Zero-norm states and stringy symmetries
International Nuclear Information System (INIS)
Chan, C.-T.; Ho, P.-M.; Lee, J.-C.; Yang Yi; Teraguchi, Shunsuke
2006-01-01
We identify spacetime symmetry charges of string theory from an infinite number of zero-norm states (ZNS) with arbitrary high spin in the old covariant first quantized string spectrum. We give various evidences to support this identification. These include massive sigma-model calculation, Witten string field theory calculation, 2D string theory calculation and, most importantly, three methods of high-energy stringy scattering amplitude calculation. The last calculations explicitly prove Gross's conjectures in 1988 on high energy symmetry of string theory
Zero-norm states and stringy symmetries
International Nuclear Information System (INIS)
Chan, C-T; Ho, P-M; Lee, J-C; Teraguchi, Shunsuke; Yang Yi
2006-01-01
We identify spacetime symmetry charges of 26D open bosonic string theory from an infinite number of zero-norm states (ZNS) with arbitrary high spin in the old covariant first quantized string spectrum. We give various evidences to support this identification. These include massive sigma-model calculation, Witten string field theory calculation, 2D string theory calculation and, most importantly, three methods of high-energy stringy scattering amplitude calculations. The last calculations explicitly prove Gross's conjectures in 1988 on high energy symmetry of string theory
Stringy symmetries and their high-energy limits
International Nuclear Information System (INIS)
Chan, C.-T.; Lee, J.-C.
2005-01-01
We derive stringy symmetries with conserved charges of arbitrarily high spins from the decoupling of two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. These symmetries are valid to all energy α ' and all loop orders χ in string perturbation theory. The high-energy limit α ' ->∞ of these stringy symmetries can then be used to fix the proportionality constants between scattering amplitudes of different string states algebraically without referring to Gross and Mende's saddle point calculation of high-energy string-loop amplitudes. These proportionality constants are, as conjectured by Gross, independent of the scattering angle φ CM and the order χ of string perturbation theory. However, we also discover some new nonzero components of high-energy amplitudes not found previously by Gross and Manes. These components are essential to preserve massive gauge invariances or decouple massive zero-norm states of string theory. A set of massive scattering amplitudes and their high energy limit are calculated explicitly to justify our results
Stringy instanton corrections to N=2 gauge couplings
Billo', Marco; Fucito, Francesco; Lerda, Alberto; Morales, Jose F; Poghosyan, Rubik
2010-01-01
We discuss a string model where a conformal four-dimensional N=2 gauge theory receives corrections to its gauge kinetic functions from "stringy" instantons. These contributions are explicitly evaluated by exploiting the localization properties of the integral over the stringy instanton moduli space. The model we consider corresponds to a setup with D7/D3-branes in type I' theory compactified on T4/Z2 x T2, and possesses a perturbatively computable heterotic dual. In the heteoric side the corrections to the quadratic gauge couplings are provided by a 1-loop threshold computation and, under the duality map, match precisely the first few stringy instanton effects in the type I' setup. This agreement represents a very non-trivial test of our approach to the exotic instanton calculus.
Discrete symmetries and their stringy origin
International Nuclear Information System (INIS)
Mayorga Pena, Damian Kaloni
2014-05-01
Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.
International Nuclear Information System (INIS)
Weinberg, S.
1976-01-01
The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy
Parastatistics and gauge symmetries
International Nuclear Information System (INIS)
Govorkov, A.B.
1982-01-01
A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
International Nuclear Information System (INIS)
O'Raifeartaigh, L.
1979-01-01
This review describes the principles of hidden gauge symmetry and of its application to the fundamental interactions. The emphasis is on the structure of the theory rather than on the technical details and, in order to emphasise the structure, gauge symmetry and hidden symmetry are first treated as independent phenomena before being combined into a single (hidden gauge symmetric) theory. The main application of the theory is to the weak and electromagnetic interactions of the elementary particles, and although models are used for comparison with experiment and for illustration, emphasis is placed on those features of the application which are model-independent. (author)
Dark discrete gauge symmetries
International Nuclear Information System (INIS)
Batell, Brian
2011-01-01
We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.
Gravitation and Gauge Symmetries
Stewart, J
2002-01-01
The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...
Stringy origin of non-Abelian discrete flavor symmetries
International Nuclear Information System (INIS)
Kobayashi, Tatsuo; Nilles, Hans Peter; Ploeger, Felix; Raby, Stuart; Ratz, Michael
2007-01-01
We study the origin of non-Abelian discrete flavor symmetries in superstring theory. We classify all possible non-Abelian discrete flavor symmetries which can appear in heterotic orbifold models. These symmetries include D 4 and Δ(54). We find that the symmetries of the couplings are always larger than the symmetries of the compact space. This is because they are a consequence of the geometry of the orbifold combined with the space group selection rules of the string. We also study possible breaking patterns. Our analysis yields a simple geometric understanding of the realization of non-Abelian flavor symmetries
Spontaneous emergence of gauge symmetry
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1987-05-01
Within the framework of the random dynamics project we have demonstrated several mechanisms for breakdown of a preexisting exact gauge symmetry. This note concerns and reviews a mechanism which works essentially in the opposite direction, leading from am accidental approximate symmetry to an exact formal gauge symmetry. It was shown that although this symmetry is a priori only strictly formal, it can under certain circumstances lead to a physical consequence: the corresponding gauge boson becomes massless. In the chaotic models typical for our random dynamics project there is, of course, a strong competition between this mechanism and mechanisms which temd to destroy the symmetry and give mass(es) to the gauge boson(s). (orig.)
Singlets of fermionic gauge symmetries
Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.
1989-01-01
We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and Îº-symmetry and
Symmetry gauge theory for paraparticles
International Nuclear Information System (INIS)
Kursawe, U.
1986-01-01
In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de
From physical symmetries to emergent gauge symmetries
International Nuclear Information System (INIS)
Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.
2016-01-01
Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.
Symmetry breaking in gauge glasses
International Nuclear Information System (INIS)
Hansen, K.
1988-09-01
In order to explain why nature selects the gauge groups of the Standard Model, Brene and Nielsen have proposed a way to break gauge symmetry which does not rely on the existence of a Higgs field. The observed gauge groups will in this scheme appear as the only surviving ones when this mechanism is applied to a random selection of gauge groups. The essential assumption is a discrete space-time with random couplings. Some working assumptions were made for computational reasons of which the most important is that quantum fluctuations were neclected. This work presents an example which under the same conditions show that a much wider class of groups than predicted by Brene and Nielsen will be broken. In particular no possible Standard Model Group survives unbroken. Numerical calculations support the analytical result. (orig.)
International Nuclear Information System (INIS)
Choi, K.; Kaplan, D.B.; Nelson, A.E.
1993-01-01
Conventional solutions to the strong CP problem all require the existence of global symmetries. However, quantum gravity may destroy global symmetries, making it hard to understand why the electric dipole moment of the neutron (EDMN) is so small. We suggest here that CP is actually a discrete gauge symmetry, and is therefore not violated by quantum gravity. We show that four-dimensional CP can arise as a discrete gauge symmetry in theories with dimensional compactification, if the original number of Minkowski dimensions equals 8k+1, 8k+2 or 8k+3, and if there are certain restrictions on the gauge group; these conditions are met by superstrings. CP may then be broken spontaneously below 10 9 GeV, explaining the observed CP violation in the kaon system without inducing a large EDMN. We discuss the phenomenology of such models, as well as the peculiar properties of cosmic 'SP strings' which could be produced at the compactification scale. Such strings have the curious property that a particle carried around the string is turned into its CP conjugate. A single CP string renders four-dimensional space-time nonorientable. (orig.)
Gauge symmetries, topology, and quantisation
International Nuclear Information System (INIS)
Balachandran, A.P.
1994-01-01
The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem
Gauge symmetry breaking in gauge theories -- in search of clarification
Friederich, Simon
2013-01-01
The paper investigates the spontaneous breaking of gauge symmetries in gauge theories from a philosophical angle, taking into account the fact that the notion of a spontaneously broken local gauge symmetry, though widely employed in textbook expositions of the Higgs mechanism, is not supported by
Composite gauge bosons of transmuted gauge symmetry
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1987-10-01
It is shown that effective gauge theories of composite gauge bosons describing the dynamics of composite quarks and leptons can be transmuted from the subcolor gauge theory describing that of subquarks due to the condensation of subquarks and that the equality of effective gauge coupling constants can result as in a grand unified gauge theory. (author)
Effective lagrangian description on discrete gauge symmetries
International Nuclear Information System (INIS)
Banks, T.
1989-01-01
We exhibit a simple low-energy lagrangian which describes a system with a discrete remnant of a spontaneously broken continuous gauge symmetry. The lagrangian gives a simple description of the effects ascribed to such systems by Krauss and Wilczek: black holes carry discrete hair and interact with cosmic strings, and wormholes cannot lead to violation of discrete gauge symmetries. (orig.)
Tracking gauge symmetry factorizability on intervals
International Nuclear Information System (INIS)
Ngoc-Khanh Tran
2006-01-01
We track the gauge symmetry breaking pattern by boundary conditions on fifth and higher-dimensional intervals. It is found that, with Dirichlet-Neumann boundary conditions, the Kaluza-Klein decomposition in five-dimension for arbitrary gauge group can always be factorized into that for separate subsets of at most two gauge symmetries, and so is completely solvable. Accordingly, we present a simple and systematic geometric method to unambiguously identify the gauge breaking/mixing content by general set of Dirichlet-Neumann boundary conditions. We then formulate a limit theorem on gauge symmetry factorizability to recapitulate this interesting feature. Albeit the breaking/mixing, a particularly simple check of orthogonality and normalization of fields' modes in effective 4-dim picture is explicitly obtained. An interesting chained-mixing of gauge symmetries in higher dimensions by Dirichlet-Neumann boundary conditions is also explicitly constructed. This study has direct applications to higgsless/GUT model building
Dynamical Symmetry Breaking of Extended Gauge Symmetries
Appelquist, Thomas; Shrock, Robert
2003-01-01
We construct asymptotically free gauge theories exhibiting dynamical breaking of the left-right, strong-electroweak gauge group $G_{LR} = {\\rm SU}(3)_c \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R \\times {\\rm U}(1)_{B-L}$, and its extension to the Pati-Salam gauge group $G_{422}={\\rm SU}(4)_{PS} \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R$. The models incorporate technicolor for electroweak breaking, and extended technicolor for the breaking of $G_{LR}$ and $G_{422}$ and the generation of fermion ...
Quantum and classical gauge symmetries
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Terashima, Hiroaki
2001-01-01
The use of the mass term of the gauge field as a gauge fixing term, which was discussed by Zwanziger, Parrinello and Jona-Lasinio in a large mass limit, is related to the non-linear gauge by Dirac and Nambu. We have recently shown that this use of the mass term as a gauge fixing term is in fact identical to the conventional local Faddeev-Popov formula without taking a large mass limit, if one takes into account the variation of the gauge field along the entire gauge orbit. This suggests that the classical massive vector theory, for example, could be re-interpreted as a gauge invariant theory with a gauge fixing term added in suitably quantized theory. As for massive gauge particles, the Higgs mechanics, where the mass term is gauge invariant, has a more intrinsic meaning. We comment on several implications of this observation. (author)
Geometric phases and hidden local gauge symmetry
International Nuclear Information System (INIS)
Fujikawa, Kazuo
2005-01-01
The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies physical observables. The choice of a basis set which specifies the coordinate in the functional space is arbitrary in the second quantization, and a subclass of coordinate transformations, which keeps the form of the action invariant, is recognized as the gauge symmetry. We discuss the implications of this hidden local gauge symmetry in detail by analyzing geometric phases for cyclic and noncyclic evolutions. It is shown that the hidden local symmetry provides a basic concept alternative to the notion of holonomy to analyze geometric phases and that the analysis based on the hidden local gauge symmetry leads to results consistent with the general prescription of Pancharatnam. We however note an important difference between the geometric phases for cyclic and noncyclic evolutions. We also explain a basic difference between our hidden local gauge symmetry and a gauge symmetry (or equivalence class) used by Aharonov and Anandan in their definition of generalized geometric phases
Unified gauge theories with spontaneous symmetry breaking
International Nuclear Information System (INIS)
MacDowell, S.W.
1975-01-01
Unified gauge theories with spontaneous symmetry breaking are studied with a view to renormalize quantum field theory. Georgi-Glashow and Weinberg-Salam models to unify weak and electromagnetic interactions are discussed in detail. Gauge theories of strong interactions are also considered [pt
Spontaneous symmetry breakdown in gauge theories
International Nuclear Information System (INIS)
Scadron, M.D.
1982-01-01
The dynamical theory of spontaneous breakdown correctly predicts the bound states and relates the order parameters of electron-photon superconductivity and quark-gluon chiral symmetry. A similar statement cannot be made for the standard electro-weak gauge symmetry. (author)
Pauli-Guersey symmetry in gauge theories
International Nuclear Information System (INIS)
Stern, J.
1983-05-01
Gauge theories with massless or massive fermions in a selfcontragredient representation exhibit global symmetries of Pauli-Guersey type. Some of them are broken spontaneously leading to a difermion Goldstone bosons. An example of a boson version of the Pauli-Guersey symmetry is provided by the Weinberg-Salam model in the limit THETAsub(w)→O
Space-time and Local Gauge Symmetries
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Symmetries of Particle Physics: Space-time and Local Gauge Symmetries. Sourendu Gupta. General Article Volume 6 Issue 2 February 2001 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link:
International Nuclear Information System (INIS)
Okun, Lev B
2010-01-01
V A Fock, in 1926, was the first to have the idea of an Abelian gradient transformation and to discover that the electromagnetic interaction of charged particles has a gradient invariance in the framework of quantum mechanics. These transformation and invariance were respectively named Eichtransformation and Eichinvarianz by H Weyl in 1929 (the German verb zu eichen means to gauge). The first non-Abelian gauge theory was suggested by O Klein in 1938; and in 1954, C N Yang and R L Mills rediscovered the non-Abelian gauge symmetry. Gauge invariance is the underlying principle of the current Standard Model of strong and electroweak interactions. (from the history of physics)
Gauge origin of discrete flavor symmetries in heterotic orbifolds
Directory of Open Access Journals (Sweden)
Florian Beye
2014-09-01
Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.
Gauging hidden symmetries in two dimensions
International Nuclear Information System (INIS)
Samtleben, Henning; Weidner, Martin
2007-01-01
We initiate the systematic construction of gauged matter-coupled supergravity theories in two dimensions. Subgroups of the affine global symmetry group of toroidally compactified supergravity can be gauged by coupling vector fields with minimal couplings and a particular topological term. The gauge groups typically include hidden symmetries that are not among the target-space isometries of the ungauged theory. The gaugings constructed in this paper are described group-theoretically in terms of a constant embedding tensor subject to a number of constraints which parametrizes the different theories and entirely encodes the gauged Lagrangian. The prime example is the bosonic sector of the maximally supersymmetric theory whose ungauged version admits an affine e 9 global symmetry algebra. The various parameters (related to higher-dimensional p-form fluxes, geometric and non-geometric fluxes, etc.) which characterize the possible gaugings, combine into an embedding tensor transforming in the basic representation of e 9 . This yields an infinite-dimensional class of maximally supersymmetric theories in two dimensions. We work out and discuss several examples of higher-dimensional origin which can be systematically analyzed using the different gradings of e 9
Dual symmetry in gauge theories
International Nuclear Information System (INIS)
Koshkarov, A.L.
1997-01-01
Continuous dual symmetry in electrodynamics, Yang-Mills theory and gravitation is investigated. Dual invariant which leads to badly nonlinear motion equations is chosen as a Lagrangian of the pure classical dual nonlinear electrodynamics. In a natural manner some dual angle which is determined by the electromagnetic strengths at the point of the time-space appears in the model. Motion equations may well be interpreted as the equations of the standard Maxwell theory with source. Alternative interpretation is the quasi-Maxwell linear theory with magnetic charge. Analogous approach is possible in the Yang-Mills theory. In this case the dual-invariant non-Abelian theory motion equations possess the same instanton solutions as the conventional Yang-Mills equations have. An Abelian two-parameter dual group is found to exist in gravitation. Irreducible representations have been obtained: the curvature tensor was expanded into the sum of twice anti-self-dual and self-dual parts. Gravitational instantons are defined as (real )solutions to the usual duality equations. Central symmetry solutions to these equations are obtained. The twice anti-self-dual part of the curvature tensor may be used for introduction of new gravitational equations generalizing Einstein''s equations. However, the theory obtained reduces to the conformal-flat Nordstroem theory
Gauge-symmetry hierarchies revisited
International Nuclear Information System (INIS)
Gildener, E.
1979-01-01
It was shown by the author in a previous paper that in each order of perturbation theory there is an upper bound on the range of validity of a gauge hierarchy. Thus constructing a large hierarchy requires a fine-tuning of the scalar-field parameters. It was stated that the possibility of an inherent bound on the hierarchy exists, but the question of the actual existence of such a bound was left completely open. Since then several authors have addressed this problem. Some of what the author asserted was misunderstood, and incorrect conclusions have been drawn from recent computations. It has been claimed that the existence of large hierarchies has been demonstrated. It is the purpose of this paper to refute this claim, to help clarify the situation, and to explain why the status of this problem has in fact not really changed in recent years (author)
On the character of scale symmetry breaking in gauge theories
International Nuclear Information System (INIS)
Gusijnin, V.P.; Kushnir, V.A.; Miransky, V.A.
1988-01-01
The problem of scale symmetry breaking in gauge theories is discussed. It is shown that the phenomenon of spontaneous breaking of scale symmetry in gauge theories is incompatible with the PCAAC dynamics. 12 refs
Entanglement entropy and nonabelian gauge symmetry
International Nuclear Information System (INIS)
Donnelly, William
2014-01-01
Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang–Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity. (paper)
Extensions of automorphisms and gauge symmetries
International Nuclear Information System (INIS)
Buchholz, D.; Doplicher, S.; Longo, R.; Roberts, J.E.
1993-01-01
We characterize the automophisms of a C*-algebra A which extend to automorphisms of the crossed product B of A by a compact group dual. The case where the inclusion A contains or equal to B is equipped with a group of automorphisms commuting with the dual action is also treated. These results are applied to the analysis of broken gauge symmetries in Quantum Field Theory to draw conclusions on the structure of the degenerate vacua on the field algebra. (orig.)
Scale gauge symmetry and the standard model
International Nuclear Information System (INIS)
Sola, J.
1990-01-01
This paper speculates on a version of the standard model of the electroweak and strong interactions coupled to gravity and equipped with a spontaneously broken, anomalous, conformal gauge symmetry. The scalar sector is virtually absent in the minimal model but in the general case it shows up in the form of a nonlinear harmonic map Lagrangian. A Euclidean approach to the phenological constant problem is also addressed in this framework
Krishnan, Chethan; Raju, Avinash
2017-08-01
We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.
New Methods in Supersymmetric Theories and Emergent Gauge Symmetry
CERN. Geneva
2014-01-01
It is remarkable that light or even massless spin 1 particles can be composite. Consequently, gauge invariance is not fundamental but emergent. This idea can be realized in detail in supersymmetric gauge theories. We will describe the recent development of non-perturbative methods that allow to test this idea. One finds that the emergence of gauge symmetry is linked to some results in contemporary mathematics. We speculate on the possible applications of the idea of emergent gauge symmetry to realistic models.
Local E11 and the gauging of the trombone symmetry
International Nuclear Information System (INIS)
Riccioni, Fabio
2010-01-01
In any dimension, the positive level generators of the very extended Kac-Moody algebra E 11 with completely antisymmetric spacetime indices are associated with the form fields of the corresponding maximal supergravity. We consider the local E 11 algebra, that is the algebra obtained by enlarging these generators of E 11 in such a way that the global E 11 symmetries are promoted to gauge symmetries. These are the gauge symmetries of the corresponding massless maximal supergravity. We show the existence of a new type of deformation of the local E 11 algebra, which corresponds to the gauging of the symmetry under rescaling of the fields. In particular, we show how the gauged IIA theory of Howe, Lambert and West is obtained from an 11-dimensional group element that only depends on the 11th coordinate via a linear rescaling. We then show how this results in ten dimensions in a deformed local E 11 algebra of a new type.
New gauge symmetries in Witten's Ramond string field theory
International Nuclear Information System (INIS)
Kugo, Taichiro; Terao, Haruhiko
1988-01-01
Witten's Raymond string field theory is observed to possess new gauge symmetries, which guarantee the consistency and the equivalence of Witten's theory to the other formulation based on the constrained string field. The projection operator into the gauge-invariant sector is explicitly constructed using an operator similar to the picture changing operator. (orig.)
Lagrangian formalism for constrained systems. 2. Gauge symmetries
International Nuclear Information System (INIS)
Pyatov, P.N.
1990-01-01
Using the Lagrangian formalism for constrained systems all gauge symmetries peculiar for a given Lagrangian system and in establishing the relation between them and the constraints are constructed. Besides, the question about the possible dependence of gauge transformations on accelerations and other higher order time derivatives of coordinates is clarified. 14 refs
Decoupling Subtraction Conserving Full Gauge Symmetries : Particles and Fields
Noriyasu, OHTSUBO; Hideo, MIYATA; Department of Phycics, Kanazawa Technical College; Department of Information Science, Kanazawa Institute of Technolgy
1984-01-01
A new subtraction scheme (^^^) which realizes the decoupling and conserves the symmetries of full gauge group simultaneously, is proposed. One particle irreducible Green's functions subtracted by ^^^ reveal the effective low energy symmetries at -p^2≪M^2 and the full symmetries at -p^2≫M^2, where M denotes a heavy mass. Also discussed are conditions in order to carry out ^^^ under two-loop approximation.
Symmetry breaking and restoration in gauge theories
International Nuclear Information System (INIS)
Natale, A.A.
A review is made of the utilization of the Higgs mechanism in spontaneous symmetry breaking. It is shown that such as ideas came from an analogy with the superconductivity phenomenological theory based on a Ginzburg-Landau lagrangean. The symmetry restoration through the temperature influence is studied. (L.C.) [pt
Gauge symmetry of Sine-Gordon model
International Nuclear Information System (INIS)
Shen Jian-Min; Li Kang; Sheng Zhengmao.
1993-03-01
We have found that the strong coupled interaction of Sine-Gordon model is related to its weak coupled interaction by the su(2) gauge transformation. We therefore develop a semi-classical approach to deal with the infrared divergence in the conventional perturbation theory of the Hamiltonian of the quantum Sine-Gordon model. (author). 10 refs
Chiral symmetry breaking in gauge theories from Reggeon diagram analysis
International Nuclear Information System (INIS)
White, A.R.
1991-01-01
It is argued that reggeon diagrams can be used to study dynamical properties of gauge theories containing a large number of massless fermions. SU(2) gauge theory is studied in detail and it is argued that there is a high energy solution which is analogous to the solution of the massless Schwinger model. A generalized winding-number condensate produces the massless pseudoscalar spectrum associated with chiral symmetry breaking and a ''trivial'' S-Matrix
On the large-N dynamics of gauge symmetry breaking
International Nuclear Information System (INIS)
Karchev, N.I.
1983-07-01
We consider a Gsub(W)xUsub(TC)(N) gauge theory. A method of colour singlet bilocal collective coordinates is proposed to show, large-N colour dynamics is responsible for the Gsub(W) gauge symmetry breaking if the large-N Schwinger-Dyson equation admits anomalous solutions. The dynamically generated mass matrix is computed through these solutions. The technicolour model is discussed. (author)
Field-theoretical investigations in nonlinear realizations of gauge symmetry
International Nuclear Information System (INIS)
Lee, Chenhan.
1989-01-01
A review of both linear realization and non-linear realization of gauge symmetries is given and the connection between the two recipes is carefully examined. The author then constructs both linear and non-linear realizations for of supersymmetric theories. The supermultiplets of the Goldstone modes contain Goldstone bosons, quasi-Goldstone bosons and quasi-Goldstone fermions. He makes an attempt to construct a specific model of a supersymmetric non-linear realization for the Nambu-Goldstone superfields and the quasi-Goldstone fermions are identified with the quarks and leptons. Further, he discusses a mechanism by which the components of the Nambu-Goldstone supermultiplets are given non-zero mass splittings by the coupling to a hidden sector. Next, he turns to anti-symmetric tensor gauge theories, which are shown to be classically equivalent to the non-linear models describing the complete symmetry breakdown. To study the quantum mechanical equivalence of these two models, he carries out the tensor gauge fixing and the quantization procedures for the anti-symmetric tensor theories and establish the global symmetry currents which connect the two models. He then builds the supersymmetric extensions of the anti-symmetric tensor gauge theories in both abelian and non-abelian versions. Such super-tensor gauge theories are shown, by using the superfield equations of motion, to be equivalent to the fully doubled supersymmetric non-linear models of complete symmetry breakdown
Symmetry behavior of the effective gauge theory
International Nuclear Information System (INIS)
Midorikawa, S.
1981-01-01
The restoration of spontaneously broken CP invariance is investigated by using the effective QED lagrangian obtained from the standard SU(2) x U(1) gauge theory with two Higgs doublets. It is shown that the large electromagnetic field may restore CP invariance by changing the relative phase angle of Higgs vacuum expectation values even before one of the vacuum expectation values of the two Higgs doublets disappears. Further large magnetic field may lead to the fine structure constant with discontinuous behavior. (orig.)
Massive and massless gauge fields of any spin and symmetry
International Nuclear Information System (INIS)
Hussain, F.; Jarvis, P.D.
1988-05-01
An analysis of the BRST approach to massive and massless gauge fields of any spin and symmetry is presented. Previous results on massless gauge fields are extended to totally antisymmetric massless tensors and Kaehler-Dirac particles. Two methods for arriving at a BRST invariant, massive theory from the corresponding massless one are discussed. The first allows for an interpretation in terms of dimensional reduction, while the second keeps the BRST operator of the massless theory, but employs gauge invariant fields. (author). 10 refs
Heavy axions from strong broken horizontal gauge symmetry
International Nuclear Information System (INIS)
Elliott, T.; King, S.F.
1993-01-01
We study the consequences of the existence and breaking of a Peccei-Quinn symmetry within the context of a dynamical model of electroweak symmetry breaking based on broken gauged flavour symmetries. We perform an estimate of the axion mass by including flavour instanton effects and show that, for low cut-offs, the axion is sufficiently massive to prevent it from being phenomenologically unacceptable. We conclude with an examination of the strong CP problem and show that our axion cannot solve the problem, though we indicate ways in which the model can be extended so that the strong CP problem is solved. (orig.)
Gauging the graded conformal group with unitary internal symmetries
International Nuclear Information System (INIS)
Ferrara, S.; Townsend, P.K.; Kaku, M.; Nieuwenhuizen Van, P.
1977-06-01
Gauge theories for extended SU(N) conformal supergravity are constructed which are invariant under local scale, chiral, proper conformal, supersymmetry and internal SU(N) transformations. The relation between intrinsic parity and symmetry properties of their generators of the internal vector mesons is established. These theories contain no cosmological constants, but technical problems inherent to higher derivative actions are pointed out
CP and other gauge symmetries in string theory
International Nuclear Information System (INIS)
Dine, M.; Leigh, R.G.; MacIntire, D.A.
1992-01-01
We argue that CP is a gauge symmetry in string theory. As a consequence, CP cannot be explicitly broken either perturbatively or nonperturbatively; there can be no nonperturbative CP-violating parameters. String theory is thus an example of a theory where all θ angles arise due to spontaneous CP violation, and are in principle calculable
Nonlinear symmetries of black hole entropy in gauged supergravity
Energy Technology Data Exchange (ETDEWEB)
Klemm, Dietmar [Dipartimento di Fisica, Università di Milano,and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marrani, Alessio [Museo Storico della Fisica e Centro Studi e Ricerche ‘Enrico Fermi’,Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova,and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Petri, Nicolò; Rabbiosi, Marco [Dipartimento di Fisica, Università di Milano,and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy)
2017-04-04
Freudenthal duality in N=2, D=4 ungauged supergravity is generated by an anti-involutive operator that acts on the electromagnetic fluxes, and results to be a symmetry of the Bekenstein-Hawking entropy. We show that, with a suitable extension, this duality can be generalized to the abelian gauged case as well, even in presence of hypermultiplets. By defining Freudenthal duality along the scalar flow, one can prove that two configurations of charges and gaugings linked by the Freudenthal operator share the same set of values of the scalar fields at the black hole horizon. Consequently, Freudenthal duality is promoted to a nonlinear symmetry of the black hole entropy. We explicitly show this invariance for the model with prepotential F=−iX{sup 0}X{sup 1} and Fayet-Iliopoulos gauging.
Dynamical breakdown of the electroweak gauge symmetry
International Nuclear Information System (INIS)
Khosek, I.
1983-01-01
Fermion and gauge boson masses are calculated dynamically in the higgs-less Galshow-Weinberg-Salam model supplemented with a heavy neutral vector boson C. Fermion masses are determined by C-hypercharges of the left- and right-handed fermion fields. The W and Z-boson masses are related to the ferion masses and to the calculated fermion-would-be-Goldstone boson coupling constants by sum rules. Small deviation from the canonical relation msub(W)sup(2)/msub(Z)sup(2)cossup(2)thetasub(W)=1 is predicted. Fermion mixing is briefly discussed. Its necessary consequence is that the physical neutral current coupled to the C boson is nonuniversal and flavour changing
Reduced modular symmetries of threshold corrections and gauge coupling unification
Energy Technology Data Exchange (ETDEWEB)
Bailin, David; Love, Alex [Department of Physics & Astronomy, University of Sussex,Brighton, BN1 9QH (United Kingdom)
2015-04-01
We revisit the question of gauge coupling unification at the string scale in orbifold compactifications of the heterotic string for the supersymmetric Standard Model. In the presence of discrete Wilson lines threshold corrections with modular symmetry that is a subgroup of the full modular group arise. We find that reduced modular symmetries not previously reported are possible. We conjecture that the effects of such threshold corrections can be simulated using sums of terms built from Dedekind eta functions to obtain the appropriate modular symmetry. For the cases of the ℤ{sub 8}-I orbifold and the ℤ{sub 3}×ℤ{sub 6} orbifold it is easily possible to obtain gauge coupling unification at the “observed” scale with Kähler moduli T of approximately one.
A model with isospin doublet U(1)D gauge symmetry
Nomura, Takaaki; Okada, Hiroshi
2018-05-01
We propose a model with an extra isospin doublet U(1)D gauge symmetry, in which we introduce several extra fermions with odd parity under a discrete Z2 symmetry in order to cancel the gauge anomalies out. A remarkable issue is that we impose nonzero U(1)D charge to the Standard Model Higgs, and it gives the most stringent constraint to the vacuum expectation value of a scalar field breaking the U(1)D symmetry that is severer than the LEP bound. We then explore relic density of a Majorana dark matter candidate without conflict of constraints from lepton flavor violating processes. A global analysis is carried out to search for parameters which can accommodate with the observed data.
Restoration of the local gauge symmetry and color confinement in non-Abelian gauge theories
International Nuclear Information System (INIS)
Hata, Hiroyuki
1982-01-01
Restoration of the local gauge symmetry and its connection to color confinement is investigated in non-Abelian gauge theories with covariant gauge fixing. We consider the Noether current J sub(μ,#betta#)sup(a) of the local gauge transformation with transformation functions #betta#sup(b)(x) linear in x sub(μ); #betta#sup(b)(x) = delta sup(ab)x sub(#betta#). This current is conserved only in the physical subspace of the state vector space and in perturbation theory contains a massless pole communicating to the gauge field. We define the local gauge symmetry restoration as the disappearance of this massless ''Goldstone'' pole from J sub(μ,#betta#)sup(a). The restoration condition is obtained and it coincides exactly with the color confinement criterion proposed earlier by Kugo and Ojima. Quarks and other colored particles are shown to be confined in the local gauge symmetry restored phase by using the Ward identities of J sub(μ,#betta#)sup(a). (author)
General quadratic gauge theory: constraint structure, symmetries and physical functions
Energy Technology Data Exchange (ETDEWEB)
Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)
2005-06-17
How can we relate the constraint structure and constraint dynamics of the general gauge theory in the Hamiltonian formulation to specific features of the theory in the Lagrangian formulation, especially relate the constraint structure to the gauge transformation structure of the Lagrangian action? How can we construct the general expression for the gauge charge if the constraint structure in the Hamiltonian formulation is known? Whether we can identify the physical functions defined as commuting with first-class constraints in the Hamiltonian formulation and the physical functions defined as gauge invariant functions in the Lagrangian formulation? The aim of the present paper is to consider the general quadratic gauge theory and to answer the above questions for such a theory in terms of strict assertions. To fulfil such a programme, we demonstrate the existence of the so-called superspecial phase-space variables in terms of which the quadratic Hamiltonian action takes a simple canonical form. On the basis of such a representation, we analyse a functional arbitrariness in the solutions of the equations of motion of the quadratic gauge theory and derive the general structure of symmetries by analysing a symmetry equation. We then use these results to identify the two definitions of physical functions and thus prove the Dirac conjecture.
Gauge-Higgs Unification Models in Six Dimensions with S2/Z2 Extra Space and GUT Gauge Symmetry
Directory of Open Access Journals (Sweden)
Cheng-Wei Chiang
2012-01-01
Full Text Available We review gauge-Higgs unification models based on gauge theories defined on six-dimensional spacetime with S2/Z2 topology in the extra spatial dimensions. Nontrivial boundary conditions are imposed on the extra S2/Z2 space. This review considers two scenarios for constructing a four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12 gauge symmetry with a special symmetry condition imposed on the gauge field, whereas the other employs the E6 gauge symmetry without requiring the additional symmetry condition. Both models lead to a standard model-like gauge theory with the SU(3×SU(2L×U(1Y(×U(12 symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed. The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson masses are obtained.
Abelian gauge symmetries in F-theory and dual theories
Song, Peng
In this dissertation, we focus on important physical and mathematical aspects, especially abelian gauge symmetries, of F-theory compactifications and its dual formulations within type IIB and heterotic string theory. F-theory is a non-perturbative formulation of type IIB string theory which enjoys important dualities with other string theories such as M-theory and E8 x E8 heterotic string theory. One of the main strengths of F-theory is its geometrization of many physical problems in the dual string theories. In particular, its study requires a lot of mathematical tools such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests among mathematicians, and is a vivid area of research within both the physics and the mathematics community. Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory has been rarely studied, until recently. Within the mathematics community, in 2009, Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison and Park first made a major advancement by constructing general F-theory compactifications with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point. Subsequent developments have been made by Cvetic, Klevers and Piragua extended the works of Morrison and Park and constructed general F-theory compactifications with U(1) x U(1) abelian gauge symmetry. They found that in the U(1) x U(1) abelian gauge symmetry case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of this dissertation, I bring this a step further by
Anomaly-free gauged R-symmetry in local supersymmetry
International Nuclear Information System (INIS)
Chamseddine, A.H.; Dreiner, H.
1996-01-01
We discuss local R-symmetry as a potentially powerful new model building tool. We first review and clarify that a U(1) R-symmetry can only be gauged in local and not in global supersymmetry. We determine the anomaly-cancellation conditions for the gauged R-symmetry. For the standard superpotential these equations have no solution, independently of how many Standard Model singlets are added to the model. There is also no solution when we increase the number of families and the number of pairs of Higgs doublets. When the Green-Schwarz mechanism is employed to cancel the anomalies, solutions only exist for a large number of singlets. We find many anomaly-free family-independent models with an extra SU(3) c octet chiral superfield. We consider in detail the conditions for an anomaly-free family-dependent U(1) R and find solutions with one, two, three and four extra singlets. Only with three and four extra singlets do we naturally obtain sfermion masses of the order of the weak scale. For these solutions we consider the spontaneous breaking of supersymmetry and the R-symmetry in the context of local supersymmetry. In general the U(1) R gauge group is broken at or close to the Planck scale. We consider the effects of the R-symmetry on baryon- and lepton-number violation in supersymmetry. There is no logical connection between a conserved R-symmetry and a conserved R-parity. For conserved R-symmetry we have models for all possibilities of conserved or broken R-parity. Most models predict dominant effects which could be observed at HERA. (orig.)
Field theories without fundamental (gauge) symmetries
International Nuclear Information System (INIS)
Nielsen, H.B.
1983-12-01
By using the lack of dependence of the form of the kinetic energy for a non-relativistic free particle as an example, it is argued that a physical law with a less extended range of application (non-relativistic energy momentum relation) often follows from a more extended one (in this case the relativistic relation) without too much dependence on the details of the latter. This is extended to the ideal of random dynamics: no fundamental laws are needed to be known. Almost any random fundamental model will give the correct main features for the range of physical conditions accessible today (energies less than 1000 GeV) even if it is wrong in detail. This suggests the programme of attempting to 'derive' the various symmetries and other features of physics known today from random models at least without the feature to be derived. The achievements in the programme of random dynamics up till now are briefly reviewed. In particular, Lorentz invariance may be understood as a low energy phenomenon. (Auth.)
Noncommutative gauge theory and symmetry breaking in matrix models
International Nuclear Information System (INIS)
Grosse, Harald; Steinacker, Harold; Lizzi, Fedele
2010-01-01
We show how the fields and particles of the standard model can be naturally realized in noncommutative gauge theory. Starting with a Yang-Mills matrix model in more than four dimensions, an SU(n) gauge theory on a Moyal-Weyl space arises with all matter and fields in the adjoint of the gauge group. We show how this gauge symmetry can be broken spontaneously down to SU(3) c xSU(2) L xU(1) Q [resp. SU(3) c xU(1) Q ], which couples appropriately to all fields in the standard model. An additional U(1) B gauge group arises which is anomalous at low energies, while the trace-U(1) sector is understood in terms of emergent gravity. A number of additional fields arise, which we assume to be massive, in a pattern that is reminiscent of supersymmetry. The symmetry breaking might arise via spontaneously generated fuzzy spheres, in which case the mechanism is similar to brane constructions in string theory.
Gauge U(1 dark symmetry and radiative light fermion masses
Directory of Open Access Journals (Sweden)
Corey Kownacki
2016-09-01
Full Text Available A gauge U(1 family symmetry is proposed, spanning the quarks and leptons as well as particles of the dark sector. The breaking of U(1 to Z2 divides the two sectors and generates one-loop radiative masses for the first two families of quarks and leptons, as well as all three neutrinos. We study the phenomenological implications of this new connection between family symmetry and dark matter. In particular, a scalar or pseudoscalar particle associated with this U(1 breaking may be identified with the 750 GeV diphoton resonance recently observed at the Large Hadron Collider (LHC.
Symmetry breaking by Wilson loops in gauge field theory
International Nuclear Information System (INIS)
Dowker, J.S.; Jadhav, S.P.
1989-01-01
An analysis is presented of the gauge symmetry breaking caused by Wilson loops on a space-time whose spatial section is openR/sup d/ x S 3 /Γ, for all those fundamental groups Γ that give a homogeneous space. We concentrate on pure SU(3) and SU(5) gauge field theories and find that symmetry breaking can occur when d = 0, for all Γ. If d = 3, the extra minimal scalars prevent any breaking and one must include other fields to achieve this. Explicit forms for the vacuum energies are exhibited in the case of lens and prism spaces, the former for SU(n). For Γ = Z/sub m/, when m and the radius of the sphere become infinite, we recover the results on the space-time openR/sup d//sup +3/ x S 1
Extended BRST symmetries in the gauge field theory
International Nuclear Information System (INIS)
Babalean, Aurel; Constantinescu, Radu; Ionescu, Carmen
2001-01-01
The BRST procedure provides one of the most powerful methods for the quantum description of the gauge field theories. As already stated, the unphysical degrees of freedom that appear in this case can be easily canceled by the introduction of the ghost type variables. In the Hamiltonian formalism, the structure of the ghost that must be used mainly depends on two factors: - the type of the theory, that this the relations among the constraints of the theory; - the extension of the symmetry to be implemented. The paper presents the structure of the extended phase space suitable for the BRST canonical quantization of a 1- reducible gauge theory in the frame of a BRST symmetry of order three. The corresponding BRST charges and the extended Hamiltonian are also constructed. (authors)
Localizability and local gauge symmetry in quantum theory
International Nuclear Information System (INIS)
Leveille, J.P.
1976-01-01
An attempt is made to generalize a theorem of Jauch on the equivalence of local gauge symmetry and Galilean symmetry to relativistic theories. One first proves a converse to Jauch's theorem deriving the Galilei algebra from a locality postulate. When generalized to the relativistic case the locality postulate leads one to the relativistic dynamical group g 5 . A possible physical interpretation of g 5 as a relativistic dynamical group is given. An attempt to describe the dynamics solely in Minkowski space-time leads, in conjunction with the locality postulate, to a new relativistic dynamical algebra. We found that this new algebra is realized by field theoretical examples which exclude quantum electrodynamics, however, and other known gauge theories. This latter development forces one to seriously question the validity of the locality postulate. One concludes by proving a general theorem about the nonimplementability of local transformations by global operators independent of space-time in field theory
Cellular gauge symmetry and the Li organization principle: General considerations.
Tozzi, Arturo; Peters, James F; Navarro, Jorge; Kun, Wu; Lin, Bi; Marijuán, Pedro C
2017-12-01
Based on novel topological considerations, we postulate a gauge symmetry for living cells and proceed to interpret it from a consistent Eastern perspective: the li organization principle. In our framework, the reference system is the living cell, equipped with general symmetries and energetic constraints standing for the intertwined biochemical, metabolic and signaling pathways that allow the global homeostasis of the system. Environmental stimuli stand for forces able to locally break the symmetry of metabolic/signaling pathways, while the species-specific DNA is the gauge field that restores the global homeostasis after external perturbations. We apply the Borsuk-Ulam Theorem (BUT) to operationalize a methodology in terms of topology/gauge fields and subsequently inquire about the evolution from inorganic to organic structures and to the prokaryotic and eukaryotic modes of organization. We converge on the strategic role that second messengers have played regarding the emergence of a unitary gauge field with profound evolutionary implications. A new avenue for a deeper investigation of biological complexity looms. Philosophically, we might be reminded of the duality between two essential concepts proposed by the great Chinese synthesizer Zhu Xi (in the XIII Century). On the one side the li organization principle, equivalent to the dynamic interplay between symmetry and information; and on the other side the qi principle, equivalent to the energy participating in the process-both always interlinked with each other. In contemporary terms, it would mean the required interconnection between information and energy, and the necessity to revise essential principles of information philosophy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enhanced gauge symmetry and winding modes in double field theory
Energy Technology Data Exchange (ETDEWEB)
Aldazabal, G. [Centro Atómico Bariloche,8400 S.C. de Bariloche (Argentina); Instituto Balseiro (CNEA-UNC) and CONICET,8400 S.C. de Bariloche (Argentina); Graña, M. [Institut de Physique Théorique, CEA/ Saclay,91191 Gif-sur-Yvette Cedex (France); Iguri, S. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Universidad de Buenos Aires,1428 Buenos Aires (Argentina); Mayo, M. [Centro Atómico Bariloche,8400 S.C. de Bariloche (Argentina); Instituto Balseiro (CNEA-UNC) and CONICET,8400 S.C. de Bariloche (Argentina); Nuñez, C. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Universidad de Buenos Aires,1428 Buenos Aires (Argentina); Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Rosabal, J.A. [Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina)
2016-03-15
We provide an explicit example of how the string winding modes can be incorporated in double field theory. Our guiding case is the closed bosonic string compactified on a circle of radius close to the self-dual point, where some modes with non-zero winding or discrete momentum number become massless and enhance the U(1)×U(1) symmetry to SU(2)×SU(2). We compute three-point string scattering amplitudes of massless and slightly massive states, and extract the corresponding effective low energy gauge field theory. The enhanced gauge symmetry at the self-dual point and the Higgs-like mechanism arising when changing the compactification radius are examined in detail. The extra massless fields associated to the enhancement are incorporated into a generalized frame with ((O(d+3,d+3))/(O(d+3)×O(d+3))) structure, where d is the number of non-compact dimensions. We devise a consistent double field theory action that reproduces the low energy string effective action with enhanced gauge symmetry. The construction requires a truly non-geometric frame which explicitly depends on both the compact coordinate along the circle and its dual.
Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models
International Nuclear Information System (INIS)
Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi; Haba, Naoyuki; Shimizu, Yasuhiro; Yamaguchi, Masahiro
2004-01-01
We examine the Higgs mass parameters and electroweak symmetry breaking in supersymmetric orbifold field theories in which the 4-dimensional Higgs fields originate from higher-dimensional gauge supermultiplets. It is noted that such gauge-Higgs unification leads to a specific boundary condition on the Higgs mass parameters at the compactification scale, which is independent of the details of supersymmetry breaking mechanism. With this boundary condition, phenomenologically viable parameter space of the model is severely constrained by the condition of electroweak symmetry breaking for supersymmetry breaking scenarios which can be realized naturally in orbifold field theories. For instance, if it is assumed that the 4-dimensional effective theory is the minimal supersymmetric standard model with supersymmetry breaking parameters induced by the Scherk-Schwarz mechanism, a correct electroweak symmetry breaking can not be achieved for reasonable range of parameters of the model, even when one includes additional contributions to the Higgs mass parameters from the auxiliary component of 4-dimensional conformal compensator. However if there exists a supersymmetry breaking mediated by brane superfields, sizable portion of the parameter space can give a correct electroweak symmetry breaking. (author)
Information Retention by Stringy Black Holes
Ellis, John
2015-01-01
Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.
Phenomenology of the gauge symmetry for right-handed fermions
Energy Technology Data Exchange (ETDEWEB)
Chao, Wei [Beijing Normal University, Center for Advanced Quantum Studies, Department of Physics, Beijing (China)
2018-02-15
In this paper we investigate the phenomenology of the U(1) gauge symmetry for right-handed fermions, where three right-handed neutrinos are introduced for anomalies cancellations. Constraints on the new gauge boson Z{sub R} from Z-Z{sup '} mixing as well as the upper bound of Z{sup '} production cross section in di-lepton channel at the LHC are presented. We further study the neutrino mass and the phenomenology of Z{sub R}-portal dark matter in this model. The lightest right-handed neutrino can be the cold dark matter candidate stabilized by a Z{sub 2} flavor symmetry. Our study shows that active neutrino masses can be generated via the modified type-II seesaw mechanism; right-handed neutrino is available dark matter candidate for its mass being very heavy, or for its mass at near the resonant regime of the SM Higgs and(or) the new bosons; constraint from the dilepton search at the LHC is stronger than that from the Z-Z{sup '} mixing only for g{sub R} < 0.121, where g{sub R} is the new gauge coupling. (orig.)
Phenomenology of the gauge symmetry for right-handed fermions
Chao, Wei
2018-02-01
In this paper we investigate the phenomenology of the U(1) gauge symmetry for right-handed fermions, where three right-handed neutrinos are introduced for anomalies cancellations. Constraints on the new gauge boson Z_{R} from Z-Z^' mixing as well as the upper bound of Z^' production cross section in di-lepton channel at the LHC are presented. We further study the neutrino mass and the phenomenology of Z_{R}-portal dark matter in this model. The lightest right-handed neutrino can be the cold dark matter candidate stabilized by a Z_2 flavor symmetry. Our study shows that active neutrino masses can be generated via the modified type-II seesaw mechanism; right-handed neutrino is available dark matter candidate for its mass being very heavy, or for its mass at near the resonant regime of the SM Higgs and(or) the new bosons; constraint from the dilepton search at the LHC is stronger than that from the Z-Z^' mixing only for g_{R}<0.121, where g_{R} is the new gauge coupling.
Flavored gauge mediation with discrete non-Abelian symmetries
Everett, Lisa L.; Garon, Todd S.
2018-05-01
We explore the model building and phenomenology of flavored gauge-mediation models of supersymmetry breaking in which the electroweak Higgs doublets and the S U (2 ) messenger doublets are connected by a discrete non-Abelian symmetry. The embedding of the Higgs and messenger fields into representations of this non-Abelian Higgs-messenger symmetry results in specific relations between the Standard Model Yukawa couplings and the messenger-matter Yukawa interactions. Taking the concrete example of an S3 Higgs-messenger symmetry, we demonstrate that, while the minimal implementation of this scenario suffers from a severe μ /Bμ problem that is well known from ordinary gauge mediation, expanding the Higgs-messenger field content allows for the possibility that μ and Bμ can be separately tuned, allowing for the possibility of phenomenologically viable models of the soft supersymmetry-breaking terms. We construct toy examples of this type that are consistent with the observed 125 GeV Higgs boson mass.
Threshold corrections and gauge symmetry in twisted superstring models
International Nuclear Information System (INIS)
Pierce, D.M.
1994-01-01
Threshold corrections to the running of gauge couplings are calculated for superstring models with free complex world sheet fermions. For two N=1 SU(2)xU(1) 5 models, the threshold corrections lead to a small increase in the unification scale. Examples are given to illustrate how a given particle spectrum can be described by models with different boundary conditions on the internal fermions. We also discuss how complex twisted fermions can enhance the symmetry group of an N=4, SU(3)xU(1)xU(1) model to the gauge group SU(3)xSU(2)xU(1). It is then shown how a mixing angle analogous to the Weinberg angle depends on the boundary conditions of the internal fermions
Radiatively induced neutrino mass model with flavor dependent gauge symmetry
Lee, SangJong; Nomura, Takaaki; Okada, Hiroshi
2018-06-01
We study a radiative seesaw model at one-loop level with a flavor dependent gauge symmetry U(1) μ - τ, in which we consider bosonic dark matter. We also analyze the constraints from lepton flavor violations, muon g - 2, relic density of dark matter, and collider physics, and carry out numerical analysis to search for allowed parameter region which satisfy all the constraints and to investigate some predictions. Furthermore we find that a simple but adhoc hypothesis induces specific two zero texture with inverse mass matrix, which provides us several predictions such as a specific pattern of Dirac CP phase.
On radiative gauge symmetry breaking in the minimal supersymmetric model
International Nuclear Information System (INIS)
Gamberini, G.; Ridolfi, G.; Zwirner, F.
1990-01-01
We present a critical reappraisal of radiative gauge symmetry breaking in the minimal supersymmetric standard model. We show that a naive use of the renormalization group improved tree-level potential can lead to incorrect conclusions. We specify the conditions under which the above method gives reliable results, by performing a comparison with the results obtained from the full one-loop potential. We also point out how the stability constraint and the conditions for the absence of charge- and colour-breaking minima should be applied. Finally, we comment on the uncertainties affecting the model predictions for physical observables, in particular for the top quark mass. (orig.)
Broken Weyl symmetry. [Gauge model, coupling, Higgs field
Energy Technology Data Exchange (ETDEWEB)
Domokos, G.
1976-05-01
It is argued that conformal symmetry can be properly understood in the framework of field theories in curved space. In such theories, invariance is required under general coordinate transformations and conformal rescalings. A gauge model coupled to a Higgs field is examined. In the tree approximation, the vacuum solution exhibits two Higgs phenomena; both the phase (Goldstone boson) and the coordinate dependent part of the radial component of the scalar field can be removed by a Higgs-Kibble transformation. The resulting vacuum solution corresponds to a space of constant curvature and constant vacuum expectation value of the scalar field.
Group quantization on configuration space: Gauge symmetries and linear fields
International Nuclear Information System (INIS)
Navarro, M.; Aldaya, V.; Calixto, M.
1997-01-01
A new, configuration-space picture of a formalism of group quantization, the GAQ formalism, is presented in the context of a previous algebraic generalization. This presentation serves to make a comprehensive discussion in which other extensions of the formalism, principally to incorporate gauge symmetries, are developed as well. Both images are combined in order to analyze, in a systematic manner and with complete generality, the case of linear fields (Abelian current groups). To illustrate these developments we particularize them for several fields and, in particular, we carry out the quantization of the Abelian Chern endash Simons models over an arbitrary closed surface in detail. copyright 1997 American Institute of Physics
Radiative breaking scenario for the GUT gauge symmetry
International Nuclear Information System (INIS)
Fukuyama, T.; Kikuchi, T.
2006-01-01
The origin of the grand unified theory (GUT) scale from the top-down perspective is explored. The GUT gauge symmetry is broken by the renormalization group effects, which is an extension of the radiative electroweak symmetry breaking scenario to the GUT models. That is, in the same way as the origin of the electroweak scale, the GUT scale is generated from the Planck scale through the radiative corrections to the soft supersymmetry breaking mass parameters. This mechanism is applied to a perturbative SO(10) GUT model, recently proposed by us. In the SO(10) model, the relation between the GUT scale and the Planck scale can naturally be realized by using order-one coupling constants. (orig.)
Two-dimensional gauge model with vector U(1) and axial-vector U(1) symmetries
International Nuclear Information System (INIS)
Watabiki, Y.
1989-01-01
We have succeeded in constructing a two-dimensional gauge model with both vector U(1) and axial-vector U(1) symmetries. This model is exactly solvable. The Schwinger term vanishes in this model as a consequence of the above symmetries, and negative-norm states appear. However, the norms of physical states are always positive semidefinite due to the gauge symmetries
Quark-flavour phenomenology of models with extended gauge symmetries
International Nuclear Information System (INIS)
Carlucci, Maria Valentina
2013-01-01
Gauge invariance is one of the fundamental principles of the Standard Model of particles and interactions, and it is reasonable to believe that it also regulates the physics beyond it. In this thesis we have studied the theory and phenomenology of two New Physics models based on gauge symmetries that are extensions of the Standard Model group. Both of them are particularly interesting because they provide some answers to the question of the origin of flavour, which is still unexplained. Moreover, the flavour sector represents a promising field for the research of indirect signatures of New Physics, since after the first run of LHC we do not have any direct hint of it yet. The first model assumes that flavour is a gauge symmetry of nature, SU(3) 3 f , spontaneously broken by the vacuum expectation values of new scalar fields; the second model is based on the gauge group SU(3) c x SU(3) L x U(1) X , the simplest non-abelian extension of the Standard Model group. We have traced the complete theoretical building of the models, from the gauge group, passing through the nonanomalous fermion contents and the appropriate symmetry breakings, up to the spectra and the Feynman rules, with a particular attention to the treatment of the flavour structure, of tree-level Flavour Changing Neutral Currents and of new CP-violating phases. In fact, these models present an interesting flavour phenomenology, and for both of them we have analytically calculated the contributions to the ΔF=2 and ΔF=1 down-type transitions, arising from new tree-level and box diagrams. Subsequently, we have performed a comprehensive numerical analysis of the phenomenology of the two models. In both cases we have found very effective the strategy of first to identify the quantities able to provide the strongest constraints to the parameter space, then to systematically scan the allowed regions of the latter in order to obtain indications about the key flavour observables, namely the mixing parameters of
Discrete gauge symmetries in discrete MSSM-like orientifolds
International Nuclear Information System (INIS)
Ibáñez, L.E.; Schellekens, A.N.; Uranga, A.M.
2012-01-01
Motivated by the necessity of discrete Z N symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z 2 (R-parity) and Z 3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.
Large gauge symmetries and asymptotic states in QED
Energy Technology Data Exchange (ETDEWEB)
Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)
2016-12-19
Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.
Model with a gauged lepton flavor SU(2) symmetry
Chiang, Cheng-Wei; Tsumura, Koji
2018-05-01
We propose a model having a gauged SU(2) symmetry associated with the second and third generations of leptons, dubbed SU(2) μτ , of which U{(1)}_{L_{μ }-L_{τ }} is an Abelian subgroup. In addition to the Standard Model fields, we introduce two types of scalar fields. One exotic scalar field is an SU(2) μτ doublet and SM singlet that develops a nonzero vacuum expectation value at presumably multi-TeV scale to completely break the SU(2) μτ symmetry, rendering three massive gauge bosons. At the same time, the other exotic scalar field, carrying electroweak as well as SU(2) μτ charges, is induced to have a nonzero vacuum expectation value as well and breaks mass degeneracy between the muon and tau. We examine how the new particles in the model contribute to the muon anomalous magnetic moment in the parameter space compliant with the Michel decays of tau.
Enhanced gauge symmetry in type II string theory
International Nuclear Information System (INIS)
Katz, S.; Ronen Plesser, M.
1996-01-01
We show how enhanced gauge symmetry in type II string theory compactified on a Calabi-Yau threefold arises from singularities in the geometry of the target space. When the target space of the type IIA string acquires a genus g curve C of A N-1 singularities, we find that an SU(N) gauge theory with g adjoint hypermultiplets appears at the singularity. The new massless states correspond to solitons wrapped about the collapsing cycles, and their dynamics is described by a twisted supersymmetric gauge theory on C x R 4 . We reproduce this result from an analysis of the S-dual D-manifold. We check that the predictions made by this model about the nature of the Higgs branch, the monodromy of period integrals, and the asymptotics of the one-loop topological amplitude are in agreement with geometrical computations. In one of our examples we find that the singularity occurs at strong coupling in the heterotic dual proposed by Kachru and Vafa. (orig.)
Dark Matter candidate in Inert Doublet Model with additional local gauge symmetry U (1)
International Nuclear Information System (INIS)
Gaitán, R.; De Oca, J.H. Montes; Garcés, E. A.; Cabral-Rosetti, L. G.
2016-01-01
We consider the Inert Doublet Model (IDM) with an additional local gauge symmetry U (1) and a complex singlet scalar to break the symmetry U (1). The continuous symmetry U (1) is introduced to control the CP-conserving interaction instead of some discrete symmetries as usually. We present the mass spectrum for neutral scalar and gauge bosons and the values of the charges under U (1) for which the model could have a candidate to dark matter. (paper)
Gauge-Higgs unification with broken flavour symmetry
Energy Technology Data Exchange (ETDEWEB)
Olschewsky, M.
2007-05-15
We study a five-dimensional Gauge-Higgs unification model on the orbifold S{sup 1}/Z{sub 2} based on the extended standard model (SM) gauge group SU(2){sub L} x U(1){sub Y} x SO(3){sub F}. The group SO(3){sub F} is treated as a chiral gauged flavour symmetry. Electroweak-, flavour- and Higgs interactions are unified in one single gauge group SU(7). The unified gauge group SU(7) is broken down to SU(2){sub L} x U(1){sub Y} x SO(3){sub F} by orbifolding and imposing Dirichlet and Neumann boundary conditions. The compactification scale of the theory is O(1) TeV. Furthermore, the orbifold S{sup 1}/Z{sub 2} is put on a lattice. This setting gives a well-defined staring point for renormalisation group (RG) transformations. As a result of the RG-flow, the bulk is integrated out and the extra dimension will consist of only two points: the orbifold fixed points. The model obtained this way is called an effective bilayered transverse lattice model. Parallel transporters (PT) in the extra dimension become nonunitary as a result of the blockspin transformations. In addition, a Higgs potential V({phi}) emerges naturally. The PTs can be written as a product e{sup A{sub y}}e{sup {eta}}e{sup A{sub y}} of unitary factors e{sup A{sub y}} and a selfadjoint factor e{sup {eta}}. The reduction 48 {yields} 35 + 6 + anti 6 + 1 of the adjoint representation of SU(7) with respect to SU(6) contains SU(2){sub L} x U(1){sub Y} x SO(3){sub F} leads to three SU(2){sub L} Higgs doublets: one for the first, one for the second and one for the third generation. Their zero modes serve as a substitute for the SM Higgs. When the extended SM gauge group SU(2){sub L} x U(1){sub Y} x SO(3){sub F} is spontaneously broken down to U(1){sub em}, an exponential gauge boson mass splitting occurs naturally. At a first step SU(2){sub L} x U(1){sub Y} x SO(3){sub F} is broken to SU(2){sub L} x U(1){sub Y} by VEVs for the selfadjoint factor e{sup {eta}}. This breaking leads to masses of flavour changing SO(3){sub F
Gauge-Higgs unification with broken flavour symmetry
International Nuclear Information System (INIS)
Olschewsky, M.
2007-05-01
We study a five-dimensional Gauge-Higgs unification model on the orbifold S 1 /Z 2 based on the extended standard model (SM) gauge group SU(2) L x U(1) Y x SO(3) F . The group SO(3) F is treated as a chiral gauged flavour symmetry. Electroweak-, flavour- and Higgs interactions are unified in one single gauge group SU(7). The unified gauge group SU(7) is broken down to SU(2) L x U(1) Y x SO(3) F by orbifolding and imposing Dirichlet and Neumann boundary conditions. The compactification scale of the theory is O(1) TeV. Furthermore, the orbifold S 1 /Z 2 is put on a lattice. This setting gives a well-defined staring point for renormalisation group (RG) transformations. As a result of the RG-flow, the bulk is integrated out and the extra dimension will consist of only two points: the orbifold fixed points. The model obtained this way is called an effective bilayered transverse lattice model. Parallel transporters (PT) in the extra dimension become nonunitary as a result of the blockspin transformations. In addition, a Higgs potential V(Φ) emerges naturally. The PTs can be written as a product e A y e η e A y of unitary factors e A y and a selfadjoint factor e η . The reduction 48 → 35 + 6 + anti 6 + 1 of the adjoint representation of SU(7) with respect to SU(6) contains SU(2) L x U(1) Y x SO(3) F leads to three SU(2) L Higgs doublets: one for the first, one for the second and one for the third generation. Their zero modes serve as a substitute for the SM Higgs. When the extended SM gauge group SU(2) L x U(1) Y x SO(3) F is spontaneously broken down to U(1) em , an exponential gauge boson mass splitting occurs naturally. At a first step SU(2) L x U(1) Y x SO(3) F is broken to SU(2) L x U(1) Y by VEVs for the selfadjoint factor e η . This breaking leads to masses of flavour changing SO(3) F gauge bosons much above the compactification scale. Such a behaviour has no counterpart within the customary approximation scheme of an ordinary orbifold theory. This way tree
F-theory vacua with $\\mathbb Z_3$ gauge symmetry
Cvetič, Mirjam; Klevers, Denis; Piragua, Hernan; Poretschkin, Maximilian
2015-01-01
Discrete gauge groups naturally arise in F-theory compactifications on genus-one fibered Calabi-Yau manifolds. Such geometries appear in families that are parameterized by the Tate-Shafarevich group of the genus-one fibration. While the F-theory compactification on any element of this family gives rise to the same physics, the corresponding M-theory compactifications on these geometries differ and are obtained by a fluxed circle reduction of the former. In this note, we focus on an element of order three in the Tate-Shafarevich group of the general cubic. We discuss how the different M-theory vacua and the associated discrete gauge groups can be obtained by Higgsing of a pair of five-dimensional U(1) symmetries. The Higgs fields arise from vanishing cycles in $I_2$-fibers that appear at certain codimension two loci in the base. We explicitly identify all three curves that give rise to the corresponding Higgs fields. In this analysis the investigation of different resolved phases of the underlying geometry pla...
Unveiling a spinor field classification with non-Abelian gauge symmetries
Fabbri, Luca; da Rocha, Roldão
2018-05-01
A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) gauge symmetries-based Lounesto's classification. Here, a more general classification, contrary to the Lounesto's one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. The Lounesto's classification of spinors is shown to arise as a Pauli's singlet, into this more general classification.
Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study
Energy Technology Data Exchange (ETDEWEB)
Zohar, Erez, E-mail: erez.zohar@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Wahl, Thorsten B. [Rudolf Peierls Centre for Theoretical Physics, Oxford, 1 Keble Road, OX1 3NP (United Kingdom); Burrello, Michele, E-mail: michele.burrello@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Cirac, J. Ignacio [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany)
2016-11-15
Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.
$W_\\infty$ Algebras, Hawking Radiation and Information Retention by Stringy Black Holes
Ellis, John; Nanopoulos, Dimitri V
2016-01-01
We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (whose singular regions are represented by appropriate Wess-Zumino-Witten models) is retained by quantum $W$-symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from $W_\\infty$ generators in its vertex function. The latter correspond to delocalised, non-propagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (Stringy black hole) + infalling matter $\\rightarrow $ (Stringy black hole)$^\\star$, where the black hole is viewed as a stringy state with a specific configuration of $W_\\infty$ charges...
On the gauge symmetries of Maxwell-like higher-spin Lagrangians
International Nuclear Information System (INIS)
Francia, Dario; Lyakhovich, Simon L.; Sharapov, Alexey A.
2014-01-01
In their simplest form, metric-like Lagrangians for higher-spin massless fields are usually assumed to display constrained gauge symmetries, unless auxiliary fields are introduced or locality is foregone. Specifically, in its standard incarnation, gauge invariance of Maxwell-like Lagrangians relies on parameters with vanishing divergence. We find an alternative form of the corresponding local symmetry involving unconstrained gauge parameters of mixed-symmetry type, described by rectangular two-row Young diagrams and entering high-derivative gauge transformations. The resulting gauge algebra appears to be reducible and we display the full pattern of gauge-for-gauge parameters, testing its correctness via the corresponding counting of degrees of freedom. The algebraic techniques applied in this work also allow us to elucidate some general properties of linear gauge systems. In particular, we establish the general fact that any linear local field theory always admits unconstrained, local, and finitely reducible parametrization of the gauge symmetry. Incidentally, this shows that massless higher spins admit a local unconstrained formulation with no need for auxiliary fields
Coarse-graining free theories with gauge symmetries: the linearized case
International Nuclear Information System (INIS)
Bahr, Benjamin; Dittrich, Bianca; He Song
2011-01-01
Discretizations of continuum theories often do not preserve the gauge symmetry content. This occurs in particular for diffeomorphism symmetry in general relativity, which leads to severe difficulties in both canonical and covariant quantization approaches. We discuss here the method of perfect actions, which attempts to restore gauge symmetries by mirroring exactly continuum physics on a lattice via a coarse graining process. Analytical results can only be obtained via a perturbative approach, for which we consider the first step, namely the coarse graining of the linearized theory. The linearized gauge symmetries are exact also in the discretized theory; hence, we develop a formalism to deal with gauge systems. Finally, we provide a discretization of linearized gravity as well as a coarse graining map and show that with this choice the three-dimensional (3D) linearized gravity action is invariant under coarse graining.
Dynamical generation of gauge bosons of hidden local symmetries in nonlinear sigma models
International Nuclear Information System (INIS)
Koegerler, R.; Lucha, W.; Neufeld, H.; Stremnitzer, H.
1988-01-01
We demonstrate how quantum corrections generate a kinetic term for the (at tree-level non-propagating) gauge fields of hidden local symmetries in nonlinear sigma models in four space-time dimensions. (orig.)
Gauge principle, vector-meson dominance, and spontaneous symmetry breaking
International Nuclear Information System (INIS)
Nambu, Yoichiro
1989-01-01
The author concentrates on certain theoretical developments of the late 1950s which are concerned with the meaning and role of symmetries and symmetry breaking, and especially work done in Chicago, and notes his own involvement in this debate. He worked on symmetry-breaking in superconductivity, using a four-fermion interaction model. (UK)
Off-shell Ward identities and gauge symmetries in string theory
International Nuclear Information System (INIS)
Porrati, M.
1989-01-01
I describe a new method of obtaining gauge-symmetry transformation laws for the effective lagrangian of an arbitrary string theory. The method applies to exact as well as spontaneously broken gauge symmetries. The transformation laws, exact to all orders in α' are determined inductively in the number of fields by the corresponding off-shell Ward identities. The case of broken supersymmetry is examined in some detail. (orig.)
Gauged BRST symmetry and the occurence of higher cocycles in quantum field theory
International Nuclear Information System (INIS)
Baulieu, L.; Grossman, B.; Stora, R.
1986-06-01
The BRST symmetry of Yang Mills theories can be gauged via the introduction of an anticommuting single gauge field. There follows the construction of a local BRST operation which allows an algebraic analysis of the BRST current algebra. This construction provides, in particular, a field theory interpretation of most higher cocycles which accompany the usual chiral anomaly
Degenerate gauge conditions, generalized Gribov's ambiguity and BRST symmetry
International Nuclear Information System (INIS)
Fabbrichesi, M.E.
1987-01-01
The BFS-BRST approach to gauge theories is considered. It is argued that the BRST-invariant boundary conditions ordinarily used do not maintain the necessary degeneracy in the gauge fixing. As a by-product of this discussion, the existence of a generalized Gribov-like ambiguity is suggested. This ambiguity is however shown to be just a particular BRST transformation
A Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry
International Nuclear Information System (INIS)
Wang Dianfu; Song Heshan
2005-01-01
A generalized Yang-Mills model, which contains, besides the vector part V μ , also a scalar part S, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of Nambu-Jona-Lasinio (NJL) mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills model. The combination of the generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.
Hidden U (1 ) gauge symmetry realizing a neutrinophilic two-Higgs-doublet model with dark matter
Nomura, Takaaki; Okada, Hiroshi
2018-04-01
We propose a neutrinophilic two-Higgs-doublet model with hidden local U (1 ) symmetry, where active neutrinos are Dirac type, and a fermionic dark matter (DM) candidate is naturally induced as a result of remnant symmetry even after the spontaneous symmetry breaking. In addition, a physical Goldstone boson arises as a consequence of two types of gauge singlet bosons and contributes to the DM phenomenologies as well as an additional neutral gauge boson. Then, we analyze the relic density of DM within the safe range of direct detection searches and show the allowed region of dark matter mass.
Gauge Symmetry and Slavnov-Taylor Identities for Randomly Stirred Fluids
International Nuclear Information System (INIS)
Berera, Arjun; Hochberg, David
2007-01-01
The path integral for randomly forced incompressible fluids is shown to have an underlying Becchi-Rouet-Stora (BRS) symmetry as a consequence of Galilean invariance. This symmetry must be respected to have a consistent generating functional, free from both an overall infinite factor and spurious relations amongst correlation functions. We present a procedure for respecting this BRS symmetry, akin to gauge fixing in quantum field theory. Relations are derived between correlation functions of this gauge-fixed, BRS symmetric theory, analogous to the Slavnov-Taylor identities of quantum field theory
Gauging the twisted Poincare symmetry as a noncommutative theory of gravitation
International Nuclear Information System (INIS)
Chaichian, M.; Tureanu, A.; Oksanen, M.; Zet, G.
2009-01-01
Einstein's theory of general relativity was formulated as a gauge theory of Lorentz symmetry by Utiyama in 1956, while the Einstein-Cartan gravitational theory was formulated by Kibble in 1961 as the gauge theory of Poincare transformations. In this framework, we propose a formulation of the gravitational theory on canonical noncommutative space-time by covariantly gauging the twisted Poincare symmetry, in order to fulfil the requirement of covariance under the general coordinate transformations, an essential ingredient of the theory of general relativity. It appears that the twisted Poincare symmetry cannot be gauged by generalizing the Abelian twist to a covariant non-Abelian twist, nor by introducing a more general covariant twist element. The advantages of such a formulation as well as the related problems are discussed and possible ways out are outlined.
Novel symmetries in Weyl-invariant gravity with massive gauge field
Energy Technology Data Exchange (ETDEWEB)
Abhinav, K. [S.N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata (India); Shukla, A.; Panigrahi, P.K. [Indian Institute of Science Education and Research Kolkata, Mohanpur (India)
2016-11-15
The background field method is used to linearize the Weyl-invariant scalar-tensor gravity, coupled with a Stueckelberg field. For a generic background metric, this action is found not to be invariant, under both a diffeomorphism and generalized Weyl symmetry, the latter being a combination of gauge and Weyl transformations. Interestingly, the quadratic Lagrangian, emerging from a background of Minkowski metric, respects both transformations independently. The Becchi-Rouet-Stora-Tyutin symmetry of scalar-tensor gravity coupled with a Stueckelberg-like massive gauge particle, possessing a diffeomorphism and generalized Weyl symmetry, reveals that in both cases negative-norm states with unphysical degrees of freedom do exist. We then show that, by combining diffeomorphism and generalized Weyl symmetries, all the ghost states decouple, thereby removing the unphysical redundancies of the theory. During this process, the scalar field does not represent any dynamic mode, yet modifies the usual harmonic gauge condition through non-minimal coupling with gravity. (orig.)
Canonical form of Euler-Lagrange equations and gauge symmetries
Energy Technology Data Exchange (ETDEWEB)
Geyer, B [Naturwissenschaftlich-Theoretisches Zentrum und Institut fuer Theoretische Physik, Universitaet Leipzig, Leipzig (Germany); Gitman, D M [Institute of Physics, University of Sao Paulo, Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)
2003-06-13
The structure of the Euler-Lagrange equations for a general Lagrangian theory (e.g. singular, with higher derivatives) is studied. For these equations we present a reduction procedure to the so-called canonical form. In the canonical form the equations are solved with respect to highest-order derivatives of nongauge coordinates, whereas gauge coordinates and their derivatives enter the right-hand sides of the equations as arbitrary functions of time. The reduction procedure reveals constraints in the Lagrangian formulation of singular systems and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. Moreover, the reduction procedure allows one to reveal the gauge identities between the Euler-Lagrange equations. Thus, a constructive way of finding all the gauge generators within the Lagrangian formulation is presented. At the same time, it is proved that for local theories all the gauge generators are local in time operators.
Stability and supersymmetry: Models with local gauge symmetry
International Nuclear Information System (INIS)
Curtright, T.; Ghandour, G.
1978-01-01
Renormalization group analysis is used to show the supersymmetric point in the effective coupling constant space is an unstable fixed point for several model gauge theories. The physical significance of this result is discussed in terms of the stability of the semiclassical ground state. In perturbation theory the supersymmetric point appears to be surrounded by regions in the coupling space representing three classes of theories: class one consists of theories for which the effective potential V has no apparent lower bound for large (pseudo)scalar field expectations; class two theories have lower bounds and radiatively induced absolute minima for V with nonzero field expectations; class three theories apparently have an absolute minimum of V at the origin of field space. Thus radiatively induced breaking of gauge invariance occurs for theories in classes one and two, but perturbatively the class one theories appear to have no ground states. Class three theories have ground states in which all gauge invariance remains intact. For the supersymmetric limits of the models examined the origin is known to be neutrally stable in field space, permitting an ambiguous breakdown of gauge invariance but not supersymmetry. This phenomenon is discussed in some detail. Calculations are performed in both Lorentz covariant and noncovariant gauges with a detailed comparison between gauges of the relevant one-loop diagrams
Weakly Isolated horizons: first order actions and gauge symmetries
Corichi, Alejandro; Reyes, Juan D.; Vukašinac, Tatjana
2017-04-01
The notion of Isolated Horizons has played an important role in gravitational physics, being useful from the characterization of the endpoint of black hole mergers to (quantum) black hole entropy. With an eye towards a canonical formulation we consider general relativity in terms of connection and vierbein variables and their corresponding first order actions. We focus on two main issues: (i) The role of the internal gauge freedom that exists, in the consistent formulations of the action principle, and (ii) the role that a 3 + 1 canonical decomposition has in the allowed internal gauge freedom. More concretely, we clarify in detail how the requirement of having well posed variational principles compatible with general weakly isolated horizons (WIHs) as internal boundaries does lead to a partial gauge fixing in the first order descriptions used previously in the literature. We consider the standard Hilbert-Palatini action together with the Holst extension (needed for a consistent 3 + 1 decomposition), with and without boundary terms at the horizon. We show in detail that, for the complete configuration space—with no gauge fixing—, while the Palatini action is differentiable without additional surface terms at the inner WIH boundary, the more general Holst action is not. The introduction of a surface term at the horizon—that renders the action for asymptotically flat configurations differentiable—does make the Holst action differentiable, but only if one restricts the configuration space and partially reduces the internal Lorentz gauge. For the second issue at hand, we show that upon performing a 3 + 1 decomposition and imposing the time gauge, there is a further gauge reduction of the Hamiltonian theory in terms of Ashtekar-Barbero variables to a U(1)-gauge theory on the horizon. We also extend our analysis to the more restricted boundary conditions of (strongly) isolated horizons as inner boundary. We show that even when the
Weakly Isolated horizons: first order actions and gauge symmetries
International Nuclear Information System (INIS)
Corichi, Alejandro; Reyes, Juan D; Vukašinac, Tatjana
2017-01-01
The notion of Isolated Horizons has played an important role in gravitational physics, being useful from the characterization of the endpoint of black hole mergers to (quantum) black hole entropy. With an eye towards a canonical formulation we consider general relativity in terms of connection and vierbein variables and their corresponding first order actions. We focus on two main issues: (i) The role of the internal gauge freedom that exists, in the consistent formulations of the action principle, and (ii) the role that a 3 + 1 canonical decomposition has in the allowed internal gauge freedom. More concretely, we clarify in detail how the requirement of having well posed variational principles compatible with general weakly isolated horizons (WIHs) as internal boundaries does lead to a partial gauge fixing in the first order descriptions used previously in the literature. We consider the standard Hilbert–Palatini action together with the Holst extension (needed for a consistent 3 + 1 decomposition), with and without boundary terms at the horizon. We show in detail that, for the complete configuration space—with no gauge fixing—, while the Palatini action is differentiable without additional surface terms at the inner WIH boundary, the more general Holst action is not. The introduction of a surface term at the horizon—that renders the action for asymptotically flat configurations differentiable—does make the Holst action differentiable, but only if one restricts the configuration space and partially reduces the internal Lorentz gauge. For the second issue at hand, we show that upon performing a 3 + 1 decomposition and imposing the time gauge, there is a further gauge reduction of the Hamiltonian theory in terms of Ashtekar–Barbero variables to a U (1)-gauge theory on the horizon. We also extend our analysis to the more restricted boundary conditions of (strongly) isolated horizons as inner boundary. We show that even when
Dark matter model with non-Abelian gauge symmetry
International Nuclear Information System (INIS)
Zhang Hao; Li Chongsheng; Cao Qinghong; Li Zhao
2010-01-01
We propose a dark-matter model in which the dark sector is gauged under a new SU(2) group. The dark sector consists of SU(2) dark gauge fields, two triplet dark Higgs fields, and two dark fermion doublets (dark-matter candidates in this model). The dark sector interacts with the standard model sector through kinetic and mass mixing operators. The model explains both PAMELA and Fermi LAT data very well and also satisfies constraints from both the dark-matter relic density and standard model precision observables. The phenomenology of the model at the LHC is also explored.
Spontaneous symmetry breaking in local gauge quantum field theory; the Higgs mechanism
International Nuclear Information System (INIS)
Strocchi, F.
1977-01-01
Spontaneous symmetry breakings in indefinite metric quantum field theories are analyzed and a generalization of the Goldstone theorem is proved. The case of local gauge quantum field theories is discussed in detail and a characterization is given of the occurrence of the Higgs mechanism versus the Goldstone mechanism. The Higgs phenomenon is explained on general grounds without the introduction of the so-called Higgs fields. The basic property is the relation between the local internal symmetry group and the local group of gauge transformations of the second kind. Spontaneous symmetry breaking of c-number gauge transformations of the second kind is shown to always occur if there are charged local fields. The implications about the absence of mass gap in the Wightman functions and the occurrence of massless particles associated with the unbroken generators in the Higgs phenomenon are discussed. (orig.) [de
QCD gauge symmetries through Faddeev-Jackiw symplectic method
International Nuclear Information System (INIS)
Abreu, E.M.C.; Mendes, A.C.R.; Neves, C.; Oliveira, W.; Silva, R.C.N.
2013-01-01
Full text: The FJ method is an approach that is geometrically motivated. It is based on the symplectic structure of the phase space. The first-order characteristic allows to obtain the Hamiltonian equations of motion from a variational principle. Its geometric structure of the Hamiltonian phase-space will be carried out directly from the equations of motion via the inverse of the so-called symplectic two-form, if the inverse exists. Few years after its publication, the FJ formalism was extended and through the years it has been applied to different systems. Gauge invariance is one of the most well established concepts in theoretical physics and it is one of the main ingredients in Standard Model theory. However, we can ask if it could have an alternative origin connected to another theory or principle. With this motivation in mind we will show in this paper that gauge invariance could be considered an emergent concept having its origin in the algebraic formalism of a well known method that deals with constrained systems, namely, the Faddeev-Jackiw (FJ) technique. Of course the gauge invariance idea is older than FJ's, but the results obtained here will show that the connection between both will prove that SU(3) and SU(3) X SU(2) X U(1) gauge groups, which are fundamental to important theories like QCD and Standard Model, can be obtained through FJ formalism. (author)
Antisymmetric tensor Zp gauge symmetries in field theory and string theory
International Nuclear Information System (INIS)
Berasaluce-González, Mikel; Ramírez, Guillermo; Uranga, Angel M.
2014-01-01
We consider discrete gauge symmetries in D dimensions arising as remnants of broken continuous gauge symmetries carried by general antisymmetric tensor fields, rather than by standard 1-forms. The lagrangian for such a general Z p gauge theory can be described in terms of a r-form gauge field made massive by a (r−1)-form, or other dual realizations, that we also discuss. The theory contains charged topological defects of different dimensionalities, generalizing the familiar charged particles and strings in D=4. We describe realizations in string theory compactifications with torsion cycles, or with background field strength fluxes. We also provide examples of non-abelian discrete groups, for which the group elements are associated with charged objects of different dimensionality
Gauging Quantum States: From Global to Local Symmetries in Many-Body Systems
Directory of Open Access Journals (Sweden)
Jutho Haegeman
2015-02-01
Full Text Available We present an operational procedure to transform global symmetries into local symmetries at the level of individual quantum states, as opposed to typical gauging prescriptions for Hamiltonians or Lagrangians. We then construct a compatible gauging map for operators, which preserves locality and reproduces the minimal coupling scheme for simple operators. By combining this construction with the formalism of projected entangled-pair states (PEPS, we can show that an injective PEPS for the matter fields is gauged into a G-injective PEPS for the combined gauge-matter system, which potentially has topological order. We derive the corresponding parent Hamiltonian, which is a frustration-free gauge-theory Hamiltonian closely related to the Kogut-Susskind Hamiltonian at zero coupling constant. We can then introduce gauge dynamics at finite values of the coupling constant by applying a local filtering operation. This scheme results in a low-parameter family of gauge-invariant states of which we can accurately probe the phase diagram, as we illustrate by studying a Z_{2} gauge theory with Higgs matter.
Family gauge symmetry as an origin of Koide's mass formula and charged lepton spectrum
International Nuclear Information System (INIS)
Sumino, Y.
2009-01-01
Koide's mass formula is an empirical relation among the charged lepton masses which holds with a striking precision. We present a model of charged lepton sector within an effective field theory with U(3) x SU(2) family gauge symmetry, which predicts Koide's formula within the present experimental accuracy. Radiative corrections as well as other corrections to Koide's mass formula have been taken into account. We adopt a known mechanism, through which the charged lepton spectrum is determined by the vacuum expectation value of a 9-component scalar field Φ. On the basis of this mechanism, we implement the following mechanisms into our model: (1) The radiative correction induced by family gauge interaction cancels the QED radiative correction to Koide's mass formula, assuming a scenario in which the U(3) family gauge symmetry and SU(2) L weak gauge symmetry are unified at 10 2 -10 3 TeV scale; (2) A simple potential of Φ invariant under U(3) x SU(2) leads to a realistic charged lepton spectrum, consistent with the experimental values, assuming that Koide's formula is protected; (3) Koide's formula is stabilized by embedding U(3) x SU(2) symmetry in a larger symmetry group. Formally fine tuning of parameters in the model is circumvented (apart from two exceptions) by appropriately connecting the charged lepton spectrum to the boundary (initial) conditions of the model at the cut-off scale. We also discuss some phenomenological implications.
Gauge symmetry, T-duality and doubled geometry
Energy Technology Data Exchange (ETDEWEB)
Hull, C.M. [Imperial College London (United Kingdom). Inst. for Mathematical Sciences]|[Imperial College London (United Kingdom). Blackett Laboratory; Reid-Edwards, R.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2007-11-15
String compactifications with T-duality twists are revisited and the gauge algebra of the dimensionally reduced theories calculated. These reductions can be viewed as string theory on T-fold backgrounds, and can be formulated in a 'doubled space' in which each circle is supplemented by a T-dual circle to construct a geometry which is a doubled torus bundle over a circle. We discuss a conjectured extension to include T-duality on the base circle, and propose the introduction of a dual base coordinate, to give a doubled space which is locally the group manifold of the gauge group. Special cases include those in which the doubled group is a Drinfel'd double. This gives a framework to discuss backgrounds that are not even locally geometric. (orig.)
Gauge symmetry, T-duality and doubled geometry
International Nuclear Information System (INIS)
Hull, C.M.
2007-11-01
String compactifications with T-duality twists are revisited and the gauge algebra of the dimensionally reduced theories calculated. These reductions can be viewed as string theory on T-fold backgrounds, and can be formulated in a 'doubled space' in which each circle is supplemented by a T-dual circle to construct a geometry which is a doubled torus bundle over a circle. We discuss a conjectured extension to include T-duality on the base circle, and propose the introduction of a dual base coordinate, to give a doubled space which is locally the group manifold of the gauge group. Special cases include those in which the doubled group is a Drinfel'd double. This gives a framework to discuss backgrounds that are not even locally geometric. (orig.)
Majorana dark matter with B+L gauge symmetry
Energy Technology Data Exchange (ETDEWEB)
Chao, Wei [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts-Amherst,Amherst, MA 01003 United States (United States); Center for Advanced Quantum Studies,Department of Physics, Beijing Normal University,Beijing, 100875 (China); Guo, Huai-Ke [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts-Amherst,Amherst, MA 01003 United States (United States); Zhang, Yongchao [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium)
2017-04-07
We present a new model that extends the Standard Model (SM) with the local B+L symmetry, and point out that the lightest new fermion ζ, introduced to cancel anomalies and stabilized automatically by the B+L symmetry, can serve as the cold dark matter candidate. We study constraints on the model from Higgs measurements, electroweak precision measurements as well as the relic density and direct detections of the dark matter. Numerical results reveal that the pseudo-vector coupling of ζ with Z and the Yukawa coupling with the SM Higgs are highly constrained by the latest results of LUX, while there are viable parameter space that could satisfy all the constraints and give testable predictions.
Model for extended Pati-Salam gauge symmetry
International Nuclear Information System (INIS)
Foot, R.; Lew, H.; Volkas, R.R.
1990-11-01
The possibility of constructing non-minimal models of the Pati-Salam type is investigated. The most interesting examples are found to have an SU(6) x SU(2) L x SU(2) R guage invariance. Two interesting symmetry breaking patterns are analysed: one leading to the theory of SU(5) colour at an intermediate scale, the other to the quark-lepton symmetric model. 15 refs
Energy Technology Data Exchange (ETDEWEB)
Shenker, Stephen H. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University Stanford, CA (United States); Stanford, Douglas [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University Stanford, CA (United States); School of Natural Sciences, Institute for Advanced Study, Princeton, NJ (United States)
2015-05-26
In (http://dx.doi.org/10.1007/JHEP03(2014)067) we gave a precise holographic calculation of chaos at the scrambling time scale. We studied the influence of a small perturbation, long in the past, on a two-sided correlation function in the thermofield double state. A similar analysis applies to squared commutators and other out-of-time-order one-sided correlators (http://dx.doi.org/10.1007/JHEP12(2014)046, http://dx.doi.org/10.1007/JHEP03(2015)051A). The essential bulk physics is a high energy scattering problem near the horizon of an AdS black hole. The above papers used Einstein gravity to study this problem; in the present paper we consider stringy and Planckian corrections. Elastic stringy corrections play an important role, effectively weakening and smearing out the development of chaos. We discuss their signature in the boundary field theory, commenting on the extension to weak coupling. Inelastic effects, although important for the evolution of the state, leave a parametrically small imprint on the correlators that we study. We briefly discuss ways to diagnose these small corrections, and we propose another correlator where inelastic effects are order one.
International Nuclear Information System (INIS)
Shenker, Stephen H.; Stanford, Douglas
2015-01-01
In (http://dx.doi.org/10.1007/JHEP03(2014)067) we gave a precise holographic calculation of chaos at the scrambling time scale. We studied the influence of a small perturbation, long in the past, on a two-sided correlation function in the thermofield double state. A similar analysis applies to squared commutators and other out-of-time-order one-sided correlators (http://dx.doi.org/10.1007/JHEP12(2014)046, http://dx.doi.org/10.1007/JHEP03(2015)051A). The essential bulk physics is a high energy scattering problem near the horizon of an AdS black hole. The above papers used Einstein gravity to study this problem; in the present paper we consider stringy and Planckian corrections. Elastic stringy corrections play an important role, effectively weakening and smearing out the development of chaos. We discuss their signature in the boundary field theory, commenting on the extension to weak coupling. Inelastic effects, although important for the evolution of the state, leave a parametrically small imprint on the correlators that we study. We briefly discuss ways to diagnose these small corrections, and we propose another correlator where inelastic effects are order one.
Gauging MSSM global symmetries and SUSY breaking in de Sitter vacuum
Antoniadis, Ignatios
2016-01-01
We elaborate on a recent study of a model of supersymmetry breaking we proposed recently, in the presence of a tunable positive cosmological constant, based on a gauged shift symmetry of a string modulus, external to the Standard Model (SM) sector. Here, we identify this symmetry with a global symmetry of the SM and work out the corresponding phenomenology. A particularly attracting possibility is to use a combination of Baryon and Lepton number that contains the known matter parity and guarantees absence of dimension-four and five operators that violate B and L.
Local gauge symmetry and confinement in quantum chromodynamics
International Nuclear Information System (INIS)
Bardeen, W.A.; Pearson, R.B.
1977-01-01
The nonabelian color gauge theory of quarks and gluons has been proposed as the basis for fundamental theory of hadrons. The features of this theory (quantum chromodynamics) are considered which lead to confinement. A transverse lattice formulation of the theory is also discussed, which is used as a basis for calculation of properties of the hadron bound states. The theory is quantized by eliminating the longitudinal degrees of freedom in favour of coulomb potential. Hadrons are formed as bound states of quarks and the symmetric phase gluons
About gauge fixing considered as a fine art and the following Slavnov symmetry
International Nuclear Information System (INIS)
Stora, R.; European Organization for Nuclear Research
1996-01-01
Gauge fixing is defined as an operation that enables to express the integral on an orbit space as integral on the corresponding principal fiber bundle. When the fiber is non compact, this operation involves a cohomology class with compact support (or rapid decay). Slavnov symmetry is the algebraic expression of the ambiguity of this construction. (N.T.)
Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models
International Nuclear Information System (INIS)
Luhn, C.
2006-05-01
Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z N symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z 6 symmetry, proton hexality P 6 , which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH u LH u . In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1) X FN models in which the Z 3 symmetry baryon triality, B 3 , arises from U(1) X breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B 3 -conserving FN models. (orig.)
Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models
Energy Technology Data Exchange (ETDEWEB)
Luhn, C.
2006-05-15
Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z{sub N} symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z{sub 6} symmetry, proton hexality P{sub 6}, which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH{sub u}LH{sub u}. In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1){sub X} FN models in which the Z{sub 3} symmetry baryon triality, B{sub 3}, arises from U(1){sub X} breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B{sub 3}-conserving FN models. (orig.)
Maximally Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry
International Nuclear Information System (INIS)
Wang Dianfu; Song Heshan
2006-01-01
A maximally generalized Yang-Mills model, which contains, besides the vector part V μ , also an axial-vector part A μ , a scalar part S, a pseudoscalar part P, and a tensor part T μν , is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of the Nambu-Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the maximally generalized Yang-Mills model. The combination of the maximally generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.
Radiative gauge symmetry breaking in supersymmetric flipped SU(5)
Energy Technology Data Exchange (ETDEWEB)
Drees, M.
1988-05-19
The radiative breaking of the SU(5)xU(1) symmetry in the flipped SU(5) model recently proposed by Antoniadis et al. is studied using renormalization group techniques. It is shown that gaugino masses can only be the dominant source of supersymmetry breaking at the Planck scale if the U(1) gaugino mass M/sub 1/ is at least 10 times larger than the SU(5) gaugino mass M/sub 5/. If M/sub 1/ approx. = M/sub 5/ at the Planck scale, non-vanishing trilinear soft breaking terms ('A-terms') are needed already at the Planck scale. In both cases consequences for the sparticle spectrum at the weak scale are discussed.
Dynamical mechanism of symmetry breaking and particle mass generation in gauge field theories
International Nuclear Information System (INIS)
Miranskij, V.A.; Fomin, P.I.
1985-01-01
The dynamics of the spotaneous symmetry breaking and the particle mass generation in gauge theories with no fundamental scalar fields is considered. The emphasis is on the consideration of the symmetry breaking mechanism connected with the dynamics of the supercritical Coulomb-like forces caused by the gauge boson exchange between fermions. This mechanism is applied to different gauge theories, in particular, to the description of the spontaneous chira symmetry breaking in quantum chromodynamics. The mass relations for pseudoscalar meson nonet are obtained and it is shown that this mechanism resuls in the dynamical realisation of the hypothesis of the partial conservation of the axial-vector currents. The qualitative description of scalar mesons is given. The nature of the ultraviolet divergencies in quantum electrodynamics (QED) is investigated from the viewpoint of the dynamics of the fermion mass generation. The mechanism of the appearance of the additional (in comparison with perturbation theory) ultraviolet divergencies in QED with large bare coupling constant is indicated. The physical phenomenon underlying this mechanism is identified as the field theory analogue of the quantum mechanical ''fall into the centre'' (collapse) phenomenon. The similr phenomenon is shown to take place in some two-dimensional quantum field models. The dynamics of the bifermion condensates formation in tumblin gauge theories is briefly discussed
Dynamical symmetry breaking in the Jackiw-Johnson model and the gauge technique
International Nuclear Information System (INIS)
Singh, J.P.
1984-01-01
The Jackiw-Johnson model of dynamical gauge symmetry breaking has been re-examined in the light of the gauge technique. In the limit where the ratio of the axial to vector coupling constants becomes small, or, consistently, in the limit where the ratio of the axial-vector-boson mass to the fermion mass becomes small, an approximate solution for the fermion spectral function has been derived. This gives an extremely small ratio of the axial-vector-boson mass to the fermion mass. (author)
Dark Gauge U(1) symmetry for an alternative left-right model
Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza
2018-02-01
An alternative left-right model of quarks and leptons, where the SU(2)_R lepton doublet (ν ,l)_R is replaced with (n,l)_R so that n_R is not the Dirac mass partner of ν _L, has been known since 1987. Previous versions assumed a global U(1)_S symmetry to allow n to be identified as a dark-matter fermion. We propose here a gauge extension by the addition of extra fermions to render the model free of gauge anomalies, and just one singlet scalar to break U(1)_S. This results in two layers of dark matter, one hidden behind the other.
Enhanced symmetries of gauge theory and resolving the spectrum of local operators
International Nuclear Information System (INIS)
Kimura, Yusuke; Ramgoolam, Sanjaye
2008-01-01
Enhanced global non-Abelian symmetries at zero coupling in Yang Mills theory play an important role in diagonalizing the two-point functions of multimatrix operators. Generalized Casimirs constructed from the iterated commutator action of these enhanced symmetries resolve all the multiplicity labels of the bases of matrix operators which diagonalize the two-point function. For the case of U(N) gauge theory with a single complex matrix in the adjoint of the gauge group we have a U(N) x4 global symmetry of the scaling operator at zero coupling. Different choices of commuting sets of Casimirs, for the case of a complex matrix, lead to the restricted Schur basis previously studied in connection with string excitations of giant gravitons and the Brauer basis studied in connection with brane-antibrane systems. More generally these remarks can be extended to the diagonalization for any global symmetry group G. Schur-Weyl duality plays a central role in connecting the enhanced symmetries and the diagonal bases.
International Nuclear Information System (INIS)
Dudal, David; Verschelde, Henri; Rodino Lemes, Vitor Emanuel; Sarandy, Marcelo S.; Sorella, Silvio Paolo; Picariello, Marco
2002-01-01
The existence of a SL(2;R) symmetry is discussed in SU(N) Yang-Mills in the maximal abelian gauge. This symmetry, also present in the Landau and Curci-Ferrari gauge, ensures the absence of tachyons in the maximal abelian gauge. In all these gauges, SL(2;R) turns out to be dynamically broken by ghost condensates. (author)
Neutrino masses, dark matter and leptogenesis with U(1) B - L gauge symmetry
Geng, Chao-Qiang; Okada, Hiroshi
2018-06-01
We propose a model with an U(1) B - L gauge symmetry, in which small neutrino masses, dark matter and the matter-antimatter asymmetry in the Universe can be simultaneously explained. In particular, the neutrino masses are generated radiatively, while the matter-antimatter asymmetry is led by the leptogenesis mechanism, at TeV scale. We also explore allowed regions of the model parameters and discuss some phenomenological effects, including lepton flavor violating processes.
Spontaneous symmetry breaking, and strings defects in hypercomplex gauge field theories
Energy Technology Data Exchange (ETDEWEB)
Cartas-Fuentevilla, R. [Universidad Autonoma de Puebla, Instituto de Fisica, Puebla, Pue. (Mexico); Meza-Aldama, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, Pue. (Mexico)
2016-02-15
Inspired by the appearance of split-complex structures in the dimensional reduction of string theory, and in the theories emerging as byproducts, we study the hypercomplex formulation of Abelian gauge field theories by incorporating a new complex unit to the usual complex one. The hypercomplex version of the traditional Mexican hat potential associated with the U(1) gauge field theory, corresponds to a hybrid potential with two real components, and with U(1) x SO(1,1) as symmetry group. Each component corresponds to a deformation of the hat potential, with the appearance of a new degenerate vacuum. Hypercomplex electrodynamics will show novel properties, such as spontaneous symmetry breaking scenarios with running masses for the vectorial and scalar Higgs fields, and such as Aharonov-Bohm type strings defects as exact solutions; these topological defects may be detected only by quantum interference of charged particles through gauge invariant loop integrals. In a particular limit, the hyperbolic electrodynamics does not admit topological defects associated with continuous symmetries. (orig.)
Imprints of supersymmetry in the Lorentz-symmetry breaking of Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Belich, H [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil); Dias, G S; Leal, F J.L. [Instituto Federal de Educacao, Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil); Durand, L G; Helayel-Neto, Jose Abdalla; Spalenza, W [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil)
2011-07-01
Full text: The breaking of Lorentz symmetry that may take place at very high energies opens up a venue for the discussion of the interplay between the violations of supersymmetry and relativistic symmetry. Recently, there have appeared in the literature models which propose a residual (non-relativistic) supersymmetry after Lorentz symmetry has been broken in a Horava gravity scenario. We here propose an N=1-supersymmetric Abelian gauge model which realises the breaking of Lorentz invariance by means of a CPT-even term. Our attempt assumes the point of view that supersymmetry and Lorentz symmetry are broken down at the same scale. If this is the case, the fermionic sector of the supermultiplets that accomplish the breaking of the symmetries into consideration may give rise to condensates that play an important role in the photon and photino dispersion relations. Contemporarily, they may also point to a more fundamental origin for the (bosonic) tensors usually associated to the backgrounds that parametrize Lorentz-symmetry breaking. We also highlight that, by studying the the violation of Lorentz symmetry in connection with supersymmetry, we find out that the Myers-Pospelov Electrodynamics, proposed on the basis of an analysis of the set of dimension-five operators, naturally appears in the bosonic sector of our model. Also, as a result of the interconnection between the supersymmetry and Lorentz-symmetry breakings, the photino-photino and photon-photino mixings that correspond to the supersymmetric completion of the Myers-Pospelov purely photonic terms come out. Finally, we present some comments on the possible modifications the supersymmetric fermions may introduce in the dispersion relations for particles at (high) energies close to the scale where supersymmetry and Lorentz symmetry are broken. (author)
Imprints of supersymmetry in the Lorentz-symmetry breaking of Gauge Theories
International Nuclear Information System (INIS)
Belich, H.; Dias, G.S.; Leal, F.J.L.; Durand, L.G.; Helayel-Neto, Jose Abdalla; Spalenza, W.
2011-01-01
Full text: The breaking of Lorentz symmetry that may take place at very high energies opens up a venue for the discussion of the interplay between the violations of supersymmetry and relativistic symmetry. Recently, there have appeared in the literature models which propose a residual (non-relativistic) supersymmetry after Lorentz symmetry has been broken in a Horava gravity scenario. We here propose an N=1-supersymmetric Abelian gauge model which realises the breaking of Lorentz invariance by means of a CPT-even term. Our attempt assumes the point of view that supersymmetry and Lorentz symmetry are broken down at the same scale. If this is the case, the fermionic sector of the supermultiplets that accomplish the breaking of the symmetries into consideration may give rise to condensates that play an important role in the photon and photino dispersion relations. Contemporarily, they may also point to a more fundamental origin for the (bosonic) tensors usually associated to the backgrounds that parametrize Lorentz-symmetry breaking. We also highlight that, by studying the the violation of Lorentz symmetry in connection with supersymmetry, we find out that the Myers-Pospelov Electrodynamics, proposed on the basis of an analysis of the set of dimension-five operators, naturally appears in the bosonic sector of our model. Also, as a result of the interconnection between the supersymmetry and Lorentz-symmetry breakings, the photino-photino and photon-photino mixings that correspond to the supersymmetric completion of the Myers-Pospelov purely photonic terms come out. Finally, we present some comments on the possible modifications the supersymmetric fermions may introduce in the dispersion relations for particles at (high) energies close to the scale where supersymmetry and Lorentz symmetry are broken. (author)
The extended local gauge invariance and the BRS symmetry in stochastic quantization of gauge fields
International Nuclear Information System (INIS)
Nakazawa, Naohito.
1989-05-01
We investigate the BRS invariance of the first-class constrained systems in the context of the stochastic quantization. For the first-class constrained systems, we construct the nilpotent BRS transformation and the BRS invariant stochastic effective action based on the D+1 dimensional field theoretical formulation of stochastic quantization. By eliminating the multiplier field of the gauge fixing condition and an auxiliary field, it is shown that there exists a truncated BRS transformation which satisfies the nilpotency condition. The truncated BRS invariant stochastic action is also derived. As the examples of the general formulation, we investigate the BRS invariant structure in the massless and massive Yang-Mills fields in stochastic quantization. (author)
Classically conformal radiative neutrino model with gauged B−L symmetry
Directory of Open Access Journals (Sweden)
Hiroshi Okada
2016-09-01
Full Text Available We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B−L symmetry in the standard model that is essential in order to work the Coleman–Weinberg mechanism well that induces the B−L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman–Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ→eγ, the current bound on the Z′ mass at the CERN Large Hadron Collider, and neutrino oscillations.
Dirac dark matter and b →s ℓ+ℓ- with U(1) gauge symmetry
Celis, Alejandro; Feng, Wan-Zhe; Vollmann, Martin
2017-02-01
We revisit the possibility of a Dirac fermion dark matter candidate in the light of current b →s ℓ+ℓ- anomalies by investigating a minimal extension of the Standard Model with a horizontal U(1 ) ' local symmetry. Dark matter stability is protected by a remnant Z2 symmetry arising after spontaneous symmetry breaking of U(1 ) '. The associated Z' gauge boson can accommodate current hints of new physics in b →s ℓ+ℓ- decays, and acts as a vector portal between dark matter and the visible sector. We find that the model is severely constrained by a combination of precision measurements at flavor factories, LHC searches for dilepton resonances, as well as direct and indirect dark matter searches. Despite this, viable regions of the parameter space accommodating the observed dark matter relic abundance and the b →s ℓ+ℓ-anomalies still persist for dark matter and Z ' masses in the TeV range.
Symmetry breaking and asymptotic freedom in colour SU(3) gauge models
International Nuclear Information System (INIS)
Ma, E.
1976-01-01
A class of quark models based on the colour gauge group SU(3) is shown to be asymptotically free despite the complete breakdown of local symmetry to guarantee infrared stability. The symmetry breakdown is achieved by the presence of elementary scalar fields either through the Higgs mechanism or dynamically as first proposed by Coleman and Weinberg. Asymptotic freedom is preserved by imposing eigenvalue conditions on the coupling constants as first proposed by Chang. New quark species must be present, but below their production threshold, colour can still be a global symmetry which is approximate under SU(3), but exact under SU(2). Among the many implications of this class of models is the possibility of producing isolated quarks and gluons of non-zero mass without altering the short-distance behaviour of the superstrong interaction which binds them. (Auth.)
Peccei-Quinn invariant singlet extended SUSY with anomalous U(1) gauge symmetry
Energy Technology Data Exchange (ETDEWEB)
Im, Sang Hui; Seo, Min-Seok [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon 305-811 (Korea, Republic of)
2015-05-13
Recent discovery of the SM-like Higgs boson with m{sub h}≃125 GeV motivates an extension of the minimal supersymmetric standard model (MSSM), which involves a singlet Higgs superfield with a sizable Yukawa coupling to the doublet Higgs superfields. We examine such singlet-extended SUSY models with a Peccei-Quinn (PQ) symmetry that originates from an anomalous U(1){sub A} gauge symmetry. We focus on the specific scheme that the PQ symmetry is spontaneously broken at an intermediate scale v{sub PQ}∼√(m{sub SUSY}M{sub Pl}) by an interplay between Planck scale suppressed operators and tachyonic soft scalar mass m{sub SUSY}∼√(D{sub A}) induced dominantly by the U(1){sub A}D-term D{sub A}. This scheme also results in spontaneous SUSY breaking in the PQ sector, generating the gaugino masses M{sub 1/2}∼√(D{sub A}) when it is transmitted to the MSSM sector by the conventional gauge mediation mechanism. As a result, the MSSM soft parameters in this scheme are induced mostly by the U(1){sub A}D-term and the gauge mediated SUSY breaking from the PQ sector, so that the sparticle masses can be near the present experimental bounds without causing the SUSY flavor problem. The scheme is severely constrained by the condition that a phenomenologically viable form of the low energy operators of the singlet and doublet Higgs superfields is generated by the PQ breaking sector in a way similar to the Kim-Nilles solution of the μ problem, and the resulting Higgs mass parameters allow the electroweak symmetry breaking with small tan β. We find two minimal models with two singlet Higgs superfields, satisfying this condition with a relatively simple form of the PQ breaking sector, and briefly discuss some phenomenological aspects of the model.
The decay width of stringy hadrons
Directory of Open Access Journals (Sweden)
Jacob Sonnenschein
2018-02-01
We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K⁎, ϕ, D, and Ds⁎, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A=0.095±0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark–diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.
Mixed Mediation of Supersymmetry Breaking in Models with Anomalous U(1) Gauge Symmetry
International Nuclear Information System (INIS)
Choi, Kiwoon
2010-01-01
There can be various built-in sources of supersymmetry breaking in models with anomalous U(1) gauge symmetry, e.g. the U(1) D-term, the F-components of the modulus superfield required for the Green-Schwarz anomaly cancellation mechanism and the chiral matter superfields required to cancel the Fayet-Iliopoulos term, and finally the supergravity auxiliary component which can be parameterized by the F-component of chiral compensator. The relative strength between these supersymmetry breaking sources depends crucially on the characteristics of D-flat direction and also on how the D-flat direction is stabilized at a vacuum with nearly vanishing cosmological constant. We examine the possible pattern of the mediation of supersymmetry breaking in models with anomalous U(1) gauge symmetry, and find that various different mixed mediation scenarios can be realized, including the mirage mediation which corresponds to a mixed modulus-anomaly mediation, D-term domination giving a split sparticle spectrum, and also a mixed gauge-D-term mediation scenario.
A flavor dependent gauge symmetry, predictive radiative seesaw and LHCb anomalies
Directory of Open Access Journals (Sweden)
P. Ko
2017-09-01
Full Text Available We propose a predictive radiative seesaw model at one-loop level with a flavor dependent gauge symmetry U(1xB3−xe−μ+τ and Majorana fermion dark matter. For the neutrino mass matrix, we obtain an A1 type texture (with two zeros that provides us several predictions such as the normal ordering for the neutrino masses. We analyze the constraints from lepton flavor violations, relic density of dark matter, and collider physics for the new U(1xB3−xe−μ+τ gauge boson. Within the allowed region, the LHCb anomalies in B→K⁎μ+μ− and B→Kℓ+ℓ− with ℓ=e or μ can be resolved, and such Z′ could be also observed at the LHC.
Left-right gauge symmetry breaking by radiative corrections in supergravity
International Nuclear Information System (INIS)
Moxhay, P.; Yamamoto, K.
1984-01-01
A supersymmetric SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) gauge theory coupled to N = 1 supergravity is investigated. The scale of left-right gauge symmetry breaking is determined as Msub(R) proportional Msub(P) esup(-1/α) by radiative corrections through the logarithmic evolution of soft supersymmetry breakings. SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) may be embedded in SO(10) grand unification. Cosmological implications intrinsic to the present model are also discussed, which may give a constraint Msub(R) approx.= 10 9-12 GeV. (orig.)
Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories
International Nuclear Information System (INIS)
Miranskij, V.A.; Gusynin, V.P.
1987-01-01
The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed
Diphoton excess from hidden U(1 gauge symmetry with large kinetic mixing
Directory of Open Access Journals (Sweden)
Fuminobu Takahashi
2016-09-01
Full Text Available We show that the 750 GeV diphoton excess can be explained by introducing vector-like quarks and hidden fermions charged under a hidden U(1 gauge symmetry, which has a relatively large coupling constant as well as a significant kinetic mixing with U(1Y. With the large kinetic mixing, the standard model gauge couplings unify around 1017 GeV, suggesting the grand unified theory without too rapid proton decay. Our scenario predicts events with a photon and missing transverse momentum, and its cross section is related to that for the diphoton excess through the kinetic mixing. We also discuss other possible collider signatures and cosmology, including various ways to evade constraints on exotic stable charged particles. In some cases where the 750 GeV diphoton excess is due to diaxion decays, our scenario also predicts triphoton and tetraphoton signals.
Boundary Fixed Points, Enhanced Gauge Symmetry and Singular Bundles on K3
Fuchs, J; Lerche, Wolfgang; Lütken, C A; Schweigert, C; Walcher, J
2001-01-01
We investigate certain fixed points in the boundary conformal field theory representation of type IIA D-branes on Gepner points of K3. They correspond geometrically to degenerate brane configurations, and physically lead to enhanced gauge symmetries on the world-volume. Non-abelian gauge groups arise if the stabilizer group of the fixed points is realized projectively, which is similar to D-branes on orbifolds with discrete torsion. Moreover, the fixed point boundary states can be resolved into several irreducible components. These correspond to bound states at threshold and can be viewed as (non-locally free) sub-sheaves of semi-stable sheaves. Thus, the BCFT fixed points appear to carry two-fold geometrical information: on the one hand they probe the boundary of the instanton moduli space on K3, on the other hand they probe discrete torsion in D-geometry.
Dark gauge U(1) symmetry for an alternative left-right model
Energy Technology Data Exchange (ETDEWEB)
Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza [University of California, Department of Physics and Astronomy, Riverside, CA (United States)
2018-02-15
An alternative left-right model of quarks and leptons, where the SU(2){sub R} lepton doublet (ν, l){sub R} is replaced with (n, l){sub R} so that n{sub R} is not the Dirac mass partner of ν{sub L}, has been known since 1987. Previous versions assumed a global U(1){sub S} symmetry to allow n to be identified as a dark-matter fermion. We propose here a gauge extension by the addition of extra fermions to render the model free of gauge anomalies, and just one singlet scalar to break U(1){sub S}. This results in two layers of dark matter, one hidden behind the other. (orig.)
Bogoliubov condensation of gluons and spontaneous gauge symmetry breaking in QCD
International Nuclear Information System (INIS)
Pervushin, V.N.; Roepke, G.; Volkov, M.K.; Blaschke, D.; Pavel, H.P.; Litvin, A.
1995-08-01
The ''squeezed'' representation of commutation relations for gluon fields in QCD is formulated as the mathematical tool for the description of the gluon condensate. We first consider λφ 4 theory and show that the ''squeezed'' Bogoliubov condensate can lead to the spontaneous appearance of a mass. Using the ''squeezed'' representation, we show that in the non-Abelian theory spontaneous gauge symmetry breaking (SGSB) and the appearance of a constituent mass of gluons can be described. We construct a projector onto the oscillator - like variables, for which the ''squeezed'' representation is valid, by using the formal solution of the Gauss equation instead of fixing a gauge. We discuss the effects of the SGSB and present as an application of the approach the calculation of the gluon mass from the difference of the η' and the η - meson masses. (author). 27 refs
Electroweak symmetry breaking and mass spectra in six-dimensional gauge-Higgs grand unification
Hosotani, Yutaka; Yamatsu, Naoki
2018-02-01
The mass spectra of the standard model particles are reproduced in the SO(11) gauge-Higgs grand unification in six-dimensional warped space without introducing exotic light fermions. Light neutrino masses are explained by the gauge-Higgs seesaw mechanism. We evaluate the effective potential of the four-dimensional Higgs boson appearing as a fluctuation mode of the Aharonov-Bohm phase θ_H in the extra-dimensional space, and show that the dynamical electroweak symmetry breaking takes place with the Higgs boson mass m_H ˜ 125 GeV and θ_H ˜ 0.1. The Kaluza-Klein mass scale in the fifth dimension is approximately given by m_KK ˜ 1.230 TeV/sin θ_H.
MSSM soft terms from supergravity with gauged R-symmetry in de Sitter vacuum
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, I. [LPTHE, UMR CNRS 7589 Sorbonne Universités, UPMC Paris 6, 75005 Paris France (France); Albert Einstein Center, Institute for Theoretical Physics Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Knoops, R., E-mail: rob.knoops@cern.ch [CERN Theory Division, CH-1211 Geneva 23 (Switzerland); Section de Mathématiques, Université de Genève, CH-1211 Geneva (Switzerland); Instituut voor Theoretische Fysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)
2016-01-15
We work out the phenomenology of a model of supersymmetry breaking in the presence of a tiny (tunable) positive cosmological constant, proposed by the authors in (arXiv:1403.1534). It utilizes a single chiral multiplet with a gauged shift symmetry that can be identified with the string dilaton (or an appropriate compactification modulus). The model is coupled to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phenomenology that allows to differentiate it from other models of supersymmetry breaking and mediation mechanisms.
Chiral-symmetry restoration at finite densities in Coulomb-gauge QCD
International Nuclear Information System (INIS)
Kocic, A.
1986-01-01
Using the Schwinger-Dyson equation in the Hartree-Fock approximation, we show that, within a potential model motivated by the QCD Hamiltonian in the Coulomb gauge, chiral symmetry is restored at finite densities. Two cases are studied: a delta-function potential and a linear confining potential. For the former case the phase diagram is obtained analytically, whereas for the latter case numerical techniques are used. The values of physical quantities calculated for the linear confining model are consistently smaller than the experimental ones indicating that a potential with additional short-range attraction is needed to describe the quark interaction in the high-density regime
MSSM soft terms from supergravity with gauged R-symmetry in de Sitter vacuum
Directory of Open Access Journals (Sweden)
I. Antoniadis
2016-01-01
Full Text Available We work out the phenomenology of a model of supersymmetry breaking in the presence of a tiny (tunable positive cosmological constant, proposed by the authors in arXiv:1403.1534. It utilizes a single chiral multiplet with a gauged shift symmetry that can be identified with the string dilaton (or an appropriate compactification modulus. The model is coupled to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phenomenology that allows to differentiate it from other models of supersymmetry breaking and mediation mechanisms.
A radiative neutrino mass model in light of DAMPE excess with hidden gauged U(1) symmetry
Nomura, Takaaki; Okada, Hiroshi; Wu, Peiwen
2018-05-01
We propose a one-loop induced neutrino mass model with hidden U(1) gauge symmetry, in which we successfully involve a bosonic dark matter (DM) candidate propagating inside a loop diagram in neutrino mass generation to explain the e+e‑ excess recently reported by the DArk Matter Particle Explorer (DAMPE) experiment. In our scenario dark matter annihilates into four leptons through Z' boson as DM DM → Z' Z' (Z' → l+ l‑) and Z' decays into leptons via one-loop effect. We then investigate branching ratios of Z' taking into account lepton flavor violations and neutrino oscillation data.
Loop suppressed light fermion masses with U (1 )R gauge symmetry
Nomura, Takaaki; Okada, Hiroshi
2017-07-01
We propose a model with a two-Higgs doublet, where quark and charged-lepton masses in the first and second families are induced at one-loop level, and neutrino masses are induced at the two-loop level. In our model, we introduce an extra U (1 )R gauge symmetry that plays a crucial role in achieving desired terms in no conflict with anomaly cancellation. We show the mechanism to generate fermion masses, the resultant mass matrices, and Yukawa interactions in mass eigenstates, and we discuss several interesting phenomenologies such as the muon anomalous magnetic dipole moment and the dark matter candidate that arise from this model.
Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry
Hsu, J. P.
1981-01-01
A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.
Lepton-flavour violation in a Pati-Salam model with gauged flavour symmetry
Energy Technology Data Exchange (ETDEWEB)
Feldmann, Thorsten; Luhn, Christoph; Moch, Paul [Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät,Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen (Germany)
2016-11-11
Combining Pati-Salam (PS) and flavour symmetries in a renormalisable setup, we devise a scenario which produces realistic masses for the charged leptons. Flavour-symmetry breaking scalar fields in the adjoint representations of the PS gauge group are responsible for generating different flavour structures for up- and down-type quarks as well as for leptons. The model is characterised by new heavy fermions which mix with the Standard Model quarks and leptons. In particular, the partners for the third fermion generation induce sizeable sources of flavour violation. Focusing on the charged-lepton sector, we scrutinise the model with respect to its implications for lepton-flavour violating processes such as μ→eγ, μ→3e and muon conversion in nuclei.
Confinement/deconfinement transition from symmetry breaking in gauge/gravity duality
Energy Technology Data Exchange (ETDEWEB)
Čubrović, Mihailo [Institute for Theoretical Physics, University of Cologne,Zülpicher Strasse 77, D-50937, Cologne (Germany)
2016-10-19
We study the confinement/deconfinement transition in a strongly coupled system triggered by an independent symmetry-breaking quantum phase transition in gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS near-boundary behavior and soft wall interior at zero scalar condensate. We study the cases of neutral and charged condensate separately. In the former case the condensation breaks the discrete ℤ{sub 2} symmetry while a charged condensate breaks the continuous U(1) symmetry. After the condensation of the order parameter, the non-zero vacuum expectation value of the scalar couples to the dilaton, changing the soft wall geometry into a non-confining and anisotropically scale-invariant infrared metric. In other words, the formation of long-range order is immediately followed by the deconfinement transition and the two critical points coincide. The confined phase has a scale — the confinement scale (energy gap) which vanishes in the deconfined case. Therefore, the breaking of the symmetry of the scalar (ℤ{sub 2} or U(1)) in turn restores the scaling symmetry in the system and neither phase has a higher overall symmetry than the other. When the scalar is charged the phase transition is continuous which goes against the Ginzburg-Landau theory where such transitions generically only occur discontinuously. This phenomenon has some commonalities with the scenario of deconfined criticality. The mechanism we have found has applications mainly in effective field theories such as quantum magnetic systems. We briefly discuss these applications and the relation to real-world systems.
Symmetry breaking in superstring theories: applications in cosmology and particle physics
International Nuclear Information System (INIS)
Catelin-Julien, T.
2008-10-01
This thesis is devoted to the study of some applications of superstring theory in cosmology and in particle physics. The unifying principle of our work is the stringy spontaneous (super)symmetry breaking mechanism. Our manuscript starts with a general overview of string theory, where the emphasis is put on the aspects that will be important throughout our work. We introduce then our first work, in which we exhibit a new symmetry of the vacua of N = 1 heterotic string theory, exchanging the vectorial and spinorial representations of the grand unified gauge group. In a second part, we consider stringy cosmological evolutions, at non-zero temperature and in the presence of a supersymmetry breaking scale. We also give arguments for a stabilization of the compactification moduli. (author)
Inflation from supergravity with gauged R-symmetry in de Sitter vacuum
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, I. [LPTHE, UMR CNRS 7589 Sorbonne Universites, UPMC Paris 6, Paris (France); University of Bern, Albert Einstein Center, Institute for Theoretical Physics, Bern (Switzerland); Chatrabhuti, A.; Isono, H. [Chulalongkorn University, Department of Physics, Faculty of Science, Bangkok (Thailand); Knoops, R. [Universite de Geneve, Section de Mathematiques, Geneva (Switzerland); KU Leuven, Instituut voor Theoretische Fysica, Leuven (Belgium)
2016-12-15
We study the cosmology of a recent model of supersymmetry breaking, in the presence of a tuneable positive cosmological constant, based on a gauged shift symmetry of a string modulus that can be identified with the string dilaton. The minimal spectrum of the 'hidden' supersymmetry breaking sector consists then of a vector multiplet that gauges the shift symmetry of the dilaton multiplet and when coupled to the MSSM leads to a distinct low energy phenomenology depending on one parameter. Here we study the question if this model can also lead to inflation by identifying the dilaton with the inflaton. We find that this is possible if the Kaehler potential is modified by a term that has the form of NS5-brane instantons, leading to an appropriate inflationary plateau around the maximum of the scalar potential, depending on two extra parameters. This model is consistent with present cosmological observations without modifying the low energy particle phenomenology associated to the minimum of the scalar potential. (orig.)
Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications
Antoniadis, I.; Knoops, R.
2015-01-01
We consider a class of models with gauged U(1)_R symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and K\\"ors and apply their results to the special case of a U(1)_R symmetry, in the presence of the Fayet-Iliopoulos term ($\\xi$) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the "naive" field theory approach in global SUSY, in which case U(1)_R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditi...
Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, I. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern, 5 Sidlestrasse, CH-3012 Bern (Switzerland); LPTHE, Universite Pierre et Marie Curie, F-75252 Paris (France); Ecole Polytechnique, F-91128 Palaiseau (France); Ghilencea, D.M. [Theoretical Physics Department,National Institute of Physics and Nuclear Engineering (IFIN-HH),Bucharest, MG-6 077125 (Romania); CERN Theory Division,CH-1211 Geneva 23 (Switzerland); Knoops, R. [CERN Theory Division,CH-1211 Geneva 23 (Switzerland); Instituut voor Theoretische Fysica, KU Leuven,Clestijnenlaan 200D, B-3001 Leuven (Belgium)
2015-02-25
We consider a class of models with gauged U(1){sub R} symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and Körs and apply their results to the special case of a U(1){sub R} symmetry, in the presence of the Fayet-Iliopoulos term (ξ) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the “naive” field theory approach in global SUSY, in which case U(1){sub R} cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditions for the MSSM gauge couplings. In an anomaly-free model, a tunable, TeV-scale gravitino mass may remain possible provided that the U(1){sub R} charges of additional hidden sector fermions (constrained by the cubic anomaly alone) do not conflict with the related values of U(1){sub R} charges of their scalar superpartners, constrained by existence of a stable ground state. This issue may be bypassed by tuning instead the coefficients of the Kahler connection anomalies (b{sub K},b{sub CK}).
Conribution to the study of spontaneous breakdown of the chiral symmetry in gauge theories
International Nuclear Information System (INIS)
Gamonal, R.
1984-01-01
In the framework of quantum chromodynamics, we have been interested in the order parameters for the breakdown of the non-abelian chiral symmetry. Using the functional integral representation in the euclidean formalism, we have performed the fermionic integration after having inverted the chiral limit and the integration over gluonic fields. So, we were led to look for what gauge field configurations, the fermionic integrand has a non-vanishing chiral limit. We have been able to show, in a general manner, that the generating functional of all the order parameters vanishes in the chiral limit for the gauge field configurations which lead to a discrete spectrum for the Dirac operator around zero. For those leading to a continuous spectrum from the zero eigenvalue, the existence of a non-vanishing infra-red limit for the spectral density of the Dirac operator is crucial. We have exhibited gauge field configurations which give such a behaviour. Nevertheless, our analysis reveals the necessity to get a degeneracy for the zero modes belonging to the continuum of the Dirac operator. We have been able to demonstrate, for the class of gluonic fields, previously considered, an absence of degeneracy [fr
Do stringy corrections stabilize colored black holes?
International Nuclear Information System (INIS)
Kanti, P.; Winstanley, E.
2000-01-01
We consider hairy black hole solutions of Einstein-Yang-Mills-dilaton theory, coupled to a Gauss-Bonnet curvature term, and we study their stability under small, spacetime-dependent perturbations. We demonstrate that stringy corrections do not remove the sphaleronic instabilities of colored black holes with the number of unstable modes being equal to the number of nodes of the background gauge function. In the gravitational sector and in the limit of an infinitely large horizon, colored black holes are also found to be unstable. Similar behavior is exhibited by magnetically charged black holes while the bulk of neutral black holes are proved to be stable under small, gauge-dependent perturbations. Finally, electrically charged black holes are found to be characterized only by the existence of a gravitational sector of perturbations. As in the case of neutral black holes, we demonstrate that for the bulk of electrically charged black holes no unstable modes arise in this sector. (c) 2000 The American Physical Society
Spontaneous symmetry breaking and fermion chirality in higher-dimensional gauge theory
International Nuclear Information System (INIS)
Wetterich, C.
1985-01-01
The number of chiral fermions may change in the course of spontaneous symmetry breaking. We discuss solutions of a six-dimensional Einstein-Yang-Mills theory based on SO(12). In the resulting effective four-dimensional theory they can be interpreted as spontaneous breaking of a gauge group SO(10) to H=SU(3)sub(C)xSU(2)sub(L)xU(1)sub(R)xU(1)sub(B-L). For all solutions, the fermions which are chiral with respect to H form standard generations. However, the number of generations for the solutions with broken SO(10) may be different compared to the symmetric solutions. All solutions considered here exhibit a local generation group SU(2)sub(G)xU(1)sub(G). For the solutions with broken SO(10) symmetry, the leptons and quarks within one generation transform differently with respect to SU(2)sub(G)xU(1)sub(G). Spontaneous symmetry breaking also modifies the SO(10) relations among Yukawa couplings. All this has important consequences for possible fermion mass relations obtained from higher-dimensional theories. (orig.)
Unbounded representations of symmetry groups in gauge quantum field theory. Pt. 1
International Nuclear Information System (INIS)
Voelkel, A.H.
1983-01-01
Symmetry groups and especially the covariance (substitution rules) of the basic fields in a gauge quantum field theory of the Wightman-Garding type are investigated. By means of the continuity properties hidden in the substitution rules it is shown that every unbounded form-isometric representation U of a Lie group has a form-skew-symmetric differential deltaU with dense domain in the unphysical Hilbert space. Necessary and sufficient conditions for the existence of the closures of U and deltaU as well as for the isometry of U are derived. It is proved that a class of representations of the transition group enforces a relativistic confinement mechanism, by which some or all basic fields are confined but certain mixed products of them are not. (orig.)
Kaehler-Chern-Simons theory and symmetries of anti-self-dual gauge fields
International Nuclear Information System (INIS)
Nair, V.P.; Schiff, J.
1992-01-01
Kaehler-Chern-Simons theory, which was proposed as a generalization of ordinary Chern-Simons theory, is explored in more detail. The theory describes anti-self-dual instantons on a four-dimensional Kaehler manifold. The phase space is the space of gauge potentials, whose symplectic reduction by the constraints of anti-self-duality leads to the moduli space of instantons. We show that infinitesimal Baecklund transformations, previously related to 'hidden symmetries' of instantons, are canonical transformations generated by the anti-self-duality constraints. The quantum wave functions naturally lead to a generalized Wess-Zumino-Witten action, which in turn has associated chiral current algebras. The dimensional reduction of the anti-self-duality equations leading to integrable two-dimensional theories is briefly discussed in this framework. (orig.)
Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang
2015-01-23
The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.
Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2013-09-13
Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.
International Nuclear Information System (INIS)
Flume, R.
1978-01-01
The unitary (U) gauge Green's functions of the U(1) and SU(2) Higgs-Kibble models are constructed applying a renormalized point transformation and a non-local gauge changing transformation to a manifestly renormalizable (R gauge) version of the respective theory. It is shown that the cancellation mechanism known as 'tree graph unitarity' rendering in tree graph approximation a smooth high energy behaviour of the U gauge Green's functions on mass shell can in a natural way be extended to all orders of perturbation theory. The conditions imposed by this 'generalized tree graph unitarity' on the renormalization programme are shown to be equivalent with the requirement of renormalized Slavnov identities for the R gauge Green's functions
On the stringy Hartle-Hawking state
Ben-Israel, Roy; Giveon, Amit; Itzhaki, Nissan; Liram, Lior
2016-03-01
We argue that non-perturbative α' stringy effects render the Hartle-Hawking state associated with the SL(2)/U(1) eternal black hole singular at the horizon. We discuss implications of this observation on firewalls in string theory.
Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals
International Nuclear Information System (INIS)
Babington, J.; Erdmenger, J.; Guralnik, Z.; Kirsch, I.; Evans, N.
2004-01-01
We study gravity duals of large N nonsupersymmetric gauge theories with matter in the fundamental representation by introducing a D7-brane probe into deformed AdS backgrounds. In particular, we consider a D7-brane probe in both the AdS Schwarzschild black hole solution and in the background found by Constable and Myers, which involves a nonconstant dilaton and S 5 radius. Both these backgrounds exhibit confinement of fundamental matter and a discrete glueball and meson spectrum. We numerically compute the Ψ-barΨ condensate and meson spectrum associated with these backgrounds. In the AdS-black-hole background, a quark-bilinear condensate develops only at a nonzero quark mass. We speculate on the existence of a third order phase transition at a critical quark mass where the D7 embedding undergoes a geometric transition. In the Constable-Myers background, we find a chiral symmetry breaking condensate as well as the associated Goldstone boson in the limit of small quark mass. The existence of the condensate ensures that the D7-brane never reaches the naked singularity at the origin of the deformed AdS space
Origin of Abelian Gauge Symmetries in Heterotic/F-theory Duality
Cvetic, Mirjam; Klevers, Denis; Poretschkin, Maximilian; Song, Peng
2016-01-01
We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m) x U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) x Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required ...
Searching for dark matter signals in the left-right symmetric gauge model with CP symmetry
International Nuclear Information System (INIS)
Guo Wanlei; Wu Yueliang; Zhou Yufeng
2010-01-01
We investigate the singlet scalar dark matter (DM) candidate in a left-right symmetric gauge model with two Higgs bidoublets in which the stabilization of the DM particle is induced by the discrete symmetries P and CP. According to the observed DM abundance, we predict the DM direct and indirect detection cross sections for the DM mass range from 10 to 500 GeV. We show that the DM indirect detection cross section is not sensitive to the light Higgs mixing and Yukawa couplings except for the resonance regions. The predicted spin-independent DM-nucleon elastic scattering cross section is found to be significantly dependent on the above two factors. Our results show that the future DM direct search experiments can cover the most parts of the allowed parameter space. The PAMELA antiproton data can only exclude two very narrow regions in the two Higgs bidoublets model. It is very difficult to detect the DM direct or indirect signals in the resonance regions due to the Breit-Wigner resonance effect.
Nomura, Takaaki; Okada, Hiroshi
2018-03-01
We propose a Dirac type active neutrino with rank two mass matrix and a Majorana fermion dark matter candidate with an alternative local U(1)_{B-L} extension of neutrinophilic two Higgs doublet model. Our dark matter candidate can be stabilized due to charge assignment under the gauge symmetry without imposing extra discrete Z_2 symmetry and the relic density is obtained from an Z' boson exchanging process. Taking into account collider constraints on the Z' boson mass and coupling, we estimate the relic density.
Stationary black holes with stringy hair
Boos, Jens; Frolov, Valeri P.
2018-01-01
We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.
Group theory approach to unification of gravity with internal symmetry gauge interactions. Part 1
International Nuclear Information System (INIS)
Samokhvalov, S.E.; Vanyashin, V.S.
1990-12-01
The infinite group of deformed diffeomorphisms of space-time continuum is put into the basis of the Gauge Theory of Gravity. This gives rise to some new ways for unification of gravity with other gauge interactions. (author). 7 refs
Origin of Abelian gauge symmetries in heterotic/F-theory duality
International Nuclear Information System (INIS)
Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; Poretschkin, Maximilian; Song, Peng
2016-01-01
We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m)×U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m)×ℤ_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. While the number of geometrically massless U(1)’s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)’s is found by taking into account a Stückelberg mechanism in the lower-dimensional effective theory. In geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.
Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry
Energy Technology Data Exchange (ETDEWEB)
Xiao, C.W.; Oset, E. [Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Departamento de Fisica Teorica and IFIC, Valencia (Spain)
2013-11-15
Using a coupled-channel unitary approach, combining the heavy quark spin symmetry and the dynamics of the local hidden gauge, we investigate the meson-baryon interaction with hidden beauty and obtain several new states of N around 11 GeV. We consider the basis of states {eta}{sub b} N, {Upsilon};N, B {Lambda}{sub b}, B {Sigma}{sub b}, B{sup *}{Lambda}{sub b}, B{sup *}{Sigma}{sub b}, B{sup *}{Sigma}{sub b}{sup *} and find four basic bound states which correspond to B {Sigma}{sub b}, B {Sigma}{sub b}{sup *}, B{sup *}{Sigma}{sub b} and B{sup *}{Sigma}{sub b}{sup *}, decaying mostly into {eta}{sub b} N and {Upsilon}N and with a binding energy about 50-130 MeV with respect to the thresholds of the corresponding channel. All of them have isospin I = 1/2, and we find no bound states or resonances in I = 3/2. The B {Sigma}{sub b} state appears in J = 1/2, the B {Sigma}{sub b}{sup *} in J = 3/2, the B{sup *}{Sigma}{sub b} appears nearly degenerate in J = 1/2, 3/2 and the B{sup *}{Sigma}{sub b}{sup *} appears nearly degenerate in J = 1/2, 3/2, 5/2. These states have a width from 2-110 MeV, with conservative estimates of uncertainties, except for the one in J = 5/2 which has zero width since it cannot decay into any of the states of the basis chosen. We make generous estimates of the uncertainties and find that within very large margins these states appear bound. (orig.)
The decay width of stringy hadrons
Sonnenschein, Jacob; Weissman, Dorin
2018-02-01
In this paper we further develop a string model of hadrons by computing their strong decay widths and comparing them to experiment. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as Γ = π/2 ATL where T and L are the tension and length of the string and A is a dimensionless universal constant. We show that this result holds for a bosonic string not only in the critical dimension. The partial width of a given decay mode is given by Γi / Γ =Φi exp (- 2 πCmsep2 / T) where Φi is a phase space factor, msep is the mass of the "quark" and "antiquark" created at the splitting point, and C is a dimensionless coefficient close to unity. Based on the spectra of hadrons we observe that their (modified) Regge trajectories are characterized by a negative intercept. This implies a repulsive Casimir force that gives the string a "zero point length". We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K*, ϕ, D, and Ds*, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A = 0.095 ± 0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.
Srinivas, N.; Malik, R. P.
2017-11-01
We derive the off-shell nilpotent symmetries of the two (1 + 1)-dimensional (2D) non-Abelian 1-form gauge theory by using the theoretical techniques of the geometrical superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism. For this purpose, we exploit the augmented version of superfield approach (AVSA) and derive theoretically useful nilpotent (anti-)BRST, (anti-)co-BRST symmetries and Curci-Ferrari (CF)-type restrictions for the self-interacting 2D non-Abelian 1-form gauge theory (where there is no interaction with matter fields). The derivation of the (anti-)co-BRST symmetries and all possible CF-type restrictions are completely novel results within the framework of AVSA to BRST formalism where the ordinary 2D non-Abelian theory is generalized onto an appropriately chosen (2, 2)-dimensional supermanifold. The latter is parametrized by the superspace coordinates ZM = (xμ,𝜃,𝜃¯) where xμ (with μ = 0, 1) are the bosonic coordinates and a pair of Grassmannian variables (𝜃,𝜃¯) obey the relationships: 𝜃2 = 𝜃¯2 = 0, 𝜃𝜃¯ + 𝜃¯𝜃 = 0. The topological nature of our 2D theory allows the existence of a tower of CF-type restrictions.
International Nuclear Information System (INIS)
Gusynin, V.P.; Miranskij, V.A.
1987-01-01
An essential distinction in the relaization of the PCAC dynamics in asymptotically free and non-asymptotically free (with a non-trivial ultraviolet-stable fixed point) gauge theories is revealed. For the latter theories an analytical expressions for the condensate is obtained in the two-loop approximation and arguments of support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed. Besides, the mass relations for pseudoscalar mesons in arbitrary Θ-sector are obtained in the first order in fermion bare masses and the impossibility for spontaneous P and CP-symmetries breaking in vector-like gauge theories at Θ=0 is shown
Directory of Open Access Journals (Sweden)
Khan Mehbub
2018-01-01
Full Text Available Based on baryon charge conservation and a generalized Yang-Mills symmetry for Abelian (and non-Abelian groups, we discuss a new baryonic gauge field and its linear potential for two point-like baryon charges. The force between two point-like baryons is repulsive, extremely weak and independent of distance. However, for two extended baryonic systems, we have a dominant linear force α r. Thus, only in the later stage of the cosmic evolution, when two baryonic galaxies are separated by an extremely large distance, the new repulsive baryonic force can overcome the gravitational attractive force. Such a model provides a gauge-field-theoretic understanding of the late-time accelerated cosmic expansion. The baryonic force can be tested by measuring the accelerated Wu-Doppler frequency shifts of supernovae at different distances.
Gauge fields in nonlinear group realizations involving two-dimensional space-time symmetry
International Nuclear Information System (INIS)
Machacek, M.E.; McCliment, E.R.
1975-01-01
It is shown that gauge fields may be consistently introduced into a model Lagrangian previously considered by the authors. The model is suggested by the spontaneous breaking of a Lorentz-type group into a quasiphysical two-dimensional space-time and one internal degree of freedom, loosely associated with charge. The introduction of zero-mass gauge fields makes possible the absorption via the Higgs mechanism of the Goldstone fields that appear in the model despite the fact that the Goldstone fields do not transform as scalars. Specifically, gauge invariance of the Yang-Mills type requires the introduction of two sets of massless gauge fields. The transformation properties in two-dimensional space-time suggest that one set is analogous to a charge doublet that behaves like a second-rank tensor in real four-dimensional space time. The other set suggests a spin-one-like charge triplet. Via the Higgs mechanism, the first set absorbs the Goldstone fields and acquires mass. The second set remains massless. If massive gauge fields are introduced, the associated currents are not conserved and the Higgs mechanism is no longer fully operative. The Goldstone fields are not eliminated, but coupling between the Goldstone fields and the gauge fields does shift the mass of the antisymmetric second-rank-tensor gauge field components
Symmetry restoration at high-temperature in two-color and two-flavor lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong-Wan [Department of Physics, College of Science, Swansea University,Singleton Park, SA2 8PP, Swansea, Wales (United Kingdom); Department of Physics, Pusan National University,Busan 46241 (Korea, Republic of); Extreme Physics Institute, Pusan National University,Busan 46241 (Korea, Republic of); Lucini, Biagio; Piai, Maurizio [Department of Physics, College of Science, Swansea University,Singleton Park, SA2 8PP, Swansea, Wales (United Kingdom)
2017-04-07
We consider the SU(2) gauge theory with N{sub f}=2 flavors of Dirac fundamental fermions. We study the high-temperature behavior of the spectra of mesons, discretizing the theory on anisotropic lattices, and measuring the two-point correlation functions in the temporal direction as well as screening masses in various channels. We identify the (pseudo-)critical temperature as the temperature at which the susceptibility associated with the Polyakov loop has a maximum. At high temperature both the spin-1 and spin-0 sectors of the light meson spectra exhibit enhanced symmetry properties, indicating the restoration of both the global SU(4) and the axial U(1){sub A} symmetries of the model.
Energy Technology Data Exchange (ETDEWEB)
Kaufmann, Ralph M.; Khlebnikov, Sergei; Wehefritz-Kaufmann, Birgit
2012-08-15
Motivated by Harper Hamiltonians on skeletal graphs and their C{sup *}-geometry, we study a certain class of graph Hamiltonians. These Hamiltonians can be thought of as a finite groupoid representation in separable Hilbert spaces. Here the groupoid is the path groupoid of a finite graph. Given such a setup, we consider the possible matrix versions of the Hamiltonian, which are indexed by the choice of a rooted spanning tree and an order of the vertices. The first result is that all the matrix representations are linked to each other via the conjugation action of a re-gauging groupoid. We furthermore show that the symmetries of the underlying graph give rise to an action on the Hamiltonians of a group of extended symmetries. The new concept for the extension is to allow phase transformations on the vertices. In the commutative case, we prove that the extended symmetries act via a projective representation giving rise to isotypical decompositions and super-selection rules. We then apply these results to the PDG and honeycomb graphs using representation theory for projective groups and show that all the degeneracies in the spectra are consequences of these enhanced symmetries. This includes the Dirac points of the Gyroid and the honeycomb.
On the stringy Hartle-Hawking state
International Nuclear Information System (INIS)
Ben-Israel, Roy; Giveon, Amit; Itzhaki, Nissan; Liram, Lior
2016-01-01
We argue that non-perturbative α"′ stringy effects render the Hartle-Hawking state associated with the SL(2)/U(1) eternal black hole singular at the horizon. We discuss implications of this observation on firewalls in string theory.
On the stringy Hartle-Hawking state
Energy Technology Data Exchange (ETDEWEB)
Ben-Israel, Roy [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel)
2016-03-03
We argue that non-perturbative α{sup ′} stringy effects render the Hartle-Hawking state associated with the SL(2)/U(1) eternal black hole singular at the horizon. We discuss implications of this observation on firewalls in string theory.
Mirror symmetry in three-dimensional gauge theories, quivers and D-branes
International Nuclear Information System (INIS)
De Boer, J.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA; Hori, K.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA; Ooguri, H.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA; Oz, Y.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA
1997-01-01
We construct and analyze dual N=4 supersymmetric gauge theories in three dimensions with unitary and symplectic gauge groups. The gauge groups and the field content of the theories are encoded in quiver diagrams. The duality exchanges the Coulomb and Higgs branches and the Fayet-Iliopoulos and mass parameters. We analyze the classical and the quantum moduli spaces of the theories and construct an explicit mirror map between the mass parameters and the Fayet-Iliopoulos parameters of the dual. The results generalize the relation between ALE spaces and moduli spaces of SU(n) and SO(2n) instantons. We interpret some of these results from the string theory viewpoint, for SU(n) by analyzing T-duality and extremal transitions in type II string compactifications, for SO(2n) by using D-branes as probes. Finally, we make a proposal for the moduli space of vacua of these theories in the absence of matter. (orig.)
Calculation of zero-norm states and reduction od stringy scattering amplitudes
International Nuclear Information System (INIS)
Lee Jen-Chi
2005-01-01
We give a simplified method to generate two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. Zero-norm states up to the fourth massive level and general formulas of some zero-norm tensor states at arbitrary mass levels are calculated. On-shell Ward identities generated by zero-norm states and the factor-ization property of stringy vertex operators can then be used to argue that the string-tree scattering amplitudes of the degenerate lower spin propagating states are fixed by those of higher spin propagating states at each fixed mass level. This decoupling phenomenon is, in contrast to Gross's high-energy symmetries, valid to all energies. As examples, we explicitly demonstrate this stringy phenomenon up to fourth massive level (spin-five), which justifies the calculation of two other previous approaches based on the massive worldsheet sigma-model and Witten's string field theory (WSFT). (author)
Symmetry Analysis of Gauge-Invariant Field Equations via a Generalized Harrison-Estabrook Formalism.
Papachristou, Costas J.
The Harrison-Estabrook formalism for the study of invariance groups of partial differential equations is generalized and extended to equations that define, through their solutions, sections on vector bundles of various kinds. Applications include the Dirac, Yang-Mills, and self-dual Yang-Mills (SDYM) equations. The latter case exhibits interesting connections between the internal symmetries of SDYM and the existence of integrability characteristics such as a linear ("inverse scattering") system and Backlund transformations (BT's). By "verticalizing" the generators of coordinate point transformations of SDYM, nine nonlocal, generalized (as opposed to local, point) symmetries are constructed. The observation is made that the prolongations of these symmetries are parametric BT's for SDYM. It is thus concluded that the entire point group of SDYM contributes, upon verticalization, BT's to the system.
'Symmetry dictates interaction'. For the jubilee of the non-abelian gauge fields
International Nuclear Information System (INIS)
Li Huazhong
2004-01-01
The article is written for the Jubilee, 50 years after the birth of non-abelian gauge field theory which was proposed by C.N. yang and R. Mills in 1954. The main ideas initiated in the paper and great influences are briefly outlined
International Nuclear Information System (INIS)
Aquino, V.M. de.
1987-01-01
We have analysed, within a semi classical approach, the influence of external electromagnetic field on phase transitions in gauge theories. The critical temperature was calculated for an Abelian case, scalar electrodynamics, and for an non Abelian case, the Weinberg Salam model. (author)
Symmetry breaking in Landau gauge. A comment to a paper by T. Kennedy and C. King
International Nuclear Information System (INIS)
Borgs, C.; Nill, F.
1986-01-01
The authors generalize the result of T. Kennedy and C. King (Princeton preprint, 1985) on the non-compact abelian lattice Higgs model in Landau gauge in order to show that there are states parameterized by an angle such that the expectation value of the Higgs field is described by a phase factor and a value which is uniformly bounded away from zero. (HSI)
On hidden symmetries of a super gauge theory and twistor string theory
International Nuclear Information System (INIS)
Wolf, Martin
2005-01-01
We discuss infinite-dimensional hidden symmetry algebras (and hence an infinite number of conserved nonlocal charges) of the N-extented self-dual super Yang-Mills equations for general N=4 by using the supertwistor correspondence. Furthermore, by enhancing the supertwistor space, we construct the N-extended self-dual super Yang-Mills hierarchies, which describe infinite sets of graded abelian symmetries. We also show that the open topological B-model with the enhanced supertwistor space as target manifold will describe the hierarchies. Furthermore, these hierarchies will in turn - by a supersymmetric extension of Ward's conjecture - reduce to the super hierarchies of integrable models in D<4 dimensions. (author)
Single field inflation in supergravity with a U(1) gauge symmetry
Energy Technology Data Exchange (ETDEWEB)
Heurtier, L. [Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau (France); Khalil, S.; Moursy, A., E-mail: lucien.heurtier@polytechnique.edu, E-mail: skhalil@zewailcity.edu.eg, E-mail: amoursy@zewailcity.edu.eg [Center for Fundamental Physics, Zewail City of Science and Technology, 6 October City, Cairo (Egypt)
2015-10-01
A single field inflation based on a supergravity model with a shift symmetry and U(1) extension of the MSSM is analyzed. We show that one of the real components of the two U(1) charged scalar fields plays the role of inflaton with an effective scalar potential similar to the ''new chaotic inflation'' scenario. Both non-anomalous and anomalous (with Fayet-Iliopoulos term) U(1) are studied. We show that the non-anomalous U(1) scenario is consistent with data of the cosmic microwave background and recent astrophysical measurements. A possible kinetic mixing between U(1) and U(1){sub B−L} is considered in order to allow for natural decay channels of the inflaton, leading to a reheating epoch. Upper limits on the reheating temperature thus turn out to favour an intermediate (∼ O(10{sup 13}) GeV) scale B−L symmetry breaking.
Single field inflation in supergravity with a U(1) gauge symmetry
Energy Technology Data Exchange (ETDEWEB)
Heurtier, L. [Centre de Physique Théorique, École Polytechnique, CNRS,91128 Palaiseau (France); Khalil, S. [Center for Fundamental Physics, Zewail City of Science and Technology,6 October City, Cairo (Egypt); Department of Mathematics, Faculty of Science, Ain Shams University,Cairo, 11566 (Egypt); Moursy, A. [Center for Fundamental Physics, Zewail City of Science and Technology,6 October City, Cairo (Egypt)
2015-10-19
A single field inflation based on a supergravity model with a shift symmetry and U(1) extension of the MSSM is analyzed. We show that one of the real components of the two U(1) charged scalar fields plays the role of inflaton with an effective scalar potential similar to the “new chaotic inflation” scenario. Both non-anomalous and anomalous (with Fayet-Iliopoulos term) U(1) are studied. We show that the non-anomalous U(1) scenario is consistent with data of the cosmic microwave background and recent astrophysical measurements. A possible kinetic mixing between U(1) and U(1){sub B−L} is considered in order to allow for natural decay channels of the inflaton, leading to a reheating epoch. Upper limits on the reheating temperature thus turn out to favour an intermediate (∼O(10{sup 13}) GeV) scale B−L symmetry breaking.
Zee-Babu type model with U (1 )Lμ-Lτ gauge symmetry
Nomura, Takaaki; Okada, Hiroshi
2018-05-01
We extend the Zee-Babu model, introducing local U (1 )Lμ-Lτ symmetry with several singly charged bosons. We find a predictive neutrino mass texture in a simple hypothesis in which mixings among singly charged bosons are negligible. Also, lepton-flavor violations are less constrained compared with the original model. Then, we explore the testability of the model, focusing on doubly charged boson physics at the LHC and the International Linear Collider.
Infrared aspects of spontaneous symmetry breaking of gauge theories in two and three dimensions
International Nuclear Information System (INIS)
Cho, H.T.
1987-01-01
The spontaneous chiral symmetry breaking in SU(N) quantum chromodynamics (QCD) in two dimensions is investigated by calculating the order parameter , where psi is the fermion in the theory, in the authors approximation. In the chiral limit, where the mass of the fermion m → O, is found to be non-zero both in the finite N and N → infinity cases. This implies that chiral symmetry is spontaneously broken by infrared effects in all these cases. The Wilson loop expectation value is calculated for again SU(N) QCD in two dimensions, without fermions. In two dimensions, the Coulomb potential is linear, and thus confining. Under the authors approximation, the area law of the Wilson loop is indeed obtained as expected, for all values of N; in addition, the N-dependent polynomial multiplying the Wilson exponential is also obtained. In quantum electrodynamics (QED) in three dimensions there is a possibility of spontaneous breaking of parity. The authors consider this possibility by studying and the photon propagator. It is found that in the limit m → O, is zero and the photon has a zero mass pole. Therefore, there is no sign of spontaneous parity violation in (QED) in three dimensions induced by infrared effects, in contrast to the positive result of chiral symmetry breaking in two dimensions
Chiral symmetry breaking in asymptotically free and non-asymptotically free gauge theories
International Nuclear Information System (INIS)
Gusynin, V.P.; Miranskij, V.A.
1986-01-01
An essential distinction in the realization of the PCAC-dynamics in vector-like asymptotically free and non-asymptotically free (with a non-trival ultraviolet stable fixed point) gauge theories is revealed. For the latter theories an analytical expression for the condensate is obtained in the two-loop approximation and the arguments in support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed
Recent progress in understanding gauge topology, confinement and chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Larsen, Rasmus, E-mail: rasmus.n.larsen@stonybrook.edu; Shuryak, Edward
2016-12-15
A model of interacting instanton-dyons as the dominant degrees of freedom was used to discuss confinement and chiral symmetry breaking in SU(2). The case without fermions and with two flavors of fermions was discussed. Numerical results show that within this model, both with and without fermions, confinement is induced by the repulsion between dyons of same type, as the density of dyons increase at lower temperature. With fermions, the result of confinement at lower temperature, combined with the increased density made the effective distance between fermionic zero-modes smaller, thus inducing a non-zero chiral condensate, obtained by fitting to a eigenvalue density formula from random matrix theory.
Unbounded representations of symmetry groups in gauge quantum field theory. II. Integration
International Nuclear Information System (INIS)
Voelkel, A.H.
1986-01-01
Within the gauge quantum field theory of the Wightman--Garding type, the integration of representations of Lie algebras is investigated. By means of the covariance condition (substitution rules) for the basic fields, it is shown that a form skew-symmetric representation of a Lie algebra can be integrated to a form isometric and in general unbounded representation of the universal covering group of a corresponding Lie group provided the conditions (Nelson, Sternheimer, etc.), which are well known for the case of Hilbert or Banach representations, hold. If a form isometric representation leaves the subspace from which the physical Hilbert space is obtained via factorization and completion invariant, then the same is proved to be true for its differential. Conversely, a necessary and sufficient condition is derived for the transmission of the invariance of this subspace under a form skew-symmetric representation of a Lie algebra to its integral
Mode regularization of the supersymmetric sphaleron and kink: Zero modes and discrete gauge symmetry
International Nuclear Information System (INIS)
Goldhaber, Alfred Scharff; Litvintsev, Andrei; Nieuwenhuizen, Peter van
2001-01-01
To obtain the one-loop corrections to the mass of a kink by mode regularization, one may take one-half the result for the mass of a widely separated kink-antikink (or sphaleron) system, where the two bosonic zero modes count as two degrees of freedom, but the two fermionic zero modes as only one degree of freedom in the sums over modes. For a single kink, there is one bosonic zero mode degree of freedom, but it is necessary to average over four sets of fermionic boundary conditions in order (i) to preserve the fermionic Z 2 gauge invariance ψ→-ψ, (ii) to satisfy the basic principle of mode regularization that the boundary conditions in the trivial and the kink sector should be the same, (iii) that the energy stored at the boundaries cancels and (iv) to avoid obtaining a finite, uniformly distributed energy which would violate cluster decomposition. The average number of fermionic zero-energy degrees of freedom in the presence of the kink is then indeed 1/2. For boundary conditions leading to only one fermionic zero-energy solution, the Z 2 gauge invariance identifies two seemingly distinct 'vacua' as the same physical ground state, and the single fermionic zero-energy solution does not correspond to a degree of freedom. Other boundary conditions lead to two spatially separated ω∼0 solutions, corresponding to one (spatially delocalized) degree of freedom. This nonlocality is consistent with the principle of cluster decomposition for correlators of observables
Gauge theories of weak interactions with left-right symmetry and the structure of neutral currents
International Nuclear Information System (INIS)
Mohapatra, R.N.; Sidhu, D.P.
1977-01-01
Failure to detect parity-violating effects in atomic transitions by Oxford and Washington groups would appear to rule out the Weinberg-Salam SU(2) x U(1) model as well as any variation of it that respects natural conservation laws for charm and strangeness to order a G/sub F/ (called ''natural'') and obeys quark-lepton symmetry. In this paper, a simple left-right--symmetric model based on the SU(2)/sub L/ x SU(2)/sub R/ x U(1) group with four and six quark flavors is analyzed and found to accomodate the results of the atomic experiments as well as the other features of neutral-current phenomena
Konstantinou, Georgios; Moulopoulos, Konstantinos
2016-11-01
Due to the importance of gauge symmetry in all fields of physics, and motivated by an article written almost three decades ago that warns against a naive handling of gauge transformations in the Landau level problem (a quantum electron moving in a spatially uniform magnetic field), we point out a proper use of the generators of dynamical symmetries combined with gauge transformation methods to easily obtain exact analytical solutions for all Landau level-wavefunctions in arbitrary gauge. Our method is different from the old argument and provides solutions in an easier manner and in a broader set of geometries and gauges; in so doing, it eliminates the need for extra procedures (i.e. a change of basis) pointed out as a necessary step in the old literature, and gives back the standard simple result, provided that an appropriate use is made of the dynamical symmetries of the system and their generators. In this way the present work will at least be useful for university-level education, i.e. in advanced classes in quantum mechanics and condensed matter physics. In addition, it clarifies the actual role of the gauge in the Landau level problem, which often appears confusing in the usual derivations provided in textbooks. Finally, we go further by showing that a similar methodology can be made to apply to the more difficult case of a spatially non-uniform magnetic field (where closed analytical results are rare), in which case the various generators (pseudomomentum and pseudo-angular momentum) appear as line integrals of the inhomogeneous magnetic field; we give closed analytical solutions for all cases, and show how the old and rather forgotten Bawin-Burnel gauge shows up naturally as a ‘reference gauge’ in all solutions.
International Nuclear Information System (INIS)
Lee, B.W.
1976-01-01
Some introductory remarks to Yang-Mills fields are given and the problem of the Coulomb gauge is considered. The perturbation expansion for quantized gauge theories is discussed and a survey of renormalization schemes is made. The role of Ward-Takahashi identities in gauge theories is discussed. The author then discusses the renormalization of pure gauge theories and theories with spontaneously broken symmetry. (B.R.H.)
Stringy origin of diboson and dijet excesses at the LHC
Directory of Open Access Journals (Sweden)
Luis A. Anchordoqui
2015-10-01
Full Text Available Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8–2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W− pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U(1 field with very small coupling to leptons. The Drell–Yan bounds are then readily avoided because of the leptophobic nature of the massive Z′ gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau–Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Zγ topology would become a signature consistent only with a stringy origin.
Stringy origin of diboson and dijet excesses at the LHC
Anchordoqui, Luis A.; Antoniadis, Ignatios; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Taylor, Tomasz R.
2015-10-01
Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8-2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W- pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U (1) field with very small coupling to leptons. The Drell-Yan bounds are then readily avoided because of the leptophobic nature of the massive Z‧ gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau-Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Zγ topology would become a signature consistent only with a stringy origin.
Sun, Bao-Xi; Wan, Da-Ming; Zhao, Si-Yu
2018-05-01
The {{{D}}\\bar{{{D}}}}{{* }} interaction via a ρ or ω exchange is constructed within an extended hidden gauge symmetry approach, where the strange quark is replaced by the charm quark in the SU(3) flavor space. With this {{{D}}\\bar{{{D}}}}{{* }} interaction, a bound state slightly lower than the {{{D}}\\bar{{{D}}}}{{* }} threshold is generated dynamically in the isospin zero sector by solving the Bethe-Salpeter equation in the coupled-channel approximation, which might correspond to the X(3872) particle announced by many collaborations. This formulism is also used to study the {{{B}}\\bar{{{B}}}}{{* }} interaction, and a {{{B}}\\bar{{{B}}}}{{* }} bound state with isospin zero is generated dynamically, which has no counterpart listed in the review of the Particle Data Group. Furthermore, the one-pion exchange between the D meson and the {\\bar{{{D}}}}{{* }} is analyzed precisely, and we do not think the one-pion exchange potential need be considered when the Bethe-Salpeter equation is solved.
Chubb, Scott
2003-03-01
Three, Key, Unanswered Questions posed by LENR's are: 1. How do we explain the lack of high energy particles (HEP's)? 2. Can we understand and prioritize the way coupling can occur between nuclear- and atomic- lengthscales, and 3. What are the roles of Surface-Like (SL), as opposed to Bulk-Like (BL), processes in triggering nuclear phenomena. One important source of confusion associated with each of these questions is the common perception that the quantum mechanical phases of different particles are not correlated with each other. When the momenta p of interacting particles is large, and reactions occur rapidly (between HEP's, for example), this is a valid assumption. But when the relative difference in p becomes vanishingly small, between one charge, and many others, as a result of implicit electromagnetic coupling, each charge can share a common phase, relative to the others, modulo 2nπ, where n is an integer, even when outside forces are introduced. The associated forms of broken gauge symmetry, distinguish BL from SL phenomena, at room temperature, also explain super- and normal- conductivity in solids, and can be used to address the Three, Key, Unanswered Questions posed by LENR's.
To see symmetry in a forest of trees
International Nuclear Information System (INIS)
Chan, Chuan-Tsung; Kawamoto, Shoichi; Tomino, Dan
2014-01-01
The exact symmetry identities among four-point tree-level amplitudes of bosonic open string theory as derived by G.W. Moore are re-examined. The main focuses of this work are: (1) Explicit construction of kinematic configurations and a new polarization basis for the scattering processes. These setups simplify greatly the functional forms of the exact symmetry identities, and help us to extract easily high-energy limits of stringy amplitudes appearing in the exact identities. (2) Connection and comparison between D.J. Gross's high-energy stringy symmetry and the exact symmetry identities as derived by G.W. Moore. (3) Observation of symmetry patterns of stringy amplitudes with respect to the order of energy dependence in scattering amplitudes
Van Hooydonk, G
2000-11-01
Following recent work in search for a universal function (Van Hooydonk, Eur. J. Inorg. Chem., (1999), 1617), we test four symmetric +/- a(n)Rn potentials for reproducing molecular potential energy curves (PECs). Classical gauge symmetry for 1/R-potentials results in generic left right asymmetric PECs. A pair of symmetric perturbed Coulomb potentials is quantitatively in accordance with observed PECs. For a bond, a four-particle system, charge inversion (a parity effect, atom chirality) is the key to explain this shape generically. A parity adapted Hamiltonian reduces from ten to two terms and to a soluble Bohr-like formula, a Kratzer (1 - Re/R)2 potential. The result is similar to the combined action of spin and wave function symmetry upon the Hamiltonian in Heitler-London theory. Analytical perturbed Coulomb functions varying with (1 - Re/R) scale attractive and repulsive branches of PECs for 13 bonds H2, HF, LiH, KH, AuH, Li2, LiF, KLi, NaCs, Rb2, RbCs, Cs2 and I2 in a single straight line. The 400 turning points for 13 bonds are reproduced with a deviation of 0.007 A at both branches. For 230 points at the repulsive side, the deviation is 0.003 A. The perturbed electrostatic Coulomb law is a universal molecular function. Ab initio zero molecular parameter functions give PECs of acceptable quality, just using atomic ionisation energies. The function can be used as a model potential for inverting levels and gives a first principle's comparison of short- and long-range interactions, important for the study of cold atoms. Wave-packet dynamics, femto-chemistry applied to the crossing of covalent and ionic curves, can provide evidence for this theory. We anticipate this scale/shape invariant scheme applies to smaller scales in nuclear and high-energy particle physics. For larger gravitational scales (Newton 1/R potentials), problems with super-unification are discussed. Reactions between hydrogen and antihydrogen, feasible in the near future, will probably produce
International Nuclear Information System (INIS)
Mills, R.
1989-01-01
This article is a survey of the history and ideas of gauge theory. Described here are the gradual emergence of symmetry as a driving force in the shaping of physical theory; the elevation of Noether's theorem, relating symmetries to conservation laws, to a fundamental principle of nature; and the force of the idea (''the gauge principle'') that the symmetries of nature, like the interactions themselves, should be local in character. The fundamental role of gauge fields in mediating the interactions of physics springs from Noether's theorem and the gauge principle in a remarkably clean and elegant way, leaving, however, some tantalizing loose ends that might prove to be the clue to a future deeper level of understanding. The example of the electromagnetic field as the prototype gauge theory is discussed in some detail and serves as the basis for examining the similarities and differences that emerge in generalizing to non-Abelian gauge theories. The article concludes with a brief examination of the dream of total unification: all the forces of nature in a single unified gauge theory, with the differences among the forces due to the specific way in which the fundamental symmetries are broken in the local environment
2T Physics, Weyl Symmetry and the Geodesic Completion of Black Hole Backgrounds
Araya Quezada, Ignacio Jesus
In this thesis, we discuss two different contexts where the idea of gauge symmetry and duality is used to solve the dynamics of physical systems. The first of such contexts is 2T-physics in the worldline in d+2 dimensions, where the principle of Sp(2,R) gauge symmetry in phase space is used to relate different 1T systems in (d -- 1) + 1 dimensions, such as a free relativistic particle, and a relativistic particle in an arbitrary V(x2) potential. Because each 1T shadow system corresponds to a particular gauge of the underlying symmetry, there is a web of dualities relating them. The dualities between said systems amount to canonical transformations including time and energy, which allows the different systems to be described by different Hamiltonians, and consequently, to correspond to different dynamics in the (d -- 1)+1 phase space. The second context, corresponds to a Weyl invariant scalar-tensor theory of gravity, obtained as a direct prediction of 2T gravity, where the Weyl symmetry is used to obtain geodesically complete dynamics both in the context of cosmology and black hole (BH) backgrounds. The geodesic incompleteness of usual Einstein gravity, in the presence of singularities in spacetime, is related to the definition of the Einstein gauge, which fixes the sign and magnitude of the gravitational constant GN, and therefore misses the existence of antigravity patches, which are expected to arise generically just beyond gravitational singularities. The definition of the Einstein gauge can be generalized by incorporating a sign flip of the gravitational constant GN at the transitions between gravity and antigravity. This sign is a key aspect that allows us to define geodesically complete dynamics in cosmology and in BH backgrounds, particularly, in the case of the 4D Schwarzschild BH and the 2D stringy BH. The complete nature of particle geodesics in these BH backgrounds is exhibited explicitly at the classical level, and the extension of these results to the
Orientifolds and D-branes in N=2 gauged linear sigma models
Brunner, Ilka
We study parity symmetries and boundary conditions in the framework of gauged linear sigma models. This allows us to investigate the Kaehler moduli dependence of the physics of D-branes as well as orientifolds in a Calabi-Yau compactification. We first determine the parity action on D-branes and define the set of orientifold-invariant D-branes in the linear sigma model. Using probe branes on top of orientifold planes, we derive a general formula for the type (SO vs Sp) of orientifold planes. As applications, we show how compactifications with and without vector structure arise naturally at different real slices of the Kaehler moduli space of a Calabi-Yau compactification. We observe that orientifold planes located at certain components of the fixed point locus can change type when navigating through the stringy regime.
International Nuclear Information System (INIS)
Watamura, S.
1983-01-01
Solutions of ten-dimensional Maxwell-Einstein theory and a bosonic part of N = 2, D = 10 supergravity theory are examined. It is shown that there is a solution for which six-dimensional internal space is compactified into CP 2 x S 2 . The gauge symmetry of the effective four-dimensional theory is SU(3) x SU(2) x U(1). The introduction of fermions is also considered. The requirement of consistency in introducing a spinsup(C) structure on CP 2 results in a U(1) charge quantization condition. (orig.)
International Nuclear Information System (INIS)
Rembiesa, P.
1990-01-01
The Dyson-Schwinger equation for the fermion propagator can be effectively solved in the approximation of the small-momentum-transfer vertex function. There exists a critical value of the coupling constant above which the ordinary infrared-divergent solution for massless quantum electrodynamics bifurcates to another, massive solution. With a proper transverse part included in the vertex function, the bifurcation point is gauge independent, the new solution is finite in all gauges, and does not require momentum cutoffs of any kind
International Nuclear Information System (INIS)
Jarlskog, C.
An introduction to the unified gauge theories of weak and electromagnetic interactions is given. The ingredients of gauge theories and symmetries and conservation laws lead to discussion of local gauge invariance and QED, followed by weak interactions and quantum flavor dynamics. The construction of the standard SU(2)xU(1) model precedes discussion of the unification of weak and electromagnetic interactions and weak neutral current couplings in this model. Presentation of spontaneous symmetry breaking and spontaneous breaking of a local symmetry leads to a spontaneous breaking scheme for the standard SU(2)xU(1) model. Consideration of quarks, leptons, masses and the Cabibbo angles, of the four quark and six quark models and CP violation lead finally to grand unification, followed by discussion of mixing angles in the Georgi-Glashow model, the Higgses of the SU(5) model and proton/ neutron decay in SU(5). (JIW)
Energy distribution of a magnetic stringy black hole
International Nuclear Information System (INIS)
Radinschi, Irina
2004-01-01
In this paper we calculate the energy distribution of a magnetic stringy black hole solution in the Landau and Lifshitz and Weinberg prescriptions. It is well-known that a main property of the low energy theory is that there are two different frames in which the features of the space-time may look very different. These two frames are the Einstein frame and the string frame. We choose the string frame to carry out the calculations. We study the dependence of the energy associated with the magnetic stringy black hole solution on its mass M and charge Q. (authors)
Hsu, Jong-Ping
2013-01-01
Yang-Mills gravity is a new theory, consistent with experiments, that brings gravity back to the arena of gauge field theory and quantum mechanics in flat space-time. It provides solutions to long-standing difficulties in physics, such as the incompatibility between Einstein's principle of general coordinate invariance and modern schemes for a quantum mechanical description of nature, and Noether's 'Theorem II' which showed that the principle of general coordinate invariance in general relativity leads to the failure of the law of conservation of energy. Yang-Mills gravity in flat space-time a
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1984-12-01
The fundamental laws of nature may be truely random, or they may be so complicated that a random description is adequate. With this philosophy we examine various ways in which a lattice gauge theory (at the Planck scale) can be generalized. Without here giving up a regular lattice structure (which we really ought to do) we consider two generalizations. Making the action (quenched) random has the effect that the gauge group tends to break down and some gauge bosons become massive, unless the gauge group has special properties: no noncentral corners in the geometry of conjugacy classes and furthermore a connected center. Making the concept of gauge transformation more general has a symmetry breaking effect for groups with outer automorphisms. A study of SU 5 -breaking in the context of the first breakdown mechanism (D. Bennett, E. Buturovic and H. B. Nielsen) is shortly reviewed. (orig.)
Leptophobic Z{sup {prime}} in stringy flipped SU(5)
Energy Technology Data Exchange (ETDEWEB)
Lopez, J.L. [Bonner Nuclear Lab, Department of Physics, Rice University, 6100 Main Street, Houston, Texas 77005 (United States); Nanopoulos, D.V. [Center for Theoretical Physics, Department of Physics, Texas AM University, College Station, Texas 77843-4242 (United States)]|[Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Mitchell Campus, The Woodlands, Texas 77381 (United States)
1997-01-01
We show that leptophobic Z{sup {prime}} gauge bosons occur naturally in flipped SU(5) and may shift R{sub b} in an interesting way without upsetting the good values of {Gamma}{sub had} and R{sub c}. Within a string-derived version of the model, we study three possible scenarios and the constraints imposed on model building that would allow the new symmetry to remain unbroken down to low energies. Such a Z{sup {prime}} gauge boson has generation nonuniversal couplings to quarks that violate parity maximally in the up-quark sector, and may contribute significantly to spin asymmetries in polarized pp scattering experiments now being prepared for BNL RHIC. {copyright} {ital 1997} {ital The American Physical Society}
Torons, chiral symmetry breaking and U(1) problem in σ-model and in gauge theories. Part 1
International Nuclear Information System (INIS)
Zhitnitskij, A.R.
1989-01-01
A novel class of self-dual solutions in σ-models and in SU(2) gauge theories is considered. The solution is defined on manifold with boundary, it has topological charge Q=1/2. The contribution of the corresponding fluctuations and toron configurations to chiral condensate is calculated. This contribution has finite nonzero value. The APS (Atiyah, Patodi, Singer) theorem for a manifold with a boundary is discussed for the O(3) σ model. The necessity of imposing non-local boundary conditions for the Dirac operator is explained. 30 refs.; 4 figs
Chiral symmetry and chiral-symmetry breaking
International Nuclear Information System (INIS)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed
Energy Technology Data Exchange (ETDEWEB)
Stora, R. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules Elementaires]|[European Organization for Nuclear Research (CERN), Geneva (Switzerland). Accelerator School
1996-12-31
Gauge fixing is defined as an operation that enables to express the integral on an orbit space as integral on the corresponding principal fiber bundle. When the fiber is non compact, this operation involves a cohomology class with compact support (or rapid decay). Slavnov symmetry is the algebraic expression of the ambiguity of this construction. (N.T.). 5 refs.
On Stringy Thresholds in SYM/AdS Thermodynamics
Barbón, José L F; Rabinovici, Eliezer
1999-01-01
We consider aspects of the role of stringy scales and Hagedorn temperatures in the correspondence between various field theories and AdS-type spaces. The boundary theory is set on a toroidal world-volume to enable small scales to appear in the supergravity backgrounds also for low field-theory temperatures. We find that thermodynamical considerations tend to favour background manifolds with no string-size characteristic scales. The gravitational dynamics censors the reliable exposure of Hagedorn physics on the supergravity side, and the system does not allow the study of the Hagedorn scale by low-temperature field theories. These results are obtained following some heuristic assumptions on the character of stringy modifications to the gravitational backgrounds. A rich phenomenology appears on the supergravity side, with different string backgrounds dominating in different regions, which should have field-theoretic consequences. Six-dimensional world volumes turn out to be borderline cases from several points ...
Torons, chiral symmetry breaking and U(1) problem in σ-model and gauge theories. Part 2
International Nuclear Information System (INIS)
Zhitnitskij, A.R.
1989-01-01
The main point of this work is the physical consenquences of the existence of fractional charge in the σ-models and espesially in the physically interesting theory QCD. It is shown that the corresponding fluctuations ensure spontaneous breaking of the chiral symmetry and give a nonzero contribution to the chiral condensate. Toron solution is determined on the manifold with boundary. In this case many questions arise such as: global boundary conditions, the stability of the solution, self-adjointness of Dirac operator, single-valuedness of the physical values and so on. These questions are interconnected and turn out to be self cobsistent only for the special choice of the topological number (Q=1/2 for SU(2)). It is shown that in the Dirac's spectrum of the quarks the gap between zero and the continuum is absent. 50 refs.; 10 figs
Measuring Gauge-Mediated SuperSymmetry Breaking Parameters at a 500 GeV $e^{+}e^{-}$ Linear Collider
Ambrosanio, S; Ambrosanio, Sandro; Blair, Grahame A.
2000-01-01
We consider the phenomenology of a class of gauge-mediated supersymmetry (SUSY) breaking (GMSB) models at a e+e- Linear Collider (LC) with c.o.m. energy up to 500 GeV. In particular, we refer to a high-luminosity (L ~ 3 x 10^34 cm^-2 s^-1) machine, and use detailed simulation tools for a proposed detector. Among the GMSB-model building options, we define a simple framework and outline its predictions at the LC, under the assumption that no SUSY signal is detected at LEP or Tevatron. Our focus is on the case where a neutralino (N1) is the next-to-lightest SUSY particle (NLSP), for which we determine the relevant regions of the GMSB parameter space. Many observables are calculated and discussed, including production cross sections, NLSP decay widths, branching ratios and distributions, for dominant and rare channels. We sketch how to extract the messenger and electroweak scale model parameters from a spectrum measured via, e.g. threshold-scanning techniques. Several experimental methods to measure the NLSP mass...
Dynamics of stringy congruence in the early universe
International Nuclear Information System (INIS)
Cho, Yong Seung; Hong, Soon-Tae
2011-01-01
We study twist and shear aspects of the stingy geodesic surface congruence. Under some natural conditions we derive the equations of the twist and shear in terms of the expansion of the Universe. We observe in this higher dimensional cosmology that, as the early universe evolves with expansion rate, the twist of the stringy congruence decreases exponentially and the initial twist value should be large enough to sustain the rotations of the ensuing universe, while the effects of the shear are negligible to produce the isotropic and homogeneous universe. We also investigate the twist and shear of the geodesic surface congruence of the null strings.
Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.
2016-12-01
We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.
Nonabelian generalized gauge multiplets
International Nuclear Information System (INIS)
Lindstroem, Ulf; Zabzine, Maxim; Rocek, Martin; Ryb, Itai; Unge, Rikard von
2009-01-01
We give the nonabelian extension of the newly discovered N = (2, 2) two-dimensional vector multiplets. These can be used to gauge symmetries of sigma models on generalized Kaehler geometries. Starting from the transformation rule for the nonabelian case we find covariant derivatives and gauge covariant field-strengths and write their actions in N = (2, 2) and N = (1, 1) superspace.
International Nuclear Information System (INIS)
Greensite, J.; Olejnik, S.
2003-01-01
We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.
International Nuclear Information System (INIS)
Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian
2015-01-01
A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
Searching for stringy topologies in the cosmic microwave background
International Nuclear Information System (INIS)
Ben-David, Assaf; Rathaus, Ben; Itzhaki, Nissan
2012-01-01
We consider a universe with a non-classical stringy topology that has fixed points. We concentrate on the simplest example, an orbifold point, and study its observable imprints on the cosmic microwave background (CMB). We show that an orbifold preserves the Gaussian nature of the temperature fluctuations, yet modifies the angular correlation function. A direct signature of an orbifold is a single circle in the CMB that is invariant under rotation by 180°. Searching the 7-year ILC map of WMAP, we find one candidate circle with high statistical significance. However, a closer look reveals that the temperature profile does not fit an orbifold. We place a lower bound on the distance to an orbifold point at ∼ 85% of the distance to the surface of last scattering
Searching for stringy topologies in the cosmic microwave background
Energy Technology Data Exchange (ETDEWEB)
Ben-David, Assaf; Rathaus, Ben; Itzhaki, Nissan, E-mail: bd.assaf@gmail.com, E-mail: ben.rathaus@gmail.com, E-mail: nitzhaki@post.tau.ac.il [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)
2012-11-01
We consider a universe with a non-classical stringy topology that has fixed points. We concentrate on the simplest example, an orbifold point, and study its observable imprints on the cosmic microwave background (CMB). We show that an orbifold preserves the Gaussian nature of the temperature fluctuations, yet modifies the angular correlation function. A direct signature of an orbifold is a single circle in the CMB that is invariant under rotation by 180°. Searching the 7-year ILC map of WMAP, we find one candidate circle with high statistical significance. However, a closer look reveals that the temperature profile does not fit an orbifold. We place a lower bound on the distance to an orbifold point at ∼ 85% of the distance to the surface of last scattering.
Implementing general gauge mediation
International Nuclear Information System (INIS)
Carpenter, Linda M.; Dine, Michael; Festuccia, Guido; Mason, John D.
2009-01-01
Recently there has been much progress in building models of gauge mediation, often with predictions different than those of minimal gauge mediation. Meade, Seiberg, and Shih have characterized the most general spectrum which can arise in gauge-mediated models. We discuss some of the challenges of building models of general gauge mediation, especially the problem of messenger parity and issues connected with R symmetry breaking and CP violation. We build a variety of viable, weakly coupled models which exhibit some or all of the possible low energy parameters.
Maldacena, Juan; Milekhin, Alexey
2018-04-01
The D0 brane, or BFSS, matrix model is a quantum mechanical theory with an interesting gravity dual. We consider a variant of this model where we treat the SU( N) symmetry as a global symmetry, rather than as a gauge symmetry. This variant contains new non-singlet states. We consider the impact of these new states on its gravity dual. We argue that the gravity dual is essentially the same as the one for the original matrix model. The non-singlet states have higher energy at strong coupling and are therefore dynamically suppressed.
Turok, Neil
2018-01-01
Professor David Olive was a renowned British theoretical physicist who made seminal contributions to superstrings, quantum gauge theories and mathematical physics. He was awarded the Dirac Medal by the International Centre for Theoretical Physics in Trieste in 1997, with his long-standing collaborator Peter Goddard. David Olive was a Fellow of the Royal Society and a Founding Fellow of the Learned Society of Wales. David Olive was known for his visionary conjectures, including electromagnetic duality in spontaneously broken gauge theories, as well as his exceptionally clear and insightful style of exposition. These lectures, delivered by David Olive in 1982 at the University of Virginia, provide a pedagogical, self-contained introduction to gauge theory, Lie algebras, electromagnetic duality and integrable models. Despite enormous subsequent developments, they still provide a valuable entry point to some of the deepest topics in quantum gauge theory.
Gauge theories as theories of spontaneous breakdown
International Nuclear Information System (INIS)
Ivanov, E.A.; Ogievetsky, V.I.
1976-01-01
Any gauge theory is proved to arise from spontaneous breakdown of symmetry under certain infinite parameter group, the corresponding gauge field being the Goldstone field by which this breakdown is accompanied
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-10-01
Stora's analysis is continued in discussing the nonabelian (Yang-Mills) gauge field models (G.F.M.). The gauge independence of the physical scattering operator is discussed in some details and the connection between its unitary and the Slavnov symmetry outlined. Only the models involving semisimple gauge groups are considered. This greatly simplifies the analysis of the possible quantum corrections to the Quantum Action Principle which is reduced to the study of the cohomology group of the Lie algebra characterizing the gauge theory. The discussion is at the classical level for the algebraic properties of the SU(2) Higgs-Kibble-Englert-Brout-Faddeev-Popov lagrangian and its invariance under Slavnov identity transformations is exhibited. The renormalization of the Slavnov identity in the G.M.F. involving semisimple gauge groups is studied. The unitary and gauge independence of the physical S operator in the SU(2) H.K. model is dealt with [fr
Emergence of Symmetries from Entanglement
CERN. Geneva
2016-01-01
Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.
International Nuclear Information System (INIS)
Cabibbo, N.
1983-01-01
This chapter attempts to present some of the fundamental geometrical ideas at the basis of gauge theories. Describes Dirac Monopoles and discusses those ideas that are not usually found in more ''utilitarian'' presentations which concentrate on QCD or on the Glashow-Salam-Weinberg model. This topic was chosen because of the announcement of the possible detection of a Dirac monopole. The existence of monopoles depends on topological features of gauge theories (i.e., on global properties of field configurations which are unique to gauge theories). Discusses global symmetry-local symmetry; the connection; path dependence and the gauge fields; topology and monopoles; the case of SU(3) x U(1); and the 't Hooft-Polyakov monopole
International Nuclear Information System (INIS)
Natale, A.A.; Shellard, R.C.
1981-01-01
The problem of gauge hierarchy in Grand Unified Theories using a toy model with O(N) symmetry is discussed. It is shown that there is no escape to the unnatural adjustment of coupling constants, made only after the computation of several orders in perturbation theory is performed. The propositions of some authors on ways to overcome the gauge hierarchy problem are commented. (Author) [pt
Gauge invariance and holographic renormalization
Directory of Open Access Journals (Sweden)
Keun-Young Kim
2015-10-01
Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.
Increasing stringiness of low-fat mozzarella string cheese using polysaccharides.
Oberg, E N; Oberg, C J; Motawee, M M; Martini, S; McMahon, D J
2015-07-01
When fat content of pasta filata cheese is lowered, a loss of fibrous texture occurs and low-fat (LF) mozzarella cheese loses stringiness, making it unsuitable for the manufacture of string cheese. We investigated the use of various polysaccharides that could act as fat mimetics during the stretching and extruding process to aid in protein strand formation and increase stringiness. Low-fat mozzarella cheese curd was made, salted, and then 3.6-kg batches were heated in hot (80°) 5% brine, stretched, and formed into a homogeneous mass. Hot (80°C) slurries of various polysaccharides were then mixed with the hot cheese and formed into LF string cheese using a small piston-driven extruder. Polysaccharides used included waxy corn starch, waxy rice starch, instant tapioca starch, polydextrose, xanthan gum, and guar gum. Adding starch slurries increased cheese moisture content by up to 1.6% but was not effective at increasing stringiness. Xanthan gum functioned best as a fat mimetic and produced LF string cheese that most closely visually resembled commercial string cheese made using low-moisture part skim (LMPS) mozzarella cheese without any increase in moisture content. Extent of stringiness was determined by pulling apart the cheese longitudinally and observing size, length, and appearance of individual cheese strings. Hardness was determined using a modified Warner-Bratzler shear test. When LF string cheese was made using a 10% xanthan gum slurry added at ~1%, increased consumer flavor liking was observed, with scores after 2wk of storage of 6.44 and 6.24 compared with 5.89 for the LF control cheese; although this was lower than an LMPS string cheese that scored 7.27. The 2-wk-old LF string cheeses containing xanthan gum were considered still slightly too firm using a just-about-right (JAR) test, whereas the LMPS string cheese was considered as JAR for texture. With further storage up to 8wk, all of the LF string cheeses softened (JAR score was closer to 3
International Nuclear Information System (INIS)
Datta, A.; Raychaudhuri, A.
1983-01-01
We calculate the K/sub L/-K/sub S/ mass difference in left-right-symmetric models with four quarks. It is found that a low right-handed mass scale requires strong deviations from manifest left-right symmetry
Quantum symmetries in particle interactions
International Nuclear Information System (INIS)
Shirkov, D.V.
1983-01-01
The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, David; Love, Alexander
1986-01-01
The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)
Gauge theory and renormalization
Hooft, G. 't
1996-01-01
Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in
A natural Poincare gauge model
International Nuclear Information System (INIS)
Aldrovandi, R.; Pereira, J.G.
1985-01-01
A natural candidate model for a gauge theory for the Poincare group is discussed. It satisfies the usual electric-magnetic symmetry of gauge models and is a contraction of a gauge model for the De Sitter group. Its field equations are just the Yang-Mills equations for the Poincare group. It is shown that these equations do not follow from a Lagrangean. (Author) [pt
Gauge unification of fundamental forces
International Nuclear Information System (INIS)
Salam, A.
1980-02-01
After having reviewed briefly the last twenty years' progress in the theory of unification, with the twin aspects of development of a gauge theory of basic interactions linked with internal symmetry and the spontaneous breaking of these symmetries, the Nobel prize winners have summarized the present situation and the immediate problems. At the end, an extrapolation of the future is also given
Supersymmetric gauge field theories
International Nuclear Information System (INIS)
Slavnov, A.A.
1976-01-01
The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models
International Nuclear Information System (INIS)
Sowerby, B.D.
1982-01-01
Techniques employed in nuclear gauges for the measurement of level, thickness, density and moisture are described. The gauges include both transmission and backscatter gauges and utilize alpha particles, beta particles, neutrons or gamma radiation
Energy Technology Data Exchange (ETDEWEB)
Blum, Alexander Simon
2009-06-10
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
International Nuclear Information System (INIS)
Blum, Alexander Simon
2009-01-01
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
The string unification of gauge couplings and gauge kinetic mixings
International Nuclear Information System (INIS)
Hattori, Chuichiro; Matsuda, Masahisa; Matsuoka, Takeo; Mochinaga, Daizo.
1993-01-01
In the superstring models we have not only the complete 27 multiplets of E 6 but also extra incomplete (27+27-bar) chiral supermultiplets being alive at low energies. Associated with these additional multiplets, when the gauge symmetry contains more than one U(1) gauge group, there may exist gauge kinetic mixings among these U(1) gauge groups. In such cases the effect of gauge kinetic mixings should be incorporated into the study of unification of gauge couplings. We study these interesting effects systematically in these models. The string threshold effect is also taken into account. It is found that in the four-generation models we do not have an advisable solution of string unification of gauge couplings consistent with experimental values at the electroweak scale. We also discuss the possible scenarios to solve this problem. (author)
The New Flavor of Higgsed Gauge Mediation
Craig, Nathaniel; McCullough, Matthew; Thaler, Jesse
2012-01-01
Recent LHC bounds on squark masses combined with naturalness and flavor considerations motivate non-trivial sfermion mass spectra in the supersymmetric Standard Model. These can arise if supersymmetry breaking is communicated to the visible sector via new extended gauge symmetries. Such extended symmetries must be spontaneously broken, or confined, complicating the calculation of soft masses. We develop a new formalism for calculating perturbative gauge-mediated two-loop soft masses for gauge...
Gaugings at angles from orientifold reductions
International Nuclear Information System (INIS)
Roest, Diederik
2009-01-01
We consider orientifold reductions to N= 4 gauged supergravity in four dimensions. A special feature of this theory is that different factors of the gauge group can have relative angles with respect to the electro-magnetic SL(2) symmetry. These are crucial for moduli stabilization and de Sitter vacua. We show how such gaugings at angles generically arise in orientifold reductions.
Gauge fixing problem in the conformal QED
International Nuclear Information System (INIS)
Ichinose, Shoichi
1986-01-01
The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)
At the origins of mass: elementary particles and fundamental symmetries
International Nuclear Information System (INIS)
Iliopoulos, Jean; Englert, Francois
2015-01-01
After a brief recall of the history of cosmology, the author proposes an overview of the different symmetries (symmetries in space and in time, internal symmetries, local or gauge symmetries), describes the mass issue (gauge interactions, quarks and leptons as matter mass constituents, chirality), addresses the spontaneous symmetry breaking (the Curie theorem, spontaneous symmetry breaking in classical physics and in quantum physics, the Goldstone theorem, spontaneous symmetry breaking in presence of gauge interactions), presents the standard theory (electromagnetic and weak interactions, strong interactions, relationship with experiment). An appendix presents elementary particles, and notably reports the story of the neutrino
A note on gauge fixing in theories of extended objects
International Nuclear Information System (INIS)
Sezgin, E.
1989-08-01
We discuss the light-cone type gauges (old and new) and the associated residual symmetries in theories of extended objects. We also discuss certain covariant gauges and in particular a covariant gauge for membranes which admits the contact diffeomorphisms of the world-volume as a residual symmetry. (author). 12 refs
Sequential flavor symmetry breaking
International Nuclear Information System (INIS)
Feldmann, Thorsten; Jung, Martin; Mannel, Thomas
2009-01-01
The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.
Sequential flavor symmetry breaking
Feldmann, Thorsten; Jung, Martin; Mannel, Thomas
2009-08-01
The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.
Introduction to gauge theories and unification
International Nuclear Information System (INIS)
Das, A.
1990-01-01
This paper contains the following lectures on gauge theories: basic notations; dimensional regularization; complex scalar field theory; scalar field theory; self-interacting scalar field theory; Noether's theorem; spontaneous symmetry breaking; dirac field theories; local symmetry; quantum electrodynamics; Higgs mechanism; non-Abelian symmetries; and Weinberg-Salam-Glashow theory
Fields, symmetries, and quarks
International Nuclear Information System (INIS)
Mosel, U.
1989-01-01
'Fields, symmetries, and quarks' covers elements of quantum field theory, symmetries, gauge field theories and phenomenological descriptions of hadrons, with special emphasis on topics relevant to nuclear physics. It is aimed at nuclear physicists in general and at scientists who need a working knowledge of field theory, symmetry principles of elementary particles and their interactions and the quark structure of hadrons. The book starts out with an elementary introduction into classical field theory and its quantization. As gauge field theories require a working knowledge of global symmetries in field theories this topic is then discussed in detail. The following part is concerned with the general structure of gauge field theories and contains a thorough discussion of the still less widely known features of Non-Abelian gauge field theories. Quantum Chromodynamics (QCD), which is important for the understanding of hadronic matter, is discussed in the next section together with the quark compositions of hadrons. The last two chapters give a detailed discussion of phenomenological bag-models. The MIT bag is discussed, so that all theoretical calculations can be followed step by step. Since in all other bag-models the calculational methods and steps are essentially identical, this chapter should enable the reader to actually perform such calculations unaided. A last chapter finally discusses the topological bag-models which have become quite popular over the last few years. (orig.)
''Natural'' left-right symmetry
International Nuclear Information System (INIS)
Mohapatra, R.N.; Pati, J.C.
1975-01-01
It is remarked that left-right symmetry of the starting gauge interactions is retained as a ''natural'' symmetry if it is broken in no way except possibly by mass terms in the Lagrangian. The implications of this result for the unification of coupling constants and for parity nonconservation at low and high energies are stressed
Wilczek, Frank
2004-01-01
Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).
International Nuclear Information System (INIS)
Pokorski, S.
1987-01-01
Quantum field theory forms the present theoretical framework for the understanding of the fundamental interactions of particle physics. This book examines gauge theories and their symmetries with an emphasis on their physical and technical aspects. The author discusses field-theoretical techniques and encourages the reader to perform many of the calculations presented. This book includes a brief introduction to perturbation theory, the renormalization programme, and the use of the renormalization group equation. Several topics of current research interest are covered, including chiral symmetry and its breaking, anomalies, and low energy effective lagrangians and some basics of supersymmetry
Some simple criteria for gauged R-parity
Energy Technology Data Exchange (ETDEWEB)
Martin, S.P.
1992-07-01
Some simple conditions which are sufficient to guarantee that R- parity survives as an unbroken gauged discrete subgroup of the continuous gauge symmetry in certain supersymmetric extensions of the standard model are presented.
Mirror symmetry and loop operators
Energy Technology Data Exchange (ETDEWEB)
Assel, Benjamin [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada)
2015-11-09
Wilson loops in gauge theories pose a fundamental challenge for dualities. Wilson loops are labeled by a representation of the gauge group and should map under duality to loop operators labeled by the same data, yet generically, dual theories have completely different gauge groups. In this paper we resolve this conundrum for three dimensional mirror symmetry. We show that Wilson loops are exchanged under mirror symmetry with Vortex loop operators, whose microscopic definition in terms of a supersymmetric quantum mechanics coupled to the theory encode in a non-trivial way a representation of the original gauge group, despite that the gauge groups of mirror theories can be radically different. Our predictions for the mirror map, which we derive guided by branes in string theory, are confirmed by the computation of the exact expectation value of Wilson and Vortex loop operators on the three-sphere.
International Nuclear Information System (INIS)
Power, B.D.; Priestland, C.R.D.
1978-01-01
This invention relates to vacuum gauges, particularly of the type known as Penning gauges, which are cold cathode ionisation gauges, in which a magnetic field is used to lengthen the electron path and thereby increase the number of ions produced. (author)
International Nuclear Information System (INIS)
Kummer, W.; Mistelberger, H.; Schaller, P.; Schweda, M.
1989-01-01
Supersymmetric gauge theories can be suitably quantized in non-supersymmetric 'superaxial' gauges without abolishing the basic advantages of the superfield technique. In this review the state of the art is presented. It includes the proof of renormalization and the proof of gauge independence and supersymmetry of observable physical quantities. (author)
International Nuclear Information System (INIS)
Stora, R.
1976-09-01
The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed
Symmetry and symmetry breaking
International Nuclear Information System (INIS)
Balian, R.; Lambert, D.; Brack, A.; Lachieze-Rey, M.; Emery, E.; Cohen-Tannoudji, G.; Sacquin, Y.
1999-01-01
The symmetry concept is a powerful tool for our understanding of the world. It allows a reduction of the volume of information needed to apprehend a subject thoroughly. Moreover this concept does not belong to a particular field, it is involved in the exact sciences but also in artistic matters. Living beings are characterized by a particular asymmetry: the chiral asymmetry. Although this asymmetry is visible in whole organisms, it seems it comes from some molecules that life always produce in one chirality. The weak interaction presents also the chiral asymmetry. The mass of particles comes from the breaking of a fundamental symmetry and the void could be defined as the medium showing as many symmetries as possible. The texts put together in this book show to a great extent how symmetry goes far beyond purely geometrical considerations. Different aspects of symmetry ideas are considered in the following fields: the states of matter, mathematics, biology, the laws of Nature, quantum physics, the universe, and the art of music. (A.C.)
International Nuclear Information System (INIS)
Wang Dianfu
2008-01-01
In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures
New gauged N = 8, D = 4 supergravities
International Nuclear Information System (INIS)
Hull, C M
2003-01-01
New gaugings of four-dimensional N = 8 supergravity are constructed, including one which has a Minkowski space vacuum that preserves N = 2 supersymmetry and in which the gauge group is broken to SU(3) x U(1) 2 . Previous gaugings used the form of the ungauged action which is invariant under a rigid SL (8,R) symmetry and promoted a 28-dimensional subgroup (SO(8), SO(p, 8 - p) or the non-semi-simple contraction CSO(p, q, 8 - p - q)) to a local gauge group. Here, a dual form of the ungauged action is used which is invariant under SU*(8) instead of SL (8,R) and new theories are obtained by gauging 28-dimensional subgroups of SU*(8). The gauge groups are non-semi-simple and are different real forms of the CSO(2p, 8 - 2p) groups, denoted as CSO*(2p, 8 - 2p), and the new theories have a rigid SU(2) symmetry. The five-dimensional gauged N = 8 supergravities are dimensionally reduced to D = 4. The D = 5, SO(p, 6 - p) gauge theories reduce, after a duality transformation, to the D = 4, CSO(p, 6 - p, 2) gauging while the SO*(6) gauge theory reduces to the D = 4, CSO*(6, 2) gauge theory. The new theories are related to the old ones via an analytic continuation. The non-semi-simple gaugings can be dualized to forms with different gauge groups
Renormalization of gauge fields models
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1974-01-01
A new approach to gauge field models is described. It is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme making extensive use of the quantum action principle, and the Slavnov invariance. The quantum action principle being first summarized in the framework of the BPHZ is then applied to a global symmetry problem. The symmetry property of the gauge field Lagrangians in the tree approximation is exhibited, and the preservation of this property at the quantum level is discussed. The main results relative to the Abelian and SU(2) Higgs-Kibble models are briefly reviewed [fr
Stringy horizons and generalized FZZ duality in perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET,Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)
2017-02-14
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n−2 winding modes actually coincide with the correlation functions in the SL(2,ℝ)/U(1) gauged WZW model that include n−2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference https://www.doi.org/10.1007/JHEP10(2016)157. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
The rotation curve of a point particle in stringy gravity
Energy Technology Data Exchange (ETDEWEB)
Ko, Sung Moon; Park, Jeong-Hyuck; Suh, Minwoo, E-mail: sinsmk2003@sogang.ac.kr, E-mail: park@sogang.ac.kr, E-mail: minsuh@usc.edu [Department of Physics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 (Korea, Republic of)
2017-06-01
Double Field Theory suggests to view the whole massless sector of closed strings as the gravitational unity. The fundamental symmetries therein, including the O( D , D ) covariance, can determine unambiguously how the Standard Model as well as a relativistic point particle should couple to the closed string massless sector. The theory also refines the notion of singularity. We consider the most general, spherically symmetric, asymptotically flat, static vacuum solution to D =4 Double Field Theory, which contains three free parameters and consequently generalizes the Schwarzschild geometry. Analyzing the circular geodesic of a point particle in string frame, we obtain the orbital velocity as a function of R /( M {sub ∞} G ) which is the dimensionless radial variable normalized by mass. The rotation curve generically features a maximum and thus non-Keplerian over a finite range, while becoming asymptotically Keplerian at infinity, R /( M {sub ∞} G )→ ∞. The adoption of the string frame rather than Einstein frame is the consequence of the fundamental symmetry principle. Our result opens up a new scheme to solve the dark matter/energy problems by modifying General Relativity at 'short' range of R /( M {sub ∞} G ).
Gauged N=8 supergravity in five dimensions
International Nuclear Information System (INIS)
Guenaydin, M.; Romans, L.J.; Warner, N.P.
1985-01-01
We construct gauged N=8 supergravity theories in five dimensions. Instead of the twenty-seven vector fields of the ungauged theory, the gauged theories contain fifteen vector fields and twelve second-rank antisymmetric tensor fields satisfying self-dual field equations. The fifteen vector fields can be used to gauge any of the fifteen-dimensional semisimple subgroups of SL(6, R), sepcifically SO(p, 6-p) for p=0, 1, 2, 3. The gauged theories also have a physical global SU(1,1) symmetry which survives from the Esub(6(6)) symmetry of the ungauged theory. This SU(1, 1) for the SO(6) gauging is presumably related to that of the chiral N=2 theory in ten dimensions. In our formalism we maintain a composite local USp(8) symmetry analogous to SU(8) in four dimensions. (orig.)
Symmetry, structure, and spacetime
Rickles, Dean
2007-01-01
In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational
Dynamical Messengers for Gauge Mediation
Energy Technology Data Exchange (ETDEWEB)
Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.
2011-08-17
We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.
Deformation of extremal black holes from stringy interactions
Chen, Baoyi; Stein, Leo C.
2018-04-01
Black holes are a powerful setting for studying general relativity and theories beyond GR. However, analytical solutions for rotating black holes in beyond-GR theories are difficult to find because of the complexity of such theories. In this paper, we solve for the deformation to the near-horizon extremal Kerr metric due to two example string-inspired beyond-GR theories: Einstein-dilaton-Gauss-Bonnet and dynamical Chern-Simons theory. We accomplish this by making use of the enhanced symmetry group of NHEK and the weak-coupling limit of EdGB and dCS. We find that the EdGB metric deformation has a curvature singularity, while the dCS metric is regular. From these solutions, we compute orbital frequencies, horizon areas, and entropies. This sets the stage for analytically understanding the microscopic origin of black hole entropy in beyond-GR theories.
Güngör, Özenç; Starkman, Glenn D.; Stora, Raymond
This work is dedicated to the memory of Raymond Stora (1930-2015). $SU(2)_L$ is the simplest spontaneous symmetry breaking (SSB) non-Abelian gauge theory: a complex scalar doublet $\\phi=\\frac{1}{\\sqrt{2}}\\begin{bmatrix}H+i\\pi_3-\\pi_2 +i\\pi_1\\end{bmatrix}\\equiv\\frac{1}{\\sqrt{2}}\\tilde{H}e^{2i\\tilde{t}\\cdot\\tilde{\\vec{\\pi}}/}\\begin{bmatrix}10\\end{bmatrix}$ and a vector $\\vec{W}^\\mu$. In Landau gauge, $\\vec{W}^\\mu$ is transverse, $\\vec{\\tilde{\\pi}}$ are massless derivatively coupled Nambu-Goldstone bosons (NGB). A global shift symmetry enforces $m^{2}_{\\tilde{\\pi}}=0$. We observe that on-shell T-matrix elements of physical states $\\vec{W}^\\mu$,$\\phi$ are independent of global $SU(2)_{L}$ transformations, and the associated global current is exactly conserved for amplitudes of physical states. We identify two towers of "1-soft-pion" global Ward-Takahashi Identities (WTI), which govern the $\\phi$-sector, and represent a new global symmetry, $SU(2)_L\\otimes$BRST, a symmetry not of the Lagrangian but of the physical...
Gauge Theories in the Twentieth Century
2001-01-01
By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories , characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups
Multiscale N=2 SUSY field theories, integrable systems and their stringy/brane origin
International Nuclear Information System (INIS)
Gorsky, A.; Gukov, S.; Mironov, A.
1998-01-01
We discuss supersymmetric Yang-Mills theories with multiple scales in the brane language. The issue concerns N=2 SUSY gauge theories with massive fundamental matter including the UV finite case of n f =2n c , theories involving products of SU(n) gauge groups with bifundamental matter, and systems with several parameters similar to Λ QCD . We argue that the proper integrable systems are, accordingly, twisted XXX SL(2) spin chain, SL(p) magnets and degenerations of the spin Calogero system. The issue of symmetries underlying integrable systems is addressed. Relations with the monopole systems are specially discussed. Brane pictures behind all these integrable structures in the IIB and M-theory are suggested. We argue that degrees of freedom in integrable systems are related to KK excitations in M-theory or D-particles in the IIA string theory, which substitute the infinite number of instantons in the field theory. This implies the presence of more BPS states in the low-energy sector. (orig.)
International Nuclear Information System (INIS)
Zet, G.
2002-01-01
The self-duality equations are important in gauge theories because they show the connection between gauge models with internal symmetry groups and gauge theory of gravity. They are differential equations of the first order and it is easier to investigate the solutions for different particular configurations of the gauge fields and of space-times.One of the most important property of the self-duality equations is that they imply the Yang-Mills field equations. In this paper we will prove this property for the general case of a gauge theory with compact Lie group of symmetry over a 4-dimensional space-time manifold. It is important to remark that there are 3m independent self-duality equations (of the first order) while the number of Yang-Mills equations is equal to 4m, where m is the dimension of the gauge group. Both of them have 4m unknown functions which are the gauge potentials A μ a (x), a = 1, 2, ....,m; μ = 0, 1, 2, 3. But, we have, in addition, m gauge conditions for A μ a (x), (for example Coulomb, Lorentz or axial gauge) which together with the selfduality equation constitute a system of 4m equations. The Bianchi identities for the self-dual stress tensor F μν a coincide with the Yang-Mills equations and do not imply therefore supplementary conditions. We use the axial gauge in order to obtain the self duality equations for a SU(2) gauge theory over a curved space-time. The compatibility between self-duality and Yang-Mills equations is studied and some classes of solutions are obtained. In fact, we will write the Einstein-Yang-Mills equations and we will analyse only the Yang-Mills sector. The Einstein equations can not be obtained of course from self-duality. They should be obtained if we would consider a gauge theory having P x SU(2) as symmetry group, where P is the Poincare group. More generally, a gauge theory of N-extended supersymmetry can be developed by imposing the self-duality condition. (author)
Gauge field condensation in geometric quantum chromodynamics
International Nuclear Information System (INIS)
Guendelman, E.I.
1991-09-01
In odd number of dimensions, it is possible to construct general covariant gauge theories, where the metric is not an independent variable, but local function of the gauge fields. Starting from standardly defined gauge theory, upon functional integration of some variables, we could end up with such moodels. For models with SU(2) and SU(3) symmetry in three dimensions, gauge field condensation take place in the vacuum, which is nevertheless homogeneous and isotropic up to a gauge transformation, provided the space is flat. Introducing Higgs fields that spontaneously break the gauge symmetry, we get a breakdown of the homogenity and isotropy of the vacuum. Finally, we discuss how some of this ideas can be generalized to four and other even dimensions. (author)
Soft Terms from Broken Symmetries
Buican, Matthew
2010-01-01
In theories of phyiscs beyond the Standard Model (SM), visible sector fields often carry quantum numbers under additional gauge symmetries. One could then imagine a scenario in which these extra gauge symmetries play a role in transmitting supersymmetry breaking from a hidden sector to the Supersymmetric Standard Model (SSM). In this paper we present a general formalism for studying the resulting hidden sectors and calculating the corresponding gauge mediated soft parameters. We find that a large class of generic models features a leading universal contribution to the soft scalar masses that only depends on the scale of Higgsing, even if the model is strongly coupled. As a by-product of our analysis, we elucidate some IR aspects of the correlation functions in General Gauge Mediation. We also discuss possible phenomenological applications.
Stringy origin of diboson and dijet excesses at the LHC
Anchordoqui, Luis A; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R
2015-01-01
Very recently, the ATLAS and CMS collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8 -2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W^+W^- pairs are strongly constrained by semileptonic searches. We show that both the diboson and dijet excesses can be steered by an anomalous U(1) field with very small coupling to leptons. The Drell-Yan bounds are then readily avoided because of the leptophobic nature of the massive Z' gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau-Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string t...
Nonperturbative quantization of nonabelian gauge theories
International Nuclear Information System (INIS)
Slavnov, A.
2011-01-01
Full text: (author)On the basis of the equivalence theorems proven earlier, a new formulation of nonabelian gauge theories is proposed. Contrary to the usual scheme this formulation allows the quantization of gauge theories beyond perturbation theory. The method is applicable both to the Yang-Mills theory and to nonabelian models with spontaneously broken symmetries
Gaugings at angles from orientifold reductions
Roest, D.
2009-01-01
We consider orientifold reductions to N = 4 gauged supergravity in four dimensions. A special feature of this theory is that different factors of the gauge group can have relative angles with respect to the electro-magnetic SL(2) symmetry. These are crucial for moduli stabilization and de Sitter
Gauge principle for hyper(para) fields
Energy Technology Data Exchange (ETDEWEB)
Govorkov, A.B. (Joint Inst. for Nuclear Research, Dubna (USSR))
1983-04-01
A special representation for parafields is considered which is based on the use of the Clifford hypernumbers. The principle of gauge invariance under hypercomplex phase transformations of parafields is formulated. A special role of quaternion hyperfields and corresponding Yang-Mills lagrangian with the gauge SO(3)-symmetry is pointed out.
Interfaces in hot gauge theory
Bronoff, S.
1996-01-01
The string tension at low T and the free energy of domain walls at high T can be computed from one and the same observable. We show by explicit calculation that domain walls in hot Z(2) gauge theory have good thermodynamical behaviour. This is due to roughening of the wall, which expresses the restoration of translational symmetry.
Experimental tests of gauge theories
International Nuclear Information System (INIS)
Haidt, D.
1984-11-01
This series of five lectures is intended to provide the experimental basis to the theoretical courses on gauge symmetries delivered by C. Jarlskog and R. Petronzio. The framework is the standard model. The experimental material is taken mainly from lepton-hadron and e + e - -experiments. (orig./HSI)
Gauge theory and elementary particles
International Nuclear Information System (INIS)
Zwirn, H.
1982-01-01
The present orientation of particle physics, founded on local gauge invariance theories and spontaneous symmetry breaking is described in a simple formalism. The application of these ideas to the latest theories describing electromagnetic and weak interactions (Glashow, Weinberg, Salam models) and strong interactions, quantum chromodynamics, is presented so as to give a general picture of the mechanisms subtending these theories [fr
Problem of ''global color'' in gauge theories
International Nuclear Information System (INIS)
Horvathy, P.A.; Rawnsley, J.H.; UER de Mathematique, Universite de Provence, Marseille, France)
1986-01-01
The problem of ''global color'' (which arose recently in monopole theory) is generalized to arbitrary gauge theories: a subgroup K of the ''unbroken'' gauge group G is implementable iff the gauge bundle reduces to the centralizer of K in G. Equivalent implementations correspond to equivalent reductions. Such an action is an internal symmetry for a given configuration iff the Yang-Mills field reduces also. The case of monopoles is worked out in detail
Renormalizable models with broken symmetries
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-10-01
The results of the renormalized perturbation theory, in the absence of massless quanta, are summarized. The global symmetry breaking is studied and the associated currents are discussed in terms of the coupling with a classical Yang Mills field. Gauge theories are discussed; it is most likely that the natural set up should be the theory of fiber bundles and that making a choice of field coordinates makes the situation obscure. An attempt is made in view of clarifying the meaning of the Slavnov symmetry which characterizes gauge field theories [fr
Static potentials from an extended gauge symmetry
International Nuclear Information System (INIS)
Doria, R.M.; Helayel Neto, J.A.
1985-01-01
Static potentials derived from the inclusion of more than one vector field in a single simple group are calculated. A confinement mechanism including colourful unphysical particle is discussed. (Author) [pt
International Nuclear Information System (INIS)
Kenyon, I.R.
1986-01-01
Modern theories of the interactions between fundamental particles are all gauge theories. In the case of gravitation, application of this principle to space-time leads to Einstein's theory of general relativity. All the other interactions involve the application of the gauge principle to internal spaces. Electromagnetism serves to introduce the idea of a gauge field, in this case the electromagnetic field. The next example, the strong force, shows unique features at long and short range which have their origin in the self-coupling of the gauge fields. Finally the unification of the description of the superficially dissimilar electromagnetic and weak nuclear forces completes the picture of successes of the gauge principle. (author)
Spontaneously broken abelian gauge invariant supersymmetric model
International Nuclear Information System (INIS)
Mainland, G.B.; Tanaka, K.
A model is presented that is invariant under an Abelian gauge transformation and a modified supersymmetry transformation. This model is broken spontaneously, and the interplay between symmetry breaking, Goldstone particles, and mass breaking is studied. In the present model, spontaneously breaking the Abelian symmetry of the vacuum restores the invariance of the vacuum under a modified supersymmetry transformation. (U.S.)
Internal space decimation for lattice gauge theories
International Nuclear Information System (INIS)
Flyvbjerg, H.
1984-01-01
By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)
Renormalization of a distorted gauge: invariant theory
International Nuclear Information System (INIS)
Hsu, J.P.; Underwood, J.A.
1976-02-01
A new type of renormalizable theory involving massive Yang-Mills fields whose mass is generated by an intrinsic breakdown of the usual local gauge symmetry is considered. However, the Lagrangian has a distorted gauge symmetry which leads to the Ward-Takahashi (W-T) identities. Also, the theory is independent of the gauge parameter xi. An explicit renormalization at the oneloop level is completely carried out by exhibiting counter terms, defining the physical parameters and computing all renormalization constants to check the W-T identities
Group theory and lattice gauge fields
International Nuclear Information System (INIS)
Creutz, M.
1988-09-01
Lattice gauge theory, formulated in terms of invariant integrals over group elements on lattice bonds, benefits from many group theoretical notions. Gauge invariance provides an enormous symmetry and powerful constraints on expectation values. Strong coupling expansions require invariant integrals over polynomials in group elements, all of which can be evaluated by symmetry considerations. Numerical simulations involve random walks over the group. These walks automatically generate the invariant group measure, avoiding explicit parameterization. A recently proposed overrelaxation algorithm is particularly efficient at exploring the group manifold. These and other applications of group theory to lattice gauge fields are reviewed in this talk. 17 refs
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Hidden simplicity of gauge theory amplitudes
Energy Technology Data Exchange (ETDEWEB)
Drummond, J M, E-mail: drummond@lapp.in2p3.f [LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, Cedex (France)
2010-11-07
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in N=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
Non-Abelian Gauge Theory in the Lorentz Violating Background
Ganai, Prince A.; Shah, Mushtaq B.; Syed, Masood; Ahmad, Owais
2018-03-01
In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.
Dynamic conservation of anomalous current in gauge theories
International Nuclear Information System (INIS)
Kulikov, A.V.
1986-01-01
The symmetry of classical Lagrangian of gauge fields is shown to lead in quantum theory to certain limitations for the fields interacting with gauge ones. Due to this property, additional terms appear in the effective action in the theories with anomalous currents and its gauge invariance is ensured
Higher spin gauge theories in any dimension
International Nuclear Information System (INIS)
Vasiliev, M.A.
2004-01-01
Some general properties of higher spin (HS) gauge theories are summarized, with the emphasize on the nonlinear theories in any dimension. The main conclusion is that nonlinear HS theories exist in any dimension. Note that HS gauge symmetries in the nonlinear HS theory differ from the Yang-Mills gauging of the global HS symmetry of a free theory one starts with by HS field strength dependent nonlinear corrections resulting from the partial gauge fixing of spontaneously broken HS symmetries in the extended non-commutative space. The HS geometry is that of the fuzzy hyperboloid in the auxiliary (fiber) non-commutative space. Its radius depends on the Weyl 0-forms which take values in the infinitive-dimensional module dual to the space of single-particle states in the system
Rizwan, C. L. Ahmed; Vaid, Deepak
2018-05-01
We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.
Gauge theories in particle physics
International Nuclear Information System (INIS)
Aitchison, I.J.R.; Hey, A.J.G.
1982-01-01
The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)
Zero energy gauge fields and the phases of a gauge theory
International Nuclear Information System (INIS)
Guendelman, E.I.
1990-01-01
A new approach to the definition of the phases of a Poincare invariant gauge theory is developed. It is based on the role of gauge transformations that change the asymptotic value of the gauge fields from zero to a constant. In the context of theories without Higgs fields, this symmetry can be spontaneously broken when the gauge fields are massless particles, explicitly broken when the gauge fields develop a mass. Finally, the vacuum can be invariant under this transformation, this last case can be achieved when the theory has a violent infrared behavior, which in some theories can be connected to a confinement mechanism
Discrete symmetries in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Schieren, Roland
2010-12-02
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)
Discrete symmetries in the MSSM
International Nuclear Information System (INIS)
Schieren, Roland
2010-01-01
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)
Local discrete symmetries from superstring derived models
International Nuclear Information System (INIS)
Faraggi, A.E.
1996-10-01
Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations
Duffin-Kemmer formulation of gauge theories
International Nuclear Information System (INIS)
Okubo, S.; Tosa, Y.
1979-01-01
Gauge theories, including the Yang-Mills theory as well as Einstein's general relativity, are reformulated in first-order differential forms. In this generalized Duffin-Kemmer formalism, gauge theories take very simple forms with only cubic interactions. Moreover, every local gauge transformation, e.g., that of Yang and Mills or Einstein, etc., has an essentially similar form. Other examples comprise a gauge theory akin to the Sugawara theory of currents and the nonlinear realization of chiral symmetry. The octonion algebra is found possibly relevant to the discussion of the Yang-Mills theory
Relativity and equivalence principles in the gauge theory of gravitation
International Nuclear Information System (INIS)
Ivanenko, D.; Sardanashvili, G.
1981-01-01
Roles of relativity (RP) and equivalence principles (EP) in the gauge theory of gravity are shown. RP in the gravitational theory in formalism of laminations can be formulated as requirement of covariance of equations relative to the GL + (4, R)(X) gauge group. In such case RP turns out to be identical to the gauge principle in the gauge theory of a group of outer symmetries, and the gravitational theory can be directly constructed as the gauge theory. In general relativity theory the equivalence theory adds RP and is intended for description of transition to a special relativity theory in some system of reference. The approach described takes into account that in the gauge theory, besides gauge fields under conditions of spontaneous symmetry breaking, the Goldstone and Higgs fields can also arise, to which the gravitational metric field is related, what is the sequence of taking account of RP in the gauge theory of gravitation [ru
Discrete symmetries and coset space dimensional reduction
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1989-01-01
We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)
Local U(2,2) Symmetry in Relativistic Quantum Mechanics
Finster, Felix
1997-01-01
Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.
Local U(2,2) symmetry in relativistic quantum mechanics
Finster, Felix
1998-12-01
Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.
Harada–Tsutsui gauge recovery procedure: From Abelian gauge anomalies to the Stueckelberg mechanism
International Nuclear Information System (INIS)
Lima, Gabriel Di Lemos Santiago
2014-01-01
Revisiting a path-integral procedure developed by Harada and Tsutsui for recovering gauge invariance from anomalous effective actions, it is shown that there are two ways to achieve gauge symmetry: one already presented by the authors, which is shown to preserve the anomaly in the sense of standard current conservation law, and another one which is anomaly-free, preserving current conservation. It is also shown that the application of the Harada–Tsutsui technique to other models which are not anomalous but do not exhibit gauge invariance allows the identification of the gauge invariant formulation of the Proca model, also done by the referred authors, with the Stueckelberg model, leading to the interpretation of the gauge invariant map as a generalization of the Stueckelberg mechanism. -- Highlights: • A gauge restoration technique from Abelian anomalous models is discussed. • It is shown that there is another way that leads to gauge symmetry restoration from such technique. • It is shown that the first gauge restoration preserves the anomaly, while the proposed second one is free from anomalies. • It is shown that the proposed gauge symmetry restoration can be identified with the Stueckelberg mechanism
Harada–Tsutsui gauge recovery procedure: From Abelian gauge anomalies to the Stueckelberg mechanism
Energy Technology Data Exchange (ETDEWEB)
Lima, Gabriel Di Lemos Santiago, E-mail: gabriellemos3@hotmail.com
2014-02-15
Revisiting a path-integral procedure developed by Harada and Tsutsui for recovering gauge invariance from anomalous effective actions, it is shown that there are two ways to achieve gauge symmetry: one already presented by the authors, which is shown to preserve the anomaly in the sense of standard current conservation law, and another one which is anomaly-free, preserving current conservation. It is also shown that the application of the Harada–Tsutsui technique to other models which are not anomalous but do not exhibit gauge invariance allows the identification of the gauge invariant formulation of the Proca model, also done by the referred authors, with the Stueckelberg model, leading to the interpretation of the gauge invariant map as a generalization of the Stueckelberg mechanism. -- Highlights: • A gauge restoration technique from Abelian anomalous models is discussed. • It is shown that there is another way that leads to gauge symmetry restoration from such technique. • It is shown that the first gauge restoration preserves the anomaly, while the proposed second one is free from anomalies. • It is shown that the proposed gauge symmetry restoration can be identified with the Stueckelberg mechanism.
Hairs of discrete symmetries and gravity
Energy Technology Data Exchange (ETDEWEB)
Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)
2017-06-10
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Hairs of discrete symmetries and gravity
Directory of Open Access Journals (Sweden)
Kang Sin Choi
2017-06-01
Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
International Nuclear Information System (INIS)
Itzykson, C.
1978-01-01
In these notes the author provides some background on the theory of gauge fields, a subject of increasing popularity among particle physicists (and others). Detailed motivations and applications which are covered in the other lectures of this school are not presented. In particular the application to weak interactions is omitted by referring to the introduction given by J. Ilipoulos a year ago (CERN Report 76-11). The aim is rather to stress those aspects which suggest that gauge fields may play some role in a future theory of strong interactions. (Auth.)
Dynamical topology change, compactification and waves in a stringy early universe
Kiritsis, Elias
1995-01-01
Exact string solutions are presented, where moduli fields are varying with time. They provide examples where a dynamical change of the topology of space is occuring. Some other solutions give cosmological examples where some dimensions are compactified dynamically or simulate pre-big bag type scenarios. Some lessons are drawn concerning the region of validity of effective theories and how they can be glued together, using stringy information in the region where the geometry and topology are not well defined from the low energy point of view. Other time dependent solutions are presented where a hierarchy of scales is absent. Such solutions have dynamics which is qualitatively different and resemble plane gravitational waves. Talk presented by E. Kiritsis in the 2\\`eme Journ\\'ee Cosmologie, Observatoire de Paris, 2-4 June 1994.
Extended global symmetries of the bosonic string. Their current algebra and anomalies
International Nuclear Information System (INIS)
Piguet, O.; Schwarz, D.; Schweda, M.
1990-01-01
The quantization of the bosonic string is discussed in a class of general homogeneous gauges. The corresponding bosonic string model may be characterized effectively by three global symmetries: the linearized BRS symmetry, the ghost-number symmetry, and the Lagrange-multiplier-field symmetry. In order to discuss the possible gauge (in)dependence of Noether currents and anomalies consistently, we enlarge these rigid symmetries to extended ones. In addition we construct the local version of the above global symmetries in a systematic way, by introducing appropriate external gauge fields. The possible anomalies are analysed with the help of Wess-Zumino consistency relations. (orig.)
Quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Schomerus, V.
1993-02-01
Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry
Ue (1)-covariant Rξ gauge for the two-Higgs doublet model
Indian Academy of Sciences (India)
Becchi–Rouet–Stora–Tyutin) symmetry is introduced. This gauge allows one to remove a significant number of nonphysical vertices appearing in conventional linear gauges, which greatly simplifies the loop calculations, since the resultant ...
International Nuclear Information System (INIS)
Bond, A.
1977-01-01
The present position of nucleonic techniques for process measurements, is considered from the technical and cost viewpoints. Systems considered include level, density, thickness (including coating thickness), moisture, and sulphur in hydrocarbons gauges and also belt weighers. The advantages of such systems are discussed and the cost-benefit position considered. The combination of nucleonic measuring equipment with a microcomputer is examined. (U.K.)
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
Factorization in QCD in Feynman gauge
International Nuclear Information System (INIS)
Tucci, R.R.
1985-01-01
We present a mass divergence power counting technique for QCD in the Feynman gauge. For the process γ/sup */ → qq, we find the leading regions of integration and show that single diagrams are at worst logarithmically divergent. Using the Weyl representation facilities the γ matrix manipulations necessary for power counting and adds much physical insight. We prove Ward type identities which are needed in the proof of factorization of the Drill Yan process. Previous treatments prove them only for an axial gauge, and the proofs are diagrammatic in nature. We, on the other hand, establish the identities for the Feynman gauge and through symmetry considerations at the Lagrangian level. The strategy is to first derive exact results in a background field gauge and then to show that to leading order in the mass divergences the background field gauge results can be used in the Feynman gauge
Energy Technology Data Exchange (ETDEWEB)
Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-03-15
We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.
Symmetries in fundamental physics
Sundermeyer, Kurt
2014-01-01
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...
Symmetries in fundamental physics
Sundermeyer, Kurt
2014-01-01
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...
Energy Technology Data Exchange (ETDEWEB)
Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Itzhaki, Nissan [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Kutasov, David [EFI and Department of Physics, University of Chicago,5640 S. Ellis Av., Chicago, IL 60637 (United States)
2015-06-11
We argue that classical (α{sup ′}) effects qualitatively modify the structure of Euclidean black hole horizons in string theory. While low energy modes experience the geometry familiar from general relativity, high energy ones see a rather different geometry, in which the Euclidean horizon can be penetrated by an amount that grows with the radial momentum of the probe. We discuss this in the exactly solvable SL(2,ℝ)/U(1) black hole, where it is a manifestation of the black hole/Sine-Liouville duality.
BOOK REVIEW: Symmetry Breaking
Ryder, L. H.
2005-11-01
have to be rather clever to recognize that the particle interactions were rotationally invariant. Nambu and Goldstone showed that the spontaneous breakdown of a (continuous) symmetry implied the existence of massless scalar particles, referred to as Nambu Goldstone bosons, or simply Goldstone bosons. Meanwhile Anderson, in his study of (non-relativistic) superconductivity, showed that the exclusion of magnetic flux (Meissner effect) corresponds to a finite range for the electromagnetic field and hence to a `massive photon'. In a relativistic context Englert, Brout, Guralnik and more particularly Higgs showed that a spontaneous breaking of a gauge symmetry resulted in a massive, instead of a massless, gauge particle and no Goldstone particle; in the jargon of the day, the massless gauge particle had `eaten' the massless Goldstone boson and become massive; exactly Anderson's observation. It is this phenomenon which has been invoked so successfully to explain the masses of the W and Z bosons of weak interactions. Spontaneous symmetry breaking, therefore, has played a major role in the development of the Standard Model of particle physics, and it has also proved an important tool in condensed matter physics, for example in the understanding of phase transitions. At the same time, however, in the understanding of most (or all) particle physicists, and perhaps also condensed matter physicists, the notion of spontaneous symmetry breaking has been inexorably linked to that of a degenerate vacuum. This is the background and the starting point for Strocchi's book. Recognizing the power and importance of the concept of spontaneous symmetry breaking in theoretical physics, he defines it in a more refined and general way than usual. `Despite the many popular accounts', he writes, `the phenomenon of spontaneous symmetry breaking is deep and subtle and it is not without [reason] that it has been fully understood only in recent times.' Strocchi's main emphasis is on the fact that the
Chan-Paton soliton gauge states of the compactified open string
International Nuclear Information System (INIS)
Lee, J.-C.
2000-01-01
We study the mechanism of the enhanced gauge symmetry of the bosonic open string compactified on a torus by analyzing the zero-norm soliton (non-zero winding of the Wilson line) gauge states in the spectrum. Unlike the closed string case, we find that the soliton gauge state exists only at massive levels. These soliton gauge states correspond to the existence of enhanced massive gauge symmetries with transformation parameters containing both Einstein and Yang-Mills indices. In the T-dual picture, these symmetries exist only at some discrete values of compactified radii when N D-branes are coincident. (orig.)
Gauge Theories of Vector Particles
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
String constraints on discrete symmetries in MSSM type II quivers
Energy Technology Data Exchange (ETDEWEB)
Anastasopoulos, Pascal [Technische Univ. Wien (Austria). Inst. fur Theor. Phys.; Cvetic, Mirjam [Univ. of Pennsylvania, Philadelphia PA (United States). Dept. of Physics and Astronomy; Univ. of Maribor (Slovenia). Center for Applied Mathematics and Theoretical Physics; Richter, Robert [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-11-15
We study the presence of discrete gauge symmetries in D-brane semirealistic compactifications. After establishing the constraints on the transformation behaviour of the chiral matter for the presence of a discrete gauge symmetry we perform a systematic search for discrete gauge symmetries within semi-realistic D-brane realizations, based on four D-brane stacks, of the MSSM and the MSSM with three right-handed neutrinos. The systematic search reveals that Proton hexality, a discrete symmetry which ensures the absence of R-parity violating terms as well as the absence of dangerous dimension 5 proton decay operators, is only rarely realized. Moreover, none of the semi-realistic local D-brane configurations exhibit any family dependent discrete gauge symmetry.
International Nuclear Information System (INIS)
Qurnell, F.D.; Patterson, C.B.
1979-01-01
A gauge supporting device for measuring say a square tube comprises a pair of rods or guides in tension between a pair of end members, the end members being spaced apart by a compression member or members. The tensioned guides provide planes of reference for measuring devices moved therealong on a carriage. The device is especially useful for making on site dimensional measurements of components, such as irradiated and therefore radioactive components, that cannot readily be transported to an inspection laboratory. (UK)
Aniello, Paolo; Chruściński, Dariusz
2017-07-01
A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.
The priority of internal symmetries in particle physics
Kantorovich, Aharon
2003-12-01
In this paper, I try to decipher the role of internal symmetries in the ontological maze of particle physics. The relationship between internal symmetries and laws of nature is discussed within the framework of ;Platonic realism.; The notion of physical ;structure; is introduced as representing a deeper ontological layer behind the observable world. I argue that an internal symmetry is a structure encompassing laws of nature. The application of internal symmetry groups to particle physics came about in two revolutionary steps. The first was the introduction of the internal symmetries of hadrons in the early 1960s. These global and approximate symmetries served as means of bypassing the dynamics. I argue that the realist could interpret these symmetries as ontologically prior to the hadrons. The second step was the gauge revolution in the 1970s, where symmetries became local and exact and were integrated with the dynamics. I argue that the symmetries of the second generation are fundamental in the following two respects: (1) According to the so-called ;gauge argument,; gauge symmetry dictates the existence of gauge bosons, which determine the nature of the forces. This view, which has been recently criticized by some philosophers, is widely accepted in particle physics at least as a heuristic principle. (2) In view of grand unified theories, the new symmetries can be interpreted as ontologically prior to baryon matter.
Gauge hierarchy and long range forces
International Nuclear Information System (INIS)
Pal, P.B.; Keung, Wai-Yee; Chang, D.
1990-01-01
With the aid of simple examples, we show how a long range attractive force can arise in a gauge theory with a hierarchy. The force is due to the exchange of a Higgs boson whose mass and matter couplings are both naturally suppressed by the hierarchical mass ratio. Such bosons appear if there is an accidental global symmetry in the low-energy renormalizable Lagrangian after the high energy symmetry breaking. 6 refs
Voisin, Claire
1999-01-01
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...
International Nuclear Information System (INIS)
Kerner, R.
1983-01-01
The mathematical background for a graded extension of gauge theories is investigated. After discussing the general properties of graded Lie algebras and what may serve as a model for a graded Lie group, the graded fiber bundle is constructed. Its basis manifold is supposed to be the so-called superspace, i.e. the product of the Minkowskian space-time with the Grassmann algebra spanned by the anticommuting Lorentz spinors; the vertical subspaces tangent to the fibers are isomorphic with the graded extension of the SU(N) Lie algebra. The connection and curvature are defined then on this bundle; the two different gradings are either independent of each other, or may be unified in one common grading, which is equivalent to the choice of the spin-statistics dependence. The Yang-Mills lagrangian is investigated in the simplified case. The conformal symmetry breaking is discussed, as well as some other physical consequences of the model. (orig.)
International Nuclear Information System (INIS)
Bailin, D.
1980-01-01
The author reviews the present status of the standard model of weak and electromagnetic interactions and of QCD and examines the likely avenues of future development. The most attractive possibility is that there is a ''grand unified theory'' (GUT) which describes all known interactions except gravity, and in which the only input energy scale is the Planck mass. The GUTs so far proposed share the deficiency that they offer no explanation of the (>=3) observed fermion generations. The author reviews the 'horizontal' symmetries invented to bring order to the fermion sector. Typically such theories have non-minimal Higgs content, so he reviews the processes whereby charged or neutral scalars may be found. The incorporation of supersymmetry into the gauge theory of strong, weak and electromagnetic interactions is another attractive prospect and he discusses briefly the attempts to do this and the likely experimental signatures of such a scheme. (Auth.)
Quotients of irreducible N=2 superconformal coset theories by discrete symmetries
International Nuclear Information System (INIS)
Bailin, D.; Love, A.
1990-01-01
The spectrum of massless states is studied for the irreducible N=2 superconformal coset theories when these theories are quotiented by discrete symmetries, including the effect of embedding the discrete symmetries in the gauge group. (orig.)
Spontaneous breaking of the BRST symmetry in the ABJM theory
International Nuclear Information System (INIS)
Faizal, Mir; Upadhyay, Sudhaker
2014-01-01
In this paper, we will analyze the ghost condensation in the ABJM theory. We will perform our analysis in N=1 superspace. We show that in the Delbourgo–Jarvis–Baulieu–Thierry–Mieg gauge the spontaneous breaking of BRST symmetry can occur in the ABJM theory. This spontaneous breaking of BRST symmetry is caused by ghost–anti-ghost condensation. We will also show that in the ABJM theory, the ghost–anti-ghost condensates remain present in the modified abelian gauge. Thus, the spontaneous breaking of BRST symmetry in ABJM theory can even occur in the modified abelian gauge
Classical confining solutions of a tensor gauge theory incorporating colour
International Nuclear Information System (INIS)
Salam, A.; Strathdee, J.
1977-04-01
A mass-modified Einstein-Weyl gauge theory of colour carrying spin-two mesons is formulated. A classical solution is exhibited for the case of internal SU(2) symmetry which may confine quarks in colour singlets
Noether's theorem for local gauge transformations
International Nuclear Information System (INIS)
Karatas, D.L.; Kowalski, K.L.
1989-01-01
The variational methods of classical field theory may be applied to any theory with an action which is invariant under local gauge transformations. What is the significance of the resulting Noether current? This paper examines such currents for both Abelian and non-Abelian gauge theories and provides an explanation for their form and limited range of physical significance on a level accessible to those with a basic knowledge of classical field theory. Several of the more subtle aspects encountered in the application of the residual local gauge symmetry found by Becchi, Rouet, Stora, and Tyutin are also considered in detail in a self-contained manner. 23 refs
World-sheet gauge fields in superstrings
International Nuclear Information System (INIS)
Porrati, M.; Tomboulis, E.T.
1989-01-01
We investigate the introduction of world-sheet 2-dimensional gauge fields in a manner consistent with world-sheet supersymmetry. We obtain the effective string action resulting from the exact integration over the world-sheet gauge fields to show that it generally describes string models with spontaneous breaking of gauge symmetries with continuous breaking parameters. We examine the question of spacetime supersymmetry spontaneous breaking, and show that breaking with continuous, in particular arbitrarily small breaking parameters does not occur; only breaking for discrete values of parameters is possible. (orig.)
Gauge invariance and degree of freedom count
International Nuclear Information System (INIS)
Henneaux, M.; Universite Libre de Bruxelles; Teitelboim, C.; Texas Univ., Austin; Zanelli, J.; Chile Univ., Santiago. Dept. de Fisica)
1990-01-01
The precise relation between the gauge transformations in lagrangian and hamiltonian form is derived for any gauge theory. It is found that in order to define a lagrangian gauge symmetry, the coefficients of the first class constraints in the hamiltonian generator of gauge transformations must obey a set of differential equations. Those equations involve, in general, the Lagrange multipliers. Their solution contains as many arbitrary functions of time as there are primary first class constraints. If n is the number of generations of constraints (primary, secondary, tertiary...), the arbitrary functions appear in the general solution together with their successive time derivatives up to order n-1. The analysis yields as by-products: (i) a systematic way to derive all the gauge symmetries of a given lagrangian; (ii) a precise criterion for counting the physical degrees of freedom of a gauge theory directly from the form of gauge transformations in lagrangian form. This last part is illustrated by means of examples. The BRST analog of the counting of physical degrees of freedom is also discussed. (orig.)
Gauge-Higgs unification in higher dimensions
International Nuclear Information System (INIS)
Hall, Lawrence; Nomura, Yasunori; Smith, David
2002-01-01
The electroweak Higgs doublets are identified as components of a vector multiplet in a higher-dimensional supersymmetric field theory. We construct a minimal model in 6D where the electroweak SU(2)xU(1) gauge group is extended to SU(3), and unified 6D models with the unified SU(5) gauge symmetry extended to SU(6). In these realistic theories the extended gauge group is broken by orbifold boundary conditions, leaving Higgs doublet zero modes which have Yukawa couplings to quarks and leptons on the orbifold fixed points. In one SU(6) model the weak mixing angle receives power law corrections, while in another the fixed point structure forbids such corrections. A 5D model is also constructed in which the Higgs doublet contains the fifth component of the gauge field. In this case Yukawa couplings are introduced as nonlocal operators involving the Wilson line of this gauge field
Reformulation of the symmetries of first-order general relativity
Montesinos, Merced; González, Diego; Celada, Mariano; Díaz, Bogar
2017-10-01
We report a new internal gauge symmetry of the n-dimensional Palatini action with cosmological term (n>3 ) that is the generalization of three-dimensional local translations. This symmetry is obtained through the direct application of the converse of Noether’s second theorem on the theory under consideration. We show that diffeomorphisms can be expressed as linear combinations of it and local Lorentz transformations with field-dependent parameters up to terms involving the variational derivatives of the action. As a result, the new internal symmetry together with local Lorentz transformations can be adopted as the fundamental gauge symmetries of general relativity. Although their gauge algebra is open in general, it allows us to recover, without resorting to the equations of motion, the very well-known Lie algebra satisfied by translations and Lorentz transformations in three dimensions. We also report the analog of the new gauge symmetry for the Holst action with cosmological term, finding that it explicitly depends on the Immirzi parameter. The same result concerning its relation to diffeomorphisms and the open character of the gauge algebra also hold in this case. Finally, we consider the non-minimal coupling of a scalar field to gravity in n dimensions and establish that the new gauge symmetry is affected by this matter field. Our results indicate that general relativity in dimension greater than three can be thought of as a gauge theory.
Sakata Memorial KMI Workshop on Origin of Mass and Strong Coupling Gauge Theories
Maskawa, Toshihide; Nojiri, Shin'ichi; Tanabashi, Masaharu; Yamawaki, Koichi
2018-01-01
This volume contains contributions to the workshop, which was largely focused on the strong coupling gauge theories in search for theories beyond the standard model, particularly, the LHC experiments and lattice studies of conformal fixed point. The main topics include walking technicolor and the role of conformality in view of the 125 GeV Higgs as a light composite Higgs (technidilaton, and other composite Higgs, etc.). Nonperturbative studies like lattice simulations and stringy/holographic approaches are extensively discussed in close relation to the phenomenological studies. After the discovery of 125 GeV Higgs at LHC, the central issue of particle physics is now to reveal the dynamical origin of the Higgs itself. One of the possibilities would be the composite Higgs based on the strong coupling gauge theory in the TeV region, such as the technidilaton predicted in walking technicolor with infrared conformality. The volume contains, among others, many of the latest important reports on walking technicolo...
Gravitating SO (3,1) gauge field
International Nuclear Information System (INIS)
Aragone, C.; Restuccia, A.
1978-01-01
In this article, we postulate SO (3,1) as a local symmetry of any relativistic theory. This is equivalent to assuming the existence of a gauge field associated with this noncompact group. This SO (3,1) gauge field is the spinorial affinity which usually appears when we deal with weighting spinors, which, as is well known, cannot be coupled to the metric tensor field. Furthermore, according to the integral approach to gauge fields proposed by Yang, it is also recognized that in order to obtain models of gravity we have to introduce ordinary affinities as the gauge field associated with GL (4) (the local symmetry determined by the parallel transport). Thus if we assume both GL (4) and SO (3,1) as local independent symmetries we are led to analyze the dynamical gauge system constituted by the Einstein field interacting with the SO (3,1) Weyl--Yang gauge field. We think this system is a possible model of strong gravity. Once we give the first-order action for this Einstein--Weyl--Yang system we study whether the SO (3,1) gauge field could have a tetrad associated with it. It is also shown that both fields propagate along a unique characteristic cone. Algebraic and differential constraints are solved when the system evolves along a null coordinate. The unconstrained expression for the action of the system is found working in the Bondi gauge. That allows us to exhibit an explicit expression of the dynamical generator of the system. Its signature turns out to be nondefinite, due to the nondefinite contribution of the Weyl--Yang field, which has the typical spinorial behavior. A conjecture is made that such an unpleasant feature could be overcome in the quantized version of this model
Superfield formulation of stochastic quantization for gauge theories
International Nuclear Information System (INIS)
Egoryan, Ed.Sh.; Manvelian, R.P.
1990-01-01
Using gauge symmetry localization relative to superspace coordinates an extended stochastic action for the Yang-Mills field possessing supergauge invariance is obtained. This allows to formulate correctly a mechanism of stochastic reduction for gauge theories beyond the framework of perturbation theory. 12 refs
Patterns of symmetry breaking in chiral QCD
Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail
2018-05-01
We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.
International Nuclear Information System (INIS)
Tominaga, Hiroshi
1980-01-01
A survey was made by Japan Atomic Industrial Forum, Inc., in August, 1979, on the uses of isotope-equipped measuring instruments in private industrial enterprises by sending questionnaires to 1372 enterprises using sealed radiation sources. The results are described. i.e. usage of isotope-equipped measuring instruments, the economic effects, and problems for the future, and also the general situation in this field. Such instruments used are gas chromatography apparatus, thickness, level and moisture gauges, sulfur analyzer, etc. Except the gas chromatography, the rest are mostly incorporated in automatic control systems. As the economic effects, there are the rises in productivity, quality and yield and the savings in materials, energy and manpower. While they are used to great advantage, there are still problems occasionally in measuring accuracy and others. (J.P.N.)
Moving vortices in noncommutative gauge theory
International Nuclear Information System (INIS)
Horvathy, P.A.; Stichel, P.C.
2004-01-01
Exact time-dependent solutions of nonrelativistic noncommutative Chern-Simons gauge theory are presented in closed analytic form. They are different from (indeed orthogonal to) those discussed recently by Hadasz, Lindstroem, Rocek and von Unge. Unlike theirs, our solutions can move with an arbitrary constant velocity, and can be obtained from the previously known static solutions by the recently found 'exotic' boost symmetry
Introduction to gauge theories
International Nuclear Information System (INIS)
Wit, B. de
1983-01-01
In these lectures we present the key ingredients of theories with local gauge invariance. We introduce gauge invariance as a starting point for the construction of a certain class of field theories, both for abelian and nonabelian gauge groups. General implications of gauge invariance are discussed, and we outline in detail how gauge fields can acquire masses in a spontaneous fashion. (orig./HSI)
The potentials of the gauged N=8 supergravity theories
International Nuclear Information System (INIS)
Hull, C.M.
1985-01-01
The potentials of the SO(p,q) gaugings of N=8 supergravity are investigated for critical points. The SO(7,1) gauging has no G 2 -invariant critical points, the SO(6,2) theory has no SU(3) invariant critical points and the SO(5,3) gauging has only one SO(5)-invariant critical point, with positive cosmological constant, SO(5) x SO(3) symmetry and no supersymmetry. (orig.)
Parity anomalies in gauge theories in 2 + 1 dimensions
International Nuclear Information System (INIS)
Rao, S.; Yahalom, R.
1986-01-01
We show that the introduction of massless fermions in an abelian gauge theory in 2+1 dimensions does not lead to any parity anomaly despite a non-commutativity of limits in the structure function of the odd part of the vacuum polarization tensor. However, parity anomaly does exist in non-abelian theories due to a conflict between gauge invariance under large gauge transformations and the parity symmetry. 6 refs
Continuum gauge fields from lattice gauge fields
International Nuclear Information System (INIS)
Goeckeler, M.; Kronfeld, A.S.; Schierholz, G.; Wiese, U.J.
1993-01-01
On the lattice some of the salient features of pure gauge theories and of gauge theories with fermions in complex representations of the gauge group seem to be lost. These features can be recovered by considering part of the theory in the continuum. The prerequisite for that is the construction of continuum gauge fields from lattice gauge fields. Such a construction, which is gauge covariant and complies with geometrical constructions of the topological charge on the lattice, is given in this paper. The procedure is explicitly carried out in the U(1) theory in two dimensions, where it leads to simple results. (orig.)
N=1 superstrings with spontaneously broken symmetries
International Nuclear Information System (INIS)
Ferrara, S.
1988-01-01
We construct N=1 chiral superstrings with spontaneously broken gauge symmetry in four space-time dimensions. These new string solutions are obtained by a generalized coordinate-dependent Z 2 orbifold compactification of some non-chiral five-dimensional N=1 and N=2 superstrings. The scale of symmetry breaking is arbitrary (at least classically) and it can be chosen hierarchically smaller than the string scale (α') -1/2 . (orig.)
Extended nonabelian symmetries for free fermionic model
International Nuclear Information System (INIS)
Zaikov, R.P.
1993-08-01
The higher spin symmetry for both Dirac and Majorana massless free fermionic field models are considered. An infinite Lie algebra which is a linear realization of the higher spin extension of the cross products of the Virasoro and affine Kac-Moody algebras is obtained. The corresponding current algebra is closed which is not the case of analogous current algebra in the WZNW model. The gauging procedure for the higher spin symmetry is also given. (author). 12 refs
Broken colour symmetry and liberated quarks
International Nuclear Information System (INIS)
Ma, E.
1976-01-01
A quark model of hadrons is presented and discussed, in which local SU(3) gauge symmetry is completely broken and yet asymptotic freedom is preserved. There is no infrared slavery in this model, and isolated quarks are free to exist. Colour becomes a global symmetry which is only approximate under SU(3) but nearly exact under SU(2) x U(1), as far as the usual hadron spectroscopy is concerned. (Auth.)
Flavor physics without flavor symmetries
Buchmuller, Wilfried; Patel, Ketan M.
2018-04-01
We quantitatively analyze a quark-lepton flavor model derived from a six-dimensional supersymmetric theory with S O (10 )×U (1 ) gauge symmetry, compactified on an orbifold with magnetic flux. Two bulk 16 -plets charged under the U (1 ) provide the three quark-lepton generations whereas two uncharged 10 -plets yield two Higgs doublets. At the orbifold fixed points mass matrices are generated with rank one or two. Moreover, the zero modes mix with heavy vectorlike split multiplets. The model possesses no flavor symmetries. Nevertheless, there exist a number of relations between Yukawa couplings, remnants of the underlying grand unified theory symmetry and the wave function profiles of the zero modes, which lead to a prediction of the light neutrino mass scale, mν 1˜10-3 eV and heavy Majorana neutrino masses in the range from 1 012 to 1 014 GeV . The model successfully includes thermal leptogenesis.
SU(N) chiral gauge theories on the lattice
International Nuclear Information System (INIS)
Golterman, Maarten; Shamir, Yigal
2004-01-01
We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to the non-Abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of critical point which is only accessible through gauge fixing, as we have shown before in the Abelian case. The new ingredient allowing us to deal with the non-Abelian case as well is the use of equivariant gauge fixing, which handles Gribov copies correctly, and avoids Neuberger's no-go theorem. We use this method in order to gauge fix the non-Abelian group (which we will take to be SU(N)) down to its maximal Abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix also the remaining Abelian gauge symmetry. This modifies the equivariant Becchi-Rouet-Stora-Tyutin (BRST) identities, but their use in proving unitarity remains intact, as we show in perturbation theory. On the lattice, equivariant BRST symmetry as well as the Abelian gauge invariance are broken, and a judiciously chosen irrelevant term must be added to the lattice gauge-fixing action in order to have access to the desired critical point in the phase diagram. We argue that gauge invariance is restored in the continuum limit by adjusting a finite number of counter terms. We emphasize that weak-coupling perturbation theory applies at the critical point which defines the continuum limit of our lattice chiral gauge theory
Constrained gauge fields from spontaneous Lorentz violation
DEFF Research Database (Denmark)
Chkareuli, J. L.; Froggatt, C. D.; Jejelava, J. G.
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AµAµ=M2 (M is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant...... theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory...... couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical Lorentz violation due to the simultaneously generated gauge invariance. Udgivelsesdato: June 11...
Gauge field theories. Part three. Renormalization
International Nuclear Information System (INIS)
Frampon, P.H.
1978-01-01
The renormalization of nonabelian gauge theories both with exact symmetry and with spontaneous symmetry breaking is discussed. The method of dimensional regularization is described and used in the ensuing discussion. Triangle anomalies and their implications and the method for cancellation of anomalies in an SU(2) x U(1) theory, introduction of the BRS form of local gauge transformation and its use for the iterative proof of renormalizability to all orders for pure Yang--Mills and with fermion and scalar matter fields are considered. Lastly for massive vectors arising from spontaneous breaking, the demonstration of renormalizability is given, using the 't Hooft gauges introduced first in 1971. While the treatment is not totally rigorous, all the principle steps are given. 108 references
Constrained Gauge Fields from Spontaneous Lorentz Violation
Chkareuli, J L; Jejelava, J G; Nielsen, H B
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type $A_{\\mu}^{2}=M^{2}$ ($M$ is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and $CPT$) violating couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical ...
Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons
Cui, Yanou; Wells, James D
2009-01-01
We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electroweak gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.
Effective theories with broken flavour symmetry
International Nuclear Information System (INIS)
Miller, R.D.C.; McKellar, B.H.J.
1981-07-01
The work of Ovrut and Schnitzer on effective theories derived from a non Abelian Gauge Theory is generalised to include the physically interesting case of broken flavour symmetry. The calculations are performed at the 1-loop level. It is shown that at an intermediate stage in the calculations two distinct renormalised gauge coupling constants appear, one describing gauge field coupling to heavy particles and the other describing coupling to light particles. Appropriately modified Slavnov-Taylor identities are shown to hold. A simple alternative to the Ovrut-Schnitzer rules for calculating with effective theories is also considered
Global gauge fixing in lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Fachin, S.; Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York (USA))
1991-10-15
We propose a covariant, nonperturbative gauge-fixing procedure for lattice gauge theories that avoids the problem of Gribov copies. This is closely related to a recent proposal for a gauge fixing in the continuum that we review. The lattice gauge-fixed model allows both analytical and numerical investigations: on the analytical side, explicit nonperturbative calculations of gauge-dependent quantities can be easily performed in the framework of a generalized strong-coupling expansion, while on the numerical side a stochastic gauge-fixing algorithm is very naturally associated with the scheme. In both applications one can study the gauge dependence of the results, since the model actually provides a smooth'' family of gauge-fixing conditions.
Derivation of the Finslerian gauge field equations
International Nuclear Information System (INIS)
Asanov, G.S.
1984-01-01
As is well known the simplest way of formulating the equations for the Yang-Mills gauge fields consists in taking the Lagrangian to be quadratic in the gauge tensor, whereas the application of such an approach to the gravitational field yields equations which are of essentially more complicated structure than the Einstein equations. On the other hand, in the gravitational field theory the Lagrangian can be constructed to be of forms which may be both quadratic and linear in the curvature tensor, whereas the latter possibility is absent in the current gauge field theories. In previous work it has been shown that the Finslerian structure of the space-time gives rise to certain gauge fields provided that the internal symmetries may be regarded as symmetries of a three-dimensional Riemannian space. Continuing this work we show that appropriate equations for these gauge fields can be formulated in both ways, namely on the basis of the quadratic Lagrangian or, if a relevant generalization of the Palatini method is applied, on the basis of a Lagrangian linear in the gauge field strength tensor. The latter possibility proves to result in equations which are similar to the Einstein equations, a distinction being that the Finslerian Cartan curvature tensor rather then the Riemann curvature tensor enters the equations. (author)
Meta fluid dynamic as a gauge field theory
International Nuclear Information System (INIS)
Mendes, A.C.R.; Neves, C.; Oliveira, W.; Takakura, F.I.
2003-01-01
In this paper, the analog of Maxwell electromagnetism for hydrodynamic turbulence, the meta fluid dynamics, is extended in order to reformulate the meta fluid dynamics as a gauge field theory. That analogy opens up the possibility to investigate this theory as a constrained system. Having this possibility in mind, we propose a Lagrangian to describe this new theory of turbulence and, subsequently, analyze it from the symplectic point of view. From this analysis, a hidden gauge symmetry is revealed, providing a clear interpretation and meaning of the physics behind the meta fluid theory. Also, the geometrical interpretation to the gauge symmetries is discussed. (author)
Supergraph analysis of the ultraviolet finiteness of gauge supersymmetry
International Nuclear Information System (INIS)
Arnowit, R.; Nath, P.
1979-01-01
The detailed proof of the ultraviolet finiteness of the S-matrix of gauge supersymmetry for internal symmetry index N >= 2 is presented (where 4N is the number of Fermi coordinates in superspace). The theorem is established to arbitrary loop order in the linearized harmonic gauge when the spontaneous symmetry breaking of gauge supersymmetry preserves global supersymmetry. The asymptotic properties in the deep euclidean region of the tree-approximation propagators are calculated. These enter importantly in the derivation of the theorem. (orig.)
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Radionuclides gauges. Gauges designed for permanent installation
International Nuclear Information System (INIS)
1987-06-01
This present norm determines, for radionuclides gauges designed for permanent installation, the characteristics that these gauges should satisfied in their construction and performance to respect the prescriptions. It indicates the testing methods which permit to verify the agreement, gives a classification of gauges and specifies the indications to put on the emitter block [fr
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Gauged multisoliton baby Skyrme model
Samoilenka, A.; Shnir, Ya.
2016-03-01
We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.
International Nuclear Information System (INIS)
Wilkens, P.H.
1978-01-01
This system of gauging is now being designed to fit on an Excello NC lathe to measure the form, accuracy, and size of external contoured surfaces as they approach the finish machined size. A template profile of the finished workpiece, but 0.003 in. bigger on radius, will be aligned with the workpiece using a reference diameter and face on the machining fixture to leave a gap between the profile of the template and workpiece. A helium--neon laser beam will be projected through this gap using a rotating retroreflector and a fixed laser. The resulting diffraction pattern produced by the laser beam passing through the template to workpiece gap will be reflected and focused on a fixed diode array via a second retroreflector which moves and remains in optical alignment with the first. These retroreflectors will be rotated about a center that will enable the laser beam, which is shaped in a long slit, to scan the template workpiece gap from the pole to the equator of the workpiece. The characteristic diffraction pattern will be detected by the fixed diode array, and the signal levels from this array will be processed in a mini-computer programmed to produce a best fit through the two minima of the diode signals. The separation of the two minima will yield the size of the workpiece to template gap and this information will be presented to the machine tool operator
Symmetry, Symmetry Breaking and Topology
Directory of Open Access Journals (Sweden)
Siddhartha Sen
2010-07-01
Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.
Gauge Trimming of Neutrino Masses
International Nuclear Information System (INIS)
Chen, Mu-Chun; de Gouvea, Andre; Dobrescu, Bogdan A.
2006-01-01
We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses
Symmetry and bifurcations of momentum mappings
International Nuclear Information System (INIS)
Arms, J.M.; Marsden, J.E.; Moncrief, V.
1981-01-01
The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface. (orig.)
Symmetry and bifurcations of momentum mappings
Arms, Judith M.; Marsden, Jerrold E.; Moncrief, Vincent
1981-01-01
The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface.
Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction
Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R.
2018-04-01
Supergravities with gauged R symmetry and Minkowski vacua allow for spontaneous supersymmetry breaking and, as such, provide a framework for building supergravity models of phenomenological relevance. In this Letter, we initiate the study of double copy constructions for these supergravities. We argue that, on general grounds, we expect their scattering amplitudes to be described by a double copy of the type (spontaneously broken gauge theory)⊗ (gauge theory with broken supersymmetry). We present a simple realization in which the resulting supergravity has U (1 )R gauge symmetry, spontaneously broken N =2 supersymmetry, and massive gravitini. This is the first instance of a double copy construction of a gauged supergravity and of a theory with spontaneously broken supersymmetry. The construction extends in a straightforward manner to a large family of gauged Yang-Mills-Einstein supergravity theories with or without spontaneous gauge-symmetry breaking.
International Nuclear Information System (INIS)
Souriau, J.M.
1984-01-01
The sky uniformity can be noticed in studying the repartition of objects far enough. The sky isotropy description uses space rotations. The group theory elements will allow to give a meaning at the same time precise and general to the word a ''symmetry''. Universe models are reviewed, which must have both of the following qualities: - conformity with the physic known laws; - rigorous symmetry following one of the permitted groups. Each of the models foresees that universe evolution obeys an evolution equation. Expansion and big-bang theory are recalled. Is universe an open or closed space. Universe is also electrically neutral. That leads to a work hypothesis: the existing matter is not given data of universe but it appeared by evolution from nothing. Problem of matter and antimatter is then raised up together with its place in universe [fr
Non-Abelian tensor gauge fields and higher-spin extension of standard model
International Nuclear Information System (INIS)
Savvidy, G.
2006-01-01
We suggest an extension of the gauge principle which includes non-Abelian tensor gauge fields. The invariant Lagrangian is quadratic in the field strength tensors and describes interaction of charged tensor gauge bosons of arbitrary large integer spin 1,2,l. Non-Abelian tensor gauge fields can be viewed as a unique gauge field with values in the infinite-dimensional current algebra associated with compact Lie group. The full Lagrangian exhibits also enhanced local gauge invariance with double number of gauge parameters which allows to eliminate all negative norm states of the nonsymmetric second-rank tensor gauge field, which describes therefore two polarizations of helicity-two massless charged tensor gauge boson and the helicity-zero ''axion'' The geometrical interpretation of the enhanced gauge symmetry with double number of gauge parameters is not yet known. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Topologically massive gauge theories and their dual factorized gauge-invariant formulation
International Nuclear Information System (INIS)
Bertrand, Bruno; Govaerts, Jan
2007-01-01
There exists a well-known duality between the Maxwell-Chern-Simons theory and the 'self-dual' massive model in (2 + 1) dimensions. This dual description may be extended to topologically massive gauge theories (TMGT) for forms of arbitrary rank and in any dimension. This communication introduces the construction of this type of duality through a reparametrization of the 'master' theory action. The dual action thereby obtained preserves the full gauge symmetry structure of the original theory. Furthermore, the dual action is factorized into a propagating sector of massive gauge-invariant variables and a decoupled sector of gauge-variant variables defining a pure topological field theory. Combining the results obtained within the Lagrangian and Hamiltonian formulations, a completed structure for a gauge-invariant dual factorization of TMGT is thus achieved. (fast track communication)
Gauge invariance and Weyl-polymer quantization
Strocchi, Franco
2016-01-01
The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...
Introduction to gauge theories of electroweak interactions
International Nuclear Information System (INIS)
Ecker, G.
1982-01-01
Intended as a lecture for physicists who are not familiar with the sophisticated theoretical models in particle physics. Starting with the standard gauge model of electromagnetic, weak and strong interactions the recent developments of a unified gauge theory of electroweak interactions are shown. Shortcomings in the unitarity problem of the V-A fermi theory of charged intermediate vector bosons. Presented are the spontaneous symmetry breaking in quantum mechanics, the abelian higgs model as an example of a spontaneously broken gauge field theory, the minimal gauge group of electroweak interactions, the fermion mass generation. Further on the anomalies in quantum field theory are discussed and the radiative corrections to the vector boson masses are considered. (H.B.)
Applications of chiral symmetry
International Nuclear Information System (INIS)
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates
Flavor universal dynamical electroweak symmetry breaking
International Nuclear Information System (INIS)
Burdman, G.; Evans, N.
1999-01-01
The top condensate seesaw mechanism of Dobrescu and Hill allows electroweak symmetry to be broken while deferring the problem of flavor to an electroweak singlet, massive sector. We provide an extended version of the singlet sector that naturally accommodates realistic masses for all the standard model fermions, which play an equal role in breaking electroweak symmetry. The models result in a relatively light composite Higgs sector with masses typically in the range of (400 - 700) GeV. In more complete models the dynamics will presumably be driven by a broken gauged family or flavor symmetry group. As an example of the higher scale dynamics a fully dynamical model of the quark sector with a GIM mechanism is presented, based on an earlier top condensation model of King using broken family gauge symmetry interactions (that model was itself based on a technicolor model of Georgi). The crucial extra ingredient is a reinterpretation of the condensates that form when several gauge groups become strong close to the same scale. A related technicolor model of Randall which naturally includes the leptons too may also be adapted to this scenario. We discuss the low energy constraints on the massive gauge bosons and scalars of these models as well as their phenomenology at the TeV scale. copyright 1999 The American Physical Society
Electroweak symmetry breaking beyond the Standard Model
Indian Academy of Sciences (India)
words, now that the gauge symmetry is established with a significant ..... picture, the Higgs is some kind of a composite bound state emerging from a strongly .... (i) Little Higgs vs. composite: Little Higgs models were introduced to solve the little ...
Chiral symmetry breaking in finite quantum electrodynamics
International Nuclear Information System (INIS)
Montero, J.C.; Pleitez, V.
1987-01-01
The dynamical breakdown of chiral symmetry in a finite Abelian gauge theory using a variational approach for the effective potential for composite operators is discussed. It is shown that, at least in a variational approach, the fermion either remains massless or gets a dynamical mass for every non-zero coupling constant. (Author) [pt
Holography with broken Poincaré symmetry
Korovins, J.
2014-01-01
This thesis deals with the extensions of the holographic dualities to the situations where part of the Poincaré group has been broken. Such theories are particularly relevant for applications of gauge/gravity dualities to condensed matter systems, which usually exhibit non-relativistic symmetry.
Chiral symmetry breaking and cooling in lattice QCD
International Nuclear Information System (INIS)
Woloshyn, R.M.; Lee, F.X.
1995-08-01
Chiral symmetry breaking is calculated as a function of cooling in quenched lattice QCD. A non-zero signal is found for the chiral condensate beyond one hundred cooling steps, suggesting that there is chiral symmetry breaking associated with instantons. Quantitatively, the chiral condensate in cooled gauge field configurations is small compared to the value without cooling. (author) 7 refs., 1 tab., 3 figs
Sub-color and leptoquark-quark symmetry
International Nuclear Information System (INIS)
Nakamura, Fumihiko
1982-01-01
On the basis of leptoquark-quark symmetry, we propose possible models, in which leptons and gauge bosons are constructed is SU(2) symmetry. In one of the cases, the subcolor is introduced as the quantum number of the leptoquark. Then the possibility of baryon decay is discussed. (author)
Anomalous U(1)A and electroweak symmetry breaking
International Nuclear Information System (INIS)
Gogoladze, I.; Tsulaya, M.
2000-01-01
A new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model is suggested. Our suggestion is based on the presence of an anomalous U(1) A gauge symmetry, which naturally arises in the four-dimensional superstring theory, and heavily relies on the corresponding Fayet-Illiopoulos ξ-term
Anomalous U(1)A and electroweak symmetry breaking
International Nuclear Information System (INIS)
Gogoladze, Ilia
2000-10-01
We suggest a mechanism for electroweak symmetry breaking in the Supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U(1) A gauge symmetry, which naturally arises in the four dimensional superstring theory, and heavily relies on the value of the corresponding Fayet-Illiopoulos ξ-term. (author)
Electroweak symmetry breaking: Unitarity, dynamics, and experimental prospects
International Nuclear Information System (INIS)
Chanowitz, M.S.
1988-01-01
A review of what is known about the unexplained mechanism that breaks the electroweak symmetry and thereby gives mass to the W and Z gauge bosons while leaving the photon massless is given. Symmetry, unitarity, technicolor, supersymmetry, higgs sector dynamics, and experimental status and prospects are discussed
Constraining the physical state by symmetries
Energy Technology Data Exchange (ETDEWEB)
Fatibene, L., E-mail: lorenzo.fatibene@unito.it [Department of Mathematics, University of Torino (Italy); INFN - Sezione Torino - IS QGSKY (Italy); Ferraris, M.; Magnano, G. [Department of Mathematics, University of Torino (Italy)
2017-03-15
After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or by an internal gauge transformation) as it is usually prescribed. On the contrary, when space is not compact, the result does not hold true and one may have different options to define physically equivalent configurations, still preserving determinism. - Highlights: • Investigate the relation between the hole argument, covariance, determinism and physical state. • Show that if space is compact then any diffeomorphism is a gauge symmetry. • Show that if space is not compact then there may be more freedom in choosing gauge group.
International Nuclear Information System (INIS)
Mack, G.
1982-01-01
After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)
International Nuclear Information System (INIS)
Moriyasu, K.
1978-01-01
A pedagogical approach to gauge invariance is presented which is based on the analogy between gauge transformations and relativity. By using the concept of an internal space, purely geometrical arguments are used to teach the physical ideas behind gauge invariance. Many of the results are applicable to general gauge theories
Anomalous Symmetry Fractionalization and Surface Topological Order
Directory of Open Access Journals (Sweden)
Xie Chen
2015-10-01
Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.
Translational spacetime symmetries in gravitational theories
International Nuclear Information System (INIS)
Petti, R J
2006-01-01
How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle and (3) using the affine connection and the zero section to define an 'associated solder form', whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however, it violates translational equivariance/gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry
Translational spacetime symmetries in gravitational theories
Energy Technology Data Exchange (ETDEWEB)
Petti, R J [MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760 (United States)
2006-02-07
How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle and (3) using the affine connection and the zero section to define an 'associated solder form', whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however, it violates translational equivariance/gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry.
The role of Weyl symmetry in hydrodynamics
Diles, Saulo
2018-04-01
This article is dedicated to the analysis of Weyl symmetry in the context of relativistic hydrodynamics. Here is discussed how this symmetry is properly implemented using the prescription of minimal coupling: ∂ → ∂ + ωA. It is shown that this prescription has no problem to deal with curvature since it gives the correct expressions for the commutator of covariant derivatives. In hydrodynamics, Weyl gauge connection emerges from the degrees of freedom of the fluid: it is a combination of the expansion and entropy gradient. The remaining degrees of freedom, shear, vorticity and the metric tensor, are see in this context as charged fields under the Weyl gauge connection. The gauge nature of the connection provides natural dynamics to it via equations of motion analogous to the Maxwell equations for electromagnetism. As a consequence, a charge for the Weyl connection is defined and the notion of local charge is analyzed generating the conservation law for the Weyl charge.
Higgs Phase in a Gauge U(1 Non-Linear CP1-Model. Two Species of BPS Vortices and Their Zero Modes
Directory of Open Access Journals (Sweden)
Alberto Alonso-Izquierdo
2016-09-01
Full Text Available In this paper, zero modes of fluctuation are dissected around the two species of BPS vortices existing in the critical Higgs phase, where the scalar and vector meson masses are equal, of a gauged U ( 1 nonlinear CP 1 -model. If 2 π n , n ∈ Z , is the quantized magnetic flux of the two species of BPS vortex solutions, 2 n linearly-independent vortex zero modes for each species are found and described. The existence of two species of moduli spaces of dimension 2 n of these stringy topological defects is thus locally shown.
Sp(2) covariant quantisation of general gauge theories
Energy Technology Data Exchange (ETDEWEB)
Vazquez-Bello, J L
1994-11-01
The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M{sub s}, G{sub s}) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs.
Sp(2) covariant quantisation of general gauge theories
International Nuclear Information System (INIS)
Vazquez-Bello, J.L.
1994-11-01
The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M s , G s ) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs
Gauge invariance and radiative corrections in an extra dimensional theory
International Nuclear Information System (INIS)
Novales-Sanchez, H; Toscano, J J
2011-01-01
The gauge structure of the four dimensional effective theory originated in a pure five dimensional Yang-Mills theory compactified on the orbifold S 1 /Z 2 , is discussed on the basis of the BRST symmetry. If gauge parameters propagate in the bulk, the excited Kaluza-Klein (KK) modes are gauge fields and the four dimensional theory is gauge invariant only if the compactification is carried out by using curvatures as fundamental objects. The four dimensional theory is governed by two types of gauge transformations, one determined by the KK zero modes of the gauge parameters and the other by the excited ones. Within this context, a gauge-fixing procedure to quantize the KK modes that is covariant under the first type of gauge transformations is shown and the ghost sector induced by the gauge-fixing functions is presented. If the gauge parameters are confined to the usual four dimensional space-time, the known result in the literature is reproduced with some minor variants, although it is emphasized that the excited KK modes are not gauge fields, but matter fields transforming under the adjoint representation of SU 4 (N). A calculation of the one-loop contributions of the excited KK modes of the SU L (2) gauge group on the off-shell W + W - V, with V a photon or a Z boson, is exhibited. Such contributions are free of ultraviolet divergences and well-behaved at high energies.
Tree-level amplitudes and dual superconformal symmetry
Energy Technology Data Exchange (ETDEWEB)
Drummond, J M, E-mail: drummond@lapp.in2p3.fr [PH-TH Division, CERN, CH-1211, Geneva 23 (Switzerland); LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux Cedex (France)
2011-11-11
We review the structure of gauge theory scattering amplitudes at tree level and describe how a compact expression can be found which encodes all the tree-level amplitudes in the maximally supersymmetric N=4 theory. The expressions for the amplitudes reveal a dual superconformal symmetry. We describe how these ideas can be extended to leading singularities and the loop integrand in the planar theory and discuss the appearance of dual conformal symmetry in higher-dimensional gauge theories. This paper is an invited review for a special issue of Journal of Physics A: Mathematical and Theoretical devoted to 'Scattering amplitudes in gauge theories'. (review)
Gauge field entanglement in Kitaev's honeycomb model
Dóra, Balázs; Moessner, Roderich
2018-01-01
A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.
Lattice gauge theory approach to quantum chromodynamics
International Nuclear Information System (INIS)
Kogut, J.B.
1983-01-01
The author reviews in a pedagogical fashion some of the recent developments in lattice quantum chromodynamics. This review emphasizes explicit examples and illustrations rather than general proofs and analyses. It begins with a discussion of the heavy-quark potential in continuum quantum chromodynamics. Asymptotic freedom and renormalization-group improved perturbation theory are discussed. A simple dielectric model of confinement is considered as an intuitive guide to the vacuum of non-Abelian gauge theories. Next, the Euclidean form of lattice gauge theory is introduced, and an assortment of calculational methods are reviewed. These include high-temperature expansions, duality, Monte Carlo computer simulations, and weak coupling expansions. A #betta#-parameter calculation for asymptotically free-spin models is presented. The Hamiltonian formulation of lattice gauge theory is presented and is illustrated in the context of flux tube dynamics. Roughening transitions, Casimir forces, and the restoration of rotational symmetry are discussed. Mechanisms of confinement in lattice theories are illustrated in the two-dimensional electrodynamics of the planar model and the U(1) gauge theory in four dimensions. Generalized actions for SU(2) gauge theories and the relevance of monopoles and strings to crossover phenomena are considered. A brief discussion of the continuity of fields and topologial charge in asymptotically free lattice models is presented. The final major topic of this review concerns lattice fermions. The species doubling problem and its relation to chiral symmetry are illustrated. Staggered Euclidean fermion methods are discussed in detail, with an emphasis on species counting, remnants of chiral symmetry, Block spin variables, and the axial anomaly. Numerical methods for including fermions in computer simulations are considered. Jacobi and Gauss-Siedel inversion methods to obtain the fermion propagator in a background gauge field are reviewed
Spontaneous symmetry breaking in 4-dimensional heterotic string
International Nuclear Information System (INIS)
Maharana, J.
1989-07-01
The evolution of a 4-dimensional heterotic string is considered in the background of its massless excitations such as graviton, antisymmetric tensor, gauge fields and scalar bosons. The compactified bosonic coordinates are fermionized. The world-sheet supersymmetry requirement enforces Thirring-like four fermion coupling to the background scalar fields. The non-abelian gauge symmetry is exhibited through the Ward identities of the S-matrix elements. The spontaneous symmetry breaking mechanism is exhibited through the broken Ward identities. An effective 4-dimensional action is constructed and the consequence of spontaneous symmetry breaking is envisaged for the effective action. 19 refs
High-energy symmetries of string theory
International Nuclear Information System (INIS)
Lee Jenchi.
1990-01-01
The author studies the high-energy symmetry structure of string theory corresponding to the massive excitations of the string. These enlarged gauge symmetries are closely related to the existence of zero-norm states in the string spectrum. He has derived these symmetries in the framework of the Hamiltonian version of the first-quantized generalized σ-model formalism. It is conjectured that these infinite space-time symmetry structures could shed light on the finiteness of string perturbation theory. Two interesting phenomena were discovered for these massive states symmetries. One is the inter-'spin' symmetry for the different 'spin' states at each fixed mass level. Specifically, the four physical propagating states with 'spins' up to six of the second massive level of the closed bosonic string are found to form a large gauge multiplet. This is demonstrated by the existence of gauge transformations induced by the type II zero-norm states at this mass level. It is argued that this is a σ-model three loop result for the second massive level and is a general feature for higher massive levels at each fixed mass. The other one is the decoupling of some degenerate positive-norm states. As an example, he explicitly demonstrates that the 'spin' two and scalar physical propagating fields of the third massive level of the open bosonic string are mere gauge artifacts of the higher 'spin' fields at the same mass level. It is conjectured that this phenomenon comes from the well-known ambiguity in defining the positive-norm states due to the existence of zero-norm states in the same Young representation
Gauge invariant actions for string models
International Nuclear Information System (INIS)
Banks, T.
1986-06-01
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs
International Nuclear Information System (INIS)
Pernici, M.; Pilch, K.; Van Nieuwenhuizen, P.
1985-01-01
The complete gauged nonlinear N=8 d=5 supergravity action and supersymmetry transformation laws (without four- and three-fermion terms) are presented. They are obtained from the ungauged model by reinterpreting part of the field strengths of the abelian vector fields as real self-dual second-rank antisymmetric tensors. The complete set of T-tensor indentities are given and their validity is checked numerically. The model has a local Yang-Mills SO(6) and a local composite USp(8) symmetry. The self-duality is essential for the consistent coupling of the antisymmetric tensors to the nonabelian gauge fields. (orig.)
Information on the gauge principle from an N=1/2, D=2 supersymmetric model
International Nuclear Information System (INIS)
Dias, S.A.; Doria, R.M.; Valle, J.L.M.
1988-01-01
The gauge principle does not only work to generate interactions. It potentially yields an abundance of gauge-potential fields transforming under the same local symmetry group. In order to show evidences of this property this work gauge-covariantizes an N = 1/2, D = 2 supersymmetric theory. Then, by relaxing the so-called conventional constraint, a second gauge-potential field naturally emerges. (author) [pt
Zero-norm states and high-energy symmetries of string theory
International Nuclear Information System (INIS)
Chan, C.-T.; Lee, J.-C.
2004-01-01
We derive stringy Ward identities from the decoupling of two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. These Ward identities are valid to all energy α' and all loop orders χ in string perturbation theory. The high-energy limit α'→∞ of these stringy Ward identities can then be used to fix the proportionality constants between scattering amplitudes of different string states algebraically without referring to Gross and Mende's saddle point calculation of high-energy string-loop amplitudes. As examples, all Ward identities for the mass level M 2 =4,6 are derived, their high-energy limits are calculated and the proportionality constants between scattering amplitudes of different string states are determined. In addition to those identified before, we discover some new nonzero components of high-energy amplitudes not found previously by Gross and Manes. These components are essential to preserve massive gauge invariances or decouple massive zero-norm states of string theory. A set of massive scattering amplitudes and their high-energy limits are calculated explicitly for each mass level M 2 =4,6 to justify our results
Symmetry generators in singular theories
International Nuclear Information System (INIS)
Lavrov, P.M.; Tyutin, I.V.
1989-01-01
It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)
History of electroweak symmetry breaking
International Nuclear Information System (INIS)
Kibble, T W B
2015-01-01
In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012. (paper)
Global Gauge Anomalies in Two-Dimensional Bosonic Sigma Models
Gawȩdzki, Krzysztof; Suszek, Rafał R.; Waldorf, Konrad
2011-03-01
We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields, including the ones in non-trivial principal bundles. Obstructions to the existence of equivariant gerbes and their classification are discussed. The choice of different equivariant structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambiguities in the gauged amplitudes. An explicit construction of gerbes equivariant with respect to the adjoint symmetries over compact simply connected simple Lie groups is given.
Two-time physics with gravitational and gauge field backgrounds
International Nuclear Information System (INIS)
Bars, Itzhak
2000-01-01
It is shown that all possible gravitational, gauge and other interactions experienced by particles in ordinary d dimensions (one time) can be described in the language of two-time physics in a spacetime with d+2 dimensions. This is obtained by generalizing the world line formulation of two-time physics by including background fields. A given two-time model, with a fixed set of background fields, can be gauged fixed from d+2 dimensions to (d-1)+1 dimensions to produce diverse one-time dynamical models, all of which are dually related to each other under the underlying gauge symmetry of the unified two-time theory. To satisfy the gauge symmetry of the two-time theory the background fields must obey certain coupled differential equations that are generally covariant and gauge invariant in the target (d+2)-dimensional spacetime. The gravitational background obeys a closed homothety condition while the gauge field obeys a differential equation that generalizes a similar equation derived by Dirac in 1936. Explicit solutions to these coupled equations show that the usual gravitational, gauge, and other interactions in d dimensions may be viewed as embedded in the higher (d+2)-dimensional space, thus displaying higher spacetime symmetries that otherwise remain hidden
Nilpotent symmetries in supergroup field cosmology
Upadhyay, Sudhaker
2015-06-01
In this paper, we study the gauge invariance of the third quantized supergroup field cosmology which is a model for multiverse. Further, we propose both the infinitesimal (usual) as well as the finite superfield-dependent BRST symmetry transformations which leave the effective theory invariant. The effects of finite superfield-dependent BRST transformations on the path integral (so-called void functional in the case of third quantization) are implemented. Within the finite superfield-dependent BRST formulation, the finite superfield-dependent BRST transformations with specific parameter switch the void functional from one gauge to another. We establish this result for the most general gauge with the help of explicit calculations which holds for all possible sets of gauge choices at both the classical and the quantum levels.
Gauge theories as string theories: the first results
International Nuclear Information System (INIS)
Gorsky, Aleksandr S
2005-01-01
The gauge/string theory duality in curved space is discussed mainly using a non-Abelian conformal N = 4 supersymmetric gauge theory and the theory of a closed superstring in the AdS 5 x S 5 metric as an example. It is shown that in the supergravity approximation, string duality yields the characteristics of a strong-coupling gauge theory. For a special shape of the contour, a Wilson loop expression is derived in the classical superstring approximation. The role of the hidden integrability in lower-loop calculations in gauge theory and in different approximations of string theory is discussed. It is demonstrated that in the large quantum-number limit, gauge theory operators can be described in terms of the dual string picture. Examples of metrics providing the dual description of gauge theories with broken conformal symmetry are presented, and formulations of the vacuum structure of such theories in terms of gravity are discussed. (reviews of topical problems)
The SME gauge sector with minimum length
Energy Technology Data Exchange (ETDEWEB)
Belich, H.; Louzada, H.L.C. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil)
2017-12-15
We study the gauge sector of the Standard Model Extension (SME) with the Lorentz covariant deformed Heisenberg algebra associated to the minimum length. In order to find and estimate corrections, we clarify whether the violation of Lorentz symmetry and the existence of a minimum length are independent phenomena or are, in some way, related. With this goal, we analyze the dispersion relations of this theory. (orig.)
The SME gauge sector with minimum length
Belich, H.; Louzada, H. L. C.
2017-12-01
We study the gauge sector of the Standard Model Extension (SME) with the Lorentz covariant deformed Heisenberg algebra associated to the minimum length. In order to find and estimate corrections, we clarify whether the violation of Lorentz symmetry and the existence of a minimum length are independent phenomena or are, in some way, related. With this goal, we analyze the dispersion relations of this theory.
International Nuclear Information System (INIS)
Ne'eman, Y.
1998-01-01
The relatively simple Fibre-Bundle geometry of a Yang-Mills gauge theory - mainly the clear distinction between base and fibre - made it possible, between 1953 and 1971, to construct a fully quantized version and prove that theory's renormalizability; moreover, nonperturbative (topological) solutions were subsequently found in both the fully symmetric and the spontaneously broken modes (instantons, monopoles). Though originally constructed as a model formalism, it became in 1974 the mathematical mold holding the entire Standard Model (i.e. QCD and the Electroweak theory). On the other hand, between 1974 and 1984, Einstein's theory was shown to be perturbatively nonrenormalizable. Since 1974, the search for Quantum Gravity has therefore provided the main motivation for the construction of Gauge Theories of Gravity. Earlier, however, in 1958-76 several such attempts were initiated, for aesthetic or heuristic reasons, to provide a better understanding of the algebraic structure of GR. A third motivation has come from the interest in Unification, making it necessary to bring GR into a form compatible with an enlargement of the Standard Model. Models can be classified according to the relevant structure group in the fibre. Within the Poincare group, this has been either the R 4 translations, or the Lorentz group SL(2, C) - or the entire Poincare SL(2, C) x R 4 . Enlarging the group has involved the use of the Conformal SU(2, 2), the special Affine SA(4, R) = SL(4, R) x R 4 or Affine A(4, R) groups. Supergroups have included supersymmetry, i.e. the graded-Poincare group (n =1...8 m its extensions) or the superconformal SU(2, 2/n). These supergravity theories have exploited the lessons of the aesthetic-heuristic models - Einstein-Cartan etc. - and also achieved the Unification target. Although perturbative renormalizability has been achieved in some models, whether they satisfy unitarity is not known. The nonperturbative Ashtekar program has exploited the understanding of
On discrete symmetries and torsion homology in F-theory
Energy Technology Data Exchange (ETDEWEB)
Mayrhofer, Christoph [Arnold-Sommerfeld-Center, Ludwig-Maximilians-Universität München,München (Germany); Palti, Eran; Till, Oskar; Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg,Heidelberg (Germany)
2015-06-04
We study the relation between discrete gauge symmetries in F-theory compactifications and torsion homology on the associated Calabi-Yau manifold. Focusing on the simplest example of a ℤ{sub 2} symmetry, we show that there are two physically distinct ways that such a discrete gauge symmetry can arise. First, compactifications of M-Theory on Calabi-Yau threefolds which support a genus-one fibration with a bi-section are known to be dual to six-dimensional F-theory vacua with a ℤ{sub 2} gauge symmetry. We show that the resulting five-dimensional theories do not have a ℤ{sub 2} symmetry but that the latter emerges only in the F-theory decompactification limit. Accordingly the genus-one fibred Calabi-Yau manifolds do not exhibit torsion in homology. Associated to the bi-section fibration is a Jacobian fibration which does support a section. Compactifying on these related but distinct varieties does lead to a ℤ{sub 2} symmetry in five dimensions and, accordingly, we find explicitly an associated torsion cycle. We identify the expected particle and membrane system of the discrete symmetry in terms of wrapped M2 and M5 branes and present a field-theory description of the physics for both cases in terms of circle reductions of six-dimensional theories. Our results and methods generalise straightforwardly to larger discrete symmetries and to four-dimensional compactifications.
New physics contribution to neutral trilinear gauge boson couplings
International Nuclear Information System (INIS)
Dutta, Sukanta; Mamta; Goyal, Ashok
2009-01-01
We study the one-loop new physics effects to the CP even triple neutral gauge boson vertices γ * γZ, γ * ZZ, Z * Zγ and Z * ZZ in the context of Little Higgs models. We compute the contribution of the additional fermions in Little Higgs models in the framework of direct product groups where [SU(2) x U(1)] 2 gauge symmetry is embedded in SU(5) global symmetry and also in the framework of the simple group where SU(N) x U(1) gauge symmetry breaks down to SU(2) L x U(1). We calculate the contribution of the fermions to these couplings when T parity is invoked. In addition, we re-examine the MSSM contribution at the chosen point of SPS1a ' and compare with the SM and Little Higgs models. (orig.)
New physics contribution to neutral trilinear gauge boson couplings
Energy Technology Data Exchange (ETDEWEB)
Dutta, Sukanta; Mamta [University of Delhi, SGTB Khalsa College, Delhi (India); Goyal, Ashok [University of Delhi, Department of Physics and Astrophysics, Delhi (India)
2009-09-15
We study the one-loop new physics effects to the CP even triple neutral gauge boson vertices {gamma}{sup *}{gamma}Z, {gamma}{sup *}ZZ, Z{sup *}Z{gamma} and Z{sup *}ZZ in the context of Little Higgs models. We compute the contribution of the additional fermions in Little Higgs models in the framework of direct product groups where [SU(2) x U(1)]{sup 2} gauge symmetry is embedded in SU(5) global symmetry and also in the framework of the simple group where SU(N) x U(1) gauge symmetry breaks down to SU(2){sub L} x U(1). We calculate the contribution of the fermions to these couplings when T parity is invoked. In addition, we re-examine the MSSM contribution at the chosen point of SPS1a ' and compare with the SM and Little Higgs models. (orig.)
Directory of Open Access Journals (Sweden)
Alexander Burinskii
2013-01-01
Full Text Available The 4D Kerr geometry displays many wonderful relations with quantum world and, in particular, with superstring theory. The lightlike structure of fields near the Kerr singular ring is similar to the structure of Sen solution for a closed heterotic string. Another string, open and complex, appears in the complex representation of the Kerr geometry initiated by Newman. Combination of these strings forms a membrane source of the Kerr geometry which is parallel to the structure of M-theory. In this paper we give one more evidence of this relationship, emergence of the Calabi-Yau twofold (K3 surface in twistorial structure of the Kerr geometry as a consequence of the Kerr theorem. Finally, we indicate that the Kerr stringy system may correspond to a complex embedding of the critical N = 2 superstring.
Exceptional confinement in G(2) gauge theory
International Nuclear Information System (INIS)
Holland, K.; Minkowski, P.; Pepe, M.; Wiese, U.-J.
2003-01-01
We study theories with the exceptional gauge group G(2). The 14 adjoint 'gluons' of a G(2) gauge theory transform as {3}, {3-bar} and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a 'quark' in the {7} representation of G(2) can be screened by 'gluons'. As a result, in G(2) Yang-Mills theory the string between a pair of static 'quarks' can break. In G(2) QCD there is a hybrid consisting of one 'quark' and three 'gluons'. In supersymmetric G(2) Yang-Mills theory with a {14} Majorana 'gluino' the chiral symmetry is Z(4) χ . Chiral symmetry breaking gives rise to distinct confined phases separated by confined-confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, where dynamical quarks break the Z(3) symmetry explicitly, G(2) gauge theories confine even without a center. However, there is not necessarily a deconfinement phase transition at finite temperature
Charged tensor matter fields and Lorentz symmetry violation via spontaneous symmetry breaking
International Nuclear Information System (INIS)
Colatto, L.P.; Penna, A.L.A.; Santos, W.C.
2003-10-01
We consider a model with a charged vector field along with a Cremmer-Scherk-Kalb-Ramond (CSKR) matter field coupled to a U(1) gauge potential. We obtain a natural Lorentz symmetry violation due to the local U(1) spontaneous symmetry breaking mechanism triggered by the imaginary part of the vector matter. The choice of the unitary gauge leads to the decoupling of the gauge-Kr sector from the Higgs-Kr sector. The excitation spectrum is carefully analyzed and the physical modes are identified. We propose an identification of the neutral massive spin-1 Higgs-like field with the massive Z' boson of the so-called mirror matter models. (author)
Light higgsino for gauge coupling unification
Directory of Open Access Journals (Sweden)
Kwang Sik Jeong
2017-06-01
Full Text Available We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.
Light higgsino for gauge coupling unification
Energy Technology Data Exchange (ETDEWEB)
Jeong, Kwang Sik, E-mail: ksjeong@pusan.ac.kr
2017-06-10
We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.
International Nuclear Information System (INIS)
Henley, E.M.
1981-09-01
Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces
Phase diagrams of exceptional and supersymmetric lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Wellegehausen, Bjoern-Hendrik
2012-07-10
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
Phase diagrams of exceptional and supersymmetric lattice gauge theories
International Nuclear Information System (INIS)
Wellegehausen, Bjoern-Hendrik
2012-01-01
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G 2 , that has a trivial centre. To investigate G 2 gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
Flavor gauge models below the Fermi scale
Babu, K. S.; Friedland, A.; Machado, P. A. N.; Mocioiu, I.
2017-12-01
The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson, X, corresponding to the B - L symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, B +, D + and Upsilon decays, D-{\\overline{D}}^0 mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling g X in the range (10-2-10-4) the model is shown to be consistent with the data. Possible ways of testing the model in b physics, top and Z decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. The proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
The weak-scale hierarchy and discrete symmetries
International Nuclear Information System (INIS)
Haba, Naoyuki; Matsuoka, Takeo; Hattori, Chuichiro; Matsuda, Masahisa; Mochinaga, Daizo.
1996-01-01
In the underlying Planck scale theory, we introduce a certain type of discrete symmetry, which potentially brings the stability of the weak-scale hierarchy under control. Under the discrete symmetry the μ-problem and the tadpole problem can be solved simultaneously without relying on some fine-tuning of parameters. Instead, it is required that doublet Higgs and color-triplet Higgs fields reside in different irreducible representations of the gauge symmetry group at the Planck scale and that they have distinct charges of the discrete symmetry group. (author)
Gauge fixing, BRS invariance and Ward identities for randomly stirred flows
International Nuclear Information System (INIS)
Berera, Arjun; Hochberg, David
2009-01-01
The Galilean invariance of the Navier-Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi-Rouet-Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier-Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.
Gauge fixing, BRS invariance and Ward identities for randomly stirred flows
Energy Technology Data Exchange (ETDEWEB)
Berera, Arjun [School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom)], E-mail: ab@ph.ed.ac.uk; Hochberg, David [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir Km. 4, 28850 Torrejon de Ardoz, Madrid (Spain)], E-mail: hochbergd@inta.es
2009-06-21
The Galilean invariance of the Navier-Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi-Rouet-Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier-Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.
Family symmetries in F-theory GUTs
King, S F; Ross, G G
2010-01-01
We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices. We consider two possibilities for the suppression of baryon and lepton number violation. The first is based on Flipped SU(5) with gauge group SU(5)\\times U(1)_\\chi \\times SU(4)_{\\perp} in which U(1)_{\\chi} plays the role of a generalised matter parity. We present an example which, after imposing a Z_2 monodromy, has a U(1)_{\\perp}^2 family symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark, charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the symmetry of the underlying compactification manifold and the flux. We construct an example of a model with viable masses and mixing angles based on the gauge group SU(5)\\times SU(5)_{\\perp} with a U(1)_{\\perp}^3 family symmetry after imposing a Z_2 monodromy.
DEFF Research Database (Denmark)
2016-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....
International Nuclear Information System (INIS)
Peskin, M.E.
1994-01-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E. [Stanford Univ., CA (United States)
1994-12-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.
Cosmoparticle physics of family symmetry breaking
International Nuclear Information System (INIS)
Khlopov, M.Yu.
1993-07-01
The foundations of both particle theory and cosmology are hidden at super energy scale and can not be tested by direct laboratory means. Cosmoparticle physics is developed to probe these foundations by the proper combination of their indirect effects, thus providing definite conclusions on their reliability. Cosmological and astrophysical tests turn to be complementary to laboratory searches of rare processes, induced by new physics, as it can be seen in the case of gauge theory of broken symmetry of quark and lepton families, ascribing to the hierarchy of the horizontal symmetry breaking the observed hierarchy of masses and the mixing between quark and lepton families. 36 refs
Hyperunified field theory and gravitational gauge-geometry duality
International Nuclear Information System (INIS)
Wu, Yue-Liang
2018-01-01
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D h - 1). The dimension D h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)
Hyperunified field theory and gravitational gauge-geometry duality
Energy Technology Data Exchange (ETDEWEB)
Wu, Yue-Liang [International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences (UCAS), Beijing (China)
2018-01-15
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D{sub h} - 1). The dimension D{sub h} of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)
Extended Nambu models: Their relation to gauge theories
Escobar, C. A.; Urrutia, L. F.
2017-05-01
Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach.
Hyperunified field theory and gravitational gauge-geometry duality
Wu, Yue-Liang
2018-01-01
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.
Stringy correlations on deformed AdS{sub 3}×S{sup 3}
Energy Technology Data Exchange (ETDEWEB)
Roychowdhury, Dibakar [Department of Physics, Ben-Gurion University of The Negev,P.O. Box 653, Beer-Sheva 84105 (Israel)
2017-03-08
In this paper, following the basic prescriptions of Gauge/String duality, we perform a strong coupling computation on classical two point correlation between local (single trace) operators in a gauge theory dual to κ-deformed AdS{sub 3}×S{sup 3} background. Our construction is based on the prescription that relates every local operator in a gauge theory to that with the (semi)classical string states propagating within the physical region surrounded by the holographic screen in deformed AdS{sub 3}. In our analysis, we treat strings as being that of a point like object located near the physical boundary of the κ-deformed Euclidean Poincare AdS{sub 3} and as an extended object with non trivial dynamics associated to S{sup 3}. It turns out that in the presence of small background deformations, the usual power law behavior associated with two point functions is suppressed exponentially by a non trivial factor which indicates a faster decay of two point correlations with larger separations. On the other hand, in the limit of large background deformations (κ≫1), the corresponding two point function reaches a point of saturation. In our analysis, we also compute finite size corrections associated with these two point functions at strong coupling. As a consistency check of our analysis, we find perfect agreement between our results to that with the earlier observations made in the context of vanishing deformation.
Lie-algebra approach to symmetry breaking
International Nuclear Information System (INIS)
Anderson, J.T.
1981-01-01
A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian
An introduction to gauge theories
International Nuclear Information System (INIS)
Iliopoulos, J.
1976-01-01
These lecture notes present an introduction to gauge theories: the systematics of Yang-Mills theories, spontaneous symmetry breaking, and Higgs mechanism. The treatment is simple, stressing the general principles rather than detailed calculations. We present the Weinberg-Salam model as an example of a renormalizable theory of weak and electromagnetic interactions of leptons, and we show that the extension of these ideas into the hadronic world requires the introduction of charm and colour. Finally, we try to include strong interactions into the scheme, guided by the experimental results of deep-inelastic lepton-nucleon scattering. We derive and solve the Callan-Symanzik equation, and we introduce the concepts of asymptotic freedom and quark confinement. (Author)
An introduction to gauge theories
International Nuclear Information System (INIS)
Iliopoulos, J.
1977-01-01
The CERN-JINR School of Physics is meant to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. This paper presents an introduction to gauge theories: the systematics of Yang-Mills theories, spontaneous symmetry breaking, and Higgs mechanism. The treatment is simple, stressing the general principles rather than detailed calculations. The author presents the Weinberg-Salam model as an example of a renormalizable theory of weak and electromagnetic interactions of leptons, and it is shown that the extension of these ideas into the hadronic world requires the introduction of charm and colour. Finally, an attempt is made to include strong interactions into the scheme, guided by the experimental results of deep-inelastic lepton-nucleon scattering. The Callan-Symanzik equation, and the concepts of asymptotic freedom and quark confinement are introduced. (Auth.)
On discrete symmetries for a whole Abelian model
International Nuclear Information System (INIS)
Chauca, J.; Doria, R.
2012-01-01
Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {D μ ,X i μ } and the physical basis {G μI }. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {G μI } manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.
Towards the natural gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Ding, Ran [Center for High-Energy Physics, Peking University,Beijing, 100871 (China); Li, Tianjun [State Key Laboratory of Theoretical Physics andKavli Institute for Theoretical Physics, China (KITPC), Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu 610054 (China); Wang, Liucheng [Bartol Research Institute, Department of Physics and Astronomy,University of Delaware, Newark, DE 19716 (United States); Zhu, Bin [State Key Laboratory of Theoretical Physics andKavli Institute for Theoretical Physics, China (KITPC), Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); Institute of Physics Chinese Academy of sciences,Beijing 100190 (China)
2015-10-23
The sweet spot supersymmetry (SUSY) solves the μ/B{sub μ} problem in the Minimal Supersymmetric Standard Model (MSSM) with gauge mediated SUSY breaking (GMSB) via the generalized Giudice-Masiero (GM) mechanism where only the μ-term and soft Higgs masses are generated at the unification scale of the Grand Unified Theory (GUT) due to the approximate PQ symmetry. Because all the other SUSY breaking soft terms are generated via the GMSB below the GUT scale, there exists SUSY electroweak (EW) fine-tuning problem to explain the 125 GeV Higgs boson mass due to small trilinear soft term. Thus, to explain the Higgs boson mass, we propose the GMSB with both the generalized GM mechanism and Higgs-messenger interactions. The renormalization group equations are runnings from the GUT scale down to EW scale. So the EW symmetry breaking can be realized easier. We can keep the gauge coupling unification and solution to the flavor problem in the GMSB, as well as solve the μ/B{sub μ}-problem. Moreover, there are only five free parameters in our model. So we can determine the characteristic low energy spectra and explore its distinct phenomenology. The fine-tuning measure can be as low as 100. For some benchmark points, the stop mass can be as low as 1.7 TeV while the glunio mass is around 2.5 TeV. The gravitino dark matter can come from a thermal production with the correct relic density and be consistent with the thermal leptogenesis. Because gluino and stop can be relatively light in our model, how to search for such GMSB at the upcoming run II of the LHC experiment could be very interesting.
International Nuclear Information System (INIS)
Henley, E.M.
1987-01-01
Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs
International Nuclear Information System (INIS)
Edelen, D.G.B.
1986-01-01
Homogeneous scaling of the group space of the Poincare group, P 10 , is shown to induce scalings of all geometric quantities associated with the local action of P 10 . The field equations for both the translation and the Lorentz rotation compensating fields reduce to O(1) equations if the scaling parameter is set equal to the general relativistic gravitational coupling constant 8πGc -4 . Standard expansions of all field variables in power series in the scaling parameter give the following results. The zeroth-order field equations are exactly the classical field equations for matter fields on Minkowski space subject to local action of an internal symmetry group (classical gauge theory). The expansion process is shown to break P 10 -gauge covariance of the theory, and hence solving the zeroth-order field equations imposes an implicit system of P 10 -gauge conditions. Explicit systems of field equations are obtained for the first- and higher-order approximations. The first-order translation field equations are driven by the momentum-energy tensor of the matter and internal compensating fields in the zeroth order (classical gauge theory), while the first-order Lorentz rotation field equations are driven by the spin currents of the same classical gauge theory. Field equations for the first-order gravitational corrections to the matter fields and the gauge fields for the internal symmetry group are obtained. Direct Poincare gauge theory is thus shown to satisfy the first two of the three-part acid test of any unified field theory. Satisfaction of the third part of the test, at least for finite neighborhoods, seems probable
Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups
Energy Technology Data Exchange (ETDEWEB)
Chou, Chih-Lung
2005-04-05
The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.
Mixed-symmetry fields in AdS(5), conformal fields, and AdS/CFT
Energy Technology Data Exchange (ETDEWEB)
Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, Moscow 119991 (Russian Federation)
2015-01-15
Mixed-symmetry arbitrary spin massive, massless, and self-dual massive fields in AdS(5) are studied. Light-cone gauge actions for such fields leading to decoupled equations of motion are constructed. Light-cone gauge formulation of mixed-symmetry anomalous conformal currents and shadows in 4d flat space is also developed. AdS/CFT correspondence for normalizable and non-normalizable modes of mixed-symmetry AdS fields and the respective boundary mixed-symmetry anomalous conformal currents and shadows is studied. We demonstrate that the light-cone gauge action for massive mixed-symmetry AdS field evaluated on solution of the Dirichlet problem amounts to the light-cone gauge 2-point vertex of mixed-symmetry anomalous shadow. Also we show that UV divergence of the action for mixed-symmetry massive AdS field with some particular value of mass parameter evaluated on the Dirichlet problem amounts to the action of long mixed-symmetry conformal field, while UV divergence of the action for mixed-symmetry massless AdS field evaluated on the Dirichlet problem amounts to the action of short mixed-symmetry conformal field. We speculate on string theory interpretation of a model which involves short low-spin conformal fields and long higher-spin conformal fields.
Kinetic mixing and the supersymmetric gauge hierarchy
International Nuclear Information System (INIS)
Dienes, K.R.; Kolda, C.; March-Russell, J.
1997-01-01
The most general Lagrangian for a model with two U(1) gauge symmetries contains a renormalizable operator which mixes their gauge kinetic terms. Such kinetic mixing can be generated at arbitrarily high scales but will not be suppressed by large masses. In models whose supersymmetry (SUSY)-breaking hidden sectors contain U(1) gauge factors, we show that such terms will generically arise and communicate SUSY breaking to the visible sector through mixing with hypercharge. In the context of the usual supergravity- or gauge-mediated communication scenarios with D-terms of order the fundamental scale of SUSY breaking, this effect can destabilize the gauge hierarchy. Even in models for which kinetic mixing is suppressed or the D-terms are arranged to be small, this effect is a potentially large correction to the soft scalar masses and therefore introduces a new measurable low-energy parameter. We calculate the size of kinetic mixing both in field theory and in string theory, and argue that appreciable kinetic mixing is a generic feature of string models. We conclude that the possibility of kinetic mixing effects cannot be ignored in model building and in phenomenological studies of the low-energy SUSY spectra. (orig.)
Emergent Gauge Fields in Holographic Superconductors
Domènech, Oriol; Pomarol, Alex; Salvio, Alberto; Silva, Pedro J
2010-01-01
Holographic superconductors have been studied so far in the absence of dynamical electromagnetic fields, namely in the limit in which they coincide with holographic superfluids. It is possible, however, to introduce dynamical gauge fields if a Neumann-type boundary condition is imposed on the AdS-boundary. In 3+1 dimensions, the dual theory is a 2+1 dimensional CFT whose spectrum contains a massless gauge field, signaling the emergence of a gauge symmetry. We study the impact of a dynamical gauge field in vortex configurations where it is known to significantly affect the energetics and phase transitions. We calculate the critical magnetic fields H_c1 and H_c2, obtaining that holographic superconductors are of Type II (H_c1 < H_c2). We extend the study to 4+1 dimensions where the gauge field does not appear as an emergent phenomena, but can be introduced, by a proper renormalization, as an external dynamical field. We also compare our predictions with those arising from a Ginzburg-Landau theory and identif...
Analytic progress on exact lattice chiral symmetry
International Nuclear Information System (INIS)
Kikukawa, Y.
2002-01-01
Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Scattering amplitudes in gauge theories
International Nuclear Information System (INIS)
Henn, Johannes M.; Plefka, Jan C.
2014-01-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Anomalies of hidden local chiral symmetries in sigma-models and extended supergravities
International Nuclear Information System (INIS)
Vecchia, P. di; Ferrara, S.; Girardello, L.
1985-01-01
Non-linear sigma-models with hidden gauge symmetries are anomalous, at the quantum level, when coupled to chiral fermions in not anomaly free representations of the hidden chiral symmetry. These considerations generally apply to supersymmetric kaehlerian sigma-models on coset spaces with hidden chiral symmetries as well as to extended supergravities in four dimensions with local SU(N) symmetry. The presence of the anomaly implies that the scenario of dynamical generation of gauge vector bosons has to be reconsidered in these theories. (orig.)
Gravity duals of supersymmetric gauge theories on three-manifolds
International Nuclear Information System (INIS)
Farquet, Daniel; Lorenzen, Jakob; Martelli, Dario; Sparks, James
2016-01-01
We study gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1)×U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.
Light third-generation squarks from flavour gauge messengers
International Nuclear Information System (INIS)
Brümmer, Felix; McGarrie, Moritz; Weiler, Andreas
2014-01-01
We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3) F symmetry acting on the quark superfields. If SU(3) F is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3) F breaking
Light third-generation squarks from flavour gauge messengers
International Nuclear Information System (INIS)
Bruemmer, Felix; McGarrie, Moritz; Univ. of the Witwatersrand, Johannesburg; Weiler, Andreas; CERN - European Organization for Nuclear Research, Geneva
2014-04-01
We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3) F symmetry acting on the quark superfields. If SU(3) F is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3) F breaking.
Gauge theory for finite-dimensional dynamical systems
International Nuclear Information System (INIS)
Gurfil, Pini
2007-01-01
Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory
Geometrodynamics of gauge fields on the geometry of Yang-Mills and gravitational gauge theories
Mielke, Eckehard W
2016-01-01
This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang-Mills theories, instanton solutions and topological invariants are included. By transferring these concepts to local space-time symmetries, generalizations of Einstein's theory of gravity arise in a Riemann-Cartan space with curvature and torsion. It provides the framework in which the (broken) Poincaré gauge theory, the Rainich geometrization of the Einstein-Maxwell system, and higher-dimensional, non-abelian Kaluza-Klein theories are developed. Since the discovery of the Higgs boson, concepts of spontaneous symmetry breaking in gravity have come again into focus, and, in this revised edition, these will be exposed in geometric terms. Quantizing gravity remains an open issue: formulating it as a de Sitter t...
International Nuclear Information System (INIS)
Partovi, M.H.
1982-01-01
From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories
International Nuclear Information System (INIS)
Lassig, C.C.; Joshi, G.C.
1995-01-01
The nonassociativity of the octonion algebra makes necessitates a bimodule representation, in which each element is represented by a left and a right multiplier. This representation can then be used to generate gauge transformations for the purpose of constructing a field theory symmetric under a gauged octonion algebra, the nonassociativity of which appears as a failure of the representation to close, and hence produces new interactions in the gauge field kinetic term of the symmetric Lagrangian. 5 refs., 1 tab
Introduction to gauge theories
International Nuclear Information System (INIS)
Okun, L.B.
1984-01-01
These lecture notes contain the text of five lectures and a Supplement. The lectures were given at the JINR-CERN School of Physics, Tabor, Czechoslovakia, 5-18 June 1983. The subgect of the lecinvariancetures: gauge of electromagnetic and weak interactions, higgs and supersymmetric particles. The Supplement contains reprints (or excerpts) of some classical papers on gauge invariance by V. Fock, F. London, O. Klein and H. Weyl, in which the concept of gauge invariance was introduced and developed
International Nuclear Information System (INIS)
Krasnikov, N.V.
1987-01-01
Nonlocal gauge theories including gravity are considered. It is shown that the introduction of the additional nonlocal interaction makes γ 5 -anomalous theories meaningful. The introduction of such interaction leads to macrocausal unitary theory, which describes the interaction of massive vector fields with fermion fields. It is shown that nonlocal gauge theories with nonlocal scale Λ nl ≤(1-10) TeV can solve the gauge hierarchy problem. An example of nonlinear grand unified gauge model in which topologically nontrivial finite energy monopole solutions are absent is found
International Nuclear Information System (INIS)
Capri, Marcio; Justo, Igor; Guimaraes, Marcelo; Sorella, Silvio; Dudal, David; Palhares, Leticia
2013-01-01
Full text: In recent years much attention has been devoted to the study of the issue of the Gribov copies and of its relevance for confinement in Yang-Mills theories. The existence of the Gribov copies is a general feature of the gauge-fixing quantization procedure, being related to the impossibility of finding a local gauge condition which picks up only one gauge configuration for each gauge orbit. As it has been shown by Gribov and Zwanziger, a partial solution of the Gribov problem in the Landau gauge can be achieved by restricting the domain of integration in the functional Euclidean integral to the first Gribov horizon. Among the various open aspects of the Gribov-Zwanziger framework, the issue of the BRST symmetry is a source of continuous investigations. In a recent work, we have been able to obtain an equivalent formulation of the Gribov-Zwanziger action which displays an exact BRST symmetry which turns out to be spontaneously broken by the restriction of the domain of integration to the Gribov horizon. In particular, the BRST operator retains the important property of being nilpotent. Moreover, it has also been shown that the Goldstone mode associated to the spontaneous breaking of the BRST symmetry is completely decoupled. The aim of the present work is that of fills up a gap not addressed in the previous work, namely, the renormalizability to all orders of the spontaneous symmetry breaking formulation of the Gribov-Zwanziger theory. As we shall see, the action obtained enjoys a large set of Ward identities which enables to prove that it is, in fact, multiplicatively renormalizable to all orders. (author)
A new gauge for supersymmetric abelian gauge theories
International Nuclear Information System (INIS)
Smith, A.W.; Barcelos Neto, J.
1984-01-01
A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt
Mixed symmetry tensors in the worldline formalism
Energy Technology Data Exchange (ETDEWEB)
Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università degli Studi di Modena e Reggio Emilia, via Campi 213/A, I-41125 Modena (Italy); INFN - Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Edwards, James P. [Department of Mathematical Sciences, University of Bath,Claverton Down, Bath BA2 7AY (United Kingdom)
2016-05-10
We consider the first quantised approach to quantum field theory coupled to a non-Abelian gauge field. Representing the colour degrees of freedom with a single family of auxiliary variables the matter field transforms in a reducible representation of the gauge group which — by adding a suitable Chern-Simons term to the particle action — can be projected onto a chosen fully (anti-)symmetric representation. By considering F families of auxiliary variables, we describe how to extend the model to arbitrary tensor products of F reducible representations, which realises a U(F) “flavour” symmetry on the worldline particle model. Gauging this symmetry allows the introduction of constraints on the Hilbert space of the colour fields which can be used to project onto an arbitrary irreducible representation, specified by a certain Young tableau. In particular the occupation numbers of the wavefunction — i.e. the lengths of the columns (rows) of the Young tableau — are fixed through the introduction of Chern-Simons terms. We verify this projection by calculating the number of colour degrees of freedom associated to the matter field. We suggest that, using the worldline approach to quantum field theory, this mechanism will allow the calculation of one-loop scattering amplitudes with the virtual particle in an arbitrary representation of the gauge group.
International Nuclear Information System (INIS)
Kaptanoglu, S.
1983-01-01
A class of local gauge theories based on compact semisimple Lie groups is studied in the limit of infinite gauge coupling constant (g = infinity). In general, in this limit, the gauge fields become auxiliary in all gauge theories, and the system develops a richer structure of constraints. Unfortunately for most gauge theories, this limit turns out to be too singular to quantize and the theory ceases to be renormalizable. For a special class of gauge theories, however, where there are no fermions and there is only one multiplet of scalars in the adjoint representation, we prove that a consistent renormalizable quantum theory exists even in this very singular limit. We trace this exceptional behavior to a new local translationlike symmetry in the functional space that this class of gauge models possesses in the limit of infinite gauge coupling constant. By carrying out the constraint analysis, evaluating the Faddeev-Popov-Senjanovic determinant, and doing the functional integrations over the canonical momenta, the gauge fields, and most of the components of the scalar fields, we obtain an extremely simple result with no non-Abelian structure left in it. For example, for the group SU(2), the final answer reduces to the theory of a one-component self-interacting real phi 4 scalar field theory. Throughout this paper, we use functional methods and make no approximations; our results are nonperturbative and exact. We also discuss some of the possible implications of our results
Ermolenko, Alexander E; Perepada, Elena A
2007-01-01
The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.
M-theory and stringy corrections to anti-de Sitter black holes and conformal field theories
International Nuclear Information System (INIS)
Caldarelli, Marco M.; Klemm, Dietmar
1999-01-01
We consider black holes in anti-de Sitter space AdS p+2 (p = 2, 3, 5), which have hyperbolic, flat or spherical event horizons. The O(α' 3 ) corrections (or the leading corrections in powers of the eleven-dimensional Planck length, in the case of M-theory compactifications) to the black hole metrics are computed for the various topologies and dimensions. We investigate the consequences of the stringy or M-theory corrections for the black hole thermodynamics. In particular, we show the emergence of a stable branch of small spherical black holes. Surprisingly, for any of the considered dimension and topologies, the corrected thermodynamical quantities turn out to coincide with those calculated within a simplified approach, which uses only the unperturbed metric. We obtain the corrected Hawking-Page transition temperature for black holes with spherical horizons, and show that for p = 3 this phase transition disappears at a value of α' considerably smaller than that estimated previously by Gao and Li. Using the AdS/CFT correspondence, we determine the S 1 x S 3 N = 4 SYM phase diagram for sufficiently large 't Hooft coupling, and show that the critical point at which the Hawking-Page transition disappears (the correspondence point of Horowitz-Polchinski), occurs at g 2 YM N ∼ 20.5. The d = 4 and d = 7 black hole phase diagrams are also determined, and connection is made with the corresponding boundary CFTs. Finally, for flat and hyperbolic horizons, we show that the leading stringy or M-theory corrections do not give rise to any phase transition. However, if the horizon is compactified to a torus T p or to a quotient of hyperbolic space, H p /Γ, the appearance of light winding modes around non-contractible cycles signal new phase transitions, which in the toroidal case have previously been discussed by Barbon et al. We comment on these phase transitions for SYM on H p /Γ and on T p , when the moduli of the torus are taken into account
Superstring motivated gauge models based on a rank six subgroup of E6
International Nuclear Information System (INIS)
Lazarides, G.; Panagiotakopoulos, C.; Shafi, Q.
1987-01-01
We discuss gauge models based on a superstring motivated rank six subgroup of E 6 . Lepton number is an accidental unbroken symmetry of the models which leads to an essential stable proton. One of the neutral gauge bosons couples to B-L and may have mass below a TeV. (orig.)
International Nuclear Information System (INIS)
Park, Jeong-Hyuck
2003-01-01
We elaborate the idea that the matrix models equipped with the gauge symmetry provide a natural framework to describe identical particles. After demonstrating the general prescription, we study an exactly solvable harmonic oscillator type gauged matrix model. The model gives a generalization of the Calogero-Sutherland system where the strength of the inverse square potential is not fixed but dynamical bounded by below
Symmetries of Particle Physics: Space-time and Local Gauge ...
Indian Academy of Sciences (India)
When two things are exactly the same, we can ask what happens when we .... Because the angles just add up, the order in which the two separate ... and quarks (up, down, strange, charm, bottom and top are all charged). These interact by ...
On the origin of Poincaré gauge gravity
Chkareuli, J. L.
2017-06-01
We argue that the origin of Poincaré gauge gravity (PGG) may be related to spontaneous violation of underlying spacetime symmetries involved and appearance of gauge fields as vector Goldstone bosons. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are assumed to belong, respectively, to the adjoint (Aμij) and vector (eμi) representations of the starting global Lorentz symmetry. We propose that these prototype vector fields are covariantly constrained, Aμij Aijμ = ±MA2 and eμi eiμ = ±Me2 , that causes a spontaneous violation of the accompanying global symmetries (MA,e are their presumed violation scales). It then follows that the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.
Introduction to gauge theories and the Standard Model
de Wit, Bernard
1995-01-01
The conceptual basis of gauge theories is introduced to enable the construction of generic models.Spontaneous symmetry breaking is dicussed and its relevance for the renormalization of theories with massive vector field is explained. Subsequently a d standard model. When time permits we will address more practical questions that arise in the evaluation of quantum corrections.