for the Gsub(W) gauge symmetry breaking if the large-N Schwinger-Dyson equation admits anomalous solutions. The dynamically generated mass matrix is computed through these solutions. The technicolour model is discussed. (author)

  9. Cellular gauge symmetry and the Li organization principle: General considerations.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F; Navarro, Jorge; Kun, Wu; Lin, Bi; Marijuán, Pedro C

    2017-12-01

    Based on novel topological considerations, we postulate a gauge symmetry for living cells and proceed to interpret it from a consistent Eastern perspective: the li organization principle. In our framework, the reference system is the living cell, equipped with general symmetries and energetic constraints standing for the intertwined biochemical, metabolic and signaling pathways that allow the global homeostasis of the system. Environmental stimuli stand for forces able to locally break the symmetry of metabolic/signaling pathways, while the species-specific DNA is the gauge field that restores the global homeostasis after external perturbations. We apply the Borsuk-Ulam Theorem (BUT) to operationalize a methodology in terms of topology/gauge fields and subsequently inquire about the evolution from inorganic to organic structures and to the prokaryotic and eukaryotic modes of organization. We converge on the strategic role that second messengers have played regarding the emergence of a unitary gauge field with profound evolutionary implications. A new avenue for a deeper investigation of biological complexity looms. Philosophically, we might be reminded of the duality between two essential concepts proposed by the great Chinese synthesizer Zhu Xi (in the XIII Century). On the one side the li organization principle, equivalent to the dynamic interplay between symmetry and information; and on the other side the qi principle, equivalent to the energy participating in the process-both always interlinked with each other. In contemporary terms, it would mean the required interconnection between information and energy, and the necessity to revise essential principles of information philosophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Two-dimensional gauge model with vector U(1) and axial-vector U(1) symmetries

    International Nuclear Information System (INIS)

    Watabiki, Y.

    1989-01-01

    We have succeeded in constructing a two-dimensional gauge model with both vector U(1) and axial-vector U(1) symmetries. This model is exactly solvable. The Schwinger term vanishes in this model as a consequence of the above symmetries, and negative-norm states appear. However, the norms of physical states are always positive semidefinite due to the gauge symmetries

  11. Dark Matter candidate in Inert Doublet Model with additional local gauge symmetry U (1)

    International Nuclear Information System (INIS)

    Gaitán, R.; De Oca, J.H. Montes; Garcés, E. A.; Cabral-Rosetti, L. G.

    2016-01-01

    We consider the Inert Doublet Model (IDM) with an additional local gauge symmetry U (1) and a complex singlet scalar to break the symmetry U (1). The continuous symmetry U (1) is introduced to control the CP-conserving interaction instead of some discrete symmetries as usually. We present the mass spectrum for neutral scalar and gauge bosons and the values of the charges under U (1) for which the model could have a candidate to dark matter. (paper)

  12. Spontaneous symmetry breaking, and strings defects in hypercomplex gauge field theories

    Energy Technology Data Exchange (ETDEWEB)

    Cartas-Fuentevilla, R. [Universidad Autonoma de Puebla, Instituto de Fisica, Puebla, Pue. (Mexico); Meza-Aldama, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, Pue. (Mexico)

    2016-02-15

    Inspired by the appearance of split-complex structures in the dimensional reduction of string theory, and in the theories emerging as byproducts, we study the hypercomplex formulation of Abelian gauge field theories by incorporating a new complex unit to the usual complex one. The hypercomplex version of the traditional Mexican hat potential associated with the U(1) gauge field theory, corresponds to a hybrid potential with two real components, and with U(1) x SO(1,1) as symmetry group. Each component corresponds to a deformation of the hat potential, with the appearance of a new degenerate vacuum. Hypercomplex electrodynamics will show novel properties, such as spontaneous symmetry breaking scenarios with running masses for the vectorial and scalar Higgs fields, and such as Aharonov-Bohm type strings defects as exact solutions; these topological defects may be detected only by quantum interference of charged particles through gauge invariant loop integrals. In a particular limit, the hyperbolic electrodynamics does not admit topological defects associated with continuous symmetries. (orig.)

  13. Gauging Quantum States: From Global to Local Symmetries in Many-Body Systems

    Directory of Open Access Journals (Sweden)

    Jutho Haegeman

    2015-02-01

    Full Text Available We present an operational procedure to transform global symmetries into local symmetries at the level of individual quantum states, as opposed to typical gauging prescriptions for Hamiltonians or Lagrangians. We then construct a compatible gauging map for operators, which preserves locality and reproduces the minimal coupling scheme for simple operators. By combining this construction with the formalism of projected entangled-pair states (PEPS, we can show that an injective PEPS for the matter fields is gauged into a G-injective PEPS for the combined gauge-matter system, which potentially has topological order. We derive the corresponding parent Hamiltonian, which is a frustration-free gauge-theory Hamiltonian closely related to the Kogut-Susskind Hamiltonian at zero coupling constant. We can then introduce gauge dynamics at finite values of the coupling constant by applying a local filtering operation. This scheme results in a low-parameter family of gauge-invariant states of which we can accurately probe the phase diagram, as we illustrate by studying a Z_{2} gauge theory with Higgs matter.

  14. General quadratic gauge theory: constraint structure, symmetries and physical functions

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)

    2005-06-17

    How can we relate the constraint structure and constraint dynamics of the general gauge theory in the Hamiltonian formulation to specific features of the theory in the Lagrangian formulation, especially relate the constraint structure to the gauge transformation structure of the Lagrangian action? How can we construct the general expression for the gauge charge if the constraint structure in the Hamiltonian formulation is known? Whether we can identify the physical functions defined as commuting with first-class constraints in the Hamiltonian formulation and the physical functions defined as gauge invariant functions in the Lagrangian formulation? The aim of the present paper is to consider the general quadratic gauge theory and to answer the above questions for such a theory in terms of strict assertions. To fulfil such a programme, we demonstrate the existence of the so-called superspecial phase-space variables in terms of which the quadratic Hamiltonian action takes a simple canonical form. On the basis of such a representation, we analyse a functional arbitrariness in the solutions of the equations of motion of the quadratic gauge theory and derive the general structure of symmetries by analysing a symmetry equation. We then use these results to identify the two definitions of physical functions and thus prove the Dirac conjecture.

  15. Maximally Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    International Nuclear Information System (INIS)

    Wang Dianfu; Song Heshan

    2006-01-01

    A maximally generalized Yang-Mills model, which contains, besides the vector part V μ , also an axial-vector part A μ , a scalar part S, a pseudoscalar part P, and a tensor part T μν , is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of the Nambu-Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the maximally generalized Yang-Mills model. The combination of the maximally generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  16. Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi; Haba, Naoyuki; Shimizu, Yasuhiro; Yamaguchi, Masahiro

    2004-01-01

    We examine the Higgs mass parameters and electroweak symmetry breaking in supersymmetric orbifold field theories in which the 4-dimensional Higgs fields originate from higher-dimensional gauge supermultiplets. It is noted that such gauge-Higgs unification leads to a specific boundary condition on the Higgs mass parameters at the compactification scale, which is independent of the details of supersymmetry breaking mechanism. With this boundary condition, phenomenologically viable parameter space of the model is severely constrained by the condition of electroweak symmetry breaking for supersymmetry breaking scenarios which can be realized naturally in orbifold field theories. For instance, if it is assumed that the 4-dimensional effective theory is the minimal supersymmetric standard model with supersymmetry breaking parameters induced by the Scherk-Schwarz mechanism, a correct electroweak symmetry breaking can not be achieved for reasonable range of parameters of the model, even when one includes additional contributions to the Higgs mass parameters from the auxiliary component of 4-dimensional conformal compensator. However if there exists a supersymmetry breaking mediated by brane superfields, sizable portion of the parameter space can give a correct electroweak symmetry breaking. (author)

  17. Spontaneous symmetry breaking in local gauge quantum field theory; the Higgs mechanism

    International Nuclear Information System (INIS)

    Strocchi, F.

    1977-01-01

    Spontaneous symmetry breakings in indefinite metric quantum field theories are analyzed and a generalization of the Goldstone theorem is proved. The case of local gauge quantum field theories is discussed in detail and a characterization is given of the occurrence of the Higgs mechanism versus the Goldstone mechanism. The Higgs phenomenon is explained on general grounds without the introduction of the so-called Higgs fields. The basic property is the relation between the local internal symmetry group and the local group of gauge transformations of the second kind. Spontaneous symmetry breaking of c-number gauge transformations of the second kind is shown to always occur if there are charged local fields. The implications about the absence of mass gap in the Wightman functions and the occurrence of massless particles associated with the unbroken generators in the Higgs phenomenon are discussed. (orig.) [de

  18. Enhanced gauge symmetry and winding modes in double field theory

    Energy Technology Data Exchange (ETDEWEB)

    Aldazabal, G. [Centro Atómico Bariloche,8400 S.C. de Bariloche (Argentina); Instituto Balseiro (CNEA-UNC) and CONICET,8400 S.C. de Bariloche (Argentina); Graña, M. [Institut de Physique Théorique, CEA/ Saclay,91191 Gif-sur-Yvette Cedex (France); Iguri, S. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Universidad de Buenos Aires,1428 Buenos Aires (Argentina); Mayo, M. [Centro Atómico Bariloche,8400 S.C. de Bariloche (Argentina); Instituto Balseiro (CNEA-UNC) and CONICET,8400 S.C. de Bariloche (Argentina); Nuñez, C. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Universidad de Buenos Aires,1428 Buenos Aires (Argentina); Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Rosabal, J.A. [Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina)

    2016-03-15

    We provide an explicit example of how the string winding modes can be incorporated in double field theory. Our guiding case is the closed bosonic string compactified on a circle of radius close to the self-dual point, where some modes with non-zero winding or discrete momentum number become massless and enhance the U(1)×U(1) symmetry to SU(2)×SU(2). We compute three-point string scattering amplitudes of massless and slightly massive states, and extract the corresponding effective low energy gauge field theory. The enhanced gauge symmetry at the self-dual point and the Higgs-like mechanism arising when changing the compactification radius are examined in detail. The extra massless fields associated to the enhancement are incorporated into a generalized frame with ((O(d+3,d+3))/(O(d+3)×O(d+3))) structure, where d is the number of non-compact dimensions. We devise a consistent double field theory action that reproduces the low energy string effective action with enhanced gauge symmetry. The construction requires a truly non-geometric frame which explicitly depends on both the compact coordinate along the circle and its dual.

  19. Do stringy corrections stabilize colored black holes?

    International Nuclear Information System (INIS)

    Kanti, P.; Winstanley, E.

    2000-01-01

    We consider hairy black hole solutions of Einstein-Yang-Mills-dilaton theory, coupled to a Gauss-Bonnet curvature term, and we study their stability under small, spacetime-dependent perturbations. We demonstrate that stringy corrections do not remove the sphaleronic instabilities of colored black holes with the number of unstable modes being equal to the number of nodes of the background gauge function. In the gravitational sector and in the limit of an infinitely large horizon, colored black holes are also found to be unstable. Similar behavior is exhibited by magnetically charged black holes while the bulk of neutral black holes are proved to be stable under small, gauge-dependent perturbations. Finally, electrically charged black holes are found to be characterized only by the existence of a gravitational sector of perturbations. As in the case of neutral black holes, we demonstrate that for the bulk of electrically charged black holes no unstable modes arise in this sector. (c) 2000 The American Physical Society

  20. Stationary black holes with stringy hair

    Science.gov (United States)

    Boos, Jens; Frolov, Valeri P.

    2018-01-01

    We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.

  1. Phenomenology of the gauge symmetry for right-handed fermions

    Science.gov (United States)

    Chao, Wei

    2018-02-01

    In this paper we investigate the phenomenology of the U(1) gauge symmetry for right-handed fermions, where three right-handed neutrinos are introduced for anomalies cancellations. Constraints on the new gauge boson Z_{R} from Z-Z^' mixing as well as the upper bound of Z^' production cross section in di-lepton channel at the LHC are presented. We further study the neutrino mass and the phenomenology of Z_{R}-portal dark matter in this model. The lightest right-handed neutrino can be the cold dark matter candidate stabilized by a Z_2 flavor symmetry. Our study shows that active neutrino masses can be generated via the modified type-II seesaw mechanism; right-handed neutrino is available dark matter candidate for its mass being very heavy, or for its mass at near the resonant regime of the SM Higgs and(or) the new bosons; constraint from the dilepton search at the LHC is stronger than that from the Z-Z^' mixing only for g_{R}<0.121, where g_{R} is the new gauge coupling.

  2. Massive and massless gauge fields of any spin and symmetry

    International Nuclear Information System (INIS)

    Hussain, F.; Jarvis, P.D.

    1988-05-01

    An analysis of the BRST approach to massive and massless gauge fields of any spin and symmetry is presented. Previous results on massless gauge fields are extended to totally antisymmetric massless tensors and Kaehler-Dirac particles. Two methods for arriving at a BRST invariant, massive theory from the corresponding massless one are discussed. The first allows for an interpretation in terms of dimensional reduction, while the second keeps the BRST operator of the massless theory, but employs gauge invariant fields. (author). 10 refs

  3. Large gauge symmetries and asymptotic states in QED

    Energy Technology Data Exchange (ETDEWEB)

    Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)

    2016-12-19

    Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.

  4. Localizability and local gauge symmetry in quantum theory

    International Nuclear Information System (INIS)

    Leveille, J.P.

    1976-01-01

    An attempt is made to generalize a theorem of Jauch on the equivalence of local gauge symmetry and Galilean symmetry to relativistic theories. One first proves a converse to Jauch's theorem deriving the Galilei algebra from a locality postulate. When generalized to the relativistic case the locality postulate leads one to the relativistic dynamical group g 5 . A possible physical interpretation of g 5 as a relativistic dynamical group is given. An attempt to describe the dynamics solely in Minkowski space-time leads, in conjunction with the locality postulate, to a new relativistic dynamical algebra. We found that this new algebra is realized by field theoretical examples which exclude quantum electrodynamics, however, and other known gauge theories. This latter development forces one to seriously question the validity of the locality postulate. One concludes by proving a general theorem about the nonimplementability of local transformations by global operators independent of space-time in field theory

  5. Calculation of zero-norm states and reduction od stringy scattering amplitudes

    International Nuclear Information System (INIS)

    Lee Jen-Chi

    2005-01-01

    We give a simplified method to generate two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. Zero-norm states up to the fourth massive level and general formulas of some zero-norm tensor states at arbitrary mass levels are calculated. On-shell Ward identities generated by zero-norm states and the factor-ization property of stringy vertex operators can then be used to argue that the string-tree scattering amplitudes of the degenerate lower spin propagating states are fixed by those of higher spin propagating states at each fixed mass level. This decoupling phenomenon is, in contrast to Gross's high-energy symmetries, valid to all energies. As examples, we explicitly demonstrate this stringy phenomenon up to fourth massive level (spin-five), which justifies the calculation of two other previous approaches based on the massive worldsheet sigma-model and Witten's string field theory (WSFT). (author)

  6. Enhanced symmetries of gauge theory and resolving the spectrum of local operators

    International Nuclear Information System (INIS)

    Kimura, Yusuke; Ramgoolam, Sanjaye

    2008-01-01

    Enhanced global non-Abelian symmetries at zero coupling in Yang Mills theory play an important role in diagonalizing the two-point functions of multimatrix operators. Generalized Casimirs constructed from the iterated commutator action of these enhanced symmetries resolve all the multiplicity labels of the bases of matrix operators which diagonalize the two-point function. For the case of U(N) gauge theory with a single complex matrix in the adjoint of the gauge group we have a U(N) x4 global symmetry of the scaling operator at zero coupling. Different choices of commuting sets of Casimirs, for the case of a complex matrix, lead to the restricted Schur basis previously studied in connection with string excitations of giant gravitons and the Brauer basis studied in connection with brane-antibrane systems. More generally these remarks can be extended to the diagonalization for any global symmetry group G. Schur-Weyl duality plays a central role in connecting the enhanced symmetries and the diagonal bases.

  7. Symmetry breaking by Wilson loops in gauge field theory

    International Nuclear Information System (INIS)

    Dowker, J.S.; Jadhav, S.P.

    1989-01-01

    An analysis is presented of the gauge symmetry breaking caused by Wilson loops on a space-time whose spatial section is openR/sup d/ x S 3 /Γ, for all those fundamental groups Γ that give a homogeneous space. We concentrate on pure SU(3) and SU(5) gauge field theories and find that symmetry breaking can occur when d = 0, for all Γ. If d = 3, the extra minimal scalars prevent any breaking and one must include other fields to achieve this. Explicit forms for the vacuum energies are exhibited in the case of lens and prism spaces, the former for SU(n). For Γ = Z/sub m/, when m and the radius of the sphere become infinite, we recover the results on the space-time openR/sup d//sup +3/ x S 1

  8. Stringy origin of non-Abelian discrete flavor symmetries

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuo; Nilles, Hans Peter; Ploeger, Felix; Raby, Stuart; Ratz, Michael

    2007-01-01

    We study the origin of non-Abelian discrete flavor symmetries in superstring theory. We classify all possible non-Abelian discrete flavor symmetries which can appear in heterotic orbifold models. These symmetries include D 4 and Δ(54). We find that the symmetries of the couplings are always larger than the symmetries of the compact space. This is because they are a consequence of the geometry of the orbifold combined with the space group selection rules of the string. We also study possible breaking patterns. Our analysis yields a simple geometric understanding of the realization of non-Abelian flavor symmetries

  9. Extensions of automorphisms and gauge symmetries

    International Nuclear Information System (INIS)

    Buchholz, D.; Doplicher, S.; Longo, R.; Roberts, J.E.

    1993-01-01

    We characterize the automophisms of a C*-algebra A which extend to automorphisms of the crossed product B of A by a compact group dual. The case where the inclusion A contains or equal to B is equipped with a group of automorphisms commuting with the dual action is also treated. These results are applied to the analysis of broken gauge symmetries in Quantum Field Theory to draw conclusions on the structure of the degenerate vacua on the field algebra. (orig.)

  10. Phenomenology of the gauge symmetry for right-handed fermions

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Wei [Beijing Normal University, Center for Advanced Quantum Studies, Department of Physics, Beijing (China)

    2018-02-15

    In this paper we investigate the phenomenology of the U(1) gauge symmetry for right-handed fermions, where three right-handed neutrinos are introduced for anomalies cancellations. Constraints on the new gauge boson Z{sub R} from Z-Z{sup '} mixing as well as the upper bound of Z{sup '} production cross section in di-lepton channel at the LHC are presented. We further study the neutrino mass and the phenomenology of Z{sub R}-portal dark matter in this model. The lightest right-handed neutrino can be the cold dark matter candidate stabilized by a Z{sub 2} flavor symmetry. Our study shows that active neutrino masses can be generated via the modified type-II seesaw mechanism; right-handed neutrino is available dark matter candidate for its mass being very heavy, or for its mass at near the resonant regime of the SM Higgs and(or) the new bosons; constraint from the dilepton search at the LHC is stronger than that from the Z-Z{sup '} mixing only for g{sub R} < 0.121, where g{sub R} is the new gauge coupling. (orig.)

  11. Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond.

    Science.gov (United States)

    Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang

    2015-01-23

    The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.

  12. CP and other gauge symmetries in string theory

    International Nuclear Information System (INIS)

    Dine, M.; Leigh, R.G.; MacIntire, D.A.

    1992-01-01

    We argue that CP is a gauge symmetry in string theory. As a consequence, CP cannot be explicitly broken either perturbatively or nonperturbatively; there can be no nonperturbative CP-violating parameters. String theory is thus an example of a theory where all θ angles arise due to spontaneous CP violation, and are in principle calculable

  13. Scale gauge symmetry and the standard model

    International Nuclear Information System (INIS)

    Sola, J.

    1990-01-01

    This paper speculates on a version of the standard model of the electroweak and strong interactions coupled to gravity and equipped with a spontaneously broken, anomalous, conformal gauge symmetry. The scalar sector is virtually absent in the minimal model but in the general case it shows up in the form of a nonlinear harmonic map Lagrangian. A Euclidean approach to the phenological constant problem is also addressed in this framework

  14. Chiral symmetry breaking in gauge theories from Reggeon diagram analysis

    International Nuclear Information System (INIS)

    White, A.R.

    1991-01-01

    It is argued that reggeon diagrams can be used to study dynamical properties of gauge theories containing a large number of massless fermions. SU(2) gauge theory is studied in detail and it is argued that there is a high energy solution which is analogous to the solution of the massless Schwinger model. A generalized winding-number condensate produces the massless pseudoscalar spectrum associated with chiral symmetry breaking and a ''trivial'' S-Matrix

  15. Model with a gauged lepton flavor SU(2) symmetry

    Science.gov (United States)

    Chiang, Cheng-Wei; Tsumura, Koji

    2018-05-01

    We propose a model having a gauged SU(2) symmetry associated with the second and third generations of leptons, dubbed SU(2) μτ , of which U{(1)}_{L_{μ }-L_{τ }} is an Abelian subgroup. In addition to the Standard Model fields, we introduce two types of scalar fields. One exotic scalar field is an SU(2) μτ doublet and SM singlet that develops a nonzero vacuum expectation value at presumably multi-TeV scale to completely break the SU(2) μτ symmetry, rendering three massive gauge bosons. At the same time, the other exotic scalar field, carrying electroweak as well as SU(2) μτ charges, is induced to have a nonzero vacuum expectation value as well and breaks mass degeneracy between the muon and tau. We examine how the new particles in the model contribute to the muon anomalous magnetic moment in the parameter space compliant with the Michel decays of tau.

  16. Family gauge symmetry as an origin of Koide's mass formula and charged lepton spectrum

    International Nuclear Information System (INIS)

    Sumino, Y.

    2009-01-01

    Koide's mass formula is an empirical relation among the charged lepton masses which holds with a striking precision. We present a model of charged lepton sector within an effective field theory with U(3) x SU(2) family gauge symmetry, which predicts Koide's formula within the present experimental accuracy. Radiative corrections as well as other corrections to Koide's mass formula have been taken into account. We adopt a known mechanism, through which the charged lepton spectrum is determined by the vacuum expectation value of a 9-component scalar field Φ. On the basis of this mechanism, we implement the following mechanisms into our model: (1) The radiative correction induced by family gauge interaction cancels the QED radiative correction to Koide's mass formula, assuming a scenario in which the U(3) family gauge symmetry and SU(2) L weak gauge symmetry are unified at 10 2 -10 3 TeV scale; (2) A simple potential of Φ invariant under U(3) x SU(2) leads to a realistic charged lepton spectrum, consistent with the experimental values, assuming that Koide's formula is protected; (3) Koide's formula is stabilized by embedding U(3) x SU(2) symmetry in a larger symmetry group. Formally fine tuning of parameters in the model is circumvented (apart from two exceptions) by appropriately connecting the charged lepton spectrum to the boundary (initial) conditions of the model at the cut-off scale. We also discuss some phenomenological implications.

  17. On the SL(2,R) symmetry in Yang-Mills theories in the Landau, Curci-Ferrari and maximal abelian gauge

    International Nuclear Information System (INIS)

    Dudal, David; Verschelde, Henri; Rodino Lemes, Vitor Emanuel; Sarandy, Marcelo S.; Sorella, Silvio Paolo; Picariello, Marco

    2002-01-01

    The existence of a SL(2;R) symmetry is discussed in SU(N) Yang-Mills in the maximal abelian gauge. This symmetry, also present in the Landau and Curci-Ferrari gauge, ensures the absence of tachyons in the maximal abelian gauge. In all these gauges, SL(2;R) turns out to be dynamically broken by ghost condensates. (author)

  18. Dynamical mechanism of symmetry breaking and particle mass generation in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Fomin, P.I.

    1985-01-01

    The dynamics of the spotaneous symmetry breaking and the particle mass generation in gauge theories with no fundamental scalar fields is considered. The emphasis is on the consideration of the symmetry breaking mechanism connected with the dynamics of the supercritical Coulomb-like forces caused by the gauge boson exchange between fermions. This mechanism is applied to different gauge theories, in particular, to the description of the spontaneous chira symmetry breaking in quantum chromodynamics. The mass relations for pseudoscalar meson nonet are obtained and it is shown that this mechanism resuls in the dynamical realisation of the hypothesis of the partial conservation of the axial-vector currents. The qualitative description of scalar mesons is given. The nature of the ultraviolet divergencies in quantum electrodynamics (QED) is investigated from the viewpoint of the dynamics of the fermion mass generation. The mechanism of the appearance of the additional (in comparison with perturbation theory) ultraviolet divergencies in QED with large bare coupling constant is indicated. The physical phenomenon underlying this mechanism is identified as the field theory analogue of the quantum mechanical ''fall into the centre'' (collapse) phenomenon. The similr phenomenon is shown to take place in some two-dimensional quantum field models. The dynamics of the bifermion condensates formation in tumblin gauge theories is briefly discussed

  19. Radiative breaking scenario for the GUT gauge symmetry

    International Nuclear Information System (INIS)

    Fukuyama, T.; Kikuchi, T.

    2006-01-01

    The origin of the grand unified theory (GUT) scale from the top-down perspective is explored. The GUT gauge symmetry is broken by the renormalization group effects, which is an extension of the radiative electroweak symmetry breaking scenario to the GUT models. That is, in the same way as the origin of the electroweak scale, the GUT scale is generated from the Planck scale through the radiative corrections to the soft supersymmetry breaking mass parameters. This mechanism is applied to a perturbative SO(10) GUT model, recently proposed by us. In the SO(10) model, the relation between the GUT scale and the Planck scale can naturally be realized by using order-one coupling constants. (orig.)

  20. Gauging MSSM global symmetries and SUSY breaking in de Sitter vacuum

    CERN Document Server

    Antoniadis, Ignatios

    2016-01-01

    We elaborate on a recent study of a model of supersymmetry breaking we proposed recently, in the presence of a tunable positive cosmological constant, based on a gauged shift symmetry of a string modulus, external to the Standard Model (SM) sector. Here, we identify this symmetry with a global symmetry of the SM and work out the corresponding phenomenology. A particularly attracting possibility is to use a combination of Baryon and Lepton number that contains the known matter parity and guarantees absence of dimension-four and five operators that violate B and L.

  1. Enhanced gauge symmetry in type II string theory

    International Nuclear Information System (INIS)

    Katz, S.; Ronen Plesser, M.

    1996-01-01

    We show how enhanced gauge symmetry in type II string theory compactified on a Calabi-Yau threefold arises from singularities in the geometry of the target space. When the target space of the type IIA string acquires a genus g curve C of A N-1 singularities, we find that an SU(N) gauge theory with g adjoint hypermultiplets appears at the singularity. The new massless states correspond to solitons wrapped about the collapsing cycles, and their dynamics is described by a twisted supersymmetric gauge theory on C x R 4 . We reproduce this result from an analysis of the S-dual D-manifold. We check that the predictions made by this model about the nature of the Higgs branch, the monodromy of period integrals, and the asymptotics of the one-loop topological amplitude are in agreement with geometrical computations. In one of our examples we find that the singularity occurs at strong coupling in the heterotic dual proposed by Kachru and Vafa. (orig.)

  2. Hidden U (1 ) gauge symmetry realizing a neutrinophilic two-Higgs-doublet model with dark matter

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-04-01

    We propose a neutrinophilic two-Higgs-doublet model with hidden local U (1 ) symmetry, where active neutrinos are Dirac type, and a fermionic dark matter (DM) candidate is naturally induced as a result of remnant symmetry even after the spontaneous symmetry breaking. In addition, a physical Goldstone boson arises as a consequence of two types of gauge singlet bosons and contributes to the DM phenomenologies as well as an additional neutral gauge boson. Then, we analyze the relic density of DM within the safe range of direct detection searches and show the allowed region of dark matter mass.

  3. Classically conformal radiative neutrino model with gauged B−L symmetry

    Directory of Open Access Journals (Sweden)

    Hiroshi Okada

    2016-09-01

    Full Text Available We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B−L symmetry in the standard model that is essential in order to work the Coleman–Weinberg mechanism well that induces the B−L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman–Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ→eγ, the current bound on the Z′ mass at the CERN Large Hadron Collider, and neutrino oscillations.

  4. Orientifolds and D-branes in N=2 gauged linear sigma models

    CERN Document Server

    Brunner, Ilka

    We study parity symmetries and boundary conditions in the framework of gauged linear sigma models. This allows us to investigate the Kaehler moduli dependence of the physics of D-branes as well as orientifolds in a Calabi-Yau compactification. We first determine the parity action on D-branes and define the set of orientifold-invariant D-branes in the linear sigma model. Using probe branes on top of orientifold planes, we derive a general formula for the type (SO vs Sp) of orientifold planes. As applications, we show how compactifications with and without vector structure arise naturally at different real slices of the Kaehler moduli space of a Calabi-Yau compactification. We observe that orientifold planes located at certain components of the fixed point locus can change type when navigating through the stringy regime.

  5. Discrete gauge symmetries in discrete MSSM-like orientifolds

    International Nuclear Information System (INIS)

    Ibáñez, L.E.; Schellekens, A.N.; Uranga, A.M.

    2012-01-01

    Motivated by the necessity of discrete Z N symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z 2 (R-parity) and Z 3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.

  6. Gauging the graded conformal group with unitary internal symmetries

    International Nuclear Information System (INIS)

    Ferrara, S.; Townsend, P.K.; Kaku, M.; Nieuwenhuizen Van, P.

    1977-06-01

    Gauge theories for extended SU(N) conformal supergravity are constructed which are invariant under local scale, chiral, proper conformal, supersymmetry and internal SU(N) transformations. The relation between intrinsic parity and symmetry properties of their generators of the internal vector mesons is established. These theories contain no cosmological constants, but technical problems inherent to higher derivative actions are pointed out

  7. Quark-flavour phenomenology of models with extended gauge symmetries

    International Nuclear Information System (INIS)

    Carlucci, Maria Valentina

    2013-01-01

    Gauge invariance is one of the fundamental principles of the Standard Model of particles and interactions, and it is reasonable to believe that it also regulates the physics beyond it. In this thesis we have studied the theory and phenomenology of two New Physics models based on gauge symmetries that are extensions of the Standard Model group. Both of them are particularly interesting because they provide some answers to the question of the origin of flavour, which is still unexplained. Moreover, the flavour sector represents a promising field for the research of indirect signatures of New Physics, since after the first run of LHC we do not have any direct hint of it yet. The first model assumes that flavour is a gauge symmetry of nature, SU(3) 3 f , spontaneously broken by the vacuum expectation values of new scalar fields; the second model is based on the gauge group SU(3) c x SU(3) L x U(1) X , the simplest non-abelian extension of the Standard Model group. We have traced the complete theoretical building of the models, from the gauge group, passing through the nonanomalous fermion contents and the appropriate symmetry breakings, up to the spectra and the Feynman rules, with a particular attention to the treatment of the flavour structure, of tree-level Flavour Changing Neutral Currents and of new CP-violating phases. In fact, these models present an interesting flavour phenomenology, and for both of them we have analytically calculated the contributions to the ΔF=2 and ΔF=1 down-type transitions, arising from new tree-level and box diagrams. Subsequently, we have performed a comprehensive numerical analysis of the phenomenology of the two models. In both cases we have found very effective the strategy of first to identify the quantities able to provide the strongest constraints to the parameter space, then to systematically scan the allowed regions of the latter in order to obtain indications about the key flavour observables, namely the mixing parameters of

  8. Gauged BRST symmetry and the occurence of higher cocycles in quantum field theory

    International Nuclear Information System (INIS)

    Baulieu, L.; Grossman, B.; Stora, R.

    1986-06-01

    The BRST symmetry of Yang Mills theories can be gauged via the introduction of an anticommuting single gauge field. There follows the construction of a local BRST operation which allows an algebraic analysis of the BRST current algebra. This construction provides, in particular, a field theory interpretation of most higher cocycles which accompany the usual chiral anomaly

  9. Left-right gauge symmetry breaking by radiative corrections in supergravity

    International Nuclear Information System (INIS)

    Moxhay, P.; Yamamoto, K.

    1984-01-01

    A supersymmetric SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) gauge theory coupled to N = 1 supergravity is investigated. The scale of left-right gauge symmetry breaking is determined as Msub(R) proportional Msub(P) esup(-1/α) by radiative corrections through the logarithmic evolution of soft supersymmetry breakings. SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) may be embedded in SO(10) grand unification. Cosmological implications intrinsic to the present model are also discussed, which may give a constraint Msub(R) approx.= 10 9-12 GeV. (orig.)

  10. Gauge U(1 dark symmetry and radiative light fermion masses

    Directory of Open Access Journals (Sweden)

    Corey Kownacki

    2016-09-01

    Full Text Available A gauge U(1 family symmetry is proposed, spanning the quarks and leptons as well as particles of the dark sector. The breaking of U(1 to Z2 divides the two sectors and generates one-loop radiative masses for the first two families of quarks and leptons, as well as all three neutrinos. We study the phenomenological implications of this new connection between family symmetry and dark matter. In particular, a scalar or pseudoscalar particle associated with this U(1 breaking may be identified with the 750 GeV diphoton resonance recently observed at the Large Hadron Collider (LHC.

  11. Composite gauge bosons of transmuted gauge symmetry

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1987-10-01

    It is shown that effective gauge theories of composite gauge bosons describing the dynamics of composite quarks and leptons can be transmuted from the subcolor gauge theory describing that of subquarks due to the condensation of subquarks and that the equality of effective gauge coupling constants can result as in a grand unified gauge theory. (author)

  12. The decay width of stringy hadrons

    Directory of Open Access Journals (Sweden)

    Jacob Sonnenschein

    2018-02-01

    We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K⁎, ϕ, D, and Ds⁎, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A=0.095±0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark–diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.

  13. Mixed Mediation of Supersymmetry Breaking in Models with Anomalous U(1) Gauge Symmetry

    International Nuclear Information System (INIS)

    Choi, Kiwoon

    2010-01-01

    There can be various built-in sources of supersymmetry breaking in models with anomalous U(1) gauge symmetry, e.g. the U(1) D-term, the F-components of the modulus superfield required for the Green-Schwarz anomaly cancellation mechanism and the chiral matter superfields required to cancel the Fayet-Iliopoulos term, and finally the supergravity auxiliary component which can be parameterized by the F-component of chiral compensator. The relative strength between these supersymmetry breaking sources depends crucially on the characteristics of D-flat direction and also on how the D-flat direction is stabilized at a vacuum with nearly vanishing cosmological constant. We examine the possible pattern of the mediation of supersymmetry breaking in models with anomalous U(1) gauge symmetry, and find that various different mixed mediation scenarios can be realized, including the mirage mediation which corresponds to a mixed modulus-anomaly mediation, D-term domination giving a split sparticle spectrum, and also a mixed gauge-D-term mediation scenario.

  14. Threshold corrections and gauge symmetry in twisted superstring models

    International Nuclear Information System (INIS)

    Pierce, D.M.

    1994-01-01

    Threshold corrections to the running of gauge couplings are calculated for superstring models with free complex world sheet fermions. For two N=1 SU(2)xU(1) 5 models, the threshold corrections lead to a small increase in the unification scale. Examples are given to illustrate how a given particle spectrum can be described by models with different boundary conditions on the internal fermions. We also discuss how complex twisted fermions can enhance the symmetry group of an N=4, SU(3)xU(1)xU(1) model to the gauge group SU(3)xSU(2)xU(1). It is then shown how a mixing angle analogous to the Weinberg angle depends on the boundary conditions of the internal fermions

  15. Inflation from supergravity with gauged R-symmetry in de Sitter vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I. [LPTHE, UMR CNRS 7589 Sorbonne Universites, UPMC Paris 6, Paris (France); University of Bern, Albert Einstein Center, Institute for Theoretical Physics, Bern (Switzerland); Chatrabhuti, A.; Isono, H. [Chulalongkorn University, Department of Physics, Faculty of Science, Bangkok (Thailand); Knoops, R. [Universite de Geneve, Section de Mathematiques, Geneva (Switzerland); KU Leuven, Instituut voor Theoretische Fysica, Leuven (Belgium)

    2016-12-15

    We study the cosmology of a recent model of supersymmetry breaking, in the presence of a tuneable positive cosmological constant, based on a gauged shift symmetry of a string modulus that can be identified with the string dilaton. The minimal spectrum of the 'hidden' supersymmetry breaking sector consists then of a vector multiplet that gauges the shift symmetry of the dilaton multiplet and when coupled to the MSSM leads to a distinct low energy phenomenology depending on one parameter. Here we study the question if this model can also lead to inflation by identifying the dilaton with the inflaton. We find that this is possible if the Kaehler potential is modified by a term that has the form of NS5-brane instantons, leading to an appropriate inflationary plateau around the maximum of the scalar potential, depending on two extra parameters. This model is consistent with present cosmological observations without modifying the low energy particle phenomenology associated to the minimum of the scalar potential. (orig.)

  16. Peccei-Quinn invariant singlet extended SUSY with anomalous U(1) gauge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sang Hui; Seo, Min-Seok [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon 305-811 (Korea, Republic of)

    2015-05-13

    Recent discovery of the SM-like Higgs boson with m{sub h}≃125 GeV motivates an extension of the minimal supersymmetric standard model (MSSM), which involves a singlet Higgs superfield with a sizable Yukawa coupling to the doublet Higgs superfields. We examine such singlet-extended SUSY models with a Peccei-Quinn (PQ) symmetry that originates from an anomalous U(1){sub A} gauge symmetry. We focus on the specific scheme that the PQ symmetry is spontaneously broken at an intermediate scale v{sub PQ}∼√(m{sub SUSY}M{sub Pl}) by an interplay between Planck scale suppressed operators and tachyonic soft scalar mass m{sub SUSY}∼√(D{sub A}) induced dominantly by the U(1){sub A}D-term D{sub A}. This scheme also results in spontaneous SUSY breaking in the PQ sector, generating the gaugino masses M{sub 1/2}∼√(D{sub A}) when it is transmitted to the MSSM sector by the conventional gauge mediation mechanism. As a result, the MSSM soft parameters in this scheme are induced mostly by the U(1){sub A}D-term and the gauge mediated SUSY breaking from the PQ sector, so that the sparticle masses can be near the present experimental bounds without causing the SUSY flavor problem. The scheme is severely constrained by the condition that a phenomenologically viable form of the low energy operators of the singlet and doublet Higgs superfields is generated by the PQ breaking sector in a way similar to the Kim-Nilles solution of the μ problem, and the resulting Higgs mass parameters allow the electroweak symmetry breaking with small tan β. We find two minimal models with two singlet Higgs superfields, satisfying this condition with a relatively simple form of the PQ breaking sector, and briefly discuss some phenomenological aspects of the model.

  17. Dynamical generation of gauge bosons of hidden local symmetries in nonlinear sigma models

    International Nuclear Information System (INIS)

    Koegerler, R.; Lucha, W.; Neufeld, H.; Stremnitzer, H.

    1988-01-01

    We demonstrate how quantum corrections generate a kinetic term for the (at tree-level non-propagating) gauge fields of hidden local symmetries in nonlinear sigma models in four space-time dimensions. (orig.)

  18. Dynamical symmetry breaking in the Jackiw-Johnson model and the gauge technique

    International Nuclear Information System (INIS)

    Singh, J.P.

    1984-01-01

    The Jackiw-Johnson model of dynamical gauge symmetry breaking has been re-examined in the light of the gauge technique. In the limit where the ratio of the axial to vector coupling constants becomes small, or, consistently, in the limit where the ratio of the axial-vector-boson mass to the fermion mass becomes small, an approximate solution for the fermion spectral function has been derived. This gives an extremely small ratio of the axial-vector-boson mass to the fermion mass. (author)

  19. Broken Weyl symmetry. [Gauge model, coupling, Higgs field

    Energy Technology Data Exchange (ETDEWEB)

    Domokos, G.

    1976-05-01

    It is argued that conformal symmetry can be properly understood in the framework of field theories in curved space. In such theories, invariance is required under general coordinate transformations and conformal rescalings. A gauge model coupled to a Higgs field is examined. In the tree approximation, the vacuum solution exhibits two Higgs phenomena; both the phase (Goldstone boson) and the coordinate dependent part of the radial component of the scalar field can be removed by a Higgs-Kibble transformation. The resulting vacuum solution corresponds to a space of constant curvature and constant vacuum expectation value of the scalar field.

  20. Dark Gauge U(1) symmetry for an alternative left-right model

    Science.gov (United States)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2018-02-01

    An alternative left-right model of quarks and leptons, where the SU(2)_R lepton doublet (ν ,l)_R is replaced with (n,l)_R so that n_R is not the Dirac mass partner of ν _L, has been known since 1987. Previous versions assumed a global U(1)_S symmetry to allow n to be identified as a dark-matter fermion. We propose here a gauge extension by the addition of extra fermions to render the model free of gauge anomalies, and just one singlet scalar to break U(1)_S. This results in two layers of dark matter, one hidden behind the other.

  1. Increasing stringiness of low-fat mozzarella string cheese using polysaccharides.

    Science.gov (United States)

    Oberg, E N; Oberg, C J; Motawee, M M; Martini, S; McMahon, D J

    2015-07-01

    When fat content of pasta filata cheese is lowered, a loss of fibrous texture occurs and low-fat (LF) mozzarella cheese loses stringiness, making it unsuitable for the manufacture of string cheese. We investigated the use of various polysaccharides that could act as fat mimetics during the stretching and extruding process to aid in protein strand formation and increase stringiness. Low-fat mozzarella cheese curd was made, salted, and then 3.6-kg batches were heated in hot (80°) 5% brine, stretched, and formed into a homogeneous mass. Hot (80°C) slurries of various polysaccharides were then mixed with the hot cheese and formed into LF string cheese using a small piston-driven extruder. Polysaccharides used included waxy corn starch, waxy rice starch, instant tapioca starch, polydextrose, xanthan gum, and guar gum. Adding starch slurries increased cheese moisture content by up to 1.6% but was not effective at increasing stringiness. Xanthan gum functioned best as a fat mimetic and produced LF string cheese that most closely visually resembled commercial string cheese made using low-moisture part skim (LMPS) mozzarella cheese without any increase in moisture content. Extent of stringiness was determined by pulling apart the cheese longitudinally and observing size, length, and appearance of individual cheese strings. Hardness was determined using a modified Warner-Bratzler shear test. When LF string cheese was made using a 10% xanthan gum slurry added at ~1%, increased consumer flavor liking was observed, with scores after 2wk of storage of 6.44 and 6.24 compared with 5.89 for the LF control cheese; although this was lower than an LMPS string cheese that scored 7.27. The 2-wk-old LF string cheeses containing xanthan gum were considered still slightly too firm using a just-about-right (JAR) test, whereas the LMPS string cheese was considered as JAR for texture. With further storage up to 8wk, all of the LF string cheeses softened (JAR score was closer to 3

  2. Symmetry breaking and asymptotic freedom in colour SU(3) gauge models

    International Nuclear Information System (INIS)

    Ma, E.

    1976-01-01

    A class of quark models based on the colour gauge group SU(3) is shown to be asymptotically free despite the complete breakdown of local symmetry to guarantee infrared stability. The symmetry breakdown is achieved by the presence of elementary scalar fields either through the Higgs mechanism or dynamically as first proposed by Coleman and Weinberg. Asymptotic freedom is preserved by imposing eigenvalue conditions on the coupling constants as first proposed by Chang. New quark species must be present, but below their production threshold, colour can still be a global symmetry which is approximate under SU(3), but exact under SU(2). Among the many implications of this class of models is the possibility of producing isolated quarks and gluons of non-zero mass without altering the short-distance behaviour of the superstrong interaction which binds them. (Auth.)

  3. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  4. Gauge-Higgs unification with broken flavour symmetry

    International Nuclear Information System (INIS)

    Olschewsky, M.

    2007-05-01

    We study a five-dimensional Gauge-Higgs unification model on the orbifold S 1 /Z 2 based on the extended standard model (SM) gauge group SU(2) L x U(1) Y x SO(3) F . The group SO(3) F is treated as a chiral gauged flavour symmetry. Electroweak-, flavour- and Higgs interactions are unified in one single gauge group SU(7). The unified gauge group SU(7) is broken down to SU(2) L x U(1) Y x SO(3) F by orbifolding and imposing Dirichlet and Neumann boundary conditions. The compactification scale of the theory is O(1) TeV. Furthermore, the orbifold S 1 /Z 2 is put on a lattice. This setting gives a well-defined staring point for renormalisation group (RG) transformations. As a result of the RG-flow, the bulk is integrated out and the extra dimension will consist of only two points: the orbifold fixed points. The model obtained this way is called an effective bilayered transverse lattice model. Parallel transporters (PT) in the extra dimension become nonunitary as a result of the blockspin transformations. In addition, a Higgs potential V(Φ) emerges naturally. The PTs can be written as a product e A y e η e A y of unitary factors e A y and a selfadjoint factor e η . The reduction 48 → 35 + 6 + anti 6 + 1 of the adjoint representation of SU(7) with respect to SU(6) contains SU(2) L x U(1) Y x SO(3) F leads to three SU(2) L Higgs doublets: one for the first, one for the second and one for the third generation. Their zero modes serve as a substitute for the SM Higgs. When the extended SM gauge group SU(2) L x U(1) Y x SO(3) F is spontaneously broken down to U(1) em , an exponential gauge boson mass splitting occurs naturally. At a first step SU(2) L x U(1) Y x SO(3) F is broken to SU(2) L x U(1) Y by VEVs for the selfadjoint factor e η . This breaking leads to masses of flavour changing SO(3) F gauge bosons much above the compactification scale. Such a behaviour has no counterpart within the customary approximation scheme of an ordinary orbifold theory. This way tree

  5. Quantum and classical gauge symmetries

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Terashima, Hiroaki

    2001-01-01

    The use of the mass term of the gauge field as a gauge fixing term, which was discussed by Zwanziger, Parrinello and Jona-Lasinio in a large mass limit, is related to the non-linear gauge by Dirac and Nambu. We have recently shown that this use of the mass term as a gauge fixing term is in fact identical to the conventional local Faddeev-Popov formula without taking a large mass limit, if one takes into account the variation of the gauge field along the entire gauge orbit. This suggests that the classical massive vector theory, for example, could be re-interpreted as a gauge invariant theory with a gauge fixing term added in suitably quantized theory. As for massive gauge particles, the Higgs mechanics, where the mass term is gauge invariant, has a more intrinsic meaning. We comment on several implications of this observation. (author)

  6. Dark gauge U(1) symmetry for an alternative left-right model

    Energy Technology Data Exchange (ETDEWEB)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza [University of California, Department of Physics and Astronomy, Riverside, CA (United States)

    2018-02-15

    An alternative left-right model of quarks and leptons, where the SU(2){sub R} lepton doublet (ν, l){sub R} is replaced with (n, l){sub R} so that n{sub R} is not the Dirac mass partner of ν{sub L}, has been known since 1987. Previous versions assumed a global U(1){sub S} symmetry to allow n to be identified as a dark-matter fermion. We propose here a gauge extension by the addition of extra fermions to render the model free of gauge anomalies, and just one singlet scalar to break U(1){sub S}. This results in two layers of dark matter, one hidden behind the other. (orig.)

  7. Gauge fields

    International Nuclear Information System (INIS)

    Mills, R.

    1989-01-01

    This article is a survey of the history and ideas of gauge theory. Described here are the gradual emergence of symmetry as a driving force in the shaping of physical theory; the elevation of Noether's theorem, relating symmetries to conservation laws, to a fundamental principle of nature; and the force of the idea (''the gauge principle'') that the symmetries of nature, like the interactions themselves, should be local in character. The fundamental role of gauge fields in mediating the interactions of physics springs from Noether's theorem and the gauge principle in a remarkably clean and elegant way, leaving, however, some tantalizing loose ends that might prove to be the clue to a future deeper level of understanding. The example of the electromagnetic field as the prototype gauge theory is discussed in some detail and serves as the basis for examining the similarities and differences that emerge in generalizing to non-Abelian gauge theories. The article concludes with a brief examination of the dream of total unification: all the forces of nature in a single unified gauge theory, with the differences among the forces due to the specific way in which the fundamental symmetries are broken in the local environment

  8. Gauge-Higgs unification with broken flavour symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Olschewsky, M.

    2007-05-15

    We study a five-dimensional Gauge-Higgs unification model on the orbifold S{sup 1}/Z{sub 2} based on the extended standard model (SM) gauge group SU(2){sub L} x U(1){sub Y} x SO(3){sub F}. The group SO(3){sub F} is treated as a chiral gauged flavour symmetry. Electroweak-, flavour- and Higgs interactions are unified in one single gauge group SU(7). The unified gauge group SU(7) is broken down to SU(2){sub L} x U(1){sub Y} x SO(3){sub F} by orbifolding and imposing Dirichlet and Neumann boundary conditions. The compactification scale of the theory is O(1) TeV. Furthermore, the orbifold S{sup 1}/Z{sub 2} is put on a lattice. This setting gives a well-defined staring point for renormalisation group (RG) transformations. As a result of the RG-flow, the bulk is integrated out and the extra dimension will consist of only two points: the orbifold fixed points. The model obtained this way is called an effective bilayered transverse lattice model. Parallel transporters (PT) in the extra dimension become nonunitary as a result of the blockspin transformations. In addition, a Higgs potential V({phi}) emerges naturally. The PTs can be written as a product e{sup A{sub y}}e{sup {eta}}e{sup A{sub y}} of unitary factors e{sup A{sub y}} and a selfadjoint factor e{sup {eta}}. The reduction 48 {yields} 35 + 6 + anti 6 + 1 of the adjoint representation of SU(7) with respect to SU(6) contains SU(2){sub L} x U(1){sub Y} x SO(3){sub F} leads to three SU(2){sub L} Higgs doublets: one for the first, one for the second and one for the third generation. Their zero modes serve as a substitute for the SM Higgs. When the extended SM gauge group SU(2){sub L} x U(1){sub Y} x SO(3){sub F} is spontaneously broken down to U(1){sub em}, an exponential gauge boson mass splitting occurs naturally. At a first step SU(2){sub L} x U(1){sub Y} x SO(3){sub F} is broken to SU(2){sub L} x U(1){sub Y} by VEVs for the selfadjoint factor e{sup {eta}}. This breaking leads to masses of flavour changing SO(3){sub F

  9. Confinement/deconfinement transition from symmetry breaking in gauge/gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Čubrović, Mihailo [Institute for Theoretical Physics, University of Cologne,Zülpicher Strasse 77, D-50937, Cologne (Germany)

    2016-10-19

    We study the confinement/deconfinement transition in a strongly coupled system triggered by an independent symmetry-breaking quantum phase transition in gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS near-boundary behavior and soft wall interior at zero scalar condensate. We study the cases of neutral and charged condensate separately. In the former case the condensation breaks the discrete ℤ{sub 2} symmetry while a charged condensate breaks the continuous U(1) symmetry. After the condensation of the order parameter, the non-zero vacuum expectation value of the scalar couples to the dilaton, changing the soft wall geometry into a non-confining and anisotropically scale-invariant infrared metric. In other words, the formation of long-range order is immediately followed by the deconfinement transition and the two critical points coincide. The confined phase has a scale — the confinement scale (energy gap) which vanishes in the deconfined case. Therefore, the breaking of the symmetry of the scalar (ℤ{sub 2} or U(1)) in turn restores the scaling symmetry in the system and neither phase has a higher overall symmetry than the other. When the scalar is charged the phase transition is continuous which goes against the Ginzburg-Landau theory where such transitions generically only occur discontinuously. This phenomenon has some commonalities with the scenario of deconfined criticality. The mechanism we have found has applications mainly in effective field theories such as quantum magnetic systems. We briefly discuss these applications and the relation to real-world systems.

  10. Dynamical Symmetry Breaking of Extended Gauge Symmetries

    OpenAIRE

    Appelquist, Thomas; Shrock, Robert

    2003-01-01

    We construct asymptotically free gauge theories exhibiting dynamical breaking of the left-right, strong-electroweak gauge group $G_{LR} = {\\rm SU}(3)_c \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R \\times {\\rm U}(1)_{B-L}$, and its extension to the Pati-Salam gauge group $G_{422}={\\rm SU}(4)_{PS} \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R$. The models incorporate technicolor for electroweak breaking, and extended technicolor for the breaking of $G_{LR}$ and $G_{422}$ and the generation of fermion ...

  11. Stringy effects in scrambling

    Energy Technology Data Exchange (ETDEWEB)

    Shenker, Stephen H. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University Stanford, CA (United States); Stanford, Douglas [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University Stanford, CA (United States); School of Natural Sciences, Institute for Advanced Study, Princeton, NJ (United States)

    2015-05-26

    In (http://dx.doi.org/10.1007/JHEP03(2014)067) we gave a precise holographic calculation of chaos at the scrambling time scale. We studied the influence of a small perturbation, long in the past, on a two-sided correlation function in the thermofield double state. A similar analysis applies to squared commutators and other out-of-time-order one-sided correlators (http://dx.doi.org/10.1007/JHEP12(2014)046, http://dx.doi.org/10.1007/JHEP03(2015)051A). The essential bulk physics is a high energy scattering problem near the horizon of an AdS black hole. The above papers used Einstein gravity to study this problem; in the present paper we consider stringy and Planckian corrections. Elastic stringy corrections play an important role, effectively weakening and smearing out the development of chaos. We discuss their signature in the boundary field theory, commenting on the extension to weak coupling. Inelastic effects, although important for the evolution of the state, leave a parametrically small imprint on the correlators that we study. We briefly discuss ways to diagnose these small corrections, and we propose another correlator where inelastic effects are order one.

  12. Stringy effects in scrambling

    International Nuclear Information System (INIS)

    Shenker, Stephen H.; Stanford, Douglas

    2015-01-01

    In (http://dx.doi.org/10.1007/JHEP03(2014)067) we gave a precise holographic calculation of chaos at the scrambling time scale. We studied the influence of a small perturbation, long in the past, on a two-sided correlation function in the thermofield double state. A similar analysis applies to squared commutators and other out-of-time-order one-sided correlators (http://dx.doi.org/10.1007/JHEP12(2014)046, http://dx.doi.org/10.1007/JHEP03(2015)051A). The essential bulk physics is a high energy scattering problem near the horizon of an AdS black hole. The above papers used Einstein gravity to study this problem; in the present paper we consider stringy and Planckian corrections. Elastic stringy corrections play an important role, effectively weakening and smearing out the development of chaos. We discuss their signature in the boundary field theory, commenting on the extension to weak coupling. Inelastic effects, although important for the evolution of the state, leave a parametrically small imprint on the correlators that we study. We briefly discuss ways to diagnose these small corrections, and we propose another correlator where inelastic effects are order one.

  13. Energy distribution of a magnetic stringy black hole

    International Nuclear Information System (INIS)

    Radinschi, Irina

    2004-01-01

    In this paper we calculate the energy distribution of a magnetic stringy black hole solution in the Landau and Lifshitz and Weinberg prescriptions. It is well-known that a main property of the low energy theory is that there are two different frames in which the features of the space-time may look very different. These two frames are the Einstein frame and the string frame. We choose the string frame to carry out the calculations. We study the dependence of the energy associated with the magnetic stringy black hole solution on its mass M and charge Q. (authors)

  14. On the stringy Hartle-Hawking state

    Science.gov (United States)

    Ben-Israel, Roy; Giveon, Amit; Itzhaki, Nissan; Liram, Lior

    2016-03-01

    We argue that non-perturbative α' stringy effects render the Hartle-Hawking state associated with the SL(2)/U(1) eternal black hole singular at the horizon. We discuss implications of this observation on firewalls in string theory.

  15. Imprints of supersymmetry in the Lorentz-symmetry breaking of Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil); Dias, G S; Leal, F J.L. [Instituto Federal de Educacao, Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil); Durand, L G; Helayel-Neto, Jose Abdalla; Spalenza, W [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil)

    2011-07-01

    Full text: The breaking of Lorentz symmetry that may take place at very high energies opens up a venue for the discussion of the interplay between the violations of supersymmetry and relativistic symmetry. Recently, there have appeared in the literature models which propose a residual (non-relativistic) supersymmetry after Lorentz symmetry has been broken in a Horava gravity scenario. We here propose an N=1-supersymmetric Abelian gauge model which realises the breaking of Lorentz invariance by means of a CPT-even term. Our attempt assumes the point of view that supersymmetry and Lorentz symmetry are broken down at the same scale. If this is the case, the fermionic sector of the supermultiplets that accomplish the breaking of the symmetries into consideration may give rise to condensates that play an important role in the photon and photino dispersion relations. Contemporarily, they may also point to a more fundamental origin for the (bosonic) tensors usually associated to the backgrounds that parametrize Lorentz-symmetry breaking. We also highlight that, by studying the the violation of Lorentz symmetry in connection with supersymmetry, we find out that the Myers-Pospelov Electrodynamics, proposed on the basis of an analysis of the set of dimension-five operators, naturally appears in the bosonic sector of our model. Also, as a result of the interconnection between the supersymmetry and Lorentz-symmetry breakings, the photino-photino and photon-photino mixings that correspond to the supersymmetric completion of the Myers-Pospelov purely photonic terms come out. Finally, we present some comments on the possible modifications the supersymmetric fermions may introduce in the dispersion relations for particles at (high) energies close to the scale where supersymmetry and Lorentz symmetry are broken. (author)

  16. Imprints of supersymmetry in the Lorentz-symmetry breaking of Gauge Theories

    International Nuclear Information System (INIS)

    Belich, H.; Dias, G.S.; Leal, F.J.L.; Durand, L.G.; Helayel-Neto, Jose Abdalla; Spalenza, W.

    2011-01-01

    Full text: The breaking of Lorentz symmetry that may take place at very high energies opens up a venue for the discussion of the interplay between the violations of supersymmetry and relativistic symmetry. Recently, there have appeared in the literature models which propose a residual (non-relativistic) supersymmetry after Lorentz symmetry has been broken in a Horava gravity scenario. We here propose an N=1-supersymmetric Abelian gauge model which realises the breaking of Lorentz invariance by means of a CPT-even term. Our attempt assumes the point of view that supersymmetry and Lorentz symmetry are broken down at the same scale. If this is the case, the fermionic sector of the supermultiplets that accomplish the breaking of the symmetries into consideration may give rise to condensates that play an important role in the photon and photino dispersion relations. Contemporarily, they may also point to a more fundamental origin for the (bosonic) tensors usually associated to the backgrounds that parametrize Lorentz-symmetry breaking. We also highlight that, by studying the the violation of Lorentz symmetry in connection with supersymmetry, we find out that the Myers-Pospelov Electrodynamics, proposed on the basis of an analysis of the set of dimension-five operators, naturally appears in the bosonic sector of our model. Also, as a result of the interconnection between the supersymmetry and Lorentz-symmetry breakings, the photino-photino and photon-photino mixings that correspond to the supersymmetric completion of the Myers-Pospelov purely photonic terms come out. Finally, we present some comments on the possible modifications the supersymmetric fermions may introduce in the dispersion relations for particles at (high) energies close to the scale where supersymmetry and Lorentz symmetry are broken. (author)

  17. A flavor dependent gauge symmetry, predictive radiative seesaw and LHCb anomalies

    Directory of Open Access Journals (Sweden)

    P. Ko

    2017-09-01

    Full Text Available We propose a predictive radiative seesaw model at one-loop level with a flavor dependent gauge symmetry U(1xB3−xe−μ+τ and Majorana fermion dark matter. For the neutrino mass matrix, we obtain an A1 type texture (with two zeros that provides us several predictions such as the normal ordering for the neutrino masses. We analyze the constraints from lepton flavor violations, relic density of dark matter, and collider physics for the new U(1xB3−xe−μ+τ gauge boson. Within the allowed region, the LHCb anomalies in B→K⁎μ+μ− and B→Kℓ+ℓ− with ℓ=e or μ can be resolved, and such Z′ could be also observed at the LHC.

  18. On the stringy Hartle-Hawking state

    International Nuclear Information System (INIS)

    Ben-Israel, Roy; Giveon, Amit; Itzhaki, Nissan; Liram, Lior

    2016-01-01

    We argue that non-perturbative α"′ stringy effects render the Hartle-Hawking state associated with the SL(2)/U(1) eternal black hole singular at the horizon. We discuss implications of this observation on firewalls in string theory.

  19. F-theory vacua with $\\mathbb Z_3$ gauge symmetry

    CERN Document Server

    Cvetič, Mirjam; Klevers, Denis; Piragua, Hernan; Poretschkin, Maximilian

    2015-01-01

    Discrete gauge groups naturally arise in F-theory compactifications on genus-one fibered Calabi-Yau manifolds. Such geometries appear in families that are parameterized by the Tate-Shafarevich group of the genus-one fibration. While the F-theory compactification on any element of this family gives rise to the same physics, the corresponding M-theory compactifications on these geometries differ and are obtained by a fluxed circle reduction of the former. In this note, we focus on an element of order three in the Tate-Shafarevich group of the general cubic. We discuss how the different M-theory vacua and the associated discrete gauge groups can be obtained by Higgsing of a pair of five-dimensional U(1) symmetries. The Higgs fields arise from vanishing cycles in $I_2$-fibers that appear at certain codimension two loci in the base. We explicitly identify all three curves that give rise to the corresponding Higgs fields. In this analysis the investigation of different resolved phases of the underlying geometry pla...

  20. On the stringy Hartle-Hawking state

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Israel, Roy [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel)

    2016-03-03

    We argue that non-perturbative α{sup ′} stringy effects render the Hartle-Hawking state associated with the SL(2)/U(1) eternal black hole singular at the horizon. We discuss implications of this observation on firewalls in string theory.

  1. About gauge fixing considered as a fine art and the following Slavnov symmetry

    International Nuclear Information System (INIS)

    Stora, R.; European Organization for Nuclear Research

    1996-01-01

    Gauge fixing is defined as an operation that enables to express the integral on an orbit space as integral on the corresponding principal fiber bundle. When the fiber is non compact, this operation involves a cohomology class with compact support (or rapid decay). Slavnov symmetry is the algebraic expression of the ambiguity of this construction. (N.T.)

  2. Spontaneous symmetry breaking and fermion chirality in higher-dimensional gauge theory

    International Nuclear Information System (INIS)

    Wetterich, C.

    1985-01-01

    The number of chiral fermions may change in the course of spontaneous symmetry breaking. We discuss solutions of a six-dimensional Einstein-Yang-Mills theory based on SO(12). In the resulting effective four-dimensional theory they can be interpreted as spontaneous breaking of a gauge group SO(10) to H=SU(3)sub(C)xSU(2)sub(L)xU(1)sub(R)xU(1)sub(B-L). For all solutions, the fermions which are chiral with respect to H form standard generations. However, the number of generations for the solutions with broken SO(10) may be different compared to the symmetric solutions. All solutions considered here exhibit a local generation group SU(2)sub(G)xU(1)sub(G). For the solutions with broken SO(10) symmetry, the leptons and quarks within one generation transform differently with respect to SU(2)sub(G)xU(1)sub(G). Spontaneous symmetry breaking also modifies the SO(10) relations among Yukawa couplings. All this has important consequences for possible fermion mass relations obtained from higher-dimensional theories. (orig.)

  3. Bogoliubov condensation of gluons and spontaneous gauge symmetry breaking in QCD

    International Nuclear Information System (INIS)

    Pervushin, V.N.; Roepke, G.; Volkov, M.K.; Blaschke, D.; Pavel, H.P.; Litvin, A.

    1995-08-01

    The ''squeezed'' representation of commutation relations for gluon fields in QCD is formulated as the mathematical tool for the description of the gluon condensate. We first consider λφ 4 theory and show that the ''squeezed'' Bogoliubov condensate can lead to the spontaneous appearance of a mass. Using the ''squeezed'' representation, we show that in the non-Abelian theory spontaneous gauge symmetry breaking (SGSB) and the appearance of a constituent mass of gluons can be described. We construct a projector onto the oscillator - like variables, for which the ''squeezed'' representation is valid, by using the formal solution of the Gauss equation instead of fixing a gauge. We discuss the effects of the SGSB and present as an application of the approach the calculation of the gluon mass from the difference of the η' and the η - meson masses. (author). 27 refs

  4. Lepton-flavour violation in a Pati-Salam model with gauged flavour symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Thorsten; Luhn, Christoph; Moch, Paul [Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät,Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen (Germany)

    2016-11-11

    Combining Pati-Salam (PS) and flavour symmetries in a renormalisable setup, we devise a scenario which produces realistic masses for the charged leptons. Flavour-symmetry breaking scalar fields in the adjoint representations of the PS gauge group are responsible for generating different flavour structures for up- and down-type quarks as well as for leptons. The model is characterised by new heavy fermions which mix with the Standard Model quarks and leptons. In particular, the partners for the third fermion generation induce sizeable sources of flavour violation. Focusing on the charged-lepton sector, we scrutinise the model with respect to its implications for lepton-flavour violating processes such as μ→eγ, μ→3e and muon conversion in nuclei.

  5. Radiatively induced neutrino mass model with flavor dependent gauge symmetry

    Science.gov (United States)

    Lee, SangJong; Nomura, Takaaki; Okada, Hiroshi

    2018-06-01

    We study a radiative seesaw model at one-loop level with a flavor dependent gauge symmetry U(1) μ - τ, in which we consider bosonic dark matter. We also analyze the constraints from lepton flavor violations, muon g - 2, relic density of dark matter, and collider physics, and carry out numerical analysis to search for allowed parameter region which satisfy all the constraints and to investigate some predictions. Furthermore we find that a simple but adhoc hypothesis induces specific two zero texture with inverse mass matrix, which provides us several predictions such as a specific pattern of Dirac CP phase.

  6. Electroweak symmetry breaking and mass spectra in six-dimensional gauge-Higgs grand unification

    Science.gov (United States)

    Hosotani, Yutaka; Yamatsu, Naoki

    2018-02-01

    The mass spectra of the standard model particles are reproduced in the SO(11) gauge-Higgs grand unification in six-dimensional warped space without introducing exotic light fermions. Light neutrino masses are explained by the gauge-Higgs seesaw mechanism. We evaluate the effective potential of the four-dimensional Higgs boson appearing as a fluctuation mode of the Aharonov-Bohm phase θ_H in the extra-dimensional space, and show that the dynamical electroweak symmetry breaking takes place with the Higgs boson mass m_H ˜ 125 GeV and θ_H ˜ 0.1. The Kaluza-Klein mass scale in the fifth dimension is approximately given by m_KK ˜ 1.230 TeV/sin θ_H.

  7. Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Gusynin, V.P.

    1987-01-01

    The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed

  8. Nilpotent symmetries and Curci-Ferrari-type restrictions in 2D non-Abelian gauge theory: Superfield approach

    Science.gov (United States)

    Srinivas, N.; Malik, R. P.

    2017-11-01

    We derive the off-shell nilpotent symmetries of the two (1 + 1)-dimensional (2D) non-Abelian 1-form gauge theory by using the theoretical techniques of the geometrical superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism. For this purpose, we exploit the augmented version of superfield approach (AVSA) and derive theoretically useful nilpotent (anti-)BRST, (anti-)co-BRST symmetries and Curci-Ferrari (CF)-type restrictions for the self-interacting 2D non-Abelian 1-form gauge theory (where there is no interaction with matter fields). The derivation of the (anti-)co-BRST symmetries and all possible CF-type restrictions are completely novel results within the framework of AVSA to BRST formalism where the ordinary 2D non-Abelian theory is generalized onto an appropriately chosen (2, 2)-dimensional supermanifold. The latter is parametrized by the superspace coordinates ZM = (xμ,𝜃,𝜃¯) where xμ (with μ = 0, 1) are the bosonic coordinates and a pair of Grassmannian variables (𝜃,𝜃¯) obey the relationships: 𝜃2 = 𝜃¯2 = 0, 𝜃𝜃¯ + 𝜃¯𝜃 = 0. The topological nature of our 2D theory allows the existence of a tower of CF-type restrictions.

  9. Chiral-symmetry restoration at finite densities in Coulomb-gauge QCD

    International Nuclear Information System (INIS)

    Kocic, A.

    1986-01-01

    Using the Schwinger-Dyson equation in the Hartree-Fock approximation, we show that, within a potential model motivated by the QCD Hamiltonian in the Coulomb gauge, chiral symmetry is restored at finite densities. Two cases are studied: a delta-function potential and a linear confining potential. For the former case the phase diagram is obtained analytically, whereas for the latter case numerical techniques are used. The values of physical quantities calculated for the linear confining model are consistently smaller than the experimental ones indicating that a potential with additional short-range attraction is needed to describe the quark interaction in the high-density regime

  10. On radiative gauge symmetry breaking in the minimal supersymmetric model

    International Nuclear Information System (INIS)

    Gamberini, G.; Ridolfi, G.; Zwirner, F.

    1990-01-01

    We present a critical reappraisal of radiative gauge symmetry breaking in the minimal supersymmetric standard model. We show that a naive use of the renormalization group improved tree-level potential can lead to incorrect conclusions. We specify the conditions under which the above method gives reliable results, by performing a comparison with the results obtained from the full one-loop potential. We also point out how the stability constraint and the conditions for the absence of charge- and colour-breaking minima should be applied. Finally, we comment on the uncertainties affecting the model predictions for physical observables, in particular for the top quark mass. (orig.)

  11. Group quantization on configuration space: Gauge symmetries and linear fields

    International Nuclear Information System (INIS)

    Navarro, M.; Aldaya, V.; Calixto, M.

    1997-01-01

    A new, configuration-space picture of a formalism of group quantization, the GAQ formalism, is presented in the context of a previous algebraic generalization. This presentation serves to make a comprehensive discussion in which other extensions of the formalism, principally to incorporate gauge symmetries, are developed as well. Both images are combined in order to analyze, in a systematic manner and with complete generality, the case of linear fields (Abelian current groups). To illustrate these developments we particularize them for several fields and, in particular, we carry out the quantization of the Abelian Chern endash Simons models over an arbitrary closed surface in detail. copyright 1997 American Institute of Physics

  12. Boundary Fixed Points, Enhanced Gauge Symmetry and Singular Bundles on K3

    CERN Document Server

    Fuchs, J; Lerche, Wolfgang; Lütken, C A; Schweigert, C; Walcher, J

    2001-01-01

    We investigate certain fixed points in the boundary conformal field theory representation of type IIA D-branes on Gepner points of K3. They correspond geometrically to degenerate brane configurations, and physically lead to enhanced gauge symmetries on the world-volume. Non-abelian gauge groups arise if the stabilizer group of the fixed points is realized projectively, which is similar to D-branes on orbifolds with discrete torsion. Moreover, the fixed point boundary states can be resolved into several irreducible components. These correspond to bound states at threshold and can be viewed as (non-locally free) sub-sheaves of semi-stable sheaves. Thus, the BCFT fixed points appear to carry two-fold geometrical information: on the one hand they probe the boundary of the instanton moduli space on K3, on the other hand they probe discrete torsion in D-geometry.

  13. Neutrino masses, dark matter and leptogenesis with U(1) B - L gauge symmetry

    Science.gov (United States)

    Geng, Chao-Qiang; Okada, Hiroshi

    2018-06-01

    We propose a model with an U(1) B - L gauge symmetry, in which small neutrino masses, dark matter and the matter-antimatter asymmetry in the Universe can be simultaneously explained. In particular, the neutrino masses are generated radiatively, while the matter-antimatter asymmetry is led by the leptogenesis mechanism, at TeV scale. We also explore allowed regions of the model parameters and discuss some phenomenological effects, including lepton flavor violating processes.

  14. Harada–Tsutsui gauge recovery procedure: From Abelian gauge anomalies to the Stueckelberg mechanism

    International Nuclear Information System (INIS)

    Lima, Gabriel Di Lemos Santiago

    2014-01-01

    Revisiting a path-integral procedure developed by Harada and Tsutsui for recovering gauge invariance from anomalous effective actions, it is shown that there are two ways to achieve gauge symmetry: one already presented by the authors, which is shown to preserve the anomaly in the sense of standard current conservation law, and another one which is anomaly-free, preserving current conservation. It is also shown that the application of the Harada–Tsutsui technique to other models which are not anomalous but do not exhibit gauge invariance allows the identification of the gauge invariant formulation of the Proca model, also done by the referred authors, with the Stueckelberg model, leading to the interpretation of the gauge invariant map as a generalization of the Stueckelberg mechanism. -- Highlights: • A gauge restoration technique from Abelian anomalous models is discussed. • It is shown that there is another way that leads to gauge symmetry restoration from such technique. • It is shown that the first gauge restoration preserves the anomaly, while the proposed second one is free from anomalies. • It is shown that the proposed gauge symmetry restoration can be identified with the Stueckelberg mechanism

  15. Harada–Tsutsui gauge recovery procedure: From Abelian gauge anomalies to the Stueckelberg mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Gabriel Di Lemos Santiago, E-mail: gabriellemos3@hotmail.com

    2014-02-15

    Revisiting a path-integral procedure developed by Harada and Tsutsui for recovering gauge invariance from anomalous effective actions, it is shown that there are two ways to achieve gauge symmetry: one already presented by the authors, which is shown to preserve the anomaly in the sense of standard current conservation law, and another one which is anomaly-free, preserving current conservation. It is also shown that the application of the Harada–Tsutsui technique to other models which are not anomalous but do not exhibit gauge invariance allows the identification of the gauge invariant formulation of the Proca model, also done by the referred authors, with the Stueckelberg model, leading to the interpretation of the gauge invariant map as a generalization of the Stueckelberg mechanism. -- Highlights: • A gauge restoration technique from Abelian anomalous models is discussed. • It is shown that there is another way that leads to gauge symmetry restoration from such technique. • It is shown that the first gauge restoration preserves the anomaly, while the proposed second one is free from anomalies. • It is shown that the proposed gauge symmetry restoration can be identified with the Stueckelberg mechanism.

  16. Generators of dynamical symmetries and the correct gauge transformation in the Landau level problem: use of pseudomomentum and pseudo-angular momentum

    Science.gov (United States)

    Konstantinou, Georgios; Moulopoulos, Konstantinos

    2016-11-01

    Due to the importance of gauge symmetry in all fields of physics, and motivated by an article written almost three decades ago that warns against a naive handling of gauge transformations in the Landau level problem (a quantum electron moving in a spatially uniform magnetic field), we point out a proper use of the generators of dynamical symmetries combined with gauge transformation methods to easily obtain exact analytical solutions for all Landau level-wavefunctions in arbitrary gauge. Our method is different from the old argument and provides solutions in an easier manner and in a broader set of geometries and gauges; in so doing, it eliminates the need for extra procedures (i.e. a change of basis) pointed out as a necessary step in the old literature, and gives back the standard simple result, provided that an appropriate use is made of the dynamical symmetries of the system and their generators. In this way the present work will at least be useful for university-level education, i.e. in advanced classes in quantum mechanics and condensed matter physics. In addition, it clarifies the actual role of the gauge in the Landau level problem, which often appears confusing in the usual derivations provided in textbooks. Finally, we go further by showing that a similar methodology can be made to apply to the more difficult case of a spatially non-uniform magnetic field (where closed analytical results are rare), in which case the various generators (pseudomomentum and pseudo-angular momentum) appear as line integrals of the inhomogeneous magnetic field; we give closed analytical solutions for all cases, and show how the old and rather forgotten Bawin-Burnel gauge shows up naturally as a ‘reference gauge’ in all solutions.

  17. Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry

    Science.gov (United States)

    Hsu, J. P.

    1981-01-01

    A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.

  18. Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications

    CERN Document Server

    Antoniadis, I.; Knoops, R.

    2015-01-01

    We consider a class of models with gauged U(1)_R symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and K\\"ors and apply their results to the special case of a U(1)_R symmetry, in the presence of the Fayet-Iliopoulos term ($\\xi$) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the "naive" field theory approach in global SUSY, in which case U(1)_R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditi...

  19. Gauge invariance and holographic renormalization

    Directory of Open Access Journals (Sweden)

    Keun-Young Kim

    2015-10-01

    Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.

  20. Diphoton excess from hidden U(1 gauge symmetry with large kinetic mixing

    Directory of Open Access Journals (Sweden)

    Fuminobu Takahashi

    2016-09-01

    Full Text Available We show that the 750 GeV diphoton excess can be explained by introducing vector-like quarks and hidden fermions charged under a hidden U(1 gauge symmetry, which has a relatively large coupling constant as well as a significant kinetic mixing with U(1Y. With the large kinetic mixing, the standard model gauge couplings unify around 1017 GeV, suggesting the grand unified theory without too rapid proton decay. Our scenario predicts events with a photon and missing transverse momentum, and its cross section is related to that for the diphoton excess through the kinetic mixing. We also discuss other possible collider signatures and cosmology, including various ways to evade constraints on exotic stable charged particles. In some cases where the 750 GeV diphoton excess is due to diaxion decays, our scenario also predicts triphoton and tetraphoton signals.

  1. Symmetry restoration at high-temperature in two-color and two-flavor lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Wan [Department of Physics, College of Science, Swansea University,Singleton Park, SA2 8PP, Swansea, Wales (United Kingdom); Department of Physics, Pusan National University,Busan 46241 (Korea, Republic of); Extreme Physics Institute, Pusan National University,Busan 46241 (Korea, Republic of); Lucini, Biagio; Piai, Maurizio [Department of Physics, College of Science, Swansea University,Singleton Park, SA2 8PP, Swansea, Wales (United Kingdom)

    2017-04-07

    We consider the SU(2) gauge theory with N{sub f}=2 flavors of Dirac fundamental fermions. We study the high-temperature behavior of the spectra of mesons, discretizing the theory on anisotropic lattices, and measuring the two-point correlation functions in the temporal direction as well as screening masses in various channels. We identify the (pseudo-)critical temperature as the temperature at which the susceptibility associated with the Polyakov loop has a maximum. At high temperature both the spin-1 and spin-0 sectors of the light meson spectra exhibit enhanced symmetry properties, indicating the restoration of both the global SU(4) and the axial U(1){sub A} symmetries of the model.

  2. Gauge theories

    International Nuclear Information System (INIS)

    Jarlskog, C.

    An introduction to the unified gauge theories of weak and electromagnetic interactions is given. The ingredients of gauge theories and symmetries and conservation laws lead to discussion of local gauge invariance and QED, followed by weak interactions and quantum flavor dynamics. The construction of the standard SU(2)xU(1) model precedes discussion of the unification of weak and electromagnetic interactions and weak neutral current couplings in this model. Presentation of spontaneous symmetry breaking and spontaneous breaking of a local symmetry leads to a spontaneous breaking scheme for the standard SU(2)xU(1) model. Consideration of quarks, leptons, masses and the Cabibbo angles, of the four quark and six quark models and CP violation lead finally to grand unification, followed by discussion of mixing angles in the Georgi-Glashow model, the Higgses of the SU(5) model and proton/ neutron decay in SU(5). (JIW)

  3. Dirac dark matter and b →s ℓ+ℓ- with U(1) gauge symmetry

    Science.gov (United States)

    Celis, Alejandro; Feng, Wan-Zhe; Vollmann, Martin

    2017-02-01

    We revisit the possibility of a Dirac fermion dark matter candidate in the light of current b →s ℓ+ℓ- anomalies by investigating a minimal extension of the Standard Model with a horizontal U(1 ) ' local symmetry. Dark matter stability is protected by a remnant Z2 symmetry arising after spontaneous symmetry breaking of U(1 ) '. The associated Z' gauge boson can accommodate current hints of new physics in b →s ℓ+ℓ- decays, and acts as a vector portal between dark matter and the visible sector. We find that the model is severely constrained by a combination of precision measurements at flavor factories, LHC searches for dilepton resonances, as well as direct and indirect dark matter searches. Despite this, viable regions of the parameter space accommodating the observed dark matter relic abundance and the b →s ℓ+ℓ-anomalies still persist for dark matter and Z ' masses in the TeV range.

  4. Gauge theories

    International Nuclear Information System (INIS)

    Lee, B.W.

    1976-01-01

    Some introductory remarks to Yang-Mills fields are given and the problem of the Coulomb gauge is considered. The perturbation expansion for quantized gauge theories is discussed and a survey of renormalization schemes is made. The role of Ward-Takahashi identities in gauge theories is discussed. The author then discusses the renormalization of pure gauge theories and theories with spontaneously broken symmetry. (B.R.H.)

  5. Neutrinophilic two Higgs doublet model with dark matter under an alternative U(1)_{B-L} gauge symmetry

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-03-01

    We propose a Dirac type active neutrino with rank two mass matrix and a Majorana fermion dark matter candidate with an alternative local U(1)_{B-L} extension of neutrinophilic two Higgs doublet model. Our dark matter candidate can be stabilized due to charge assignment under the gauge symmetry without imposing extra discrete Z_2 symmetry and the relic density is obtained from an Z' boson exchanging process. Taking into account collider constraints on the Z' boson mass and coupling, we estimate the relic density.

  6. Loop suppressed light fermion masses with U (1 )R gauge symmetry

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2017-07-01

    We propose a model with a two-Higgs doublet, where quark and charged-lepton masses in the first and second families are induced at one-loop level, and neutrino masses are induced at the two-loop level. In our model, we introduce an extra U (1 )R gauge symmetry that plays a crucial role in achieving desired terms in no conflict with anomaly cancellation. We show the mechanism to generate fermion masses, the resultant mass matrices, and Yukawa interactions in mass eigenstates, and we discuss several interesting phenomenologies such as the muon anomalous magnetic dipole moment and the dark matter candidate that arise from this model.

  7. On Stringy Thresholds in SYM/AdS Thermodynamics

    CERN Document Server

    Barbón, José L F; Rabinovici, Eliezer

    1999-01-01

    We consider aspects of the role of stringy scales and Hagedorn temperatures in the correspondence between various field theories and AdS-type spaces. The boundary theory is set on a toroidal world-volume to enable small scales to appear in the supergravity backgrounds also for low field-theory temperatures. We find that thermodynamical considerations tend to favour background manifolds with no string-size characteristic scales. The gravitational dynamics censors the reliable exposure of Hagedorn physics on the supergravity side, and the system does not allow the study of the Hagedorn scale by low-temperature field theories. These results are obtained following some heuristic assumptions on the character of stringy modifications to the gravitational backgrounds. A rich phenomenology appears on the supergravity side, with different string backgrounds dominating in different regions, which should have field-theoretic consequences. Six-dimensional world volumes turn out to be borderline cases from several points ...

  8. A low energy dynamical SUSY breaking scenario motivated from superstring derived unification

    CERN Document Server

    Faraggi, Alon E.

    1996-01-01

    Recently there has been a resurgence of interest in gauge mediated dynamical supersymmetry breaking scenarios. I investigate how low energy dynamical SUSY breaking may arise from superstring models. In a three generation string derived model I propose that the unbroken hidden non--Abelian gauge group at the string scale is SU(3)_H with matter multiplets. Due to the small gauge content of the hidden gauge group the supersymmetry breaking scale may be consistent with the dynamical SUSY breaking scenarios. The messenger states are obtained in the superstring model from sectors which arise due to the ``Wilson--line'' breaking of the unifying non--Abelian gauge symmetry. An important property of the string motivated messenger states is the absence of superpotential terms with the Standard Model states. The stringy symmetries therefore forbid the flavor changing processes which may arise due to couplings between the messenger sector states and the Standard Model states. Motivated from the problem of string gauge co...

  9. Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern, 5 Sidlestrasse, CH-3012 Bern (Switzerland); LPTHE, Universite Pierre et Marie Curie, F-75252 Paris (France); Ecole Polytechnique, F-91128 Palaiseau (France); Ghilencea, D.M. [Theoretical Physics Department,National Institute of Physics and Nuclear Engineering (IFIN-HH),Bucharest, MG-6 077125 (Romania); CERN Theory Division,CH-1211 Geneva 23 (Switzerland); Knoops, R. [CERN Theory Division,CH-1211 Geneva 23 (Switzerland); Instituut voor Theoretische Fysica, KU Leuven,Clestijnenlaan 200D, B-3001 Leuven (Belgium)

    2015-02-25

    We consider a class of models with gauged U(1){sub R} symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and Körs and apply their results to the special case of a U(1){sub R} symmetry, in the presence of the Fayet-Iliopoulos term (ξ) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the “naive” field theory approach in global SUSY, in which case U(1){sub R} cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditions for the MSSM gauge couplings. In an anomaly-free model, a tunable, TeV-scale gravitino mass may remain possible provided that the U(1){sub R} charges of additional hidden sector fermions (constrained by the cubic anomaly alone) do not conflict with the related values of U(1){sub R} charges of their scalar superpartners, constrained by existence of a stable ground state. This issue may be bypassed by tuning instead the coefficients of the Kahler connection anomalies (b{sub K},b{sub CK}).

  10. Stringy origin of diboson and dijet excesses at the LHC

    Science.gov (United States)

    Anchordoqui, Luis A.; Antoniadis, Ignatios; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Taylor, Tomasz R.

    2015-10-01

    Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8-2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W- pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U (1) field with very small coupling to leptons. The Drell-Yan bounds are then readily avoided because of the leptophobic nature of the massive Z‧ gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau-Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Zγ topology would become a signature consistent only with a stringy origin.

  11. MSSM soft terms from supergravity with gauged R-symmetry in de Sitter vacuum

    Directory of Open Access Journals (Sweden)

    I. Antoniadis

    2016-01-01

    Full Text Available We work out the phenomenology of a model of supersymmetry breaking in the presence of a tiny (tunable positive cosmological constant, proposed by the authors in arXiv:1403.1534. It utilizes a single chiral multiplet with a gauged shift symmetry that can be identified with the string dilaton (or an appropriate compactification modulus. The model is coupled to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phenomenology that allows to differentiate it from other models of supersymmetry breaking and mediation mechanisms.

  12. MSSM soft terms from supergravity with gauged R-symmetry in de Sitter vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I. [LPTHE, UMR CNRS 7589 Sorbonne Universités, UPMC Paris 6, 75005 Paris France (France); Albert Einstein Center, Institute for Theoretical Physics Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Knoops, R., E-mail: rob.knoops@cern.ch [CERN Theory Division, CH-1211 Geneva 23 (Switzerland); Section de Mathématiques, Université de Genève, CH-1211 Geneva (Switzerland); Instituut voor Theoretische Fysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2016-01-15

    We work out the phenomenology of a model of supersymmetry breaking in the presence of a tiny (tunable) positive cosmological constant, proposed by the authors in (arXiv:1403.1534). It utilizes a single chiral multiplet with a gauged shift symmetry that can be identified with the string dilaton (or an appropriate compactification modulus). The model is coupled to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phenomenology that allows to differentiate it from other models of supersymmetry breaking and mediation mechanisms.

  13. Generalized global symmetries

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian

    2015-01-01

    A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.

  14. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  15. Dihedral flavor symmetries

    International Nuclear Information System (INIS)

    Blum, Alexander Simon

    2009-01-01

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  16. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  17. Gauge theories and monopoles

    International Nuclear Information System (INIS)

    Cabibbo, N.

    1983-01-01

    This chapter attempts to present some of the fundamental geometrical ideas at the basis of gauge theories. Describes Dirac Monopoles and discusses those ideas that are not usually found in more ''utilitarian'' presentations which concentrate on QCD or on the Glashow-Salam-Weinberg model. This topic was chosen because of the announcement of the possible detection of a Dirac monopole. The existence of monopoles depends on topological features of gauge theories (i.e., on global properties of field configurations which are unique to gauge theories). Discusses global symmetry-local symmetry; the connection; path dependence and the gauge fields; topology and monopoles; the case of SU(3) x U(1); and the 't Hooft-Polyakov monopole

  18. Conribution to the study of spontaneous breakdown of the chiral symmetry in gauge theories

    International Nuclear Information System (INIS)

    Gamonal, R.

    1984-01-01

    In the framework of quantum chromodynamics, we have been interested in the order parameters for the breakdown of the non-abelian chiral symmetry. Using the functional integral representation in the euclidean formalism, we have performed the fermionic integration after having inverted the chiral limit and the integration over gluonic fields. So, we were led to look for what gauge field configurations, the fermionic integrand has a non-vanishing chiral limit. We have been able to show, in a general manner, that the generating functional of all the order parameters vanishes in the chiral limit for the gauge field configurations which lead to a discrete spectrum for the Dirac operator around zero. For those leading to a continuous spectrum from the zero eigenvalue, the existence of a non-vanishing infra-red limit for the spectral density of the Dirac operator is crucial. We have exhibited gauge field configurations which give such a behaviour. Nevertheless, our analysis reveals the necessity to get a degeneracy for the zero modes belonging to the continuum of the Dirac operator. We have been able to demonstrate, for the class of gluonic fields, previously considered, an absence of degeneracy [fr

  19. To gauge or not to gauge?

    Science.gov (United States)

    Maldacena, Juan; Milekhin, Alexey

    2018-04-01

    The D0 brane, or BFSS, matrix model is a quantum mechanical theory with an interesting gravity dual. We consider a variant of this model where we treat the SU( N) symmetry as a global symmetry, rather than as a gauge symmetry. This variant contains new non-singlet states. We consider the impact of these new states on its gravity dual. We argue that the gravity dual is essentially the same as the one for the original matrix model. The non-singlet states have higher energy at strong coupling and are therefore dynamically suppressed.

  20. At the origins of mass: elementary particles and fundamental symmetries

    International Nuclear Information System (INIS)

    Iliopoulos, Jean; Englert, Francois

    2015-01-01

    After a brief recall of the history of cosmology, the author proposes an overview of the different symmetries (symmetries in space and in time, internal symmetries, local or gauge symmetries), describes the mass issue (gauge interactions, quarks and leptons as matter mass constituents, chirality), addresses the spontaneous symmetry breaking (the Curie theorem, spontaneous symmetry breaking in classical physics and in quantum physics, the Goldstone theorem, spontaneous symmetry breaking in presence of gauge interactions), presents the standard theory (electromagnetic and weak interactions, strong interactions, relationship with experiment). An appendix presents elementary particles, and notably reports the story of the neutrino

  1. Leptophobic Z{sup {prime}} in stringy flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L. [Bonner Nuclear Lab, Department of Physics, Rice University, 6100 Main Street, Houston, Texas 77005 (United States); Nanopoulos, D.V. [Center for Theoretical Physics, Department of Physics, Texas AM University, College Station, Texas 77843-4242 (United States)]|[Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Mitchell Campus, The Woodlands, Texas 77381 (United States)

    1997-01-01

    We show that leptophobic Z{sup {prime}} gauge bosons occur naturally in flipped SU(5) and may shift R{sub b} in an interesting way without upsetting the good values of {Gamma}{sub had} and R{sub c}. Within a string-derived version of the model, we study three possible scenarios and the constraints imposed on model building that would allow the new symmetry to remain unbroken down to low energies. Such a Z{sup {prime}} gauge boson has generation nonuniversal couplings to quarks that violate parity maximally in the up-quark sector, and may contribute significantly to spin asymmetries in polarized pp scattering experiments now being prepared for BNL RHIC. {copyright} {ital 1997} {ital The American Physical Society}

  2. Gauged N=8 supergravity in five dimensions

    International Nuclear Information System (INIS)

    Guenaydin, M.; Romans, L.J.; Warner, N.P.

    1985-01-01

    We construct gauged N=8 supergravity theories in five dimensions. Instead of the twenty-seven vector fields of the ungauged theory, the gauged theories contain fifteen vector fields and twelve second-rank antisymmetric tensor fields satisfying self-dual field equations. The fifteen vector fields can be used to gauge any of the fifteen-dimensional semisimple subgroups of SL(6, R), sepcifically SO(p, 6-p) for p=0, 1, 2, 3. The gauged theories also have a physical global SU(1,1) symmetry which survives from the Esub(6(6)) symmetry of the ungauged theory. This SU(1, 1) for the SO(6) gauging is presumably related to that of the chiral N=2 theory in ten dimensions. In our formalism we maintain a composite local USp(8) symmetry analogous to SU(8) in four dimensions. (orig.)

  3. Stringy origin of diboson and dijet excesses at the LHC

    Directory of Open Access Journals (Sweden)

    Luis A. Anchordoqui

    2015-10-01

    Full Text Available Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8–2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W− pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U(1 field with very small coupling to leptons. The Drell–Yan bounds are then readily avoided because of the leptophobic nature of the massive Z′ gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau–Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Zγ topology would become a signature consistent only with a stringy origin.

  4. Chan-Paton soliton gauge states of the compactified open string

    International Nuclear Information System (INIS)

    Lee, J.-C.

    2000-01-01

    We study the mechanism of the enhanced gauge symmetry of the bosonic open string compactified on a torus by analyzing the zero-norm soliton (non-zero winding of the Wilson line) gauge states in the spectrum. Unlike the closed string case, we find that the soliton gauge state exists only at massive levels. These soliton gauge states correspond to the existence of enhanced massive gauge symmetries with transformation parameters containing both Einstein and Yang-Mills indices. In the T-dual picture, these symmetries exist only at some discrete values of compactified radii when N D-branes are coincident. (orig.)

  5. The New Flavor of Higgsed Gauge Mediation

    OpenAIRE

    Craig, Nathaniel; McCullough, Matthew; Thaler, Jesse

    2012-01-01

    Recent LHC bounds on squark masses combined with naturalness and flavor considerations motivate non-trivial sfermion mass spectra in the supersymmetric Standard Model. These can arise if supersymmetry breaking is communicated to the visible sector via new extended gauge symmetries. Such extended symmetries must be spontaneously broken, or confined, complicating the calculation of soft masses. We develop a new formalism for calculating perturbative gauge-mediated two-loop soft masses for gauge...

  6. The priority of internal symmetries in particle physics

    Science.gov (United States)

    Kantorovich, Aharon

    2003-12-01

    In this paper, I try to decipher the role of internal symmetries in the ontological maze of particle physics. The relationship between internal symmetries and laws of nature is discussed within the framework of ;Platonic realism.; The notion of physical ;structure; is introduced as representing a deeper ontological layer behind the observable world. I argue that an internal symmetry is a structure encompassing laws of nature. The application of internal symmetry groups to particle physics came about in two revolutionary steps. The first was the introduction of the internal symmetries of hadrons in the early 1960s. These global and approximate symmetries served as means of bypassing the dynamics. I argue that the realist could interpret these symmetries as ontologically prior to the hadrons. The second step was the gauge revolution in the 1970s, where symmetries became local and exact and were integrated with the dynamics. I argue that the symmetries of the second generation are fundamental in the following two respects: (1) According to the so-called ;gauge argument,; gauge symmetry dictates the existence of gauge bosons, which determine the nature of the forces. This view, which has been recently criticized by some philosophers, is widely accepted in particle physics at least as a heuristic principle. (2) In view of grand unified theories, the new symmetries can be interpreted as ontologically prior to baryon matter.

  7. String constraints on discrete symmetries in MSSM type II quivers

    Energy Technology Data Exchange (ETDEWEB)

    Anastasopoulos, Pascal [Technische Univ. Wien (Austria). Inst. fur Theor. Phys.; Cvetic, Mirjam [Univ. of Pennsylvania, Philadelphia PA (United States). Dept. of Physics and Astronomy; Univ. of Maribor (Slovenia). Center for Applied Mathematics and Theoretical Physics; Richter, Robert [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-11-15

    We study the presence of discrete gauge symmetries in D-brane semirealistic compactifications. After establishing the constraints on the transformation behaviour of the chiral matter for the presence of a discrete gauge symmetry we perform a systematic search for discrete gauge symmetries within semi-realistic D-brane realizations, based on four D-brane stacks, of the MSSM and the MSSM with three right-handed neutrinos. The systematic search reveals that Proton hexality, a discrete symmetry which ensures the absence of R-parity violating terms as well as the absence of dangerous dimension 5 proton decay operators, is only rarely realized. Moreover, none of the semi-realistic local D-brane configurations exhibit any family dependent discrete gauge symmetry.

  8. Charged tensor matter fields and Lorentz symmetry violation via spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Colatto, L.P.; Penna, A.L.A.; Santos, W.C.

    2003-10-01

    We consider a model with a charged vector field along with a Cremmer-Scherk-Kalb-Ramond (CSKR) matter field coupled to a U(1) gauge potential. We obtain a natural Lorentz symmetry violation due to the local U(1) spontaneous symmetry breaking mechanism triggered by the imaginary part of the vector matter. The choice of the unitary gauge leads to the decoupling of the gauge-Kr sector from the Higgs-Kr sector. The excitation spectrum is carefully analyzed and the physical modes are identified. We propose an identification of the neutral massive spin-1 Higgs-like field with the massive Z' boson of the so-called mirror matter models. (author)

  9. Reformulation of the symmetries of first-order general relativity

    Science.gov (United States)

    Montesinos, Merced; González, Diego; Celada, Mariano; Díaz, Bogar

    2017-10-01

    We report a new internal gauge symmetry of the n-dimensional Palatini action with cosmological term (n>3 ) that is the generalization of three-dimensional local translations. This symmetry is obtained through the direct application of the converse of Noether’s second theorem on the theory under consideration. We show that diffeomorphisms can be expressed as linear combinations of it and local Lorentz transformations with field-dependent parameters up to terms involving the variational derivatives of the action. As a result, the new internal symmetry together with local Lorentz transformations can be adopted as the fundamental gauge symmetries of general relativity. Although their gauge algebra is open in general, it allows us to recover, without resorting to the equations of motion, the very well-known Lie algebra satisfied by translations and Lorentz transformations in three dimensions. We also report the analog of the new gauge symmetry for the Holst action with cosmological term, finding that it explicitly depends on the Immirzi parameter. The same result concerning its relation to diffeomorphisms and the open character of the gauge algebra also hold in this case. Finally, we consider the non-minimal coupling of a scalar field to gravity in n dimensions and establish that the new gauge symmetry is affected by this matter field. Our results indicate that general relativity in dimension greater than three can be thought of as a gauge theory.

  10. Baryonic Force for Accelerated Cosmic Expansion and Generalized U1b Gauge Symmetry in Particle-Cosmology

    Directory of Open Access Journals (Sweden)

    Khan Mehbub

    2018-01-01

    Full Text Available Based on baryon charge conservation and a generalized Yang-Mills symmetry for Abelian (and non-Abelian groups, we discuss a new baryonic gauge field and its linear potential for two point-like baryon charges. The force between two point-like baryons is repulsive, extremely weak and independent of distance. However, for two extended baryonic systems, we have a dominant linear force α r. Thus, only in the later stage of the cosmic evolution, when two baryonic galaxies are separated by an extremely large distance, the new repulsive baryonic force can overcome the gravitational attractive force. Such a model provides a gauge-field-theoretic understanding of the late-time accelerated cosmic expansion. The baryonic force can be tested by measuring the accelerated Wu-Doppler frequency shifts of supernovae at different distances.

  11. Gauge fixing, BRS invariance and Ward identities for randomly stirred flows

    International Nuclear Information System (INIS)

    Berera, Arjun; Hochberg, David

    2009-01-01

    The Galilean invariance of the Navier-Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi-Rouet-Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier-Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.

  12. Gauge fixing, BRS invariance and Ward identities for randomly stirred flows

    Energy Technology Data Exchange (ETDEWEB)

    Berera, Arjun [School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom)], E-mail: ab@ph.ed.ac.uk; Hochberg, David [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir Km. 4, 28850 Torrejon de Ardoz, Madrid (Spain)], E-mail: hochbergd@inta.es

    2009-06-21

    The Galilean invariance of the Navier-Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi-Rouet-Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier-Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.

  13. Higher spin gauge theories in any dimension

    International Nuclear Information System (INIS)

    Vasiliev, M.A.

    2004-01-01

    Some general properties of higher spin (HS) gauge theories are summarized, with the emphasize on the nonlinear theories in any dimension. The main conclusion is that nonlinear HS theories exist in any dimension. Note that HS gauge symmetries in the nonlinear HS theory differ from the Yang-Mills gauging of the global HS symmetry of a free theory one starts with by HS field strength dependent nonlinear corrections resulting from the partial gauge fixing of spontaneously broken HS symmetries in the extended non-commutative space. The HS geometry is that of the fuzzy hyperboloid in the auxiliary (fiber) non-commutative space. Its radius depends on the Weyl 0-forms which take values in the infinitive-dimensional module dual to the space of single-particle states in the system

  14. Patterns of symmetry breaking in chiral QCD

    Science.gov (United States)

    Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail

    2018-05-01

    We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.

  15. Translational spacetime symmetries in gravitational theories

    International Nuclear Information System (INIS)

    Petti, R J

    2006-01-01

    How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle and (3) using the affine connection and the zero section to define an 'associated solder form', whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however, it violates translational equivariance/gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry

  16. Translational spacetime symmetries in gravitational theories

    Energy Technology Data Exchange (ETDEWEB)

    Petti, R J [MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760 (United States)

    2006-02-07

    How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle and (3) using the affine connection and the zero section to define an 'associated solder form', whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however, it violates translational equivariance/gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry.

  17. Kaehler-Chern-Simons theory and symmetries of anti-self-dual gauge fields

    International Nuclear Information System (INIS)

    Nair, V.P.; Schiff, J.

    1992-01-01

    Kaehler-Chern-Simons theory, which was proposed as a generalization of ordinary Chern-Simons theory, is explored in more detail. The theory describes anti-self-dual instantons on a four-dimensional Kaehler manifold. The phase space is the space of gauge potentials, whose symplectic reduction by the constraints of anti-self-duality leads to the moduli space of instantons. We show that infinitesimal Baecklund transformations, previously related to 'hidden symmetries' of instantons, are canonical transformations generated by the anti-self-duality constraints. The quantum wave functions naturally lead to a generalized Wess-Zumino-Witten action, which in turn has associated chiral current algebras. The dimensional reduction of the anti-self-duality equations leading to integrable two-dimensional theories is briefly discussed in this framework. (orig.)

  18. Unbounded representations of symmetry groups in gauge quantum field theory. Pt. 1

    International Nuclear Information System (INIS)

    Voelkel, A.H.

    1983-01-01

    Symmetry groups and especially the covariance (substitution rules) of the basic fields in a gauge quantum field theory of the Wightman-Garding type are investigated. By means of the continuity properties hidden in the substitution rules it is shown that every unbounded form-isometric representation U of a Lie group has a form-skew-symmetric differential deltaU with dense domain in the unphysical Hilbert space. Necessary and sufficient conditions for the existence of the closures of U and deltaU as well as for the isometry of U are derived. It is proved that a class of representations of the transition group enforces a relativistic confinement mechanism, by which some or all basic fields are confined but certain mixed products of them are not. (orig.)

  19. In search of symmetry lost

    CERN Multimedia

    Wilczek, Frank

    2004-01-01

    Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

  20. Gauge field condensation in geometric quantum chromodynamics

    International Nuclear Information System (INIS)

    Guendelman, E.I.

    1991-09-01

    In odd number of dimensions, it is possible to construct general covariant gauge theories, where the metric is not an independent variable, but local function of the gauge fields. Starting from standardly defined gauge theory, upon functional integration of some variables, we could end up with such moodels. For models with SU(2) and SU(3) symmetry in three dimensions, gauge field condensation take place in the vacuum, which is nevertheless homogeneous and isotropic up to a gauge transformation, provided the space is flat. Introducing Higgs fields that spontaneously break the gauge symmetry, we get a breakdown of the homogenity and isotropy of the vacuum. Finally, we discuss how some of this ideas can be generalized to four and other even dimensions. (author)

  1. Self-dual gauge theories

    International Nuclear Information System (INIS)

    Zet, G.

    2002-01-01

    The self-duality equations are important in gauge theories because they show the connection between gauge models with internal symmetry groups and gauge theory of gravity. They are differential equations of the first order and it is easier to investigate the solutions for different particular configurations of the gauge fields and of space-times.One of the most important property of the self-duality equations is that they imply the Yang-Mills field equations. In this paper we will prove this property for the general case of a gauge theory with compact Lie group of symmetry over a 4-dimensional space-time manifold. It is important to remark that there are 3m independent self-duality equations (of the first order) while the number of Yang-Mills equations is equal to 4m, where m is the dimension of the gauge group. Both of them have 4m unknown functions which are the gauge potentials A μ a (x), a = 1, 2, ....,m; μ = 0, 1, 2, 3. But, we have, in addition, m gauge conditions for A μ a (x), (for example Coulomb, Lorentz or axial gauge) which together with the selfduality equation constitute a system of 4m equations. The Bianchi identities for the self-dual stress tensor F μν a coincide with the Yang-Mills equations and do not imply therefore supplementary conditions. We use the axial gauge in order to obtain the self duality equations for a SU(2) gauge theory over a curved space-time. The compatibility between self-duality and Yang-Mills equations is studied and some classes of solutions are obtained. In fact, we will write the Einstein-Yang-Mills equations and we will analyse only the Yang-Mills sector. The Einstein equations can not be obtained of course from self-duality. They should be obtained if we would consider a gauge theory having P x SU(2) as symmetry group, where P is the Poincare group. More generally, a gauge theory of N-extended supersymmetry can be developed by imposing the self-duality condition. (author)

  2. Re-gauging groupoid, symmetries and degeneracies for graph Hamiltonians and applications to the Gyroid wire network

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Ralph M.; Khlebnikov, Sergei; Wehefritz-Kaufmann, Birgit

    2012-08-15

    Motivated by Harper Hamiltonians on skeletal graphs and their C{sup *}-geometry, we study a certain class of graph Hamiltonians. These Hamiltonians can be thought of as a finite groupoid representation in separable Hilbert spaces. Here the groupoid is the path groupoid of a finite graph. Given such a setup, we consider the possible matrix versions of the Hamiltonian, which are indexed by the choice of a rooted spanning tree and an order of the vertices. The first result is that all the matrix representations are linked to each other via the conjugation action of a re-gauging groupoid. We furthermore show that the symmetries of the underlying graph give rise to an action on the Hamiltonians of a group of extended symmetries. The new concept for the extension is to allow phase transformations on the vertices. In the commutative case, we prove that the extended symmetries act via a projective representation giving rise to isotypical decompositions and super-selection rules. We then apply these results to the PDG and honeycomb graphs using representation theory for projective groups and show that all the degeneracies in the spectra are consequences of these enhanced symmetries. This includes the Dirac points of the Gyroid and the honeycomb.

  3. Fields, symmetries, and quarks

    International Nuclear Information System (INIS)

    Mosel, U.

    1989-01-01

    'Fields, symmetries, and quarks' covers elements of quantum field theory, symmetries, gauge field theories and phenomenological descriptions of hadrons, with special emphasis on topics relevant to nuclear physics. It is aimed at nuclear physicists in general and at scientists who need a working knowledge of field theory, symmetry principles of elementary particles and their interactions and the quark structure of hadrons. The book starts out with an elementary introduction into classical field theory and its quantization. As gauge field theories require a working knowledge of global symmetries in field theories this topic is then discussed in detail. The following part is concerned with the general structure of gauge field theories and contains a thorough discussion of the still less widely known features of Non-Abelian gauge field theories. Quantum Chromodynamics (QCD), which is important for the understanding of hadronic matter, is discussed in the next section together with the quark compositions of hadrons. The last two chapters give a detailed discussion of phenomenological bag-models. The MIT bag is discussed, so that all theoretical calculations can be followed step by step. Since in all other bag-models the calculational methods and steps are essentially identical, this chapter should enable the reader to actually perform such calculations unaided. A last chapter finally discusses the topological bag-models which have become quite popular over the last few years. (orig.)

  4. Effective action for composite operators and chiral symmetry breakdown in asymptotically free and non-asymptotically free gauge theories

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miranskij, V.A.

    1987-01-01

    An essential distinction in the relaization of the PCAC dynamics in asymptotically free and non-asymptotically free (with a non-trivial ultraviolet-stable fixed point) gauge theories is revealed. For the latter theories an analytical expressions for the condensate is obtained in the two-loop approximation and arguments of support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed. Besides, the mass relations for pseudoscalar mesons in arbitrary Θ-sector are obtained in the first order in fermion bare masses and the impossibility for spontaneous P and CP-symmetries breaking in vector-like gauge theories at Θ=0 is shown

  5. A note on gauge fixing in theories of extended objects

    International Nuclear Information System (INIS)

    Sezgin, E.

    1989-08-01

    We discuss the light-cone type gauges (old and new) and the associated residual symmetries in theories of extended objects. We also discuss certain covariant gauges and in particular a covariant gauge for membranes which admits the contact diffeomorphisms of the world-volume as a residual symmetry. (author). 12 refs

  6. Constraining the physical state by symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Fatibene, L., E-mail: lorenzo.fatibene@unito.it [Department of Mathematics, University of Torino (Italy); INFN - Sezione Torino - IS QGSKY (Italy); Ferraris, M.; Magnano, G. [Department of Mathematics, University of Torino (Italy)

    2017-03-15

    After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or by an internal gauge transformation) as it is usually prescribed. On the contrary, when space is not compact, the result does not hold true and one may have different options to define physically equivalent configurations, still preserving determinism. - Highlights: • Investigate the relation between the hole argument, covariance, determinism and physical state. • Show that if space is compact then any diffeomorphism is a gauge symmetry. • Show that if space is not compact then there may be more freedom in choosing gauge group.

  7. Zero-norm states and high-energy symmetries of string theory

    International Nuclear Information System (INIS)

    Chan, C.-T.; Lee, J.-C.

    2004-01-01

    We derive stringy Ward identities from the decoupling of two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. These Ward identities are valid to all energy α' and all loop orders χ in string perturbation theory. The high-energy limit α'→∞ of these stringy Ward identities can then be used to fix the proportionality constants between scattering amplitudes of different string states algebraically without referring to Gross and Mende's saddle point calculation of high-energy string-loop amplitudes. As examples, all Ward identities for the mass level M 2 =4,6 are derived, their high-energy limits are calculated and the proportionality constants between scattering amplitudes of different string states are determined. In addition to those identified before, we discover some new nonzero components of high-energy amplitudes not found previously by Gross and Manes. These components are essential to preserve massive gauge invariances or decouple massive zero-norm states of string theory. A set of massive scattering amplitudes and their high-energy limits are calculated explicitly for each mass level M 2 =4,6 to justify our results

  8. Adventures in Coulomb Gauge

    International Nuclear Information System (INIS)

    Greensite, J.; Olejnik, S.

    2003-01-01

    We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.

  9. Group theory and lattice gauge fields

    International Nuclear Information System (INIS)

    Creutz, M.

    1988-09-01

    Lattice gauge theory, formulated in terms of invariant integrals over group elements on lattice bonds, benefits from many group theoretical notions. Gauge invariance provides an enormous symmetry and powerful constraints on expectation values. Strong coupling expansions require invariant integrals over polynomials in group elements, all of which can be evaluated by symmetry considerations. Numerical simulations involve random walks over the group. These walks automatically generate the invariant group measure, avoiding explicit parameterization. A recently proposed overrelaxation algorithm is particularly efficient at exploring the group manifold. These and other applications of group theory to lattice gauge fields are reviewed in this talk. 17 refs

  10. Renormalization of a distorted gauge: invariant theory

    International Nuclear Information System (INIS)

    Hsu, J.P.; Underwood, J.A.

    1976-02-01

    A new type of renormalizable theory involving massive Yang-Mills fields whose mass is generated by an intrinsic breakdown of the usual local gauge symmetry is considered. However, the Lagrangian has a distorted gauge symmetry which leads to the Ward-Takahashi (W-T) identities. Also, the theory is independent of the gauge parameter xi. An explicit renormalization at the oneloop level is completely carried out by exhibiting counter terms, defining the physical parameters and computing all renormalization constants to check the W-T identities

  11. Extended global symmetries of the bosonic string. Their current algebra and anomalies

    International Nuclear Information System (INIS)

    Piguet, O.; Schwarz, D.; Schweda, M.

    1990-01-01

    The quantization of the bosonic string is discussed in a class of general homogeneous gauges. The corresponding bosonic string model may be characterized effectively by three global symmetries: the linearized BRS symmetry, the ghost-number symmetry, and the Lagrange-multiplier-field symmetry. In order to discuss the possible gauge (in)dependence of Noether currents and anomalies consistently, we enlarge these rigid symmetries to extended ones. In addition we construct the local version of the above global symmetries in a systematic way, by introducing appropriate external gauge fields. The possible anomalies are analysed with the help of Wess-Zumino consistency relations. (orig.)

  12. Zero energy gauge fields and the phases of a gauge theory

    International Nuclear Information System (INIS)

    Guendelman, E.I.

    1990-01-01

    A new approach to the definition of the phases of a Poincare invariant gauge theory is developed. It is based on the role of gauge transformations that change the asymptotic value of the gauge fields from zero to a constant. In the context of theories without Higgs fields, this symmetry can be spontaneously broken when the gauge fields are massless particles, explicitly broken when the gauge fields develop a mass. Finally, the vacuum can be invariant under this transformation, this last case can be achieved when the theory has a violent infrared behavior, which in some theories can be connected to a confinement mechanism

  13. Hairs of discrete symmetries and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)

    2017-06-10

    Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.

  14. Hairs of discrete symmetries and gravity

    Directory of Open Access Journals (Sweden)

    Kang Sin Choi

    2017-06-01

    Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.

  15. Origin of Abelian Gauge Symmetries in Heterotic/F-theory Duality

    CERN Document Server

    Cvetic, Mirjam; Klevers, Denis; Poretschkin, Maximilian; Song, Peng

    2016-01-01

    We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m) x U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) x Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required ...

  16. Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction

    Science.gov (United States)

    Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R.

    2018-04-01

    Supergravities with gauged R symmetry and Minkowski vacua allow for spontaneous supersymmetry breaking and, as such, provide a framework for building supergravity models of phenomenological relevance. In this Letter, we initiate the study of double copy constructions for these supergravities. We argue that, on general grounds, we expect their scattering amplitudes to be described by a double copy of the type (spontaneously broken gauge theory)⊗ (gauge theory with broken supersymmetry). We present a simple realization in which the resulting supergravity has U (1 )R gauge symmetry, spontaneously broken N =2 supersymmetry, and massive gravitini. This is the first instance of a double copy construction of a gauged supergravity and of a theory with spontaneously broken supersymmetry. The construction extends in a straightforward manner to a large family of gauged Yang-Mills-Einstein supergravity theories with or without spontaneous gauge-symmetry breaking.

  17. The gravitational exclusion principle and null states in anti-de Sitter space

    International Nuclear Information System (INIS)

    Castro, Alejandra; Maloney, Alexander; Hartman, Thomas

    2011-01-01

    The holographic principle implies a vast reduction in the number of degrees of freedom of quantum gravity. This idea can be made precise in AdS 3 , where the the stringy or gravitational exclusion principle asserts that certain perturbative excitations are not present in the exact quantum spectrum. We show that this effect is visible directly in the bulk gravity theory: the norm of the offending linearized state is zero or negative. When the norm is negative, the theory is signalling its own breakdown as an effective field theory; this provides a perturbative bulk explanation for the stringy exclusion principle. When the norm vanishes the bulk state is null rather than physical. This implies that certain non-trivial diffeomorphisms must be regarded as gauge symmetries rather than spectrum-generating elements of the asymptotic symmetry group. This leads to subtle effects in the computation of one-loop determinants for Einstein gravity, higher spin theories and topologically massive gravity in AdS 3 . In particular, heat kernel methods do not capture the correct spectrum of a theory with null states. Communicated by S Ross

  18. The string unification of gauge couplings and gauge kinetic mixings

    International Nuclear Information System (INIS)

    Hattori, Chuichiro; Matsuda, Masahisa; Matsuoka, Takeo; Mochinaga, Daizo.

    1993-01-01

    In the superstring models we have not only the complete 27 multiplets of E 6 but also extra incomplete (27+27-bar) chiral supermultiplets being alive at low energies. Associated with these additional multiplets, when the gauge symmetry contains more than one U(1) gauge group, there may exist gauge kinetic mixings among these U(1) gauge groups. In such cases the effect of gauge kinetic mixings should be incorporated into the study of unification of gauge couplings. We study these interesting effects systematically in these models. The string threshold effect is also taken into account. It is found that in the four-generation models we do not have an advisable solution of string unification of gauge couplings consistent with experimental values at the electroweak scale. We also discuss the possible scenarios to solve this problem. (author)

  19. Mirror symmetry and loop operators

    Energy Technology Data Exchange (ETDEWEB)

    Assel, Benjamin [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada)

    2015-11-09

    Wilson loops in gauge theories pose a fundamental challenge for dualities. Wilson loops are labeled by a representation of the gauge group and should map under duality to loop operators labeled by the same data, yet generically, dual theories have completely different gauge groups. In this paper we resolve this conundrum for three dimensional mirror symmetry. We show that Wilson loops are exchanged under mirror symmetry with Vortex loop operators, whose microscopic definition in terms of a supersymmetric quantum mechanics coupled to the theory encode in a non-trivial way a representation of the original gauge group, despite that the gauge groups of mirror theories can be radically different. Our predictions for the mirror map, which we derive guided by branes in string theory, are confirmed by the computation of the exact expectation value of Wilson and Vortex loop operators on the three-sphere.

  20. Soft Terms from Broken Symmetries

    CERN Document Server

    Buican, Matthew

    2010-01-01

    In theories of phyiscs beyond the Standard Model (SM), visible sector fields often carry quantum numbers under additional gauge symmetries. One could then imagine a scenario in which these extra gauge symmetries play a role in transmitting supersymmetry breaking from a hidden sector to the Supersymmetric Standard Model (SSM). In this paper we present a general formalism for studying the resulting hidden sectors and calculating the corresponding gauge mediated soft parameters. We find that a large class of generic models features a leading universal contribution to the soft scalar masses that only depends on the scale of Higgsing, even if the model is strongly coupled. As a by-product of our analysis, we elucidate some IR aspects of the correlation functions in General Gauge Mediation. We also discuss possible phenomenological applications.

  1. Stability and supersymmetry: Models with local gauge symmetry

    International Nuclear Information System (INIS)

    Curtright, T.; Ghandour, G.

    1978-01-01

    Renormalization group analysis is used to show the supersymmetric point in the effective coupling constant space is an unstable fixed point for several model gauge theories. The physical significance of this result is discussed in terms of the stability of the semiclassical ground state. In perturbation theory the supersymmetric point appears to be surrounded by regions in the coupling space representing three classes of theories: class one consists of theories for which the effective potential V has no apparent lower bound for large (pseudo)scalar field expectations; class two theories have lower bounds and radiatively induced absolute minima for V with nonzero field expectations; class three theories apparently have an absolute minimum of V at the origin of field space. Thus radiatively induced breaking of gauge invariance occurs for theories in classes one and two, but perturbatively the class one theories appear to have no ground states. Class three theories have ground states in which all gauge invariance remains intact. For the supersymmetric limits of the models examined the origin is known to be neutrally stable in field space, permitting an ambiguous breakdown of gauge invariance but not supersymmetry. This phenomenon is discussed in some detail. Calculations are performed in both Lorentz covariant and noncovariant gauges with a detailed comparison between gauges of the relevant one-loop diagrams

  2. Introduction to gauge theories and unification

    International Nuclear Information System (INIS)

    Das, A.

    1990-01-01

    This paper contains the following lectures on gauge theories: basic notations; dimensional regularization; complex scalar field theory; scalar field theory; self-interacting scalar field theory; Noether's theorem; spontaneous symmetry breaking; dirac field theories; local symmetry; quantum electrodynamics; Higgs mechanism; non-Abelian symmetries; and Weinberg-Salam-Glashow theory

  3. Symmetry breaking and restoration in gauge theories

    International Nuclear Information System (INIS)

    Natale, A.A.

    A review is made of the utilization of the Higgs mechanism in spontaneous symmetry breaking. It is shown that such as ideas came from an analogy with the superconductivity phenomenological theory based on a Ginzburg-Landau lagrangean. The symmetry restoration through the temperature influence is studied. (L.C.) [pt

  4. Hidden simplicity of gauge theory amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J M, E-mail: drummond@lapp.in2p3.f [LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, Cedex (France)

    2010-11-07

    These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in N=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.

  5. Non-Abelian Gauge Theory in the Lorentz Violating Background

    Science.gov (United States)

    Ganai, Prince A.; Shah, Mushtaq B.; Syed, Masood; Ahmad, Owais

    2018-03-01

    In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.

  6. Implementing general gauge mediation

    International Nuclear Information System (INIS)

    Carpenter, Linda M.; Dine, Michael; Festuccia, Guido; Mason, John D.

    2009-01-01

    Recently there has been much progress in building models of gauge mediation, often with predictions different than those of minimal gauge mediation. Meade, Seiberg, and Shih have characterized the most general spectrum which can arise in gauge-mediated models. We discuss some of the challenges of building models of general gauge mediation, especially the problem of messenger parity and issues connected with R symmetry breaking and CP violation. We build a variety of viable, weakly coupled models which exhibit some or all of the possible low energy parameters.

  7. Spontaneous symmetry breaking of the BRST symmetry in presence of the Gribov horizon: Renormalizability

    International Nuclear Information System (INIS)

    Capri, Marcio; Justo, Igor; Guimaraes, Marcelo; Sorella, Silvio; Dudal, David; Palhares, Leticia

    2013-01-01

    Full text: In recent years much attention has been devoted to the study of the issue of the Gribov copies and of its relevance for confinement in Yang-Mills theories. The existence of the Gribov copies is a general feature of the gauge-fixing quantization procedure, being related to the impossibility of finding a local gauge condition which picks up only one gauge configuration for each gauge orbit. As it has been shown by Gribov and Zwanziger, a partial solution of the Gribov problem in the Landau gauge can be achieved by restricting the domain of integration in the functional Euclidean integral to the first Gribov horizon. Among the various open aspects of the Gribov-Zwanziger framework, the issue of the BRST symmetry is a source of continuous investigations. In a recent work, we have been able to obtain an equivalent formulation of the Gribov-Zwanziger action which displays an exact BRST symmetry which turns out to be spontaneously broken by the restriction of the domain of integration to the Gribov horizon. In particular, the BRST operator retains the important property of being nilpotent. Moreover, it has also been shown that the Goldstone mode associated to the spontaneous breaking of the BRST symmetry is completely decoupled. The aim of the present work is that of fills up a gap not addressed in the previous work, namely, the renormalizability to all orders of the spontaneous symmetry breaking formulation of the Gribov-Zwanziger theory. As we shall see, the action obtained enjoys a large set of Ward identities which enables to prove that it is, in fact, multiplicatively renormalizable to all orders. (author)

  8. On discrete symmetries for a whole Abelian model

    International Nuclear Information System (INIS)

    Chauca, J.; Doria, R.

    2012-01-01

    Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {D μ ,X i μ } and the physical basis {G μI }. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {G μI } manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.

  9. A natural Poincare gauge model

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Pereira, J.G.

    1985-01-01

    A natural candidate model for a gauge theory for the Poincare group is discussed. It satisfies the usual electric-magnetic symmetry of gauge models and is a contraction of a gauge model for the De Sitter group. Its field equations are just the Yang-Mills equations for the Poincare group. It is shown that these equations do not follow from a Lagrangean. (Author) [pt

  10. Gauge theories as theories of spontaneous breakdown

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Ogievetsky, V.I.

    1976-01-01

    Any gauge theory is proved to arise from spontaneous breakdown of symmetry under certain infinite parameter group, the corresponding gauge field being the Goldstone field by which this breakdown is accompanied

  11. High-energy symmetries of string theory

    International Nuclear Information System (INIS)

    Lee Jenchi.

    1990-01-01

    The author studies the high-energy symmetry structure of string theory corresponding to the massive excitations of the string. These enlarged gauge symmetries are closely related to the existence of zero-norm states in the string spectrum. He has derived these symmetries in the framework of the Hamiltonian version of the first-quantized generalized σ-model formalism. It is conjectured that these infinite space-time symmetry structures could shed light on the finiteness of string perturbation theory. Two interesting phenomena were discovered for these massive states symmetries. One is the inter-'spin' symmetry for the different 'spin' states at each fixed mass level. Specifically, the four physical propagating states with 'spins' up to six of the second massive level of the closed bosonic string are found to form a large gauge multiplet. This is demonstrated by the existence of gauge transformations induced by the type II zero-norm states at this mass level. It is argued that this is a σ-model three loop result for the second massive level and is a general feature for higher massive levels at each fixed mass. The other one is the decoupling of some degenerate positive-norm states. As an example, he explicitly demonstrates that the 'spin' two and scalar physical propagating fields of the third massive level of the open bosonic string are mere gauge artifacts of the higher 'spin' fields at the same mass level. It is conjectured that this phenomenon comes from the well-known ambiguity in defining the positive-norm states due to the existence of zero-norm states in the same Young representation

  12. Supersymmetric gauge field theories

    International Nuclear Information System (INIS)

    Slavnov, A.A.

    1976-01-01

    The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models

  13. Gauge glass

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1984-12-01

    The fundamental laws of nature may be truely random, or they may be so complicated that a random description is adequate. With this philosophy we examine various ways in which a lattice gauge theory (at the Planck scale) can be generalized. Without here giving up a regular lattice structure (which we really ought to do) we consider two generalizations. Making the action (quenched) random has the effect that the gauge group tends to break down and some gauge bosons become massive, unless the gauge group has special properties: no noncentral corners in the geometry of conjugacy classes and furthermore a connected center. Making the concept of gauge transformation more general has a symmetry breaking effect for groups with outer automorphisms. A study of SU 5 -breaking in the context of the first breakdown mechanism (D. Bennett, E. Buturovic and H. B. Nielsen) is shortly reviewed. (orig.)

  14. The master space of N = 1 gauge theories

    International Nuclear Information System (INIS)

    Forcella, Davide; Hanany, Amihay; He Yanghui; Zaffaroni, Alberto

    2008-01-01

    The full moduli space M of a class of N = 1 supersymmetric gauge theories is studied. For gauge theories living on a stack of D3-branes at Calabi-Yau singularities X, M is a combination of the mesonic and baryonic branches. In consonance with the mathematical literature, the single brane moduli space is called the master space F b . Illustrating with a host of explicit examples, we exhibit many algebro-geometric properties of the master space such as when F b is toric Calabi-Yau, behaviour of its Hilbert series, its irreducible components and its symmetries. In conjunction with the plethystic programme, we investigate the counting of BPS gauge invariants, baryonic and mesonic, using the geometry of F b and show how its refined Hilbert series not only engenders the generating functions for the counting but also beautifully encode 'hidden' global symmetries of the gauge theory which manifest themselves as symmetries of the complete moduli space M for N number of branes.

  15. Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals

    International Nuclear Information System (INIS)

    Babington, J.; Erdmenger, J.; Guralnik, Z.; Kirsch, I.; Evans, N.

    2004-01-01

    We study gravity duals of large N nonsupersymmetric gauge theories with matter in the fundamental representation by introducing a D7-brane probe into deformed AdS backgrounds. In particular, we consider a D7-brane probe in both the AdS Schwarzschild black hole solution and in the background found by Constable and Myers, which involves a nonconstant dilaton and S 5 radius. Both these backgrounds exhibit confinement of fundamental matter and a discrete glueball and meson spectrum. We numerically compute the Ψ-barΨ condensate and meson spectrum associated with these backgrounds. In the AdS-black-hole background, a quark-bilinear condensate develops only at a nonzero quark mass. We speculate on the existence of a third order phase transition at a critical quark mass where the D7 embedding undergoes a geometric transition. In the Constable-Myers background, we find a chiral symmetry breaking condensate as well as the associated Goldstone boson in the limit of small quark mass. The existence of the condensate ensures that the D7-brane never reaches the naked singularity at the origin of the deformed AdS space

  16. Dynamical Symmetry Breaking of Maximally Generalized Yang-Mills Model and Its Restoration at Finite Temperatures

    International Nuclear Information System (INIS)

    Wang Dianfu

    2008-01-01

    In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures

  17. Gauge invariance and degree of freedom count

    International Nuclear Information System (INIS)

    Henneaux, M.; Universite Libre de Bruxelles; Teitelboim, C.; Texas Univ., Austin; Zanelli, J.; Chile Univ., Santiago. Dept. de Fisica)

    1990-01-01

    The precise relation between the gauge transformations in lagrangian and hamiltonian form is derived for any gauge theory. It is found that in order to define a lagrangian gauge symmetry, the coefficients of the first class constraints in the hamiltonian generator of gauge transformations must obey a set of differential equations. Those equations involve, in general, the Lagrange multipliers. Their solution contains as many arbitrary functions of time as there are primary first class constraints. If n is the number of generations of constraints (primary, secondary, tertiary...), the arbitrary functions appear in the general solution together with their successive time derivatives up to order n-1. The analysis yields as by-products: (i) a systematic way to derive all the gauge symmetries of a given lagrangian; (ii) a precise criterion for counting the physical degrees of freedom of a gauge theory directly from the form of gauge transformations in lagrangian form. This last part is illustrated by means of examples. The BRST analog of the counting of physical degrees of freedom is also discussed. (orig.)

  18. Supergraph analysis of the ultraviolet finiteness of gauge supersymmetry

    International Nuclear Information System (INIS)

    Arnowit, R.; Nath, P.

    1979-01-01

    The detailed proof of the ultraviolet finiteness of the S-matrix of gauge supersymmetry for internal symmetry index N >= 2 is presented (where 4N is the number of Fermi coordinates in superspace). The theorem is established to arbitrary loop order in the linearized harmonic gauge when the spontaneous symmetry breaking of gauge supersymmetry preserves global supersymmetry. The asymptotic properties in the deep euclidean region of the tree-approximation propagators are calculated. These enter importantly in the derivation of the theorem. (orig.)

  19. A radiative neutrino mass model in light of DAMPE excess with hidden gauged U(1) symmetry

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi; Wu, Peiwen

    2018-05-01

    We propose a one-loop induced neutrino mass model with hidden U(1) gauge symmetry, in which we successfully involve a bosonic dark matter (DM) candidate propagating inside a loop diagram in neutrino mass generation to explain the e+e‑ excess recently reported by the DArk Matter Particle Explorer (DAMPE) experiment. In our scenario dark matter annihilates into four leptons through Z' boson as DM DM → Z' Z' (Z' → l+ l‑) and Z' decays into leptons via one-loop effect. We then investigate branching ratios of Z' taking into account lepton flavor violations and neutrino oscillation data.

  20. Renormalization of gauge fields models

    International Nuclear Information System (INIS)

    Becchi, C.; Rouet, A.; Stora, R.

    1974-01-01

    A new approach to gauge field models is described. It is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme making extensive use of the quantum action principle, and the Slavnov invariance. The quantum action principle being first summarized in the framework of the BPHZ is then applied to a global symmetry problem. The symmetry property of the gauge field Lagrangians in the tree approximation is exhibited, and the preservation of this property at the quantum level is discussed. The main results relative to the Abelian and SU(2) Higgs-Kibble models are briefly reviewed [fr

  1. Renormalizable models with broken symmetries

    International Nuclear Information System (INIS)

    Becchi, C.; Rouet, A.; Stora, R.

    1975-10-01

    The results of the renormalized perturbation theory, in the absence of massless quanta, are summarized. The global symmetry breaking is studied and the associated currents are discussed in terms of the coupling with a classical Yang Mills field. Gauge theories are discussed; it is most likely that the natural set up should be the theory of fiber bundles and that making a choice of field coordinates makes the situation obscure. An attempt is made in view of clarifying the meaning of the Slavnov symmetry which characterizes gauge field theories [fr

  2. Phase diagrams of exceptional and supersymmetric lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Wellegehausen, Bjoern-Hendrik

    2012-07-10

    In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.

  3. Phase diagrams of exceptional and supersymmetric lattice gauge theories

    International Nuclear Information System (INIS)

    Wellegehausen, Bjoern-Hendrik

    2012-01-01

    In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G 2 , that has a trivial centre. To investigate G 2 gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.

  4. Some simple criteria for gauged R-parity

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.P.

    1992-07-01

    Some simple conditions which are sufficient to guarantee that R- parity survives as an unbroken gauged discrete subgroup of the continuous gauge symmetry in certain supersymmetric extensions of the standard model are presented.

  5. Internal space decimation for lattice gauge theories

    International Nuclear Information System (INIS)

    Flyvbjerg, H.

    1984-01-01

    By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)

  6. Gravitating SO (3,1) gauge field

    International Nuclear Information System (INIS)

    Aragone, C.; Restuccia, A.

    1978-01-01

    In this article, we postulate SO (3,1) as a local symmetry of any relativistic theory. This is equivalent to assuming the existence of a gauge field associated with this noncompact group. This SO (3,1) gauge field is the spinorial affinity which usually appears when we deal with weighting spinors, which, as is well known, cannot be coupled to the metric tensor field. Furthermore, according to the integral approach to gauge fields proposed by Yang, it is also recognized that in order to obtain models of gravity we have to introduce ordinary affinities as the gauge field associated with GL (4) (the local symmetry determined by the parallel transport). Thus if we assume both GL (4) and SO (3,1) as local independent symmetries we are led to analyze the dynamical gauge system constituted by the Einstein field interacting with the SO (3,1) Weyl--Yang gauge field. We think this system is a possible model of strong gravity. Once we give the first-order action for this Einstein--Weyl--Yang system we study whether the SO (3,1) gauge field could have a tetrad associated with it. It is also shown that both fields propagate along a unique characteristic cone. Algebraic and differential constraints are solved when the system evolves along a null coordinate. The unconstrained expression for the action of the system is found working in the Bondi gauge. That allows us to exhibit an explicit expression of the dynamical generator of the system. Its signature turns out to be nondefinite, due to the nondefinite contribution of the Weyl--Yang field, which has the typical spinorial behavior. A conjecture is made that such an unpleasant feature could be overcome in the quantized version of this model

  7. Flavor universal dynamical electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Burdman, G.; Evans, N.

    1999-01-01

    The top condensate seesaw mechanism of Dobrescu and Hill allows electroweak symmetry to be broken while deferring the problem of flavor to an electroweak singlet, massive sector. We provide an extended version of the singlet sector that naturally accommodates realistic masses for all the standard model fermions, which play an equal role in breaking electroweak symmetry. The models result in a relatively light composite Higgs sector with masses typically in the range of (400 - 700) GeV. In more complete models the dynamics will presumably be driven by a broken gauged family or flavor symmetry group. As an example of the higher scale dynamics a fully dynamical model of the quark sector with a GIM mechanism is presented, based on an earlier top condensation model of King using broken family gauge symmetry interactions (that model was itself based on a technicolor model of Georgi). The crucial extra ingredient is a reinterpretation of the condensates that form when several gauge groups become strong close to the same scale. A related technicolor model of Randall which naturally includes the leptons too may also be adapted to this scenario. We discuss the low energy constraints on the massive gauge bosons and scalars of these models as well as their phenomenology at the TeV scale. copyright 1999 The American Physical Society

  8. Spontaneous breaking of the BRST symmetry in the ABJM theory

    International Nuclear Information System (INIS)

    Faizal, Mir; Upadhyay, Sudhaker

    2014-01-01

    In this paper, we will analyze the ghost condensation in the ABJM theory. We will perform our analysis in N=1 superspace. We show that in the Delbourgo–Jarvis–Baulieu–Thierry–Mieg gauge the spontaneous breaking of BRST symmetry can occur in the ABJM theory. This spontaneous breaking of BRST symmetry is caused by ghost–anti-ghost condensation. We will also show that in the ABJM theory, the ghost–anti-ghost condensates remain present in the modified abelian gauge. Thus, the spontaneous breaking of BRST symmetry in ABJM theory can even occur in the modified abelian gauge

  9. Emergence of Symmetries from Entanglement

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  10. Gaugings at angles from orientifold reductions

    International Nuclear Information System (INIS)

    Roest, Diederik

    2009-01-01

    We consider orientifold reductions to N= 4 gauged supergravity in four dimensions. A special feature of this theory is that different factors of the gauge group can have relative angles with respect to the electro-magnetic SL(2) symmetry. These are crucial for moduli stabilization and de Sitter vacua. We show how such gaugings at angles generically arise in orientifold reductions.

  11. Nonabelian generalized gauge multiplets

    International Nuclear Information System (INIS)

    Lindstroem, Ulf; Zabzine, Maxim; Rocek, Martin; Ryb, Itai; Unge, Rikard von

    2009-01-01

    We give the nonabelian extension of the newly discovered N = (2, 2) two-dimensional vector multiplets. These can be used to gauge symmetries of sigma models on generalized Kaehler geometries. Starting from the transformation rule for the nonabelian case we find covariant derivatives and gauge covariant field-strengths and write their actions in N = (2, 2) and N = (1, 1) superspace.

  12. Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons

    CERN Document Server

    Cui, Yanou; Wells, James D

    2009-01-01

    We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electroweak gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.

  13. Two-time physics with gravitational and gauge field backgrounds

    International Nuclear Information System (INIS)

    Bars, Itzhak

    2000-01-01

    It is shown that all possible gravitational, gauge and other interactions experienced by particles in ordinary d dimensions (one time) can be described in the language of two-time physics in a spacetime with d+2 dimensions. This is obtained by generalizing the world line formulation of two-time physics by including background fields. A given two-time model, with a fixed set of background fields, can be gauged fixed from d+2 dimensions to (d-1)+1 dimensions to produce diverse one-time dynamical models, all of which are dually related to each other under the underlying gauge symmetry of the unified two-time theory. To satisfy the gauge symmetry of the two-time theory the background fields must obey certain coupled differential equations that are generally covariant and gauge invariant in the target (d+2)-dimensional spacetime. The gravitational background obeys a closed homothety condition while the gauge field obeys a differential equation that generalizes a similar equation derived by Dirac in 1936. Explicit solutions to these coupled equations show that the usual gravitational, gauge, and other interactions in d dimensions may be viewed as embedded in the higher (d+2)-dimensional space, thus displaying higher spacetime symmetries that otherwise remain hidden

  14. Topologically massive gauge theories and their dual factorized gauge-invariant formulation

    International Nuclear Information System (INIS)

    Bertrand, Bruno; Govaerts, Jan

    2007-01-01

    There exists a well-known duality between the Maxwell-Chern-Simons theory and the 'self-dual' massive model in (2 + 1) dimensions. This dual description may be extended to topologically massive gauge theories (TMGT) for forms of arbitrary rank and in any dimension. This communication introduces the construction of this type of duality through a reparametrization of the 'master' theory action. The dual action thereby obtained preserves the full gauge symmetry structure of the original theory. Furthermore, the dual action is factorized into a propagating sector of massive gauge-invariant variables and a decoupled sector of gauge-variant variables defining a pure topological field theory. Combining the results obtained within the Lagrangian and Hamiltonian formulations, a completed structure for a gauge-invariant dual factorization of TMGT is thus achieved. (fast track communication)

  15. Gauge field theories. Part three. Renormalization

    International Nuclear Information System (INIS)

    Frampon, P.H.

    1978-01-01

    The renormalization of nonabelian gauge theories both with exact symmetry and with spontaneous symmetry breaking is discussed. The method of dimensional regularization is described and used in the ensuing discussion. Triangle anomalies and their implications and the method for cancellation of anomalies in an SU(2) x U(1) theory, introduction of the BRS form of local gauge transformation and its use for the iterative proof of renormalizability to all orders for pure Yang--Mills and with fermion and scalar matter fields are considered. Lastly for massive vectors arising from spontaneous breaking, the demonstration of renormalizability is given, using the 't Hooft gauges introduced first in 1971. While the treatment is not totally rigorous, all the principle steps are given. 108 references

  16. Gauge field models

    International Nuclear Information System (INIS)

    Becchi, C.; Rouet, A.; Stora, R.

    1975-10-01

    Stora's analysis is continued in discussing the nonabelian (Yang-Mills) gauge field models (G.F.M.). The gauge independence of the physical scattering operator is discussed in some details and the connection between its unitary and the Slavnov symmetry outlined. Only the models involving semisimple gauge groups are considered. This greatly simplifies the analysis of the possible quantum corrections to the Quantum Action Principle which is reduced to the study of the cohomology group of the Lie algebra characterizing the gauge theory. The discussion is at the classical level for the algebraic properties of the SU(2) Higgs-Kibble-Englert-Brout-Faddeev-Popov lagrangian and its invariance under Slavnov identity transformations is exhibited. The renormalization of the Slavnov identity in the G.M.F. involving semisimple gauge groups is studied. The unitary and gauge independence of the physical S operator in the SU(2) H.K. model is dealt with [fr

  17. New models of gauge- and gravity-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Poppitz, E.; Trivedi, S.P.

    1997-01-01

    We show that supersymmetry breaking in a class of theories with SU(N)xSU(N-2) gauge symmetry can be studied in a calculable σ model. We use the σ model to show that the supersymmetry-breaking vacuum in these theories leaves a large subgroup of flavor symmetries intact, and to calculate the masses of the low-lying states. By embedding the standard model gauge groups in the unbroken flavor symmetry group we construct a class of models in which supersymmetry breaking is communicated by both gravitational and gauge interactions. One distinguishing feature of these models is that the messenger fields, responsible for the gauge-mediated communication of supersymmetry breaking, are an integral part of the supersymmetry-breaking sector. We also show how, by lowering the scale that suppresses the nonrenormalizable operators, a class of purely gauge-mediated models with a combined supersymmetry-breaking-cum-messenger sector can be built. We briefly discuss the phenomenological features of the models we construct. copyright 1997 The American Physical Society

  18. The decay width of stringy hadrons

    Science.gov (United States)

    Sonnenschein, Jacob; Weissman, Dorin

    2018-02-01

    In this paper we further develop a string model of hadrons by computing their strong decay widths and comparing them to experiment. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as Γ = π/2 ATL where T and L are the tension and length of the string and A is a dimensionless universal constant. We show that this result holds for a bosonic string not only in the critical dimension. The partial width of a given decay mode is given by Γi / Γ =Φi exp ⁡ (- 2 πCmsep2 / T) where Φi is a phase space factor, msep is the mass of the "quark" and "antiquark" created at the splitting point, and C is a dimensionless coefficient close to unity. Based on the spectra of hadrons we observe that their (modified) Regge trajectories are characterized by a negative intercept. This implies a repulsive Casimir force that gives the string a "zero point length". We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K*, ϕ, D, and Ds*, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A = 0.095 ± 0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.

  19. ''Natural'' left-right symmetry

    International Nuclear Information System (INIS)

    Mohapatra, R.N.; Pati, J.C.

    1975-01-01

    It is remarked that left-right symmetry of the starting gauge interactions is retained as a ''natural'' symmetry if it is broken in no way except possibly by mass terms in the Lagrangian. The implications of this result for the unification of coupling constants and for parity nonconservation at low and high energies are stressed

  20. New gauged N = 8, D = 4 supergravities

    International Nuclear Information System (INIS)

    Hull, C M

    2003-01-01

    New gaugings of four-dimensional N = 8 supergravity are constructed, including one which has a Minkowski space vacuum that preserves N = 2 supersymmetry and in which the gauge group is broken to SU(3) x U(1) 2 . Previous gaugings used the form of the ungauged action which is invariant under a rigid SL (8,R) symmetry and promoted a 28-dimensional subgroup (SO(8), SO(p, 8 - p) or the non-semi-simple contraction CSO(p, q, 8 - p - q)) to a local gauge group. Here, a dual form of the ungauged action is used which is invariant under SU*(8) instead of SL (8,R) and new theories are obtained by gauging 28-dimensional subgroups of SU*(8). The gauge groups are non-semi-simple and are different real forms of the CSO(2p, 8 - 2p) groups, denoted as CSO*(2p, 8 - 2p), and the new theories have a rigid SU(2) symmetry. The five-dimensional gauged N = 8 supergravities are dimensionally reduced to D = 4. The D = 5, SO(p, 6 - p) gauge theories reduce, after a duality transformation, to the D = 4, CSO(p, 6 - p, 2) gauging while the SO*(6) gauge theory reduces to the D = 4, CSO*(6, 2) gauge theory. The new theories are related to the old ones via an analytic continuation. The non-semi-simple gaugings can be dualized to forms with different gauge groups

  1. Mixed-symmetry fields in AdS(5), conformal fields, and AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, Moscow 119991 (Russian Federation)

    2015-01-15

    Mixed-symmetry arbitrary spin massive, massless, and self-dual massive fields in AdS(5) are studied. Light-cone gauge actions for such fields leading to decoupled equations of motion are constructed. Light-cone gauge formulation of mixed-symmetry anomalous conformal currents and shadows in 4d flat space is also developed. AdS/CFT correspondence for normalizable and non-normalizable modes of mixed-symmetry AdS fields and the respective boundary mixed-symmetry anomalous conformal currents and shadows is studied. We demonstrate that the light-cone gauge action for massive mixed-symmetry AdS field evaluated on solution of the Dirichlet problem amounts to the light-cone gauge 2-point vertex of mixed-symmetry anomalous shadow. Also we show that UV divergence of the action for mixed-symmetry massive AdS field with some particular value of mass parameter evaluated on the Dirichlet problem amounts to the action of long mixed-symmetry conformal field, while UV divergence of the action for mixed-symmetry massless AdS field evaluated on the Dirichlet problem amounts to the action of short mixed-symmetry conformal field. We speculate on string theory interpretation of a model which involves short low-spin conformal fields and long higher-spin conformal fields.

  2. Construction of U-gauge Green's functions of gauge theories with spontaneous symmetry breaking and Slavnov identities

    International Nuclear Information System (INIS)

    Flume, R.

    1978-01-01

    The unitary (U) gauge Green's functions of the U(1) and SU(2) Higgs-Kibble models are constructed applying a renormalized point transformation and a non-local gauge changing transformation to a manifestly renormalizable (R gauge) version of the respective theory. It is shown that the cancellation mechanism known as 'tree graph unitarity' rendering in tree graph approximation a smooth high energy behaviour of the U gauge Green's functions on mass shell can in a natural way be extended to all orders of perturbation theory. The conditions imposed by this 'generalized tree graph unitarity' on the renormalization programme are shown to be equivalent with the requirement of renormalized Slavnov identities for the R gauge Green's functions

  3. Local discrete symmetries from superstring derived models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1996-10-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations

  4. Introduction to gauge field theory

    International Nuclear Information System (INIS)

    Bailin, David; Love, Alexander

    1986-01-01

    The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)

  5. The gauge hierarchy problem

    International Nuclear Information System (INIS)

    Natale, A.A.; Shellard, R.C.

    1981-01-01

    The problem of gauge hierarchy in Grand Unified Theories using a toy model with O(N) symmetry is discussed. It is shown that there is no escape to the unnatural adjustment of coupling constants, made only after the computation of several orders in perturbation theory is performed. The propositions of some authors on ways to overcome the gauge hierarchy problem are commented. (Author) [pt

  6. Gauge principle, vector-meson dominance, and spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Nambu, Yoichiro

    1989-01-01

    The author concentrates on certain theoretical developments of the late 1950s which are concerned with the meaning and role of symmetries and symmetry breaking, and especially work done in Chicago, and notes his own involvement in this debate. He worked on symmetry-breaking in superconductivity, using a four-fermion interaction model. (UK)

  7. Tree-level amplitudes and dual superconformal symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J M, E-mail: drummond@lapp.in2p3.fr [PH-TH Division, CERN, CH-1211, Geneva 23 (Switzerland); LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux Cedex (France)

    2011-11-11

    We review the structure of gauge theory scattering amplitudes at tree level and describe how a compact expression can be found which encodes all the tree-level amplitudes in the maximally supersymmetric N=4 theory. The expressions for the amplitudes reveal a dual superconformal symmetry. We describe how these ideas can be extended to leading singularities and the loop integrand in the planar theory and discuss the appearance of dual conformal symmetry in higher-dimensional gauge theories. This paper is an invited review for a special issue of Journal of Physics A: Mathematical and Theoretical devoted to 'Scattering amplitudes in gauge theories'. (review)

  8. Dynamic conservation of anomalous current in gauge theories

    International Nuclear Information System (INIS)

    Kulikov, A.V.

    1986-01-01

    The symmetry of classical Lagrangian of gauge fields is shown to lead in quantum theory to certain limitations for the fields interacting with gauge ones. Due to this property, additional terms appear in the effective action in the theories with anomalous currents and its gauge invariance is ensured

  9. Weakly Isolated horizons: first order actions and gauge symmetries

    Science.gov (United States)

    Corichi, Alejandro; Reyes, Juan D.; Vukašinac, Tatjana

    2017-04-01

    The notion of Isolated Horizons has played an important role in gravitational physics, being useful from the characterization of the endpoint of black hole mergers to (quantum) black hole entropy. With an eye towards a canonical formulation we consider general relativity in terms of connection and vierbein variables and their corresponding first order actions. We focus on two main issues: (i) The role of the internal gauge freedom that exists, in the consistent formulations of the action principle, and (ii) the role that a 3  +  1 canonical decomposition has in the allowed internal gauge freedom. More concretely, we clarify in detail how the requirement of having well posed variational principles compatible with general weakly isolated horizons (WIHs) as internal boundaries does lead to a partial gauge fixing in the first order descriptions used previously in the literature. We consider the standard Hilbert-Palatini action together with the Holst extension (needed for a consistent 3  +  1 decomposition), with and without boundary terms at the horizon. We show in detail that, for the complete configuration space—with no gauge fixing—, while the Palatini action is differentiable without additional surface terms at the inner WIH boundary, the more general Holst action is not. The introduction of a surface term at the horizon—that renders the action for asymptotically flat configurations differentiable—does make the Holst action differentiable, but only if one restricts the configuration space and partially reduces the internal Lorentz gauge. For the second issue at hand, we show that upon performing a 3  +  1 decomposition and imposing the time gauge, there is a further gauge reduction of the Hamiltonian theory in terms of Ashtekar-Barbero variables to a U(1)-gauge theory on the horizon. We also extend our analysis to the more restricted boundary conditions of (strongly) isolated horizons as inner boundary. We show that even when the

  10. Weakly Isolated horizons: first order actions and gauge symmetries

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Reyes, Juan D; Vukašinac, Tatjana

    2017-01-01

    The notion of Isolated Horizons has played an important role in gravitational physics, being useful from the characterization of the endpoint of black hole mergers to (quantum) black hole entropy. With an eye towards a canonical formulation we consider general relativity in terms of connection and vierbein variables and their corresponding first order actions. We focus on two main issues: (i) The role of the internal gauge freedom that exists, in the consistent formulations of the action principle, and (ii) the role that a 3  +  1 canonical decomposition has in the allowed internal gauge freedom. More concretely, we clarify in detail how the requirement of having well posed variational principles compatible with general weakly isolated horizons (WIHs) as internal boundaries does lead to a partial gauge fixing in the first order descriptions used previously in the literature. We consider the standard Hilbert–Palatini action together with the Holst extension (needed for a consistent 3  +  1 decomposition), with and without boundary terms at the horizon. We show in detail that, for the complete configuration space—with no gauge fixing—, while the Palatini action is differentiable without additional surface terms at the inner WIH boundary, the more general Holst action is not. The introduction of a surface term at the horizon—that renders the action for asymptotically flat configurations differentiable—does make the Holst action differentiable, but only if one restricts the configuration space and partially reduces the internal Lorentz gauge. For the second issue at hand, we show that upon performing a 3  +  1 decomposition and imposing the time gauge, there is a further gauge reduction of the Hamiltonian theory in terms of Ashtekar–Barbero variables to a U (1)-gauge theory on the horizon. We also extend our analysis to the more restricted boundary conditions of (strongly) isolated horizons as inner boundary. We show that even when

  11. Quantum symmetries in particle interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1983-01-01

    The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields

  12. Hyperunified field theory and gravitational gauge-geometry duality

    International Nuclear Information System (INIS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D h - 1). The dimension D h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)

  13. Hyperunified field theory and gravitational gauge-geometry duality

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue-Liang [International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences (UCAS), Beijing (China)

    2018-01-15

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D{sub h} - 1). The dimension D{sub h} of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)

  14. Hyperunified field theory and gravitational gauge-geometry duality

    Science.gov (United States)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  15. Gaugings at angles from orientifold reductions

    NARCIS (Netherlands)

    Roest, D.

    2009-01-01

    We consider orientifold reductions to N = 4 gauged supergravity in four dimensions. A special feature of this theory is that different factors of the gauge group can have relative angles with respect to the electro-magnetic SL(2) symmetry. These are crucial for moduli stabilization and de Sitter

  16. Meta fluid dynamic as a gauge field theory

    International Nuclear Information System (INIS)

    Mendes, A.C.R.; Neves, C.; Oliveira, W.; Takakura, F.I.

    2003-01-01

    In this paper, the analog of Maxwell electromagnetism for hydrodynamic turbulence, the meta fluid dynamics, is extended in order to reformulate the meta fluid dynamics as a gauge field theory. That analogy opens up the possibility to investigate this theory as a constrained system. Having this possibility in mind, we propose a Lagrangian to describe this new theory of turbulence and, subsequently, analyze it from the symplectic point of view. From this analysis, a hidden gauge symmetry is revealed, providing a clear interpretation and meaning of the physics behind the meta fluid theory. Also, the geometrical interpretation to the gauge symmetries is discussed. (author)

  17. Dual symmetry in gauge theories

    International Nuclear Information System (INIS)

    Koshkarov, A.L.

    1997-01-01

    Continuous dual symmetry in electrodynamics, Yang-Mills theory and gravitation is investigated. Dual invariant which leads to badly nonlinear motion equations is chosen as a Lagrangian of the pure classical dual nonlinear electrodynamics. In a natural manner some dual angle which is determined by the electromagnetic strengths at the point of the time-space appears in the model. Motion equations may well be interpreted as the equations of the standard Maxwell theory with source. Alternative interpretation is the quasi-Maxwell linear theory with magnetic charge. Analogous approach is possible in the Yang-Mills theory. In this case the dual-invariant non-Abelian theory motion equations possess the same instanton solutions as the conventional Yang-Mills equations have. An Abelian two-parameter dual group is found to exist in gravitation. Irreducible representations have been obtained: the curvature tensor was expanded into the sum of twice anti-self-dual and self-dual parts. Gravitational instantons are defined as (real )solutions to the usual duality equations. Central symmetry solutions to these equations are obtained. The twice anti-self-dual part of the curvature tensor may be used for introduction of new gravitational equations generalizing Einstein''s equations. However, the theory obtained reduces to the conformal-flat Nordstroem theory

  18. Spontaneous symmetry breaking in 4-dimensional heterotic string

    International Nuclear Information System (INIS)

    Maharana, J.

    1989-07-01

    The evolution of a 4-dimensional heterotic string is considered in the background of its massless excitations such as graviton, antisymmetric tensor, gauge fields and scalar bosons. The compactified bosonic coordinates are fermionized. The world-sheet supersymmetry requirement enforces Thirring-like four fermion coupling to the background scalar fields. The non-abelian gauge symmetry is exhibited through the Ward identities of the S-matrix elements. The spontaneous symmetry breaking mechanism is exhibited through the broken Ward identities. An effective 4-dimensional action is constructed and the consequence of spontaneous symmetry breaking is envisaged for the effective action. 19 refs

  19. Canonical form of Euler-Lagrange equations and gauge symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, B [Naturwissenschaftlich-Theoretisches Zentrum und Institut fuer Theoretische Physik, Universitaet Leipzig, Leipzig (Germany); Gitman, D M [Institute of Physics, University of Sao Paulo, Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)

    2003-06-13

    The structure of the Euler-Lagrange equations for a general Lagrangian theory (e.g. singular, with higher derivatives) is studied. For these equations we present a reduction procedure to the so-called canonical form. In the canonical form the equations are solved with respect to highest-order derivatives of nongauge coordinates, whereas gauge coordinates and their derivatives enter the right-hand sides of the equations as arbitrary functions of time. The reduction procedure reveals constraints in the Lagrangian formulation of singular systems and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. Moreover, the reduction procedure allows one to reveal the gauge identities between the Euler-Lagrange equations. Thus, a constructive way of finding all the gauge generators within the Lagrangian formulation is presented. At the same time, it is proved that for local theories all the gauge generators are local in time operators.

  20. Relativity and equivalence principles in the gauge theory of gravitation

    International Nuclear Information System (INIS)

    Ivanenko, D.; Sardanashvili, G.

    1981-01-01

    Roles of relativity (RP) and equivalence principles (EP) in the gauge theory of gravity are shown. RP in the gravitational theory in formalism of laminations can be formulated as requirement of covariance of equations relative to the GL + (4, R)(X) gauge group. In such case RP turns out to be identical to the gauge principle in the gauge theory of a group of outer symmetries, and the gravitational theory can be directly constructed as the gauge theory. In general relativity theory the equivalence theory adds RP and is intended for description of transition to a special relativity theory in some system of reference. The approach described takes into account that in the gauge theory, besides gauge fields under conditions of spontaneous symmetry breaking, the Goldstone and Higgs fields can also arise, to which the gravitational metric field is related, what is the sequence of taking account of RP in the gauge theory of gravitation [ru

  1. Gauge fixing problem in the conformal QED

    International Nuclear Information System (INIS)

    Ichinose, Shoichi

    1986-01-01

    The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)

  2. Gauge symmetry of Sine-Gordon model

    International Nuclear Information System (INIS)

    Shen Jian-Min; Li Kang; Sheng Zhengmao.

    1993-03-01

    We have found that the strong coupled interaction of Sine-Gordon model is related to its weak coupled interaction by the su(2) gauge transformation. We therefore develop a semi-classical approach to deal with the infrared divergence in the conventional perturbation theory of the Hamiltonian of the quantum Sine-Gordon model. (author). 10 refs

  3. On discrete symmetries and torsion homology in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Mayrhofer, Christoph [Arnold-Sommerfeld-Center, Ludwig-Maximilians-Universität München,München (Germany); Palti, Eran; Till, Oskar; Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg,Heidelberg (Germany)

    2015-06-04

    We study the relation between discrete gauge symmetries in F-theory compactifications and torsion homology on the associated Calabi-Yau manifold. Focusing on the simplest example of a ℤ{sub 2} symmetry, we show that there are two physically distinct ways that such a discrete gauge symmetry can arise. First, compactifications of M-Theory on Calabi-Yau threefolds which support a genus-one fibration with a bi-section are known to be dual to six-dimensional F-theory vacua with a ℤ{sub 2} gauge symmetry. We show that the resulting five-dimensional theories do not have a ℤ{sub 2} symmetry but that the latter emerges only in the F-theory decompactification limit. Accordingly the genus-one fibred Calabi-Yau manifolds do not exhibit torsion in homology. Associated to the bi-section fibration is a Jacobian fibration which does support a section. Compactifying on these related but distinct varieties does lead to a ℤ{sub 2} symmetry in five dimensions and, accordingly, we find explicitly an associated torsion cycle. We identify the expected particle and membrane system of the discrete symmetry in terms of wrapped M2 and M5 branes and present a field-theory description of the physics for both cases in terms of circle reductions of six-dimensional theories. Our results and methods generalise straightforwardly to larger discrete symmetries and to four-dimensional compactifications.

  4. Gauge Theories in the Twentieth Century

    CERN Document Server

    2001-01-01

    By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories , characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups

  5. Gauge principle for hyper(para) fields

    Energy Technology Data Exchange (ETDEWEB)

    Govorkov, A.B. (Joint Inst. for Nuclear Research, Dubna (USSR))

    1983-04-01

    A special representation for parafields is considered which is based on the use of the Clifford hypernumbers. The principle of gauge invariance under hypercomplex phase transformations of parafields is formulated. A special role of quaternion hyperfields and corresponding Yang-Mills lagrangian with the gauge SO(3)-symmetry is pointed out.

  6. Branes, anti-branes and Brauer algebras in gauge-gravity duality

    International Nuclear Information System (INIS)

    Kimura, Yusuke; Ramgoolam, Sanjaye

    2007-01-01

    We propose gauge theory operators built using a complex Matrix scalar which are dual to brane-anti-brane systems in AdS 5 x S 5 , in the zero coupling limit of the dual Yang-Mills. The branes involved are half-BPS giant gravitons. The proposed operators dual to giant-anti-giant configurations satisfy the appropriate orthogonality properties. Projection operators in Brauer algebras are used to construct the relevant multi-trace Matrix operators. These are related to the 'coupled representations' which appear in 2D Yang-Mills theory. We discuss the implications of these results for the quantum mechanics of a complex matrix model, the counting of non-supersymmetric operators and the physics of brane-anti-brane systems. The stringy exclusion principle known from the properties of half-BPS giant gravitons, has a new incarnation in this context. It involves a qualitative change in the map between brane-anti-brane states to gauge theory operators. In the case of a pair of sphere giant and anti-giant this change occurs when the sum of the magnitudes of their angular momenta reaches N

  7. Constrained gauge fields from spontaneous Lorentz violation

    DEFF Research Database (Denmark)

    Chkareuli, J. L.; Froggatt, C. D.; Jejelava, J. G.

    2008-01-01

    Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AµAµ=M2 (M is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant...... theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory...... couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical Lorentz violation due to the simultaneously generated gauge invariance. Udgivelsesdato: June 11...

  8. On the origin of Poincaré gauge gravity

    Science.gov (United States)

    Chkareuli, J. L.

    2017-06-01

    We argue that the origin of Poincaré gauge gravity (PGG) may be related to spontaneous violation of underlying spacetime symmetries involved and appearance of gauge fields as vector Goldstone bosons. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are assumed to belong, respectively, to the adjoint (Aμij) and vector (eμi) representations of the starting global Lorentz symmetry. We propose that these prototype vector fields are covariantly constrained, Aμij Aijμ = ±MA2 and eμi eiμ = ±Me2 , that causes a spontaneous violation of the accompanying global symmetries (MA,e are their presumed violation scales). It then follows that the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.

  9. On the origin of Poincaré gauge gravity

    Directory of Open Access Journals (Sweden)

    J.L. Chkareuli

    2017-06-01

    Full Text Available We argue that the origin of Poincaré gauge gravity (PGG may be related to spontaneous violation of underlying spacetime symmetries involved and appearance of gauge fields as vector Goldstone bosons. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are assumed to belong, respectively, to the adjoint (Aμij and vector (eμi representations of the starting global Lorentz symmetry. We propose that these prototype vector fields are covariantly constrained, AμijAijμ=±MA2 and eμieiμ=±Me2, that causes a spontaneous violation of the accompanying global symmetries (MA,e are their presumed violation scales. It then follows that the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudoGoldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein–Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.

  10. Gauge symmetry, T-duality and doubled geometry

    International Nuclear Information System (INIS)

    Hull, C.M.

    2007-11-01

    String compactifications with T-duality twists are revisited and the gauge algebra of the dimensionally reduced theories calculated. These reductions can be viewed as string theory on T-fold backgrounds, and can be formulated in a 'doubled space' in which each circle is supplemented by a T-dual circle to construct a geometry which is a doubled torus bundle over a circle. We discuss a conjectured extension to include T-duality on the base circle, and propose the introduction of a dual base coordinate, to give a doubled space which is locally the group manifold of the gauge group. Special cases include those in which the doubled group is a Drinfel'd double. This gives a framework to discuss backgrounds that are not even locally geometric. (orig.)

  11. Family symmetries in F-theory GUTs

    CERN Document Server

    King, S F; Ross, G G

    2010-01-01

    We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices. We consider two possibilities for the suppression of baryon and lepton number violation. The first is based on Flipped SU(5) with gauge group SU(5)\\times U(1)_\\chi \\times SU(4)_{\\perp} in which U(1)_{\\chi} plays the role of a generalised matter parity. We present an example which, after imposing a Z_2 monodromy, has a U(1)_{\\perp}^2 family symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark, charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the symmetry of the underlying compactification manifold and the flux. We construct an example of a model with viable masses and mixing angles based on the gauge group SU(5)\\times SU(5)_{\\perp} with a U(1)_{\\perp}^3 family symmetry after imposing a Z_2 monodromy.

  12. New physics contribution to neutral trilinear gauge boson couplings

    International Nuclear Information System (INIS)

    Dutta, Sukanta; Mamta; Goyal, Ashok

    2009-01-01

    We study the one-loop new physics effects to the CP even triple neutral gauge boson vertices γ * γZ, γ * ZZ, Z * Zγ and Z * ZZ in the context of Little Higgs models. We compute the contribution of the additional fermions in Little Higgs models in the framework of direct product groups where [SU(2) x U(1)] 2 gauge symmetry is embedded in SU(5) global symmetry and also in the framework of the simple group where SU(N) x U(1) gauge symmetry breaks down to SU(2) L x U(1). We calculate the contribution of the fermions to these couplings when T parity is invoked. In addition, we re-examine the MSSM contribution at the chosen point of SPS1a ' and compare with the SM and Little Higgs models. (orig.)

  13. Anomalies of hidden local chiral symmetries in sigma-models and extended supergravities

    International Nuclear Information System (INIS)

    Vecchia, P. di; Ferrara, S.; Girardello, L.

    1985-01-01

    Non-linear sigma-models with hidden gauge symmetries are anomalous, at the quantum level, when coupled to chiral fermions in not anomaly free representations of the hidden chiral symmetry. These considerations generally apply to supersymmetric kaehlerian sigma-models on coset spaces with hidden chiral symmetries as well as to extended supergravities in four dimensions with local SU(N) symmetry. The presence of the anomaly implies that the scenario of dynamical generation of gauge vector bosons has to be reconsidered in these theories. (orig.)

  14. Duffin-Kemmer formulation of gauge theories

    International Nuclear Information System (INIS)

    Okubo, S.; Tosa, Y.

    1979-01-01

    Gauge theories, including the Yang-Mills theory as well as Einstein's general relativity, are reformulated in first-order differential forms. In this generalized Duffin-Kemmer formalism, gauge theories take very simple forms with only cubic interactions. Moreover, every local gauge transformation, e.g., that of Yang and Mills or Einstein, etc., has an essentially similar form. Other examples comprise a gauge theory akin to the Sugawara theory of currents and the nonlinear realization of chiral symmetry. The octonion algebra is found possibly relevant to the discussion of the Yang-Mills theory

  15. Gauge unification of fundamental forces

    International Nuclear Information System (INIS)

    Salam, A.

    1980-02-01

    After having reviewed briefly the last twenty years' progress in the theory of unification, with the twin aspects of development of a gauge theory of basic interactions linked with internal symmetry and the spontaneous breaking of these symmetries, the Nobel prize winners have summarized the present situation and the immediate problems. At the end, an extrapolation of the future is also given

  16. Extended Nambu models: Their relation to gauge theories

    Science.gov (United States)

    Escobar, C. A.; Urrutia, L. F.

    2017-05-01

    Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach.

  17. Sakata Memorial KMI Workshop on Origin of Mass and Strong Coupling Gauge Theories

    CERN Document Server

    ‎Maskawa, Toshihide; Nojiri, Shin'ichi; Tanabashi, Masaharu; Yamawaki, Koichi

    2018-01-01

    This volume contains contributions to the workshop, which was largely focused on the strong coupling gauge theories in search for theories beyond the standard model, particularly, the LHC experiments and lattice studies of conformal fixed point. The main topics include walking technicolor and the role of conformality in view of the 125 GeV Higgs as a light composite Higgs (technidilaton, and other composite Higgs, etc.). Nonperturbative studies like lattice simulations and stringy/holographic approaches are extensively discussed in close relation to the phenomenological studies. After the discovery of 125 GeV Higgs at LHC, the central issue of particle physics is now to reveal the dynamical origin of the Higgs itself. One of the possibilities would be the composite Higgs based on the strong coupling gauge theory in the TeV region, such as the technidilaton predicted in walking technicolor with infrared conformality. The volume contains, among others, many of the latest important reports on walking technicolo...

  18. Continuum gauge theories

    International Nuclear Information System (INIS)

    Stora, R.

    1976-09-01

    The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed

  19. Gauge unification, non-local breaking, open strings

    International Nuclear Information System (INIS)

    Trapletti, M.

    2005-01-01

    The issue of non-local GUT symmetry breaking is addressed in the context of open string model building. We study Z N xZ M ' orbifolds with all the GUT-breaking orbifold elements acting freely, as rotations accompanied by translations in the internal space. We consider open strings quantized on these backgrounds, distinguishing whether the translational action is parallel or perpendicular to the D-branes. GUT breaking is impossible in the purely perpendicular case, non-local GUT breaking is instead allowed in the purely parallel case. In the latter, the scale of breaking is set by the compactification moduli, and there are no fixed points with reduced gauge symmetry, where dangerous explicit GUT-breaking terms could be located. We investigate the mixed parallel+perpendicular case in a Z 2 xZ 2 ' example, having also a simplified field theory realization. It is a new S 1 /Z 2 xZ 2 ' orbifold-GUT model, with bulk gauge symmetry SU(5)xSU(5) broken locally to the Standard Model gauge group. In spite of the locality of the GUT symmetry breaking, there is no localized contribution to the running of the coupling constants, and the unification scale is completely set by the length of S 1

  20. Global Gauge Anomalies in Two-Dimensional Bosonic Sigma Models

    Science.gov (United States)

    Gawȩdzki, Krzysztof; Suszek, Rafał R.; Waldorf, Konrad

    2011-03-01

    We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields, including the ones in non-trivial principal bundles. Obstructions to the existence of equivariant gerbes and their classification are discussed. The choice of different equivariant structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambiguities in the gauged amplitudes. An explicit construction of gerbes equivariant with respect to the adjoint symmetries over compact simply connected simple Lie groups is given.

  1. Gauge symmetry, T-duality and doubled geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hull, C.M. [Imperial College London (United Kingdom). Inst. for Mathematical Sciences]|[Imperial College London (United Kingdom). Blackett Laboratory; Reid-Edwards, R.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2007-11-15

    String compactifications with T-duality twists are revisited and the gauge algebra of the dimensionally reduced theories calculated. These reductions can be viewed as string theory on T-fold backgrounds, and can be formulated in a 'doubled space' in which each circle is supplemented by a T-dual circle to construct a geometry which is a doubled torus bundle over a circle. We discuss a conjectured extension to include T-duality on the base circle, and propose the introduction of a dual base coordinate, to give a doubled space which is locally the group manifold of the gauge group. Special cases include those in which the doubled group is a Drinfel'd double. This gives a framework to discuss backgrounds that are not even locally geometric. (orig.)

  2. QCD gauge symmetries through Faddeev-Jackiw symplectic method

    International Nuclear Information System (INIS)

    Abreu, E.M.C.; Mendes, A.C.R.; Neves, C.; Oliveira, W.; Silva, R.C.N.

    2013-01-01

    Full text: The FJ method is an approach that is geometrically motivated. It is based on the symplectic structure of the phase space. The first-order characteristic allows to obtain the Hamiltonian equations of motion from a variational principle. Its geometric structure of the Hamiltonian phase-space will be carried out directly from the equations of motion via the inverse of the so-called symplectic two-form, if the inverse exists. Few years after its publication, the FJ formalism was extended and through the years it has been applied to different systems. Gauge invariance is one of the most well established concepts in theoretical physics and it is one of the main ingredients in Standard Model theory. However, we can ask if it could have an alternative origin connected to another theory or principle. With this motivation in mind we will show in this paper that gauge invariance could be considered an emergent concept having its origin in the algebraic formalism of a well known method that deals with constrained systems, namely, the Faddeev-Jackiw (FJ) technique. Of course the gauge invariance idea is older than FJ's, but the results obtained here will show that the connection between both will prove that SU(3) and SU(3) X SU(2) X U(1) gauge groups, which are fundamental to important theories like QCD and Standard Model, can be obtained through FJ formalism. (author)

  3. Nonperturbative quantization of nonabelian gauge theories

    International Nuclear Information System (INIS)

    Slavnov, A.

    2011-01-01

    Full text: (author)On the basis of the equivalence theorems proven earlier, a new formulation of nonabelian gauge theories is proposed. Contrary to the usual scheme this formulation allows the quantization of gauge theories beyond perturbation theory. The method is applicable both to the Yang-Mills theory and to nonabelian models with spontaneously broken symmetries

  4. Gauge-symmetry hierarchies revisited

    International Nuclear Information System (INIS)

    Gildener, E.

    1979-01-01

    It was shown by the author in a previous paper that in each order of perturbation theory there is an upper bound on the range of validity of a gauge hierarchy. Thus constructing a large hierarchy requires a fine-tuning of the scalar-field parameters. It was stated that the possibility of an inherent bound on the hierarchy exists, but the question of the actual existence of such a bound was left completely open. Since then several authors have addressed this problem. Some of what the author asserted was misunderstood, and incorrect conclusions have been drawn from recent computations. It has been claimed that the existence of large hierarchies has been demonstrated. It is the purpose of this paper to refute this claim, to help clarify the situation, and to explain why the status of this problem has in fact not really changed in recent years (author)

  5. Degenerate gauge conditions, generalized Gribov's ambiguity and BRST symmetry

    International Nuclear Information System (INIS)

    Fabbrichesi, M.E.

    1987-01-01

    The BFS-BRST approach to gauge theories is considered. It is argued that the BRST-invariant boundary conditions ordinarily used do not maintain the necessary degeneracy in the gauge fixing. As a by-product of this discussion, the existence of a generalized Gribov-like ambiguity is suggested. This ambiguity is however shown to be just a particular BRST transformation

  6. Sub-color and leptoquark-quark symmetry

    International Nuclear Information System (INIS)

    Nakamura, Fumihiko

    1982-01-01

    On the basis of leptoquark-quark symmetry, we propose possible models, in which leptons and gauge bosons are constructed is SU(2) symmetry. In one of the cases, the subcolor is introduced as the quantum number of the leptoquark. Then the possibility of baryon decay is discussed. (author)

  7. Dynamics of stringy congruence in the early universe

    International Nuclear Information System (INIS)

    Cho, Yong Seung; Hong, Soon-Tae

    2011-01-01

    We study twist and shear aspects of the stingy geodesic surface congruence. Under some natural conditions we derive the equations of the twist and shear in terms of the expansion of the Universe. We observe in this higher dimensional cosmology that, as the early universe evolves with expansion rate, the twist of the stringy congruence decreases exponentially and the initial twist value should be large enough to sustain the rotations of the ensuing universe, while the effects of the shear are negligible to produce the isotropic and homogeneous universe. We also investigate the twist and shear of the geodesic surface congruence of the null strings.

  8. New physics contribution to neutral trilinear gauge boson couplings

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Sukanta; Mamta [University of Delhi, SGTB Khalsa College, Delhi (India); Goyal, Ashok [University of Delhi, Department of Physics and Astrophysics, Delhi (India)

    2009-09-15

    We study the one-loop new physics effects to the CP even triple neutral gauge boson vertices {gamma}{sup *}{gamma}Z, {gamma}{sup *}ZZ, Z{sup *}Z{gamma} and Z{sup *}ZZ in the context of Little Higgs models. We compute the contribution of the additional fermions in Little Higgs models in the framework of direct product groups where [SU(2) x U(1)]{sup 2} gauge symmetry is embedded in SU(5) global symmetry and also in the framework of the simple group where SU(N) x U(1) gauge symmetry breaks down to SU(2){sub L} x U(1). We calculate the contribution of the fermions to these couplings when T parity is invoked. In addition, we re-examine the MSSM contribution at the chosen point of SPS1a ' and compare with the SM and Little Higgs models. (orig.)

  9. SU(N) chiral gauge theories on the lattice

    International Nuclear Information System (INIS)

    Golterman, Maarten; Shamir, Yigal

    2004-01-01

    We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to the non-Abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of critical point which is only accessible through gauge fixing, as we have shown before in the Abelian case. The new ingredient allowing us to deal with the non-Abelian case as well is the use of equivariant gauge fixing, which handles Gribov copies correctly, and avoids Neuberger's no-go theorem. We use this method in order to gauge fix the non-Abelian group (which we will take to be SU(N)) down to its maximal Abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix also the remaining Abelian gauge symmetry. This modifies the equivariant Becchi-Rouet-Stora-Tyutin (BRST) identities, but their use in proving unitarity remains intact, as we show in perturbation theory. On the lattice, equivariant BRST symmetry as well as the Abelian gauge invariance are broken, and a judiciously chosen irrelevant term must be added to the lattice gauge-fixing action in order to have access to the desired critical point in the phase diagram. We argue that gauge invariance is restored in the continuum limit by adjusting a finite number of counter terms. We emphasize that weak-coupling perturbation theory applies at the critical point which defines the continuum limit of our lattice chiral gauge theory

  10. Fluctuations around classical solutions for gauge theories in Lagrangian and Hamiltonian approach

    International Nuclear Information System (INIS)

    Miskovic, Olivera; Pons, Josep M

    2006-01-01

    We analyse the dynamics of gauge theories and constrained systems in general under small perturbations around a classical solution in both Lagrangian and Hamiltonian formalisms. We prove that a fluctuations theory, described by a quadratic Lagrangian, has the same constraint structure and number of physical degrees of freedom as the original non-perturbed theory, assuming the non-degenerate solution has been chosen. We show that the number of Noether gauge symmetries is the same in both theories, but that the gauge algebra in the fluctuations theory becomes Abelianized. We also show that the fluctuations theory inherits all functionally independent rigid symmetries from the original theory and that these symmetries are generated by linear or quadratic generators according to whether the original symmetry is preserved by the background or is broken by it. We illustrate these results with examples

  11. Dark matter model with non-Abelian gauge symmetry

    International Nuclear Information System (INIS)

    Zhang Hao; Li Chongsheng; Cao Qinghong; Li Zhao

    2010-01-01

    We propose a dark-matter model in which the dark sector is gauged under a new SU(2) group. The dark sector consists of SU(2) dark gauge fields, two triplet dark Higgs fields, and two dark fermion doublets (dark-matter candidates in this model). The dark sector interacts with the standard model sector through kinetic and mass mixing operators. The model explains both PAMELA and Fermi LAT data very well and also satisfies constraints from both the dark-matter relic density and standard model precision observables. The phenomenology of the model at the LHC is also explored.

  12. Superfield formulation of stochastic quantization for gauge theories

    International Nuclear Information System (INIS)

    Egoryan, Ed.Sh.; Manvelian, R.P.

    1990-01-01

    Using gauge symmetry localization relative to superspace coordinates an extended stochastic action for the Yang-Mills field possessing supergauge invariance is obtained. This allows to formulate correctly a mechanism of stochastic reduction for gauge theories beyond the framework of perturbation theory. 12 refs

  13. Finite field-dependent symmetries in perturbative quantum gravity

    International Nuclear Information System (INIS)

    Upadhyay, Sudhaker

    2014-01-01

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also

  14. Discrete symmetries and coset space dimensional reduction

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1989-01-01

    We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)

  15. Derivation of the Finslerian gauge field equations

    International Nuclear Information System (INIS)

    Asanov, G.S.

    1984-01-01

    As is well known the simplest way of formulating the equations for the Yang-Mills gauge fields consists in taking the Lagrangian to be quadratic in the gauge tensor, whereas the application of such an approach to the gravitational field yields equations which are of essentially more complicated structure than the Einstein equations. On the other hand, in the gravitational field theory the Lagrangian can be constructed to be of forms which may be both quadratic and linear in the curvature tensor, whereas the latter possibility is absent in the current gauge field theories. In previous work it has been shown that the Finslerian structure of the space-time gives rise to certain gauge fields provided that the internal symmetries may be regarded as symmetries of a three-dimensional Riemannian space. Continuing this work we show that appropriate equations for these gauge fields can be formulated in both ways, namely on the basis of the quadratic Lagrangian or, if a relevant generalization of the Palatini method is applied, on the basis of a Lagrangian linear in the gauge field strength tensor. The latter possibility proves to result in equations which are similar to the Einstein equations, a distinction being that the Finslerian Cartan curvature tensor rather then the Riemann curvature tensor enters the equations. (author)

  16. Problem of ''global color'' in gauge theories

    International Nuclear Information System (INIS)

    Horvathy, P.A.; Rawnsley, J.H.; UER de Mathematique, Universite de Provence, Marseille, France)

    1986-01-01

    The problem of ''global color'' (which arose recently in monopole theory) is generalized to arbitrary gauge theories: a subgroup K of the ''unbroken'' gauge group G is implementable iff the gauge bundle reduces to the centralizer of K in G. Equivalent implementations correspond to equivalent reductions. Such an action is an internal symmetry for a given configuration iff the Yang-Mills field reduces also. The case of monopoles is worked out in detail

  17. M-theory and U-duality on Td with gauge backgrounds

    International Nuclear Information System (INIS)

    Obers, N.A.; Pioline, B.; Rabinovici, E.

    1998-01-01

    The full U-duality symmetry of toroidally compactified M-theory can only be displayed by allowing non-rectangular tori with expectation values of the gauge fields. We construct an E d (Z) U-duality invariant mass formula incorporating non-vanishing gauge backgrounds of the M-theory three-form C. We interpret this mass formula from the point of view of the matrix gauge theory, and identify the coupling of the three-form to the gauge theory as a topological theta term, in agreement with earlier conjectures. We give a derivation of this fact from D-brane analysis, and obtain the matrix gauge theory description of other gauge backgrounds allowed by the discrete light-cone quantization. We further show that the conjectured extended U-duality symmetry of matrix theory on T d in the discrete light-cone quantization has an implementation as an action of E d+1 (Z) on the BPS spectrum. Some implications for the proper interpretation of the rank N of the matrix gauge theory are discussed. (orig.)

  18. Direct gauging of the Poincare group V. Group scaling, classical gauge theory, and gravitational corrections

    International Nuclear Information System (INIS)

    Edelen, D.G.B.

    1986-01-01

    Homogeneous scaling of the group space of the Poincare group, P 10 , is shown to induce scalings of all geometric quantities associated with the local action of P 10 . The field equations for both the translation and the Lorentz rotation compensating fields reduce to O(1) equations if the scaling parameter is set equal to the general relativistic gravitational coupling constant 8πGc -4 . Standard expansions of all field variables in power series in the scaling parameter give the following results. The zeroth-order field equations are exactly the classical field equations for matter fields on Minkowski space subject to local action of an internal symmetry group (classical gauge theory). The expansion process is shown to break P 10 -gauge covariance of the theory, and hence solving the zeroth-order field equations imposes an implicit system of P 10 -gauge conditions. Explicit systems of field equations are obtained for the first- and higher-order approximations. The first-order translation field equations are driven by the momentum-energy tensor of the matter and internal compensating fields in the zeroth order (classical gauge theory), while the first-order Lorentz rotation field equations are driven by the spin currents of the same classical gauge theory. Field equations for the first-order gravitational corrections to the matter fields and the gauge fields for the internal symmetry group are obtained. Direct Poincare gauge theory is thus shown to satisfy the first two of the three-part acid test of any unified field theory. Satisfaction of the third part of the test, at least for finite neighborhoods, seems probable

  19. Sequential flavor symmetry breaking

    International Nuclear Information System (INIS)

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-01-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  20. Sequential flavor symmetry breaking

    Science.gov (United States)

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-08-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  1. Free Abelian 2-form gauge theory: BRST approach

    International Nuclear Information System (INIS)

    Malik, R.P.

    2008-01-01

    We discuss various symmetry properties of the Lagrangian density of a four- (3+1)-dimensional (4D) free Abelian 2-form gauge theory within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism. The present free Abelian gauge theory is endowed with a Curci-Ferrari type condition, which happens to be a key signature of the 4D non-Abelian 1-form gauge theory. In fact, it is due to the above condition that the nilpotent BRST and anti-BRST symmetries of our present theory are found to be absolutely anticommuting in nature. For the present 2-form theory, we discuss the BRST, anti-BRST, ghost and discrete symmetry properties of the Lagrangian densities and derive the corresponding conserved charges. The algebraic structure, obeyed by the above conserved charges, is deduced and the constraint analysis is performed with the help of physicality criteria, where the conserved and nilpotent (anti-)BRST charges play completely independent roles. These physicality conditions lead to the derivation of the above Curci-Ferrari type restriction, within the framework of the BRST formalism, from the constraint analysis. (orig.)

  2. Introduction to gauge theories of the strong, weak, and electromagnetic interactions

    International Nuclear Information System (INIS)

    Quigg, C.

    1980-07-01

    The plan of these notes is as follows. Chapter 1 is devoted to a brief evocative review of current beliefs and prejudices that form the context for the discussion to follow. The idea of Gauge Invariance is introduced in Chapter 2, and the connection between conservation laws and symmetries of the Lagrangian is recalled. Non-Abelian gauge field theories are constructed in Chapter 3, by analogy with the familiar case of electromagnetism. The Yang-Mills theory based upon isospin symmetry is constructed explicitly, and the generalization is made to other gauge groups. Chapter 4 is concerned with spontaneous symmetry breaking and the phenomena that occur in the presence or absence of local gauge symmetries. The existence of massless scalar fields (Goldstone particles) and their metamorphosis by means of the Higgs mechanism are illustrated by simple examples. The Weinberg-Salam model is presented in Chapter 5, and a brief resume of applications to experiment is given. Quantum Chromodynamics, the gauge theory of colored quarks and gluons, is developed in Chapter 6. Asymptotic freedom is derived schematically, and a few simple applications of perturbative QCD ae exhibited. Details of the conjectured confinement mechanism are omitted. The strategy of grand unified theories of the strong, weak, and electromagnetic interactions is laid out in Chapter 7. Some properties and consequences of the minimal unifying group SU(5) are presented, and the gauge hierarchy problem is introduced in passing. The final chapter contains an essay on the current outlook: aspirations, unanswered questions, and bold scenarios

  3. Gauge invariance and the effective potential: the Abelian Higgs model

    International Nuclear Information System (INIS)

    Ramaswamy, S.

    1995-01-01

    The gauge invariance of the effective potential in the Abelian Higgs model is examined. The Nielsen identities, which ensure gauge independence of the effective potential and other physical quantities, are shown to hold at finite temperature and in the presence of the chemical potential. It is also shown that, as a consequence of the Nielsen identities, the standard order parameter for symmetry breaking, namely the scalar field vacuum expectation value, has a non-zero parametric dependence on the gauge choice employed. These are then verified to one loop at finite temperature. High-temperature symmetry breaking is considered. In the leading high-temperature limit, the potential agrees with the previous calculations. (orig.)

  4. Chiral-symmetry restoration in baryon-rich environments

    International Nuclear Information System (INIS)

    Kogut, J.; Matsuoka, H.; Stone, M.; Wyld, H.W.; Shenker, S.; Shigemitsu, J.; Sinclair, D.K.

    1983-04-01

    Chiral symmetry restoration in an environment rich in baryons is studied by computer simulation methods in SU(2) and SU(3) gauge theories in the quenched approximation. The basic theory of symmetry restoration as a function of chemical potential is illustrated and the implementation of the ideas on a lattice is made explicit. A simple mean field model is presented to guide one's expectations. The second order conjugate-gradient iterative method and the pseudo-fermion Monte Carlo procedure are convergent methods of calculating the fermion propagator in an environment rich in baryons. Computer simulations of SU(3) gauge theory show an abrupt chiral symmetry restoring transition and the critical chemical potential and induced baryon density are estimated crudely. A smoother transition is observed for the color group SU(2)

  5. Lattice gauge theory approach to quantum chromodynamics

    International Nuclear Information System (INIS)

    Kogut, J.B.

    1983-01-01

    The author reviews in a pedagogical fashion some of the recent developments in lattice quantum chromodynamics. This review emphasizes explicit examples and illustrations rather than general proofs and analyses. It begins with a discussion of the heavy-quark potential in continuum quantum chromodynamics. Asymptotic freedom and renormalization-group improved perturbation theory are discussed. A simple dielectric model of confinement is considered as an intuitive guide to the vacuum of non-Abelian gauge theories. Next, the Euclidean form of lattice gauge theory is introduced, and an assortment of calculational methods are reviewed. These include high-temperature expansions, duality, Monte Carlo computer simulations, and weak coupling expansions. A #betta#-parameter calculation for asymptotically free-spin models is presented. The Hamiltonian formulation of lattice gauge theory is presented and is illustrated in the context of flux tube dynamics. Roughening transitions, Casimir forces, and the restoration of rotational symmetry are discussed. Mechanisms of confinement in lattice theories are illustrated in the two-dimensional electrodynamics of the planar model and the U(1) gauge theory in four dimensions. Generalized actions for SU(2) gauge theories and the relevance of monopoles and strings to crossover phenomena are considered. A brief discussion of the continuity of fields and topologial charge in asymptotically free lattice models is presented. The final major topic of this review concerns lattice fermions. The species doubling problem and its relation to chiral symmetry are illustrated. Staggered Euclidean fermion methods are discussed in detail, with an emphasis on species counting, remnants of chiral symmetry, Block spin variables, and the axial anomaly. Numerical methods for including fermions in computer simulations are considered. Jacobi and Gauss-Siedel inversion methods to obtain the fermion propagator in a background gauge field are reviewed

  6. Gauge mediated mini-split

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-03-15

    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  7. Spontaneous compactification of D=10 Maxwell-Einstein theory leads to SU(3) X SU(2) X U(1) gauge symmetry

    International Nuclear Information System (INIS)

    Watamura, S.

    1983-01-01

    Solutions of ten-dimensional Maxwell-Einstein theory and a bosonic part of N = 2, D = 10 supergravity theory are examined. It is shown that there is a solution for which six-dimensional internal space is compactified into CP 2 x S 2 . The gauge symmetry of the effective four-dimensional theory is SU(3) x SU(2) x U(1). The introduction of fermions is also considered. The requirement of consistency in introducing a spinsup(C) structure on CP 2 results in a U(1) charge quantization condition. (orig.)

  8. Gauge theory and renormalization

    NARCIS (Netherlands)

    Hooft, G. 't

    1996-01-01

    Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in

  9. World-sheet gauge fields in superstrings

    International Nuclear Information System (INIS)

    Porrati, M.; Tomboulis, E.T.

    1989-01-01

    We investigate the introduction of world-sheet 2-dimensional gauge fields in a manner consistent with world-sheet supersymmetry. We obtain the effective string action resulting from the exact integration over the world-sheet gauge fields to show that it generally describes string models with spontaneous breaking of gauge symmetries with continuous breaking parameters. We examine the question of spacetime supersymmetry spontaneous breaking, and show that breaking with continuous, in particular arbitrarily small breaking parameters does not occur; only breaking for discrete values of parameters is possible. (orig.)

  10. Gauge field theories

    International Nuclear Information System (INIS)

    Pokorski, S.

    1987-01-01

    Quantum field theory forms the present theoretical framework for the understanding of the fundamental interactions of particle physics. This book examines gauge theories and their symmetries with an emphasis on their physical and technical aspects. The author discusses field-theoretical techniques and encourages the reader to perform many of the calculations presented. This book includes a brief introduction to perturbation theory, the renormalization programme, and the use of the renormalization group equation. Several topics of current research interest are covered, including chiral symmetry and its breaking, anomalies, and low energy effective lagrangians and some basics of supersymmetry

  11. Local U(2,2) Symmetry in Relativistic Quantum Mechanics

    OpenAIRE

    Finster, Felix

    1997-01-01

    Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.

  12. Local U(2,2) symmetry in relativistic quantum mechanics

    Science.gov (United States)

    Finster, Felix

    1998-12-01

    Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.

  13. The weak-scale hierarchy and discrete symmetries

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Matsuoka, Takeo; Hattori, Chuichiro; Matsuda, Masahisa; Mochinaga, Daizo.

    1996-01-01

    In the underlying Planck scale theory, we introduce a certain type of discrete symmetry, which potentially brings the stability of the weak-scale hierarchy under control. Under the discrete symmetry the μ-problem and the tadpole problem can be solved simultaneously without relying on some fine-tuning of parameters. Instead, it is required that doublet Higgs and color-triplet Higgs fields reside in different irreducible representations of the gauge symmetry group at the Planck scale and that they have distinct charges of the discrete symmetry group. (author)

  14. Dynamical Messengers for Gauge Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2011-08-17

    We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.

  15. Algebraic computing program for studying the gauge theory

    International Nuclear Information System (INIS)

    Zet, G.

    2005-01-01

    An algebraic computing program running on Maple V platform is presented. The program is devoted to the study of the gauge theory with an internal Lie group as local symmetry. The physical quantities (gauge potentials, strength tensors, dual tensors etc.) are introduced either as equations in terms of previous defined quantities (tensors), or by manual entry of the component values. The components of the strength tensor and of its dual are obtained with respect to a given metric of the space-time used for describing the gauge theory. We choose a Minkowski space-time endowed with spherical symmetry and give some example of algebraic computing that are adequate for studying electroweak or gravitational interactions. The field equations are also obtained and their solutions are determined using the DEtools facilities of the Maple V computing program. (author)

  16. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    Science.gov (United States)

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  17. Sp(2) covariant quantisation of general gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Bello, J L

    1994-11-01

    The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M{sub s}, G{sub s}) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs.

  18. Sp(2) covariant quantisation of general gauge theories

    International Nuclear Information System (INIS)

    Vazquez-Bello, J.L.

    1994-11-01

    The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M s , G s ) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs

  19. Investigations in gauge theories, topological solitons and string theories

    International Nuclear Information System (INIS)

    1993-01-01

    This is the Final Report on a supported research project on theoretical particle physics entitled ''Investigations in Gauge Theories, Topological Solitons and String Theories.'' The major theme of particle theory pursued has been within the rubric of the standard model, particularly on the interplay between symmetries and dynamics. Thus, the research has been carried out primarily in the context of gauge with or without chiral fermions and in effective chiral lagrangian field theories. The topics studied include the physical implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in a wide range of theories. A wide range of techniques of group theory, differential geometry and function theory have been applied to probe topological and conformal properties of quantum field theories in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD,the phenomenology of a possibly strongly interacting Higgs sector within the minimal standard model, and the relevance of solitonic ideas to non-perturbative phenomena at SSC energies

  20. Electroweak symmetry breaking: Unitarity, dynamics, and experimental prospects

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1988-01-01

    A review of what is known about the unexplained mechanism that breaks the electroweak symmetry and thereby gives mass to the W and Z gauge bosons while leaving the photon massless is given. Symmetry, unitarity, technicolor, supersymmetry, higgs sector dynamics, and experimental status and prospects are discussed

  1. Ue (1)-covariant Rξ gauge for the two-Higgs doublet model

    Indian Academy of Sciences (India)

    Becchi–Rouet–Stora–Tyutin) symmetry is introduced. This gauge allows one to remove a significant number of nonphysical vertices appearing in conventional linear gauges, which greatly simplifies the loop calculations, since the resultant ...

  2. Exceptional confinement in G(2) gauge theory

    International Nuclear Information System (INIS)

    Holland, K.; Minkowski, P.; Pepe, M.; Wiese, U.-J.

    2003-01-01

    We study theories with the exceptional gauge group G(2). The 14 adjoint 'gluons' of a G(2) gauge theory transform as {3}, {3-bar} and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a 'quark' in the {7} representation of G(2) can be screened by 'gluons'. As a result, in G(2) Yang-Mills theory the string between a pair of static 'quarks' can break. In G(2) QCD there is a hybrid consisting of one 'quark' and three 'gluons'. In supersymmetric G(2) Yang-Mills theory with a {14} Majorana 'gluino' the chiral symmetry is Z(4) χ . Chiral symmetry breaking gives rise to distinct confined phases separated by confined-confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, where dynamical quarks break the Z(3) symmetry explicitly, G(2) gauge theories confine even without a center. However, there is not necessarily a deconfinement phase transition at finite temperature

  3. Spontaneously broken abelian gauge invariant supersymmetric model

    International Nuclear Information System (INIS)

    Mainland, G.B.; Tanaka, K.

    A model is presented that is invariant under an Abelian gauge transformation and a modified supersymmetry transformation. This model is broken spontaneously, and the interplay between symmetry breaking, Goldstone particles, and mass breaking is studied. In the present model, spontaneously breaking the Abelian symmetry of the vacuum restores the invariance of the vacuum under a modified supersymmetry transformation. (U.S.)

  4. Constrained Gauge Fields from Spontaneous Lorentz Violation

    CERN Document Server

    Chkareuli, J L; Jejelava, J G; Nielsen, H B

    2008-01-01

    Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type $A_{\\mu}^{2}=M^{2}$ ($M$ is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and $CPT$) violating couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical ...

  5. Anomalous U(1)A and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Gogoladze, I.; Tsulaya, M.

    2000-01-01

    A new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model is suggested. Our suggestion is based on the presence of an anomalous U(1) A gauge symmetry, which naturally arises in the four-dimensional superstring theory, and heavily relies on the corresponding Fayet-Illiopoulos ξ-term

  6. Natural gauge hierarchy in SO(10)

    International Nuclear Information System (INIS)

    Babu, K.S.; Barr, S.M.

    1994-01-01

    It is shown that a natural gauge hierarchy and doublet-triplet splitting can be achieved in SO(10) using the Dimopoulos-Wilczek mechanism. Artificial cancellations (fine-tuning) and arbitrary forms of the superpotential are avoided, the superpotential being the most general compatible with a symmetry. It is shown by example that the Dimopoulos-Wilczek mechanism can be protected against the effects of higher-dimension operators possibly induced by Planck-scale physics. Natural implementation of the mechanisms leads to an automatic Peccei-Quinn symmetry. The same local symmetries that would protect the gauge hierarchy against Planck-scale effects tend to protect the axion also. How realistic quark and lepton masses might arise in this framework is discussed. It is shown how the theory may remain perturbative up to the Planck scale. It is also argued that ''weak suppression'' of proton decay can be implemented more economically than can ''strong suppression,'' offering some grounds to hope [in the context of SO(10)] that proton decay could be seen at SuperKamiokande

  7. Dynamic spontaneous breaking of gauge invariance in asymptotically free theories. [Mechanism mass, group renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Ansel' m, A A; D' yakonov, D I [AN SSSR, Leningrad. Inst. Yadernoj Fiziki

    1975-01-01

    The mechanism of dynamic spontaneous breaking of the Coleman-Weinberg gauge invariance is discussed in which scalar fields assume nonzero mean values owing to quantum effects in higher orders of the perturbation theory. Group renormalization methods are used to study scalar electrodynamics and gauge theories similar to that of Yang and Mills; for these gauge theories it is established that by choosing proper constants it is possible to combine the acquisition of a mass by particles, owing to a dynamic violation of symmetry, with the asymptotic freedom of the theory. The symmetry violation is found to be closely related to infrared poles observed in effective charge for asymptotically free theories. The emerging masses of particles automatically cover these poles. It is proved that physical results due to symmetry violation do not depend, at least in the first non-trivial order of the perturbation theory, on the initial gauging of vector fields.

  8. The potentials of the gauged N=8 supergravity theories

    International Nuclear Information System (INIS)

    Hull, C.M.

    1985-01-01

    The potentials of the SO(p,q) gaugings of N=8 supergravity are investigated for critical points. The SO(7,1) gauging has no G 2 -invariant critical points, the SO(6,2) theory has no SU(3) invariant critical points and the SO(5,3) gauging has only one SO(5)-invariant critical point, with positive cosmological constant, SO(5) x SO(3) symmetry and no supersymmetry. (orig.)

  9. Parity anomalies in gauge theories in 2 + 1 dimensions

    International Nuclear Information System (INIS)

    Rao, S.; Yahalom, R.

    1986-01-01

    We show that the introduction of massless fermions in an abelian gauge theory in 2+1 dimensions does not lead to any parity anomaly despite a non-commutativity of limits in the structure function of the odd part of the vacuum polarization tensor. However, parity anomaly does exist in non-abelian theories due to a conflict between gauge invariance under large gauge transformations and the parity symmetry. 6 refs

  10. Majorana dark matter with B+L gauge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Wei [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts-Amherst,Amherst, MA 01003 United States (United States); Center for Advanced Quantum Studies,Department of Physics, Beijing Normal University,Beijing, 100875 (China); Guo, Huai-Ke [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts-Amherst,Amherst, MA 01003 United States (United States); Zhang, Yongchao [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium)

    2017-04-07

    We present a new model that extends the Standard Model (SM) with the local B+L symmetry, and point out that the lightest new fermion ζ, introduced to cancel anomalies and stabilized automatically by the B+L symmetry, can serve as the cold dark matter candidate. We study constraints on the model from Higgs measurements, electroweak precision measurements as well as the relic density and direct detections of the dark matter. Numerical results reveal that the pseudo-vector coupling of ζ with Z and the Yukawa coupling with the SM Higgs are highly constrained by the latest results of LUX, while there are viable parameter space that could satisfy all the constraints and give testable predictions.

  11. Factorization in QCD in Feynman gauge

    International Nuclear Information System (INIS)

    Tucci, R.R.

    1985-01-01

    We present a mass divergence power counting technique for QCD in the Feynman gauge. For the process γ/sup */ → qq, we find the leading regions of integration and show that single diagrams are at worst logarithmically divergent. Using the Weyl representation facilities the γ matrix manipulations necessary for power counting and adds much physical insight. We prove Ward type identities which are needed in the proof of factorization of the Drill Yan process. Previous treatments prove them only for an axial gauge, and the proofs are diagrammatic in nature. We, on the other hand, establish the identities for the Feynman gauge and through symmetry considerations at the Lagrangian level. The strategy is to first derive exact results in a background field gauge and then to show that to leading order in the mass divergences the background field gauge results can be used in the Feynman gauge

  12. Symmetry, structure, and spacetime

    CERN Document Server

    Rickles, Dean

    2007-01-01

    In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational

  13. Second order phase transition in thermodynamic geometry and holographic superconductivity in low-energy stringy black holes

    Science.gov (United States)

    Rizwan, C. L. Ahmed; Vaid, Deepak

    2018-05-01

    We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.

  14. Gauge fields in nonlinear group realizations involving two-dimensional space-time symmetry

    International Nuclear Information System (INIS)

    Machacek, M.E.; McCliment, E.R.

    1975-01-01

    It is shown that gauge fields may be consistently introduced into a model Lagrangian previously considered by the authors. The model is suggested by the spontaneous breaking of a Lorentz-type group into a quasiphysical two-dimensional space-time and one internal degree of freedom, loosely associated with charge. The introduction of zero-mass gauge fields makes possible the absorption via the Higgs mechanism of the Goldstone fields that appear in the model despite the fact that the Goldstone fields do not transform as scalars. Specifically, gauge invariance of the Yang-Mills type requires the introduction of two sets of massless gauge fields. The transformation properties in two-dimensional space-time suggest that one set is analogous to a charge doublet that behaves like a second-rank tensor in real four-dimensional space time. The other set suggests a spin-one-like charge triplet. Via the Higgs mechanism, the first set absorbs the Goldstone fields and acquires mass. The second set remains massless. If massive gauge fields are introduced, the associated currents are not conserved and the Higgs mechanism is no longer fully operative. The Goldstone fields are not eliminated, but coupling between the Goldstone fields and the gauge fields does shift the mass of the antisymmetric second-rank-tensor gauge field components

  15. Higgs Phase in a Gauge U(1 Non-Linear CP1-Model. Two Species of BPS Vortices and Their Zero Modes

    Directory of Open Access Journals (Sweden)

    Alberto Alonso-Izquierdo

    2016-09-01

    Full Text Available In this paper, zero modes of fluctuation are dissected around the two species of BPS vortices existing in the critical Higgs phase, where the scalar and vector meson masses are equal, of a gauged U ( 1 nonlinear CP 1 -model. If 2 π n , n ∈ Z , is the quantized magnetic flux of the two species of BPS vortex solutions, 2 n linearly-independent vortex zero modes for each species are found and described. The existence of two species of moduli spaces of dimension 2 n of these stringy topological defects is thus locally shown.

  16. Anomalous U(1)A and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Gogoladze, Ilia

    2000-10-01

    We suggest a mechanism for electroweak symmetry breaking in the Supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U(1) A gauge symmetry, which naturally arises in the four dimensional superstring theory, and heavily relies on the value of the corresponding Fayet-Illiopoulos ξ-term. (author)

  17. Higgs as a pseudo-Goldstone boson, the mu problem and gauge-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Kaminska, Anna; Lavignac, Stephane

    2011-01-01

    We study the interplay between the spontaneous breaking of a global symmetry of the Higgs sector and gauge-mediated supersymmetry breaking, in the framework of a supersymmetric model with global SU(3) symmetry. In addition to solving the supersymmetric flavor problem and alleviating the little hierarchy problem, this scenario automatically triggers the breaking of the global symmetry and provides an elegant solution to the μ/Bμ problem of gauge mediation. We study in detail the processes of global symmetry and electroweak symmetry breaking, including the contributions of the top/stop and gauge-Higgs sectors to the one-loop effective potential of the pseudo-Goldstone Higgs boson. While the joint effect of supersymmetry and of the global symmetry allows in principle the electroweak symmetry to be broken with little fine-tuning, the simplest version of the model fails to bring the Higgs mass above the LEP bound due to a suppressed tree-level quartic coupling. To cure this problem, we consider the possibility of additional SU(3)-breaking contributions to the Higgs potential, which results in a moderate fine-tuning. The model predicts a rather low messenger scale, a small tan β value, a light Higgs boson with Standard Model-like properties, and heavy higgsinos. (orig.)

  18. Gauge hierarchy and long range forces

    International Nuclear Information System (INIS)

    Pal, P.B.; Keung, Wai-Yee; Chang, D.

    1990-01-01

    With the aid of simple examples, we show how a long range attractive force can arise in a gauge theory with a hierarchy. The force is due to the exchange of a Higgs boson whose mass and matter couplings are both naturally suppressed by the hierarchical mass ratio. Such bosons appear if there is an accidental global symmetry in the low-energy renormalizable Lagrangian after the high energy symmetry breaking. 6 refs

  19. Gauge theory for finite-dimensional dynamical systems

    International Nuclear Information System (INIS)

    Gurfil, Pini

    2007-01-01

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory

  20. The arithmetic of elliptic fibrations in gauge theories on a circle

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Thomas W. [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 Munich (Germany); Institute for Theoretical Physics,Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Center for Extreme Matter and Emergent Phenomena,Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Kapfer, Andreas [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 Munich (Germany); Klevers, Denis [Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland)

    2016-06-20

    The geometry of elliptic fibrations translates to the physics of gauge theories in F-theory. We systematically develop the dictionary between arithmetic structures on elliptic curves as well as desingularized elliptic fibrations and symmetries of gauge theories on a circle. We show that the Mordell-Weil group law matches integral large gauge transformations around the circle in Abelian gauge theories and explain the significance of Mordell-Weil torsion in this context. We also use Higgs transitions and circle large gauge transformations to introduce a group law for genus-one fibrations with multi-sections. Finally, we introduce a novel arithmetic structure on elliptic fibrations with non-Abelian gauge groups in F-theory. It is defined on the set of exceptional divisors resolving the singularities and divisor classes of sections of the fibration. This group structure can be matched with certain integral non-Abelian large gauge transformations around the circle when studying the theory on the lower-dimensional Coulomb branch. Its existence is required by consistency with Higgs transitions from the non-Abelian theory to its Abelian phases in which it becomes the Mordell-Weil group. This hints towards the existence of a new underlying geometric symmetry.

  1. The arithmetic of elliptic fibrations in gauge theories on a circle

    Science.gov (United States)

    Grimm, Thomas W.; Kapfer, Andreas; Klevers, Denis

    2016-06-01

    The geometry of elliptic fibrations translates to the physics of gauge theories in F-theory. We systematically develop the dictionary between arithmetic structures on elliptic curves as well as desingularized elliptic fibrations and symmetries of gauge theories on a circle. We show that the Mordell-Weil group law matches integral large gauge transformations around the circle in Abelian gauge theories and explain the significance of Mordell-Weil torsion in this context. We also use Higgs transitions and circle large gauge transformations to introduce a group law for genus-one fibrations with multi-sections. Finally, we introduce a novel arithmetic structure on elliptic fibrations with non-Abelian gauge groups in F-theory. It is defined on the set of exceptional divisors resolving the singularities and divisor classes of sections of the fibration. This group structure can be matched with certain integral non-Abelian large gauge transformations around the circle when studying the theory on the lower-dimensional Coulomb branch. Its existence is required by consistency with Higgs transitions from the non-Abelian theory to its Abelian phases in which it becomes the Mordell-Weil group. This hints towards the existence of a new underlying geometric symmetry.

  2. The arithmetic of elliptic fibrations in gauge theories on a circle

    International Nuclear Information System (INIS)

    Grimm, Thomas W.; Kapfer, Andreas; Klevers, Denis

    2016-01-01

    The geometry of elliptic fibrations translates to the physics of gauge theories in F-theory. We systematically develop the dictionary between arithmetic structures on elliptic curves as well as desingularized elliptic fibrations and symmetries of gauge theories on a circle. We show that the Mordell-Weil group law matches integral large gauge transformations around the circle in Abelian gauge theories and explain the significance of Mordell-Weil torsion in this context. We also use Higgs transitions and circle large gauge transformations to introduce a group law for genus-one fibrations with multi-sections. Finally, we introduce a novel arithmetic structure on elliptic fibrations with non-Abelian gauge groups in F-theory. It is defined on the set of exceptional divisors resolving the singularities and divisor classes of sections of the fibration. This group structure can be matched with certain integral non-Abelian large gauge transformations around the circle when studying the theory on the lower-dimensional Coulomb branch. Its existence is required by consistency with Higgs transitions from the non-Abelian theory to its Abelian phases in which it becomes the Mordell-Weil group. This hints towards the existence of a new underlying geometric symmetry.

  3. Geometrodynamics of gauge fields on the geometry of Yang-Mills and gravitational gauge theories

    CERN Document Server

    Mielke, Eckehard W

    2016-01-01

    This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang-Mills theories, instanton solutions and topological invariants are included. By transferring these concepts to local space-time symmetries, generalizations of Einstein's theory of gravity arise in a Riemann-Cartan space with curvature and torsion. It provides the framework in which the (broken) Poincaré gauge theory, the Rainich geometrization of the Einstein-Maxwell system, and higher-dimensional, non-abelian Kaluza-Klein theories are developed. Since the discovery of the Higgs boson, concepts of spontaneous symmetry breaking in gravity have come again into focus, and, in this revised edition, these will be exposed in geometric terms. Quantizing gravity remains an open issue: formulating it as a de Sitter t...

  4. Non-Abelian gauge field theory in scale relativity

    International Nuclear Information System (INIS)

    Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry

    2006-01-01

    Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description

  5. Asymptotic symmetries, holography and topological hair

    Science.gov (United States)

    Mishra, Rashmish K.; Sundrum, Raman

    2018-01-01

    Asymptotic symmetries of AdS4 quantum gravity and gauge theory are derived by coupling the holographically dual CFT3 to Chern-Simons gauge theory and 3D gravity in a "probe" (large-level) limit. Despite the fact that the three-dimensional AdS4 boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of AdS4 quantum gravity. An AdS4 analog of Minkowski "super-rotation" asymptotic symmetry is probed by 3D Einstein gravity, yielding CFT2 structure (in a large central charge limit), via AdS3 foliation of AdS4 and the AdS3/CFT2 correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of AdS4, as soft/boundary limits of 4D gauge theory, rather than "put in by hand" as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for AdS4 than for Mink4, such as non-zero 4D particle masses, 4D non-perturbative "hard" effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian AdS4, CFT3 and CFT2. Relatedly, the CFT2 structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of "hair" for black holes and other complex 4D states. An AdS4 analog of Minkowski "memory" effects is derived, but with late-time memory of earlier events being replaced by (holographic) "shadow" effects. Lessons

  6. Statistical mechanics view of quantum chromodynamics: Lattice gauge theory

    International Nuclear Information System (INIS)

    Kogut, J.B.

    1984-01-01

    Recent developments in lattice gauge theory are discussed from a statistial mechanics viewpoint. The basic physics problems of quantum chromodynamics (QCD) are reviewed for an audience of critical phenomena theorists. The idea of local gauge symmetry and color, the connection between statistical mechanics and field theory, asymptotic freedom and the continuum limit of lattice gauge theories, and the order parameters (confinement and chiral symmetry) of QCD are reviewed. Then recent developments in the field are discussed. These include the proof of confinement in the lattice theory, numerical evidence for confinement in the continuum limit of lattice gauge theory, and perturbative improvement programs for lattice actions. Next, we turn to the new challenges facing the subject. These include the need for a better understanding of the lattice Dirac equation and recent progress in the development of numerical methods for fermions (the pseudofermion stochastic algorithm and the microcanonical, molecular dynamics equation of motion approach). Finally, some of the applications of lattice gauge theory to QCD spectrum calculations and the thermodynamics of QCD will be discussed and a few remarks concerning future directions of the field will be made

  7. The role of Weyl symmetry in hydrodynamics

    Science.gov (United States)

    Diles, Saulo

    2018-04-01

    This article is dedicated to the analysis of Weyl symmetry in the context of relativistic hydrodynamics. Here is discussed how this symmetry is properly implemented using the prescription of minimal coupling: ∂ → ∂ + ωA. It is shown that this prescription has no problem to deal with curvature since it gives the correct expressions for the commutator of covariant derivatives. In hydrodynamics, Weyl gauge connection emerges from the degrees of freedom of the fluid: it is a combination of the expansion and entropy gradient. The remaining degrees of freedom, shear, vorticity and the metric tensor, are see in this context as charged fields under the Weyl gauge connection. The gauge nature of the connection provides natural dynamics to it via equations of motion analogous to the Maxwell equations for electromagnetism. As a consequence, a charge for the Weyl connection is defined and the notion of local charge is analyzed generating the conservation law for the Weyl charge.

  8. Monopole operators and Hilbert series of Coulomb branches of 3 d = 4 gauge theories

    Science.gov (United States)

    Cremonesi, Stefano; Hanany, Amihay; Zaffaroni, Alberto

    2014-01-01

    This paper addresses a long standing problem - to identify the chiral ring and moduli space (i.e. as an algebraic variety) on the Coulomb branch of an = 4 superconformal field theory in 2+1 dimensions. Previous techniques involved a computation of the metric on the moduli space and/or mirror symmetry. These methods are limited to sufficiently small moduli spaces, with enough symmetry, or to Higgs branches of sufficiently small gauge theories. We introduce a simple formula for the Hilbert series of the Coulomb branch, which applies to any good or ugly three-dimensional = 4 gauge theory. The formula counts monopole operators which are dressed by classical operators, the Casimir invariants of the residual gauge group that is left unbroken by the magnetic flux. We apply our formula to several classes of gauge theories. Along the way we make various tests of mirror symmetry, successfully comparing the Hilbert series of the Coulomb branch with the Hilbert series of the Higgs branch of the mirror theory.

  9. Broken colour symmetry and liberated quarks

    International Nuclear Information System (INIS)

    Ma, E.

    1976-01-01

    A quark model of hadrons is presented and discussed, in which local SU(3) gauge symmetry is completely broken and yet asymptotic freedom is preserved. There is no infrared slavery in this model, and isolated quarks are free to exist. Colour becomes a global symmetry which is only approximate under SU(3) but nearly exact under SU(2) x U(1), as far as the usual hadron spectroscopy is concerned. (Auth.)

  10. Massive Kaluza-Klein theories and their spontaneously broken symmetries

    International Nuclear Information System (INIS)

    Hohm, O.

    2006-07-01

    In this thesis we investigate the effective actions for massive Kaluza-Klein states, focusing on the massive modes of spin-3/2 and spin-2 fields. To this end we determine the spontaneously broken gauge symmetries associated to these 'higher-spin' states and construct the unbroken phase of the Kaluza-Klein theory. We show that for the particular background AdS 3 x S 3 x S 3 a consistent coupling of the first massive spin-3/2 multiplet requires an enhancement of local supersymmetry, which in turn will be partially broken in the Kaluza-Klein vacuum. The corresponding action is constructed as a gauged maximal supergravity in D=3. Subsequently, the symmetries underlying an infinite tower of massive spin-2 states are analyzed in case of a Kaluza-Klein compactification of four-dimensional gravity to D=3. It is shown that the resulting gravity-spin-2 theory is given by a Chern-Simons action of an affine algebra and also allows a geometrical interpretation in terms of 'algebra-valued' differential geometry. The global symmetry group is determined, which contains an affine extension of the Ehlers group. We show that the broken phase can in turn be constructed via gauging a certain subgroup of the global symmetry group. Finally, deformations of the Kaluza-Klein theory on AdS 3 x S 3 x S 3 and the corresponding symmetry breakings are analyzed as possible applications for the AdS/CFT correspondence. (Orig.)

  11. Atomic Quantum Simulations of Abelian and non-Abelian Gauge Theories

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, in a collaboration of atomic and particle physicists, we have constructed a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum link models which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows investigations of string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods. Similarly, using ultracold alkaline-earth atoms in optical lattices, we have constructed a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum ...

  12. Continuous spin fields of mixed-symmetry type

    Science.gov (United States)

    Alkalaev, Konstantin; Grigoriev, Maxim

    2018-03-01

    We propose a description of continuous spin massless fields of mixed-symmetry type in Minkowski space at the level of equations of motion. It is based on the appropriately modified version of the constrained system originally used to describe massless bosonic fields of mixed-symmetry type. The description is shown to produce generalized versions of triplet, metric-like, and light-cone formulations. In particular, for scalar continuous spin fields we reproduce the Bekaert-Mourad formulation and the Schuster-Toro formulation. Because a continuous spin system inevitably involves infinite number of fields, specification of the allowed class of field configurations becomes a part of its definition. We show that the naive choice leads to an empty system and propose a suitable class resulting in the correct degrees of freedom. We also demonstrate that the gauge symmetries present in the formulation are all Stueckelberg-like so that the continuous spin system is not a genuine gauge theory.

  13. Effective theories with broken flavour symmetry

    International Nuclear Information System (INIS)

    Miller, R.D.C.; McKellar, B.H.J.

    1981-07-01

    The work of Ovrut and Schnitzer on effective theories derived from a non Abelian Gauge Theory is generalised to include the physically interesting case of broken flavour symmetry. The calculations are performed at the 1-loop level. It is shown that at an intermediate stage in the calculations two distinct renormalised gauge coupling constants appear, one describing gauge field coupling to heavy particles and the other describing coupling to light particles. Appropriately modified Slavnov-Taylor identities are shown to hold. A simple alternative to the Ovrut-Schnitzer rules for calculating with effective theories is also considered

  14. Noether's theorem for local gauge transformations

    International Nuclear Information System (INIS)

    Karatas, D.L.; Kowalski, K.L.

    1989-01-01

    The variational methods of classical field theory may be applied to any theory with an action which is invariant under local gauge transformations. What is the significance of the resulting Noether current? This paper examines such currents for both Abelian and non-Abelian gauge theories and provides an explanation for their form and limited range of physical significance on a level accessible to those with a basic knowledge of classical field theory. Several of the more subtle aspects encountered in the application of the residual local gauge symmetry found by Becchi, Rouet, Stora, and Tyutin are also considered in detail in a self-contained manner. 23 refs

  15. Experimental tests of gauge theories

    International Nuclear Information System (INIS)

    Haidt, D.

    1984-11-01

    This series of five lectures is intended to provide the experimental basis to the theoretical courses on gauge symmetries delivered by C. Jarlskog and R. Petronzio. The framework is the standard model. The experimental material is taken mainly from lepton-hadron and e + e - -experiments. (orig./HSI)

  16. Anomalous Symmetry Fractionalization and Surface Topological Order

    Directory of Open Access Journals (Sweden)

    Xie Chen

    2015-10-01

    Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  17. Introduction to gauge theories of electroweak interactions

    International Nuclear Information System (INIS)

    Ecker, G.

    1982-01-01

    Intended as a lecture for physicists who are not familiar with the sophisticated theoretical models in particle physics. Starting with the standard gauge model of electromagnetic, weak and strong interactions the recent developments of a unified gauge theory of electroweak interactions are shown. Shortcomings in the unitarity problem of the V-A fermi theory of charged intermediate vector bosons. Presented are the spontaneous symmetry breaking in quantum mechanics, the abelian higgs model as an example of a spontaneously broken gauge field theory, the minimal gauge group of electroweak interactions, the fermion mass generation. Further on the anomalies in quantum field theory are discussed and the radiative corrections to the vector boson masses are considered. (H.B.)

  18. Higher-spin-matter gauge interactions in 2+1 dimensions

    International Nuclear Information System (INIS)

    Vasiliev, M.A.

    1997-01-01

    We discuss general properties of higher-spin gauge theories paying particular attention to specificities of higher-spin gauge interactions of massive matter fields in 2+1 dimensional space-time. The main conclusions are that the parameter of mass M appears as a module characterizing an appropriate vacuum solution of the full non-linear model and that M affects a structure of a global vacuum higher-spin symmetry which leaves invariant the chosen vacuum solution. Special attention is paid to local Lorentz symmetry as a guiding principle which fixes a form of non-linear higher-spin equations formulated as some zero-curvature conditions supplemented with non-linear constraints. (orig.)

  19. Quotients of irreducible N=2 superconformal coset theories by discrete symmetries

    International Nuclear Information System (INIS)

    Bailin, D.; Love, A.

    1990-01-01

    The spectrum of massless states is studied for the irreducible N=2 superconformal coset theories when these theories are quotiented by discrete symmetries, including the effect of embedding the discrete symmetries in the gauge group. (orig.)

  20. Origin of Abelian gauge symmetries in heterotic/F-theory duality

    International Nuclear Information System (INIS)

    Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; Poretschkin, Maximilian; Song, Peng

    2016-01-01

    We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m)×U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m)×ℤ_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. While the number of geometrically massless U(1)’s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)’s is found by taking into account a Stückelberg mechanism in the lower-dimensional effective theory. In geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.

  1. [Investigations in dynamics of gauge theories in theoretical particle physics

    International Nuclear Information System (INIS)

    1993-01-01

    The major theme of the theoretical physics research conducted under DOE support over the past several years has been within the rubric of the standard model, and concerned the interplay between symmetries and dynamics. The research was thus carried out mostly in the context of gauge field theories, and usually in the presence of chiral fermions. Dynamical symmetry breaking was examined both from the point of view of perturbation theory, as well as from non-perturbative techniques associated with certain characteristic features of specific theories. Among the topics of research were: the implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in any theory, topological and conformal properties of quantum fields in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD, the phenomenological implications of a strongly interacting Higgs sector in the standard model, and the application of soliton ideas to the physics to be explored at the SSC

  2. Hidden conformal symmetry in Randall–Sundrum 2 model: Universal fermion localization by torsion

    Directory of Open Access Journals (Sweden)

    G. Alencar

    2017-10-01

    Full Text Available In this manuscript we describe a hidden conformal symmetry of the second Randall–Sundrum model (RS2. We show how this can be used to localize fermions of both chiralities. The conformal symmetry leaves few free dimensionless constants and constrains the allowed interactions. In this formulation the warping of the extra dimension emerges from a partial breaking of the conformal symmetry in five dimensions. The solution of the system can be described in two alternative gauges: by the metric or by the conformon. By considering this as a fundamental symmetry we construct a conformally invariant action for a vector field which provides a massless photon localized over a Minkowski brane. This is obtained by a conformal non-minimal coupling that breaks the gauge symmetry in five dimensions. We further consider a generalization of the model by including conformally invariant torsion. By coupling torsion non-minimally to fermions we obtain a localized zero mode of both chiralities completing the consistence of the model. The inclusion of torsion introduces a fermion quartic interaction that can be used to probe the existence of large extra dimensions and the validity of the model. This seems to point to the fact that conformal symmetry may be more fundamental than gauge symmetry and that this is the missing ingredient for the full consistence of RS scenarios.

  3. Gauge-Higgs unification in higher dimensions

    International Nuclear Information System (INIS)

    Hall, Lawrence; Nomura, Yasunori; Smith, David

    2002-01-01

    The electroweak Higgs doublets are identified as components of a vector multiplet in a higher-dimensional supersymmetric field theory. We construct a minimal model in 6D where the electroweak SU(2)xU(1) gauge group is extended to SU(3), and unified 6D models with the unified SU(5) gauge symmetry extended to SU(6). In these realistic theories the extended gauge group is broken by orbifold boundary conditions, leaving Higgs doublet zero modes which have Yukawa couplings to quarks and leptons on the orbifold fixed points. In one SU(6) model the weak mixing angle receives power law corrections, while in another the fixed point structure forbids such corrections. A 5D model is also constructed in which the Higgs doublet contains the fifth component of the gauge field. In this case Yukawa couplings are introduced as nonlocal operators involving the Wilson line of this gauge field

  4. Fermion-number violation in regularizations that preserve fermion-number symmetry

    Science.gov (United States)

    Golterman, Maarten; Shamir, Yigal

    2003-01-01

    There exist both continuum and lattice regularizations of gauge theories with fermions which preserve chiral U(1) invariance (“fermion number”). Such regularizations necessarily break gauge invariance but, in a covariant gauge, one recovers gauge invariance to all orders in perturbation theory by including suitable counterterms. At the nonperturbative level, an apparent conflict then arises between the chiral U(1) symmetry of the regularized theory and the existence of ’t Hooft vertices in the renormalized theory. The only possible resolution of the paradox is that the chiral U(1) symmetry is broken spontaneously in the enlarged Hilbert space of the covariantly gauge-fixed theory. The corresponding Goldstone pole is unphysical. The theory must therefore be defined by introducing a small fermion-mass term that breaks explicitly the chiral U(1) invariance and is sent to zero after the infinite-volume limit has been taken. Using this careful definition (and a lattice regularization) for the calculation of correlation functions in the one-instanton sector, we show that the ’t Hooft vertices are recovered as expected.

  5. Multiscale N=2 SUSY field theories, integrable systems and their stringy/brane origin

    International Nuclear Information System (INIS)

    Gorsky, A.; Gukov, S.; Mironov, A.

    1998-01-01

    We discuss supersymmetric Yang-Mills theories with multiple scales in the brane language. The issue concerns N=2 SUSY gauge theories with massive fundamental matter including the UV finite case of n f =2n c , theories involving products of SU(n) gauge groups with bifundamental matter, and systems with several parameters similar to Λ QCD . We argue that the proper integrable systems are, accordingly, twisted XXX SL(2) spin chain, SL(p) magnets and degenerations of the spin Calogero system. The issue of symmetries underlying integrable systems is addressed. Relations with the monopole systems are specially discussed. Brane pictures behind all these integrable structures in the IIB and M-theory are suggested. We argue that degrees of freedom in integrable systems are related to KK excitations in M-theory or D-particles in the IIA string theory, which substitute the infinite number of instantons in the field theory. This implies the presence of more BPS states in the low-energy sector. (orig.)

  6. Model for extended Pati-Salam gauge symmetry

    International Nuclear Information System (INIS)

    Foot, R.; Lew, H.; Volkas, R.R.

    1990-11-01

    The possibility of constructing non-minimal models of the Pati-Salam type is investigated. The most interesting examples are found to have an SU(6) x SU(2) L x SU(2) R guage invariance. Two interesting symmetry breaking patterns are analysed: one leading to the theory of SU(5) colour at an intermediate scale, the other to the quark-lepton symmetric model. 15 refs

  7. Aspects of grand unification in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Wingerter, A.

    2005-07-01

    We consider various aspects of string phenomenology in the context of heterotic orbifold constructions, where special emphasis is laid on the connection between GUT models in extra dimensions and their relation to string theory. We investigate orbifold models with more general structure than the Z{sub 3} orbifold, on which most of the past research had focused. The picture of the heterotic brane world which naturally emerges allows us to make contact to field theoretic orbifold constructions in five and six dimensions, which have recently attracted much attention. We present a classification scheme for inequivalent orbifold models and apply the results to the case of Z{sub 6}-II point group. We develop the mathematical background for a stringy Higgs mechanism which allows us to lower the rank of the gauge group in the higher dimensions, which cannot be achieved by contemporary orbifold constructions. We provide all the calculational methods needed to unambiguously identify the gauge symmetry and to construct the matter representations. For specific model constructions, we focus on two promising gauge groups, namely on SO(10) and E{sub 6}. In the latter case, we derive a GUT model in six dimensions which has a standard model like gauge symmetry SU(3) x SU (2) x U(1) x U(1)' in four dimensions, and discuss its embedding into string theory. (orig.)

  8. Gauge theories in particle physics

    International Nuclear Information System (INIS)

    Aitchison, I.J.R.; Hey, A.J.G.

    1982-01-01

    The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)

  9. Redundancy of the quantum level gauge fixing condition

    International Nuclear Information System (INIS)

    Kachkachi, H.; Kachkachi, M.

    1992-07-01

    We regard the manifold Γ-circumflex defined by the equations of motion (EM) of the gauge and ghost fields w.r.t. the gauge-fixed action as a fiber bundle over the manifold Γ defined by the EM of the gauge fields only w.r.t. the classical action. Accordingly, the BRST operator is interpreted as the nilpotent exterior derivative on Γ; the ghost field appears as the differential 1-form. This fiber bundle setup allows us to prove that any gauge condition on Γ-circumflex is equivalent to another one on the base manifold Γ and does not break the BRST symmetry of the quantized theory. (author). 11 refs

  10. Discrete symmetries in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Schieren, Roland

    2010-12-02

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)

  11. Discrete symmetries in the MSSM

    International Nuclear Information System (INIS)

    Schieren, Roland

    2010-01-01

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)

  12. Nilpotent symmetries in supergroup field cosmology

    Science.gov (United States)

    Upadhyay, Sudhaker

    2015-06-01

    In this paper, we study the gauge invariance of the third quantized supergroup field cosmology which is a model for multiverse. Further, we propose both the infinitesimal (usual) as well as the finite superfield-dependent BRST symmetry transformations which leave the effective theory invariant. The effects of finite superfield-dependent BRST transformations on the path integral (so-called void functional in the case of third quantization) are implemented. Within the finite superfield-dependent BRST formulation, the finite superfield-dependent BRST transformations with specific parameter switch the void functional from one gauge to another. We establish this result for the most general gauge with the help of explicit calculations which holds for all possible sets of gauge choices at both the classical and the quantum levels.

  13. Discrete finite nilpotent Lie analogs: New models for unified gauge field theory

    International Nuclear Information System (INIS)

    Kornacker, K.

    1978-01-01

    To each finite dimensional real Lie algebra with integer structure constants there corresponds a countable family of discrete finite nilpotent Lie analogs. Each finite Lie analog maps exponentially onto a finite unipotent group G, and is isomorphic to the Lie algebra of G. Reformulation of quantum field theory in discrete finite form, utilizing nilpotent Lie analogs, should elminate all divergence problems even though some non-Abelian gauge symmetry may not be spontaneously broken. Preliminary results in the new finite representation theory indicate that a natural hierarchy of spontaneously broken symmetries can arise from a single unbroken non-Abelian gauge symmetry, and suggest the possibility of a new unified group theoretic interpretation for hadron colors and flavors

  14. Spontaneous mirror left-right symmetry breaking for leptogenesis parametrized by Majorana neutrino mass matrix

    Science.gov (United States)

    Gu, Pei-Hong

    2017-10-01

    We introduce a mirror copy of the ordinary fermions and Higgs scalars for embedding the SU(2) L × U(1) Y electroweak gauge symmetry into an SU(2) L × SU(2) R × U(1) B-L left-right gauge symmetry. We then show the spontaneous left-right symmetry breaking can automatically break the parity symmetry motivated by solving the strong CP problem. Through the SU(2) R gauge interactions, a mirror Majorana neutrino can decay into a mirror charged lepton and two mirror quarks. Consequently we can obtain a lepton asymmetry stored in the mirror charged leptons. The Yukawa couplings of the mirror and ordinary charged fermions to a dark matter scalar then can transfer the mirror lepton asymmetry to an ordinary lepton asymmetry which provides a solution to the cosmic baryon asymmetry in association with the SU(2) L sphaleron processes. In this scenario, the baryon asymmetry can be well described by the neutrino mass matrix up to an overall factor.

  15. Symmetry behavior of the effective gauge theory

    International Nuclear Information System (INIS)

    Midorikawa, S.

    1981-01-01

    The restoration of spontaneously broken CP invariance is investigated by using the effective QED lagrangian obtained from the standard SU(2) x U(1) gauge theory with two Higgs doublets. It is shown that the large electromagnetic field may restore CP invariance by changing the relative phase angle of Higgs vacuum expectation values even before one of the vacuum expectation values of the two Higgs doublets disappears. Further large magnetic field may lead to the fine structure constant with discontinuous behavior. (orig.)

  16. Massive Kaluza-Klein theories and their spontaneously broken symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Hohm, O.

    2006-07-15

    In this thesis we investigate the effective actions for massive Kaluza-Klein states, focusing on the massive modes of spin-3/2 and spin-2 fields. To this end we determine the spontaneously broken gauge symmetries associated to these 'higher-spin' states and construct the unbroken phase of the Kaluza-Klein theory. We show that for the particular background AdS{sub 3} x S{sup 3} x S{sup 3} a consistent coupling of the first massive spin-3/2 multiplet requires an enhancement of local supersymmetry, which in turn will be partially broken in the Kaluza-Klein vacuum. The corresponding action is constructed as a gauged maximal supergravity in D=3. Subsequently, the symmetries underlying an infinite tower of massive spin-2 states are analyzed in case of a Kaluza-Klein compactification of four-dimensional gravity to D=3. It is shown that the resulting gravity-spin-2 theory is given by a Chern-Simons action of an affine algebra and also allows a geometrical interpretation in terms of 'algebra-valued' differential geometry. The global symmetry group is determined, which contains an affine extension of the Ehlers group. We show that the broken phase can in turn be constructed via gauging a certain subgroup of the global symmetry group. Finally, deformations of the Kaluza-Klein theory on AdS{sub 3} x S{sup 3} x S{sup 3} and the corresponding symmetry breakings are analyzed as possible applications for the AdS/CFT correspondence. (Orig.)

  17. Beltrami parametrization and gauging of Virasoro and w-infinity algebras

    International Nuclear Information System (INIS)

    Tatar, L.

    1992-07-01

    The gauging of the Virasoro and w-infinity algebras are discussed from the point of view of BRST symmetry. Both algebras are realised as ''Russian formulas'' for the curvatures built from the generators of the Lie algebras and the corresponding gauge fields. The generalized curvatures are used to determine the gauge invariant Lagrangians as well as the anomaly structures of the conformal two dimensional theory and the w-gravity. (author). 21 refs

  18. Logarithmic unification from symmetries enhanced in the sub-millimeter infrared

    International Nuclear Information System (INIS)

    Arkani-Hamed, Nima; Dimopoulos, Savas; March-Russell, John

    1999-01-01

    In theories with TeV string scale and sub-millimeter extra dimensions the attractive picture of logarithmic gauge coupling unification at 10 16 GeV is seemingly destroyed. In this paper we argue to the contrary that logarithmic unification can occur in such theories. The rationale for unification is no longer that a gauge symmetry is restored at short distances, but rather that a geometric symmetry is restored at large distances in the bulk away from our 3-brane. The apparent ''running'' of the gauge couplings to energies far above the string scale actually arises from the logarithmic variation of classical fields in (sets of) two large transverse dimensions. We present a number of N = 2 and N = 1 supersymmetric D-brane constructions illustrating this picture for unification

  19. Gauge theory model of the neutrino and new physics beyond the standard model

    International Nuclear Information System (INIS)

    Wu Yueliang

    2008-01-01

    Majorana features of neutrinos and SO(3) gauge symmetry of three families enable us to construct a gauge model of neutrino for understanding naturally the observed smallness of neutrino masses and the nearly tri-bimaximal neutrino mixing when combining together with the mechanism of approximate global U(1) family symmetry. The vacuum structure of SO(3) symmetry breaking is found to play an important role. The mixing angle θ 13 and CP-violating phases governed by the vacuum of spontaneous symmetry breaking are in general nonzero and testable experimentally at the allowed sensitivity. The model predicts the existence of vectorlike SO(3) triplet charged leptons and vectorlike SO(3) triplet Majorana neutrinos as well as SO(3) tri-triplet Higgs bosons, some of them can be light and explored at the colliders LHC and ILC

  20. Variational principles and symmetries on fibered multisymplectic manifolds

    Directory of Open Access Journals (Sweden)

    Gaset Jordi

    2016-12-01

    Full Text Available The standard techniques of variational calculus are geometrically stated in the ambient of fiber bundles endowed with a (premulti-symplectic structure. Then, for the corresponding variational equations, conserved quantities (or, what is equivalent, conservation laws, symmetries, Cartan (Noether symmetries, gauge symmetries and different versions of Noether's theorem are studied in this ambient. In this way, this constitutes a general geometric framework for all these topics that includes, as special cases, first and higher order field theories and (non-autonomous mechanics.

  1. No-go for tree-level R-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Feihu [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Liu, Muyang [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China); Sun, Zheng [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China); Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2017-11-15

    We show that in gauge mediation models with tree-level R-symmetry breaking where supersymmetry and R-symmetries are broken by different fields, the gaugino mass either vanishes at one loop or finds a contribution from loop-level R-symmetry breaking. Thus tree-level R-symmetry breaking for phenomenology is either no-go or redundant in the simplest type of models. Including explicit messenger mass terms in the superpotential with a particular R-charge arrangement is helpful to bypass the no-go theorem, and the resulting gaugino mass is suppressed by the messenger mass scale. (orig.)

  2. Chiral symmetry breaking and cooling in lattice QCD

    International Nuclear Information System (INIS)

    Woloshyn, R.M.; Lee, F.X.

    1995-08-01

    Chiral symmetry breaking is calculated as a function of cooling in quenched lattice QCD. A non-zero signal is found for the chiral condensate beyond one hundred cooling steps, suggesting that there is chiral symmetry breaking associated with instantons. Quantitatively, the chiral condensate in cooled gauge field configurations is small compared to the value without cooling. (author) 7 refs., 1 tab., 3 figs

  3. Digital lattice gauge theories

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  4. Three-family left-right symmetry with low-scale seesaw mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Reig, Mario; Valle, José W.F.; Vaquera-Araujo, C.A. [AHEP Group, Institut de Física Corpuscular - C.S.I.C., Universitat de València,Parc Científic de Paterna, C/ Catedrático José Beltrán, 2 E-46980 Paterna (Valencia) (Spain)

    2017-05-18

    We suggest a new left-right symmetric model implementing a low-scale seesaw mechanism in which quantum consistency requires three families of fermions. The symmetry breaking route to the Standard Model determines the profile of the “next” expected new physics, characterized either by the simplest left-right gauge symmetry or by the 3-3-1 scenario. The resulting Z{sup ′} gauge bosons can be probed at the LHC and provide a production portal for the right-handed neutrinos. On the other hand, its flavor changing interactions would affect the K, D and B neutral meson systems.

  5. N=1 superstrings with spontaneously broken symmetries

    International Nuclear Information System (INIS)

    Ferrara, S.

    1988-01-01

    We construct N=1 chiral superstrings with spontaneously broken gauge symmetry in four space-time dimensions. These new string solutions are obtained by a generalized coordinate-dependent Z 2 orbifold compactification of some non-chiral five-dimensional N=1 and N=2 superstrings. The scale of symmetry breaking is arbitrary (at least classically) and it can be chosen hierarchically smaller than the string scale (α') -1/2 . (orig.)

  6. arXiv Global $SU(2)_L \\otimes$BRST symmetry and its LSS theorem: Ward-Takahashi identities governing Green's functions, on-shell T-Matrix elements, and $V_{eff}$, in the scalar-sector of certain spontaneously broken non-Abelian gauge theories

    CERN Document Server

    Güngör, Özenç; Starkman, Glenn D.; Stora, Raymond

    This work is dedicated to the memory of Raymond Stora (1930-2015). $SU(2)_L$ is the simplest spontaneous symmetry breaking (SSB) non-Abelian gauge theory: a complex scalar doublet $\\phi=\\frac{1}{\\sqrt{2}}\\begin{bmatrix}H+i\\pi_3-\\pi_2 +i\\pi_1\\end{bmatrix}\\equiv\\frac{1}{\\sqrt{2}}\\tilde{H}e^{2i\\tilde{t}\\cdot\\tilde{\\vec{\\pi}}/}\\begin{bmatrix}10\\end{bmatrix}$ and a vector $\\vec{W}^\\mu$. In Landau gauge, $\\vec{W}^\\mu$ is transverse, $\\vec{\\tilde{\\pi}}$ are massless derivatively coupled Nambu-Goldstone bosons (NGB). A global shift symmetry enforces $m^{2}_{\\tilde{\\pi}}=0$. We observe that on-shell T-matrix elements of physical states $\\vec{W}^\\mu$,$\\phi$ are independent of global $SU(2)_{L}$ transformations, and the associated global current is exactly conserved for amplitudes of physical states. We identify two towers of "1-soft-pion" global Ward-Takahashi Identities (WTI), which govern the $\\phi$-sector, and represent a new global symmetry, $SU(2)_L\\otimes$BRST, a symmetry not of the Lagrangian but of the physical...

  7. Information on the gauge principle from an N=1/2, D=2 supersymmetric model

    International Nuclear Information System (INIS)

    Dias, S.A.; Doria, R.M.; Valle, J.L.M.

    1988-01-01

    The gauge principle does not only work to generate interactions. It potentially yields an abundance of gauge-potential fields transforming under the same local symmetry group. In order to show evidences of this property this work gauge-covariantizes an N = 1/2, D = 2 supersymmetric theory. Then, by relaxing the so-called conventional constraint, a second gauge-potential field naturally emerges. (author) [pt

  8. Gauge invariance and Weyl-polymer quantization

    CERN Document Server

    Strocchi, Franco

    2016-01-01

    The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable.  The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...

  9. Searching for dark matter signals in the left-right symmetric gauge model with CP symmetry

    International Nuclear Information System (INIS)

    Guo Wanlei; Wu Yueliang; Zhou Yufeng

    2010-01-01

    We investigate the singlet scalar dark matter (DM) candidate in a left-right symmetric gauge model with two Higgs bidoublets in which the stabilization of the DM particle is induced by the discrete symmetries P and CP. According to the observed DM abundance, we predict the DM direct and indirect detection cross sections for the DM mass range from 10 to 500 GeV. We show that the DM indirect detection cross section is not sensitive to the light Higgs mixing and Yukawa couplings except for the resonance regions. The predicted spin-independent DM-nucleon elastic scattering cross section is found to be significantly dependent on the above two factors. Our results show that the future DM direct search experiments can cover the most parts of the allowed parameter space. The PAMELA antiproton data can only exclude two very narrow regions in the two Higgs bidoublets model. It is very difficult to detect the DM direct or indirect signals in the resonance regions due to the Breit-Wigner resonance effect.

  10. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...

  11. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...

  12. The Higgs sector of gravitational gauge theories

    International Nuclear Information System (INIS)

    Leclerc, M.

    2006-01-01

    Gravitational gauge theories with de Sitter, Poincare and affine symmetry group are investigated under the aspect of the breakdown of the initial symmetry group down to the Lorentz subgroup. As opposed to the nonlinear realization approach, in the dynamical symmetry breaking procedure, the structure subgroup is not chosen arbitrarily, but is dictated by the symmetry of the groundstate of a Higgs field. We review the theory of spontaneously broken de Sitter gravity by Stelle and West and apply a similar approach to the case of the Poincare and affine groups. We will find that the Poincare case is almost trivial. The translational Higgs field reveals itself as pure gauge, i.e., it is expressed entirely in terms of the Nambu-Goldstone bosons and does not appear in the Lagrangian after the symmetry breaking. The same holds for the translational part of the affine group. The Higgs field provoking the breakdown of the general linear group leads to the determination of the Lorentzian signature of the metric in the groundstate. We show that the Higgs field remains in its groundstate, i.e., that the metric will have Lorentzian signature, unless we introduce matter fields that explicitely couple to the symmetric part of the connection. Furthermore, we present arguments that the Lorentzian signature is actually the only possible choice for physical spacetime, since the symmetry breaking mechanism works only if the stability subgroup is taken to be the Lorentz group. The other four-dimensional rotation groups are therefore ruled out not only on physical, but also on theoretical grounds. Finally, we show that some features, like the necessity of the introduction of a dilaton field, that seem artificial in the context of the affine theory, appear most natural if the gauge group is taken to be the special linear group in five dimensions. We also present an alternative model which is based on the spinor representation of the Lorentz group and is especially adopted to the

  13. Extended BRS and anti-BRS symmetries in N=2 harmonic superspace

    International Nuclear Information System (INIS)

    Lhallabi, T.; Saidi, E.H.

    1986-08-01

    The full set of extended BRS and anti-BRS symmetries are derived for components of superconnection and gauge superfield using the N=2 harmonic superspace. The quantization of N=2 supersymmetric theory is developed and the proof of its gauge invariance is presented. (author)

  14. Internal space-time symmetries of massive and massless particles and their unification

    International Nuclear Information System (INIS)

    Kim, Y.S.

    2001-01-01

    It is noted that the internal space-time symmetries of relativistic particles are dictated by Wigner's little groups. The symmetry of massive particles is like the three-dimensional rotation group, while the symmetry of massless particles is locally isomorphic to the two-dimensional Euclidean group. It is noted also that, while the rotational degree of freedom for a massless particle leads to its helicity, the two translational degrees of freedom correspond to its gauge degrees of freedom. It is shown that the E(2)-like symmetry of of massless particles can be obtained as an infinite-momentum and/or zero-mass limit of the O(3)-like symmetry of massive particles. This mechanism is illustrated in terms of a sphere elongating into a cylinder. In this way, the helicity degree of freedom remains invariant under the Lorentz boost, but the transverse rotational degrees of freedom become contracted into the gauge degree of freedom

  15. Renormalization of the Nambu-Jona Lasinio model and spontaneously broken Abelian Gauge model without fundamental scalar fields

    International Nuclear Information System (INIS)

    Snyderman, N.J.

    1976-01-01

    The Schwinger-Dyson equation for the Nambu-Jona Lasinio model is solved systematically subject to the constraint of spontaneously broken chiral symmetry. The solution to this equation generates interactions not explicitly present in the original Lagrangian, and the original 4-fermion interaction is not present in the solution. The theory creates bound-states with respect to which a perturbation theory consistent with the chiral symmetry is set up. The analysis suggests that this theory is renormalizable in the sense that all divergences can be grouped into a few arbitrary parameters. The renormalized propagators of this model are shown to be identical to those of a new solution to the sigma-model in which the bare 4-field coupling lambda 0 is chosen to be twice the π-fermion coupling g 0 . Also considered is spontaneously broken abelian gauge model without fundamental scalar fields by coupling an axial vector gauge field to the N ambu-Jona Lasinio model. It is shown how the Goldstone consequence of spontaneous symmetry breaking is avoided in the radiation gauge, and verify the Guralnik, Hagen, and Kibble theorem that under these conditions the global charge conservation is lost even though there is still local current conservation. This is contrasted with the Lorentz gauge situation. This also demonstrated the way the various noncovariant components of the massive gauge field combine in a gauge invariant scattering amplitude to propagate covariantly as a massive spin-1 particle, and this is compared with the Lorentz gauge calculation. F inally, a new model of interacting massless fermions is introduced, based on the models of Nambu and Jona Lasinio, and the Bjorken, which spontaneously breaks both chiral symmetry and Lorentz invariance. The content of this model is the same as that of the gauge model without fundamental scalar fields, but without fundamental gauge fields as well

  16. Symmetry and bifurcations of momentum mappings

    International Nuclear Information System (INIS)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1981-01-01

    The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface. (orig.)

  17. Symmetry and bifurcations of momentum mappings

    Science.gov (United States)

    Arms, Judith M.; Marsden, Jerrold E.; Moncrief, Vincent

    1981-01-01

    The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface.

  18. Physical state condition in quantum general relativity as a consequence of BRST symmetry

    International Nuclear Information System (INIS)

    Castellana, Michele; Montani, Giovanni

    2008-01-01

    Quantization of systems with constraints can be carried out with several methods. In the Dirac formulation the classical generators of gauge transformations are required to annihilate physical quantum states to ensure their gauge invariance. Carrying on BRST symmetry it is possible to get a condition on physical states which, different from the Dirac method, requires them to be invariant under the BRST transformation. Employing this method for the action of general relativity expressed in terms of the spin connection and tetrad fields with path integral methods, we construct the generator of the BRST transformation associated with the underlying local Lorentz symmetry of the theory and write a physical state condition following from BRST invariance. This derivation is based on the general results on the dependence of the effective action used in path integrals and consequently of Green's functions on the gauge-fixing functionals used in the DeWitt-Faddeev-Popov method. The condition we gain differs from the one obtained within Ashtekar's canonical formulation, showing how we recover the latter only by a suitable choice of the gauge-fixing functionals. Finally we discuss how it should be possible to obtain all of the requested physical state conditions associated with all the underlying gauge symmetries of the classical theory using our approach

  19. Flavor gauge models below the Fermi scale

    Science.gov (United States)

    Babu, K. S.; Friedland, A.; Machado, P. A. N.; Mocioiu, I.

    2017-12-01

    The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson, X, corresponding to the B - L symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, B +, D + and Upsilon decays, D-{\\overline{D}}^0 mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling g X in the range (10-2-10-4) the model is shown to be consistent with the data. Possible ways of testing the model in b physics, top and Z decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. The proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.

  20. Gauge invariant actions for string models

    International Nuclear Information System (INIS)

    Banks, T.

    1986-06-01

    String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs

  1. Light third-generation squarks from flavour gauge messengers

    International Nuclear Information System (INIS)

    Brümmer, Felix; McGarrie, Moritz; Weiler, Andreas

    2014-01-01

    We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3) F symmetry acting on the quark superfields. If SU(3) F is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3) F breaking

  2. Light third-generation squarks from flavour gauge messengers

    International Nuclear Information System (INIS)

    Bruemmer, Felix; McGarrie, Moritz; Univ. of the Witwatersrand, Johannesburg; Weiler, Andreas; CERN - European Organization for Nuclear Research, Geneva

    2014-04-01

    We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3) F symmetry acting on the quark superfields. If SU(3) F is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3) F breaking.

  3. Masslessness of ghosts in equivariantly gauge-fixed Yang-Mills theories

    International Nuclear Information System (INIS)

    Golterman, Maarten; Zimmerman, Leah

    2005-01-01

    We show that the one-loop ghost self-energy in an equivariantly gauge-fixed Yang-Mills theory vanishes at zero momentum. A ghost mass is forbidden by equivariant BRST symmetry, and our calculation confirms this explicitly. The four-ghost self interaction which appears in the equivariantly gauge-fixed Yang-Mills theory is needed in order to obtain this result

  4. Searching for stringy topologies in the cosmic microwave background

    International Nuclear Information System (INIS)

    Ben-David, Assaf; Rathaus, Ben; Itzhaki, Nissan

    2012-01-01

    We consider a universe with a non-classical stringy topology that has fixed points. We concentrate on the simplest example, an orbifold point, and study its observable imprints on the cosmic microwave background (CMB). We show that an orbifold preserves the Gaussian nature of the temperature fluctuations, yet modifies the angular correlation function. A direct signature of an orbifold is a single circle in the CMB that is invariant under rotation by 180°. Searching the 7-year ILC map of WMAP, we find one candidate circle with high statistical significance. However, a closer look reveals that the temperature profile does not fit an orbifold. We place a lower bound on the distance to an orbifold point at ∼ 85% of the distance to the surface of last scattering

  5. Searching for stringy topologies in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Ben-David, Assaf; Rathaus, Ben; Itzhaki, Nissan, E-mail: bd.assaf@gmail.com, E-mail: ben.rathaus@gmail.com, E-mail: nitzhaki@post.tau.ac.il [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-11-01

    We consider a universe with a non-classical stringy topology that has fixed points. We concentrate on the simplest example, an orbifold point, and study its observable imprints on the cosmic microwave background (CMB). We show that an orbifold preserves the Gaussian nature of the temperature fluctuations, yet modifies the angular correlation function. A direct signature of an orbifold is a single circle in the CMB that is invariant under rotation by 180°. Searching the 7-year ILC map of WMAP, we find one candidate circle with high statistical significance. However, a closer look reveals that the temperature profile does not fit an orbifold. We place a lower bound on the distance to an orbifold point at ∼ 85% of the distance to the surface of last scattering.

  6. Gauge field entanglement in Kitaev's honeycomb model

    Science.gov (United States)

    Dóra, Balázs; Moessner, Roderich

    2018-01-01

    A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.

  7. Supertwistor orbifolds: gauge theory amplitudes and topological strings

    International Nuclear Information System (INIS)

    Park, Jaemo; Rey, Soojong

    2004-01-01

    Witten established correspondence between multiparton amplitudes in four-dimensional maximally supersymmetric gauge theory and topological string theory on supertwistor space CP 3verticalbar4 . We extend Witten's correspondence to gauge theories with lower supersymmetries, product gauge groups, and fermions and scalars in complex representations. Such gauge theories arise in high-energy limit of the Standard Model of strong and electroweak interactions. We construct such theories by orbifolding prescription. Much like gauge and string theories, such prescription is applicable equally well to topological string theories on supertwistor space. We work out several examples of orbifolds of CP 3verticalbar4 that are dual to N=2,1,0 quiver gauge theories. We study gauged sigma model describing topological B-model on the superorbifolds, and explore mirror pairs with particular attention to the parity symmetry. We check the orbifold construction by studying multiparton amplitudes in these theories with particular attention to those involving fermions in bifundamental representations and interactions involving U(1) subgroups. (author)

  8. On gauged Baryon and Lepton numbers

    International Nuclear Information System (INIS)

    Rajpoot, S.

    1990-01-01

    The observation that Baryon number and Lepton number are conserved in nature provides strong motivation for associating gauge symmetries to these conserved numbers. This endeavor requires that the gauge group of electroweak interactions be extended from SU(2) L X U(1) Y to SU(2) L X U(1) R X U(1) Lepton where U(1) R couples only to the right-handed quarks and leptons. If it furthur postulated that right-handed currents exist on par with the left-handed ones, then the full electroweak symmetry is SU(2) L X SU(2) R X U(1) Baryon X U(1) Lepton . The SU(2) L X SU(2) R X U(1) Baryon X U(1) Lepton model is described in some detail. The triangle anomalies of the three families of quarks and leptons in the model are cancelled invoking leptoquark matter which is new fermionic matter that carries baryon as well as lepton numbers. In addition to the standard neutral boson (Z degree), the theory predicts two neutral gauge bosons with mass lower bounds of 120 GeV and 210 GeV which makes these particles prospective candidates for production at LEP, the TEVATRON and the SSC

  9. Non Abelian T-duality in Gauged Linear Sigma Models

    Science.gov (United States)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

  10. Light higgsino for gauge coupling unification

    Directory of Open Access Journals (Sweden)

    Kwang Sik Jeong

    2017-06-01

    Full Text Available We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  11. Light higgsino for gauge coupling unification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sik, E-mail: ksjeong@pusan.ac.kr

    2017-06-10

    We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  12. Renormalization effects in the SU(16) maximally gauged theory

    International Nuclear Information System (INIS)

    Mahdavi-Hezaveh, E.

    1981-03-01

    In the context of a quark-lepton unified gauge theory, when fermionic degrees of freedom are maximally gauged, several intermediate mass scales filling the grand plateau, between 10 2 Gev. and the grand unifying mass scale, M, may exist. In particular, when renormalization effects are taken into account for the SU(16) ''maximal'' gauge symmetry, [in which lepton number is regarded as the fourth color quantum number], it turns out that two intermediate stages governed by the symmetries G 2 =SU(8)sub(I) S SU(8)sub(II) X U(1)sub(F) and G 3 =SU(2)sub(L) X XU(2)sub(R) X SU(4)sub(C) can naturally coexist if Sin 2 theta (Msub(W))>1/6+5/9(α(Msub(W)/αsub(S)(Msub(W)). It is shown that these symmetries break down at a mass scale of the order of Msub(X) approximately equal to 10 4 -10 5 Gev. If neutral current phenomenology (or any other experiment) predicts Sin 2 theta (Msub(W))>0.206, then quark-lepton unification and left-right symmetry simultaneously break down at M approximately equal to 10 4 Gev. (at which αsub(C)(Msub(X) approximately equal to 0.041). It is then argued that apart from proton decay, n-anti n oscillation and neutrinoless double β decay processes, an accurate experimental value of Sin 2 theta (Msub(W)), to α 10 -4 accuracy) plays a crucial role in determining the possible existence of such intermediate stages. (author)

  13. Why PeV scale left-right symmetry is a good thing

    Science.gov (United States)

    Yajnik, Urjit A.

    2017-10-01

    Left-right symmetric gauge theory presents a minimal paradigm to accommodate massive neutrinos with all the known conserved symmetries duly gauged. The work presented here is based on the argument that the see-saw mechanism does not force the new right-handed symmetry scale to be very high, and as such some of the species from the spectrum of the new gauge and Higgs bosons can have masses within a few orders of magnitude of the TeV scale. The scale of the left-right parity breaking in turn can be sequestered from the Planck scale by supersymmetry. We have studied several formulations of such just beyond Standard Model (JBSM) theories for their consistency with cosmology. Specifically, the need to eliminate phenomenologically undesirable domain walls gives many useful clues. The possibility that the exact left-right symmetry breaks in conjunction with supersymmetry has been explored in the context of gauge mediation, placing restrictions on the available parameter space. Finally, we have also studied a left-right symmetric model in the context of metastable supersymmetric vacua and obtained constraints on the mass scale of right-handed symmetry. In all the cases studied, the mass scale of the right-handed neutrino M_R remains bounded from above, and in some of the cases the scale 10^9 GeV favourable for supersymmetric thermal leptogenesis is disallowed. On the other hand, PeV scale remains a viable option, and the results warrant a more detailed study of such models for their observability in collider and astroparticle experiments.

  14. Interfaces in hot gauge theory

    CERN Document Server

    Bronoff, S.

    1996-01-01

    The string tension at low T and the free energy of domain walls at high T can be computed from one and the same observable. We show by explicit calculation that domain walls in hot Z(2) gauge theory have good thermodynamical behaviour. This is due to roughening of the wall, which expresses the restoration of translational symmetry.

  15. Holography with broken Poincaré symmetry

    NARCIS (Netherlands)

    Korovins, J.

    2014-01-01

    This thesis deals with the extensions of the holographic dualities to the situations where part of the Poincaré group has been broken. Such theories are particularly relevant for applications of gauge/gravity dualities to condensed matter systems, which usually exhibit non-relativistic symmetry.

  16. Small extra dimensions from the interplay of gauge and supersymmetry breaking

    International Nuclear Information System (INIS)

    Buchmueller, W.; Catena, R.; Schmidt-Hoberg, K.

    2008-03-01

    Higher-dimensional theories provide a promising framework for unified extensions of the supersymmetric standard model. Compactifications to four dimensions often lead to U(1) symmetries beyond the standard model gauge group, whose breaking scale is classically undetermined. Without supersymmetry breaking, this is also the case for the size of the compact dimensions. Fayet-Iliopoulos terms generically fix the scale M of gauge symmetry breaking. The interplay with supersymmetry breaking can then stabilize the compact dimensions at a size 1/M, much smaller than the inverse supersymmetry breaking scale 1/μ. We illustrate this mechanism with an SO(10) model in six dimensions, compactified on an orbifold. (orig.)

  17. Kink-induced symmetry breaking patterns in brane-world SU(3)3 trinification models

    International Nuclear Information System (INIS)

    Demaria, Alison; Volkas, Raymond R.

    2005-01-01

    The trinification grand unified theory (GUT) has gauge group SU(3) 3 and a discrete symmetry permuting the SU(3) factors. In common with other GUTs, the attractive nature of the fermionic multiplet assignments is obviated by the complicated multiparameter Higgs potential apparently needed for phenomenological reasons, and also by vacuum expectation value (VEV) hierarchies within a given multiplet. This motivates the rigorous consideration of Higgs potentials, symmetry breaking patterns, and alternative symmetry breaking mechanisms in models with this gauge group. Specifically, we study the recently proposed 'clash of symmetries' brane-world mechanism to see if it can help with the symmetry breaking conundrum. This requires a detailed analysis of Higgs potential global minima and kink or domain wall solutions interpolating between the disconnected global minima created through spontaneous discrete symmetry breaking. Sufficiently long-lived metastable kinks can also be considered. We develop what we think is an interesting, albeit speculative, brane-world scheme whereby the hierarchical symmetry breaking cascade, trinification to left-right symmetry to the standard model to color cross electromagnetism, may be induced without an initial hierarchy in vacuum expectation values. Another motivation for this paper is simply to continue the exploration of the rich class of kinks arising in models that are invariant under both discrete and continuous symmetries

  18. Extended nonabelian symmetries for free fermionic model

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1993-08-01

    The higher spin symmetry for both Dirac and Majorana massless free fermionic field models are considered. An infinite Lie algebra which is a linear realization of the higher spin extension of the cross products of the Virasoro and affine Kac-Moody algebras is obtained. The corresponding current algebra is closed which is not the case of analogous current algebra in the WZNW model. The gauging procedure for the higher spin symmetry is also given. (author). 12 refs

  19. Symmetry and bifurcations of momentum mappings

    Energy Technology Data Exchange (ETDEWEB)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1981-01-01

    The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface.

  20. Mixed symmetry tensors in the worldline formalism

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università degli Studi di Modena e Reggio Emilia, via Campi 213/A, I-41125 Modena (Italy); INFN - Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Edwards, James P. [Department of Mathematical Sciences, University of Bath,Claverton Down, Bath BA2 7AY (United Kingdom)

    2016-05-10

    We consider the first quantised approach to quantum field theory coupled to a non-Abelian gauge field. Representing the colour degrees of freedom with a single family of auxiliary variables the matter field transforms in a reducible representation of the gauge group which — by adding a suitable Chern-Simons term to the particle action — can be projected onto a chosen fully (anti-)symmetric representation. By considering F families of auxiliary variables, we describe how to extend the model to arbitrary tensor products of F reducible representations, which realises a U(F) “flavour” symmetry on the worldline particle model. Gauging this symmetry allows the introduction of constraints on the Hilbert space of the colour fields which can be used to project onto an arbitrary irreducible representation, specified by a certain Young tableau. In particular the occupation numbers of the wavefunction — i.e. the lengths of the columns (rows) of the Young tableau — are fixed through the introduction of Chern-Simons terms. We verify this projection by calculating the number of colour degrees of freedom associated to the matter field. We suggest that, using the worldline approach to quantum field theory, this mechanism will allow the calculation of one-loop scattering amplitudes with the virtual particle in an arbitrary representation of the gauge group.

  1. Emergent Gauge Fields in Holographic Superconductors

    CERN Document Server

    Domènech, Oriol; Pomarol, Alex; Salvio, Alberto; Silva, Pedro J

    2010-01-01

    Holographic superconductors have been studied so far in the absence of dynamical electromagnetic fields, namely in the limit in which they coincide with holographic superfluids. It is possible, however, to introduce dynamical gauge fields if a Neumann-type boundary condition is imposed on the AdS-boundary. In 3+1 dimensions, the dual theory is a 2+1 dimensional CFT whose spectrum contains a massless gauge field, signaling the emergence of a gauge symmetry. We study the impact of a dynamical gauge field in vortex configurations where it is known to significantly affect the energetics and phase transitions. We calculate the critical magnetic fields H_c1 and H_c2, obtaining that holographic superconductors are of Type II (H_c1 < H_c2). We extend the study to 4+1 dimensions where the gauge field does not appear as an emergent phenomena, but can be introduced, by a proper renormalization, as an external dynamical field. We also compare our predictions with those arising from a Ginzburg-Landau theory and identif...

  2. A relativistic gauge model describing N particles bound by harmonic forces

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1987-01-01

    Application of the principle of gauging to linear canonical symmetries of simplest/rudimentary/bilinear lagrangians is shown to produce a relativistic version of the Lagrangian describing N particles bound by harmonic forces. For pairwise coupled identical particles the gauge group is T 1 xU 1 , xSU N-1 . A model for the relativistic discrete string (a chain of N particles) is also discussed. All these gauge theoried of particles can be quantized by standard methods

  3. The anomalous U(1)_{anom} symmetry and flavors from an SU(5) × SU(5)' GUT in Z_{12-I} orbifold compactification

    Science.gov (United States)

    Kim, Jihn E.; Kyae, Bumseok; Nam, Soonkeon

    2017-12-01

    In string compactifications, frequently the anomalous U(1) gauge symmetry appears which belongs to E_8 × E_8' of the heterotic string. This anomalous U(1) gauge boson obtains mass at the compactification scale (≈ 10^{18 } {GeV}) by absorbing one pseudoscalar (corresponding to the model-independent axion) from the second rank antisymmetric tensor field B_{MN}. Below the compactification scale a global symmetry U(1)_{anom} results whose charge Q_anom is the original gauge U(1) charge. This is the most natural global symmetry, realizing the "invisible" axion. This global symmetry U(1)_{anom} is suitable for a flavor symmetry. In the simplest compactification model with the flipped SU(5) grand unification, all the low energy parameters are calculated in terms of the vacuum expectation values of the standard model singlets.

  4. 4d N=2 theories with disconnected gauge groups

    Energy Technology Data Exchange (ETDEWEB)

    Argyres, Philip C.; Martone, Mario [Physics Department, University of Cincinnati,PO Box 210011, Cincinnati OH 45221 (United States)

    2017-03-28

    In this paper we present a beautifully consistent web of evidence for the existence of interacting 4d rank-1 N=2 SCFTs obtained from gauging discrete subgroups of global symmetries of other existing 4d rank-1 N=2 SCFTs. The global symmetries that can be gauged involve a non-trivial combination of discrete subgroups of the U(1){sub R}, low-energy EM duality group SL(2,ℤ), and the outer automorphism group of the flavor symmetry algebra, Out(F). The theories that we construct are remarkable in many ways: (i) two of them have exceptional F{sub 4} and G{sub 2} flavor groups; (ii) they substantially complete the picture of the landscape of rank-1 N=2 SCFTs as they realize all but one of the remaining consistent rank-1 Seiberg-Witten geometries that we previously constructed but were not associated to known SCFTs; and (iii) some of them have enlarged N=3 SUSY, and have not been previously constructed. They are also examples of SCFTs which violate the Shapere-Tachikawa relation between the conformal central charges and the scaling dimension of the Coulomb branch vev. We propose a modification of the formulas computing these central charges from the topologically twisted Coulomb branch partition function which correctly compute them for discretely gauged theories.

  5. Dynamical breakdown of the electroweak gauge symmetry

    International Nuclear Information System (INIS)

    Khosek, I.

    1983-01-01

    Fermion and gauge boson masses are calculated dynamically in the higgs-less Galshow-Weinberg-Salam model supplemented with a heavy neutral vector boson C. Fermion masses are determined by C-hypercharges of the left- and right-handed fermion fields. The W and Z-boson masses are related to the ferion masses and to the calculated fermion-would-be-Goldstone boson coupling constants by sum rules. Small deviation from the canonical relation msub(W)sup(2)/msub(Z)sup(2)cossup(2)thetasub(W)=1 is predicted. Fermion mixing is briefly discussed. Its necessary consequence is that the physical neutral current coupled to the C boson is nonuniversal and flavour changing

  6. Mirror symmetry in three-dimensional gauge theories, quivers and D-branes

    International Nuclear Information System (INIS)

    De Boer, J.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA; Hori, K.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA; Ooguri, H.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA; Oz, Y.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA

    1997-01-01

    We construct and analyze dual N=4 supersymmetric gauge theories in three dimensions with unitary and symplectic gauge groups. The gauge groups and the field content of the theories are encoded in quiver diagrams. The duality exchanges the Coulomb and Higgs branches and the Fayet-Iliopoulos and mass parameters. We analyze the classical and the quantum moduli spaces of the theories and construct an explicit mirror map between the mass parameters and the Fayet-Iliopoulos parameters of the dual. The results generalize the relation between ALE spaces and moduli spaces of SU(n) and SO(2n) instantons. We interpret some of these results from the string theory viewpoint, for SU(n) by analyzing T-duality and extremal transitions in type II string compactifications, for SO(2n) by using D-branes as probes. Finally, we make a proposal for the moduli space of vacua of these theories in the absence of matter. (orig.)

  7. Gauge theories as string theories: the first results

    International Nuclear Information System (INIS)

    Gorsky, Aleksandr S

    2005-01-01

    The gauge/string theory duality in curved space is discussed mainly using a non-Abelian conformal N = 4 supersymmetric gauge theory and the theory of a closed superstring in the AdS 5 x S 5 metric as an example. It is shown that in the supergravity approximation, string duality yields the characteristics of a strong-coupling gauge theory. For a special shape of the contour, a Wilson loop expression is derived in the classical superstring approximation. The role of the hidden integrability in lower-loop calculations in gauge theory and in different approximations of string theory is discussed. It is demonstrated that in the large quantum-number limit, gauge theory operators can be described in terms of the dual string picture. Examples of metrics providing the dual description of gauge theories with broken conformal symmetry are presented, and formulations of the vacuum structure of such theories in terms of gravity are discussed. (reviews of topical problems)

  8. Holographic theories of electroweak symmetry breaking without a Higgs Boson

    International Nuclear Information System (INIS)

    Burdman, Gustavo; Nomura, Yasunori

    2003-01-01

    Recently, realistic theories of electroweak symmetry breaking have been constructed in which the electroweak symmetry is broken by boundary conditions imposed at a boundary of higher dimensional spacetime. These theories have equivalent 4D dual descriptions, in which the electroweak symmetry is dynamically broken by non-trivial infrared dynamics of some gauge interaction, whose gauge coupling (tilde g) and size N satisfy (tilde g) 2 N ∼> 16π 2 . Such theories allow one to calculate electroweak radiative corrections, including the oblique parameters S, T and U, as long as (tilde g) 2 N/16π 2 and N are sufficiently larger than unity. We study how the duality between the 4D and 5D theories manifests itself in the computation of various physical quantities. In particular, we calculate the electroweak oblique parameters in a warped 5D theory where the electroweak symmetry is broken by boundary conditions at the infrared brane. We show that the value of S obtained in the minimal theory exceeds the experimental bound if the theory is in a weakly coupled regime. This requires either an extension of the minimal model or departure from weak coupling. A particularly interesting scenario is obtained if the gauge couplings in the 5D theory take the largest possible values--the value suggested by naive dimensional analysis. We argue that such a theory can provide a potentially consistent picture for dynamical electroweak symmetry breaking: corrections to the electroweak observables are sufficiently small while realistic fermion masses are obtained without conflicting with bounds from flavor violation. The theory contains only the standard model quarks, leptons and gauge bosons below ≅2 TeV, except for a possible light scalar associated with the radius of the extra dimension. At ≅2 TeV increasingly broad string resonances appear. An analysis of top-quark phenomenology and flavor violation is also presented, which is applicable to both the weakly-coupled and strongly

  9. Electroweak symmetry breaking beyond the Standard Model

    Indian Academy of Sciences (India)

    words, now that the gauge symmetry is established with a significant ..... picture, the Higgs is some kind of a composite bound state emerging from a strongly .... (i) Little Higgs vs. composite: Little Higgs models were introduced to solve the little ...

  10. Non-Abelian tensor gauge fields and higher-spin extension of standard model

    International Nuclear Information System (INIS)

    Savvidy, G.

    2006-01-01

    We suggest an extension of the gauge principle which includes non-Abelian tensor gauge fields. The invariant Lagrangian is quadratic in the field strength tensors and describes interaction of charged tensor gauge bosons of arbitrary large integer spin 1,2,l. Non-Abelian tensor gauge fields can be viewed as a unique gauge field with values in the infinite-dimensional current algebra associated with compact Lie group. The full Lagrangian exhibits also enhanced local gauge invariance with double number of gauge parameters which allows to eliminate all negative norm states of the nonsymmetric second-rank tensor gauge field, which describes therefore two polarizations of helicity-two massless charged tensor gauge boson and the helicity-zero ''axion'' The geometrical interpretation of the enhanced gauge symmetry with double number of gauge parameters is not yet known. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. Gauged N=8 d=5 supergravity

    International Nuclear Information System (INIS)

    Pernici, M.; Pilch, K.; Van Nieuwenhuizen, P.

    1985-01-01

    The complete gauged nonlinear N=8 d=5 supergravity action and supersymmetry transformation laws (without four- and three-fermion terms) are presented. They are obtained from the ungauged model by reinterpreting part of the field strengths of the abelian vector fields as real self-dual second-rank antisymmetric tensors. The complete set of T-tensor indentities are given and their validity is checked numerically. The model has a local Yang-Mills SO(6) and a local composite USp(8) symmetry. The self-duality is essential for the consistent coupling of the antisymmetric tensors to the nonabelian gauge fields. (orig.)

  12. Spontaneous Broken Local Conformal Symmetry and Dark Energy Candidate

    International Nuclear Information System (INIS)

    Liu, Lu-Xin

    2013-01-01

    The local conformal symmetry is spontaneously broken down to the Local Lorentz invariance symmetry through the approach of nonlinear realization. The resulting effective Lagrangian, in the unitary gauge, describes a cosmological vector field non-minimally coupling to the gravitational field. As a result of the Higgs mechanism, the vector field absorbs the dilaton and becomes massive, but with an independent energy scale. The Proca type vector field can be modelled as dark energy candidate. The possibility that it further triggers Lorentz symmetry violation is also pointed out

  13. Reducing the rank of gauge groups in orbifold compactification

    International Nuclear Information System (INIS)

    Sato, Hikaru

    1989-01-01

    The report introduces general twisted boundary conditions on fermionic string variables and shows that a non-Abelian embedding is possible when background gauge field is introduced on orbifold. This leads to reduction of the rank of the gauge group. The report presents a procedure to obtain the lower-rank gauge groups by the use of non-Abelian Wilson lines. The unbroken gauge group is essentially determined by the eigen vector which should obey the level-matching conditions. The gauge symmetry is determined by certain conditions. In a particular application, it is not necessary to introduce explicit form of the non-Abelian Wilson lines. The procedure starts with introduction of desired eigen vectors which are supposed to be obtained by diagonalization of the boundary conditions with the appropriate transformation matrix. The rank is reduced by one by using the Wilson lines which transform as 3 of SU(2) R or SU(2) in SU(4). A possible way of reducing the rank by two is to use the Wilson lines from SU(2) R x SU(2) or SU(3) in SU(4). The rank is reduced by three by means of the Wilson lines which transform as SU(4) or SU(2) R SU(3). Finally the rank is reduced by four when the Wilson lines with full symmetry of SU(2) R x SU(4) are used. The report tabulates the possible lower-rank gauge groups obtained by the proposed method. Massless fermions corresponding to the eigen vectors are also listed. (N.K.)

  14. Gauged multisoliton baby Skyrme model

    Science.gov (United States)

    Samoilenka, A.; Shnir, Ya.

    2016-03-01

    We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.

  15. Gravity duals of supersymmetric gauge theories on three-manifolds

    International Nuclear Information System (INIS)

    Farquet, Daniel; Lorenzen, Jakob; Martelli, Dario; Sparks, James

    2016-01-01

    We study gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1)×U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.

  16. Gauge theory and elementary particles

    International Nuclear Information System (INIS)

    Zwirn, H.

    1982-01-01

    The present orientation of particle physics, founded on local gauge invariance theories and spontaneous symmetry breaking is described in a simple formalism. The application of these ideas to the latest theories describing electromagnetic and weak interactions (Glashow, Weinberg, Salam models) and strong interactions, quantum chromodynamics, is presented so as to give a general picture of the mechanisms subtending these theories [fr

  17. General relativity and gauge gravity theories of higher order

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    1998-01-01

    It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G ∞4 as the local gauge symmetry group and the symmetrical tensor of rank two g μν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one

  18. Renormalizable massive charged vector-boson theory without spontaneous symmetry breakdown

    International Nuclear Information System (INIS)

    Mac, E.

    1977-01-01

    A renormalizable and unitary theory of massive charged vector bosons is proposed. This theory has a similarity with the Georgi-Glashow theory, the difference being that in the former the Lagrangian does not contain the potential term in the scalar fields necessary in theories with spontaneous symmetry breaking. The mass M > 0 of the charged vector bosons are introduced in the Lagrangian in such a way that the Lagrangian is still invariant under a ''distorted'' local gauge symmetry. This Lagrangian is studied in the generalized renormalizable gauge (gauge R /sub xi/), by means of the Lagrange multiplier formalism. In this way, the fictitious Lagrangian that restores unitarity to the theory can be constructed. The fictitious Lagrangian constructed using the Lagrange multiplier formalism is compared to the one obtained due to the variation of the gauge condition under the gauge transformations. The renormalizability of this theory is studied and the Ward-Takahaski identities are derived; these identities are checked by explicit calculations. Using the Becchi-Rouet-Stora transformation, one can obtain the equation satisfied by the renormalized Lagrangian; solving this equation the most general form of the renormalized Lagrangian is obtained. Also the classical solutions of this kind of theories are studied. Solutions are found suggesting the presence of dyons

  19. Higgsless theory of electroweak symmetry breaking from warped space

    International Nuclear Information System (INIS)

    Nomura, Yasunori

    2003-01-01

    We study a theory of electroweak symmetry breaking without a Higgs boson, recently suggested by Csaki et al. The theory is formulated in 5D warped space with the gauge bosons and matter fields propagating in the bulk. In the 4D dual picture, the theory appears as the standard model without a Higgs field, but with an extra gauge group G which becomes strong at the TeV scale. The strong dynamics of G breaks the electroweak symmetry, giving the masses for the W and Z bosons and the quarks and leptons. We study corrections in 5D which are logarithmically enhanced by the large mass ratio between the Planck and weak scales, and show that they do not destroy the structure of the electroweak gauge sector at the leading order. We introduce a new parameter, the ratio between the two bulk gauge couplings, into the theory and find that it allows us to control the scale of new physics. We also present a potentially realistic theory accommodating quarks and leptons and discuss its implications, including the violation of universality in the W and Z boson couplings to matter and the spectrum of the Kaluza-Klein excitations of the gauge bosons. The theory reproduces many successful features of the standard model, although some cancellations may still be needed to satisfy constraints from the precision electroweak data. (author)

  20. Penrose limit, spontaneous symmetry breaking, and holography in a pp-wave background

    International Nuclear Information System (INIS)

    Das, Sumit R.; Gomez, Cesar; Rey, Soo-Jong

    2002-01-01

    We argue that the gauge theory dual to the type IIB string theory in a ten-dimensional pp-wave background resides on a Euclidean subspace spanning four of the eight transverse coordinates. We then show that the evolution of the string along one of the light cone directions in the bulk is identifiable as the RG flow of the gauge theory, a relation facilitating the 'holography' of the pp-wave background. The 'holography' reorganizes the dual gauge theory into theories defined over Hilbert subspaces of fixed R charge. The reorganization breaks the SO(4,2)xSO(6) symmetry to a maximal subgroup SO(4)xSO(4) spontaneously. We argue that the low-energy string modes may be regarded as Goldstone modes resulting from such a symmetry breaking pattern

  1. String theory considered as a local gauge theory of an extended object

    International Nuclear Information System (INIS)

    Chan Hongmo; Tsou Sheungtsun.

    1986-11-01

    In attempting to understand more about the physical origin of the so-called 'chordal gauge symmetry' in string field theory it is found that one can, at least formally, consider the theory as a generalised local gauge theory. However, the fundamental object is no longer a point, as in ordinary gauge theory, but a point with a tail, and it is the motion of this tail which represents the internal gauge degree of freedom. Moreover, the differential geometry is based on the non-abelian conformal group instead of the usual translation group. (author)

  2. Post-sphaleron baryogenesis and n- anti n oscillation in non-SUSY SO(10) GUT with gauge coupling unification

    International Nuclear Information System (INIS)

    Patra, Sudhanwa; Pritimita, Prativa

    2014-01-01

    ''Post-sphaleron baryogenesis'', a fresh and profound mechanism of baryogenesis accounts for the matter-antimatter asymmetry of our present universe in a framework of Pati-Salam symmetry. We attempt here to embed this mechanism in a non-SUSY SO(10) grand unified theory by reviving a novel symmetry breaking chain with Pati-Salam symmetry as an intermediate symmetry breaking step and as well to address post-sphaleron baryogenesis and neutron-antineutron oscillation in a rational manner. The Pati-Salam symmetry based on the gauge group SU(2) L x SU(2) R x SU(4) C is realized in our model at 10 5 -10 6 GeV and the mixing time for the neutron-antineutron oscillation process having ΔB = 2 is found to be τ n- anti n ≅ 10 8 -10 10 s with the model parameters, which is within the reach of forthcoming experiments. Other novel features of the model include low scale right-handed W R ± , Z R gauge bosons, explanation for neutrino oscillation data via the gauged inverse (or extended) seesaw mechanism and most importantly TeV scale color sextet scalar particles responsible for an observable n- anti n oscillation which may be accessible to LHC. We also look after gauge coupling unification and an estimation of the proton lifetime with and without the addition of color sextet scalars. (orig.)

  3. Quantum electrodynamics in the light-front Weyl gauge

    International Nuclear Information System (INIS)

    Przeszowski, J.; Naus, H.W.; Kalloniatis, A.C.

    1996-01-01

    We examine (3+1)-dimensional QED quantized in the open-quote open-quote front form close-quote close-quote with finite open-quote open-quote volume close-quote close-quote regularization, namely, in discretized light-cone quantization. Instead of the light-cone or Coulomb gauges, we impose the light-front Weyl gauge A - =0. The Dirac method is used to arrive at the quantum commutation relations for the independent variables. We apply open-quote open-quote quantum-mechanical gauge fixing close-quote close-quote to implement Gauss close-quote law, and derive the physical Hamiltonian in terms of unconstrained variables. As in the instant form, this Hamiltonian is invariant under global residual gauge transformations, namely, displacements. On the light cone the symmetry manifests itself quite differently. copyright 1996 The American Physical Society

  4. Comments on global symmetries, anomalies, and duality in (2+1)d

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); SISSA & INFN,via Bonomea 265, 34136 Trieste (Italy); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2017-04-21

    We analyze in detail the global symmetries of various (2+1)d quantum field theories and couple them to classical background gauge fields. A proper identification of the global symmetries allows us to consider all non-trivial bundles of those background fields, thus finding more subtle observables. The global symmetries exhibit interesting ’t Hooft anomalies. These allow us to constrain the IR behavior of the theories and provide powerful constraints on conjectured dualities.

  5. Quantized Dirac field in curved Riemann--Cartan background. I. Symmetry properties, Green's function

    International Nuclear Information System (INIS)

    Nieh, H.T.; Yan, M.L.

    1982-01-01

    In the present series of papers, we study the properties of quantized Dirac field in curved Riemann--Cartan space, with particular attention on the role played by torsion. In this paper, we give, in the spirit of the original work of Weyl, a systematic presentation of Dirac's theory in curved Riemann--Cartan space. We discuss symmetry properties of the system, and derive conservation laws as direct consequences of these symmetries. Also discussed is conformal gauge symmetry, with torsion effectively playing the role of a conformal gauge field. To obtain short-distance behavior, we calculate the spinor Green's function, in curved Riemann--Cartan background, using the Schwinger--DeWitt method of proper-time expansion. The calculation corresponds to a generalization of DeWitt's calculation for a Riemannian background

  6. Surface charge algebra in gauge theories and thermodynamic integrability

    International Nuclear Information System (INIS)

    Barnich, Glenn; Compere, Geoffrey

    2008-01-01

    Surface charges and their algebra in interacting Lagrangian gauge field theories are constructed out of the underlying linearized theory using techniques from the variational calculus. In the case of exact solutions and symmetries, the surface charges are interpreted as a Pfaff system. Integrability is governed by Frobenius' theorem and the charges associated with the derived symmetry algebra are shown to vanish. In the asymptotic context, we provide a generalized covariant derivation of the result that the representation of the asymptotic symmetry algebra through charges may be centrally extended. Comparison with Hamiltonian and covariant phase space methods is made. All approaches are shown to agree for exact solutions and symmetries while there are differences in the asymptotic context

  7. Holism and structuralism in U(1) gauge theory

    Science.gov (United States)

    Lyre, Holger

    After decades of neglect philosophers of physics have discovered gauge theories-arguably the paradigm of modern field physics-as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism-in the eyes of its proponents the best suited realist position towards modern physics-has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories-in particular U (1) gauge theory. In the first part of the paper the framework of fiber bundle gauge theories is briefly presented and the interpretation of local gauge symmetry will be examined. In the second part, an ontological underdetermination of gauge theories is carved out by considering the various kinds of non-locality involved in such typical effects as the Aharonov-Bohm effect. The analysis shows that the peculiar form of non-separability figuring in gauge theories is a variant of spatiotemporal holism and can be distinguished from quantum theoretic holism. In the last part of the paper the arguments for a gauge theoretic support of structural realism are laid out and discussed.

  8. F-theory and all things rational: surveying U(1) symmetries with rational sections

    International Nuclear Information System (INIS)

    Lawrie, Craig; Schäfer-Nameki, Sakura; Wong, Jin-Mann

    2015-01-01

    We study elliptic fibrations for F-theory compactifications realizing 4d and 6d supersymmetric gauge theories with abelian gauge factors. In the fibration these U(1) symmetries are realized in terms of additional rational section. We obtain a universal characterization of all the possible U(1) charges of matter fields by determining the corresponding codimension two fibers with rational sections. In view of modelling supersymmetric Grand Unified Theories, one of the main examples that we analyze are U(1) symmetries for SU(5) gauge theories with 5̄ and 10 matter. We use a combination of constraints on the normal bundle of rational curves in Calabi-Yau three- and four-folds, as well as the splitting of rational curves in the fibers in codimension two, to determine the possible configurations of smooth rational sections. This analysis straightforwardly generalizes to multiple U(1)s. We study the flops of such fibers, as well as some of the Yukawa couplings in codimension three. Furthermore, we carry out a universal study of the U(1)-charged GUT singlets, including their KK-charges, and determine all realizations of singlet fibers. By giving vacuum expectation values to these singlets, we propose a systematic way to analyze the Higgsing of U(1)s to discrete gauge symmetries in F-theory.

  9. Some aspects of non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Tyburski, L.J.

    1976-01-01

    Two aspects of the theory of non-Abelian gauge fields are considered. In the first part, the fermion-fermion scattering amplitude is calculated for a non-Abelian gauge theory with SU(N) gauge symmetry in the limit of high energy with fixed momentum transfer through sixth order in the coupling constant. Only the leading logarithmic terms in each order of perturbation theory are kept. To avoid the infrared problem, the Higgs mechanism is invoked to give masses to the vector bosons of the theory. It is found that the scattering amplitude exponentiates to a Regge form. This result is qualitatively different from an earlier published calculation. In the second part of the thesis, we consider fermion-fermion scattering in a non-Abelian gauge theory with massless vector bosons, and demonstrate that for physically measurable cross sections the infrared divergences of the theory cancel out to lowest nontrivial order

  10. Local gauge symmetry and confinement in quantum chromodynamics

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Pearson, R.B.

    1977-01-01

    The nonabelian color gauge theory of quarks and gluons has been proposed as the basis for fundamental theory of hadrons. The features of this theory (quantum chromodynamics) are considered which lead to confinement. A transverse lattice formulation of the theory is also discussed, which is used as a basis for calculation of properties of the hadron bound states. The theory is quantized by eliminating the longitudinal degrees of freedom in favour of coulomb potential. Hadrons are formed as bound states of quarks and the symmetric phase gluons

  11. Superstring motivated gauge models based on a rank six subgroup of E6

    International Nuclear Information System (INIS)

    Lazarides, G.; Panagiotakopoulos, C.; Shafi, Q.

    1987-01-01

    We discuss gauge models based on a superstring motivated rank six subgroup of E 6 . Lepton number is an accidental unbroken symmetry of the models which leads to an essential stable proton. One of the neutral gauge bosons couples to B-L and may have mass below a TeV. (orig.)

  12. Gauge Trimming of Neutrino Masses

    International Nuclear Information System (INIS)

    Chen, Mu-Chun; de Gouvea, Andre; Dobrescu, Bogdan A.

    2006-01-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses

  13. Volume independence in large Nc QCD-like gauge theories

    International Nuclear Information System (INIS)

    Kovtun, Pavel; Uensal, Mithat; Yaffe, Laurence G.

    2007-01-01

    Volume independence in large N c gauge theories may be viewed as a generalized orbifold equivalence. The reduction to zero volume (or Eguchi-Kawai reduction) is a special case of this equivalence. So is temperature independence in confining phases. A natural generalization concerns volume independence in 'theory space' of quiver gauge theories. In pure Yang-Mills theory, the failure of volume independence for sufficiently small volumes (at weak coupling) due to spontaneous breaking of center symmetry, together with its validity above a critical size, nicely illustrate the symmetry realization conditions which are both necessary and sufficient for large N c orbifold equivalence. The existence of a minimal size below which volume independence fails also applies to Yang-Mills theory with antisymmetric representation fermions [QCD(AS)]. However, in Yang-Mills theory with adjoint representation fermions [QCD(Adj)], endowed with periodic boundary conditions, volume independence remains valid down to arbitrarily small size. In sufficiently large volumes, QCD(Adj) and QCD(AS) have a large N c ''orientifold'' equivalence, provided charge conjugation symmetry is unbroken in the latter theory. Therefore, via a combined orbifold-orientifold mapping, a well-defined large N c equivalence exists between QCD(AS) in large, or infinite, volume and QCD(Adj) in arbitrarily small volume. Since asymptotically free gauge theories, such as QCD(Adj), are much easier to study (analytically or numerically) in small volume, this equivalence should allow greater understanding of large N c QCD in infinite volume

  14. Reformulation od spontaneous symmetry breaking and the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Rawat, A.S.; Rawat, S.; Negi, O.P.S.

    1999-01-01

    Spontaneous symmetry breaking and the Weinberg-Salam model have been reformulated in terms of quaternion-valued field variables. The quaternion-valued scalar Lagrangian reduces to four different field equations associated with the scalar quartet of a quaternion field φ φ 0 +e 1φ1 +e 2φ2 +e 3φ3 . It has been shown that the quaternion gauge group SO(4) is spontaneously broken to two gauge groups of SU(2) non Abelian gauge fields. The Weinberg-Salam model of electroweak interaction has been extensively studied to enlarge the gauge group structure SU(2) L xSU(2) R xU(1)

  15. Generalized hidden symmetry for low-energy hadron phsics

    International Nuclear Information System (INIS)

    Kaiser, N.; Meissner, U.G.

    1990-01-01

    We present a detailed study of an effective chiral meson lagrangian involving pseudoscalar, vector and axial-vector mesons. We employ the recently proposed technique to introduce vector and axial-vector mesons as composite gauge bosons of an extended hidden gauge symmetry of the non-linear σ-model. In particular, we write down the most general anomalous action (Wess-Zumino term) in accordance with low-energy theorems and chiral symmetry. The global flavor anomalies of QCD are given by the standard (5-dimensional) Wess-Zumino-Witten action of the pseudoscalar mesons, whereas all the processes violating natural parity for the vectors and axials are chirally (gauge) symmetric and therefore do not contribute to the Wess-Zumino anomaly equation. We find fourteen independent terms with a priori unknown (real) coefficients. We are able to fix some of these coefficients from anomalous hadronic and radiative vector/axial-vector meson decays. A comparison to the gauged Wess-Zumino action in the so-called massive Yang-Mills approach shows that both anomalous actions are indeed equivalent for a special choice of the unknown coefficients. We finally propose a realistic two-flavor chiral effective lagrangian incorporating pions, the vector mesons ρ and ω as well as the axial A 1 meson which should be used in skyrmion physics at energy scales up to about 1 GeV. (orig.)

  16. Generalised BRST symmetry and gaugeon formalism for perturbative quantum gravity: Novel observation

    International Nuclear Information System (INIS)

    Upadhyay, Sudhaker

    2014-01-01

    In this paper the novel features of Yokoyama gaugeon formalism are stressed out for the theory of perturbative quantum gravity in the Einstein curved spacetime. The quantum gauge transformations for the theory of perturbative gravity are demonstrated in the framework of gaugeon formalism. These quantum gauge transformations lead to renormalised gauge parameter. Further, we analyse the BRST symmetric gaugeon formalism which embeds more acceptable Kugo–Ojima subsidiary condition. Further, the BRST symmetry is made finite and field-dependent. Remarkably, the Jacobian of path integral under finite and field-dependent BRST symmetry amounts to the exact gaugeon action in the effective theory of perturbative quantum gravity. -- Highlights: •We analyse the perturbative gravity in gaugeon formalism. •The generalisation of BRST transformation is also studied in this context. •Within the generalised BRST framework we found the exact gaugeon modes in the theory

  17. Gauge Theories of Vector Particles

    Science.gov (United States)

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  18. The {{\\rm{D}}\\bar{{\\rm{D}}}}^{{\\rm{* }}} interaction with isospin zero in an extended hidden gauge symmetry approach

    Science.gov (United States)

    Sun, Bao-Xi; Wan, Da-Ming; Zhao, Si-Yu

    2018-05-01

    The {{{D}}\\bar{{{D}}}}{{* }} interaction via a ρ or ω exchange is constructed within an extended hidden gauge symmetry approach, where the strange quark is replaced by the charm quark in the SU(3) flavor space. With this {{{D}}\\bar{{{D}}}}{{* }} interaction, a bound state slightly lower than the {{{D}}\\bar{{{D}}}}{{* }} threshold is generated dynamically in the isospin zero sector by solving the Bethe-Salpeter equation in the coupled-channel approximation, which might correspond to the X(3872) particle announced by many collaborations. This formulism is also used to study the {{{B}}\\bar{{{B}}}}{{* }} interaction, and a {{{B}}\\bar{{{B}}}}{{* }} bound state with isospin zero is generated dynamically, which has no counterpart listed in the review of the Particle Data Group. Furthermore, the one-pion exchange between the D meson and the {\\bar{{{D}}}}{{* }} is analyzed precisely, and we do not think the one-pion exchange potential need be considered when the Bethe-Salpeter equation is solved.

  19. String theory duals of Lifshitz–Chern–Simons gauge theories

    International Nuclear Information System (INIS)

    Balasubramanian, Koushik; McGreevy, John

    2012-01-01

    We propose candidate gravity duals for a class of non-Abelian z = 2 Lifshitz Chern–Simons (LCS) gauge theories studied by Mulligan, Kachru and Nayak. These are nonrelativistic gauge theories in 2+1 dimensions in which parity and time-reversal symmetries are explicitly broken by the presence of a Chern–Simons term. We show that these field theories can be realized as deformations of DLCQ N=4 super Yang–Mills theory. Using the holographic dictionary, we identify the bulk fields of type IIB supergravity that are dual to these deformations. The geometries describing the groundstates of the non-Abelian LCS gauge theories realized here exhibit a mass gap. (paper)

  20. Class of very simple gauge theories which remain renormalizable even in the limit of infinite gauge coupling constant

    International Nuclear Information System (INIS)

    Kaptanoglu, S.

    1983-01-01

    A class of local gauge theories based on compact semisimple Lie groups is studied in the limit of infinite gauge coupling constant (g = infinity). In general, in this limit, the gauge fields become auxiliary in all gauge theories, and the system develops a richer structure of constraints. Unfortunately for most gauge theories, this limit turns out to be too singular to quantize and the theory ceases to be renormalizable. For a special class of gauge theories, however, where there are no fermions and there is only one multiplet of scalars in the adjoint representation, we prove that a consistent renormalizable quantum theory exists even in this very singular limit. We trace this exceptional behavior to a new local translationlike symmetry in the functional space that this class of gauge models possesses in the limit of infinite gauge coupling constant. By carrying out the constraint analysis, evaluating the Faddeev-Popov-Senjanovic determinant, and doing the functional integrations over the canonical momenta, the gauge fields, and most of the components of the scalar fields, we obtain an extremely simple result with no non-Abelian structure left in it. For example, for the group SU(2), the final answer reduces to the theory of a one-component self-interacting real phi 4 scalar field theory. Throughout this paper, we use functional methods and make no approximations; our results are nonperturbative and exact. We also discuss some of the possible implications of our results

  1. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    Science.gov (United States)

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  2. BOOK REVIEW: Symmetry Breaking

    Science.gov (United States)

    Ryder, L. H.

    2005-11-01

    have to be rather clever to recognize that the particle interactions were rotationally invariant. Nambu and Goldstone showed that the spontaneous breakdown of a (continuous) symmetry implied the existence of massless scalar particles, referred to as Nambu Goldstone bosons, or simply Goldstone bosons. Meanwhile Anderson, in his study of (non-relativistic) superconductivity, showed that the exclusion of magnetic flux (Meissner effect) corresponds to a finite range for the electromagnetic field and hence to a `massive photon'. In a relativistic context Englert, Brout, Guralnik and more particularly Higgs showed that a spontaneous breaking of a gauge symmetry resulted in a massive, instead of a massless, gauge particle and no Goldstone particle; in the jargon of the day, the massless gauge particle had `eaten' the massless Goldstone boson and become massive; exactly Anderson's observation. It is this phenomenon which has been invoked so successfully to explain the masses of the W and Z bosons of weak interactions. Spontaneous symmetry breaking, therefore, has played a major role in the development of the Standard Model of particle physics, and it has also proved an important tool in condensed matter physics, for example in the understanding of phase transitions. At the same time, however, in the understanding of most (or all) particle physicists, and perhaps also condensed matter physicists, the notion of spontaneous symmetry breaking has been inexorably linked to that of a degenerate vacuum. This is the background and the starting point for Strocchi's book. Recognizing the power and importance of the concept of spontaneous symmetry breaking in theoretical physics, he defines it in a more refined and general way than usual. `Despite the many popular accounts', he writes, `the phenomenon of spontaneous symmetry breaking is deep and subtle and it is not without [reason] that it has been fully understood only in recent times.' Strocchi's main emphasis is on the fact that the

  3. On the relativity and equivalence principles in the gauge theory of gravitation

    International Nuclear Information System (INIS)

    Ivanenko, D.; Sardanashvily, G.

    1981-01-01

    One sees the basic ideas of the gauge gravitation theory still not generally accepted in spite of more than twenty years of its history. The chief reason lies in the fact that the gauge character of gravity is connected with the whole complex of problems of Einstein General Relativity: about the reference system definition, on the (3+1)-splitting, on the presence (or absence) of symmetries in GR, on the necessity (or triviality) of general covariance, on the meaning of equivalence principle, which led Einstein from Special to General Relativity |1|. The real actuality of this complex of interconnected problems is demonstrated by the well-known work of V. Fock, who saw no symmetries in General Relativity, declared the unnecessary Equivalence principle and proposed even to substitute the designation ''chronogeometry'' instead of ''general relativity'' (see also P. Havas). Developing this line, H. Bondi quite recently also expressed doubts about the ''relativity'' in Einstein theory of gravitation. All proposed versions of the gauge gravitation theory must clarify the discrepancy between Einstein gravitational field being a pseudo-Riemannian metric field, and the gauge potentials representing connections on some fiber bundles and there exists no group, whose gauging would lead to the purely gravitational part of connection (Christoffel symbols or Fock-Ivenenko-Weyl spinorial coefficients). (author)

  4. Symmetries and groups in particle physics

    International Nuclear Information System (INIS)

    Scherer, Stefan

    2016-01-01

    The aim of this book consists of a didactic introduction to the group-theoretical considerations and methods, which have led to an ever deeper understanding of the interactions of the elementary particles. The first three chapters deal primarily with the foundations of the representation theory of primarily finite groups, whereby many results are also transferable to compact Lie groups. In the third chapter we discuss the concept of Lie groups and their connection with Lie algebras. In the remaining chapter it is mainly about the application of group theory in physics. Chapter 4 deals with the groups SO(3) and SU(2), which occur in connection with the description of the angular momentum in quantum mechanics. We discuss the Wigner-Eckar theorem together with some applications. In chapter 5 we are employed to the composition properties of strongly interacting systems, so called hadrons, and discuss extensively the transformation properties of quarks with relation to the special unitary groups. The Noether theorem is generally treated in connection to the conservation laws belonging to the Galilei group and the Poincare group. We confine us in chapter 6 to internal symmetries, but explain for that extensively the application to quantum field theory. Especially an outlook on the effect of symmetries in form of so called Ward identities is granted. In chapter 7 we turn towards the gauge principle and discuss first the construction of quantum electrodynamics. In the following we generalize the gauge principle to non-Abelian groups (Yang-Mills theories) and formulate the quantum chromodynamics (QCD). Especially we take a view of ''random'' global symmetries of QCD, especially the chiral symmetry. In chapter 8 we illuminate the phenomenon of spontaneous symmetry breaking both for global and for local symmetries. In the final chapter we work out the group-theoretical structure of the Standard Model. Finally by means of the group SU(5) we take a view to

  5. Blockspin and multigrid for staggered fermions in non-abelian gauge fields

    International Nuclear Information System (INIS)

    Kalkreuter, T.; Mack, G.; Speh, M.

    1991-07-01

    We discuss blockspins for staggered fermions, i.e. averaging and interpolation procedures which are needed in a real space renormalization group approach to gauge theories with staggered fermions and in a multigrid approach to the computation of gauge covariant propagators. The discussion starts from the requirement that the symmetries of the free action should be preserved by the blocking procedure in the limit of a pure gauge. A definition of an averaging kernel as a solution of a gauge covariant eigenvalue equation is proposed, and the properties of a corresponding interpolation kernel are examined in the light of general criteria for good choices of blockspins. Some results of multigrid computation of bosonic propagation in an SU(2) gauge field in 4 dimensions are also presented. (orig.)

  6. New mechanisms of gauge-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Randall, L.

    1997-01-01

    New mechanisms for the communication of supersymmetry breaking via gauge interactions are introduced. These models do not require complicated dynamics to induce a non-vanishing F term for a singlet. The first class of models communicates supersymmetry breaking to the visible sector through a ''mediator'' field that transforms under both a messenger gauge group of the dynamical supersymmetry breaking sector and the standard model gauge group. This model has a distinctive phenomenology; in particular, the scalar superpartners should be heavier than the gaugino superpartners by at least an order of magnitude. The second class of models has a phenomenology more similar to the ''standard'' messenger sectors. A singlet is incorporated, but the model does not require complicated mechanisms to generate a singlet F term. The role of the singlet is to couple fields from the dynamical symmetry breaking sector to fields transforming under the standard model gauge group. We also mention a potential solution to the μ problem. (orig.)

  7. Phenomenology of strongly coupled chiral gauge theories

    International Nuclear Information System (INIS)

    Bai, Yang; Berger, Joshua; Osborne, James; Stefanek, Ben A.

    2016-01-01

    A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1) ′ gauge symmetry such that their bare masses are related to the U(1) ′ -breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of such models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z ′ γ resonance, where the Z ′ naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.

  8. Gauge boson exchange in AdSd+1

    International Nuclear Information System (INIS)

    D'Hoker, Eric; Freedman, Daniel Z.

    1999-01-01

    We study the amplitude for exchange of massless gauge bosons between pairs of massive scalar fields in anti-de Sitter space. In the AdS/CFT correspondence this amplitude describes the contribution of conserved flavor symmetry currents to 4-point functions of scalar operators in the boundary conformal theory. A concise, covariant, Y2K compatible derivation of the gauge boson propagator in AdS d+ 1 is given. Techniques are developed to calculate the two bulk integrals over AdS space leading to explicit expressions or convenient, simple integral representations for the amplitude. The amplitude contains leading power and sub-leading logarithmic singularities in the gauge boson channel and leading logarithms in the crossed channel. The new methods of this paper are expected to have other applications in the study of the Maldacena conjecture

  9. Classical confining solutions of a tensor gauge theory incorporating colour

    International Nuclear Information System (INIS)

    Salam, A.; Strathdee, J.

    1977-04-01

    A mass-modified Einstein-Weyl gauge theory of colour carrying spin-two mesons is formulated. A classical solution is exhibited for the case of internal SU(2) symmetry which may confine quarks in colour singlets

  10. Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chih-Lung

    2005-04-05

    The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.

  11. Noncommutativity and unitarity violation in gauge boson scattering

    International Nuclear Information System (INIS)

    Hewett, J. L.; Petriello, F. J.; Rizzo, T. G.

    2002-01-01

    We examine the unitarity properties of spontaneously broken noncommutative gauge theories. We find that the symmetry breaking mechanism in the noncommutative standard model of Chaichian et al. leads to an unavoidable violation of tree-level unitarity in gauge boson scattering at high energies. We then study a variety of simplified spontaneously broken noncommutative theories and isolate the source of this unitarity violation. Given the group theoretic restrictions endemic to noncommutative model building, we conclude that it is difficult to build a noncommutative standard model under the Weyl-Moyal approach that preserves unitarity

  12. Gauge groups and topological invariants of vacuum manifolds

    International Nuclear Information System (INIS)

    Golo, V.L.; Monastyrsky, M.I.

    1978-01-01

    The paper is concerned with topological properties of the vacuum manifolds in the theories with the broken gauge symmetry for the groups of the type SO(k) x U(n), SO(k) x SO(p) x U(r). For the Ginsburg-Landau theory of the superfluid 3 He the gauge transformations are discussed. They provide the means to indicate all possible types of the vacuum manifolds, which are likely to correspond to distinct phases of the superfluid 3 He. Conditions on the existence of the minimums of the Ginsburg-Landau functional are discussed

  13. A realistic extension of gauge-mediated SUSY-breaking model with superconformal hidden sector

    International Nuclear Information System (INIS)

    Asano, Masaki; Hisano, Junji; Okada, Takashi; Sugiyama, Shohei

    2009-01-01

    The sequestering of supersymmetry (SUSY) breaking parameters, which is induced by superconformal hidden sector, is one of the solutions for the μ/B μ problem in gauge-mediated SUSY-breaking scenario. However, it is found that the minimal messenger model does not derive the correct electroweak symmetry breaking. In this Letter we present a model which has the coupling of the messengers with the SO(10) GUT-symmetry breaking Higgs fields. The model is one of the realistic extensions of the gauge mediation model with superconformal hidden sector. It is shown that the extension is applicable for a broad range of conformality breaking scale

  14. General study of ground states in gauged N=2 supergravity theories with symmetric scalar manifolds in 5 dimensions

    International Nuclear Information System (INIS)

    Oegetbil, O.

    2007-01-01

    After reviewing the existing results we give an extensive analysis of the critical points of the potentials of the gauged N=2 Yang-Mills/Einstein supergravity theories coupled to tensor multiplets and hypermultiplets. Our analysis includes all the possible gaugings of all N=2 Maxwell-Einstein supergravity theories whose scalar manifolds are symmetric spaces. In general, the scalar potential gets contributions from R-symmetry gauging, tensor couplings, and hypercouplings. We show that the coupling of a hypermultiplet into a theory whose potential has a nonzero value at its critical point, and gauging a compact subgroup of the hyperscalar isometry group will only rescale the value of the potential at the critical point by a positive factor, and therefore will not change the nature of an existing critical point. However this is not the case for noncompact SO(1,1) gaugings. An SO(1,1) gauging of the hyperisometry will generally lead to de Sitter vacua, which is analogous to the ground states found by simultaneously gauging SO(1,1) symmetry of the real scalar manifold with U(1) R in earlier literature. SO(m,1) gaugings with m>1, which give contributions to the scalar potential only in the magical Jordan family theories, on the other hand, do not lead to de Sitter vacua. Anti-de Sitter vacua are generically obtained when the U(1) R symmetry is gauged. We also show that it is possible to embed certain generic Jordan family theories into the magical Jordan family preserving the nature of the ground states. However the magical Jordan family theories have additional ground states which are not found in the generic Jordan family theories

  15. Moving vortices in noncommutative gauge theory

    International Nuclear Information System (INIS)

    Horvathy, P.A.; Stichel, P.C.

    2004-01-01

    Exact time-dependent solutions of nonrelativistic noncommutative Chern-Simons gauge theory are presented in closed analytic form. They are different from (indeed orthogonal to) those discussed recently by Hadasz, Lindstroem, Rocek and von Unge. Unlike theirs, our solutions can move with an arbitrary constant velocity, and can be obtained from the previously known static solutions by the recently found 'exotic' boost symmetry

  16. Light-cone gauge approach to arbitrary spin fields, currents and shadows

    International Nuclear Information System (INIS)

    Metsaev, R R

    2014-01-01

    Totally symmetric arbitrary spin fields in AdS space, conformal fields, conformal currents, and shadow fields in flat space are studied. Light-cone gauge formulations for such fields, currents and shadows are obtained. Use of the Poincaré parametrization of AdS space and ladder operators allows us to treat fields in flat and AdS spaces on an equal footing. Light-cone gauge realization of relativistic symmetries for fields, currents and shadows is also obtained. The light-cone gauge formulation for fields is obtained by using the gauge invariant Lagrangian which is presented in terms of modified de Donder divergence, while the light-cone gauge formulation for currents and shadows is obtained by using the gauge invariant approach to currents and shadows. This allows us to demonstrate explicitly how the ladder operators entering the gauge invariant formulation of fields, currents and shadows manifest themselves in the light-cone gauge formulation for fields, currents and shadows. (paper)

  17. About gauge fixing considered as a fine art and the following Slavnov symmetry; De la fixation de jauge consideree comme un des beaux arts et de la symetrie de Slavnov qui s`ensuit

    Energy Technology Data Exchange (ETDEWEB)

    Stora, R. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules Elementaires]|[European Organization for Nuclear Research (CERN), Geneva (Switzerland). Accelerator School

    1996-12-31

    Gauge fixing is defined as an operation that enables to express the integral on an orbit space as integral on the corresponding principal fiber bundle. When the fiber is non compact, this operation involves a cohomology class with compact support (or rapid decay). Slavnov symmetry is the algebraic expression of the ambiguity of this construction. (N.T.). 5 refs.

  18. Symmetry breaking in small rotating clouds of trapped ultracold Bose atoms

    International Nuclear Information System (INIS)

    Dagnino, D.; Barberan, N.; Riera, A.; Osterloh, K.; Lewenstein, M.

    2007-01-01

    We study the signatures of rotational and phase symmetry breaking in small rotating clouds of trapped ultracold Bose atoms by looking at rigorously defined condensate wave function. Rotational symmetry breaking occurs in narrow frequency windows, where energy degeneracy between the lowest energy states of different total angular momentum takes place. This leads to a complex condensate wave function that exhibits vortices clearly seen as holes in the density, as well as characteristic local phase patterns, reflecting the appearance of vorticities. Phase symmetry (or gauge symmetry) breaking, on the other hand, is clearly manifested in the interference of two independent rotating clouds

  19. BRST and Anti-BRST Symmetries in Perturbative Quantum Gravity

    Science.gov (United States)

    Faizal, Mir

    2011-02-01

    In perturbative quantum gravity, the sum of the classical Lagrangian density, a gauge fixing term and a ghost term is invariant under two sets of supersymmetric transformations called the BRST and the anti-BRST transformations. In this paper we will analyse the BRST and the anti-BRST symmetries of perturbative quantum gravity in curved spacetime, in linear as well as non-linear gauges. We will show that even though the sum of ghost term and the gauge fixing term can always be expressed as a total BRST or a total anti-BRST variation, we can express it as a combination of both of them only in certain special gauges. We will also analyse the violation of nilpotency of the BRST and the anti-BRST transformations by introduction of a bare mass term, in the massive Curci-Ferrari gauge.

  20. Symmetries in eleven dimensional supergravity compactified on a parallelized seven sphere

    CERN Document Server

    Englert, F; Spindel, P

    1983-01-01

    We analyse, in eleven-dimensional supergravity compactified on S7, the spontaneous symmetry breaking induced by a spontaneous parallelization of the sphere. The eight supersymmetries are broken at a common scale and the SO(8) gauge group is reduced to Spin (7). Such a large residual symmetry has a simple geometrical significance revealed through use of octonions; this is explained in elementary terms.