WorldWideScience

Sample records for stringlike defect called

  1. Multiloop stringlike formulas for QED

    International Nuclear Information System (INIS)

    Lam, C.S.

    1993-01-01

    Multiloop gauge-theory amplitudes written in the Feynman-parameter representation are poised to take advantage of two important developments of the past decade: the spinor-helicity technique and the superstring reorganization. The former has been considered in a previous paper; the latter will be elaborated in this paper. We show here how to write multiloop stringlike formulas in the Feynman-parameter representation for any diagram in QED, including those involving other nonelectromagnetic interactions, provided the internal photon lines are not adjacent to any external photon line. The general connection between the Feynman-parameter approach and the superstring and/or first-quantized approach is discussed. In the special case of a one-loop multiphoton amplitude, these formulas reduce to the ones obtained by the superstring and the first-quantized methods. The stringlike formulas exhibit a simple gauge structure which makes the Ward-Takahashi identity apparent, and enables the integration-by-parts technique of Bern and Kosower to be applied, so that gauge-invariant parts can be extracted diagram by diagram with the seagull vertex neglected

  2. String-like cooperative motion in homogeneous melting.

    Science.gov (United States)

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F

    2013-03-28

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static

  3. Vortex-like and string-like solutions for the 2+1 dimensional SU(2) Yang-Mills theory with the Chern-Simons term

    International Nuclear Information System (INIS)

    Teh, R.

    1989-07-01

    Vortex-like and string-like solutions of 2+1 Dim. SU(2) YM theory with the Chern-Simons term are discussed. Two ansatze are constructed which yield respectively analytic Bessel function solutions and elliptic function solutions. The Bessel function solutions are vortex-like and tend to the same vacuum state as the Ginzburg-Landau vortex solution at large ρ. The Jacobi elliptic function solutions are string-like, have finite energy and magnetic flux concentrated along a line in the x 1 - x 2 plane. (author). 18 refs

  4. The role of surface defects in HOPG on the electrochemical and physical deposition of Ag

    Directory of Open Access Journals (Sweden)

    R. PETROVIC

    1999-08-01

    Full Text Available The role of defects on a substrate surface during the initial stages of nucleation and growth of Ag deposited electrochemically and physically on highly oriented pyrolytic graphite (HOPG has been observed ex situ by scanning tunneling microscopy (STM. The silver was electrodeposited under current controlled electrochemical conditions at 26 µA/cm2, which corresponded to a deposition rate of 0.1 monolayers (ML per second. For comparison, physical deposition of Ag on HOPG was performed by DC Ar+ ion sputtering, at the same deposition rate and for the same deposition times. In both cases, Ag grows in an island growth mode, but the distribution of the islands appears to be quite different. In physical deposition, the Ag islands are almost homogeneously distributed over the substrate surface and a slight accumulation of islands on steps does not contribute significantly to the overall morphology. This indicates the crucial role of point defects on the substrate in the initial stages of nucleation. In electrochemical deposition, more lined defects are observed after a flow of current, and their role in the beginning of the nucleation is more pronounced. Lined defects are responsible for the string-like shaped domains of deposited atoms. Also, the existence of string-like shaped nucleation exclusion zones is indicated. The problem of the formation of nucleation exclusion zones, which appear only in electrochemical deposition, has been reconsidered and a new explanaton of their formation is given. A mathematical model for the calculation of the radius of the nucleation exclusion zone has been developed.

  5. Spontaneous formation of stringlike clusters and smectic sheets for colloidal rods confined in thin wedgelike gaps.

    Science.gov (United States)

    Maeda, Hideatsu; Maeda, Yoshiko

    2013-08-20

    Monodispersed colloidal rods of β-FeOOH with sizes ranging from 270 to 580 nm in length and 50 to 80 nm in width were synthesized. Narrow wedgelike gaps (0 to 700 nm in height) were formed around the inner bottom edge of the suspension glass cells. Optical microscopic observations revealed the formation of stringlike clusters of the rods and smectic sheets (by spontaneous side-by-side clustering of the strings) in the isotropic phase of the rod suspensions confined in narrow gaps; the electrolyte (HCl) concentrations of the suspensions are 5-40 mM, at which inter-rod interactions are attractive. The strings exhibit different colors that were used to investigate the structures of the strings with the help of interference color theory for thin films. The results are as follows. (1) The rods, lying flat on the gap bottom, are connected side-by-side and stacked upward to form stringlike clusters with different thicknesses depending on the gap height. (2) The stacking numbers (N(sr)) of the rods are estimated to be 1-5. With N(sr) increasing from 2 to 5, the volume fractions (ϕ) of the rods in the strings increased typically from 0.25-0.3 to 0.35-0.42 to reach limiting values (close to the ϕ values of the rods in the bulk smectic phase). (3) Unexpected low-ϕ strings are found in regions with an intermediate height in the gaps. These behaviors of ϕ may be caused by thermal fluctuations of the strings.

  6. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Zhong, Cheng; Wang, Xiaodong; Cao, Qingping; Jiang, Jian-Zhong, E-mail: jiangjz@zju.edu.cn, E-mail: jack.douglas@nist.gov [International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Douglas, Jack F., E-mail: jiangjz@zju.edu.cn, E-mail: jack.douglas@nist.gov [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Zhang, Dongxian [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China)

    2015-04-28

    We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by “dynamic heterogeneity” in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔG{sub a} with temperature of both the Cu and Zr diffusion coefficients D, and the alpha structural relaxation time τ{sub α} can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract “cooperatively rearranging regions” of AG. We also find coexisting clusters of relatively “immobile” atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of “mobile” atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized (“immobile”) and wandering (“mobile”) particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations.

  7. String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt

    Science.gov (United States)

    Pazmiño Betancourt, Beatriz A.; Starr, Francis W.; Douglas, Jack F.

    2018-03-01

    Relaxation in glass-forming liquids occurs as a multi-stage hierarchical process involving cooperative molecular motion. First, there is a "fast" relaxation process dominated by the inertial motion of the molecules whose amplitude grows upon heating, followed by a longer time α-relaxation process involving both large-scale diffusive molecular motion and momentum diffusion. Our molecular dynamics simulations of a coarse-grained glass-forming polymer melt indicate that the fast, collective motion becomes progressively suppressed upon cooling, necessitating large-scale collective motion by molecular diffusion for the material to relax approaching the glass-transition. In each relaxation regime, the decay of the collective intermediate scattering function occurs through collective particle exchange motions having a similar geometrical form, and quantitative relationships are derived relating the fast "stringlet" collective motion to the larger scale string-like collective motion at longer times, which governs the temperature-dependent activation energies associated with both thermally activated molecular diffusion and momentum diffusion.

  8. Defect identification using positrons

    International Nuclear Information System (INIS)

    Beling, C.D.; Fung, S.

    2001-01-01

    The current use of the lifetime and Doppler broadening techniques in defect identification is demonstrated with two studies, the first being the identification of carbon vacancy in n-6H SiC through lifetime spectroscopy, and the second the production of de-hydrogenated voids in α-Si:H through light soaking. Some less conventional ideas are presented for more specific defect identification, namely (i) the amalgamation of lifetime and Doppler techniques with conventional deep level transient spectroscopy in what may be called ''positron-deep level transient spectroscopy'', and (ii) the extraction of more spatial information on vacancy defects by means of what may be called ''Fourier transform Doppler broadening of annihilation radiation spectroscopy'' (orig.)

  9. Antigravity from a spacetime defect

    OpenAIRE

    Klinkhamer, F. R.; Queiruga, J. M.

    2018-01-01

    We argue that there may exist spacetime defects embedded in Minkowski spacetime, which have negative active gravitational mass. One such spacetime defect then repels a test particle, corresponding to what may be called "antigravity."

  10. Disc defect classification for optical disc drives

    NARCIS (Netherlands)

    Helvoirt, van J.; Leenknegt, G.A.L.; Steinbuch, M.; Goossens, H.J.

    2005-01-01

    Optical disc drives are subject to various disturbances and faults. A special type of fault is the so-called disc defect. In this paper we present an approach for disc defect classification. It is based on hierarchical clustering of measured signals that are affected by disc defects. The

  11. Ventricular Septal Defect (VSD)

    Science.gov (United States)

    ... Call your doctor if your baby or child: Tires easily when eating or playing Is not gaining ... heart procedures. Risk factors Ventricular septal defects may run in families and sometimes may occur with other ...

  12. Birth Defects: Cerebral Palsy

    Science.gov (United States)

    ... Loss > Birth defects & other health conditions > Cerebral palsy Cerebral palsy E-mail to a friend Please fill in ... this page It's been added to your dashboard . Cerebral palsy (also called CP) is a group of conditions ...

  13. Bottlenecks in Software Defect Prediction Implementation in Industrial Projects

    OpenAIRE

    Hryszko Jarosław; Madeyski Lech

    2015-01-01

    Case studies focused on software defect prediction in real, industrial software development projects are extremely rare. We report on dedicated R&D project established in cooperation between Wroclaw University of Technology and one of the leading automotive software development companies to research possibilities of introduction of software defect prediction using an open source, extensible software measurement and defect prediction framework called DePress (Defect Prediction in Software Syst...

  14. Objective assessment of IP video calls with Asterisk

    OpenAIRE

    Kapičák, Lukáš; Nevlud, Pavel; Mikulec, Martin; Zdrálek, Jaroslav

    2012-01-01

    The paper deals with an objective assessment of IP video calls transmission over GSM and UMTS networks. Video transmission is affected by many factors in mobile network. Among these factors belong packet loss, latency and transmission rate of the mobile network. Network properties were simulated by Simena network simulator. Our team have developed a unique technique for finding defects in video appearing in video calls. This technique is built on modified Asterisk SW PBX with enabled video re...

  15. Embedded defects

    International Nuclear Information System (INIS)

    Barriola, M.; Vachaspati, T.; Bucher, M.

    1994-01-01

    We give a prescription for embedding classical solutions and, in particular, topological defects in field theories which are invariant under symmetry groups that are not necessarily simple. After providing examples of embedded defects in field theories based on simple groups, we consider the electroweak model and show that it contains the Z string and a one-parameter family of strings called the W(α) string. It is argued that although the members of this family are gauge equivalent when considered in isolation, each member becomes physically distinct when multistring configurations are considered. We then turn to the issue of stability of embedded defects and demonstrate the instability of a large class of such solutions in the absence of bound states or condensates. The Z string is shown to be unstable for all values of the Higgs boson mass when θ W =π/4. W strings are also shown to be unstable for a large range of parameters. Embedded monopoles suffer from the Brandt-Neri-Coleman instability. Finally, we connect the electroweak string solutions to the sphaleron

  16. Defect-impurity interactions in ion-implanted metals

    International Nuclear Information System (INIS)

    Turos, A.

    1986-01-01

    An overview of defect-impurity interactions in metals is presented. When point defects become mobile they migrate towards the sinks and on the way can be captured by impurity atoms forming stable associations so-called complexes. In some metallic systems complexes can also be formed athermally during ion implantation by trapping point defects already in the collision cascade. An association of a point defect with an impurity atom leads to its displacement from the lattice site. The structure and stability of complexes are strongly temperature dependent. With increasing temperature they dissociate or grow by multiple defect trapping. The appearance of freely migrating point defects at elevated temperatures, due to ion bombardment or thermal annealing, causes via coupling with defect fluxes, important impurity redistribution. Because of the sensitivity of many metal-in-metal implanted systems to radiation damage the understanding of this processes is essential for a proper interpretation of the lattice occupancy measurements and the optimization of implantation conditions. (author)

  17. Vortex solutions in two-Higgs-doublet systems

    International Nuclear Information System (INIS)

    Bimonte, G.; Lozano, G.

    1994-04-01

    We analyze the existence of string-like defects in a two-Higgs-doublet system having SU(2) x U(1) y x U(1) y , as gauge group. We are able to show that, when certain relations among the parameters hold, these configurations satisfy a set of first order differential equations (Bogomol'nyi equations) and their energy is proportional to their topological charge. (author). 12 refs

  18. Positron lifetime calculation for defects and defect clusters in graphite

    International Nuclear Information System (INIS)

    Onitsuka, T.; Ohkubo, H.; Takenaka, M.; Tsukuda, N.; Kuramoto, E.

    2000-01-01

    Calculations of positron lifetime have been made for vacancy type defects in graphite and compared with experimental results. Defect structures were obtained in a model graphite lattice after including relaxation of whole lattice as determined by the molecular dynamics method, where the interatomic potential given by Pablo Andribet, Dominguez-Vazguez, Mari Carmen Perez-Martin, Alonso, Jimenez-Rodriguez [Nucl. Instrum. and Meth. 115 (1996) 501] was used. For the defect structures obtained via lattice relaxation positron lifetime was calculated under the so-called atomic superposition method. Positron lifetimes 204 and 222 ps were obtained for the graphite matrix and a single vacancy, respectively, which can be compared with the experimental results 208 and 233 ps. For planar vacancy clusters, e.g., vacancy loops, lifetime calculation was also made and indicated that lifetime increases with the number of vacancies in a cluster. This is consistent with the experimental result in the region of higher annealing temperature (above 1200 deg. C), where the increase of positron lifetime is seen, probably corresponding to the clustering of mobile vacancies

  19. String-like lumen in below-the-knee chronic total occlusions on contrast-enhanced magnetic resonance angiography predicts intraluminal recanalization and better blood flow restoration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yue-Qi; Lu, Hai-Tao; Wei, Li-Ming; Cheng, Ying-Sheng; Wang, Jian-Bo; Zhao, Jun-Gong [Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Department of Diagnostic and Interventional Radiology, Shanghai (China); Liu, Fang [Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Department of Endocrinology, Shanghai (China)

    2017-07-15

    To determine whether string-like lumina (SLs) on contrast-enhanced magnetic resonance angiography (CE-MRA) predict better outcomes in diabetic patients with below-the-knee (BTK) chronic total occlusions (CTOs). This study involved 317 long-segment (>5 cm) BTK CTOs of 245 patients that were examined using CE-MRA and treated using endovascular angioplasty. An SL with a CTO was slowly filled with blood on conventional CE-MRA. Univariate and multivariate analyses were performed to identify predictors of procedural success, recanalisation method and immediate blood flow restoration. The target-lesion patency and limb-salvage rates were assessed. SL-positive CTOs (n = 60) achieved a higher technique success rate, preferred intraluminal angioplasty and better blood flow restoration than SL-negative CTOs (n = 257, P < 0.05). Multivariate analyses revealed that lesion length was the independent predictor of procedural success (P = 0.028). SL was a predictor of intraluminal angioplasty (P < 0.001) and good blood-flow restoration (P = 0.004). Kaplan-Meier analyses at 12 months revealed a higher target lesion patency rate (P = 0.04) and limb-salvage rate (P = 0.35) in SL-positive CTOs. In patients with BTK CTOs, SL predicted intraluminal angioplasty and good blood-flow restoration for BTK CTOs. (orig.)

  20. Determination of weld defect characteristics using focused probes

    International Nuclear Information System (INIS)

    Saglio, Robert; Touffait, A.-M.; Prot, A.-C.

    1977-01-01

    A method is described which allows, by means of an experimentally discovered law, the determination of the geometrical characteristics of the detected defects. This determination is based on the properties of focused probes, and particularly on what is called their 'effective ultrasonic beam'. The main result is the ability to describe a defect with a given and known accuracy. Examples are given which show practical applications of the method [fr

  1. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after {gamma}-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO{sub i}, C{sub i}O{sub i}, C{sub i}C{sub s}, VP or V{sub 2} several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO{sub 2} defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep

  2. Radiation damage in silicon. Defect analysis and detector properties

    International Nuclear Information System (INIS)

    Hoenniger, F.

    2008-01-01

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after γ-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO i , C i O i , C i C s , VP or V 2 several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO 2 defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep acceptor, a model has been introduced to

  3. Interaction of corrosion defects in pipelines – Part 1: Fundamentals

    International Nuclear Information System (INIS)

    Benjamin, Adilson C.; Freire, José Luiz F.; Vieira, Ronaldo D.; Cunha, Divino J.S.

    2016-01-01

    Corrosion defects, also called metal loss due to corrosion, are frequently found in carbon steel pipelines. Corrosion defects may occur singly or in colonies. Usually the failure pressure of a colony of closely spaced corrosion defects is smaller than the failure pressures that the defects would attain if they were isolated. This reduction in the corroded pipe pressure strength is due to the interaction between adjacent defects. The interaction of corrosion defects in pipelines is the subject of two companion papers. In the present paper (the Part 1 paper) a literature review and the fundamentals of interaction of corrosion defects in pipelines are presented. In the subsequent paper (the Part 2 paper) initially the database of corroded pipe tests generated during the MTI JIP is described. Then the failure pressures contained in the MTI JIP database of corroded pipe tests are compared with those predicted by six of the currently available assessment methods. MTI JIP is the acronym for Mixed Type Interaction Joint Industry Project.

  4. Practical Implementation of Defect-Oriented Testing for a Mixed-Signal Class-D Amplifier

    NARCIS (Netherlands)

    Beurze, R.H.; Xing, Y; Xing, Y.; van Kleef, R.; Tangelder, R.J.W.T.; Engin, N.

    1999-01-01

    This paper describes the flow of defect-oriented testing from beginning to end, based on the industrial test development for a commercial mixed-signal class-D amplifier. A software tool called DOTSS (Defect-Oriented Test Simulation System) was used to perform the fault simulations. The greatest

  5. Lithium niobate. Defects, photorefraction and ferroelectric switching

    Energy Technology Data Exchange (ETDEWEB)

    Volk, Tatyana [Russian Academy of Sciences, Inst. for Crystallography, Moscow (Russian Federation); Woehlecke, Manfred [Osnabrueck Univ. (Germany). Fachbereich Physik

    2008-07-01

    The book presents the current state of studies of point defects, both intrinsic and extrinsic (impurities, radiation centers, etc.), in LiNbO{sub 3}. The contribution of intrinsic defects to photoinduced charge transport, i.e. to the photorefraction, is explained. The photorefractive and optical properties of LiNbO{sub 3} crystals with different stoichiometry and of those doped with so-called ''optical-damage resistant'' impurities controlling the intrinsic defect structure are described in detail. Applications included are to the problem of non-erasable recording of photorefractive holograms in LiNbO{sub 3} and the current situation of studies in the ferroelectric switching and domain structure of LiNbO{sub 3}, as well as the creation of periodically-poled structures for the optical frequency conversion. (orig.)

  6. New fundamental defects in a-SiO2

    International Nuclear Information System (INIS)

    Karna, S.P.; Kurtz, H.A.; Shedd, W.M.; Pugh, R.D.; Singaraju, B.K.

    1999-01-01

    Throughout the three decades of research into radiation-induced degradation of metal-oxide-semiconductor (MOS) devices, investigators understood that point defects in the Si-SiO 2 structure (localized deviations from stoichiometrically pure Si and SiO 2 ) are responsible for many observed anomalies. Basic research in this area has progressed along two tracks: (i) differentiating the anomalies based upon subtle differences in their characteristic behavior, and (ii) precise description of the defects responsible for the anomalous behavior. These two research tracks are complementary since often a discovery in one area provides insight and ultimately leads to discoveries in the other. Here, the atomic structure and spin properties of two previously undescribed amorphous silicon dioxide fundamental point defects have been characterized for the first time by ab initio quantum mechanical calculations. Both defects are electrically neutral trivalent silicon centers in the oxide. One of the defects, the X-center, is determined to have an O 2 Sitriple b ondSi ↑ atomic structure. The other defect, called the Y-center, is found to have an OSi 2 triple b ondSi ↑ structure. Calculated electronic and electrical properties of the new defect centers are consistent with the published characteristics of the oxide switching trap or border trap precursors

  7. Electrical Characterisation of electron beam exposure induced Defects in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Danga, Helga T., E-mail: helga.danga@up.ac.za; Auret, Francois D.; Coelho, Sergio M.M.; Diale, Mmantsae

    2016-01-01

    The defects introduced in epitaxially grown p-type silicon (Si) during electron beam exposure were electrically characterised using deep level transient spectroscopy (DLTS) and high resolution Laplace-DLTS. In this process, Si samples were first exposed to the conditions of electron beam deposition (EBD) without metal deposition. This is called electron beam exposure (EBE) herein. After 50 minutes of EBE, nickel (Ni) Schottky contacts were fabricated using the resistive deposition method. The defect level observed using the Ni contacts had an activation energy of H(0.55). This defect has an activation energy similar to that of the I-defect. The defect level is similar to that of the HB4, a boron related defect. DLTS depth profiling revealed that H(0.55) could be detected up to a depth of 0.8 μm below the junction. We found that exposing the samples to EBD conditions without metal deposition introduced a defect which was not introduced by the EBD method. We also observed that the damage caused by EBE extended deeper into the material compared to that caused by EBD.

  8. Electronic structure of point defects in semiconductors

    International Nuclear Information System (INIS)

    Bruneval, Fabien

    2014-01-01

    This 'Habilitation a diriger des Recherches' memoir presents most of my scientific activities during the past 7 years, in the field of electronic structure calculations of defects in solids. Point defects (vacancies, interstitials, impurities) in functional materials are a key parameter to determine if these materials will actually fill the role they have been assigned or not. Indeed, the presence of defects cannot be avoided when the temperature is increased or when the material is subjected to external stresses, such as irradiation in the nuclear reactors and in artificial satellites with solar radiations. However, in many cases, defects are introduced in the materials on purpose to tune the electronic transport, optical or even magnetic properties. This procedure is called the doping of semiconductors, which is the foundation technique for transistors, diodes, or photovoltaic cells. However, doping is not always straightforward and unexpected features may occur, such as doping asymmetry or Fermi level pinning, which can only be explained by complex phenomena involving different types of defects or complexes of defects. In this context, the calculations of electronic structure ab initio is an ideal tool to complement the experimental observations, to gain the understanding of phenomena at the atomic level, and even to predict the properties of defects. The power of the ab initio calculations comes from their ability to describe any system of electrons and nuclei without any specific adjustment. But although there is a strong need for numerical simulations in this field, the ab initio calculations for defects are still under development as of today. The work presented in this memoir summarizes my contributions to methodological developments on this subject. These developments have followed two main tracks. The first topic is the better understanding of the unavoidable finite size effects. Indeed, defects in semiconductors or insulators are generally present in

  9. Size Effect of Defects on the Mechanical Properties of Graphene

    Science.gov (United States)

    Park, Youngho; Hyun, Sangil

    2018-03-01

    Graphene, a two-dimensional material, has been studied and utilized for its excellent material properties. In reality, achieving a pure single-crystalline structure in graphene is difficult, so usually graphene may have various types of defects in it. Vacancies, Stone-Wales defects, and grain boundaries can drastically change the material properties of graphene. Graphene with vacancy defects has been of interest because it is a two-dimensional analogy of three-dimensional porous materials. It has efficient material properties, and can function as a part of modern devices. The mechanical properties have been studied by using molecular dynamics for either a single vacancy defect with various sizes or multiple vacancy defects with same defect ratios. However, it is not clear which one has more influence on the mechanical properties between the size of the defects and the defect ratio. Therefore, we investigated the hole-size effect on the mechanical properties of single-crystalline graphene at various defect ratios. A void defect with large size can have a rather high tensile modulus with a low fracture strain compared to a void defect with small size. We numerically found that the tensile properties of scattered single vacancies is similar to that of amorphous graphene. We suspect that this is due to the local orbital change of the carbon atoms near the boundary of the void defects, so-called the interfacial phase.

  10. Optical properties of a defective one-dimensional photonic crystal containing graphene nanaolayers

    International Nuclear Information System (INIS)

    Entezar, S. Roshan; Saleki, Z.; Madani, A.

    2015-01-01

    The transmission properties of a defective one-dimensional photonic crystal containing graphene nanolayers have been investigated using the transfer matrix method. It is shown that two kinds of the defect modes can be found in the band gaps of the structure. One kind is the traditional defect mode which is created in the Bragg gaps of the structure and is due to the breaking of the periodicity of the dielectric lattice. The other one is created in the graphene induced band gap. Such a defect mode which we call it the graphene induced defect mode is due to the breaking of the periodicity of the graphene lattice. However, our investigations reveal that only in the case of wide defect layers one can obtain the graphene induced defect modes. The effects of many parameters such as the incident angle, the state of polarization and the chemical potential of the graphene nanolayers on the properties of the graphene induced defect modes are discussed. Moreover, the possibility of external control of the graphene induced defect modes using a gate voltage is shown.

  11. Studies on defect detectability in banded stainless steel tubes

    International Nuclear Information System (INIS)

    Shyamsunder, M.T.; Rao, B.P.C.; Babu Rao, C.; Jayakumar, T.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    During inspection of one batch of stainless steel cladding tubes, a few of the tubes gave rise to continuous large amplitude indications throughout the length of the tube. It was observed that the presence of any defects in such tubes would be impossible to detect, due to the poor signal-to-noise ratio. Detailed investigations regarding the surface profile of the tubes were carried out using a novel technique called the projected interferometry method revealed periodic diametral variations and the same were further confirmed by cross sectional profiling. The feasibility of detecting defects in such banded tubes, using eddy current testing were carried out on tubes with artificial defects. This paper discusses the use of three different eddy current methods and their relative performances for inspection. The specific advantages of the phased array eddy current testing method in unambiguous defect detection in situations similar to the one encountered during the present investigations are also discussed. (author)

  12. Call Forecasting for Inbound Call Center

    Directory of Open Access Journals (Sweden)

    Peter Vinje

    2009-01-01

    Full Text Available In a scenario of inbound call center customer service, the ability to forecast calls is a key element and advantage. By forecasting the correct number of calls a company can predict staffing needs, meet service level requirements, improve customer satisfaction, and benefit from many other optimizations. This project will show how elementary statistics can be used to predict calls for a specific company, forecast the rate at which calls are increasing/decreasing, and determine if the calls may stop at some point.

  13. Vision Algorithms Catch Defects in Screen Displays

    Science.gov (United States)

    2014-01-01

    Andrew Watson, a senior scientist at Ames Research Center, developed a tool called the Spatial Standard Observer (SSO), which models human vision for use in robotic applications. Redmond, Washington-based Radiant Zemax LLC licensed the technology from NASA and combined it with its imaging colorimeter system, creating a powerful tool that high-volume manufacturers of flat-panel displays use to catch defects in screens.

  14. Six-dimensional Origin of $\\mathcal{N}=4$ SYM with Duality Defects

    CERN Document Server

    Assel, Benjamin

    2016-12-14

    We study the topologically twisted compactification of the 6d $(2,0)$ M5-brane theory on an elliptically fibered K\\"ahler three-fold preserving two supercharges. We show that upon reducing on the elliptic fiber, the 4d theory is $\\mathcal{N}=4$ Super-Yang Mills, with varying complexified coupling $\\tau$, in the presence of defects. For abelian gauge group this agrees with the so-called duality twisted theory, and we determine a non-abelian generalization to $U(N)$. When the elliptic fibration is singular, the 4d theory contains 3d walls (along the branch-cuts of $\\tau$) and 2d surface defects, around which the 4d theory undergoes $SL(2,\\mathbb{Z})$ duality transformations. Such duality defects carry chiral fields, which from the 6d point of view arise as modes of the two-form $B$ in the tensor multiplet. Each duality defect has a flavor symmetry associated to it, which is encoded in the structure of the singular elliptic fiber above the defect. Generically 2d surface defects will intersect in points in 4d, wh...

  15. First-Principles Investigations of Defects in Minerals

    Science.gov (United States)

    Verma, Ashok K.

    2011-07-01

    The ideal crystal has an infinite 3-dimensional repetition of identical units which may be atoms or molecules. But real crystals are limited in size and they have disorder in stacking which as called defects. Basically three types of defects exist in solids: 1) point defects, 2) line defects, and 3) surface defects. Common point defects are vacant lattice sites, interstitial atoms and impurities and these are known to influence strongly many solid-state transport properties such as diffusion, electrical conduction, creep, etc. In thermal equilibrium point defects concentrations are determined by their formation enthalpies and their movement by their migration barriers. Line and surface defects are though absent from the ideal crystal in thermal equilibrium due to higher energy costs but they are invariably present in all real crystals. Line defects include edge-, screw- and mixed-dislocations and their presence is essential in explaining the mechanical strength and deformation of real crystals. Surface defects may arise at the boundary between two grains, or small crystals, within a larger crystal. A wide variety of grain boundaries can form in a polycrystal depending on factors such growth conditions and thermal treatment. In this talk we will present our first-principles density functional theory based defect studies of SiO2 polymorphs (stishovite, CaCl2-, α-PbO2-, and pyrite-type), Mg2SiO4 polymorphs (forsterite, wadsleyite and ringwoodite) and MgO [1-3]. Briefly, several native point defects including vacancies, interstitials, and their complexes were studied in silica polymorphs upto 200 GPa. Their values increase by a factor of 2 over the entire pressure range studied with large differences in some cases between different phases. The Schottky defects are energetically most favorable at zero pressure whereas O-Frenkel pairs become systematically more favorable at pressures higher than 20 GPa. The geometric and electronic structures of defects and migrating

  16. Surface defects characterization in a quantum wire by coherent phonons scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rabia, M. S. [Laboratoire de Mécanique des Structures et Energétique, Faculté du Génie de la Construction, Université. Mammeri de Tizi-Ouzou, BP 17 RP Hasnaoua II, Tizi-Ouzou 15000, Algérie m2msr@yahoo.fr (Algeria)

    2015-03-30

    The influence of surface defects on the scattering properties of elastic waves in a quasi-planar crystallographic waveguide is studied in the harmonic approximation using the matching method formalism. The structural model is based on three infinite atomic chains forming a perfect lattice surmounted by an atomic surface defect. Following the Landauer approach, we solve directly the Newton dynamical equation with scattering boundary conditions and taking into account the next nearest neighbour’s interaction. A detailed study of the defect-induced fluctuations in the transmission spectra is presented for different adatom masses. As in the electronic case, the presence of localized defect-induced states leads to Fano-like resonances. In the language of mechanical vibrations, these are called continuum resonances. Numerical results reveal the intimate relation between transmission spectra and localized defect states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. The results could be useful for the design of phononic devices.

  17. Surface defects characterization in a quantum wire by coherent phonons scattering

    International Nuclear Information System (INIS)

    Rabia, M. S.

    2015-01-01

    The influence of surface defects on the scattering properties of elastic waves in a quasi-planar crystallographic waveguide is studied in the harmonic approximation using the matching method formalism. The structural model is based on three infinite atomic chains forming a perfect lattice surmounted by an atomic surface defect. Following the Landauer approach, we solve directly the Newton dynamical equation with scattering boundary conditions and taking into account the next nearest neighbour’s interaction. A detailed study of the defect-induced fluctuations in the transmission spectra is presented for different adatom masses. As in the electronic case, the presence of localized defect-induced states leads to Fano-like resonances. In the language of mechanical vibrations, these are called continuum resonances. Numerical results reveal the intimate relation between transmission spectra and localized defect states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. The results could be useful for the design of phononic devices

  18. Automotive IC reliability: Elements of the battle towards zero defects

    NARCIS (Netherlands)

    Kuper, F.G.

    2008-01-01

    The battle towards zero defects consists of fast response to PPM signals, prevention of incidents and continuous improvement. In this paper elements of all three branches are treated. A PPM analysis tool called quality crawl charts is introduced that enables prediction of customer complaint levels

  19. Image recognition of shape defects in hot steel rolling

    NARCIS (Netherlands)

    Balmashnova, E.; Bruurmijn, L.C.M.; Dissanayake, R.; Duits, R.; Kampmeijer, L.; Noorden, van T.L.; Boon, M.A.A.

    2013-01-01

    A frequently occurring issue in hot rolling of steel is so-called tail pinching. Prominent features of a pinched tail are ripple-like defects and a pointed tail. In this report two algorithms are presented to detect those features accurately in 2D gray scale images of steel strips. The two ripple

  20. Defects and defect processes in nonmetallic solids

    CERN Document Server

    Hayes, W

    2004-01-01

    This extensive survey covers defects in nonmetals, emphasizing point defects and point-defect processes. It encompasses electronic, vibrational, and optical properties of defective solids, plus dislocations and grain boundaries. 1985 edition.

  1. Special development made in France for the surveillance of subcladding defects

    International Nuclear Information System (INIS)

    Saglio, R.; Birac, A.M.; Frappier, J.C.; Viard, J.; Verger, B.

    1982-10-01

    For many years the CEA and Intercontrole, a subsidiary, have been using an in-service inspection machine (MIS) equipped with focused transducers for in-service inspection of PWR pressure vessels. At the end of 1979, subcladding defects were discovered inside inlet and outlet nozzles on French pressure vessels. French regulations required the inspection of all the nuclear plant reactor nozzles. A device called MIT (Nozzle inspection machine) was developed for detection and characterization of this type of defect. This paper describes the NDT method and the corresponding equipment

  2. Point defects and diffusion in alloys: correlation effects

    International Nuclear Information System (INIS)

    Barbe, Vincent

    2006-01-01

    Kinetic models in alloys aim at predicting the transport properties of a system starting from the microscopic jump frequencies of defects. Such properties are of prior importance in systems which stay out of equilibrium for a long time, as for example irradiated alloys in nuclear reactors. We hereby propose several developments of the recent self-consistent mean field (SCMF) kinetic theory, which deals particularly with the correlation effects due to the coupling of atomic and defect fluxes. They are taken into account through a non-equilibrium distribution function of the system, which is derived from the time evolution of small clusters (of two or more atoms or defects). We therefore introduce a set of 'dynamic' interactions called effective Hamiltonian. The SCMF theory is extended to treat high jump frequency ratios for the vacancy mechanism, as well as the transport through interstitial defects. We use in both cases an atomic model which accounts for the thermodynamic properties of the alloy, as e.g. the short-range order. Those models are eventually applied to predict the diffusion properties in two model alloys of nuclear interest: the concentrated Fe-Ni-Cr solid solution and the dilute Fe(P) alloy. We present adapted atomic models and compare our predictions to experimental data. (author)

  3. Research on characteristics measurement of infrared defect tester

    Science.gov (United States)

    Zhang, Ke-jia; Zhang, Bi-feng; Xiong, Li-min; Zhou, Tao-geng; Zhang, Jun-chao; Meng, Hai-feng; Cai, Chuan; He, Ying-wei; Li, Xiao-hui; Wang, Chang-shi

    2017-10-01

    Based on a testing method of spatial frequency response(SFR), a setup for characteristics measurements of the infrared defect tester,which can also be called electroluminescence tester(EL tester), a machine examining defects of photovoltaic (PV) panel, was built. The influences of focusing plane adjustments and infrared light box arrangements on resolution measurement of EL tester in full field of view were analyzed. For different types of EL testers, portable and fixed, testing methods and procedures were presented. Especially, a novel testing method for portable EL was claimed, which could do the work well without reference background. Based on method claimed and setup built, the resolutions of different types of EL testers were obtained and stable results were achieved. This setup is portable designed to meet online measurements requirements of PV industry.

  4. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Science.gov (United States)

    Mandal, Sumit; Saha, Shyamal K.

    2014-10-01

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing ID/IG ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest ID/IG, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  5. Talbot effect of the defective grating in deep Fresnel region

    Science.gov (United States)

    Teng, Shuyun; Wang, Junhong; Zhang, Wei; Cui, Yuwei

    2015-02-01

    Talbot effect of the grating with different defect is studied theoretically and experimentally in this paper. The defects of grating include the loss of the diffraction unit, the dislocation of the diffraction unit and the modulation of the unit separation. The exact diffraction distributions of three kinds of defective gratings are obtained according to the finite-difference time-domain (FDTD) method. The calculation results show the image of the missing or dislocating unit appears at the Talbot distance (as mentioned in K. Patorski Prog. Opt., 27, 1989, pp.1-108). This is the so-called self-repair ability of grating imaging. In addition, some more phenomena are discovered. The loss or the dislocation of diffraction unit causes the diffraction distortion within a certain radial angle. The regular modulation of unit separation changes the original diffraction, but the new periodicity of the diffraction distribution rebuilds. The self-imaging of grating with smaller random modulation still keeps the partial self-repair ability, and yet this characteristic depends on the modulation degree of defective grating. These diffraction phenomena of the defective gratings are explained by use of the diffraction theory of grating. The practical experiment is also performed and the experimental results confirm the theoretic predictions.

  6. Vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association with Mayer-Rokitansky-Küster-Hauser syndrome in co-occurrence

    DEFF Research Database (Denmark)

    Bjørsum-Meyer, Thomas; Herlin, Morten; Qvist, Niels

    2016-01-01

    Background: The vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome are rare conditions. We aimed to present two cases with the vertebral defect, anal atresia, cardiac...... defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser co-occurrence from our local surgical center and through a systematic literature search detect published cases. Furthermore, we aimed to collect existing knowledge...... in the embryopathogenesis and genetics in order to discuss a possible link between the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome. Case presentation: Our first case was a white girl...

  7. Birth Defects

    Science.gov (United States)

    A birth defect is a problem that happens while a baby is developing in the mother's body. Most birth defects happen during the first 3 months of ... in the United States is born with a birth defect. A birth defect may affect how the ...

  8. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    Science.gov (United States)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties

  9. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sumit, E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-15

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing I{sub D}/I{sub G} ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest I{sub D}/I{sub G}, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  10. Risk Assessment of Defect Occurrences in Engine Piston Castings by FMEA Method

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2017-09-01

    Full Text Available The FMEA (Failure Mode and Effects Analysis method consists in analysis of failure modes and evaluation of their effects based on determination of cause-effect relationships for formation of possible product or process defects. Identified irregularities which occur during the production process of piston castings for internal combustion engines were ordered according to their failure rates, and using Pareto-Lorenz analysis, their per cent and cumulated shares were determined. The assessments of risk of defects occurrence and their causes were carried out in ten-point scale of integers, while taking three following criteria into account: significance of effects of the defect occurrence (LPZ, defect occurrence probability (LPW and detectability of the defect found (LPO. A product of these quantities constituted the risk score index connected with a failure occurrence (a so-called “priority number,” LPR. Based on the observations of the piston casting process and on the knowledge of production supervisors, a set of corrective actions was developed and the FMEA was carried out again. It was shown that the proposed improvements reduce the risk of occurrence of process failures significantly, translating into a decrease in defects and irregularities during the production of piston castings for internal combustion engines.

  11. Upper gastrointestinal bleeding, aneurismatic dilatation of the thoracic aorta and filling defect on the esophagogram

    Energy Technology Data Exchange (ETDEWEB)

    Naschitz, J.E.; Bassan, H.; Lazarov, N.; Grishkan, A.

    1982-06-01

    A patient is described with an aneurysm of the thoracic aorta, which has ruptured into the esophagus. An esophageal X-ray contrast study has revealed a filling defect at the contact site of the esophagus and the aortic aneurysm. The filling defect was due to a clot protruding from the aorta into the esophagus. This unique case calls attention to a diagnostic triad: upper gastrointestinal bleeding, aneurysm of the thoracic aorta, and filling defect in the esophagus at its site of contact with the enlarged aorta. This triad suggested aortoesophageal fistula (AEF) in the patient and could help in the diagnosis of atypical cases of AEF, where thoracic aortography has not been performed initially.

  12. Upper gastrointestinal bleeding, aneurismatic dilatation of the thoracic aorta and filling defect on the esophagogram

    International Nuclear Information System (INIS)

    Naschitz, J.E.; Bassan, H.; Lazarov, N.; Grishkan, A.; Haifa Univ.; Haifa Univ.

    1982-01-01

    A patient is described with an aneurysm of the thoracic aorta, which has ruptured into the esophagus. An esophageal X-ray contrast study has revealed a filling defect at the contact site of the esophagus and the aortic aneurysm. The filling defect was due to a clot protruding from the aorta into the esophagus. This unique case calls attention to a diagnostic triad: upper gastrointestinal bleeding, aneurysm of the thoracic aorta, and filling defect in the esophagus at its site of contact with the enlarged aorta. This triad suggested aortoesophageal fistula (AEF) in the patient and could help in the diagnosis of atypical cases of AEF, where thoracic aortography has not been performed initially. (orig.) [de

  13. Competition between microstructure and defect in multiaxial high cycle fatigue

    Directory of Open Access Journals (Sweden)

    F. Morel

    2015-07-01

    Full Text Available This study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It is well known that the microstructure strongly affects the average fatigue strength and when the cyclic stress level is close to the fatigue limit, it is often seen as the main source of the huge scatter generally observed in this fatigue regime. The presence of geometrical defects in a material can also strongly alter the fatigue behavior. Nonetheless, when the defect size is small enough, i.e. under a critical value, the fatigue strength is no more affected by the defect. The so-called Kitagawa effect can be interpreted as a competition between the crack initiation mechanisms governed either by the microstructure or by the defect. Surprisingly, only few studies have been done to date to explain the Kitagawa effect from the point of view of this competition, even though this effect has been extensively investigated in the literature. The primary focus of this paper is hence on the use of both FE simulations and explicit descriptions of the microstructure to get insight into how the competition between defect and microstructure operates in HCF. In order to account for the variability of the microstructure in the predictions of the macroscopic fatigue limits, several configurations of crystalline orientations, crystal aggregates and defects are studied. The results of each individual FE simulation are used to assess the response at the macroscopic scale thanks to a probabilistic fatigue criterion proposed by the authors in previous works. The ability of this criterion to predict the influence of defects on the average and the scatter of macroscopic fatigue limits is evaluated. In this paper, particular emphasis is also placed on the effect of different loading modes (pure tension, pure torsion and combined tension and torsion on

  14. Formation and relaxation processes of photoinduced defects in a Ge-doped SiO2 glass

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Saito, K.; Ikushima, A.J.

    2002-01-01

    The defect centers induced by ArF laser irradiation in Ge-doped SiO 2 have been investigated by the electron-spin resonance method. In order to observe formation and relaxation processes of the defects, step annealing has been carried out after the irradiation at 77 K. The thermally induced decay of the self-trapped hole (STH) and formation of the so-called Ge(2) centers have been observed with increasing temperature. The result suggests that the holes are transferred from the STH to the Ge(2)

  15. Motion of Defect Clusters and Dislocations at a Crack Tip of Irradiated Material

    International Nuclear Information System (INIS)

    Moon, Won Jin; Kwon, Sang Chul; Kim, Whung Whoe

    2007-01-01

    Effects of defect clusters on mechanical properties of irradiated materials have not been clarified until now. Two radiation hardening models have been proposed. One is a dispersed barrier hardening mechanism based on the Orowan hardening model. This explains defect clusters as barriers to a dislocation motion. Generally the dislocation would rather shear or remove the defect clusters than make so-called Orowan loops. And the other is a cascade induced source hardening mechanism, which explains defect clusters as a Cottrell atmosphere for dislocation motions. However, the above mechanisms can not explain the microstructure of deformed material after irradiation and the phenomenon of yield softening. These mechanisms are based on an immobility of clusters. But we observed defect clusters could move into a specific crystallographic direction easily. Through 3 times of High Voltage Electron Microscope analysis, defect clusters have been observed to make one dimensional motion without applied external stress. If very small defect clusters could move under a stress gradient due to interactions between clusters, we can suggest that the clusters will move more actively when a stress gradient is applied externally. In-situ tensile test at TEM, we confirmed that kind of motion. We suggest defect clusters can move into crack tip, a stress-concentrated area due to tensile stress gradient and dislocations move out from the area by shear stress. Therefore radiation hardening can be explained agglomeration of defect clusters at stress concentrated area prohibits a generation of dislocation and make an increase of yield point

  16. A new approach for gravity localization in six-dimensional geometries

    International Nuclear Information System (INIS)

    Santos, Victor Pereira do Nascimento; Almeida, Carlos Alberto Santos de

    2011-01-01

    Full text: The idea that spacetime may have more than four dimensions is old, originally presented as an attempt to unify Maxwell's theory of Electromagnetism with the brand-new gravitation theory of Einstein. Such extra dimensions are in principle unobservable to the energy scales currently available. However, its effects can be seen in short distance gravity experiments and in observations in cosmology. Also, it is used as a mechanism to explain the difference between the energy scales of the weak force and gravity, which is called the hierarchy problem. The current framework for the extra dimension scenario is consider the four-dimensional known universe as embedded in a higher dimensional space called bulk. The form of this bulk determines how we perceive gravity in our universe; then, the behaviour of gravitational field depends on the geometry of the bulk. Metric solutions were already presented for string-like defect, with and without matter sources, where was shown that the gravity Newtonian potential grows with the inverse cube of distance. Such correction arises from a very particular mass spectrum for the gravitational field, which already contains the orbital angular momentum contributions. In this work we study the behaviour of gravitational field in a extra-dimensional braneworld scenario, using non-factorizable geometries (which preserves Poincare symmetry) and setting suitable matter distributions in order to verify its localization, for several geometries. For such geometries it is possible to find explicit solutions for the tensor fluctuations of the metric. (author)

  17. Immobile defects in ferroelastic walls: Wall nucleation at defect sites

    Science.gov (United States)

    He, X.; Salje, E. K. H.; Ding, X.; Sun, J.

    2018-02-01

    Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.

  18. Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets

    Science.gov (United States)

    Fujita, Hiroyuki; Sato, Masahiro

    2017-02-01

    Controlling electric and magnetic properties of matter by laser beams is actively explored in the broad region of condensed matter physics, including spintronics and magneto-optics. Here we theoretically propose an application of optical and electron vortex beams carrying intrinsic orbital angular momentum to chiral ferro- and antiferromagnets. We analyze the time evolution of spins in chiral magnets under irradiation of vortex beams by using the stochastic Landau-Lifshitz-Gilbert equation. We show that beam-driven nonuniform temperature leads to a class of ring-shaped magnetic defects, what we call skyrmion multiplex, as well as conventional skyrmions. We discuss the proper beam parameters and the optimal way of applying the beams for the creation of these topological defects. Our findings provide an ultrafast scheme of generating topological magnetic defects in a way applicable to both metallic and insulating chiral (anti-) ferromagnets.

  19. Studies of defects and defect agglomerates by positron annihilation spectroscopy

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1997-01-01

    A brief introduction to positron annihilation spectroscopy (PAS), and in particular lo its use for defect studies in metals is given. Positrons injected into a metal may become trapped in defects such as vacancies, vacancy clusters, voids, bubbles and dislocations and subsequently annihilate from...... the trapped state iri the defect. The annihilation characteristics (e.g., the lifetime of the positron) can be measured and provide information about the nature of the defect (e.g., size, density, morphology). The technique is sensitive to both defect size (in the range from monovacancies up to cavities...

  20. Defect modelling

    International Nuclear Information System (INIS)

    Norgett, M.J.

    1980-01-01

    Calculations, drawing principally on developments at AERE Harwell, of the relaxation about lattice defects are reviewed with emphasis on the techniques required for such calculations. The principles of defect modelling are outlined and various programs developed for defect simulations are discussed. Particular calculations for metals, ionic crystals and oxides, are considered. (UK)

  1. Improvement to defect detection by ultrasonic data processing: the DTVG method

    International Nuclear Information System (INIS)

    Francois, D.

    1995-10-01

    The cast elbows of the pipes of the principal primary circuit of French PWR, made of austenitic-ferritic stainless steel, pose problems to control. In order to improve the ultrasonic detection of defects in coarse-grained materials, we propose a method (called DTVG) based on the statistic study of the spatial stability of events contained in temporal signals. At the Beginning, the method was developed during a thesis (G. Corneloup, 1998) to improve the detection of cracks in thin thickness austenitic welds. Here, we propose to adapt the DTVG method and estimate its performances in detection of defects in thick materials representative of cast austenitic-ferritic elbows steels. The first objective of the study is adapting the original treatment applied to the thin thickness austenitic welds for the detection of defects in thick thickness austenitic-ferritic cast steels. The second objective consist of improving the algorithm to take in account the difference between thin and thick material and estimating the performances of the DTVG method in detection in specimen block with artificial defects. This work has led to adapt the original DTVG method to control thick cast austenitic-ferritic specimen (80 mm) under normal and oblique incidence. More, the study has allowed to make the the treatment automatic (automatic research of parameters). The results have shown that the DTVG method is fitted to detect artificial defects in thick cast austenitic-ferritic sample steel. All the defects in the specimen block have been detected without revealing false indication. (author). 4 refs., 4 figs

  2. Blended call center with idling times during the call service

    NARCIS (Netherlands)

    Legros, Benjamin; Jouini, Oualid; Koole, Ger

    We consider a blended call center with calls arriving over time and an infinitely backlogged amount of outbound jobs. Inbound calls have a non-preemptive priority over outbound jobs. The inbound call service is characterized by three successive stages where the second one is a break; i.e., there is

  3. Bondonic effects in group-IV honeycomb nanoribbons with Stone-Wales topological defects.

    Science.gov (United States)

    Putz, Mihai V; Ori, Ottorino

    2014-04-03

    This work advances the modeling of bondonic effects on graphenic and honeycomb structures, with an original two-fold generalization: (i) by employing the fourth order path integral bondonic formalism in considering the high order derivatives of the Wiener topological potential of those 1D systems; and (ii) by modeling a class of honeycomb defective structures starting from graphene, the carbon-based reference case, and then generalizing the treatment to Si (silicene), Ge (germanene), Sn (stannene) by using the fermionic two-degenerate statistical states function in terms of electronegativity. The honeycomb nanostructures present η-sized Stone-Wales topological defects, the isomeric dislocation dipoles originally called by authors Stone-Wales wave or SWw. For these defective nanoribbons the bondonic formalism foresees a specific phase-transition whose critical behavior shows typical bondonic fast critical time and bonding energies. The quantum transition of the ideal-to-defect structural transformations is fully described by computing the caloric capacities for nanostructures triggered by η-sized topological isomerisations. Present model may be easily applied to hetero-combinations of Group-IV elements like C-Si, C-Ge, C-Sn, Si-Ge, Si-Sn, Ge-Sn.

  4. Bondonic Effects in Group-IV Honeycomb Nanoribbons with Stone-Wales Topological Defects

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2014-04-01

    Full Text Available This work advances the modeling of bondonic effects on graphenic and honeycomb structures, with an original two-fold generalization: (i by employing the fourth order path integral bondonic formalism in considering the high order derivatives of the Wiener topological potential of those 1D systems; and (ii by modeling a class of honeycomb defective structures starting from graphene, the carbon-based reference case, and then generalizing the treatment to Si (silicene, Ge (germanene, Sn (stannene by using the fermionic two-degenerate statistical states function in terms of electronegativity. The honeycomb nanostructures present η-sized Stone-Wales topological defects, the isomeric dislocation dipoles originally called by authors Stone-Wales wave or SWw. For these defective nanoribbons the bondonic formalism foresees a specific phase-transition whose critical behavior shows typical bondonic fast critical time and bonding energies. The quantum transition of the ideal-to-defect structural transformations is fully described by computing the caloric capacities for nanostructures triggered by η-sized topological isomerisations. Present model may be easily applied to hetero-combinations of Group-IV elements like C-Si, C-Ge, C-Sn, Si-Ge, Si-Sn, Ge-Sn.

  5. Effects of in-cascade defect clustering on near-term defect evolution

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    The effects of in-cascade defect clustering on the nature of the subsequent defect population are being studied using stochastic annealing simulations applied to cascades generated in molecular dynamics (MD) simulations. The results of the simulations illustrates the strong influence of the defect configuration existing in the primary damage state on subsequent defect evolution. The large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades have been shown to be significant factors affecting the evolution of the defect distribution. In recent work, the effects of initial cluster sizes appear to be extremely important.

  6. Dirichlet topological defects

    International Nuclear Information System (INIS)

    Carroll, S.M.; Trodden, M.

    1998-01-01

    We propose a class of field theories featuring solitonic solutions in which topological defects can end when they intersect other defects of equal or higher dimensionality. Such configurations may be termed open-quotes Dirichlet topological defects,close quotes in analogy with the D-branes of string theory. Our discussion focuses on defects in scalar field theories with either gauge or global symmetries, in 3+1 dimensions; the types of defects considered include walls ending on walls, strings on walls, and strings on strings. copyright 1998 The American Physical Society

  7. Computer code for the atomistic simulation of lattice defects and dynamics

    International Nuclear Information System (INIS)

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.

    1980-04-01

    The computer code COMENT used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect properties, defect migration, and defect stability. This report documents Version IV of COMENT (models, methods, and implementation) and defines current code options. Version IV of COMENT generates only face-centered-cubic (fcc) crystal lattices. However, an effort was made to structure COMENT to allow addition of new options with a minimum of change in the existing version of the code. This document describes the calling program and thirty-two user-defined subroutines. Fourteen subroutines (ALOYORD, DASPKA, DFCT, DSLOAN, DSLOIN, EXPAND, POT1, POT2, POT3, POT4, POT5, POT6, POT7, and THRMAL) are associated with the selection of program options; only a few of these are used in any given analysis. Seven of the other subroutines (CRYSTL, IEAF, INCBOX, LABLE, MINILAT, SPEFORS, and SQUEZ are used to establish a variety of arrays and conditions required for each analysis; most of them are used once in a given calculation. The remaining eleven subroutines (DAMP, DIRECT, IDDEF, NEAF, INBIN, FILBIN, FTBIN, PAC3, UNPAC3, PACF, and UNPACF) are used many times in each calculation; the last eight of these are used many times in each time step during the integration and, therefore, are written in COMPASS (CDC assembly language). The COMPASS subroutines are described in sufficient detail to permit easy conversion to some other assembly language or to FORTRAN

  8. Defect forces, defect couples and path integrals in fracture mechanics

    International Nuclear Information System (INIS)

    Roche, R.L.

    1979-07-01

    In this work, it is shown that the path integrals can be introduced without any reference to the material behavior. The method is based on the definition in a continuous medium of a set of vectors and couples having the dimension of a force or a moment. More precisely, definitions are given of volume defect forces, surface defect forces, volume defect couples, and surface defect couples. This is done with the help of the stress working variation of a particule moving through the solid. The most important result is: the resultant of all the defect forces included in a volume V is the J integral on the surface surrounding V and the moment resultant is the L integral. So these integrals are defined without any assumption on the material constitutive equation. Another result is the material form of the virtual work principle - defect forces are acting like conventional forces in the conventional principles of virtual work. This lead to the introduction of the energy momentum tensor and of the associated couple stress. Application of this method is made to fracture mechanics in studying the defect forces distribution around a crack [fr

  9. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  10. Automatic Defect Detection for TFT-LCD Array Process Using Quasiconformal Kernel Support Vector Data Description

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liu

    2011-09-01

    Full Text Available Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms.

  11. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Directory of Open Access Journals (Sweden)

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  12. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    Science.gov (United States)

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2009-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs. PMID:20161699

  13. Effect of manufacturing method on the magnetic properties and formation of structural defects in Fe61Co10Y8Zr1B20 amorphous alloy

    International Nuclear Information System (INIS)

    Nabialek, M.G.; Pietrusiewicz, P.; Dospial, M.J.; Szota, M.; Błoch, K.; Gruszka, K.; Oźga, K.; Garus, S.

    2014-01-01

    Highlights: • Influence of manufacturing method on structural defects was studied. • Samples were obtained by the use of injection-casting and melt-spinning techniques. • The defects have been indirectly analyzed by approach to ferromagnetic saturation. • Prolonged solidification time allows recombination of atoms arrangement in a volume. • That reduce internal stress and leads to increase in the packing density of atoms. - Abstract: Soft magnetic properties of amorphous alloys are determined by their structure, which strongly depends on their manufacturing method. Alloys obtained in the form of conventional amorphous alloys (tapes) are cooled with a much higher rate than the material obtained in the form of tiles by the injection casting method. The cooling rate and production method determines the type and number of structural defects created in the volume of produced samples. The paper presents an indirect method for the analysis of structural defects and their effect on the magnetic properties of studied alloys. Basing on initial magnetization curve analysis in the area of so-called approach to ferromagnetic saturation was found that point defects were forming in the samples in the form of tapes. The magnetization process of tiles were influenced by the presence of conglomerates of point defects called quasidislocation dipoles

  14. Evaluation and Visualization of Surface Defects - a Numerical and Experimental Study on Sheet-Metal Parts

    International Nuclear Information System (INIS)

    Andersson, A.

    2005-01-01

    The ability to predict surface defects in outer panels is of vital importance in the automotive industry, especially for brands in the premium car segment. Today, measures to prevent these defects can not be taken until a test part has been manufactured, which requires a great deal of time and expense. The decision as to whether a certain surface is of acceptable quality or not is based on subjective evaluation. It is quite possible to detect a defect by measurement, but it is not possible to correlate measured defects and the subjective evaluation. If all results could be based on the same criteria, it would be possible to compare a surface by both FE simulations, experiments and subjective evaluation with the same result.In order to find a solution concerning the prediction of surface defects, a laboratory tool was manufactured and analysed both experimentally and numerically. The tool represents the area around a fuel filler lid and the aim was to recreate surface defects, so-called 'teddy bear ears'. A major problem with the evaluation of such defects is that the panels are evaluated manually and to a great extent subjectivity is involved in the classification and judgement of the defects. In this study the same computer software was used for the evaluation of both the experimental and the numerical results. In this software the surface defects were indicated by a change in the curvature of the panel. The results showed good agreement between numerical and experimental results. Furthermore, the evaluation software gave a good indication of the appearance of the surface defects compared to an analysis done in existing tools for surface quality measurements. Since the agreement between numerical and experimental results was good, this indicates that these tools can be used for an early verification of surface defects in outer panels

  15. Dynamic call center routing policies using call waiting and agent idle times

    NARCIS (Netherlands)

    Chan, W.; Koole, G.M.; L'Ecuyer, P.

    2014-01-01

    We study call routing policies for call centers with multiple call types and multiple agent groups. We introduce new weight-based routing policies where each pair (call type, agent group) is given a matching priority defined as an affine combination of the longest waiting time for that call type and

  16. On holographic defect entropy

    International Nuclear Information System (INIS)

    Estes, John; Jensen, Kristan; O’Bannon, Andy; Tsatis, Efstratios; Wrase, Timm

    2014-01-01

    We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3+1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1+1)-dimensional field theories generalizes to higher dimensions

  17. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  18. Fibrous metaphyseal defects

    International Nuclear Information System (INIS)

    Ritschl, P.; Hajek, P.C.; Pechmann, U.

    1989-01-01

    Sixteen patients with fibrous metaphyseal defects were examined with both plain radiography and magnetic resonance (MR) imaging. Depending on the age of the fibrous metaphyseal defects, characteristic radiomorphologic changes were found which correlated well with MR images. Following intravenous Gadolinium-DTPA injection, fibrous metaphyseal defects invariably exhibited a hyperintense border and signal enhancement. (orig./GDG)

  19. Vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association with Mayer-Rokitansky-Küster-Hauser syndrome in co-occurrence: two case reports and a review of the literature.

    Science.gov (United States)

    Bjørsum-Meyer, Thomas; Herlin, Morten; Qvist, Niels; Petersen, Michael B

    2016-12-21

    The vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome are rare conditions. We aimed to present two cases with the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser co-occurrence from our local surgical center and through a systematic literature search detect published cases. Furthermore, we aimed to collect existing knowledge in the embryopathogenesis and genetics in order to discuss a possible link between the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome. Our first case was a white girl delivered by caesarean section at 37 weeks of gestation; our second case was a white girl born at a gestational age of 40 weeks. A co-occurrence of vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome was diagnosed in both cases. We performed a systematic literature search in PubMed ((VACTERL) OR (VATER)) AND ((MRKH) OR (Mayer-Rokitansky-Küster-Hauser) OR (mullerian agenesis) OR (mullerian aplasia) OR (MURCS)) without limitations. A similar search was performed in Embase and the Cochrane library. We added two cases from our local center. All cases (n = 9) presented with anal atresia and renal defect. Vertebral defects were present in eight patients. Rectovestibular fistula was confirmed in seven patients. Along with the uterovaginal agenesis, fallopian tube aplasia appeared in five of nine cases and in two cases ovarian involvement also existed. The co-occurrence of the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal

  20. Quark Synthesis String Theory From Dark Matter to Light Emitting Atoms

    Science.gov (United States)

    Webb, William

    2012-10-01

    Forefather physicists formulated fusion based on nucleosynthesis. They directed that whole nucleons synthesize. Quark Synthesis String Theory now shows that it's the string-like quarks that do the synthesizing: not whole nucleons. In a dark region, string-like quarks synthesize with other string-like quarks to make rope-like quarks. Quarks structure into threesomes bound only by electrostatic and gravitational forces. Quarks not structuring as threesomes remain dark. Balanced threesomes of string-like quarks become neutrons. Balanced threesomes of rope-like quarks become more massive neutroniumA nuclei. After their formation, neutrons and neutroniumAs quickly begin emitting electrons. This paper develops equations that correctly describe nuclear structures and their electron emissions. Electron emission beta decay is calculated for the 30 least massive neutroniumA nuclei and their subsequent transmutation thru 203 intermediate nuclei on their way to becoming well known nuclei centering the 30 least massive light emitting atoms. This is a perfect 233 for 233 match between calculations of Quark Synthesis String Theory and factual nuclear data. This perfect match provides affirmation that nuclei have no need for the unknown strong or week forces and mediating particles. Nuclear physics succeeds using a string theory that has the quarks doing the synthesizing.

  1. Influence of the medium's dimensionality on defect-mediated turbulence.

    Science.gov (United States)

    St-Yves, Ghislain; Davidsen, Jörn

    2015-03-01

    Spatiotemporal chaos in oscillatory and excitable media is often characterized by the presence of phase singularities called defects. Understanding such defect-mediated turbulence and its dependence on the dimensionality of a given system is an important challenge in nonlinear dynamics. This is especially true in the context of ventricular fibrillation in the heart, where the importance of the thickness of the ventricular wall is contentious. Here, we study defect-mediated turbulence arising in two different regimes in a conceptual model of excitable media and investigate how the statistical character of the turbulence changes if the thickness of the medium is changed from (quasi-) two- dimensional to three dimensional. We find that the thickness of the medium does not have a significant influence in, far from onset, fully developed turbulence while there is a clear transition if the system is close to a spiral instability. We provide clear evidence that the observed transition and change in the mechanism that drives the turbulent behavior is purely a consequence of the dimensionality of the medium. Using filament tracking, we further show that the statistical properties in the three-dimensional medium are different from those in turbulent regimes arising from filament instabilities like the negative line tension instability. Simulations also show that the presence of this unique three-dimensional turbulent dynamics is not model specific.

  2. Aspects of defects in 3d-3d correspondence

    International Nuclear Information System (INIS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-01-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A_N_−_1 on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T_N[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T_N[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  3. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    Science.gov (United States)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts

  4. Defect detection based on extreme edge of defective region histogram

    Directory of Open Access Journals (Sweden)

    Zouhir Wakaf

    2018-01-01

    Full Text Available Automatic thresholding has been used by many applications in image processing and pattern recognition systems. Specific attention was given during inspection for quality control purposes in various industries like steel processing and textile manufacturing. Automatic thresholding problem has been addressed well by the commonly used Otsu method, which provides suitable results for thresholding images based on a histogram of bimodal distribution. However, the Otsu method fails when the histogram is unimodal or close to unimodal. Defects have different shapes and sizes, ranging from very small to large. The gray-level distributions of the image histogram can vary between unimodal and multimodal. Furthermore, Otsu-revised methods, like the valley-emphasis method and the background histogram mode extents, which overcome the drawbacks of the Otsu method, require preprocessing steps and fail to use the general threshold for multimodal defects. This study proposes a new automatic thresholding algorithm based on the acquisition of the defective region histogram and the selection of its extreme edge as the threshold value to segment all defective objects in the foreground from the image background. To evaluate the proposed defect-detection method, common standard images for experimentation were used. Experimental results of the proposed method show that the proposed method outperforms the current methods in terms of defect detection.

  5. 47 CFR 22.921 - 911 call processing procedures; 911-only calling mode.

    Science.gov (United States)

    2010-10-01

    ... programming in the mobile unit that determines the handling of a non-911 call and permit the call to be... CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.921 911 call processing procedures; 911-only calling mode. Mobile telephones manufactured after February 13, 2000 that are capable of...

  6. Synthetic Defects for Vibrothermography

    Science.gov (United States)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  7. Some exact solutions for maximally symmetric topological defects in Anti de Sitter space

    Science.gov (United States)

    Alvarez, Orlando; Haddad, Matthew

    2018-03-01

    We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.

  8. Complex Interaction Mechanisms between Dislocations and Point Defects Studied in Pure Aluminium by a Two-Wave Acoustic Coupling Technique

    Science.gov (United States)

    Bremnes, O.; Progin, O.; Gremaud, G.; Benoit, W.

    1997-04-01

    Ultrasonic experiments using a two-wave coupling technique were performed on 99.999% pure Al in order to study the interaction mechanisms occurring between dislocations and point defects. The coupling technique consists in measuring the attenuation of ultrasonic waves during low-frequency stress cycles (t). One obtains closed curves () called signatures whose shape and evolution are characteristic of the interaction mechanism controlling the low-frequency dislocation motion. The signatures observed were attributed to the interaction of the dislocations with extrinsic point defects. A new interpretation of the evolution of the signatures measured below 200 K with respect to temperature and stress frequency had to be established: they are linked to depinning of immobile point defects, whereas a thermally activated depinning mechanism does not fit the observations. The signatures measured between 200 and 370 K were interpreted as dragging and depinning of extrinsic point defects which are increasingly mobile with temperature.

  9. Irradiation induced defects containing oxygen atoms in germanium crystal as studied by deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Kambe, Yoshiyuki; Saito, Haruo; Matsuda, Koji.

    1984-05-01

    Deep level transient spectroscopy was applied to the electron trapping levels which are associated with the irradiation induced lattice defects in germanium crystals. The germanium crystals used in the study were doped with oxygen, antimony or arsenic and the defects were formed by electron irradiation of 1.5MeV or 10MeV. The nature of so called ''thermal defect'' formed by heat treatment at about 670K was also studied. The trapping levels at Esub(c)-0.13eV, Esub(c)-0.25eV and Esub(c)-0.29eV were found to be associated with defects containing oxygen atoms. From the experimental results the Esub(c)-0.25eV level was attributed to the germanium A-center (interstitial oxygen atom-vacancy pair). Another defect associated with the 715cm -1 infrared absorption band was found to have a trapping level at the same position at Esub(c)-0.25eV. The Esub(c)-0.23eV and Esub(c)-0.1eV levels were revealed to be associated with thermal donors formed by heat treatment at about 670K. Additional two peaks (levels) were observed in the DLTS spectrum. The annealing behavior of the levels suggests that the thermal donors originate from not a single type but several types of defects. (author)

  10. Facts about Birth Defects

    Science.gov (United States)

    ... label> Information For… Media Policy Makers Facts about Birth Defects Language: English (US) Español (Spanish) Recommend on ... having a baby born without a birth defect. Birth Defects Are Common Every 4 ½ minutes, a ...

  11. Fructose-1,6-diphosphatase deficiency: Another enzyme defect which can present itself with the clinical features of “tyrosinosis”

    NARCIS (Netherlands)

    Bakker, H.D.; Bree, P.K. de; Ketting, D.; Sprang, F.J. van; Wadman, S.K.

    1974-01-01

    An infant with a picture of hereditary liver disease corresponding in many respects with so-called “tyrosinosis” is described. The primary defect appeared to be fructose-l,6-diphosphatase deficiency, which was not recognized during the patient's life. Many abnormalities of amino acid metabolism

  12. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  13. Defects in dilute nitrides

    International Nuclear Information System (INIS)

    Chen, W.M.; Buyanova, I.A.; Tu, C.W.; Yonezu, H.

    2005-01-01

    We provide a brief review our recent results from optically detected magnetic resonance studies of grown-in non-radiative defects in dilute nitrides, i.e. Ga(In)NAs and Ga(Al,In)NP. Defect complexes involving intrinsic defects such as As Ga antisites and Ga i self interstitials were positively identified.Effects of growth conditions, chemical compositions and post-growth treatments on formation of the defects are closely examined. These grown-in defects are shown to play an important role in non-radiative carrier recombination and thus in degrading optical quality of the alloys, harmful to performance of potential optoelectronic and photonic devices based on these dilute nitrides. (author)

  14. Feature Subset Selection and Instance Filtering for Cross-project Defect Prediction - Classification and Ranking

    Directory of Open Access Journals (Sweden)

    Faimison Porto

    2016-12-01

    Full Text Available The defect prediction models can be a good tool on organizing the project's test resources. The models can be constructed with two main goals: 1 to classify the software parts - defective or not; or 2 to rank the most defective parts in a decreasing order. However, not all companies maintain an appropriate set of historical defect data. In this case, a company can build an appropriate dataset from known external projects - called Cross-project Defect Prediction (CPDP. The CPDP models, however, present low prediction performances due to the heterogeneity of data. Recently, Instance Filtering methods were proposed in order to reduce this heterogeneity by selecting the most similar instances from the training dataset. Originally, the similarity is calculated based on all the available dataset features (or independent variables. We propose that using only the most relevant features on the similarity calculation can result in more accurate filtered datasets and better prediction performances. In this study we extend our previous work. We analyse both prediction goals - Classification and Ranking. We present an empirical evaluation of 41 different methods by associating Instance Filtering methods with Feature Selection methods. We used 36 versions of 11 open source projects on experiments. The results show similar evidences for both prediction goals. First, the defect prediction performance of CPDP models can be improved by associating Feature Selection and Instance Filtering. Second, no evaluated method presented general better performances. Indeed, the most appropriate method can vary according to the characteristics of the project being predicted.

  15. Genital and Urinary Tract Defects

    Science.gov (United States)

    ... conditions > Genital and urinary tract defects Genital and urinary tract defects E-mail to a friend Please fill ... and extra fluids. What problems can genital and urinary tract defects cause? Genital and urinary tract defects affect ...

  16. Defect engineering of SrTiO3 thin films for resistive switching applications

    International Nuclear Information System (INIS)

    Wicklein, Sebastian

    2013-01-01

    As a matter of fact, the importance of (transition) metal oxides for modern applications in the field of energy and information technology (IT) for e.g. novel energy storage systems and solid state electronic devices is increasing. Previous studies discovered the importance of defects in an oxide for their functionality and emphasized the impact of stoichiometry on the oxide performance. A new field of interest of the memory technology sector is the so-called resistive switching phenomena where a voltage stimulus causes a thin oxide (≤10 nm) to change its resistance state from a high resistance state to a low resistance state and back. So called resistive RAM (ReRAM or RRAM) are deemed to be the future replacement (2015) for contemporary FLASH memory technology due to its extremely low energy consumption, its very fast read/write time (ns) and its possible node size 3 was used as an oxide model material and was deposited by pulsed laser deposition (PLD) onto doped and undoped SrTiO 3 single crystals to investigate the formation of defects as a function of the process parameters. By combining structural and chemical thin film analysis with detailed PLD plume diagnostics and modeling of the laser plume dynamics, it was possible to elucidate the different physical mechanisms determining the stoichiometry of SrTiO 3 during PLD. Deviations between thin film and target stoichiometry are basically a result of two effects, namely, incongruent ablation and preferential scattering of lighter ablated species during their motion towards the substrate in the O 2 background gas. It is shown that the SrTiO 3 system reacts to a non-stoichiometry with the systematic incorporation of titanium and strontium vacancies which could be detected by positron annihilation lifetime spectroscopy. The role of extrinsic dopands such as Fe is shown to have more complicated effects on the SrTiO 3 system than portrayed by theoretical considerations. The effect of defects on the resistive

  17. Point defects and defect clusters examined on the basis of some fundamental experiments

    International Nuclear Information System (INIS)

    Zuppiroli, L.

    1975-01-01

    On progressing from the centre of the defect to the surface the theoretical approach to a point defect passes from electronic theories to elastic theory. Experiments by which the point defect can be observed fall into two categories. Those which detect long-range effects: measurement of dimensional variations in the sample; measurement of the mean crystal parameter variation; elastic X-ray scattering near the nodes of the reciprocal lattice (Huang scattering). Those which detect more local effects: low-temperature resistivity measurement; positron capture and annihilation; local scattering far from the reciprocal lattice nodes. Experiments involving both short and long-range effects can always be found. This is the case for example with the dechanneling of α particles by defects. Certain of the experimental methods quoted above apply also to the study of point defect clusters. These methods are illustrated by some of their most striking results which over the last twenty years have refined our knowledge of point defects and defect clusters: length and crystal parameter measurements; diffuse X-ray scattering; low-temperature resistivity measurements; ion emission microscopy; electron microscopy; elastoresistivity [fr

  18. Birth Defects (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Birth Defects KidsHealth / For Parents / Birth Defects What's in ... Prevented? Print en español Anomalías congénitas What Are Birth Defects? While still in the womb, some babies ...

  19. Defect of the Eyelids.

    Science.gov (United States)

    Lu, Guanning Nina; Pelton, Ron W; Humphrey, Clinton D; Kriet, John David

    2017-08-01

    Eyelid defects disrupt the complex natural form and function of the eyelids and present a surgical challenge. Detailed knowledge of eyelid anatomy is essential in evaluating a defect and composing a reconstructive plan. Numerous reconstructive techniques have been described, including primary closure, grafting, and a variety of local flaps. This article describes an updated reconstructive ladder for eyelid defects that can be used in various permutations to solve most eyelid defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Formation of topological defects

    International Nuclear Information System (INIS)

    Vachaspati, T.

    1991-01-01

    We consider the formation of point and line topological defects (monopoles and strings) from a general point of view by allowing the probability of formation of a defect to vary. To investigate the statistical properties of the defects at formation we give qualitative arguments that are independent of any particular model in which such defects occur. These arguments are substantiated by numerical results in the case of strings and for monopoles in two dimensions. We find that the network of strings at formation undergoes a transition at a certain critical density below which there are no infinite strings and the closed-string (loop) distribution is exponentially suppressed at large lengths. The results are contrasted with the results of statistical arguments applied to a box of strings in dynamical equilibrium. We argue that if point defects were to form with smaller probability, the distance between monopoles and antimonopoles would decrease while the monopole-to-monopole distance would increase. We find that monopoles are always paired with antimonopoles but the pairing becomes clean only when the number density of defects is small. A similar reasoning would also apply to other defects

  1. Photographic guide of selected external defect indicators and associated internal defects in sugar maple

    Science.gov (United States)

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for sugar maple. Eleven types of external...

  2. Photographic guide of selected external defect indicators and associated internal defects in yellow-poplar

    Science.gov (United States)

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for yellow-poplar. Twelve types of external...

  3. Photographic guide of selected external defect indicators and associated internal defects in yellow birch

    Science.gov (United States)

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for yellow birch. Eleven types of external...

  4. Distribution of defects in wind turbine blades and reliability assessment of blades containing defects

    DEFF Research Database (Denmark)

    Stensgaard Toft, Henrik; Branner, Kim; Berring, Peter

    2009-01-01

    on the assumption that one error in the production process tends to trigger several defects. For both models additional information about number, type and size of the defects is included as stochastic variables. The probability of failure for a wind turbine blade will not only depend on variations in the material......In the present paper two stochastic models for the distribution of defects in wind turbine blades are proposed. The first model assumes that the individual defects are completely randomly distributed in the blade. The second model assumes that the defects occur in clusters of different size based...... properties and the load but also on potential defects in the blades. As a numerical example the probability of failure is calculated for the main spar both with and without defects in terms of delaminations. The delaminations increase the probability of failure compared to a perfect blade, but by applying...

  5. Entanglement entropy in integrable field theories with line defects II. Non-topological defect

    Science.gov (United States)

    Jiang, Yunfeng

    2017-08-01

    This is the second part of two papers where we study the effect of integrable line defects on bipartite entanglement entropy in integrable field theories. In this paper, we consider non-topological line defects in Ising field theory. We derive an infinite series expression for the entanglement entropy and show that both the UV and IR limits of the bulk entanglement entropy are modified by the line defect. In the UV limit, we give an infinite series expression for the coefficient in front of the logarithmic divergence and the exact defect g-function. By tuning the defect to be purely transmissive and reflective, we recover correctly the entanglement entropy of the bulk and with integrable boundary respectively.

  6. Accuracy of virtual models in the assessment of maxillary defects

    International Nuclear Information System (INIS)

    Kamburoglu, Kivanc; Kursun, Sebnem; Kilic, Cenk; Eozen, Tuncer

    2015-01-01

    This study aimed to assess the reliability of measurements performed on three-dimensional (3D) virtual models of maxillary defects obtained using cone-beam computed tomography (CBCT) and 3D optical scanning. Mechanical cavities simulating maxillary defects were prepared on the hard palate of nine cadavers. Images were obtained using a CBCT unit at three different fields-of-views (FOVs) and voxel sizes: 1) 60 X 60 mm FOV, 0.125 mm 3 (FOV 60 ); 2) 80 X 80 mm FOV, 0.160 mm 3 (FOV 80 ); and 3) 100 X 100 mm FOV, 0.250 mm 3 (FOV 100 ). Superimposition of the images was performed using software called VRMesh Design. Automated volume measurements were conducted, and differences between surfaces were demonstrated. Silicon impressions obtained from the defects were also scanned with a 3D optical scanner. Virtual models obtained using VRMesh Design were compared with impressions obtained by scanning silicon models. Gold standard volumes of the impression models were then compared with CBCT and 3D scanner measurements. Further, the general linear model was used, and the significance was set to p=0.05. A comparison of the results obtained by the observers and methods revealed the p values to be smaller than 0.05, suggesting that the measurement variations were caused by both methods and observers along with the different cadaver specimens used. Further, the 3D scanner measurements were closer to the gold standard measurements when compared to the CBCT measurements. In the assessment of artificially created maxillary defects, the 3D scanner measurements were more accurate than the CBCT measurements.

  7. Accuracy of virtual models in the assessment of maxillary defects

    Energy Technology Data Exchange (ETDEWEB)

    Kamburoglu, Kivanc [Dept. of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara (Turkmenistan); Kursun, Sebnem [Division of Dentomaxillofacial Radiology, Ministry of Health, Oral and Dental Health Center, Bolu (Turkmenistan); Kilic, Cenk; Eozen, Tuncer [Gealhane Military Medical Academy, Ankara, (Turkmenistan)

    2015-03-15

    This study aimed to assess the reliability of measurements performed on three-dimensional (3D) virtual models of maxillary defects obtained using cone-beam computed tomography (CBCT) and 3D optical scanning. Mechanical cavities simulating maxillary defects were prepared on the hard palate of nine cadavers. Images were obtained using a CBCT unit at three different fields-of-views (FOVs) and voxel sizes: 1) 60 X 60 mm FOV, 0.125 mm{sup 3} (FOV{sub 60}); 2) 80 X 80 mm FOV, 0.160 mm{sup 3} (FOV{sub 80}); and 3) 100 X 100 mm FOV, 0.250 mm{sup 3} (FOV{sub 100}). Superimposition of the images was performed using software called VRMesh Design. Automated volume measurements were conducted, and differences between surfaces were demonstrated. Silicon impressions obtained from the defects were also scanned with a 3D optical scanner. Virtual models obtained using VRMesh Design were compared with impressions obtained by scanning silicon models. Gold standard volumes of the impression models were then compared with CBCT and 3D scanner measurements. Further, the general linear model was used, and the significance was set to p=0.05. A comparison of the results obtained by the observers and methods revealed the p values to be smaller than 0.05, suggesting that the measurement variations were caused by both methods and observers along with the different cadaver specimens used. Further, the 3D scanner measurements were closer to the gold standard measurements when compared to the CBCT measurements. In the assessment of artificially created maxillary defects, the 3D scanner measurements were more accurate than the CBCT measurements.

  8. Fanconi anemia: a disorder defective in the DNA damage response.

    Science.gov (United States)

    Kitao, Hiroyuki; Takata, Minoru

    2011-04-01

    Fanconi anemia (FA) is a cancer predisposition disorder characterized by progressive bone marrow failure, congenital developmental defects, chromosomal abnormalities, and cellular hypersensitivity to DNA interstrand crosslink (ICL) agents. So far mutations in 14 FANC genes were identified in FA or FA-like patients. These gene products constitute a common ubiquitin-phosphorylation network called the "FA pathway" and cooperate with other proteins involved in DNA repair and cell cycle control to repair ICL lesions and to maintain genome stability. In this review, we summarize recent exciting discoveries that have expanded our view of the molecular mechanisms operating in DNA repair and DNA damage signaling.

  9. Increasing reticle inspection efficiency and reducing wafer print-checks using automated defect classification and simulation

    Science.gov (United States)

    Ryu, Sung Jae; Lim, Sung Taek; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan

    2013-09-01

    IC fabs inspect critical masks on a regular basis to ensure high wafer yields. These requalification inspections are costly for many reasons including the capital equipment, system maintenance, and labor costs. In addition, masks typically remain in the "requal" phase for extended, non-productive periods of time. The overall "requal" cycle time in which reticles remain non-productive is challenging to control. Shipping schedules can slip when wafer lots are put on hold until the master critical layer reticle is returned to production. Unfortunately, substituting backup critical layer reticles can significantly reduce an otherwise tightly controlled process window adversely affecting wafer yields. One major requal cycle time component is the disposition process of mask inspections containing hundreds of defects. Not only is precious non-productive time extended by reviewing hundreds of potentially yield-limiting detections, each additional classification increases the risk of manual review techniques accidentally passing real yield limiting defects. Even assuming all defects of interest are flagged by operators, how can any person's judgment be confident regarding lithographic impact of such defects? The time reticles spend away from scanners combined with potential yield loss due to lithographic uncertainty presents significant cycle time loss and increased production costs. Fortunately, a software program has been developed which automates defect classification with simulated printability measurement greatly reducing requal cycle time and improving overall disposition accuracy. This product, called ADAS (Auto Defect Analysis System), has been tested in both engineering and high-volume production environments with very successful results. In this paper, data is presented supporting significant reduction for costly wafer print checks, improved inspection area productivity, and minimized risk of misclassified yield limiting defects.

  10. Modeling of punctual defects in UAL4 from the U-Al system: Combination of CALPHAD method with first principles calculation

    International Nuclear Information System (INIS)

    Kniznik, L; Alonso, P.R; Gargano, P.H; Rubiolo, G.H.

    2012-01-01

    We investigated the point defect structure of oI20 UAl 4 in order to study aluminum diffusion. We performed ab initio calculations within a pseudopotentials method implemented in the Vienna Ab initio Simulation Package (VASP) to obtain point defect formation energies: vacancies (V U and V A l ) and antisites (Al U and U A l). Using a statistical-thermodynamic model we calculated defects concentrations as function of temperature and deviation from stoichiometry. For stoichiometric UAl 4 antisites are the dominant thermal defects. In off-stoichiometric UAl 4 , antisites are the constitutional defects. For U-rich UAl 4 , the thermal defect is called Entre Ramas, where one antisite U atom is replaced by five Al vacancies. For Al-rich UAl 4 , the thermal defect is also an Entre Ramas, where four antisite Al atoms are replaced by five U vacancies. Our first principles results were used to model UAl 4 intermediate phase with a two sublattices Wagner-Schottky model. The Thermocalc data bases previously used were modified, including antisites and vacancies in both sublattices of the UAl 4 intermediate phase: (U,Al,VA) 0.2 : (Al,U,VA) 0.8 . We obtained a consistent thermodynamic database able to reproduce the entire U-Al equilibrium phase diagram (author)

  11. Natural defects and defects created by ionic implantation in zinc tellurium

    International Nuclear Information System (INIS)

    Roche, J.P.; Dupuy, M.; Pfister, J.C.

    1977-01-01

    Various defects have been studied in ZnTe crystals by transmission electron microscope and by scanning electron microscope in cathodo-luminescence mode: grain boundaries, sub-grain boundaries, twins. Ionic implants of boron (100 keV - 2x10 14 and 10 15 ions cm -2 ) were made on these crystals followed by isochrone annealing (30 minutes) of zinc under partial pressure at 550, 650 and 750 0 C. The nature of the defects was determined by transmission electron microscope: these are interstitial loops (b=1/3 ) the size of which varies between 20 A (non-annealed sample) and 180A (annealed at 750 0 C). The transmission electron microscope was also used to make concentration profiles of defects depending on depth. It is found that for the same implant (2x10 14 ions.cm -2 ), the defect peak moves towards the exterior of the crystal as the annealing temperature rises (400 - 1000 and 7000 A for the three annealings). These results are explained from a model which allows for the coalescence of defects and considers the surface of the sample as being the principal source of vacancies. During the annealings, the migration of vacancies brings about the gradual annihilation of the implant defects. The adjustment of certain calculation parameters on the computer result in giving 2 eV as energy value for the formation of vacancies [fr

  12. A Rare Anterior Abdominal Wall Defect: Omphalocele - A Case Report

    Directory of Open Access Journals (Sweden)

    Sandeep Vilasrao Pakhale

    2015-01-01

    Full Text Available Two most common anterior abdominal wall defects are gastroschisis and omphalocoele or exomphalos. Gastroschisis means 'stomach cleft' which is a congenital defect of the abdominal wall, usually to the right of the umbilical cord insertion and abdominal contents herniate into the amniotic sac. Exomphalos is literally translated from the Greek, means 'outside the navel'. It is also called an Omphalocele. It is a congenital abnormality in which the contents of the abdomen herniate into the umbilical cord through the umbilical ring. Textbooks grouped them together but these are different entities. These congenital malformations have a high mortality rate. Only about 60 % of children with such type of malformations survive until the end of first year of age. A male foetus of 32 weeks gestational age was sent from Dr. Ulhas Patil Medical College and Hospital, Jalgaon (Khurd to the Department of Anatomy to examine the fetus for congenital anomalies. A case report of an Omphalocele was presented. Occurrence of such cases is very rare about 2.17 per 10000 live births as reported in literature.

  13. Anisotrophic currents and flux jumps in high-T-c superconducting films with self-organized arrays of planar defects

    DEFF Research Database (Denmark)

    Yurchenko, V.V.; Qviller, A.J.; Mozhaev, P.B.

    2010-01-01

    Regular arrays of planar defects with a period of a few nanometers can be introduced in superconducting YBa2Cu3O7-delta (YBCO) thin films by depositing them on vicinal (also called miscut or tilted) substrates. This results in the anisotropy of critical currents flowing in the plane of the film. ...

  14. Modeling the relationships among internal defect features and external Appalachian hardwood log defect indicators

    Science.gov (United States)

    R. Edward. Thomas

    2009-01-01

    As a hardwood tree grows and develops, surface defects such as branch stubs and wounds are overgrown. Evidence of these defects remain on the log surface for decades and in many instances for the life of the tree. As the tree grows the defect is encapsulated or grown over by new wood. During this process the appearance of the defect in the tree's bark changes. The...

  15. Automatic classification of blank substrate defects

    Science.gov (United States)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask

  16. Perceiving a calling, living a calling, and job satisfaction: testing a moderated, multiple mediator model.

    Science.gov (United States)

    Duffy, Ryan D; Bott, Elizabeth M; Allan, Blake A; Torrey, Carrie L; Dik, Bryan J

    2012-01-01

    The current study examined the relation between perceiving a calling, living a calling, and job satisfaction among a diverse group of employed adults who completed an online survey (N = 201). Perceiving a calling and living a calling were positively correlated with career commitment, work meaning, and job satisfaction. Living a calling moderated the relations of perceiving a calling with career commitment and work meaning, such that these relations were more robust for those with a stronger sense they were living their calling. Additionally, a moderated, multiple mediator model was run to examine the mediating role of career commitment and work meaning in the relation of perceiving a calling and job satisfaction, while accounting for the moderating role of living a calling. Results indicated that work meaning and career commitment fully mediated the relation between perceiving a calling and job satisfaction. However, the indirect effects of work meaning and career commitment were only significant for individuals with high levels of living a calling, indicating the importance of living a calling in the link between perceiving a calling and job satisfaction. Implications for research and practice are discussed. (c) 2012 APA, all rights reserved.

  17. Call Center Capacity Planning

    DEFF Research Database (Denmark)

    Nielsen, Thomas Bang

    in order to relate the results to the service levels used in call centers. Furthermore, the generic nature of the approximation is demonstrated by applying it to a system incorporating a dynamic priority scheme. In the last paper Optimization of overflow policies in call centers, overflows between agent......The main topics of the thesis are theoretical and applied queueing theory within a call center setting. Call centers have in recent years become the main means of communication between customers and companies, and between citizens and public institutions. The extensively computerized infrastructure...... in modern call centers allows for a high level of customization, but also induces complicated operational processes. The size of the industry together with the complex and labor intensive nature of large call centers motivates the research carried out to understand the underlying processes. The customizable...

  18. Holographic Chern-Simons defects

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-01-01

    We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  19. Calle Blanco

    Directory of Open Access Journals (Sweden)

    Gonzalo Cerda Brintrup

    1988-06-01

    Full Text Available Importante arteria, que comunica el sector del puerto con la plaza. Las más imponentes construcciones se sucedían de un modo continuo, encaramándose a ambos lados de la empinada calle. Antes del gran incendio de 1936 grandes casonas de madera destacaban en calle Irarrázabal y en la esquina de ésta con calle Blanco, la más hermosa construcción pertenecía a don Alberto Oyarzún y la casa vecina hacia Blanco era de don Mateo Miserda, limitada por arriba con la casa de don Augusto Van Der Steldt y ésta era seguida de la casa de don David Barrientos provista de cuatro cúpulas en las esquinas y de un amplio corredor en el frontis. Todas estas construcciones de madera fueron destruidas en el gran incendio de 1936.

  20. Composição volátil dos defeitos intrínsecos do café por CG/EM-headspace Volatile composition of intrinsic defective coffee beans by GC/MS-headspace

    Directory of Open Access Journals (Sweden)

    Raquel D. C. C. Bandeira

    2009-01-01

    Full Text Available About 20% of Brazilian raw coffee production is considered inappropriate for exportation. Consequently, these beans are incorporated to good quality beans in the Brazilian market. This by-product of coffee industry is called PVA due to the presence of black (P, green (V and sour (A defective beans which are known to contribute considerably for cup quality decrease. Data on the volatile composition of Brazilian defective coffee beans are scarce. In this study, we evaluated the volatile composition of immature, black-immature, black defective beans and PVA compared to good quality beans. Potential defective beans markers were identified.

  1. Point defects in solids

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The principal properties of point defects are studied: thermodynamics, electronic structure, interactions with etended defects, production by irradiation. Some measuring methods are presented: atomic diffusion, spectroscopic methods, diffuse scattering of neutron and X rays, positron annihilation, molecular dynamics. Then points defects in various materials are investigated: ionic crystals, oxides, semiconductor materials, metals, intermetallic compounds, carbides, nitrides [fr

  2. Defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Ibrahim Ahmad; Ab Razak Hamzah; Wan Saffiey Wan Abdullah

    2008-08-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 kWatt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with ThermofitTMPro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔΤ m ax and the time of its appearance, τ m ax (ΔΤ). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔΤ m ax), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defects are at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (Author)

  3. Surgical Management of Large Periorbital Cutaneous Defects: Aesthetic Considerations and Technique Refinements.

    Science.gov (United States)

    Zou, Yun; Hu, Li; Tremp, Mathias; Jin, Yunbo; Chen, Hui; Ma, Gang; Lin, Xiaoxi

    2018-02-23

    The aim of this study was to repair large periorbital cutaneous defects by an innovative technique called PEPSI (periorbital elevation and positioning with secret incisions) technique with functional and aesthetic outcomes. In this retrospective study, unilateral periorbital cutaneous defects in 15 patients were repaired by the PEPSI technique. The ages of patients ranged from 3 to 46 years (average, 19 years). The outcome evaluations included scars (Vancouver Scar Scale and visual analog scale score), function and aesthetic appearance of eyelids, and patient satisfaction. The repair size was measured by the maximum advancement distance of skin flap during operation. All patients achieved an effective repair with a mean follow-up of 18.3 months. Except one with a small (approximately 0.3 cm) necrosis, all patients healed with no complication. The mean Vancouver Scar Scale and visual analog scale scores were 2.1 ± 1.7 and 8.5 ± 1.2, respectively. Ideal cosmetic and functional outcomes were achieved in 14 patients (93.3%). All patients achieved complete satisfaction except 1 patient with partial satisfaction. The mean maximum advancement distance of skin flap was 20.2 mm (range, 8-50 mm). This study demonstrated that the PEPSI technique is an effective method to repair large periorbital cutaneous defects with acceptable functional and aesthetic outcomes.

  4. EUV actinic defect inspection and defect printability at the sub-32 nm half pitch

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Sungmin; Kearney, Patrick; Wurm, Stefan; Goodwin, Frank; Han, Hakseung; Goldberg, Kenneth; Mochi, Iacopp; Gullikson, Eric M.

    2009-08-01

    Extreme ultraviolet (EUV) mask blanks with embedded phase defects were inspected with a reticle actinic inspection tool (AIT) and the Lasertec M7360. The Lasertec M7360, operated at SEMA TECH's Mask Blank Development Center (MBDC) in Albany, NY, has a sensitivity to multilayer defects down to 40-45 nm, which is not likely sufficient for mask blank development below the 32 nm half-pitch node. Phase defect printability was simulated to calculate the required defect sensitivity for a next generation blank inspection tool to support reticle development for the sub-32 nm half-pitch technology node. Defect mitigation technology is proposed to take advantage of mask blanks with some defects. This technology will reduce the cost of ownership of EUV mask blanks. This paper will also discuss the kind of infrastructure that will be required for the development and mass production stages.

  5. Accurate defect die placement and nuisance defect reduction for reticle die-to-die inspections

    Science.gov (United States)

    Wen, Vincent; Huang, L. R.; Lin, C. J.; Tseng, Y. N.; Huang, W. H.; Tuo, Laurent C.; Wylie, Mark; Chen, Ellison; Wang, Elvik; Glasser, Joshua; Kelkar, Amrish; Wu, David

    2015-10-01

    Die-to-die reticle inspections are among the simplest and most sensitive reticle inspections because of the use of an identical-design neighboring-die for the reference image. However, this inspection mode can have two key disadvantages: (1) The location of the defect is indeterminate because it is unclear to the inspector whether the test or reference image is defective; and (2) nuisance and false defects from mask manufacturing noise and tool optical variation can limit the usable sensitivity. The use of a new sequencing approach for a die-to-die inspection can resolve these issues without any additional scan time, without sacrifice in sensitivity requirement, and with a manageable increase in computation load. In this paper we explore another approach for die-to-die inspections using a new method of defect processing and sequencing. Utilizing die-to-die double arbitration during defect detection has been proven through extensive testing to generate accurate placement of the defect in the correct die to ensure efficient defect disposition at the AIMS step. The use of this method maintained the required inspection sensitivity for mask quality as verified with programmed-defectmask qualification and then further validated with production masks comparing the current inspection approach to the new method. Furthermore, this approach can significantly reduce the total number of defects that need to be reviewed by essentially eliminating the nuisance and false defects that can result from a die-to-die inspection. This "double-win" will significantly reduce the effort in classifying a die-to-die inspection result and will lead to improved cycle times.

  6. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    Science.gov (United States)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  7. Surface defects and chiral algebras

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States); Gaiotto, Davide [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Shao, Shu-Heng [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States)

    2017-05-26

    We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.

  8. Perceiving a Calling, Living a Calling, and Job Satisfaction: Testing a Moderated, Multiple Mediator Model

    Science.gov (United States)

    Duffy, Ryan D.; Bott, Elizabeth M.; Allan, Blake A.; Torrey, Carrie L.; Dik, Bryan J.

    2012-01-01

    The current study examined the relation between perceiving a calling, living a calling, and job satisfaction among a diverse group of employed adults who completed an online survey (N = 201). Perceiving a calling and living a calling were positively correlated with career commitment, work meaning, and job satisfaction. Living a calling moderated…

  9. Laterality defects in the national birth defects prevention study 1998-2007 birth prevalence and descriptive epidemiology

    Science.gov (United States)

    Little is known epidemiologically about laterality defects. Using data from the National Birth Defects Prevention Study (NBDPS), a large multi-site case-control study of birth defects, we analyzed prevalence and selected characteristics in children born with laterality defects born from 1998 to 2007...

  10. Unjoined primary and secondary neural tubes: junctional neural tube defect, a new form of spinal dysraphism caused by disturbance of junctional neurulation.

    Science.gov (United States)

    Eibach, Sebastian; Moes, Greg; Hou, Yong Jin; Zovickian, John; Pang, Dachling

    2017-10-01

    Primary and secondary neurulation are the two known processes that form the central neuraxis of vertebrates. Human phenotypes of neural tube defects (NTDs) mostly fall into two corresponding categories consistent with the two types of developmental sequence: primary NTD features an open skin defect, an exposed, unclosed neural plate (hence an open neural tube defect, or ONTD), and an unformed or poorly formed secondary neural tube, and secondary NTD with no skin abnormality (hence a closed NTD) and a malformed conus caudal to a well-developed primary neural tube. We encountered three cases of a previously unrecorded form of spinal dysraphism in which the primary and secondary neural tubes are individually formed but are physically separated far apart and functionally disconnected from each other. One patient was operated on, in whom both the lumbosacral spinal cord from primary neurulation and the conus from secondary neurulation are each anatomically complete and endowed with functioning segmental motor roots tested by intraoperative triggered electromyography and direct spinal cord stimulation. The remarkable feature is that the two neural tubes are unjoined except by a functionally inert, probably non-neural band. The developmental error of this peculiar malformation probably occurs during the critical transition between the end of primary and the beginning of secondary neurulation, in a stage aptly called junctional neurulation. We describe the current knowledge concerning junctional neurulation and speculate on the embryogenesis of this new class of spinal dysraphism, which we call junctional neural tube defect.

  11. Behavioral Preferences for Individual Securities : The Case for Call Warrants and Call Options

    NARCIS (Netherlands)

    Ter Horst, J.R.; Veld, C.H.

    2002-01-01

    Since 1998, large investment banks have flooded the European capital markets with issues of call warrants.This has led to a unique situation in the Netherlands, where now call warrants, traded on the stock exchange, and long-term call options, traded on the options exchange, exist.Both entitle their

  12. Tool Measures Depths of Defects on a Case Tang Joint

    Science.gov (United States)

    Ream, M. Bryan; Montgomery, Ronald B.; Mecham, Brent A.; Keirstead, Bums W.

    2005-01-01

    A special-purpose tool has been developed for measuring the depths of defects on an O-ring seal surface. The surface lies in a specially shaped ringlike fitting, called a capture feature tang, located on an end of a cylindrical segment of a case that contains a solid-fuel booster rocket motor for launching a space shuttle. The capture feature tang is a part of a tang-and-clevis, O-ring joint between the case segment and a similar, adjacent cylindrical case segment. When the segments are joined, the tang makes an interference fit with the clevis and squeezes the O-ring at the side of the gap.

  13. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff

    2015-01-01

    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  14. 48 CFR 1615.407-1 - Rate reduction for defective pricing or defective cost or pricing data.

    Science.gov (United States)

    2010-10-01

    ... defective pricing or defective cost or pricing data. 1615.407-1 Section 1615.407-1 Federal Acquisition... CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 1615.407-1 Rate reduction for defective pricing or defective cost or pricing data. The clause set forth in section 1652.215-70...

  15. 48 CFR 1652.215-70 - Rate Reduction for Defective Pricing or Defective Cost or Pricing Data.

    Science.gov (United States)

    2010-10-01

    ... Defective Pricing or Defective Cost or Pricing Data. 1652.215-70 Section 1652.215-70 Federal Acquisition... CLAUSES AND FORMS CONTRACT CLAUSES Texts of FEHBP Clauses 1652.215-70 Rate Reduction for Defective Pricing or Defective Cost or Pricing Data. As prescribed in 1615.407-1, the following clause shall be...

  16. Point defects in platinum

    International Nuclear Information System (INIS)

    Piercy, G.R.

    1960-01-01

    An investigation was made of the mobility and types of point defect introduced in platinum by deformation in liquid nitrogen, quenching into water from 1600 o C, or reactor irradiation at 50 o C. In all cases the activation energy for motion of the defect was determined from measurements of electrical resistivity. Measurements of density, hardness, and x-ray line broadening were also made there applicable. These experiments indicated that the principal defects remaining in platinum after irradiation were single vacant lattice sites and after quenching were pairs of vacant lattice sites. Those present after deformation In liquid nitrogen were single vacant lattice sites and another type of defect, perhaps interstitial atoms. (author)

  17. "Product on Stopper" in a Lyophilized Drug Product: Cosmetic Defect or a Product Quality Concern?

    Science.gov (United States)

    Mehta, Shyam B; Roy, Shouvik; Yang, Han-Chang Cathy

    2018-06-01

    During manufacturing of a lyophilized drug product, operator errors in product handling during loading of product filled vials onto the lyophilizer can lead to a seemingly cosmetic defect which can impact certain critical quality attributes of finished product. In this study, filling of a formulated monoclonal antibody in vials was performed using a peristaltic pump filling unit, and subsequently, the product was lyophilized. After lyophilization, upon visual inspection, around 40% of vials had cosmetic defect with residual product around stopper of the vial and were categorized as "product on stopper" vials, whereas remaining 60% vials with no cosmetic defect were called "acceptable vials." Both groups of vials from 1 single batch were tested for critical quality attributes including protein concentration (ultraviolet absorbance at 280), residual moisture (Karl Fischer), sterility (membrane filtration), and container closure integrity (CCI) (blue dye ingress). Analysis of protein quality attributes such as aggregation, protein concentration, residual moisture showed no significant difference between vials with "product on stopper" and "acceptable vials." However, CCI of the "product on stopper" vials was compromised due to the presence of product around stopper of the vial. The results from this case study demonstrate the following 2 important findings: (1) that a seemingly cosmetic defect may impact product quality, compromising the integrity of the product and (2) that CCI test method can be used as an orthogonal method to sterility testing to evaluate sterility assurance of the product. The corrective action proposed to mitigate this defect is use of a larger sized vial that can potentially minimize this defect that arises because of product handling errors. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. On the influence of extrinsic point defects on irradiation-induced point-defect distributions in silicon

    International Nuclear Information System (INIS)

    Vanhellemont, J.; Romano-Rodriguez, A.

    1994-01-01

    A semi-quantitative model describing the influence of interfaces and stress fields on {113}-defect generation in silicon during 1-MeV electron irradiation, is further developed to take into account also the role of extrinsic point defects. It is shown that the observed distribution of {113}-defects in high-flux electron-irradiated silicon and its dependence on irradiation temperature and dopant concentration can be understood by taking into account not only the influence of the surfaces and interfaces as sinks for intrinsic point defects but also the thermal stability of the bulk sinks for intrinsic point defects. In heavily doped silicon the bulk sinks are related with pairing reactions of the dopant atoms with the generated intrinsic point defects or related with enhanced recombination of vacancies and self-interstitials at extrinsic point defects. The obtained theoretical results are correlated with published experimental data on boron-and phosphorus-doped silicon and are illustrated with observations obtained by irradiating cross-section transmission electron microscopy samples of wafer with highly doped surface layers. (orig.)

  19. Reliability-based management of buried pipelines considering external corrosion defects

    Science.gov (United States)

    Miran, Seyedeh Azadeh

    Corrosion is one of the main deteriorating mechanisms that degrade the energy pipeline integrity, due to transferring corrosive fluid or gas and interacting with corrosive environment. Corrosion defects are usually detected by periodical inspections using in-line inspection (ILI) methods. In order to ensure pipeline safety, this study develops a cost-effective maintenance strategy that consists of three aspects: corrosion growth model development using ILI data, time-dependent performance evaluation, and optimal inspection interval determination. In particular, the proposed study is applied to a cathodic protected buried steel pipeline located in Mexico. First, time-dependent power-law formulation is adopted to probabilistically characterize growth of the maximum depth and length of the external corrosion defects. Dependency between defect depth and length are considered in the model development and generation of the corrosion defects over time is characterized by the homogenous Poisson process. The growth models unknown parameters are evaluated based on the ILI data through the Bayesian updating method with Markov Chain Monte Carlo (MCMC) simulation technique. The proposed corrosion growth models can be used when either matched or non-matched defects are available, and have ability to consider newly generated defects since last inspection. Results of this part of study show that both depth and length growth models can predict damage quantities reasonably well and a strong correlation between defect depth and length is found. Next, time-dependent system failure probabilities are evaluated using developed corrosion growth models considering prevailing uncertainties where three failure modes, namely small leak, large leak and rupture are considered. Performance of the pipeline is evaluated through failure probability per km (or called a sub-system) where each subsystem is considered as a series system of detected and newly generated defects within that sub

  20. The HysNiche trial: hysteroscopic resection of uterine caesarean scar defect (niche) in patients with abnormal bleeding, a randomised controlled trial

    NARCIS (Netherlands)

    Vervoort, A. J. M. W.; van der Voet, L. F.; Witmer, M.; Thurkow, A. L.; Radder, C. M.; van Kesteren, P. J. M.; Quartero, H. W. P.; Kuchenbecker, W. K. H.; Bongers, M. Y.; Geomini, P. M. A. J.; de Vleeschouwer, L. H. M.; van Hooff, M. H. A.; van Vliet, H. A. A. M.; Veersema, S.; Renes, W. B.; van Meurs, H. S.; Bosmans, J.; Oude Rengerink, K.; Brölmann, H. A. M.; Mol, B. W. J.; Huirne, J. A. F.

    2015-01-01

    A caesarean section (CS) can cause a defect or disruption of the myometrium at the site of the uterine scar, called a niche. In recent years, an association between a niche and postmenstrual spotting after a CS has been demonstrated. Hysteroscopic resection of these niches is thought to reduce

  1. Meissner effect and a stringlike interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Chandrasekhar [Keio University, Department of Physics at Hiyoshi, and Research and Education Center for Natural Sciences, Yokohama, Kanagawa (Japan); Choudhury, Ishita Dutta; Lahiri, Amitabha [S N Bose National Centre for Basic Sciences, Kolkata, Salt Lake (India)

    2017-05-15

    We find that a recently proposed interaction involving the vorticity current of electrons, which radiatively induces a photon mass in 3 + 1 dimensions in the low-energy effective theory, corresponds to confining strings (linear potential) between electrons. (orig.)

  2. Congenital Heart Defects and CCHD

    Science.gov (United States)

    ... and more. Stony Point, NY 10980 Close X Home > Complications & Loss > Birth defects & other health conditions > Congenital heart defects and ... in congenital heart defects. You have a family history of congenital heart ... syndrome or VCF. After birth Your baby may be tested for CCHD as ...

  3. Neutron diffraction and lattice defects

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu

    1974-01-01

    Study on lattice defects by neutron diffraction technique is described. Wave length of neutron wave is longer than that of X-ray, and absorption cross-section is small. Number of defects observed by ESR is up to several defects, and the number studied with electron microscopes is more than 100. Information obtained by neutron diffraction concerns the number of defects between these two ranges. For practical analysis, several probable models are selected from the data of ESR or electron microscopes, and most probable one is determined by calculation. Then, defect concentration is obtained from scattering cross section. It is possible to measure elastic scattering exclusively by neutron diffraction. Minimum detectable concentration estimated is about 0.5% and 10 20 - 10 21 defects per unit volume. A chopper and a time of flight system are used as a measuring system. Cold neutrons are obtained from the neutron sources inserted into reactors. Examples of measurements by using similar equipments to PTNS-I system of Japan Atomic Energy Research Institute are presented. Interstitial concentration in the graphite irradiated by fast neutrons is shown. Defects in irradiated MgO were also investigated by measuring scattering cross section. Study of defects in Ge was made by measuring total cross section, and model analysis was performed in comparison with various models. (Kato, T.)

  4. Varying stiffness and load distributions in defective ball bearings: Analytical formulation and application to defect size estimation

    Science.gov (United States)

    Petersen, Dick; Howard, Carl; Prime, Zebb

    2015-02-01

    This paper presents an analytical formulation of the load distribution and varying effective stiffness of a ball bearing assembly with a raceway defect of varying size, subjected to static loading in the radial, axial and rotational degrees of freedom. The analytical formulation is used to study the effect of the size of the defect on the load distribution and varying stiffness of the bearing assembly. The study considers a square-shaped outer raceway defect centered in the load zone and the bearing is loaded in the radial and axial directions while the moment loads are zero. Analysis of the load distributions shows that as the defect size increases, defect-free raceway sections are subjected to increased static loading when one or more balls completely or partly destress when positioned in the defect zone. The stiffness variations that occur when balls pass through the defect zone are significantly larger and change more rapidly at the defect entrance and exit than the stiffness variations that occur for the defect-free bearing case. These larger, more rapid stiffness variations generate parametric excitations which produce the low frequency defect entrance and exit events typically observed in the vibration response of a bearing with a square-shaped raceway defect. Analysis of the stiffness variations further shows that as the defect size increases, the mean radial stiffness decreases in the loaded radial and axial directions and increases in the unloaded radial direction. The effects of such stiffness changes on the low frequency entrance and exit events in the vibration response are simulated with a multi-body nonlinear dynamic model. Previous work used the time difference between the low frequency entrance event and the high frequency exit event to estimate the size of the defect. However, these previous defect size estimation techniques cannot distinguish between defects that differ in size by an integer number of the ball angular spacing, and a third feature

  5. Defect engineering of SrTiO{sub 3} thin films for resistive switching applications

    Energy Technology Data Exchange (ETDEWEB)

    Wicklein, Sebastian

    2013-11-19

    As a matter of fact, the importance of (transition) metal oxides for modern applications in the field of energy and information technology (IT) for e.g. novel energy storage systems and solid state electronic devices is increasing. Previous studies discovered the importance of defects in an oxide for their functionality and emphasized the impact of stoichiometry on the oxide performance. A new field of interest of the memory technology sector is the so-called resistive switching phenomena where a voltage stimulus causes a thin oxide (≤10 nm) to change its resistance state from a high resistance state to a low resistance state and back. So called resistive RAM (ReRAM or RRAM) are deemed to be the future replacement (2015) for contemporary FLASH memory technology due to its extremely low energy consumption, its very fast read/write time (ns) and its possible node size <10 nm. A key challenge for the investigation of oxides and their electronic properties is the management and controlled incorporation of defects in the thin film oxide. Within this work, SrTiO{sub 3} was used as an oxide model material and was deposited by pulsed laser deposition (PLD) onto doped and undoped SrTiO{sub 3} single crystals to investigate the formation of defects as a function of the process parameters. By combining structural and chemical thin film analysis with detailed PLD plume diagnostics and modeling of the laser plume dynamics, it was possible to elucidate the different physical mechanisms determining the stoichiometry of SrTiO{sub 3} during PLD. Deviations between thin film and target stoichiometry are basically a result of two effects, namely, incongruent ablation and preferential scattering of lighter ablated species during their motion towards the substrate in the O{sub 2} background gas. It is shown that the SrTiO{sub 3} system reacts to a non-stoichiometry with the systematic incorporation of titanium and strontium vacancies which could be detected by positron annihilation

  6. Computer simulation of defect cluster

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Eiichi [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-01

    In order to elucidate individual element process of various defects and defect clusters of used materials under irradiation environments, interatomic potential with reliability was investigated. And for comparison with experimental results, it is often required to adopt the temperature effect and to investigate in details mechanism of one dimensional motion of micro conversion loop and so forth using the molecular dynamic (MD) method. Furthermore, temperature effect is also supposed for stable structure of defects and defect clusters, and many problems relating to alloy element are also remained. And, simulation on photon life at the defects and defect clusters thought to be important under comparison with equipment can also be supposed an improvement of effectiveness due to relation to theses products. In this paper, some topics in such flow was extracted to explain them. In particular, future important problems will be potential preparation of alloy, structure, dynamic behavior and limited temperature of intralattice atomic cluster. (G.K.)

  7. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  8. Congenital platelet function defects

    Science.gov (United States)

    ... pool disorder; Glanzmann's thrombasthenia; Bernard-Soulier syndrome; Platelet function defects - congenital ... Congenital platelet function defects are bleeding disorders that cause reduced platelet function. Most of the time, people with these disorders have ...

  9. Metallography of defects

    International Nuclear Information System (INIS)

    Borisova, E.A.; Bochvar, G.A.; Brun, M.Ya.

    1980-01-01

    Different types of defects of metallurgical, technological and exploitation origin in intermediate and final products of titanium alloys, are considered. The examples of metallic and nonmetallic inclusions, chemical homogeneity, different grains, bands, cracks, places of searing, porosity are given; methods of detecting the above defects are described. The methods of metallography, X-ray spectral analysis, measuring microhardness are used

  10. A hot implantation study on the evolution of defects in He ion implanted MgO(1 0 0)

    International Nuclear Information System (INIS)

    Fedorov, A.V.; Huis, M.A. van; Veen, A. van

    2002-01-01

    Ion implantation at elevated temperature, so-called hot implantation, was used to study nucleation and thermal stability of the defects. In this work, MgO(1 0 0) single crystal samples were implanted with 30 keV He ions at various implantation temperatures. The implantation doses ranged from 10 14 to 10 16 cm -2 . The implantation introduced defects were subsequently studied by thermal helium desorption spectroscopy (THDS) and Doppler broadening positron beam analysis (PBA). The THDS study provides vital information on the kinetics of He release from the sample. PBA technique, being sensitive to the open volume defects, provides complementary information on cavity evolution. The THD study has shown that in most cases helium release is characterised by the activation energy of Q=4.7±0.5 eV with the maximum release temperature of T max =1830 K. By applying first order desorption model the pre-exponent factor is estimated as ν=4.3x10 11 s -1

  11. Deep defect levels in standard and oxygen enriched silicon detectors before and after **6**0Co-gamma-irradiation

    CERN Document Server

    Stahl, J; Lindström, G; Pintilie, I

    2003-01-01

    Capacitance Deep Level Transient Spectroscopy (C-DLTS) measurements have been performed on standard and oxygen-doped silicon detectors manufactured from high-resistivity n-type float zone material with left angle bracket 111 right angle bracket and left angle bracket 100 right angle bracket orientation. Three different oxygen concentrations were achieved by the so-called diffusion oxygenated float zone (DOFZ) process initiated by the CERN-RD48 (ROSE) collaboration. Before the irradiation a material characterization has been performed. In contrast to radiation damage by neutrons or high- energy charged hadrons, were the bulk damage is dominated by a mixture of clusters and point defects, the bulk damage caused by **6**0Co-gamma-radiation is only due to the introduction of point defects. The dominant electrically active defects which have been detected after **6**0Co-gamma-irradiation by C-DLTS are the electron traps VO//i, C//iC//s, V//2( = /-), V //2(-/0) and the hole trap C//i O//i. The main difference betwe...

  12. A proposed defect tracking model for classifying the inserted defect reports to enhance software quality control.

    Science.gov (United States)

    Sultan, Torky; Khedr, Ayman E; Sayed, Mostafa

    2013-01-01

    NONE DECLARED Defect tracking systems play an important role in the software development organizations as they can store historical information about defects. There are many research in defect tracking models and systems to enhance their capabilities to be more specifically tracking, and were adopted with new technology. Furthermore, there are different studies in classifying bugs in a step by step method to have clear perception and applicable method in detecting such bugs. This paper shows a new proposed defect tracking model for the purpose of classifying the inserted defects reports in a step by step method for more enhancement of the software quality.

  13. Ultrasonographic views for the screening of congenital heart defects in the first level of care

    International Nuclear Information System (INIS)

    Garcia Guevara, Carlos; Arenciabia Faife, Jakeline; Ley Vega, Lisset

    2009-01-01

    Congenital heart diseases are the main cause of infant mortality for congenital malformations in our country and they are the defects that more usually escape diagnosis in ultrasonographic screening, especially if we consider that associated risk factors call for a fetal echocardiogram are not identified in most pregnant women with fetuses affected with a heart disease. With this paper, we intend to bring within reach of both the specialists dedicated to this activity in primary care and the Masters in Genetic Counseling a review article about the principal aspects to be evaluated in each of the three echocardiography views that are used in Cuba as part of screening these defects, as well as the main signs of suspicion of congenital heart diseases that give reason for having a pregnant woman referred to the immediately higher level of care

  14. Brick walls on the brane

    International Nuclear Information System (INIS)

    Medved, A J M

    2002-01-01

    The so-called 'brick-wall model' is a semiclassical approach that has been used to explain black hole entropy in terms of thermal matter fields. Here, we apply the brick-wall formalism to thermal bulk fields in a Randall-Sundrum brane world scenario. In this case, the black hole entity is really a string-like object in the anti-de Sitter bulk, while appearing as a Schwarzchild black hole to observers living on the brane. In spite of these exotic circumstances, we establish that the Bekenstein-Hawking entropy law is preserved. Although a similar calculation was recently considered in the literature, this prior study invoked a simplifying assumption (which we avoid) that cannot be adequately justified

  15. Cabling in the Skyrme–Faddeev model

    International Nuclear Information System (INIS)

    Jennings, Paul

    2015-01-01

    The Skyrme–Faddeev model is a three-dimensional nonlinear field theory that has topological soliton solutions, called hopfions, which are novel string-like solutions taking the form of knots and links. Solutions found thus far take the form of torus knots and links of these, however torus knots form only a small family of known knots. It is an open question whether any non-torus knot hopfions exist. In this paper we present a construction of knotted fields with the form of cable knots to which an energy minimization scheme can be applied. We find the first known hopfions which do not have the form of torus knots, but instead take the form of cable and hyperbolic knots. (paper)

  16. Fluctuations of the baryonic flux-tube junction from effective string theory

    International Nuclear Information System (INIS)

    Pfeuffer, Melanie; Bali, Gunnar S.; Panero, Marco

    2009-01-01

    In quenched QCD, where the dynamic creation of quark-antiquark pairs out of the vacuum is neglected, a confined baryonic system composed of three static quarks exhibits stringlike behavior at large interquark separation, with the formation of flux tubes characterized by the geometry of the so-called Y ansatz. We study the fluctuations of the junction of the three flux tubes, assuming the dynamics to be governed by an effective bosonic string model. We show that the asymptotic behavior of the effective width of the junction grows logarithmically with the distance between the sources, with the coefficient depending on the number of joining strings, on the dimension of spacetime and on the string tension.

  17. Implications of defect clusters formed in cascades on free defect generation and microstructural development

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1992-12-01

    A large fraction of the defects produced by irradiation with energetic neutrons or heavy ions originates in cascades. Not only increased recombination of vacancy and interstitial defects but also significant clustering of like defects occur. Both processes reduce the number of point defects available for long range migration. Consequences of defect clustering in cascades will be discussed in a semi-quantitative form with the aid of calculations using a very simplified model: Quasi-steady-state distributions of immobile vacancy and/or interstitial clusters develop which, in turn, can become significant sinks for mobile defects, and, therefore reduce their lifetime. Although cluster sinks will cause segregation and, potentially, precipitation of second phases due to local changes of composition, the finite lifetime of clusters will not lead to lasting, local compositional changes. A transition from highly dense interstitial and vacancy cluster distributions to the void swelling regime occurs when the thermal evaporation of vacancies from small vacancy clusters becomes significant at higher temperatures. Unequal clustering of vacancies and interstitials leads to an imbalance of their fluxes of in the matrix and, hence, to unequal contributions to atom transport by interstitials and by vacancies even in the quasi-steady state approximation

  18. Characterization of point defects in monolayer arsenene

    Science.gov (United States)

    Liang, Xiongyi; Ng, Siu-Pang; Ding, Ning; Wu, Chi-Man Lawrence

    2018-06-01

    Topological defects that are inevitably found in 2D materials can dramatically affect their properties. Using density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) method, the structural, thermodynamic, electronic and magnetic properties of six types of typical point defects in arsenene, i.e. the Stone-Wales defect, single and double vacancies and adatoms, were systemically studied. It was found that these defects were all more easily generated in arsenene with lower formation energies than those with graphene and silicene. Stone-Wales defects can be transformed from pristine arsenene by overcoming a barrier of 2.19 eV and single vacancy defects tend to coalesce into double vacancy defects by diffusion. However, a type of adatom defect does not exhibit kinetic stability at room temperature. In addition, SV defects and another type of adatom defect can remarkably affect the electronic and magnetic properties of arsenene, e.g. they can introduce localized states near the Fermi level, as well as a strongly local magnetic moment due to dangling bond and unpaired electron. Furthermore, the simulated scanning tunneling microscopy (STM) and Raman spectroscopy were computed and the types of point defects can be fully characterized by correlating the STM images and Raman spectra to the defective atomistic structures. The results provide significant insights to the effect of defects in arsenene for potential applications, as well as identifications of two helpful tools (STM and Raman spectroscopy) to distinguish the type of defects in arsenene for future experiments.

  19. Beating Birth Defects

    Centers for Disease Control (CDC) Podcasts

    Each year in the U.S., one in 33 babies is affected by a major birth defect. Women can greatly improve their chances of giving birth to a healthy baby by avoiding some of the risk factors for birth defects before and during pregnancy. In this podcast, Dr. Stuart Shapira discusses ways to improve the chances of giving birth to a healthy baby.

  20. Toward Intelligent Software Defect Detection

    Science.gov (United States)

    Benson, Markland J.

    2011-01-01

    Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.

  1. Call Centre- Computer Telephone Integration

    Directory of Open Access Journals (Sweden)

    Dražen Kovačević

    2012-10-01

    Full Text Available Call centre largely came into being as a result of consumerneeds converging with enabling technology- and by the companiesrecognising the revenue opportunities generated by meetingthose needs thereby increasing customer satisfaction. Regardlessof the specific application or activity of a Call centre, customersatisfaction with the interaction is critical to the revenuegenerated or protected by the Call centre. Physical(v, Call centreset up is a place that includes computer, telephone and supervisorstation. Call centre can be available 24 hours a day - whenthe customer wants to make a purchase, needs information, orsimply wishes to register a complaint.

  2. Thyroid Medication Use and Birth Defects in the National Birth Defects Prevention Study.

    Science.gov (United States)

    Howley, Meredith M; Fisher, Sarah C; Van Zutphen, Alissa R; Waller, Dorothy K; Carmichael, Suzan L; Browne, Marilyn L

    2017-11-01

    Thyroid disorders are common among reproductive-aged women, with hypothyroidism affecting 2 to 3% of pregnancies, and hyperthyroidism affecting an additional 0.1 to 1%. We examined associations between thyroid medications and individual birth defects using data from the National Birth Defects Prevention Study (NBDPS). The NBDPS is a multisite, population-based, case-control study that included pregnancies with estimated delivery dates from 1997 to 2011. We analyzed self-reported thyroid medication use from mothers of 31,409 birth defect cases and 11,536 unaffected controls. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression for birth defects with five or more exposed cases, controlling for maternal age, race/ethnicity, and study center. Crude ORs and exact 95% CIs were estimated for defects with 3 to 4 exposed cases. Thyroid hormone was used by 738 (2.3%) case and 237 (2.1%) control mothers, and was associated with anencephaly (OR = 1.68; 95% CI, 1.03-2.73), holoprosencephaly (OR = 2.48; 95% CI, 1.13-5.44), hydrocephaly (1.77; 95% CI, 1.07-2.95) and small intestinal atresia (OR = 1.81; 95% CI, 1.04-3.15). Anti-thyroid medication was used by 34 (0.1%) case and 10 (<0.1%) control mothers, and was associated with aortic valve stenosis (OR = 6.91; 95% CI, 1.21-27.0). While new associations were identified, our findings are relatively consistent with previous NBDPS analyses. Our findings suggest thyroid medication use is not associated with most birth defects studied in the NBDPS, but may be associated with some specific birth defects. These results should not be interpreted to suggest that medications used to treat thyroid disease are teratogens, as the observed associations may reflect effects of the underlying thyroid disease. Birth Defects Research 109:1471-1481, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Study of residue type defect formation mechanism and the effect of advanced defect reduction (ADR) rinse process

    Science.gov (United States)

    Arima, Hiroshi; Yoshida, Yuichi; Yoshihara, Kosuke; Shibata, Tsuyoshi; Kushida, Yuki; Nakagawa, Hiroki; Nishimura, Yukio; Yamaguchi, Yoshikazu

    2009-03-01

    Residue type defect is one of yield detractors in lithography process. It is known that occurrence of the residue type defect is dependent on resist development process and the defect is reduced by optimized rinsing condition. However, the defect formation is affected by resist materials and substrate conditions. Therefore, it is necessary to optimize the development process condition by each mask level. Those optimization steps require a large amount of time and effort. The formation mechanism is investigated from viewpoint of both material and process. The defect formation is affected by resist material types, substrate condition and development process condition (D.I.W. rinse step). Optimized resist formulation and new rinse technology significantly reduce the residue type defect.

  4. Strained interface defects in silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Benjamin G.; Stradins, Paul [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO (United States); Hiller, Daniel; Zacharias, Margit [IMTEK - Faculty of Engineering, Albert-Ludwigs-University Freiburg (Germany); Luo, Jun-Wei; Beard, Matthew C. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Semonin, Octavi E. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Department of Physics, University of Colorado, Boulder, CO (United States)

    2012-08-07

    The surface of silicon nanocrystals embedded in an oxide matrix can contain numerous interface defects. These defects strongly affect the nanocrystals' photoluminescence efficiency and optical absorption. Dangling-bond defects are nearly eliminated by H{sub 2} passivation, thus decreasing absorption below the quantum-confined bandgap and enhancing PL efficiency by an order of magnitude. However, there remain numerous other defects seen in absorption by photothermal deflection spectroscopy; these defects cause non-radiative recombination that limits the PL efficiency to <15%. Using atomistic pseudopotential simulations, we attribute these defects to two specific types of distorted bonds: Si-Si and bridging Si-O-Si bonds between two Si atoms at the nanocrystal surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Craniotomy Frontal Bone Defect

    African Journals Online (AJOL)

    2018-03-01

    Mar 1, 2018 ... Defect reconstruction and fixation of the graft: The defect of ... where all loose fragments of fractured frontal bone was removed via the ... Mandible. • Ilium. • Allograft ... pediatric patients owing to skull growth. Thus, autologous ...

  6. Who named the quantum defect?

    International Nuclear Information System (INIS)

    Rau, A.R.P.; Inokuti, M.

    1997-01-01

    The notion of the quantum defect is important in atomic and molecular spectroscopy and also in unifying spectroscopy with collision theory. In the latter context, the quantum defect may be viewed as an ancestor of the phase shift. However, the origin of the term quantum defect does not seem to be explained in standard textbooks. It occurred in a 1921 paper by Schroedinger, preceding quantum mechanics, yet giving the correct meaning as an index of the short-range interactions with the core of an atom. The authors present the early history of the quantum-defect idea, and sketch its recent developments

  7. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Call cultures in orang-utans?

    Directory of Open Access Journals (Sweden)

    Serge A Wich

    Full Text Available BACKGROUND: Several studies suggested great ape cultures, arguing that human cumulative culture presumably evolved from such a foundation. These focused on conspicuous behaviours, and showed rich geographic variation, which could not be attributed to known ecological or genetic differences. Although geographic variation within call types (accents has previously been reported for orang-utans and other primate species, we examine geographic variation in the presence/absence of discrete call types (dialects. Because orang-utans have been shown to have geographic variation that is not completely explicable by genetic or ecological factors we hypothesized that this will be similar in the call domain and predict that discrete call type variation between populations will be found. METHODOLOGY/PRINCIPAL FINDINGS: We examined long-term behavioural data from five orang-utan populations and collected fecal samples for genetic analyses. We show that there is geographic variation in the presence of discrete types of calls. In exactly the same behavioural context (nest building and infant retrieval, individuals in different wild populations customarily emit either qualitatively different calls or calls in some but not in others. By comparing patterns in call-type and genetic similarity, we suggest that the observed variation is not likely to be explained by genetic or ecological differences. CONCLUSION/SIGNIFICANCE: These results are consistent with the potential presence of 'call cultures' and suggest that wild orang-utans possess the ability to invent arbitrary calls, which spread through social learning. These findings differ substantially from those that have been reported for primates before. First, the results reported here are on dialect and not on accent. Second, this study presents cases of production learning whereas most primate studies on vocal learning were cases of contextual learning. We conclude with speculating on how these findings might

  9. Paternal occupation and birth defects: findings from the National Birth Defects Prevention Study.

    NARCIS (Netherlands)

    Desrosiers, T.A.; Herring, A.H.; Shapira, S.K.; Hooiveld, M.; Luben, T.J.; Herdt-Losavio, M.L.; Lin, S.; Olshan, A.F.

    2012-01-01

    Objectives: Several epidemiological studies have suggested that certain paternal occupations may be associated with an increased prevalence of birth defects in offspring. Using data from the National Birth Defects Prevention Study, the authors investigated the association between paternal occupation

  10. [Inconformity between soft tissue defect and bony defect in incomplete cleft palate].

    Science.gov (United States)

    Zhou, Xia; Ma, Lian

    2014-12-01

    To evaluate the inconformity between soft tissue defect and bony defect by observing the cleft extent of palate with complete secondary palate bony cleft in incomplete cleft palate patient. The patients with incomplete cleft palate treated in Hospital of Stomatology Peking University from July 2012 to June 2013 were reviewed, of which 75 cases with complete secondary palate bony cleft were selected in this study. The CT scan and intraoral photograph were taken before operation. The patients were classified as four types according to the extent of soft tissue defect. Type 1: soft tissue defect reached incisive foremen region, Type 2 was hard and soft cleft palate, Type 3 soft cleft palate and Type 4 submucous cleft palate. Type 1 was defined as conformity group (CG). The other three types were defined as inconformity group (ICG) and divided into three subgroups (ICG-I), (ICG-II) and (ICG-III). Fifty-seven patients were in ICG group, and the rate of inconformity was 76% (57/75). The percentage of ICG-I, ICG-II and ICG-III was 47% (27/57), 23% (13/57) and 30% (17/57), respevtively. There are different types of soft tissue deformity with complete secondary palate bony cleft. The inconformity between soft tissue and hard tissue defect exits in 3/4 of isolated cleft palate patients.

  11. Chemical characterisation of non-defective and defective green arabica and robusta coffees by electrospray ionization-mass spectrometry (ESI-MS).

    Science.gov (United States)

    Mendonça, Juliana C F; Franca, Adriana S; Oliveira, Leandro S; Nunes, Marcella

    2008-11-15

    The coffee roasted in Brazil is considered to be of low quality, due to the presence of defective coffee beans that depreciate the beverage quality. These beans, although being separated from the non-defective ones prior to roasting, are still commercialized in the coffee trading market. Thus, it was the aim of this work to verify the feasibility of employing ESI-MS to identify chemical characteristics that will allow the discrimination of Arabica and Robusta species and also of defective and non-defective coffees. Aqueous extracts of green (raw) defective and non-defective coffee beans were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS) and this technique provided characteristic fingerprinting mass spectra that not only allowed for discrimination of species but also between defective and non-defective coffee beans. ESI-MS profiles in the positive mode (ESI(+)-MS) provided separation between defective and non-defective coffees within a given species, whereas ESI-MS profiles in the negative mode (ESI(-)-MS) provided separation between Arabica and Robusta coffees. Copyright © 2008 Elsevier Ltd. All rights reserved.

  12. Topological defects from the multiverse

    Science.gov (United States)

    Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander

    2015-05-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  13. Topological defects from the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Blanco-Pillado, Jose J. [Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, 48013, Bilbao (Spain); Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, 08028, Barcelona (Spain); Vilenkin, Alexander [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2015-05-28

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  14. Topological defects from the multiverse

    International Nuclear Information System (INIS)

    Zhang, Jun; Vilenkin, Alexander; Blanco-Pillado, Jose J.; Garriga, Jaume

    2015-01-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble

  15. Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42

    DEFF Research Database (Denmark)

    Pleines, Irina; Dütting, Sebastian; Cherpokova, Deya

    2013-01-01

    Blood platelets are anuclear cell fragments that are essential for blood clotting. Platelets are produced by bone marrow megakaryocytes (MKs), which extend protrusions, or so-called proplatelets, into bone marrow sinusoids. Proplatelet formation requires a profound reorganization of the MK actin...... normally in vivo but displayed highly abnormal morphology and uncontrolled fragmentation. Consistently, a lack of Rac1/Cdc42 virtually abrogated proplatelet formation in vitro. Strikingly, this phenotype was associated with severely defective tubulin organization, whereas actin assembly and structure were...

  16. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  17. THORACO - ABDOMINAL FLAP FOR RESURFACING LARGE POST MASTECTOMY DEFECTS IN LOCALLY ADVANCED CA. BREAST

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao

    2015-02-01

    Full Text Available Covering of large wounds after mastectomy in locally advanced Ca breast with skin that can withstand radiotherapy is a challenge to the surgeon. Here this study we used a local advancement flap from the adjacent area called Thoraco - A bdominal F la p (TA flap for such giant defects. This is based on superficial and lumbar arteries and is thick to with stand consequent RT . MATERIALS AND METHODS: Of the total 107 cases of LABC 32 had post mastectomy defects of larger than 12 cm and could not be closed by simple approximation. Among the 32 cases 17 cases are covered by split thickness skin grafting. 15 cases are covered by TA flap. These cases are assessed for mean operating time, mean blood loss, post - operative stay, flap necrosis and viability of the f lap after radiotherapy. RESULTS: There is minimal extra time or blood loss in these cases . All the flaps healed well except for small edge necrosis in 4 cases. In all the patients we could start radiotherapy in the fourth week of surgery and all the flaps withstood RT well. After further evaluation probably this can be recommended as procedure for giant post mastectomy defects particularly for those who require RT early

  18. Simulation based mask defect repair verification and disposition

    Science.gov (United States)

    Guo, Eric; Zhao, Shirley; Zhang, Skin; Qian, Sandy; Cheng, Guojie; Vikram, Abhishek; Li, Ling; Chen, Ye; Hsiang, Chingyun; Zhang, Gary; Su, Bo

    2009-10-01

    As the industry moves towards sub-65nm technology nodes, the mask inspection, with increased sensitivity and shrinking critical defect size, catches more and more nuisance and false defects. Increased defect counts pose great challenges in the post inspection defect classification and disposition: which defect is real defect, and among the real defects, which defect should be repaired and how to verify the post-repair defects. In this paper, we address the challenges in mask defect verification and disposition, in particular, in post repair defect verification by an efficient methodology, using SEM mask defect images, and optical inspection mask defects images (only for verification of phase and transmission related defects). We will demonstrate the flow using programmed mask defects in sub-65nm technology node design. In total 20 types of defects were designed including defects found in typical real circuit environments with 30 different sizes designed for each type. The SEM image was taken for each programmed defect after the test mask was made. Selected defects were repaired and SEM images from the test mask were taken again. Wafers were printed with the test mask before and after repair as defect printability references. A software tool SMDD-Simulation based Mask Defect Disposition-has been used in this study. The software is used to extract edges from the mask SEM images and convert them into polygons to save in GDSII format. Then, the converted polygons from the SEM images were filled with the correct tone to form mask patterns and were merged back into the original GDSII design file. This merge is for the purpose of contour simulation-since normally the SEM images cover only small area (~1 μm) and accurate simulation requires including larger area of optical proximity effect. With lithography process model, the resist contour of area of interest (AOI-the area surrounding a mask defect) can be simulated. If such complicated model is not available, a simple

  19. Defects in new protective aprons

    International Nuclear Information System (INIS)

    Glaze, S.; LeBlanc, A.D.; Bushong, S.C.

    1984-01-01

    Upon careful examination, several defects have been detected in new protective aprons. The nature of the defects is identified and described. Although the occurrence of such defects has not exceeded 5%, they are significant enough to warrant return of the lead apron to the supplier. It is recommended that the integrity of all new protective aprons be verified upon receipt as well as at yearly intervals

  20. Platelet rich fibrin in jaw defects

    Science.gov (United States)

    Nica, Diana; Ianes, Emilia; Pricop, Marius

    2016-03-01

    Platelet rich fibrin (PRF) is a tissue product of autologous origin abundant in growth factors, widely used in regenerative procedures. Aim of the study: Evaluation of the regenerative effect of PRF added in the bony defects (after tooth removal or after cystectomy) Material and methods: The comparative nonrandomized study included 22 patients divided into 2 groups. The first group (the test group) included 10 patients where the bony defects were treated without any harvesting material. The second group included 12 patients where the bony defects were filled with PRF. The bony defect design was not critical, with one to two walls missing. After the surgeries, a close clinically monitoring was carried out. The selected cases were investigated using both cone beam computer tomography (CBCT) and radiographic techniques after 10 weeks postoperatively. Results: Faster bone regeneration was observed in the bony defects filled with PRF comparing with the not grafted bony defects. Conclusions: PRF added in the bony defects accelerates the bone regeneration. This simplifies the surgical procedures and decreases the economic costs.

  1. Little string origin of surface defects

    Energy Technology Data Exchange (ETDEWEB)

    Haouzi, Nathan; Schmid, Christian [Center for Theoretical Physics, University of California, Berkeley,LeConte Hall, Berkeley (United States)

    2017-05-16

    We derive a large class of codimension-two defects of 4d N=4 Super Yang-Mills (SYM) theory from the (2,0) little string. The origin of the little string is type IIB theory compactified on an ADE singularity. The defects are D-branes wrapping the 2-cycles of the singularity. We use this construction to make contact with the description of SYM defects due to Gukov and Witten https://arxiv.org/abs/hep-th/0612073. Furthermore, we provide a geometric perspective on the nilpotent orbit classification of codimension-two defects, and the connection to ADE-type Toda CFT. The only data needed to specify the defects is a set of weights of the algebra obeying certain constraints, which we give explicitly. We highlight the differences between the defect classification in the little string theory and its (2,0) CFT limit.

  2. The difficult medical emergency call

    DEFF Research Database (Denmark)

    Møller, Thea Palsgaard; Kjærulff, Thora Majlund; Viereck, Søren

    2017-01-01

    BACKGROUND: Pre-hospital emergency care requires proper categorization of emergency calls and assessment of emergency priority levels by the medical dispatchers. We investigated predictors for emergency call categorization as "unclear problem" in contrast to "symptom-specific" categories and the ......BACKGROUND: Pre-hospital emergency care requires proper categorization of emergency calls and assessment of emergency priority levels by the medical dispatchers. We investigated predictors for emergency call categorization as "unclear problem" in contrast to "symptom-specific" categories...... and the effect of categorization on mortality. METHODS: Register-based study in a 2-year period based on emergency call data from the emergency medical dispatch center in Copenhagen combined with nationwide register data. Logistic regression analysis (N = 78,040 individuals) was used for identification...

  3. BUSINESS MODELS FOR EXTENDING OF 112 EMERGENCY CALL CENTER CAPABILITIES WITH E-CALL FUNCTION INSERTION

    Directory of Open Access Journals (Sweden)

    Pop Dragos Paul

    2010-12-01

    Full Text Available The present article concerns present status of implementation in Romania and Europe of eCall service and the proposed business models regarding eCall function implementation in Romania. eCall system is used for reliable transmission in case of crush between In Vehicle System and Public Service Answering Point, via the voice channel of cellular and Public Switched Telephone Network (PSTN. eCall service could be initiated automatically or manual the driver. All data presented in this article are part of researches made by authors in the Sectorial Contract Implementation study regarding eCall system, having as partners ITS Romania and Electronic Solution, with the Romanian Ministry of Communication and Information Technology as beneficiary.

  4. Various Stone-Wales defects in phagraphene

    Science.gov (United States)

    Openov, L. A.; Podlivaev, A. I.

    2016-08-01

    Various Stone-Wales defects in phagraphene, which is a graphene allotrope, predicted recently are studied in terms of the nonorthogonal tight-binding model. The energies of the defect formation and the heights of energy barriers preventing the formation and annealing of the defects are found. Corresponding frequency factors in the Arrhenius formula are calculated. The evolution of the defect structure is studied in the real-time mode using the molecular dynamics method.

  5. Quantum computing with defects.

    Science.gov (United States)

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  6. Charged Semiconductor Defects Structure, Thermodynamics and Diffusion

    CERN Document Server

    Seebauer, Edmund G

    2009-01-01

    The technologically useful properties of a solid often depend upon the types and concentrations of the defects it contains. Not surprisingly, defects in semiconductors have been studied for many years, in many cases with a view towards controlling their behavior through various forms of "defect engineering." For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. Charged Semiconductor Defects details the current state of knowledge regarding the properties of the ionized defects that can affect the behavior of advanced transistors, photo-active devices, catalysts, and sensors. Features: Group IV, III-V, and oxide semiconductors; Intrinsic and extrinsic defects; and, P...

  7. Syndromes and Disorders Associated with Omphalocele (III: Single Gene Disorders, Neural Tube Defects, Diaphragmatic Defects and Others

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-06-01

    Full Text Available Omphalocele can be associated with single gene disorders, neural tube defects, diaphragmatic defects, fetal valproate syndrome, and syndromes of unknown etiology. This article provides a comprehensive review of omphalocele-related disorders: otopalatodigital syndrome type II; Melnick–Needles syndrome; Rieger syndrome; neural tube defects; Meckel syndrome; Shprintzen–Goldberg omphalocele syndrome; lethal omphalocele-cleft palate syndrome; cerebro-costo-mandibular syndrome; fetal valproate syndrome; Marshall–Smith syndrome; fibrochondrogenesis; hydrolethalus syndrome; Fryns syndrome; omphalocele, diaphragmatic defects, radial anomalies and various internal malformations; diaphragmatic defects, limb deficiencies and ossification defects of skull; Donnai–Barrow syndrome; CHARGE syndrome; Goltz syndrome; Carpenter syndrome; Toriello–Carey syndrome; familial omphalocele; Cornelia de Lange syndrome; C syndrome; Elejalde syndrome; Malpuech syndrome; cervical ribs, Sprengel anomaly, anal atresia and urethral obstruction; hydrocephalus with associated malformations; Kennerknecht syndrome; lymphedema, atrial septal defect and facial changes; and craniosynostosis- mental retardation syndrome of Lin and Gettig. Perinatal identification of omphalocele should alert one to the possibility of omphalocele-related disorders and familial inheritance and prompt a thorough genetic counseling for these disorders.

  8. Application of elastic net and infrared spectroscopy in the discrimination between defective and non-defective roasted coffees.

    Science.gov (United States)

    Craig, Ana Paula; Franca, Adriana S; Oliveira, Leandro S; Irudayaraj, Joseph; Ileleji, Klein

    2014-10-01

    The quality of the coffee beverage is negatively affected by the presence of defective coffee beans and its evaluation still relies on highly subjective sensory panels. To tackle the problem of subjectivity, sophisticated analytical techniques have been developed and have been shown capable of discriminating defective from non-defective coffees after roasting. However, these techniques are not adequate for routine analysis, for they are laborious (sample preparation) and time consuming, and reliable, simpler and faster techniques need to be developed for such purpose. Thus, it was the aim of this study to evaluate the performance of infrared spectroscopic methods, namely FTIR and NIR, for the discrimination of roasted defective and non-defective coffees, employing a novel statistical approach. The classification models based on Elastic Net exhibited high percentage of correct classification, and the discriminant infrared spectra variables extracted provided a good interpretation of the models. The discrimination of defective and non-defective beans was associated with main chemical descriptors of coffee, such as carbohydrates, proteins/amino acids, lipids, caffeine and chlorogenic acids. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Magnetoencephalography signals are influenced by skull defects.

    Science.gov (United States)

    Lau, S; Flemming, L; Haueisen, J

    2014-08-01

    Magnetoencephalography (MEG) signals had previously been hypothesized to have negligible sensitivity to skull defects. The objective is to experimentally investigate the influence of conducting skull defects on MEG and EEG signals. A miniaturized electric dipole was implanted in vivo into rabbit brains. Simultaneous recording using 64-channel EEG and 16-channel MEG was conducted, first above the intact skull and then above a skull defect. Skull defects were filled with agar gels, which had been formulated to have tissue-like homogeneous conductivities. The dipole was moved beneath the skull defects, and measurements were taken at regularly spaced points. The EEG signal amplitude increased 2-10 times, whereas the MEG signal amplitude reduced by as much as 20%. The EEG signal amplitude deviated more when the source was under the edge of the defect, whereas the MEG signal amplitude deviated more when the source was central under the defect. The change in MEG field-map topography (relative difference measure, RDM(∗)=0.15) was geometrically related to the skull defect edge. MEG and EEG signals can be substantially affected by skull defects. MEG source modeling requires realistic volume conductor head models that incorporate skull defects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Assessing call centers’ success:

    Directory of Open Access Journals (Sweden)

    Hesham A. Baraka

    2013-07-01

    This paper introduces a model to evaluate the performance of call centers based on the Delone and McLean Information Systems success model. A number of indicators are identified to track the call center’s performance. Mapping of the proposed indicators to the six dimensions of the D&M model is presented. A Weighted Call Center Performance Index is proposed to assess the call center performance; the index is used to analyze the effect of the identified indicators. Policy-Weighted approach was used to assume the weights with an analysis of different weights for each dimension. The analysis of the different weights cases gave priority to the User satisfaction and net Benefits dimension as the two outcomes from the system. For the input dimensions, higher priority was given to the system quality and the service quality dimension. Call centers decision makers can use the tool to tune the different weights in order to reach the objectives set by the organization. Multiple linear regression analysis was used in order to provide a linear formula for the User Satisfaction dimension and the Net Benefits dimension in order to be able to forecast the values for these two dimensions as function of the other dimensions

  11. Electrical fingerprint of pipeline defects

    International Nuclear Information System (INIS)

    Mica, Isabella; Polignano, Maria Luisa; Marco, Cinzia De

    2004-01-01

    Pipeline defects are dislocations that connect the source region of the transistor with the drain region. They were widely reported to occur in CMOS, BiCMOS devices and recently in SOI technologies. They can reduce device yield either by affecting the devices functionality or by increasing the current consumption under stand-by conditions. In this work the electrical fingerprint of these dislocations is studied, its purpose is to enable us to identify these defects as the ones responsible for device failure. It is shown that the pipeline defects are responsible for a leakage current from source to drain in the transistors. This leakage has a resistive characteristic and it is lightly modulated by the body bias. It is not sensitive to temperature; vice versa the off-current of a good transistor exhibits the well-known exponential dependence on 1/T. The emission spectrum of these defects was studied and compared with the spectrum of a good transistor. The paper aims to show that the spectrum of a defective transistor is quite peculiar; it shows well defined peaks, whereas the spectrum of a good transistor under saturation conditions is characterized by a broad spectral light emission distribution. Finally the deep-level transient spectroscopy (DLTS) is tried on defective diodes

  12. 78 FR 76218 - Rural Call Completion

    Science.gov (United States)

    2013-12-17

    ... calls to rural areas, and enforce restrictions against blocking, choking, reducing, or restricting calls... to alert the Commission of systemic problems receiving calls from a particular originating long... associated with completing calls to rural areas. These rules will also enhance our ability to enforce...

  13. Long-distance calls in Neotropical primates

    Directory of Open Access Journals (Sweden)

    Oliveira Dilmar A.G.

    2004-01-01

    Full Text Available Long-distance calls are widespread among primates. Several studies concentrate on such calls in just one or in few species, while few studies have treated more general trends within the order. The common features that usually characterize these vocalizations are related to long-distance propagation of sounds. The proposed functions of primate long-distance calls can be divided into extragroup and intragroup ones. Extragroup functions relate to mate defense, mate attraction or resource defense, while intragroup functions involve group coordination or alarm. Among Neotropical primates, several species perform long-distance calls that seem more related to intragroup coordination, markedly in atelines. Callitrichids present long-distance calls that are employed both in intragroup coordination and intergroup contests or spacing. Examples of extragroup directed long-distance calls are the duets of titi monkeys and the roars and barks of howler monkeys. Considerable complexity and gradation exist in the long-distance call repertoires of some Neotropical primates, and female long-distance calls are probably more important in non-duetting species than usually thought. Future research must focus on larger trends in the evolution of primate long-distance calls, including the phylogeny of calling repertoires and the relationships between form and function in these signals.

  14. Defect spectroscopy of single ZnO microwires

    Science.gov (United States)

    Villafuerte, M.; Ferreyra, J. M.; Zapata, C.; Barzola-Quiquia, J.; Iikawa, F.; Esquinazi, P.; Heluani, S. P.; de Lima, M. M.; Cantarero, A.

    2014-04-01

    The point defects of single ZnO microwires grown by carbothermal reduction were studied by microphotoluminescence, photoresistance excitation spectra, and resistance as a function of the temperature. We found the deep level defect density profile along the microwire showing that the concentration of defects decreases from the base to the tip of the microwires and this effect correlates with a band gap narrowing. The results show a characteristic deep defect levels inside the gap at 0.88 eV from the top of the VB. The resistance as a function of the temperature shows defect levels next to the bottom of the CB at 110 meV and a mean defect concentration of 4 × 1018 cm-3. This combination of techniques allows us to study the band gap values and defects states inside the gap in single ZnO microwires and opens the possibility to be used as a defect spectroscopy method.

  15. Impurity Role In Mechanically Induced Defects

    International Nuclear Information System (INIS)

    Howell, R.H.; Asoka-Kumar, P.; Hartley, J.; Sterne, P.

    2000-01-01

    An improved understanding of dislocation dynamics and interactions is an outstanding problem in the multi scale modeling of materials properties, and is the current focus of major theoretical efforts world wide. We have developed experimental and theoretical tools that will enable us to measure and calculate quantities defined by the defect structure. Unique to the measurements is a new spectroscopy that determines the detailed elemental composition at the defect site. The measurements are based on positron annihilation spectroscopy performed with a 3 MeV positron beam [1]. Positron annihilation spectroscopy is highly sensitive to dislocations and associated defects and can provide unique elements of the defect size and structure. Performing this spectroscopy with a highly penetrating positron beam enables flexibility in sample handling. Experiments on fatigued and stressed samples have been done and in situ measurement capabilities have been developed. We have recently performed significant upgrades to the accelerator operation and novel new experiments have been performed [2-4] To relate the spectrographic results and the detailed structure of a defect requires detailed calculations. Measurements are coupled with calculated results based on a description of positions of atoms at the defect. This gives an atomistic view of dislocations and associated defects including impurity interactions. Our ability to probe impurity interactions is a unique contribution to defect understanding not easily addressed by other atomistic spectroscopies

  16. Defect properties from X-ray scattering experiments

    International Nuclear Information System (INIS)

    Peisl, H.

    1976-01-01

    Lattice distortions due to defects in crystals can be studied most directly by elastic X-ray or neutron scattering experiments. The 'size' of the defects can be determined from the shift of the Bragg reflections. Defect induced diffuse scattering intensity close to and between Bragg reflections gives information on the strength and symmetry of the distortion fields and yields the atomic structure of point defects (interstitials, vacancies, small aggregates). Diffuse scattering is a very sensitive method to decide whether defects are present as isolated point defects or have formed aggregates. X-ray scattering has been used to study defects produced in various ionic crystals by γ- and neutron irradiation. After an introduction to the principles of the method the experimental results will be reviewed and discussed in some detail. (orig.) [de

  17. Semiconductor color-center structure and excitation spectra: Equation-of-motion coupled-cluster description of vacancy and transition-metal defect photoluminescence

    Science.gov (United States)

    Lutz, Jesse J.; Duan, Xiaofeng F.; Burggraf, Larry W.

    2018-03-01

    Valence excitation spectra are computed for deep-center silicon-vacancy defects in 3C, 4H, and 6H silicon carbide (SiC), and comparisons are made with literature photoluminescence measurements. Optimizations of nuclear geometries surrounding the defect centers are performed within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substituted chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement for all cases considered.

  18. Modeling of Powder Bed Manufacturing Defects

    Science.gov (United States)

    Mindt, H.-W.; Desmaison, O.; Megahed, M.; Peralta, A.; Neumann, J.

    2018-01-01

    Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.

  19. Fibrinogen Vicenza and Genova II: two new cases of congenital dysfibrinogenemia with isolated defect of fibrin monomer polymerization and inhibitory activity on normal coagulation.

    Science.gov (United States)

    Rodeghiero, F; Castaman, G C; Dal Belin Peruffo, A; Dini, E; Galletti, A; Barone, E; Gastaldi, G

    1987-06-03

    Two new cases of congenital dysfibrinogenemia are presented in which defective fibrin monomer polymerization and inhibitory activity on normal coagulation were observed. They have been tentatively called fibrinogen Vicenza and Genova II. The first was discovered in a family with mild bleeding diathesis, the second in an asymptomatic family. In almost all reported cases of fibrinogens with defective fibrin monomer polymerization, additional functional or structural defects have been detected. In our cases, on the contrary, detailed investigations failed to show any other abnormality. Fibrinogen Genova II is apparently identical to fibrinogen Baltimore IV, whereas fibrinogen Vicenza is similar to fibrinogen Troyes and Genova I, but also exerts an evident inhibitory activity on normal coagulation and differs from fibrinogen Genova II and Baltimore IV showing a different kinetic pattern of fibrin monomer polymerization.

  20. Determination of defect content and defect profile in semiconductor heterostructures

    International Nuclear Information System (INIS)

    Zubiaga, A; Garcia, J A; Plazaola, F; Zuniga-Perez, J; Munoz-Sanjose, V

    2011-01-01

    In this article we present an overview of the technique to obtain the defects depth profile and width of a deposited layer and multilayer based on positron annihilation spectroscopy. In particular we apply the method to ZnO and ZnO/ZnCdO layers deposited on sapphire substrates. After introducing some terminology we first calculate the trend that the W/S parameters of the Doppler broadening measurements must follow, both in a qualitative and quantitative way. From this point we extend the results to calculate the width and defect profiles in deposited layer samples.

  1. Determination of defect content and defect profile in semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zubiaga, A [Laboratory of Physics, HUT, PO Box 1100, 02015 TKK, Espoo (Finland); Garcia, J A; Plazaola, F [Zientzia eta Teknologia Fakultatea, Euskal Herriko Unbertsitatea, P. K. 644, 48080, Bilbao (Spain); Zuniga-Perez, J; Munoz-Sanjose, V, E-mail: fernando.plazaola@ehu.es [Universitat de Valencia, Departamento de Fisica Aplicada i Electromagnetisme, Dr. Moliner 50, 46100 Burjassot, Valencia (Spain)

    2011-01-10

    In this article we present an overview of the technique to obtain the defects depth profile and width of a deposited layer and multilayer based on positron annihilation spectroscopy. In particular we apply the method to ZnO and ZnO/ZnCdO layers deposited on sapphire substrates. After introducing some terminology we first calculate the trend that the W/S parameters of the Doppler broadening measurements must follow, both in a qualitative and quantitative way. From this point we extend the results to calculate the width and defect profiles in deposited layer samples.

  2. Congenital heart defects in Williams syndrome.

    Science.gov (United States)

    Yuan, Shi-Min

    2017-01-01

    Yuan SM. Congenital heart defects in Williams syndrome. Turk J Pediatr 2017; 59: 225-232. Williams syndrome (WS), also known as Williams-Beuren syndrome, is a rare genetic disorder involving multiple systems including the circulatory system. However, the etiologies of the associated congenital heart defects in WS patients have not been sufficiently elucidated and represent therapeutic challenges. The typical congenital heart defects in WS were supravalvar aortic stenosis, pulmonary stenosis (both valvular and peripheral), aortic coarctation and mitral valvar prolapse. The atypical cardiovascular anomalies include tetralogy of Fallot, atrial septal defects, aortic and mitral valvular insufficiencies, bicuspid aortic valves, ventricular septal defects, total anomalous pulmonary venous return, double chambered right ventricle, Ebstein anomaly and arterial anomalies. Deletion of the elastin gene on chromosome 7q11.23 leads to deficiency or abnormal deposition of elastin during cardiovascular development, thereby leading to widespread cardiovascular abnormalities in WS. In this article, the distribution, treatment and surgical outcomes of typical and atypical cardiac defects in WS are discussed.

  3. Secondary defects in non-metallic solids

    International Nuclear Information System (INIS)

    Ashbee, K.H.G.; Hobbs, L.W.

    1977-01-01

    This paper points out features of secondary defect formation which are peculiar to non-metallic solids (excluding elemental semiconductors). Most of the materials of interest are compounds of two or more (usually more or less ionic) atomic species, and immediate consequence of which is a need to maintain both stoichiometry (or accommodate non-stoichiometry) and order. Primary defects in these solids, whether produced thermally, chemically or by irradiation, seldom are present or aggregate in exactly stoichiometric proportions, and the resulting extending defect structures can be quite distinct from those found in metallic solids. Where stoichiometry is maintained, it is often convenient to describe extended defects in terms of alterations in the arrangement of 'molecular' units. The adoption of this procedure enables several novel features of extended defect structures in non-metals to be explained. There are several ways in which a range of non-stoichiometry can be accommodated, which include structural elimination of point defects, nucleation of new coherent phases of altered stoichiometry, and decomposition. (author)

  4. Defining defect specifications to optimize photomask production and requalification

    Science.gov (United States)

    Fiekowsky, Peter

    2006-10-01

    Reducing defect repairs and accelerating defect analysis is becoming more important as the total cost of defect repairs on advanced masks increases. Photomask defect specs based on printability, as measured on AIMS microscopes has been used for years, but the fundamental defect spec is still the defect size, as measured on the photomask, requiring the repair of many unprintable defects. ADAS, the Automated Defect Analysis System from AVI is now available in most advanced mask shops. It makes the use of pure printability specs, or "Optimal Defect Specs" practical. This software uses advanced algorithms to eliminate false defects caused by approximations in the inspection algorithm, classify each defect, simulate each defect and disposition each defect based on its printability and location. This paper defines "optimal defect specs", explains why they are now practical and economic, gives a method of determining them and provides accuracy data.

  5. Metastable and bistable defects in silicon

    International Nuclear Information System (INIS)

    Mukashev, Bulat N; Abdullin, Kh A; Gorelkinskii, Yurii V

    2000-01-01

    Existing data on the properties and structure of metastable and bistable defects in silicon are analyzed. Primary radiation-induced defects (vacancies, self-interstitial atoms, and Frenkel pairs), complexes of oxygen, carbon, hydrogen, and other impurity atoms and defects with negative correlation energy are considered. (reviews of topical problems)

  6. Topological defects in extended inflation

    International Nuclear Information System (INIS)

    Copeland, E.J.; Kolb, E.W.; Chicago Univ., IL; Liddle, A.R.

    1990-04-01

    We consider the production of topological defects, especially cosmic strings, in extended inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings. 18 refs

  7. Topological defects in extended inflation

    International Nuclear Information System (INIS)

    Copeland, E.J.; Kolb, E.W.; Liddle, A.R.

    1990-01-01

    We consider the production of topological defects, especially cosmic strings, in extended-inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of the bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings

  8. Defect accumulation under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Woo, C.H.

    1994-01-01

    in terms of this reaction kinetics taking into account cluster production, dissociation, migration and annihilation at extended sinks. Microstructural features which are characteristic of cascade damage and cannot be explained in terms of the conventional single defect reaction kinetics are emphasized......There is now ample evidence from both experimental and computer simulation studies that in displacement cascades not only intense recombination takes place but also efficient clustering of both self-interstitial atoms (SIAs) and vacancies. The size distributions of the two types of defects produced...... reactions kinetics associated with the specific features of cascade damage is described, with emphasis on asymmetries between SIA and vacancy type defects concerning their production, stability, mobility and interactions with other defects. Defect accumulation under cascade damage conditions is discussed...

  9. Building defects in Danish construction: project characteristics influencing the occurrence of defects at handover

    DEFF Research Database (Denmark)

    Schultz, Casper Siebken; Jørgensen, Kirsten; Bonke, Sten

    2015-01-01

    Defects in construction have gained much attention from both the public and academia. Danish construction is no exception and a number of political initiatives have been established to address the unsatisfying amounts of defects. One of the political initiatives, benchmarking, collects and provides...... those with many and/or serious defects. The article reviews the results from studying two quantitative data sets: (I) benchmarking data from 329 building projects and 621 contracts and (II) questionnaire data from an electronic survey comprising 130 contractors. This study provides in-depth knowledge...

  10. Sleep Quality of Call Handlers Employed in International Call Centers in National Capital Region of Delhi, India.

    Science.gov (United States)

    Raja, J D; Bhasin, S K

    2016-10-01

    Call center sector in India is a relatively new and fast growing industry driving employment and growth in modern India today. Most international call centers in National Capital Region (NCR) of Delhi operate at odd work hours corresponding to a time suitable fortheir international customers. The sleep quality of call handlers employed in these call centers is in jeopardy owing to their altered sleep schedule. To assess the sleep quality and determine its independent predictors among call handlers employed in international call centers in NCR of Delhi. A cross-sectional questionnaire-based study was conducted on 375 call handlers aged 18-39 years employed in international call centers in NCR of Delhi. Sleep quality was assessed using Athens Insomnia scale along with a pre-tested, structured questionnaire. The mean age of respondents was 24.6 (SD 2.4) years. 78% of participants were male. 83.5% of respondents were unmarried. 44.3% of call handlers were cigarette smokers. Physical ailments were reported by 37% call handlers. 77.6% of call handlers had somesuspicion of insomnia or suspected insomnia; the rest had no sleep problem. Smoking, poor social support, heavy workload, lack of relaxation facility at office, and prolonged travel time to office were independent predictors of sleep quality (pSafeguarding their health becomes an occupational health challenge to public health specialists.

  11. Quantum computing with defects

    Science.gov (United States)

    Varley, Joel

    2011-03-01

    The development of a quantum computer is contingent upon the identification and design of systems for use as qubits, the basic units of quantum information. One of the most promising candidates consists of a defect in diamond known as the nitrogen-vacancy (NV-1) center, since it is an individually-addressable quantum system that can be initialized, manipulated, and measured with high fidelity at room temperature. While the success of the NV-1 stems from its nature as a localized ``deep-center'' point defect, no systematic effort has been made to identify other defects that might behave in a similar way. We provide guidelines for identifying other defect centers with similar properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate systems. To elucidate these points, we compare electronic structure calculations of the NV-1 center in diamond with those of several deep centers in 4H silicon carbide (SiC). Using hybrid functionals, we report formation energies, configuration-coordinate diagrams, and defect-level diagrams to compare and contrast the properties of these defects. We find that the NC VSi - 1 center in SiC, a structural analog of the NV-1 center in diamond, may be a suitable center with very different optical transition energies. We also discuss how the proposed criteria can be translated into guidelines to discover NV analogs in other tetrahedrally coordinated materials. This work was performed in collaboration with J. R. Weber, W. F. Koehl, B. B. Buckley, A. Janotti, C. G. Van de Walle, and D. D. Awschalom. This work was supported by ARO, AFOSR, and NSF.

  12. TED of boron in the presence of EOR defects: the use of the theory of Ostwald ripening to calculate Si-interstitial supersaturation in the vicinity of extrinsic defects

    Science.gov (United States)

    Bonafos, C.; Alquier, D.; Martinez, A.; Mathiot, D.; Claverie, A.

    1996-05-01

    When end-of-range defects are located close to or within doping profiles they render diffusion "anomalous" by both enhancing the dopant diffusivity and trapping it, both phenomena decreasing with time. Upon annealing, these defects grow in size and their density is reduced through the emission and capture of Si-interstitial atoms by a coarsening process called Ostwald ripening. In this paper, we report on how, by coupling the Ostwald ripening theory with TEM observations of the time evolution of the dislocation loops upon annealing, quantitative information allowing the enhanced diffusivity to be understood can be extracted. Indeed, during the coarsening process, a supersaturation, {C}/{C e}, of Si self-interstitial atoms is maintained between the loops and decreases with time. The enhanced diffusivity is assumed to be linked to the evolution of this interstitial supersaturation during annealing through the interstitial component of boron diffusion. We show that C drastically decreases during the first second of the anneal to asymptotically reach a value just above the equilibrium concentration Ce. This rapid decay is precisely at the origin of the transient enhanced diffusivity of dopants in the vicinity of the loops.

  13. Callings and Organizational Behavior

    Science.gov (United States)

    Elangovan, A. R.; Pinder, Craig C.; McLean, Murdith

    2010-01-01

    Current literature on careers, social identity and meaning in work tends to understate the multiplicity, historical significance, and nuances of the concept of calling(s). In this article, we trace the evolution of the concept from its religious roots into secular realms and develop a typology of interpretations using occupation and religious…

  14. Uncertain call likelihood negatively affects sleep and next-day cognitive performance while on-call in a laboratory environment.

    Science.gov (United States)

    Sprajcer, Madeline; Jay, Sarah M; Vincent, Grace E; Vakulin, Andrew; Lack, Leon; Ferguson, Sally A

    2018-05-11

    On-call working arrangements are employed in a number of industries to manage unpredictable events, and often involve tasks that are safety- or time-critical. This study investigated the effects of call likelihood during an overnight on-call shift on self-reported pre-bed anxiety, sleep and next-day cognitive performance. A four-night laboratory-based protocol was employed, with an adaptation, a control and two counterbalanced on-call nights. On one on-call night, participants were instructed that they would definitely be called during the night, while on the other on-call night they were told they may be called. The State-Trait Anxiety Inventory form x-1 was used to investigate pre-bed anxiety, and sleep was assessed using polysomnography and power spectral analysis of the sleep electroencephalographic analysis. Cognitive performance was assessed four times daily using a 10-min psychomotor vigilance task. Participants felt more anxious before bed when they were definitely going to be called, compared with the control and maybe conditions. Conversely, participants experienced significantly less non-rapid eye movement and stage two sleep and poorer cognitive performance when told they may be called. Further, participants had significantly more rapid eye movement sleep in the maybe condition, which may be an adaptive response to the stress associated with this on-call condition. It appears that self-reported anxiety may not be linked with sleep outcomes while on-call. However, this research indicates that it is important to take call likelihood into consideration when constructing rosters and risk-management systems for on-call workers.

  15. A defect in holographic interpretations of tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Czech, Bartłomiej [Institute for Advanced Study,Princeton, NJ 08540 (United States); Nguyen, Phuc H.; Swaminathan, Sivaramakrishnan [Theory Group, Department of Physics and Texas Cosmology Center,The University of Texas at Austin,Austin, TX 78712 (United States)

    2017-03-16

    We initiate the study of how tensor networks reproduce properties of static holographic space-times, which are not locally pure anti-de Sitter. We consider geometries that are holographically dual to ground states of defect, interface and boundary CFTs and compare them to the structure of the requisite MERA networks predicted by the theory of minimal updates. When the CFT is deformed, certain tensors require updating. On the other hand, even identical tensors can contribute differently to estimates of entanglement entropies. We interpret these facts holographically by associating tensor updates to turning on non-normalizable modes in the bulk. In passing, we also clarify and complement existing arguments in support of the theory of minimal updates, propose a novel ansatz called rayed MERA that applies to a class of generalized interface CFTs, and analyze the kinematic spaces of the thin wall and AdS{sub 3}-Janus geometries.

  16. Point defects and atomic transport in crystals

    International Nuclear Information System (INIS)

    Lidiard, A.B.

    1981-02-01

    There are two principle aspects to the theory of atomic transport in crystals as caused by the action of point defects, namely (1) the calculation of relevant properties of the point defects (energies and other thermodynamic characteristics of the different possible defects, activation energies and other mobility parameters) and (2) the statistical mechanics of assemblies of defects, both equilibrium and non-equilibrium assemblies. In the five lectures given here both these aspects are touched on. The first two lectures are concerned with the calculation of relevant point defect properties, particularly in ionic crystals. The first lecture is more general, the second is concerned particularly with some recent calculations of the free volumes of formation of defects in various ionic solids; these solve a rather long-standing problem in this area. The remaining three lectures are concerned with the kinetic theory of defects mainly in relaxation, drift and diffusion situations

  17. Sub-surface defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Huda Abdullah; Abdul Razak Hamzah; Wan Saffiey Wan Abdullah; Ibrahim Ahmad; Vavilov, Vladimir

    2009-04-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 k Watt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with thermo fit TM Pro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔT max and the time of its appearance, τ max (ΔT). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔT max ), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defect area at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (author)

  18. Electron irradiation-induced defects in {beta}-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Ryuichiro [Osaka Prefectural Univ., Sakai (Japan). Reseach Inst. for Advanced Science and Technology

    1996-04-01

    To add information of point defects in cubic crystal SiC, polycrystal {beta}-SiC on the market was used as sample and irradiated by neutron and electron. In situ observation of neutron and electron irradiation-induced defects in {beta}-SiC were carried out by ultra high-voltage electronic microscope (UHVEM) and ordinary electronic microscope. The obtained results show that the electron irradiation-induced secondary defects are micro defects less than 20 nm at about 1273K, the density of defects is from 2x10{sup 17} to 1x10{sup 18}/cc, the secondary defects may be hole type at high temperature and the preexistant defects control nuclear formation of irradiation-induced defects, effective sink. (S.Y.)

  19. Computer programs for eddy-current defect studies

    Energy Technology Data Exchange (ETDEWEB)

    Pate, J. R.; Dodd, C. V. [Oak Ridge National Lab., TN (USA)

    1990-06-01

    Several computer programs to aid in the design of eddy-current tests and probes have been written. The programs, written in Fortran, deal in various ways with the response to defects exhibited by four types of probes: the pancake probe, the reflection probe, the circumferential boreside probe, and the circumferential encircling probe. Programs are included which calculate the impedance or voltage change in a coil due to a defect, which calculate and plot the defect sensitivity factor of a coil, and which invert calculated or experimental readings to obtain the size of a defect. The theory upon which the programs are based is the Burrows point defect theory, and thus the calculations of the programs will be more accurate for small defects. 6 refs., 21 figs.

  20. Computer programs for eddy-current defect studies

    International Nuclear Information System (INIS)

    Pate, J.R.; Dodd, C.V.

    1990-06-01

    Several computer programs to aid in the design of eddy-current tests and probes have been written. The programs, written in Fortran, deal in various ways with the response to defects exhibited by four types of probes: the pancake probe, the reflection probe, the circumferential boreside probe, and the circumferential encircling probe. Programs are included which calculate the impedance or voltage change in a coil due to a defect, which calculate and plot the defect sensitivity factor of a coil, and which invert calculated or experimental readings to obtain the size of a defect. The theory upon which the programs are based is the Burrows point defect theory, and thus the calculations of the programs will be more accurate for small defects. 6 refs., 21 figs

  1. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm '2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  2. Areva solutions for management of defective fuel

    International Nuclear Information System (INIS)

    Morlaes, I.; Vo Van, V.

    2014-01-01

    Defective fuel management is a major challenge for nuclear operators when all fuel must be long-term managed. This paper describes AREVA solutions for managing defective fuel. Transport AREVA performs shipments of defective fuel in Europe and proposes casks that are licensed for that purpose in Europe and in the USA. The paper presents the transport experience and the new European licensing approach of defective fuel transport. Dry Interim Storage AREVA is implementing the defective fuel storage in the USA, compliant with the Safety Authority's requirements. In Europe, AREVA is developing a new, more long-term oriented storage solution for defective fuel, the best available technology regarding safety requirements. The paper describes these storage solutions. Treatment Various types of defective fuel coming from around the world have been treated in the AREVA La Hague plant. Specific treatment procedures were developed when needed. The paper presents operational elements related to this experience. (authors)

  3. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  4. Local stabilizer codes in three dimensions without string logical operators

    International Nuclear Information System (INIS)

    Haah, Jeongwan

    2011-01-01

    We suggest concrete models for self-correcting quantum memory by reporting examples of local stabilizer codes in 3D that have no string logical operators. Previously known local stabilizer codes in 3D all have stringlike logical operators, which make the codes non-self-correcting. We introduce a notion of ''logical string segments'' to avoid difficulties in defining one-dimensional objects in discrete lattices. We prove that every stringlike logical operator of our code can be deformed to a disjoint union of short segments, each of which is in the stabilizer group. The code has surfacelike logical operators whose partial implementation has unsatisfied stabilizers along its boundary.

  5. Congenital Heart Defects (For Parents)

    Science.gov (United States)

    ... to be associated with genetic disorders, such as Down syndrome . But the cause of most congenital heart defects isn't known. While they can't be prevented, many treatments are available for the defects and related health ...

  6. Structural integrity evaluation of X52 gas pipes subjected to external corrosion defects using the SINTAP procedure

    Energy Technology Data Exchange (ETDEWEB)

    Adib-Ramezani, H. [Ecole Polytechnique de l' Universite d' Orleans, CNRS-CRMD, 8 rue Leonard de Vinci, 45072 Orleans Cedex 2 (France)]. E-mail: hradib_2000@yahoo.com; Jeong, J. [Ecole Polytechnique de l' Universite d' Orleans, CNRS-CRMD, 8 rue Leonard de Vinci, 45072 Orleans Cedex 2 (France); Pluvinage, G. [Laboratoire de Fiabilite Mecanique (LFM), Universite de Metz-ENIM, 57045 Metz (France)

    2006-06-15

    In the present study, the SINTAP procedure has been proposed as a general structural integrity tool for semi-spherical, semi-elliptical and long blunt notch defects. The notch stress intensity factor concept and SINTAP structural integrity procedure are employed to assess gas pipelines integrity. The external longitudinal defects have been investigated via elastic-plastic finite element method results. The notch stress intensity concept is implemented into SINTAP procedure. The safety factor is calculated via SINTAP procedure levels 0B and 1B. The extracted evaluations are compared with the limit load analysis based on ASME B31G, modified ASME B31G, DNV RP-F101 and recent proposed formulation [Choi JB, Goo BK, Kim JC, Kim YJ, Kim WS. Development of limit load solutions for corroded gas pipelines. Int J Pressure Vessel Piping 2003;80(2):121-128]. The comparison among extracted safety factors exhibits that SINTAP predictions are located between lower and upper safety factor bounds. The SINTAP procedure including notch-based assessment diagram or so-called 'NFAD' involves wide range of defect geometries with low, moderate and high stress concentrations and relative stress gradients. Finally, some inspired and advanced viewpoints have been investigated.

  7. Structural integrity evaluation of X52 gas pipes subjected to external corrosion defects using the SINTAP procedure

    International Nuclear Information System (INIS)

    Adib-Ramezani, H.; Jeong, J.; Pluvinage, G.

    2006-01-01

    In the present study, the SINTAP procedure has been proposed as a general structural integrity tool for semi-spherical, semi-elliptical and long blunt notch defects. The notch stress intensity factor concept and SINTAP structural integrity procedure are employed to assess gas pipelines integrity. The external longitudinal defects have been investigated via elastic-plastic finite element method results. The notch stress intensity concept is implemented into SINTAP procedure. The safety factor is calculated via SINTAP procedure levels 0B and 1B. The extracted evaluations are compared with the limit load analysis based on ASME B31G, modified ASME B31G, DNV RP-F101 and recent proposed formulation [Choi JB, Goo BK, Kim JC, Kim YJ, Kim WS. Development of limit load solutions for corroded gas pipelines. Int J Pressure Vessel Piping 2003;80(2):121-128]. The comparison among extracted safety factors exhibits that SINTAP predictions are located between lower and upper safety factor bounds. The SINTAP procedure including notch-based assessment diagram or so-called 'NFAD' involves wide range of defect geometries with low, moderate and high stress concentrations and relative stress gradients. Finally, some inspired and advanced viewpoints have been investigated

  8. Momentum conserving defects in affine Toda field theories

    Energy Technology Data Exchange (ETDEWEB)

    Bristow, Rebecca; Bowcock, Peter [Department of Mathematical Sciences, Durham University,Durham, DH1 3LE (United Kingdom)

    2017-05-30

    Type II integrable defects with more than one degree of freedom at the defect are investigated. A condition on the form of the Lagrangian for such defects is found which ensures the existence of a conserved momentum in the presence of the defect. In addition it is shown that for any Lagrangian satisfying this condition, the defect equations of motion, when taken to hold everywhere, can be extended to give a Bäcklund transformation between the bulk theories on either side of the defect. This strongly suggests that such systems are integrable. Momentum conserving defects and Bäcklund transformations for affine Toda field theories based on the A{sub n}, B{sub n}, C{sub n} and D{sub n} series of Lie algebras are found. The defect associated with the D{sub 4} affine Toda field theory is examined in more detail. In particular classical time delays for solitons passing through the defect are calculated.

  9. Care and calls

    DEFF Research Database (Denmark)

    Paasch, Bettina Sletten

    -centred care through the use of tactile resources and embodied orientations while they attend to the phone call. Experienced nurses Thus perform multiactivity by distributing attention towards both the patient and the phone, and the analysis shows that their concrete ways of doing so depend on the complex...... they are telephoned during interactions with patients are not universal. Indeed different strategies have evolved in other hospital departments. Not only does this thesis contribute insights into the way nurses manage phone calls during interactions with patients, but by subscribing to a growing body of embodied...... of human interaction....

  10. Dual approaches for defects condensation

    Energy Technology Data Exchange (ETDEWEB)

    Rougemont, Romulo; Grigorio, Leonardo de Souza; Wotzasek, Clovis [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Guimaraes, Marcelo Santos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2009-07-01

    Full text. Due to the fact that the QCD running coupling constant becomes larger as we go into the low energy (or large distance) limit of the theory, a perturbative treatment of its infrared (IR) region is impossible. In particular, a formal mathematical demonstration of color confinement and a complete physical understanding of the exact mechanism that confines quarks and gluons are two missing points in our current knowledge of the IR-QCD. It was known that due to the Meissner effect of expulsion of magnetic fields in a electric condensate that usual superconductors should confine magnetic monopoles. That point led to the conjecture that the QCD vacuum could be a condensate of chromomagnetic monopoles, a dual superconductor (DSC). Such a chromomagnetic condensate should be responsible for the dual Meissner effect which is expected to lead to the confinement of color charges immersed in this medium. In dual superconductor models of color confinement, magnetic monopoles appear as topological defects in points of the space where the abelian projection becomes singular. Also, condensation of other kinds of defects such as vortices in superfluids and line-like defects in solids are responsible for a great variety of phase transitions, which once more proves the relevance of the subject. In the present work we review two methods that allow us to approach the condensation of defects: the Kleinert Mechanism (KM) and the Julia-Toulouse Mechanism (JTM). We show that in the limit where the vortex gauge field goes to zero, which we identify as the signature of the condensation of defects in the dual picture, these are two equivalent dual prescriptions for obtaining an effective theory for a phase where defects are condensed, starting from the fundamental theory defined in the normal phase where defects are diluted. (author)

  11. Polydispersity-driven topological defects as order-restoring excitations.

    Science.gov (United States)

    Yao, Zhenwei; Olvera de la Cruz, Monica

    2014-04-08

    The engineering of defects in crystalline matter has been extensively exploited to modify the mechanical and electrical properties of many materials. Recent experiments on manipulating extended defects in graphene, for example, show that defects direct the flow of electric charges. The fascinating possibilities offered by defects in two dimensions, known as topological defects, to control material properties provide great motivation to perform fundamental investigations to uncover their role in various systems. Previous studies mostly focus on topological defects in 2D crystals on curved surfaces. On flat geometries, topological defects can be introduced via density inhomogeneities. We investigate here topological defects due to size polydispersity on flat surfaces. Size polydispersity is usually an inevitable feature of a large variety of systems. In this work, simulations show well-organized induced topological defects around an impurity particle of a wrong size. These patterns are not found in systems of identical particles. Our work demonstrates that in polydispersed systems topological defects play the role of restoring order. The simulations show a perfect hexagonal lattice beyond a small defective region around the impurity particle. Elasticity theory has demonstrated an analogy between the elementary topological defects named disclinations to electric charges by associating a charge to a disclination, whose sign depends on the number of its nearest neighbors. Size polydispersity is shown numerically here to be an essential ingredient to understand short-range attractions between like-charge disclinations. Our study suggests that size polydispersity has a promising potential to engineer defects in various systems including nanoparticles and colloidal crystals.

  12. Defects in conformal field theory

    International Nuclear Information System (INIS)

    Billò, Marco; Gonçalves, Vasco; Lauria, Edoardo; Meineri, Marco

    2016-01-01

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  13. Defects in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Billò, Marco [Dipartimento di Fisica, Università di Torino, and Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Gonçalves, Vasco [Centro de Física do Porto,Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); ICTP South American Institute for Fundamental Research Instituto de Física Teórica,UNESP - University Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Lauria, Edoardo [Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Meineri, Marco [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Scuola Normale Superiore, and Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Piazza dei Cavalieri 7 I-56126 Pisa (Italy)

    2016-04-15

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  14. Concurrence of metaphyseal fibrous defect and osteosarcoma

    International Nuclear Information System (INIS)

    Kyriakos, M.; Murphy, W.A.

    1981-01-01

    The case of a 15-year-old girl with juxtaposition of a femoral metaphyseal fibrous defect (fibrous cortical defect) and an osteosarcoma is reported. Despite the relatively common occurrence of metaphyseal fibrous defects, their reported association with other bone tumors is exceedingly rare. Only two previous acceptable examples of this association were found. Reports of malignant transformation of metaphyseal fibrous defect were reviewed and rejected because they lacked convincing radiologic or histopathologic evidence of a pre-existent benign fibrous lesion. The finding of a malignant bone tumor in association with a metaphyseal fibrous defect appears to be a chance occurrence. (orig.)

  15. Extrusion product defects: a statistical study

    International Nuclear Information System (INIS)

    Qamar, S.Z.; Arif, A.F.M.; Sheikh, A.K.

    2003-01-01

    In any manufacturing environment, defects resulting in rework or rejection are directly related to product cost and quality, and indirectly linked with process, tooling and product design. An analysis of product defects is therefore integral to any attempt at improving productivity, efficiency and quality. Commercial aluminum extrusion is generally a hot working process and consists of a series of different but integrated operations: billet preheating and sizing, die set and container preheating, billet loading and deformation, product sizing and stretching/roll-correction, age hardening, and painting/anodizing. Product defects can be traced back to problems in billet material and preparation, die and die set design and maintenance, process variable aberrations (ram speed, extrusion pressure, container temperature, etc), and post-extrusion treatment (age hardening, painting/anodizing, etc). The current paper attempts to analyze statistically the product defects commonly encountered in a commercial hot aluminum extrusion setup. Real-world rejection data, covering a period of nine years, has been researched and collected from a local structural aluminum extrusion facility. Rejection probabilities have been calculated for all the defects studied. The nine-year rejection data have been statistically analyzed on the basis of (i) an overall breakdown of defects, (ii) year-wise rejection behavior, (iii) breakdown of defects in each of three cost centers: press, anodizing, and painting. (author)

  16. Automatic classification of defects in weld pipe

    International Nuclear Information System (INIS)

    Anuar Mikdad Muad; Mohd Ashhar Hj Khalid; Abdul Aziz Mohamad; Abu Bakar Mhd Ghazali; Abdul Razak Hamzah

    2000-01-01

    With the advancement of computer imaging technology, the image on hard radiographic film can be digitized and stored in a computer and the manual process of defect recognition and classification may be replace by the computer. In this paper a computerized method for automatic detection and classification of common defects in film radiography of weld pipe is described. The detection and classification processes consist of automatic selection of interest area on the image and then classify common defects using image processing and special algorithms. Analysis of the attributes of each defect such as area, size, shape and orientation are carried out by the feature analysis process. These attributes reveal the type of each defect. These methods of defect classification result in high success rate. Our experience showed that sharp film images produced better results

  17. Primordial inhomogeneities from massive defects during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh, E-mail: firouz@ipm.ir, E-mail: karami@ipm.ir, E-mail: t.rostami@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-10-01

    We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.

  18. Automatic classification of defects in weld pipe

    International Nuclear Information System (INIS)

    Anuar Mikdad Muad; Mohd Ashhar Khalid; Abdul Aziz Mohamad; Abu Bakar Mhd Ghazali; Abdul Razak Hamzah

    2001-01-01

    With the advancement of computer imaging technology, the image on hard radiographic film can be digitized and stored in a computer and the manual process of defect recognition and classification may be replaced by the computer. In this paper, a computerized method for automatic detection and classification of common defects in film radiography of weld pipe is described. The detection and classification processes consist of automatic selection of interest area on the image and then classify common defects using image processing and special algorithms. Analysis of the attributes of each defect such area, size, shape and orientation are carried out by the feature analysis process. These attributes reveal the type of each defect. These methods of defect classification result in high success rate. Our experience showed that sharp film images produced better results. (Author)

  19. Large-Scale Molecular Simulations on the Mechanical Response and Failure Behavior of a defective Graphene: Cases of 5-8-5 Defects

    Science.gov (United States)

    Wang, Shuaiwei; Yang, Baocheng; Yuan, Jinyun; Si, Yubing; Chen, Houyang

    2015-10-01

    Understanding the effect of defects on mechanical responses and failure behaviors of a graphene membrane is important for its applications. As examples, in this paper, a family of graphene with various 5-8-5 defects are designed and their mechanical responses are investigated by employing molecular dynamics simulations. The dependence of fracture strength and strain as well as Young’s moduli on the nearest neighbor distance and defect types is examined. By introducing the 5-8-5 defects into graphene, the fracture strength and strain become smaller. However, the Young’s moduli of DL (Linear arrangement of repeat unit 5-8-5 defect along zigzag-direction of graphene), DS (a Slope angle between repeat unit 5-8-5 defect and zigzag direction of graphene) and DZ (Zigzag-like 5-8-5 defects) defects in the zigzag direction become larger than those in the pristine graphene in the same direction. A maximum increase of 11.8% of Young’s modulus is obtained. Furthermore, the brittle cracking mechanism is proposed for the graphene with 5-8-5 defects. The present work may provide insights in controlling the mechanical properties by preparing defects in the graphene, and give a full picture for the applications of graphene with defects in flexible electronics and nanodevices.

  20. Lectures on cosmic topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Vachaspati, T [Department of Astronomy and Astrophysics, Colaba, Mumbai (India) and Physics Department, Case Western Reserve University, Cleveland (United States)

    2001-11-15

    These lectures review certain topological defects and aspects of their cosmology. Unconventional material includes brief descriptions of electroweak defects, the structure of domain walls in non-Abelian theories, and the spectrum of magnetic monopoles in SU(5) Grand Unified theory. (author)

  1. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina

    2016-01-01

    Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with a lower tendency to form defect induced deep gap states are termed defect-tolerant. Here we provide a systematic first...... the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within......-principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...

  2. Production of freely-migrating defects during irradiation

    International Nuclear Information System (INIS)

    Rehn, L.E.; Okamoto, P.R.

    1986-09-01

    During irradiation at elevated temperatures, vacancy and interstitial defects that escape can produce several different types of microstructural changes. Hence the production rate of freely-migrating defects must be known as a function of irradiating particle species and energy before quantitative correlations can be made between microstructural changes. Our fundamental knowledge of freely-migrating defect production has increased substantially in recent years. Critical experimental findings that led to the improved understanding are reviewed in this paper. A strong similarity is found for the dependence of freely-migrating defect production on primary recoil energy as measured in a variety of metals and alloys by different authors. The efficiency for producing freely-migrating defects decreases much more strongly with increasing primary recoil energy than does the efficiency for creating stable defects at liquid helium temperatures. The stronger decrease can be understood in terms of additional intracascade recombination that results from the nonrandom distribution of defects existing in the primary damage state for high primary recoil energies. Although the existing data base is limited to fcc materials, the strong similarity in the reported investigations suggests that the same dependence of freely-migrating defect production on primary recoil energy may be characteristic of a wide variety of other alloy systems as well. 52 refs., 4 figs

  3. Human diseases associated with defective DNA repair

    International Nuclear Information System (INIS)

    Friedberg, E.C.; Ehmann, U.K.; Williams, J.I.

    1979-01-01

    The observations on xeroderma pigmentosum (XP) cells in culture were the first indications of defective DNA repair in association with human disease. Since then, a wealth of information on DNA repair in XP, and to a lesser extent in other diseases, has accumulated in the literature. Rather than clarifying the understanding of DNA repair mechanisms in normal cells and of defective DNA repair in human disease, the literature suggests an extraordinary complexity of both of the phenomena. In this review a number of discrete human diseases are considered separately. An attempt was made to systematically describe the pertinent clinical features and cellular and biochemical defects in these diseases, with an emphasis on defects in DNA metabolism, particularly DNA repair. Wherever possible observations have been correlated and unifying hypotheses presented concerning the nature of the basic defect(s) in these diseases. Discussions of the following diseases are presented: XP, ataxia telangiectasia; Fanconi's anemia; Hutchinson-Gilford progeria syndrome; Bloom's syndrome, Cockayne's syndrome; Down's syndrome; retinoblastoma; chronic lymphocytic leukemia; and other miscellaneous human diseases with possble DNA repair defects

  4. Defect identification for the AsGa family

    International Nuclear Information System (INIS)

    Overhof, H.; Spaeth, J.-M.

    2003-01-01

    The As Ga family consists of at least four distinctly different point defects including the technologically important EL2 defect. While the different members are easily distinguished from their MCDA spectra, the differences of the hf and shf interactions as derived from ODEPR and ODENDOR are rather small. We present ab initio calculations using the LMTO-ASA Green's function method for a variety of defect models that might be relevant for the identification of As Ga -related defects. We confirm the identification of the isolated As Ga and show that the {As Ga -X 2 } defect must be identified with the nearest-neighbor antistructure pair rather than with the {As Ga -V As } pair. For the {As Ga -X 1 } defect a distant antistructure pair is a likely candidate. For the EL2, the most important member of the As Ga family, we have not found a conclusive defect model. The recent ODENDOR data are similar to those of the distant orthorhombic {As Ga -V Ga } pair, which, however is a triple acceptor and not a donor

  5. Defect tolerance in resistor-logic demultiplexers for nanoelectronics.

    Science.gov (United States)

    Kuekes, Philip J; Robinett, Warren; Williams, R Stanley

    2006-05-28

    Since defect rates are expected to be high in nanocircuitry, we analyse the performance of resistor-based demultiplexers in the presence of defects. The defects observed to occur in fabricated nanoscale crossbars are stuck-open, stuck-closed, stuck-short, broken-wire, and adjacent-wire-short defects. We analyse the distribution of voltages on the nanowire output lines of a resistor-logic demultiplexer, based on an arbitrary constant-weight code, when defects occur. These analyses show that resistor-logic demultiplexers can tolerate small numbers of stuck-closed, stuck-open, and broken-wire defects on individual nanowires, at the cost of some degradation in the circuit's worst-case voltage margin. For stuck-short and adjacent-wire-short defects, and for nanowires with too many defects of the other types, the demultiplexer can still achieve error-free performance, but with a smaller set of output lines. This design thus has two layers of defect tolerance: the coding layer improves the yield of usable output lines, and an avoidance layer guarantees that error-free performance is achieved.

  6. Altering graphene line defect properties using chemistry

    Science.gov (United States)

    Vasudevan, Smitha; White, Carter; Gunlycke, Daniel

    2012-02-01

    First-principles calculations are presented of a fundamental topological line defect in graphene that was observed and reported in Nature Nanotech. 5, 326 (2010). These calculations show that atoms and smaller molecules can bind covalently to the surface in the vicinity of the graphene line defect. It is also shown that the chemistry at the line defect has a strong effect on its electronic and magnetic properties, e.g. the ferromagnetically aligned moments along the line defect can be quenched by some adsorbates. The strong effect of the adsorbates on the line defect properties can be understood by examining how these adsorbates affect the boundary-localized states in the vicinity of the Fermi level. We also expect that the line defect chemistry will significantly affect the scattering properties of incident low-energy particles approaching it from graphene.

  7. Iatrogenic Urethral Defect Repairment: A Case Report

    Directory of Open Access Journals (Sweden)

    Ulas Fidan

    2013-10-01

    Full Text Available    Iatrogenic urethral defect is a complication that occurs after vaginal surgical procedures. Many surgical methods according to place of defect are described in case of injury of urethra. In this article, we reported the repairment of distal urethral defect with the help of greft taken from labia minor. This defect is made by the excision of the granulation tissue that occurred after chronic paraurethral  gland infection.

  8. Repairing Nanoparticle Surface Defects.

    Science.gov (United States)

    Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter

    2017-10-23

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. How to call the Fire Brigade

    CERN Multimedia

    2003-01-01

    The telephone numbers for the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from "wired" telephones, however, from mobile phones it leads to non-CERN emergency services.

  10. [Progress of Masquelet technique to repair bone defect].

    Science.gov (United States)

    Yin, Qudong; Sun, Zhenzhong; Gu, Sanjun

    2013-10-01

    To summarize the progress of Masquelet technique to repair bone defect. The recent literature concerning the application of Masquelet technique to repair bone defect was extensively reviewed and summarized. Masquelet technique involves a two-step procedure. First, bone cement is used to fill the bone defect after a thorough debridement, and an induced membrane structure surrounding the spacer formed; then the bone cement is removed after 6-8 weeks, and rich cancellous bone is implanted into the induced membrane. Massive cortical bone defect is repaired by new bone forming and consolidation. Experiments show that the induced membrane has vascular system and is also rich in vascular endothelial growth factor, transforming growth factor beta1, bone morphogenetic protein 2, and bone progenitor cells, so it has osteoinductive property; satisfactory results have been achieved in clinical application of almost all parts of defects, various types of bone defect and massive defect up to 25 cm long. Compared with other repair methods, Masquelet technique has the advantages of reliable effect, easy to operate, few complications, low requirements for recipient site, and wide application. Masquelet technique is an effective method to repair bone defect and is suitable for various types of bone defect, especially for bone defects caused by infection and tumor resection.

  11. Defect pin behaviour in the DFR

    International Nuclear Information System (INIS)

    Sloss, W.M.; Bagley, K.Q.; Edmonds, E.; Potter, P.E.

    1979-01-01

    A program of defective fuel pin irradiations has been carried out in the DFR. This program employed fuel pins which had failed during previous irradiations (natural defects) and pins in which simulated failures (artificial defects) had been induced prior to irradiation or during an intermediate examination stage at moderate or substantial burnups. The artificial defects simulated longitudinal ruptures and were normally located at positions near the top, middle and bottom of the pin where clad temperatures were 450, 540 and 630 0 C respectively. The fuel was mixed U-Pu oxide, and fuel form, stoichiometry, clad type, pin diameter, linear rating, and burnup were among the variables examined. The defect pin tests were normally carried out in single pin or trefoil type vehicles. After irradiation all the pins were subjected to the normal nondestructive examination procedures and the visual, radiographic, gamma-scanning, and dimensional change results are presented. Several pins were destructively examined and the metallographic data are discussed

  12. Defect kinetics in novel detector materials

    CERN Document Server

    MacEvoy, B C

    2000-01-01

    Silicon particle detectors will be used extensively in experiments at the CERN Large Hadron Collider, where unprecedented particle fluences will cause significant atomic displacement damage. We present a model of the evolution of defect concentrations and consequent electrical behaviour in "novel" detector materials with various oxygen and carbon impurity concentrations. The divacancy-oxygen (V/sub 2/O) defect is identified as the cause of changes in device characteristics during /sup 60/Co gamma irradiation. In the case of hadron irradiation changes in detector doping concentration (N/sub eff/) are dominated by cluster defects, in particular the divacancy (V/sub 2/), which exchange charge directly via a non-Shockley-Read- Hall mechanism. The V/sub 2/O defect also contributes to Ne/sub eff/. This defect is more copiously produced during 24 GeV/c proton irradiation than during 1 MeV neutron irradiation on account of the higher vacancy introduction rate, hence the radiation hardness of materials is more sensiti...

  13. Topological defects in open string field theory

    Science.gov (United States)

    Kojita, Toshiko; Maccaferri, Carlo; Masuda, Toru; Schnabl, Martin

    2018-04-01

    We show how conformal field theory topological defects can relate solutions of open string field theory for different boundary conditions. To this end we generalize the results of Graham and Watts to include the action of defects on boundary condition changing fields. Special care is devoted to the general case when nontrivial multiplicities arise upon defect action. Surprisingly the fusion algebra of defects is realized on open string fields only up to a (star algebra) isomorphism.

  14. Local defect resonance for sensitive non-destructive testing

    Science.gov (United States)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  15. Positron annihilation spectroscopy in defects of semiconductors

    International Nuclear Information System (INIS)

    Fujinami, Masanori

    2002-01-01

    Interaction of positron and defects, application to research of defects of semiconductor and defects on the surface of semiconductor are explained. Cz (Czochralski)-Si single crystal with 10 18 cm -3 impurity oxygen was introduced defects by electron irradiation and the positron lifetime was measured at 90K after annealing. The defect size and recovery temperature were determined by the lifetime measurement. The distribution of defects in the depth direction is shown by S-E curve. The chemical state analysis is possible by CBS (Coincidence Doppler Broadening) spectra. The application to silicon-implanted (100 keV, 2x10 15 cm -2 ) silicon and oxygen-implanted (180 keV, 2x10 15 cm -2 ) silicon are stated. On the oxygen-implanted silicon, the main product was V2 after implantation, V 6 O 2 at 600degC and V 10 O 6 at 800degC. (S.Y.)

  16. Perception of risk from automobile safety defects.

    Science.gov (United States)

    Slovic, P; MacGregor, D; Kraus, N N

    1987-10-01

    Descriptions of safety engineering defects of the kind that compel automobile manufacturers to initiate a recall campaign were evaluated by individuals on a set of risk characteristic scales that included overall vehicle riskiness, manufacturer's ability to anticipate the defect, importance for vehicle operation, severity of consequences and likelihood of compliance with a recall notice. A factor analysis of the risk characteristics indicated that judgments could be summarized in terms of two composite scales, one representing the uncontrollability of the damage the safety defect might cause and the other representing the foreseeability of the defect by the manufacturer. Motor vehicle defects were found to be highly diverse in terms of the perceived qualities of their risks. Location of individual defects within the factor space was closely associated with perceived riskiness, perceived likelihood of purchasing another car from the same manufacturer, perceived likelihood of compliance with a recall notice, and actual compliance rates.

  17. Defects in semiconductors

    International Nuclear Information System (INIS)

    Pimentel, C.A.F.

    1983-01-01

    Some problems openned in the study of defects in semiconductors are presented. In particular, a review is made of the more important problems in Si monocrystals of basic and technological interest: microdefects and the presence of oxigen and carbon. The techniques usually utilized in the semiconductor material characterization are emphatized according its potentialities. Some applications of x-ray techniques in the epitaxial shell characterization in heterostructures, importants in electronic optics, are shown. The increase in the efficiency of these defect analysis methods in semiconductor materials with the use of synchrotron x-ray sources is shown. (L.C.) [pt

  18. Wafer plane inspection for advanced reticle defects

    Science.gov (United States)

    Nagpal, Rajesh; Ghadiali, Firoz; Kim, Jun; Huang, Tracy; Pang, Song

    2008-05-01

    Readiness of new mask defect inspection technology is one of the key enablers for insertion & transition of the next generation technology from development into production. High volume production in mask shops and wafer fabs demands a reticle inspection system with superior sensitivity complemented by a low false defect rate to ensure fast turnaround of reticle repair and defect disposition (W. Chou et al 2007). Wafer Plane Inspection (WPI) is a novel approach to mask defect inspection, complementing the high resolution inspection capabilities of the TeraScanHR defect inspection system. WPI is accomplished by using the high resolution mask images to construct a physical mask model (D. Pettibone et al 1999). This mask model is then used to create the mask image in the wafer aerial plane. A threshold model is applied to enhance the inspectability of printing defects. WPI can eliminate the mask restrictions imposed on OPC solutions by inspection tool limitations in the past. Historically, minimum image restrictions were required to avoid nuisance inspection stops and/or subsequent loss of sensitivity to defects. WPI has the potential to eliminate these limitations by moving the mask defect inspections to the wafer plane. This paper outlines Wafer Plane Inspection technology, and explores the application of this technology to advanced reticle inspection. A total of twelve representative critical layers were inspected using WPI die-to-die mode. The results from scanning these advanced reticles have shown that applying WPI with a pixel size of 90nm (WPI P90) captures all the defects of interest (DOI) with low false defect detection rates. In validating CD predictions, the delta CDs from WPI are compared against Aerial Imaging Measurement System (AIMS), where a good correlation is established between WPI and AIMSTM.

  19. Using Semantic Similarity In Automated Call Quality Evaluator For Call Centers

    Directory of Open Access Journals (Sweden)

    Ria A. Sagum

    2015-08-01

    Full Text Available Conversation between the agent and client are being evaluated manually by a quality assurance officer QA. This job is only one of the responsibilities being done by a QA and particularly eat ups a lot of time for them which lead to late evaluation results that may cause untimely response of the company to concerns raised by their clients. This research developed an application software that automates and evaluates the quality assurance in business process outsourcing companies or customer service management implementing sentence similarity. The developed system includes two modules speaker diarization which includes transcription and question and answer extraction and similarity checker which checks the similarity between the extracted answer and the answer of the call center agent to a question. The system was evaluated for Correctness of the extracted answers and accurateness of the evaluation for a particular call. Audio conversations were tested for the accuracy of the transcription module which has an accuracy of 27.96. The Precision Recall and F-measure of the extracted answer was tested as 78.03 96.26 and 86.19 respectively. The Accuracy of the system in evaluating a call is 70.

  20. Reduction of Defects in Jewelry Manufacturing

    Science.gov (United States)

    Ayudhya, Phitchaya Phanomwan na; Tangjitsitcharoen, Somkiat

    2017-06-01

    The aim of this research was to reduce the defects of gem bracelet found during manufacturing process at a jewelry company. It was found that gem bracelet product has the highest rejects compared to the rejects found in ring, earring, and pendant products. Types of defect were classified by using Pareto Diagram consisting of gem falling, seam, unclean casting, impinge, and deformation. The causes of defect were analyzed by Cause and Effect Diagram and applied Failure Mode and Effects Analysis (FMEA) was applied during manufacturing processes. This research found that the improvement of manufacturing process could reduce the Risk Priority Number (RPN) and total of all defects by 48.70% and 48.89%, respectively.

  1. Ultrasonic defect detection method for socket welding joint

    International Nuclear Information System (INIS)

    Tominaga, Masaaki; Matsuo, Toshiyuki; Ueno, Akihiro; Watanabe, Kunimichi; Kawamata, Kunio.

    1995-01-01

    The present invention provides a method of detecting defects over a wide range of a socket weld portion of various kinds of pipelines used, for example, in a nuclear power plant. Namely, an inclined probe is disposed to a jig for detecting defects by ultrasonic waves. This is rotated at least by one turn along the peripheral surface of the material to be detected such as weld tube joints. Defects of weld portion of the material can be detected automatically by using ultrasonic waves during the rotation. The inclined probe for detecting defects by ultrasonic waves comprises a transmission portion having a planar transmittance oscillator disposed to a wedge on the transmission side and a receiving portion comprising a planar receiving oscillator disposed to a wedge on the receiving side. With such a constitution, ultrasonic waves are emitted from the transmission portion to the defect detection portion in the welded portion. If a defect is present, defective echo is reflected to the receiving portion disposed ahead of the probe. Since the defective echo changes depending on the height of the detective portion, the estimation of the height of the defect can be facilitated. (I.S.)

  2. Tracking architectural defects in university building in Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Isa Haryati

    2016-01-01

    Full Text Available Building defects are always the key concern in the construction industry. Defects represent not only a loss to the project but also hamper the smooth operation of a building. Recognising the need to resolve these continuing problems, a research was mooted to track from the study of defects that occurred during the Defects Liability Period in a public university in Malaysia. This paper presents part of the research which investigates what can be learnt from the analysis of architectural defects in these projects. Two research objectives were developed (1 to investigate types of architectural defects that occurred and (2 to analyse the causes of the defects. A mixed methods approach is adopted. Data for the quantitative element of the research was drawn from defects audit records of the project. They were sorted, grouped and transferred into the SPSS software for analysis using the measure of central tendencies and frequency analysis. The findings suggest that with a proper methodology in place, defects can be effectively traced and categorised. This can provide very useful insights to their root cause and how this can be avoided in future projects.

  3. Calling in Work: Secular or Sacred?

    Science.gov (United States)

    Steger, Michael F.; Pickering, N. K.; Shin, J. Y.; Dik, B. J.

    2010-01-01

    Recent scholarship indicates that people who view their work as a calling are more satisfied with their work and their lives. Historically, calling has been regarded as a religious experience, although modern researchers frequently have adopted a more expansive and secular conceptualization of calling, emphasizing meaning and personal fulfillment…

  4. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model.

    Science.gov (United States)

    Brunetti, Dario; Dusi, Sabrina; Morbin, Michela; Uggetti, Andrea; Moda, Fabio; D'Amato, Ilaria; Giordano, Carla; d'Amati, Giulia; Cozzi, Anna; Levi, Sonia; Hayflick, Susan; Tiranti, Valeria

    2012-12-15

    Neurodegeneration with brain iron accumulation (NBIA) comprises a group of neurodegenerative disorders characterized by high brain content of iron and presence of axonal spheroids. Mutations in the PANK2 gene, which encodes pantothenate kinase 2, underlie an autosomal recessive inborn error of coenzyme A metabolism, called pantothenate kinase-associated neurodegeneration (PKAN). PKAN is characterized by dystonia, dysarthria, rigidity and pigmentary retinal degeneration. The pathogenesis of this disorder is poorly understood and, although PANK2 is a mitochondrial protein, perturbations in mitochondrial bioenergetics have not been reported. A knock-out (KO) mouse model of PKAN exhibits retinal degeneration and azoospermia, but lacks any neurological phenotype. The absence of a clinical phenotype has partially been explained by the different cellular localization of the human and murine PANK2 proteins. Here we demonstrate that the mouse Pank2 protein localizes to mitochondria, similar to its human orthologue. Moreover, we show that Pank2-defective neurons derived from KO mice have an altered mitochondrial membrane potential, a defect further corroborated by the observations of swollen mitochondria at the ultra-structural level and by the presence of defective respiration.

  5. Experimental study of defect power reactor fuel. Final report

    International Nuclear Information System (INIS)

    Forsyth, R.S.; Jonsson, T.

    1982-01-01

    Two BWR fuel rods, one intact and one defect, with the same manufacturing and irradiation data have been examined in a comparative study. The defect rod has been irradiated in a defect condition during approximately one reactor cycle and has consequently some secondary defects. The defect rod has two penetrating defects at a distance of about 1.5 meters from each other. Comparison with the intact rod shows a large Cs loss from the defect rod, especially between the cladding defects, where the loss is measured to about 30 %. The leachibility in deionized water is higher for Cs, U and Cm for fuel from the defect rod. The leaching results are more complex for Sr-90, Pu and Am. The fuel in the defect rod has undergone a change of structure with gain growth and formation of oriented fuel structure. The cladding of the defect rod is hydrided locally in some parts of the lower part of the rod and furthermore over a more extended region near the end of the rod. (Authors)

  6. Channeling studies of impurity-defect interactions in silicon

    International Nuclear Information System (INIS)

    Wiggers, L.W.

    1978-01-01

    This thesis deals with the mechanism of defect production and interaction of introduced defects with impurity atoms in silicon single crystals. Defects are created by irradiation with energetic light particles (.2 - 3 MeV H + or He + ions). Mostly simple defects like vacancies and interstitials are produced during bombardment. (Auth.)

  7. Ultrasonic defect characterization using parametric-manifold mapping

    Science.gov (United States)

    Velichko, A.; Bai, L.; Drinkwater, B. W.

    2017-06-01

    The aim of ultrasonic non-destructive evaluation includes the detection and characterization of defects, and an understanding of the nature of defects is essential for the assessment of structural integrity in safety critical systems. In general, the defect characterization challenge involves an estimation of defect parameters from measured data. In this paper, we explore the extent to which defects can be characterized by their ultrasonic scattering behaviour. Given a number of ultrasonic measurements, we show that characterization information can be extracted by projecting the measurement onto a parametric manifold in principal component space. We show that this manifold represents the entirety of the characterization information available from far-field harmonic ultrasound. We seek to understand the nature of this information and hence provide definitive statements on the defect characterization performance that is, in principle, extractable from typical measurement scenarios. In experiments, the characterization problem of surface-breaking cracks and the more general problem of elliptical voids are studied, and a good agreement is achieved between the actual parameter values and the characterization results. The nature of the parametric manifold enables us to explain and quantify why some defects are relatively easy to characterize, whereas others are inherently challenging.

  8. Fibrous metaphyseal defect (fibrous cortical defect, non-ossifying fibroma)

    International Nuclear Information System (INIS)

    Freyschmidt, J.; Saure, D.; Dammenhain, S.

    1981-01-01

    Fibrous cortical defect and nonossifying fibromas can be classified together as fibrous metaphyseal defects (FMD) since they have the same pahtological substrate, with a tendency to the same localisation around the knee, and occuring at the same age. They have a tendency to spontaneous healing, are clinically silent and are usually discovered accidentally during radiological examination. A radiological survey fo 5.674 metaphyseal regions in the upper and lower extremities of 2.065 unselected patients aged one to 20 years revealed an incidence of 1.8%; exlcusive examination of the distal femur showed an incidence of 2.7%. 96% of all lesions were in the lower extremities and only 4% in the upper. The marked discrepancy in the incidence rate between American and German publications is discussed. (orig.) [de

  9. Hornbills can distinguish between primate alarm calls.

    Science.gov (United States)

    Rainey, Hugo J.; Zuberbühler, Klaus; Slater, Peter J. B.

    2004-01-01

    Some mammals distinguish between and respond appropriately to the alarm calls of other mammal and bird species. However, the ability of birds to distinguish between mammal alarm calls has not been investigated. Diana monkeys (Cercopithecus diana) produce different alarm calls to two predators: crowned eagles (Stephanoaetus coronatus) and leopards (Panthera pardus). Yellow-casqued hornbills (Ceratogymna elata) are vulnerable to predation by crowned eagles but are not preyed on by leopards and might therefore be expected to respond to the Diana monkey eagle alarm call but not to the leopard alarm call. We compared responses of hornbills to playback of eagle shrieks, leopard growls, Diana monkey eagle alarm calls and Diana monkey leopard alarm calls and found that they distinguished appropriately between the two predator vocalizations as well as between the two Diana monkey alarm calls. We discuss possible mechanisms leading to these responses. PMID:15209110

  10. Agricultural Compounds in Water and Birth Defects.

    Science.gov (United States)

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

  11. A novel inspection system for cosmetic defects

    Science.gov (United States)

    Hazra, S.; Roy, R.; Williams, D.; Aylmore, R.; Hollingdale, D.

    2013-12-01

    The appearance of automotive skin panels creates desirability for a product and differentiates it from the competition. Because of the importance of skin panels, considerable care is taken in minimizing defects such as the 'hollow' defect that occur around door-handle depressions. However, the inspection process is manual, subjective and time-consuming. This paper describes the development of an objective and inspection scheme for the 'hollow' defect. In this inspection process, the geometry of a panel is captured using a structured lighting system. The geometry data is subsequently analyzed by a purpose-built wavelet-based algorithm to identify the location of any defects that may be present and to estimate the perceived severity of the defects without user intervention. This paper describes and critically evaluates the behavior of this physically-based algorithm on an ideal and real geometry and compares its result to an actual audit. The results show that the algorithm is capable of objectively locating and classifying 'hollow' defects in actual panels.

  12. Peculiarities of radiation defect formation and annealing in n-Si due to their interaction with each other and defect clusters

    International Nuclear Information System (INIS)

    Lugakov, P.F.; Lukyanitsa, V.V.

    1984-01-01

    Rearrangement processes proceeding during annealing (T/sub a/ = 50 to 500 0 C) of radiation defects in 60 Co γ-irradiated (T/sub irr/ 0 C) n-Si crystals (rho = 100 to 600 Ωcm) grown by the vacuum float-zone technique are studied. The temperature dependences of the Hall coefficient are measured. The results obtained are interpreted taking into account the interaction during annealing of vacancy-type defects (E-centres, divacancies) with each other and interstitial radiation defects (C/sub i/-C/sub s/ complexes, interstitial carbon C/sub i/). Phosphorus-two vacancies complexes, stable to T/sub a/ >= 500 0 C, are shown to be formed as a result of rearrangements and interaction of E-centres between themselves. The character of interaction of vacancy defects with interstitial ones is found to change significantly in the presence of defect clusters in the bulk of the crystal which are formed under heat treatment (T = 800 0 C, two hours) of the samples preliminary irradiated with fast neutrons (flux PHI/sub n/ = 1x10 14 to 1x10 16 cm -2 ). The peculiarities of radiation defects annealing observed in this case are explained taking into account the influence of defect clusters on the migration processes of mobile defects. Nature of radiation defects being formed at various stages of annealing is discussed. (author)

  13. Pullout Performances of Grouted Rockbolt Systems with Bond Defects

    Science.gov (United States)

    Xu, Chang; Li, Zihan; Wang, Shanyong; Wang, Shuren; Fu, Lei; Tang, Chunan

    2018-03-01

    This paper presents a numerical study on the pullout behaviour of fully grouted rockbolts with bond defects. The cohesive zone model (CZM) is adopted to model the bond-slip behaviour between the rockbolt and grout material. Tensile tests were also conducted to validate the numerical model. The results indicate that the defect length can obviously influence the load and stress distributions along the rockbolt as well as the load-displacement response of the grouted system. Moreover, a plateau in the stress distribution forms due to the bond defect. The linear limit and peak load of the load-displacement response decrease as the defect length increases. A bond defect located closer to the loaded end leads to a longer nonlinear stage in the load-displacement response. However, the peak loads measured from the specimens made with various defect locations are almost approximately the same. The peak load for a specimen with the defects equally spaced along the bolt is higher than that for a specimen with defects concentrated in a certain zone, even with the same total defect length. Therefore, the dispersed pattern of bond defects would be much safer than the concentrated pattern. For the specimen with dispersed defects, the peak load increases with an increase in the defect spacing, even if the total defect length is the same. The peak load for a grouted rockbolt system with defects increases with an increases in the bolt diameter. This work leads to a better understanding of the load transfer mechanism for grouted rockbolt systems with bond defects, and paves the way towards developing a general evaluation method for damaged rockbolt grouted systems.

  14. Defect detection of wall thinning defect in pipes using lock-in photo-infrared thermography technique

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Ok; Park, Jong Hyun; Choi, Tae Ho; Jung, Hyun Chul; Kim, Kyoung Suk [Chosun Univ., Gwangju (Korea, Republic of)

    2008-07-01

    Piping in the Nuclear Power plants (NPP) are mostly consisted of carbon steel pipe. The wall thinning defect is mainly occurred by the affect of the Flow Accelerated Corrosion (FAC) of fluid which flows in carbon steel pipes. This type of defect becomes the cause of damage or destruction of piping. Therefore, it is very important to measure defect which is existed not only on the welding partbut also on the whole field of pipe. Over the years, Infrared Thermography (IRT) has been used as a non destructive testing methods of the various kinds of materials. This technique has many merits and applied to the industrial field but has limitation to the materials. Therefore, this method was combined with lock-in technique. So IRT detection resolution has been progressively improved using lock-in technique. In this paper, the quantitative analysis results of the location and the size of wall thinning defect that is artificially processed inside the carbon steel pipe by using IRT are obtained.

  15. Defect grating modes as superimposed grating states

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; de Ridder, R.M.; Altena, G; Altena, G.; Geuzebroek, D.H.; Geuzenboek, D.; Dekker, R.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  16. Defect engineering of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M.H. [Center for Materials Research and Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2711 (United States)], E-mail: m_weber@wsu.edu; Selim, F.A.; Solodovnikov, D.; Lynn, K.G. [Center for Materials Research and Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2711 (United States)

    2008-10-31

    The defect responsible for the transparent to red color change of nominally undoped ZnO bulk single crystals is investigated. Upon annealing in the presence of metallic Zn as reported by Halliburton et al. and also Ti and Zr a native defect forms with an energy level about 0.7 eV below the conduction band. This change is reversible upon annealing in oxygen. Optical transmission data along with positron depth profiles and annealing studies are combined to identify the defect as oxygen vacancies. Vacancy clustering occurs at about 500 deg. C if isolated zinc and oxygen vacancies. In the absence of zinc vacancies, clusters form at about 800 deg. C.

  17. Defect engineering of ZnO

    International Nuclear Information System (INIS)

    Weber, M.H.; Selim, F.A.; Solodovnikov, D.; Lynn, K.G.

    2008-01-01

    The defect responsible for the transparent to red color change of nominally undoped ZnO bulk single crystals is investigated. Upon annealing in the presence of metallic Zn as reported by Halliburton et al. and also Ti and Zr a native defect forms with an energy level about 0.7 eV below the conduction band. This change is reversible upon annealing in oxygen. Optical transmission data along with positron depth profiles and annealing studies are combined to identify the defect as oxygen vacancies. Vacancy clustering occurs at about 500 deg. C if isolated zinc and oxygen vacancies. In the absence of zinc vacancies, clusters form at about 800 deg. C

  18. Eddy current inspection of weld defects in tubing

    Science.gov (United States)

    Katragadda, G.; Lord, W.

    1992-01-01

    An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential eddy current techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.

  19. From nestling calls to fledgling silence: adaptive timing of change in response to aerial alarm calls.

    Science.gov (United States)

    Magrath, Robert D; Platzen, Dirk; Kondo, Junko

    2006-09-22

    Young birds and mammals are extremely vulnerable to predators and so should benefit from responding to parental alarm calls warning of danger. However, young often respond differently from adults. This difference may reflect: (i) an imperfect stage in the gradual development of adult behaviour or (ii) an adaptation to different vulnerability. Altricial birds provide an excellent model to test for adaptive changes with age in response to alarm calls, because fledglings are vulnerable to a different range of predators than nestlings. For example, a flying hawk is irrelevant to a nestling in a enclosed nest, but is dangerous to that individual once it has left the nest, so we predict that young develop a response to aerial alarm calls to coincide with fledging. Supporting our prediction, recently fledged white-browed scrubwrens, Sericornis frontalis, fell silent immediately after playback of their parents' aerial alarm call, whereas nestlings continued to calling despite hearing the playback. Young scrubwrens are therefore exquisitely adapted to the changing risks faced during development.

  20. Infrared computations of defect Schur indices

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr., Princeton, NJ (United States); Gaiotto, Davide [Perimeter Institute for Theoretical Physics,31 Caroline St., Waterloo, Ontario, N2L 2Y5 (Canada); Shao, Shu-Heng [Jefferson Physical Laboratory, Harvard University,17 Oxford St., Cambridge, MA (United States); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr., Princeton, NJ (United States)

    2016-11-18

    We conjecture a formula for the Schur index of four-dimensional N=2 theories in the presence of boundary conditions and/or line defects, in terms of the low-energy effective Seiberg-Witten description of the system together with massive BPS excitations. We test our proposal in a variety of examples for SU(2) gauge theories, either conformal or asymptotically free. We use the conjecture to compute these defect-enriched Schur indices for theories which lack a Lagrangian description, such as Argyres-Douglas theories. We demonstrate in various examples that line defect indices can be expressed as sums of characters of the associated two-dimensional chiral algebra and that for Argyres-Douglas theories the line defect OPE reduces in the index to the Verlinde algebra.

  1. Holographic entanglement entropy of surface defects

    International Nuclear Information System (INIS)

    Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos

    2016-01-01

    We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena http://dx.doi.org/10.1007/JHEP05(2014)025 to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.

  2. Holographic entanglement entropy of surface defects

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos [Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States)

    2016-04-12

    We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena http://dx.doi.org/10.1007/JHEP05(2014)025 to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.

  3. Staffing to Maximize Profit for Call Centers with Impatient and Repeat-Calling Customers

    Directory of Open Access Journals (Sweden)

    Jun Gong

    2015-01-01

    Full Text Available Motivated by call center practice, we study the optimal staffing of many-server queues with impatient and repeat-calling customers. A call center is modeled as an M/M/s+M queue, which is developed to a behavioral queuing model in which customers come and go based on their satisfaction with waiting time. We explicitly take into account customer repeat behavior, which implies that satisfied customers might return and have an impact on the arrival rate. Optimality is defined as the number of agents that maximize revenues net of staffing costs, and we account for the characteristic that revenues are a direct function of staffing. Finally, we use numerical experiments to make certain comparisons with traditional models that do not consider customer repeat behavior. Furthermore, we indicate how managers might allocate staffing optimally with various customer behavior mechanisms.

  4. Phosphorous–vacancy–oxygen defects in silicon

    KAUST Repository

    Wang, Hao

    2013-07-30

    Electronic structure calculations employing the hybrid functional approach are used to gain fundamental insight in the interaction of phosphorous with oxygen interstitials and vacancies in silicon. It recently has been proposed, based on a binding energy analysis, that phosphorous–vacancy–oxygen defects may form. In the present study we investigate the stability of this defect as a function of the Fermi energy for the possible charge states. Spin polarization is found to be essential for the charge neutral defect.

  5. An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation.

    Science.gov (United States)

    Perez-Arnaiz, Patricia; Kaplan, Daniel L

    2016-11-20

    Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Lumber defect detection by ultrasonics

    Science.gov (United States)

    K. A. McDonald

    1978-01-01

    Ultrasonics, the technology of high-frequency sound, has been developed as a viable means for locating most defects In lumber for use in digital form in decision-making computers. Ultrasonics has the potential for locating surface and internal defects in lumber of all species, green or dry, and rough sawn or surfaced.

  7. Angiographic differentiation of type of ventricular septal defects

    International Nuclear Information System (INIS)

    Cheon, Mal Soon; Park, Hee Young; Kim, Yang Sook

    1989-01-01

    Defects of the ventricular septum are the commonest type of congenital cardiac malformations. A classification with axial angiography of the subtypes of ventricular septal defects is proposed on the study of 126 patients with defects of the ventricular septum. The results were as follows: 1. The incidence of the ventricular septal defects was 39.6% of congenital heart malformation. 2. The sex distribution of cases were 70 males and 56 females, the age ranged from 13 months to 26 years. 3. Angiographic features seen by axial angiography were as follows: a. Perimembranous defects as seen on long axial view of left ventriculogram were in continuity wity aortic valve. The relation of the defect to the tricuspid valve allows distinction of the extension of the preimembranous defect toward inlet, trabecular, or infundibular zones. This relation was determined angiographically, using the course of the contrast medium from the left ventricle through the ventricular septal defect, opacifying the right ventricle. In inlet excavation, the shunted blood opacified the recess between septal leaflet of tricuspid valve and interventricular septum in early phase, in infundibular excavation, opacified the recess between anterior leaflet of tricuspid valve and anterior free wall of right ventricle and in trabecular excavation, the shunted blood traversed anterior portion of tricuspid valve ring, opacified trabecular portion of right ventricle. b. Muscular defects were separated from the semilunar and atrioventricular valves. c, Subarterial defects were related to both semilunar valves, and they were best demonstrated on the elongated right anterior oblique view of the left ventriculogram. d. Total infundibular defects were profiled in right anterior oblique 30 and long axial view, subaortic in location in both views

  8. Defect Chemistry of Oxides for Energy Applications.

    Science.gov (United States)

    Schweke, Danielle; Mordehovitz, Yuval; Halabi, Mahdi; Shelly, Lee; Hayun, Shmuel

    2018-05-31

    Oxides are widely used for energy applications, as solid electrolytes in various solid oxide fuel cell devices or as catalysts (often associated with noble metal particles) for numerous reactions involving oxidation or reduction. Defects are the major factors governing the efficiency of a given oxide for the above applications. In this paper, the common defects in oxide systems and external factors influencing the defect concentration and distribution are presented, with special emphasis on ceria (CeO 2 ) based materials. It is shown that the behavior of a variety of oxide systems with respect to properties relevant for energy applications (conductivity and catalytic activity) can be rationalized by general considerations about the type and concentration of defects in the specific system. A new method based on transmission electron microscopy (TEM), recently reported by the authors for mapping space charge defects and measuring space charge potentials, is shown to be of potential importance for understanding conductivity mechanisms in oxides. The influence of defects on gas-surface reactions is exemplified on the interaction of CO 2 and H 2 O with ceria, by correlating between the defect distribution in the material and its adsorption capacity or splitting efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Defect assessment procedures at high temperature

    International Nuclear Information System (INIS)

    Ainsworth, R.A.

    1991-01-01

    A comprehensive assessment procedure for the high-temperature response of structures is being produced. The procedure is referred to as R5 and is written as a series of step-by-step instructions in a number of volumes. This paper considers in detail those parts of R5 which address the behaviour of defects. The defect assessment procedures may be applied to defects found in service, postulated defects, or defects formed during operation as a result of creep-fatigue loading. In the last case, a method is described for deducing from endurance data the number of cycles to initiate a crack of a specified size. Under steady loading, the creep crack tip parameter C * is used to assess crack growth. Under cyclic loading, the creep crack growth during dwell periods is stiell governed by C * but crack growth due to cyclic excursions must also be included. This cyclic crack growth is described by an effective stress intensity factor range. A feature of the R5 defect assessment procedures in that they are based on simplified methods and approximate reference stress methods are described which enable C * in a component to be evaluated. It is shown by comparison with theoretical calculations and experimental data that reliable estimates of C * and the associated crack growth are obtained provided realistic creep strain rate date are used in the reference stress approximation. (orig./HP)

  10. Endotracheal tube defects: Hidden causes of airway obstruction

    Directory of Open Access Journals (Sweden)

    Sofi Khalid

    2010-01-01

    Full Text Available Manufacturing defects of endotracheal tube (ETT are still encountered in anesthesia practice. Many such defects go unnoticed during routine inspection prior to their use. Such defects in ETT may lead to partial or complete airway obstruction in an intubated patient. We report a case of partial airway obstruction with a prepacked, single use, uncuffed ETT due to a manufacturing defect in the form of a plastic meniscus at the distal end of the tube. This case report highlights the significance of standard monitoring of ventilation and the role of a vigilant clinician in detecting such defects in avoiding critical events as can arise from the use of such defective ETTs. It also emphasizes the need for double checking ETTs prior to their use.

  11. Teratology: from science to birth defects prevention.

    Science.gov (United States)

    Rasmussen, Sonja A; Erickson, J David; Reef, Susan E; Ross, Danielle S

    2009-01-01

    One of the goals of birth defects research is to better understand risk or preventive factors for birth defects so that strategies for prevention can be developed. In this article, we have selected four areas of birth defects research that have led to the development of prevention strategies. These areas include rubella virus as a cause of congenital rubella syndrome, folic acid as a preventive factor for neural tube defects, cytomegalovirus infection as a cause of birth defects and developmental disabilities, and alcohol as a cause of fetal alcohol spectrum disorders. For each of these areas, we review key clinical and research findings that led to the identification of the risk or preventive factor, milestones in the development of prevention strategies, and the progress made thus far toward prevention.

  12. Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zongying [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Union Research Center of Fuel Cell, School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chen, Haipeng [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Zhou, Shixue, E-mail: zhoushixue66@163.com [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590 (China)

    2017-02-01

    Highlights: • Clarify the effect of vacancy defect on H{sub 2} dissociation on Mg (0001) surface. • Demonstrate the effects of vacancy defect on H atom diffusion. • Reveal the minimum energy diffusion path of H atom from magnesium surface into bulk. - Abstract: First-principles calculations with the density functional theory (DFT) have been carried out to study dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces. Results show that energy barriers of 1.42 eV and 1.28 eV require to be overcome for H{sub 2} dissociation on defect-free and vacancy defective Mg (0001) surfaces respectively, indicating that reactivity of Mg (0001) surface is moderately increased due to vacancy defect. Besides, the existence of vacancy defect changes the preferential H atom diffusion entrance to the subsurface and reduces the diffusion energy barrier. An interesting remark is that the minimum energy diffusion path of H atom from magnesium surface into bulk is a spiral channel formed by staggered octahedral and tetrahedral interstitials. The diffusion barriers computed for H atom penetration from the surface into inner-layers are all less than 0.70 eV, which is much smaller than the activation energy for H{sub 2} dissociation on the Mg (0001) surface. This suggests that H{sub 2} dissociation is more likely than H diffusion to be rate-limiting step for magnesium hydrogenation.

  13. Vibration of carbon nanotubes with defects: order reduction methods

    Science.gov (United States)

    Hudson, Robert B.; Sinha, Alok

    2018-03-01

    Order reduction methods are widely used to reduce computational effort when calculating the impact of defects on the vibrational properties of nearly periodic structures in engineering applications, such as a gas-turbine bladed disc. However, despite obvious similarities these techniques have not yet been adapted for use in analysing atomic structures with inevitable defects. Two order reduction techniques, modal domain analysis and modified modal domain analysis, are successfully used in this paper to examine the changes in vibrational frequencies, mode shapes and mode localization caused by defects in carbon nanotubes. The defects considered are isotope defects and Stone-Wales defects, though the methods described can be extended to other defects.

  14. Peafowl antipredator calls encode information about signalers.

    Science.gov (United States)

    Yorzinski, Jessica L

    2014-02-01

    Animals emit vocalizations that convey information about external events. Many of these vocalizations, including those emitted in response to predators, also encode information about the individual that produced the call. The relationship between acoustic features of antipredator calls and information relating to signalers (including sex, identity, body size, and social rank) were examined in peafowl (Pavo cristatus). The "bu-girk" antipredator calls of male and female peafowl were recorded and 20 acoustic parameters were automatically extracted from each call. Both the bu and girk elements of the antipredator call were individually distinctive and calls were classified to the correct signaler with over 90% and 70% accuracy in females and males, respectively. Females produced calls with a higher fundamental frequency (F0) than males. In both females and males, body size was negatively correlated with F0. In addition, peahen rank was related to the duration, end mean frequency, and start harmonicity of the bu element. Peafowl antipredator calls contain detailed information about the signaler and can potentially be used by receivers to respond to dangerous situations.

  15. Defect branes as Alice strings

    International Nuclear Information System (INIS)

    Okada, Takashi; Sakatani, Yuho

    2015-01-01

    There exist various defect-brane backgrounds in supergravity theories which arise as the low energy limit of string theories. These backgrounds typically have non-trivial monodromies, and if we move a charged probe around the center of a defect, its charge will be changed by the action of the monodromy. During the process, the charge conservation law seems to be violated. In this paper, to resolve this puzzle, we examine a dynamics of the charge changing process and show that the missing charge of the probe is transferred to the background. We then explicitly construct the resultant background after the charge transfer process by utilizing dualities. This background has the same monodromy as the original defect brane, but has an additional charge which does not have any localized source. In the literature, such a charge without localized source is known to appear in the presence of Alice strings. We argue that defect branes can in fact be regarded as a realization of Alice strings in string theory and examine the charge transfer process from that perspective.

  16. Defect branes as Alice strings

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi [Theoretical Biology Laboratory, RIKEN,Wako 351-0198 (Japan); Sakatani, Yuho [Department of Physics and Astronomy,Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-03-25

    There exist various defect-brane backgrounds in supergravity theories which arise as the low energy limit of string theories. These backgrounds typically have non-trivial monodromies, and if we move a charged probe around the center of a defect, its charge will be changed by the action of the monodromy. During the process, the charge conservation law seems to be violated. In this paper, to resolve this puzzle, we examine a dynamics of the charge changing process and show that the missing charge of the probe is transferred to the background. We then explicitly construct the resultant background after the charge transfer process by utilizing dualities. This background has the same monodromy as the original defect brane, but has an additional charge which does not have any localized source. In the literature, such a charge without localized source is known to appear in the presence of Alice strings. We argue that defect branes can in fact be regarded as a realization of Alice strings in string theory and examine the charge transfer process from that perspective.

  17. Positron annihilation spectroscopy in defects of semiconductors

    CERN Document Server

    Fujinami, M

    2002-01-01

    Interaction of positron and defects, application to research of defects of semiconductor and defects on the surface of semiconductor are explained. Cz (Czochralski)-Si single crystal with 10 sup 1 sup 8 cm sup - sup 3 impurity oxygen was introduced defects by electron irradiation and the positron lifetime was measured at 90K after annealing. The defect size and recovery temperature were determined by the lifetime measurement. The distribution of defects in the depth direction is shown by S-E curve. The chemical state analysis is possible by CBS (Coincidence Doppler Broadening) spectra. The application to silicon-implanted (100 keV, 2x10 sup 1 sup 5 cm sup - sup 2) silicon and oxygen-implanted (180 keV, 2x10 sup 1 sup 5 cm sup - sup 2) silicon are stated. On the oxygen-implanted silicon, the main product was V2 after implantation, V sub 6 O sub 2 at 600degC and V sub 1 sub 0 O sub 6 at 800degC. (S.Y.)

  18. Theory of Defects in Semiconductors

    CERN Document Server

    Drabold, David A

    2007-01-01

    Semiconductor science and technology is the art of defect engineering. The theoretical modeling of defects has improved dramatically over the past decade. These tools are now applied to a wide range of materials issues: quantum dots, buckyballs, spintronics, interfaces, amorphous systems, and many others. This volume presents a coherent and detailed description of the field, and brings together leaders in theoretical research. Today's state-of-the-art, as well as tomorrow’s tools, are discussed: the supercell-pseudopotential method, the GW formalism,Quantum Monte Carlo, learn-on-the-fly molecular dynamics, finite-temperature treatments, etc. A wealth of applications are included, from point defects to wafer bonding or the propagation of dislocation.

  19. Defect CFTs and holographic multiverse

    International Nuclear Information System (INIS)

    Fiol, Bartomeu

    2010-01-01

    We investigate some aspects of a recent proposal for a holographic description of the multiverse. Specifically, we focus on the implications on the suggested duality of the fluctuations of a bubble separating two universes with different cosmological constants. We do so by considering a similar problem in a 2+1 CFT with a codimension one defect, obtained by an M5-brane probe embedding in AdS 4 × S 7 , and studying its spectrum of fluctuations. Our results suggest that the kind of behavior required by the spectrum of bubble fluctuations is not likely to take place in defect CFTs with an AdS dual, although it might be possible if the defect supports a non-unitary theory

  20. BUFO PARDALIS (ANURA: BUFONIDAE): MATING CALL AND ...

    African Journals Online (AJOL)

    the calls of one of these species, Bufo pardalis. Hewitt, were not analysed by Tandy & Keith. (1972). Furthennore there is some confusion in the literature regarding the mating call of this species. For these reasons this mating call is here clarified. The mating call of B. pardaiis was first described by Ranger (in Hewitt 1935) as ...

  1. Impact of mobility on call block, call drops and optimal cell size in small cell networks

    OpenAIRE

    Ramanath , Sreenath; Voleti , Veeraruna Kavitha; Altman , Eitan

    2011-01-01

    We consider small cell networks and study the impact of user mobility. Assuming Poisson call arrivals at random positions with random velocities, we discuss the characterization of handovers at the boundaries. We derive explicit expressions for call block and call drop probabilities using tools from spatial queuing theory. We also derive expressions for the average virtual server held up time. These expressions are used to derive optimal cell sizes for various profile of velocities in small c...

  2. Actinic inspection of multilayer defects on EUV masks

    International Nuclear Information System (INIS)

    Barty, A; Liu, Y; Gullikson, E; Taylor, J S; Wood, O

    2005-01-01

    The production of defect-free mask blanks, and the development of techniques for inspecting and qualifying EUV mask blanks, remains a key challenge for EUV lithography. In order to ensure a reliable supply of defect-free mask blanks, it is necessary to develop techniques to reliably and accurately detect defects on un-patterned mask blanks. These inspection tools must be able to accurately detect all critical defects whilst simultaneously having the minimum possible false-positive detection rate. There continues to be improvement in high-speed non-actinic mask blank inspection tools, and it is anticipated that these tools can and will be used by industry to qualify EUV mask blanks. However, the outstanding question remains one of validating that non-actinic inspection techniques are capable of detecting all printable EUV defects. To qualify the performance of non-actinic inspection tools, a unique dual-mode EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory. In high-speed inspection mode, whole mask blanks are scanned for defects using 13.5-nm wavelength light to identify and map all locations on the mask that scatter a significant amount of EUV light. In imaging, or defect review mode, a zone plate is placed in the reflected beam path to image a region of interest onto a CCD detector with an effective resolution on the mask of 100-nm or better. Combining the capabilities of the two inspection tools into one system provides the unique capability to determine the coordinates of native defects that can be used to compare actinic defect inspection with visible light defect inspection tools under commercial development, and to provide data for comparing scattering models for EUV mask defects

  3. Defect Depth Measurement of Straight Pipe Specimen Using Shearography

    International Nuclear Information System (INIS)

    Chang, Ho Seob; Kim, Kyung Suk

    2012-01-01

    In the nuclear industry, wall thinning defect of straight pipe occur the enormous loss in life evaluation and safety evaluation. To use non-destructive technique, we measure deformation, vibration, defect evaluation. But, this techniques are a weak that is the measurement of the wide area is difficult and the time is caught long. In the secondary side of nuclear power plants mostly used steel pipe, artificiality wall thinning defect make in the side and different thickness make to the each other, wall thinning defect part of deformation measure by using shearography. In addition, optical measurement through deformation, vibration, defect evaluation evaluate pipe and thickness defects of pressure vessel is to evaluate quantitatively. By shearography interferometry to measure the pipe's internal wall thinning defect and the variation of pressure use the proposed technique, the quantitative defect is to evaluate the thickness of the surplus. The amount of deformation use thickness of surplus prediction of the actual thickness defect and approximately 7 percent error by ensure reliability. According to pressure the amount of deformation and the thickness of the surplus through DB construction, nuclear power plant pipe use wall thinning part soundness evaluation. In this study, pressure vessel of thickness defect measure proposed nuclear pipe of wall thinning defect prediction and integrity assessment technology development. As a basic research defected theory and experiment, pressure vessel of advanced stability and soundness and maintainability is expected to contribute foundation establishment

  4. Ab initio study of point defects in magnesium oxide

    International Nuclear Information System (INIS)

    Gilbert, C. A.; Kenny, S. D.; Smith, R.; Sanville, E.

    2007-01-01

    Energetics of a variety of point defects in MgO have been considered from an ab initio perspective using density functional theory. The considered defects are isolated Schottky and Frenkel defects and interstitial pairs, along with a number of Schottky defects and di-interstitials. Comparisons were made between the density functional theory results and results obtained from empirical potential simulations and these generally showed good agreement. Both methodologies predicted the first nearest neighbor Schottky defects to be the most energetically favorable of the considered Schottky defects and that the first, second, and fifth nearest neighbor di-interstitials were of similar energy and were favored over the other di-interstitial configurations. Relaxed structures of the defects were analyzed, which showed that empirical potential simulations were accurately predicting the displacements of atoms surrounding di-interstitials, but were overestimating O atom displacement for Schottky defects. Transition barriers were computed for the defects using the nudged elastic band method. Vacancies and Schottky defects were found to have relatively high energy barriers, the majority of which were over 2 eV, in agreement with conclusions reached using empirical potentials. The lowest barriers for di-interstitial transitions were found to be for migration into a first nearest neighbor configuration. Charges were calculated using a Bader analysis and this found negligible charge transfer during the defect transitions and only small changes in the charges on atoms surrounding defects, indicating why fixed charge models work as well as they do

  5. Nanoscale interfacial defect shedding in a growing nematic droplet.

    Science.gov (United States)

    Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro

    2017-08-01

    Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.

  6. Defective Reduction in Frozen Pie Manufacturing Process

    Science.gov (United States)

    Nooted, Oranuch; Tangjitsitcharoen, Somkiat

    2017-06-01

    The frozen pie production has a lot of defects resulting in high production cost. Failure mode and effect analysis (FMEA) technique has been applied to improve the frozen pie process. Pareto chart is also used to determine the major defects of frozen pie. There are 3 main processes that cause the defects which are the 1st freezing to glazing process, the forming process, and the folding process. The Risk Priority Number (RPN) obtained from FMEA is analyzed to reduce the defects. If RPN of each cause exceeds 45, the process will be considered to be improved and selected for the corrective and preventive actions. The results showed that RPN values decreased after the correction. Therefore, the implementation of FMEA technique can help to improve the performance of frozen pie process and reduce the defects approximately 51.9%.

  7. Predicting internal red oak (Quercus rubra) log defect features using surface defect defect measurements

    Science.gov (United States)

    R. Edward. Thomas

    2013-01-01

    Determining the defects located within a log is crucial to understanding the tree/log resource for efficient processing. However, existing means of doing this non-destructively requires the use of expensive x-ray/CT (computerized tomography), MRI (magnetic resonance imaging), or microwave technology. These methods do not lend themselves to fast, efficient, and cost-...

  8. Reduction in Defect Content in ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ritherdon, J.; Jones, A.R.

    2000-02-01

    The work detailed within this report is a continuation of earlier work that was carried out under contract number IDX-SY382V. The earlier work comprised a literature review of the sources and types of defects found principally in Fe-based ODS alloys together with a series of experiments designed to identify defects in ODS Fe{sub 3}Al material and recommend methods of defect reduction. Defects found in the Mechanically Alloyed (MA) ODS Fe{sub 3}Al included regions of incomplete MA, porosity, intrusions and fine-grained stringers. Some defects tended to be found in association with one another e.g. intrusions and fine-grained stringers. Preliminary powder separation experiments were also performed. The scope and objectives of the present work were laid out in the technical proposal ``Reduction in Defect Content in ODS Alloys--II'' which formed the basis of amendment 3 of the current contract. The current studies were devised in the context of the preceding work with a view to extending and concluding certain experiments while exploring new avenues of investigation of defect control and reduction where appropriate. All work proposed was within the context of achieving an ODS Fe{sub 3}Al alloy of improved overall quality and potential creep performance (particularly) in the consolidated, release condition. The interim outturn of the experimental work performed is also reported.

  9. External GSM phone calls now made simpler

    CERN Multimedia

    2007-01-01

    On 2 July, the IT/CS Telecom Service introduced a new service making external calls from CERN GSM phones easier. A specific prefix is no longer needed for calls outside CERN. External calls from CERN GSM phones are to be simplified. It is no longer necessary to use a special prefix to call an external number from the CERN GSM network.The Telecom Section of the IT/CS Group is introducing a new system that will make life easier for GSM users. It is no longer necessary to use a special prefix (333) to call an external number from the CERN GSM network. Simply dial the number directly like any other Swiss GSM customer. CERN currently has its own private GSM network with the Swiss mobile operator, Sunrise, covering the whole of Switzerland. This network was initially intended exclusively for calls between CERN numbers (replacing the old beeper system). A special system was later introduced for external calls, allowing them to pass thr...

  10. Phonons, defects and optical damage in crystalline acetanilide

    Science.gov (United States)

    Kosic, Thomas J.; Hill, Jeffrey R.; Dlott, Dana D.

    1986-04-01

    Intense picosecond pulses cause accumulated optical damage in acetanilide crystals at low temperature. Catastrophic damage to the irradiated volume occurs after an incubation period where defects accumulate. The optical damage is monitored with subanosecond time resolution. The generation of defects is studied with damage-detected picosecond spectroscopy. The accumulation of defects is studied by time-resolved coherent Raman scattering, which is used to measure optical phonon scattering from the accumulating defects.

  11. Sharing programming resources between Bio* projects through remote procedure call and native call stack strategies.

    Science.gov (United States)

    Prins, Pjotr; Goto, Naohisa; Yates, Andrew; Gautier, Laurent; Willis, Scooter; Fields, Christopher; Katayama, Toshiaki

    2012-01-01

    Open-source software (OSS) encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, OSS comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor. In this chapter, we compare the two principal approaches for sharing software between different programming languages: either by remote procedure call (RPC) or by sharing a local call stack. RPC provides a language-independent protocol over a network interface; examples are RSOAP and Rserve. The local call stack provides a between-language mapping not over the network interface, but directly in computer memory; examples are R bindings, RPy, and languages sharing the Java Virtual Machine stack. This functionality provides strategies for sharing of software between Bio* projects, which can be exploited more often. Here, we present cross-language examples for sequence translation, and measure throughput of the different options. We compare calling into R through native R, RSOAP, Rserve, and RPy interfaces, with the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations, and with call stack bindings to BioJava and the European Molecular Biology Open Software Suite. In general, call stack approaches outperform native Bio* implementations and these, in turn, outperform RPC-based approaches. To test and compare strategies, we provide a downloadable BioNode image with all examples, tools, and libraries included. The BioNode image can be run on VirtualBox-supported operating systems, including Windows, OSX, and Linux.

  12. Call Duration Characteristics based on Customers Location

    Directory of Open Access Journals (Sweden)

    Žvinys Karolis

    2014-05-01

    Full Text Available Nowadays a lot of different researches are performed based on call duration distributions (CDD analysis. However, the majority of studies are linked with social relationships between the people. Therefore the scarcity of information, how the call duration is associated with a user's location, is appreciable. The goal of this paper is to reveal the ties between user's voice call duration and the location of call. For this reason we analyzed more than 5 million calls from real mobile network, which were made over the base stations located in rural areas, roads, small towns, business and entertainment centers, residential districts. According to these site types CDD’s and characteristic features for call durations are given and discussed. Submitted analysis presents the users habits and behavior as a group (not an individual. The research showed that CDD’s of customers being them in different locations are not equal. It has been found that users at entertainment, business centers are tend to talk much shortly, than people being at home. Even more CDD can be distorted strongly, when machinery calls are evaluated. Hence to apply a common CDD for a whole network it is not recommended. The study also deals with specific parameters of call duration for distinguished user groups, the influence of network technology for call duration is considered.

  13. Congenital heart defects and extracardiac malformations.

    Science.gov (United States)

    Rosa, Rosana Cardoso M; Rosa, Rafael Fabiano M; Zen, Paulo Ricardo G; Paskulin, Giorgio Adriano

    2013-06-01

    To review the association between congenital heart defects and extracardiac malformations. Scientific articles were searched in the Medline, Lilacs, and SciELO databases, using the descriptors "congenital heart disease," "congenital heart defects," "congenital cardiac malformations," "extracardiac defects," and "extracardiac malformations." All case series that specifically explored the association between congenital heart defects and extracardiac malformations were included. Congenital heart diseases are responsible for about 40% of birth defects, being one of the most common and severe malformations. Extracardiac malformations are observed in 7 to 50% of the patients with congenital heart disease, bringing a greater risk of comorbidity and mortality and increasing the risks related to heart surgery. Different studies have attempted to assess the presence of extracardiac abnormalities in patients with congenital heart disease. Among the changes described, those of the urinary tract are more often reported. However, no study has evaluated all patients in the same way. Extracardiac abnormalities are frequent among patients with congenital heart disease, and patients with these alterations may present an increased risk of morbimortality. Therefore, some authors have been discussing the importance and cost-effectiveness of screening these children for other malformations by complementary exams.

  14. Micro-bridge defects: characterization and root cause analysis

    Science.gov (United States)

    Santoro, Gaetano; Van den Heuvel, Dieter; Braggin, Jennifer; Rosslee, Craig; Leray, Philippe J.; Cheng, Shaunee; Jehoul, Christiane; Schreutelkamp, Robert; Hillel, Noam

    2010-03-01

    Defect review of advanced lithography processes is becoming more and more challenging as feature sizes decrease. Previous studies using a defect review SEM on immersion lithography generated wafers have resulted in a defect classification scheme which, among others, includes a category for micro-bridges. Micro-bridges are small connections between two adjacent lines in photo-resist and are considered device killing defects. Micro-bridge rates also tend to increase as feature sizes decrease, making them even more important for the next technology nodes. Especially because micro-bridge defects can originate from different root causes, the need to further refine and split up the classification of this type of defect into sub groups may become a necessity. This paper focuses on finding the correlation of the different types of micro-bridge defects to a particular root cause based on a full characterization and root cause analysis of this class of defects, by using advanced SEM review capabilities like high quality imaging in very low FOV, Multi Perspective SEM Imaging (MPSI), tilted column and rotated stage (Tilt&Rotation) imaging and Focused Ion Beam (FIB) cross sectioning. Immersion lithography material has been mainly used to generate the set of data presented in this work even though, in the last part of the results, some EUV lithography data will be presented as part of the continuing effort to extend the micro-bridge defect characterization to the EUV technology on 40 nm technology node and beyond.

  15. Mass defect effects in atomic clocks

    Science.gov (United States)

    Yudin, Valeriy; Taichenachev, Alexey

    2018-03-01

    We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (the gravitational shift and motion-induced shifts such as quadratic Doppler and micromotion shifts) can be interpreted as consequences of the mass defect in quantum atomic physics, i.e. without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions.

  16. Tibial and fibular developmental fields defects

    International Nuclear Information System (INIS)

    Khoury, N.J.; Haddad, M.C.; Hourani, M.H.

    1999-01-01

    Malformations of the lower limbs are rare and heterogeneous anomalies. To explain the diversity and complexity of these abnormalities, authors introduced the concept of tibial and fibular developmental fields. Defects in these fields are responsible for different malformations, which have been described, to our knowledge, in only one report in the radiology literature. We present a case of a newborn with femoral bifurcation, absent fibulae and talar bones, ankle and foot malformations, and associated atrial septal defect. Our case is an example of defects in both fibular and tibial developmental fields. (orig.)

  17. EUV mask defect inspection and defect review strategies for EUV pilot line and high volume manufacturing

    Science.gov (United States)

    Chan, Y. David; Rastegar, Abbas; Yun, Henry; Putna, E. Steve; Wurm, Stefan

    2010-04-01

    Reducing mask blank and patterned mask defects is the number one challenge for extreme ultraviolet lithography. If the industry succeeds in reducing mask blank defects at the required rate of 10X every year for the next 2-3 years to meet high volume manufacturing defect requirements, new inspection and review tool capabilities will soon be needed to support this goal. This paper outlines the defect inspection and review tool technical requirements and suggests development plans to achieve pilot line readiness in 2011/12 and high volume manufacturing readiness in 2013. The technical specifications, tooling scenarios, and development plans were produced by a SEMATECH-led technical working group with broad industry participation from material suppliers, tool suppliers, mask houses, integrated device manufacturers, and consortia. The paper summarizes this technical working group's assessment of existing blank and mask inspection/review infrastructure capabilities to support pilot line introduction and outlines infrastructure development requirements and tooling strategies to support high volume manufacturing.

  18. Logistic planning and control of reworking perishable production defectives

    NARCIS (Netherlands)

    R.H. Teunter (Ruud); S.D.P. Flapper

    2001-01-01

    textabstractWe consider a production line that is dedicated to a single product. Produced lots may be non-defective, reworkable defective, or non-reworkable defective. The production line switches between production and rework. After producing a fixed number (N) of lots, all reworkable defective

  19. Defect CFTs and holographic multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Fiol, Bartomeu, E-mail: bfiol@ub.edu [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08193 Barcelona (Spain)

    2010-07-01

    We investigate some aspects of a recent proposal for a holographic description of the multiverse. Specifically, we focus on the implications on the suggested duality of the fluctuations of a bubble separating two universes with different cosmological constants. We do so by considering a similar problem in a 2+1 CFT with a codimension one defect, obtained by an M5-brane probe embedding in AdS{sub 4} × S{sup 7}, and studying its spectrum of fluctuations. Our results suggest that the kind of behavior required by the spectrum of bubble fluctuations is not likely to take place in defect CFTs with an AdS dual, although it might be possible if the defect supports a non-unitary theory.

  20. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  1. Defect-engineered graphene chemical sensors with ultrahigh sensitivity.

    Science.gov (United States)

    Lee, Geonyeop; Yang, Gwangseok; Cho, Ara; Han, Jeong Woo; Kim, Jihyun

    2016-05-25

    We report defect-engineered graphene chemical sensors with ultrahigh sensitivity (e.g., 33% improvement in NO2 sensing and 614% improvement in NH3 sensing). A conventional reactive ion etching system was used to introduce the defects in a controlled manner. The sensitivity of graphene-based chemical sensors increased with increasing defect density until the vacancy-dominant region was reached. In addition, the mechanism of gas sensing was systematically investigated via experiments and density functional theory calculations, which indicated that the vacancy defect is a major contributing factor to the enhanced sensitivity. This study revealed that defect engineering in graphene has significant potential for fabricating ultra-sensitive graphene chemical sensors.

  2. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlö gl, Udo

    2015-01-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  3. Influence of irradiation defects on anelastic properties of magnesium

    International Nuclear Information System (INIS)

    Minier, C.; Haneczok, G.; Lauzier, J.

    1985-01-01

    Irradiation defects in magnesium and their interactions with dislocations are studied by internal friction and elastic modulus. Long distance migration of different defects are determined. Relaxation peaks at very low temperature are analyzed. In the interaction peak between defects and dislocations it is shown that defects are interstitials and that dislocations are responsible for the peak B 1 and the interaction mechanism is probably associated to a side motion of defects along the lines. Defects brought by irradiation on dislocations are used for testing Bordoni relaxation theory and variation of parameters of peak B 1 and B 2 are analyzed [fr

  4. Dipolar and quadrupolar defects in a transport line

    International Nuclear Information System (INIS)

    Leleux, G.; Nghiem, P.

    1991-01-01

    The defects on a transport line of linear accelerator are studied. A transport line where the elements are influenced by the design or position defects is analyzed. Only dipolar and quadrupolar defects are considered, and the coupling betwen transversal motions are excluded. The data from the literature and those calculated by transfer matrices are compared. The defects on a line are considered from an analytical point of view. Closed optical structures are also studied [fr

  5. Creation of radiation defects in KCl crystals

    International Nuclear Information System (INIS)

    Lushchik, A.Ch.; Pung, L.A.; Khaldre, Yu.Yu.; Kolk, Yu.V.

    1981-01-01

    Optical and EPR methods were used to study the creation of anion and cation Frenkel defects in KCl crystals irradiated by X-ray and VUV-radiation. The decay of excitons with the creation of charged Frenkel defects (α and I centres) was detected and investigated at 4.2 K. The decay of excitons as well as the recombination of electrons with self-trapped holes leads to the creation of neutral Frenkel defects (F and H centres). The creation of Cl 3 - and Vsub(F) centres (cation vacancy is a component of these centres) by X-irradiation at 80 K proves the possibility of cation defects creation in KCl [ru

  6. Defects in Cu(In,Ga)Se{sub 2} chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qing; Gunawan, Oki; Copel, Matthew; Reuter, Kathleen B; Chey, S Jay; Mitzi, David B [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States); Deline, Vaughn R [IBM Almaden Resesarch Center, San Jose, CA (United States)

    2011-10-15

    Understanding defects in Cu(In,Ga)(Se,S){sub 2} (CIGS), especially correlating changes in the film formation process with differences in material properties, photovoltaic (PV) device performance, and defect levels extracted from admittance spectroscopy, is a critical but challenging undertaking due to the complex nature of this polycrystalline compound semiconductor. Here we present a systematic comparative study wherein varying defect density levels in CIGS films were intentionally induced by growing CIGS grains using different selenium activity levels. Material characterization results by techniques including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and medium energy ion scattering indicate that this process variation, although not significantly affecting CIGS grain structure, crystal orientation, or bulk composition, leads to enhanced formation of a defective chalcopyrite layer with high density of indium or gallium at copper antisite defects ((In, Ga){sub Cu}) near the CIGS surface, for CIGS films grown with insufficient selenium supply. This defective layer or the film growth conditions associated with it is further linked with observed current-voltage characteristics, including rollover and crossover behavior, and a defect state at around 110 meV (generally denoted as the N1 defect) commonly observed in admittance spectroscopy. The impact of the (In, Ga){sub Cu} defects on device PV performance is also established. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Endocardial cushion defect

    Science.gov (United States)

    ... Philadelphia, PA: Elsevier; 2016:chap 426. Kouchoukos NT, Blackstone EH, Hanley FL, Kirklin JK. Atrioventricular septal defect. In: Kouchoukos NT, Blackstone EH, Hanley FL, Kirklin JK, eds. Kirklin/Barratt- ...

  8. Interaction of alpha radiation with thermally-induced defects in silicon

    International Nuclear Information System (INIS)

    Ali, Akbar; Majid, Abdul

    2008-01-01

    The interaction of radiation-induced defects created by energetic alpha particles and thermally-induced defects in silicon has been studied using a Deep Level Transient Spectroscopy (DLTS) technique. Two thermally-induced defects at energy positions E c -0.48 eV and E c -0.25 eV and three radiation-induced defects E2, E3 and E5 have been observed. The concentration of both of the thermally-induced defects has been observed to increase on irradiation. It has been noted that production rates of the radiation-induced defects are suppressed in the presence of thermally-induced defects. A significant difference in annealing characteristics of thermally-induced defects in the presence of radiation-induced defects has been observed compared to the characteristics measured in pre-irradiated samples

  9. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency.

    Science.gov (United States)

    Kong, Ming; Li, Yuanzhi; Chen, Xiong; Tian, Tingting; Fang, Pengfei; Zheng, Feng; Zhao, Xiujian

    2011-10-19

    TiO(2) nanocrystals with tunable bulk/surface defects were synthesized and characterized with TEM, XRD, BET, positron annihilation, and photocurrent measurements. The effect of defects on photocatalytic activity was studied. It was found for the first time that decreasing the relative concentration ratio of bulk defects to surface defects in TiO(2) nanocrystals could significantly improve the separation efficiency of photogenerated electrons and holes, thus significantly enhancing the photocatalytic efficiency.

  10. The study of the identification of minimal defects in radiograph, 2

    International Nuclear Information System (INIS)

    Senda, Tomio; Hirayama, Kazuo; Yokoyama, Keiji; Nakamura, Kazuo.

    1988-01-01

    In the first report, it was discussed in terms of the mass on the detectible limit of such minimal defects of cylindrical defect as a representative of ingot-defect and slit defect as a representative of plate-defect respectively which generally appear on the weld joints, using contrast distribution area of defects on the radiograph. In the second report, an experiment is done to vary the contrast of radiograph by dual exposure system and to vary the radiation by rotating photographing in order to investigate the corresponding relation of defectible limit of defect dimension between cylindrical defect and slit defect. (author)

  11. Care and Calls

    DEFF Research Database (Denmark)

    Paasch, Bettina Sletten

    on the enactment of care but also on patient safety. Nurses working in various hospital departments have developed different strategies for handling mobile phone calls when with a patient. Additional research into the ways nurses successfully or unsuccessfully enact care and ensure patient safety when they answer......In Danish hospitals, nurses have been equipped with a mobile work phone to improve their availability and efficiency. On the phones nurses receive internal and external phone conversations, patient calls, and alarms from electronic surveillance equipment. For safety reasons the phones cannot...... be switched off or silenced; they consequently ring during all activities and also during interactions with patients. A possible tension thus arises when nurses have to be both caring and sensitive towards the patient and simultaneously be efficient and available and answer their phone. The present paper...

  12. Di-interstitial defect in silicon revisited

    International Nuclear Information System (INIS)

    Londos, C. A.; Antonaras, G.; Chroneos, A.

    2013-01-01

    Infrared spectroscopy was used to study the defect spectrum of Cz-Si samples following fast neutron irradiation. We mainly focus on the band at 533 cm −1 , which disappears from the spectra at ∼170 °C, exhibiting similar thermal stability with the Si-P6 electron paramagnetic resonance (EPR) spectrum previously correlated with the di-interstitial defect. The suggested structural model of this defect comprises of two self-interstitial atoms located symmetrically around a lattice site Si atom. The band anneals out following a first-order kinetics with an activation energy of 0.88 ± 0.3 eV. This value does not deviate considerably from previously quoted experimental and theoretical values for the di-interstitial defect. The present results indicate that the 533 cm −1 IR band originates from the same structure as that of the Si-P6 EPR spectrum

  13. Defect networks and supersymmetric loop operators

    Energy Technology Data Exchange (ETDEWEB)

    Bullimore, Mathew [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)

    2015-02-10

    We consider topological defect networks with junctions in A{sub N−1} Toda CFT and the connection to supersymmetric loop operators in N=2 theories of class S on a four-sphere. Correlation functions in the presence of topological defect networks are computed by exploiting the monodromy of conformal blocks, generalising the notion of a Verlinde operator. Concentrating on a class of topological defects in A{sub 2} Toda theory, we find that the Verlinde operators generate an algebra whose structure is determined by a set of generalised skein relations that encode the representation theory of a quantum group. In the second half of the paper, we explore the dictionary between topological defect networks and supersymmetric loop operators in the N=2{sup ∗} theory by comparing to exact localisation computations. In this context, the the generalised skein relations are related to the operator product expansion of loop operators.

  14. Calling under pressure: short-finned pilot whales make social calls during deep foraging dives.

    Science.gov (United States)

    Jensen, Frants H; Perez, Jacobo Marrero; Johnson, Mark; Soto, Natacha Aguilar; Madsen, Peter T

    2011-10-22

    Toothed whales rely on sound to echolocate prey and communicate with conspecifics, but little is known about how extreme pressure affects pneumatic sound production in deep-diving species with a limited air supply. The short-finned pilot whale (Globicephala macrorhynchus) is a highly social species among the deep-diving toothed whales, in which individuals socialize at the surface but leave their social group in pursuit of prey at depths of up to 1000 m. To investigate if these animals communicate acoustically at depth and test whether hydrostatic pressure affects communication signals, acoustic DTAGs logging sound, depth and orientation were attached to 12 pilot whales. Tagged whales produced tonal calls during deep foraging dives at depths of up to 800 m. Mean call output and duration decreased with depth despite the increased distance to conspecifics at the surface. This shows that the energy content of calls is lower at depths where lungs are collapsed and where the air volume available for sound generation is limited by ambient pressure. Frequency content was unaffected, providing a possible cue for group or species identification of diving whales. Social calls may be important to maintain social ties for foraging animals, but may be impacted adversely by vessel noise.

  15. Do market participants learn from conference calls?

    NARCIS (Netherlands)

    Roelofsen, E.; Verbeeten, F.; Mertens, G.

    2014-01-01

    We examine whether market participants learn from the information that is disseminated during the Q-and-A section of conference calls. Specifically, we investigate whether stock prices react to information on intangible assets provided during conference calls, and whether conference calls

  16. Imaging active topological defects in carbon nanotubes

    Science.gov (United States)

    Suenaga, Kazu; Wakabayashi, Hideaki; Koshino, Masanori; Sato, Yuta; Urita, Koki; Iijima, Sumio

    2007-06-01

    A single-walled carbon nanotube (SWNT) is a wrapped single graphene layer, and its plastic deformation should require active topological defects-non-hexagonal carbon rings that can migrate along the nanotube wall. Although in situ transmission electron microscopy (TEM) has been used to examine the deformation of SWNTs, these studies deal only with diameter changes and no atomistic mechanism has been elucidated experimentally. Theory predicts that some topological defects can form through the Stone-Wales transformation in SWNTs under tension at 2,000 K, and could act as a dislocation core. We demonstrate here, by means of high-resolution (HR)-TEM with atomic sensitivity, the first direct imaging of pentagon-heptagon pair defects found in an SWNT that was heated at 2,273 K. Moreover, our in situ HR-TEM observation reveals an accumulation of topological defects near the kink of a deformed nanotube. This result suggests that dislocation motions or active topological defects are indeed responsible for the plastic deformation of SWNTs.

  17. Tritium releases, birth defects and infant deaths

    International Nuclear Information System (INIS)

    1991-01-01

    The AECB has published a report 'Tritium releases from the Pickering Nuclear Generating Station and Birth Defects and Infant Mortality in Nearby Communities 1971-1988' (report number INFO-0401). This presents the results of a detailed analysis of deaths and birth defects occurring in infants born to mothers living in the area (25 Km radius) of the Pickering nuclear power plant, over an 18-year period. The analysis looked at the frequency of these defects and deaths in comparison to the general rate for Ontario, and also in relation to airborne and waterborne releases of tritium from the power plant. The overall conclusion was that the rates of infant death and birth defects were generally not higher in the study population than in all of Ontario. There was no prevalent relationship between these deaths and defects and tritium releases measured either at the power plant or by ground monitoring stations t some distance from the facility

  18. Phase-enhanced defect sensitivity for EUV mask inspection

    Science.gov (United States)

    Wang, Yow-Gwo; Miyakawa, Ryan; Chao, Weilun; Goldberg, Kenneth; Neureuther, Andy; Naulleau, Patrick

    2014-10-01

    In this paper, we present a complete study on mask blank and patterned mask inspection utilizing the Zernike phase contrast method. The Zernike phase contrast method provides in-focus inspection ability to study phase defects with enhanced defect sensitivity. However, the 90 degree phase shift in the pupil will significantly reduce the amplitude defect signal at focus. In order to detect both types of defects with a single scan, an optimized phase shift instead of 90 degree on the pupil plane is proposed to achieve an acceptable trade-off on their signal strengths. We can get a 70% of its maximum signal strength at focus for both amplitude and phase defects with a 47 degree phase shift. For SNR, the tradeoff between speckle noise and signal strength has to be considered. The SNR of phase and amplitude defects at focus can both reach 11 with 13 degree phase shift and 50% apodization. Moreover, the simulation results on patterned mask inspection of partially hidden phase defects with die-to-database inspection approach on the blank inspection tool show that the improvement of the Zernike phase method is more limited. A 40% enhancement of peak signal strength can be achieved with the Zernike phase contrast method when the defect is centered in the space, while the enhancement drops to less than 10% when it is beneath the line.

  19. Thermophysical spectroscopy of defect states in silicon

    International Nuclear Information System (INIS)

    Igamberdyev, Kh.T.; Mamadalimov, A.T.; Khabibullaev, P.K.

    1989-01-01

    The present work deals with analyzing the possibilities of using the non-traditional thermophysical methods to study a defect structure in silicon. For this purpose, the temperature dependences of thermophysical properties of defect silicon are investigated. A number of new, earlier unknown physical phenomena in silicon are obtained, and their interpretation has enabled one to establish the main physical mechanisms of formation of deep defect states in silicon

  20. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Multimedia

    2002-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.  

  1. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Multimedia

    2002-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.

  2. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Multimedia

    2001-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.

  3. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Multimedia

    2001-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note: the number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.

  4. Characterization of the structure and chemistry of defects in materials

    International Nuclear Information System (INIS)

    Larson, B.C.; Ruehle, M.; Seidman, D.N.

    1988-01-01

    Research programs, presented at the materials research symposium, on defects in materials are presented. Major areas include: point defects, defect aggregates, and ordering; defects in non-metals and semiconductors; atomic resolution imaging of defects; and gain boundaries, interfaces, and layered materials. Individual projects are processed separately for the data bases

  5. Point defects dynamics in a stress field

    International Nuclear Information System (INIS)

    Smetniansky de De Grande, Nelida.

    1989-01-01

    The dependence of anisotropic defect diffusion on stress is studied for a hexagonal close packed (hcp) material under irradiation and uniaxially stressed. The diffusion is described as a discrete process of thermally activated jumps. It is shown that the presence of an external stress field enhances the intrinsic anisotropic diffusion, being this variation determined by the defect dipole tensors' symmetry in the equilibrium and saddle point configurations. Also, the point defect diffusion equations to sinks, like edge dislocations and spherical cavities, are solved and the sink strengths are calculated. The conclusion is that the dynamics of the interaction between defects and sinks is controlled by the changes in diffusivity induced by stress fields. (Author) [es

  6. Residual Defect Density in Random Disks Deposits.

    Science.gov (United States)

    Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A C

    2015-08-03

    We investigate the residual distribution of structural defects in very tall packings of disks deposited randomly in large channels. By performing simulations involving the sedimentation of up to 50 × 10(9) particles we find all deposits to consistently show a non-zero residual density of defects obeying a characteristic power-law as a function of the channel width. This remarkable finding corrects the widespread belief that the density of defects should vanish algebraically with growing height. A non-zero residual density of defects implies a type of long-range spatial order in the packing, as opposed to only local ordering. In addition, we find deposits of particles to involve considerably less randomness than generally presumed.

  7. Telephone calls by individuals with cancer.

    Science.gov (United States)

    Flannery, Marie; McAndrews, Leanne; Stein, Karen F

    2013-09-01

    To describe symptom type and reporting patterns found in spontaneously initiated telephone calls placed to an ambulatory cancer center practice. Retrospective, descriptive. Adult hematology oncology cancer center. 563 individuals with a wide range of oncology diagnoses who initiated 1,229 telephone calls to report symptoms. Raw data were extracted from telephone forms using a data collection sheet with 23 variables obtained for each phone call, using pre-established coding criteria. A literature-based, investigator-developed instrument was used for the coding criteria and selection of which variables to extract. Symptom reporting, telephone calls, pain, and symptoms. A total of 2,378 symptoms were reported by telephone during the four months. At least 10% of the sample reported pain (38%), fatigue (16%), nausea (16%), swelling (12%), diarrhea (12%), dyspnea (10%), and anorexia (10%). The modal response was to call only one time and to report only one symptom (55%). Pain emerged as the symptom that most often prompted an individual to pick up the telephone and call. Although variation was seen in symptom reporting, an interesting pattern emerged with an individual reporting on a solitary symptom in a single telephone call. The emergence of pain as the primary symptom reported by telephone prompted educational efforts for both in-person clinic visit management of pain and prioritizing nursing education and protocol management of pain reported by telephone. Report of symptoms by telephone can provide nurses unique insight into patient-centered needs. Although pain has been an important focus of education and research for decades, it remains a priority for individuals with cancer. A wide range in symptom reporting by telephone was evident.

  8. Nonlinear defect localized modes and composite gray and anti-gray solitons in one-dimensional waveguide arrays with dual-flip defects

    Science.gov (United States)

    Liu, Yan; Guan, Yefeng; Li, Hai; Luo, Zhihuan; Mai, Zhijie

    2017-08-01

    We study families of stationary nonlinear localized modes and composite gray and anti-gray solitons in a one-dimensional linear waveguide array with dual phase-flip nonlinear point defects. Unstaggered fundamental and dipole bright modes are studied when the defect nonlinearity is self-focusing. For the fundamental modes, symmetric and asymmetric nonlinear modes are found. Their stable areas are studied using different defect coefficients and their total power. For the nonlinear dipole modes, the stability conditions of this type of mode are also identified by different defect coefficients and the total power. When the defect nonlinearity is replaced by the self-defocusing one, staggered fundamental and dipole bright modes are created. Finally, if we replace the linear waveguide with a full nonlinear waveguide, a new type of gray and anti-gray solitons, which are constructed by a kink and anti-kink pair, can be supported by such dual phase-flip defects. In contrast to the usual gray and anti-gray solitons formed by a single kink, their backgrounds on either side of the gray hole or bright hump have the same phase.

  9. Percutaneous treatment of atrial septal defects, muscular ventricular septal defects and patent ductus arteriosus in infants under one year of age.

    Science.gov (United States)

    Prada, Fredy; Mortera, Carlos; Bartrons, Joaquim; Rissech, Miguel; Jiménez, Lorenzo; Carretero, Juan; Llevadias, Judit; Araica, Mireya

    2009-09-01

    Amplatzer devices are used for the percutaneous closure of ostium secundum atrial septal defects, muscular ventricular septal defects and patent ductus arteriosus. However, very little experience has been gained in using these devices in infants under 1 year of age. Between January 2001 and January 2008, 22 symptomatic infants aged under 1 year underwent percutaneous treatment: three had an ostium secundum atrial septal defect, 15 had patent ductus arteriosus, and four had a muscular ventricular septal defect. All the procedures were completed successfully. No immediate or medium-term complications were observed. Closure of these types of defect using an Amplatzer device in infants under 1 year of age, who would otherwise require surgery, is a safe and effective procedure.

  10. A new fundamental hydrogen defect in alkali halides

    International Nuclear Information System (INIS)

    Morato, S.P.; Luety, F.

    1978-01-01

    Atom hydrogen in neutral (H 0 ) and negative (H - ) form on substitutional and interstitial lattice sites gives rise to well characterized model defects in alkali-halides (U,U 1 ,U 2 ,U 3 centers), which have been extensively investigated in the past. When studying the photo-decomposition of OH - defects, a new configuration of atomic charged hidrogen was discovered, which can be produced in large quantities in the crystal and is apparently not connected to any other impurity. This new hidrogen defect does not show any pronounced electronic absorption, but displays a single sharp local mode band (at 1114cm -1 in KCl) with a perfect isotope shift. The defect can be produced by various UV or X-ray techniques in crystais doped with OH - , Sh - or H - defects. A detailed study of its formation kinetics at low temperature shows that it is primarily formed by the reaction of a mobile CI 2 - crowdion (H-center) with hidrogen defects [pt

  11. Outsourcing an Effective Postdischarge Call Program

    Science.gov (United States)

    Meek, Kevin L.; Williams, Paula; Unterschuetz, Caryn J.

    2018-01-01

    To improve patient satisfaction ratings and decrease readmissions, many organizations utilize internal staff to complete postdischarge calls to recently released patients. Developing, implementing, monitoring, and sustaining an effective call program can be challenging and have eluded some of the renowned medical centers in the country. Using collaboration with an outsourced vendor to bring state-of-the-art call technology and staffed with specially trained callers, health systems can achieve elevated levels of engagement and satisfaction for their patients postdischarge. PMID:29494453

  12. Calling to Nursing: Concept Analysis.

    Science.gov (United States)

    Emerson, Christie

    The aims of this article are (a) to analyze the concept of a calling as it relates nursing and (b) to develop a definition of calling to nursing with the detail and clarity needed to guide reliable and valid research. The classic steps described by Walker and Avant are used for the analysis. Literature from several disciplines is reviewed including vocational psychology, Christian career counseling, sociology, organizational management, and nursing. The analysis provides an operational definition of a calling to nursing and establishes 3 defining attributes of the concept: (a) a passionate intrinsic motivation or desire (perhaps with a religious component), (b) an aspiration to engage in nursing practice, as a means of fulfilling one's purpose in life, and (c) the desire to help others as one's purpose in life. Antecedents to the concept are personal introspection and cognitive awareness. Positive consequences to the concept are improved work meaningfulness, work engagement, career commitment, personal well-being, and satisfaction. Negative consequences of having a calling might include willingness to sacrifice well-being for work and problems with work-life balance. Following the concept analysis, philosophical assumptions, contextual factors, interdisciplinary work, research opportunities, and practice implications are discussed.

  13. Characterization of lacunar defects by positrons annihilation

    International Nuclear Information System (INIS)

    Barthe, M.F.; Corbel, C.; Blondiaux, G.

    2003-01-01

    Among the nondestructive methods for the study of matter, the positrons annihilation method allows to sound the electronic structure of materials by measuring the annihilation characteristics. These characteristics depend on the electronic density as seen by the positon, and on the electron momentums distribution which annihilate with the positon. The positon is sensible to the coulombian potential variations inside a material and sounds preferentially the regions away from nuclei which represent potential wells. The lacunar-type defects (lack of nuclei) represent deep potential wells which can trap the positon up to temperatures close to the melting. This article describes the principles of this method and its application to the characterization of lacunar defects: 1 - positrons: matter probes (annihilation of electron-positon pairs, annihilation characteristics, positrons sources); 2 - positrons interactions in solids (implantation profiles, annihilation states, diffusion and trapping, positon lifetime spectrum: evolution with the concentration of defects); 3 - measurement of annihilation characteristics with two gamma photons (lifetime spectroscopy with the β + 22 Na isotope, spectroscopy of Doppler enlargement of the annihilation line); 4 - determination of the free volume of defects inside or at the surface of materials (annihilation signature in lacunar defects, lacuna, lacunar clusters and cavities, acceptors nature in semiconductors: ionic or lacunar, interface defects, precipitates in alloys); 5 - conclusions. (J.S.)

  14. Interproximal periodontal defect model in dogs: a pilot study.

    Science.gov (United States)

    Jung, U-W; Chang, Y-Y; Um, Y-J; Kim, C-S; Cho, K-S; Choi, S-H

    2011-01-01

    This study aimed to evaluate the validity of a surgically created interproximal periodontal defect in dogs. Surgery was performed in the interproximal area between the maxillary second and third premolars in two beagle dogs. Following an incision and reflection of the gingival flap, a 3-mm wide and 5-mm high defect was prepared surgically at the interproximal area. A thorough root planing was performed and the flap was coronally positioned and sutured. The contra-lateral area was served as the control with no surgical intervention. After 8 weeks of healing, the animals were killed and the defect was analysed histometrically and radiographically. The interproximal periodontal defect resembled a naturally occurring defect and mimicked a clinical situation. After healing, the defect showed limited bone (0.89±0.02mm) and cementum regeneration (1.50± 0.48mm). Within the limitations of this pilot study, the interproximal periodontal defect showed limited bone and cementum regeneration. Thus, it can be considered as a standardized, reproducible defect model for testing new biomaterials. © 2010 John Wiley & Sons A/S.

  15. Key Questions in Building Defect Prediction Models in Practice

    Science.gov (United States)

    Ramler, Rudolf; Wolfmaier, Klaus; Stauder, Erwin; Kossak, Felix; Natschläger, Thomas

    The information about which modules of a future version of a software system are defect-prone is a valuable planning aid for quality managers and testers. Defect prediction promises to indicate these defect-prone modules. However, constructing effective defect prediction models in an industrial setting involves a number of key questions. In this paper we discuss ten key questions identified in context of establishing defect prediction in a large software development project. Seven consecutive versions of the software system have been used to construct and validate defect prediction models for system test planning. Furthermore, the paper presents initial empirical results from the studied project and, by this means, contributes answers to the identified questions.

  16. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation.

    Science.gov (United States)

    Boutilier, Michael S H; Sun, Chengzhen; O'Hern, Sean C; Au, Harold; Hadjiconstantinou, Nicolas G; Karnik, Rohit

    2014-01-28

    Gas transport through intrinsic defects and tears is a critical yet poorly understood phenomenon in graphene membranes for gas separation. We report that independent stacking of graphene layers on a porous support exponentially decreases flow through defects. On the basis of experimental results, we develop a gas transport model that elucidates the separate contributions of tears and intrinsic defects on gas leakage through these membranes. The model shows that the pore size of the porous support and its permeance critically affect the separation behavior, and reveals the parameter space where gas separation can be achieved regardless of the presence of nonselective defects, even for single-layer membranes. The results provide a framework for understanding gas transport in graphene membranes and guide the design of practical, selectively permeable graphene membranes for gas separation.

  17. Dislocation defect interaction in irradiated Cu

    International Nuclear Information System (INIS)

    Schaeublin, R.; Yao, Z.; Spaetig, P.; Victoria, M.

    2005-01-01

    Pure Cu single crystals irradiated at room temperature to low doses with 590 MeV protons have been deformed in situ in a transmission electron microscope in order to identify the basic mechanisms at the origin of hardening. Cu irradiated to 10 -4 dpa shows at room temperature a yield shear stress of 13.7 MPa to be compared to the 8.8 MPa of the unirradiated Cu. Irradiation induced damage consists at 90% of 2 nm stacking fault tetrahedra, the remaining being dislocation loops and unidentified defects. In-situ deformation reveals that dislocation-defect interaction can take several forms. Usually, dislocations pinned by defects bow out under the applied stress and escape without leaving any visible defect. From the escape angles obtained at 183 K, an average critical stress of 100 MPa is deduced. In some cases, the pinning of dislocations leads to debris that are about 20 nm long, which formation could be recorded during the in situ experiment

  18. Elastic interaction energies of defect structures

    International Nuclear Information System (INIS)

    Seitz, E.; de Fontaine, D.

    1976-01-01

    The elastic strain energy between point defects and small disk-shaped clusters of defects are calculated to determine stable configurations. A distortion tensor of tetragonal symmetry is assigned to each impurity atom. The tetragonality ratio t is varied to cover needle-type (t greater than 1), spherical (t = 1) and disk-type (t less than 0) strain fields. To vary the elastic properties of the host material, Fe, Cu, Al, and V were chosen as examples. Computer calculations are based on the microscopic theory of elasticity which emphasizes calculations in discrete Fourier space. Pairs of point defects order along [001] for t less than 1 and along (001) for t = 1 for all host elements. For t greater than 1 fcc lattices and bcc lattices behave differently. It is shown that only certain three dimensional periodic arrangements of parallel and perpendicular disk-like defect clusters are realized for given tetragonality ratio t and host element

  19. EMERGENCY CALLS

    CERN Multimedia

    Medical Service

    2001-01-01

    IN URGENT NEED OF A DOCTOR GENEVA EMERGENCY SERVICES GENEVA AND VAUD 144 FIRE BRIGADE 118 POLICE 117 CERN FIREMEN 767-44-44 ANTI-POISONS CENTRE Open 24h/24h 01-251-51-51 Patient not fit to be moved, call family doctor, or: GP AT HOME, open 24h/24h 748-49-50 Association Of Geneva Doctors Emergency Doctors at home 07h-23h 322 20 20 Patient fit to be moved: HOPITAL CANTONAL CENTRAL 24 Micheli-du-Crest 372-33-11 ou 382-33-11 EMERGENCIES 382-33-11 ou 372-33-11 CHILDREN'S HOSPITAL 6 rue Willy-Donzé 372-33-11 MATERNITY 32 bvd.de la Cluse 382-68-16 ou 382-33-11 OPHTHALMOLOGY 22 Alcide Jentzer 382-33-11 ou 372-33-11 MEDICAL CENTRE CORNAVIN 1-3 rue du Jura 345 45 50 HOPITAL DE LA TOUR Meyrin EMERGENCIES 719-61-11 URGENCES PEDIATRIQUES 719-61-00 LA TOUR MEDICAL CENTRE 719-74-00 European Emergency Call 112 FRANCE EMERGENCY SERVICES 15 FIRE BRIGADE 18 POLICE 17 CERN FIREMEN AT HOME 00-41-22-767-44-44 ANTI-POISONS CENTRE Open 24h/24h 04-72-11-69-11 All doctors ...

  20. Photometric estimation of defect size in radiation direction

    International Nuclear Information System (INIS)

    Zuev, V.M.

    1993-01-01

    Factors, affecting accuracy of photometric estimation of defect size in radiation transmission direction, are analyzed. Experimentally obtained dependences of contrast of defect image on its size in radiation transmission direction are presented. Practical recommendations on improving accuracy of photometric estimation of defect size in radiation transmission direction, are developed

  1. Postural defects in children and teenagers as one of the major issues in psychosomatic development

    Directory of Open Access Journals (Sweden)

    Agata Wawrzyniak

    2017-03-01

    creation of muscular contracture and is aimed at the so-called postural re-education. The selection of physical activity should be adequate to the type of postural defect.

  2. Inspection of surface defects for cladding tube with laser

    International Nuclear Information System (INIS)

    Senoo, Shigeo; Igarashi, Miyuki; Satoh, Masakazu; Miura, Makoto

    1978-01-01

    This paper presents the results of experiment on mechanizing the visual inspection of surface defects of cladding tubes and improving the reliability of surface defect inspection. Laser spot inspection method was adopted for this purpose. Since laser speckle pattern includes many informations about surface aspects, the method can be utilized as an effective means for detection or classification of the surface defects. Laser beam is focussed on cladding tube surfaces, and the reflected laser beam forms typical stellar speckle patterns on a screen. Sample cladding tubes are driven in longitudinal direction, and a photo-detector is placed at a position where secondary reflection will fall on the detector. Reflected laser beam from defect-free surfaces shows uniform distribution on the detector. When the incident focussed laser beam is directed to defects, the intensity of the reflected light is reduced. In the second method, laser beam is scanned by a rotating cube mirror. As the results of experiment, the typical patterns caused by defects were observed. It is clear that reflection patterns change with the kinds of defects. The sensitivity of defect detection decreases with the increase in laser beam diameter. Surface defect detection by intensity change was also tested. (Kato, T.)

  3. Immersion lithography defectivity analysis at DUV inspection wavelength

    Science.gov (United States)

    Golan, E.; Meshulach, D.; Raccah, N.; Yeo, J. Ho.; Dassa, O.; Brandl, S.; Schwarz, C.; Pierson, B.; Montgomery, W.

    2007-03-01

    Significant effort has been directed in recent years towards the realization of immersion lithography at 193nm wavelength. Immersion lithography is likely a key enabling technology for the production of critical layers for 45nm and 32nm design rule (DR) devices. In spite of the significant progress in immersion lithography technology, there remain several key technology issues, with a critical issue of immersion lithography process induced defects. The benefits of the optical resolution and depth of focus, made possible by immersion lithography, are well understood. Yet, these benefits cannot come at the expense of increased defect counts and decreased production yield. Understanding the impact of the immersion lithography process parameters on wafer defects formation and defect counts, together with the ability to monitor, control and minimize the defect counts down to acceptable levels is imperative for successful introduction of immersion lithography for production of advanced DR's. In this report, we present experimental results of immersion lithography defectivity analysis focused on topcoat layer thickness parameters and resist bake temperatures. Wafers were exposed on the 1150i-α-immersion scanner and 1200B Scanner (ASML), defect inspection was performed using a DUV inspection tool (UVision TM, Applied Materials). Higher sensitivity was demonstrated at DUV through detection of small defects not detected at the visible wavelength, indicating on the potential high sensitivity benefits of DUV inspection for this layer. The analysis indicates that certain types of defects are associated with different immersion process parameters. This type of analysis at DUV wavelengths would enable the optimization of immersion lithography processes, thus enabling the qualification of immersion processes for volume production.

  4. Defect sizing using automated ultrasonic inspection techniques at RNL

    International Nuclear Information System (INIS)

    Rogerson, A.; Highmore, P.J.; Poulter, L.N.J.

    1983-10-01

    RNL has developed and applied automated wide-beam pulse-echo and time-of-flight techniques with synthetic aperture processing for sizing defects in clad thick-section weldments and nozzle corner regions. These techniques were amongst those used in the four test plate inspections making up the UKAEA Defect Detection Trials. In this report a critical appraisal is given of the sizing procedures adopted by RNL in these inspections. Several factors influencing sizing accuracy are discussed and results from particular defects highlighted. The time-of-flight technique with colour graphics data display is shown to be highly effective in imaging near-vertical buried defects and underclad defects of height greater than 5 mm. Early characterisation of any identified defect from its ultrasonic response under pulse-echo inspection is seen as a desirable aid to the selection of an appropriate advanced sizing technique for buried defects. (author)

  5. TPMG Northern California appointments and advice call center.

    Science.gov (United States)

    Conolly, Patricia; Levine, Leslie; Amaral, Debra J; Fireman, Bruce H; Driscoll, Tom

    2005-08-01

    Kaiser Permanente (KP) has been developing its use of call centers as a way to provide an expansive set of healthcare services to KP members efficiently and cost effectively. Since 1995, when The Permanente Medical Group (TPMG) began to consolidate primary care phone services into three physical call centers, the TPMG Appointments and Advice Call Center (AACC) has become the "front office" for primary care services across approximately 89% of Northern California. The AACC provides primary care phone service for approximately 3 million Kaiser Foundation Health Plan members in Northern California and responds to approximately 1 million calls per month across the three AACC sites. A database records each caller's identity as well as the day, time, and duration of each call; reason for calling; services provided to callers as a result of calls; and clinical outcomes of calls. We here summarize this information for the period 2000 through 2003.

  6. Evolution of advertisement calls in African clawed frogs

    Science.gov (United States)

    Tobias, Martha L.; Evans, Ben J.; Kelley, Darcy B.

    2014-01-01

    Summary For most frogs, advertisement calls are essential for reproductive success, conveying information on species identity, male quality, sexual state and location. While the evolutionary divergence of call characters has been examined in a number of species, the relative impacts of genetic drift or natural and sexual selection remain unclear. Insights into the evolutionary trajectory of vocal signals can be gained by examining how advertisement calls vary in a phylogenetic context. Evolution by genetic drift would be supported if more closely related species express more similar songs. Conversely, a poor correlation between evolutionary history and song expression would suggest evolution shaped by natural or sexual selection. Here, we measure seven song characters in 20 described and two undescribed species of African clawed frogs (genera Xenopus and Silurana) and four populations of X. laevis. We identify three call types — click, burst and trill — that can be distinguished by click number, call rate and intensity modulation. A fourth type is biphasic, consisting of two of the above. Call types vary in complexity from the simplest, a click, to the most complex, a biphasic call. Maximum parsimony analysis of variation in call type suggests that the ancestral type was of intermediate complexity. Each call type evolved independently more than once and call type is typically not shared by closely related species. These results indicate that call type is homoplasious and has low phylogenetic signal. We conclude that the evolution of call type is not due to genetic drift, but is under selective pressure. PMID:24723737

  7. Defect structure in proton-irradiated copper and nickel

    International Nuclear Information System (INIS)

    Tsukuda, Noboru; Ehrhart, P.; Jaeger, W.; Schilling, W.; Dworschak, F.; Gadalla, A.A.

    1987-01-01

    This single crystals of copper or nickel with a thickness of about 10 μm are irradiated with 3 MeV protons at room temperature and the structures of resultant defects are investigated based on measurements of the effects of irradiation on the electrical resistivity, length, lattice constants, x-ray diffraction line profile and electron microscopic observations. The measurements show that the electrical resistivity increases with irradiation dose, while leveling off at high dose due to overlapping of irradiation cascades. The lattice constants decreases, indicating that many vacancies still remain while most of the interstitial stoms are eliminated, absorbed or consumed for dislocation loop formation. The x-ray line profile undergoes broadening, which is the result of dislocation loops, dislocation networks and SFT's introduced by the proton irradiation. Various defects have different effects though they cannot be identified separately from the profile alone. A satellite peak appears at a low angle, which seems to arise from periodic defect structures that are found in electron microscopic observations. In both copper and nickel, such periodic defect structures are seen over a wide range from high to low dose. Defect-free and defect-rich domains (defect walls), 0.5 to several μm in size, are alingned parallel to the {001} plane at intervals of 60 nm. The defect walls, which consist of dislocations, dislocation loops and SFT's, is 20 - 40 nm thick. (Nogami, K.)

  8. Investigation of UFO defect on DUV CAR and BARC process

    Science.gov (United States)

    Yet, Siew Ing; Ko, Bong Sang; Lee, Soo Man; May, Mike

    2004-05-01

    Photo process defect reduction is one of the most important factors to improve the process stability and yield in sub-0.18um DUV process. In this paper, a new approach to minimize the Deep-UV (DUV) Chemically Amplified Resist (CAR) and Bottom Anti-Reflective Coating (BARC) induced defect known as UFO (UnidentiFied Object) defect will be introduced. These defects have mild surface topography difference on BARC; it only exists on the wide exposed area where there is no photoresist pattern. In this test, Nikon KrF Stepper & Scanner and TEL Clean track were used. Investigation was carried out on the defect formulation on both Acetal and ESCAP type of photoresist while elemental analysis was done by Atomic Force Microscope (AFM) & Auger Electron Spectroscopy (AES). Result indicated that both BARC and photoresist induce this UFO defect; total defect quantity is related with Post Exposure Bake (PEB) condition. Based on the elemental analysis and process-split test, we can conclude that this defect is caused by lack of acid amount and low diffusivity which is related to PAG (Photo Acid Generator) and TAG (Thermal Acid Generator) in KrF photoresist and BARC material. By optimizing photoresist bake condition, this UFO defect as well as other related defect such as Satellite defect could be eliminated.

  9. A note on glN type-I integrable defects

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2014-01-01

    Type-I quantum defects are considered in the context of the gl N spin chain. The type-I defects are associated with the generalized harmonic oscillator algebra, and the chosen defect matrix is that of the vector nonlinear Schrödinger (NLS) model. The transmission matrices relevant to this particular type of defects are computed via the Bethe ansatz methodology. (paper)

  10. Molecular-dynamics simulation of defect formation energy in boron nitride nanotubes

    International Nuclear Information System (INIS)

    Moon, W.H.; Hwang, H.J.

    2004-01-01

    We investigate the defect formation energy of boron nitride nanotubes (BNNTs) using molecular dynamics simulation. Although the defect with tetragon-octagon pairs (TOP) is favored in the flat BNNTs cap, BN clusters, and the growth of BNNTs, the formation energy of the TOP defect is significantly higher than that of the pentagon-heptagon pairs (PHP) defect in BNNTs. The PHP defect reduces the effect of the structural distortion caused by the TOP defect, in spite of homoelemental bonds. The instability of the TOP defect generates the structural transformation into BNNTs with no defect at about 1500 K. This mechanism shows that the TOP defect is less favored in case of BNNTs

  11. Effects of mass defect in atomic clocks

    Science.gov (United States)

    Taichenachev, A. V.; Yudin, V. I.

    2018-01-01

    We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (such as gravitational and quadratic Doppler shifts) can be interpreted as consequences of the mass defect, i.e., without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions..

  12. Research In Diagnosing Bearing Defects From Vibrations

    Science.gov (United States)

    Zoladz, T.; Earhart, E.; Fiorucci, T.

    1995-01-01

    Report describes research in bearing-defect signature analysis - use of vibration-signal analysis to diagnose defects in roller and ball bearings. Experiments performed on bearings in good condition and other bearings in which various parts scratched to provide known defects correlated with vibration signals. Experiments performed on highly instrumented motor-driven rotor assembly at speeds up to 10,050 r/min, using accelerometers, velocity probes, and proximity sensors mounted at various locations on assembly to measure vibrations.

  13. The role of defects in laser damage of multilayer coatings

    International Nuclear Information System (INIS)

    Kozlowski, M.R.; Chow, R.

    1993-01-01

    Laser induced damage to optical coatings is generally a localized phenomenon associated with coating defects. The most common of the defect types are the well-known nodule defect. This paper reviews the use of experiments and modeling to understand the formation of these defects and their interaction with laser light. Of particular interest are efforts to identify which defects are most susceptible to laser damage. Also discussed are possible methods for stabilizing these defects (laser conditioning) or preventing their initiation (source stabilization, spatter particle trapping)

  14. Positron analysis of defects in metals

    NARCIS (Netherlands)

    van Veen, A.; Kruseman, A.C.; Schut, H.; Mijnarends, P.E.; Kooi, B.J.; de Hosson, J.T.M.; Jean, YC; Eldrup, M; Schrader, DM; West, RN

    1997-01-01

    New methods are discussed to improve defect analysis. The first method employs mapping of two shape parameters, S and W, of the positron annihilation photopeak. It is demonstrated that the combined use of S and W allows to a better discrimination of defects. The other method is based on background

  15. Cellular structure formed by ion-implantation-induced point defect

    International Nuclear Information System (INIS)

    Nitta, N.; Taniwaki, M.; Hayashi, Y.; Yoshiie, T.

    2006-01-01

    The authors have found that a cellular defect structure is formed on the surface of Sn + ion implanted GaSb at a low temperature and proposed its formation mechanism based on the movement of the induced point defects. This research was carried out in order to examine the validity of the mechanism by clarifying the effect of the mobility of the point defects on the defect formation. The defect structure on the GaSb surfaces implanted at cryogenic temperature and room temperature was investigated by scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (TEM) observation. In the sample implanted at room temperature, the sponge-like structure (a pileup of voids) was formed and the cellular structure, as observed at a low temperature, did not develop. This behavior was explained by the high mobility of the vacancies during implantation at room temperature, and the proposed idea that the defect formation process is dominated by the induced point defects was confirmed

  16. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    Science.gov (United States)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  17. Color Vision Defects in School Going Children

    Directory of Open Access Journals (Sweden)

    R K Shrestha

    2010-12-01

    Full Text Available Introduction: Color Vision defect can be observed in various diseases of optic nerve and retina and also a significant number of people suffer from the inherited condition of red and green color defect. Methods: A cross-sectional descritptive study was designed with purposive sampling of students from various schools of Kathmandu Valley. All children were subjected to color vision evaluation using Ishihara Isochromatic color plates along with other examination to rule out any other causes of color deficiency. Results: A total of 2001 students were examined, 1050 male students and 951 females with mean age of 10.35 (±2.75 and 10.54 (±2.72 respectively. Among the total students examined, 2.1% had some form of color vision defects. Of the male population , 3.9% had color vision defects while none of the female was found with the deficiency. Conclusions: The prelevance of color vision defect in Nepal is significant and comparable with the prelevance quoted in the studies from different countries. Keywords:color vision; congenital red green color effect; Nepal; prevalence.

  18. Point defect states in Sb-doped germanium

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Neil S., E-mail: neilp@mit.edu; Monmeyran, Corentin, E-mail: comonmey@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Agarwal, Anuradha [Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Kimerling, Lionel C. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2015-10-21

    Defect states in n-type Sb-doped germanium were investigated by deep-level transient spectroscopy. Cobalt-60 gamma rays were used to generate isolated vacancies and interstitials which diffuse and react with impurities in the material to form four defect states (E{sub 37}, E{sub 30}, E{sub 22}, and E{sub 21}) in the upper half of the bandgap. Irradiations at 77 K and 300 K as well as isothermal anneals were performed to characterize the relationships between the four observable defects. E{sub 37} is assigned to the Sb donor-vacancy associate (E-center) and is the only vacancy containing defect giving an estimate of 2 × 10{sup 11 }cm{sup −3} Mrad{sup −1} for the uncorrelated vacancy-interstitial pair introduction rate. The remaining three defect states are interstitial associates and transform among one another. Conversion ratios between E{sub 22}, E{sub 21}, and E{sub 30} indicate that E{sub 22} likely contains two interstitials.

  19. Nanocarbon: Defect Architectures and Properties

    Science.gov (United States)

    Vuong, Amanda

    The allotropes of carbon make its solid phases amongst the most diverse of any element. It can occur naturally as graphite and diamond, which have very different properties that make them suitable for a wide range of technological and commercial purposes. Recent developments in synthetic carbon include Highly Oriented Pyrolytic Graphite (HOPG) and nano-carbons, such as fullerenes, nanotubes and graphene. The main industrial application of bulk graphite is as an electrode material in steel production, but in purified nuclear graphite form, it is also used as a moderator in Advanced Gas-cooled Reactors across the United Kingdom. Both graphene and graphite are damaged over time when subjected to bombardment by electrons, neutrons or ions, and these have a wide range of effects on their physical and electrical properties, depending on the radiation flux and temperature. This research focuses on intrinsic defects in graphene and dimensional change in nuclear graphite. The method used here is computational chemistry, which complements physical experiments. Techniques used comprise of density functional theory (DFT) and molecular dynamics (MD), which are discussed in chapter 2 and chapter 3, respectively. The succeeding chapters describe the results of simulations performed to model defects in graphene and graphite. Chapter 4 presents the results of ab initio DFT calculations performed to investigate vacancy complexes that are formed in AA stacked bilayer graphene. In AB stacking, carbon atoms surrounding the lattice vacancies can form interlayer structures with sp2 bonding that are lower in energy compared to in-plane reconstructions. From the investigation of AA stacking, sp2 interlayer bonding of adjacent multivacancy defects in registry creates a type of stable sp2 bonded wormhole between the layers. Also, a new class of mezzanine structure characterised by sp3 interlayer bonding, resembling a prismatic vacancy loop has also been identified. The mezzanine, which is a

  20. Freely-migrating defects: Their production and interaction with cascade remnants

    International Nuclear Information System (INIS)

    Rehn, L.E.; Wiedersich, H.

    1991-05-01

    Many microstructural changes that occur during irradiation are driven primarily by freely-migrating defects, i.e. those defects which escape from nascent cascades to migrate over distances that are large relative to typical cascade dimensions. Several measurements during irradiation at elevated temperatures have shown that the survival rate of freely-migrating defects decreases much more strongly with increasing primary recoil energy than does the survival rate for defects generated at liquid helium temperatures. For typical fission or fusion recoil spectra, and for heavy-ion bombardment, the fraction of defects that migrate long-distances is apparently only ∼1% of the calculated dpa. This small surviving fraction of freely-migrating defects results at least partially from additional intracascade recombination at elevated temperatures. However, cascade remnants, e.g., vacancy and interstitial clusters, also contribute by enhancing intercascade defect annihilation. A recently developed rate-theory approach is used to discuss the relative importance of intra- and intercascade recombination to the survival rate of freely-migrating defects. Within the validity of certain simplifying assumptions, the additional sink density provided by defect clusters produced directly within individual cascades can explain the difference between a defect survival rate of about 30% for low dose, low temperature irradiations with heavy ions, and a survival rate of only ∼1% for freely-migrating defects at elevated temperatures. The status of our current understanding of freely-migrating defects, including remaining unanswered questions, is also discussed. 33 refs., 5 figs

  1. Study of crystalline defects in α-iron

    International Nuclear Information System (INIS)

    Dunlop, A.

    1981-01-01

    We study here the configurations of the defects produced in ferromagnetic metals (Fe, Co, Ni) during low-temperature irradiations. In the first part we find an anomalous shape of the damage production rate curves Δrho(.)(Δrho) (Δrho: resistivity increase; Δrho(.)=dΔrho/dPHI; PHI: irradiation fluence) of iron and nickel during neutron irradiations. We propose the following interpretation: - stability of the defect configurations created during low-temperature self-ion irradiations of these metals; - instability of these defect configurations where there is a sufficient cascade overlap. This agglomeration leads to a decrease of the average resistivity of the defects. Using this model, we can reproduce the iron results with the following parameters: - characteristic volume for the recovery: 3.3 x 10 -18 cm 3 ; - division of the average resistivity of the defects by 2.3 to 3 when they agglomerate. In the second part we study the influence of irradiation defects on the longitudinal magnetoresistance of the samples. The increase in the number of scattering centers (n, e - irradiations) makes the resistivity anisotropy (deltarho=rho// - rho perpendicular) change gradually from a region in which the 'normal' magnetoresistance is predominant to another in which the spontaneous anisotropy dominates. This last regime is studied with the two-current conduction model in ferromagnetics [fr

  2. Metastable defect response in CZTSSe from admittance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; Levi, Dean; Agrawal, Rakesh

    2017-10-02

    Admittance spectroscopy is a useful tool used to study defects in semiconductor materials. However, metastable defect responses in non-ideal semiconductors can greatly impact the measurement and therefore the interpretation of results. Here, admittance spectroscopy was performed on Cu2ZnSn(S,Se)4 where metastable defect response is illustrated due to the trapping of injected carriers into a deep defect state. To investigate the metastable response, admittance measurements were performed under electrically and optically relaxed conditions in comparison to a device following a low level carrier-injection pretreatment. The relaxed measurement demonstrates a single capacitance signature while two capacitance signatures are observed for the device measured following carrier-injection. The deeper level signature, typically reported for kesterites, is activated by charge trapping following carrier injection. Both signatures are attributed to bulk level defects. The significant metastable response observed on kesterites due to charge trapping obscures accurate interpretation of defect levels from admittance spectroscopy and indicates that great care must be taken when performing and interpreting this measurement on non-ideal devices.

  3. Defective pyrite (100) surface: An ab initio study

    International Nuclear Information System (INIS)

    Stirling, Andras; Bernasconi, Marco; Parrinello, Michele

    2007-01-01

    The structural and electronic properties of sulfur monomeric defects at the FeS 2 (100) surface have been studied by periodic density-functional calculations. We have shown that for a monomeric sulfur bound to an originally fivefold coordinated surface Fe site, the defect core features a triplet electronic ground state with unpaired spins localized on the exposed Fe-S unit. At this site, the iron and sulfur ions have oxidation states +4 and -2, respectively. This defect can be seen as produced via heterolytic bond breaking of the S-S sulfur dimer followed by a Fe-S redox reaction. The calculated sulfur 2p core-level shifts of the monomeric defects are in good agreement with experimental photoemission spectra, which allow a compelling assignment of the different spectroscopic features. The effect of water on the stability of the defective surface has also been studied, and it has been shown that the triplet state is stable against the wetting of the surface. The most important implications of the presence of the monomeric sulfur defect on the reactivity are also discussed

  4. Elastic dipoles of point defects from atomistic simulations

    Science.gov (United States)

    Varvenne, Céline; Clouet, Emmanuel

    2017-12-01

    The interaction of point defects with an external stress field or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these different available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition through the residual stress appears tractable. The approach is illustrated by considering various point defects (vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.

  5. Defect reduction of patterned media templates and disks

    Science.gov (United States)

    Luo, Kang; Ha, Steven; Fretwell, John; Ramos, Rick; Ye, Zhengmao; Schmid, Gerard; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2010-05-01

    Imprint lithography has been shown to be an effective technique for the replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require a demonstration of defect levels commensurate with cost-effective device production. This work summarizes the results of defect inspections of hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical based automated inspection tools. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity and scattered light. Defects that have been identified in this manner are further characterized according to the morphology. The imprint process was tested after optimizing both the disk cleaning and adhesion layers processes that precede imprinting. An extended imprint run was performed and both the defect types and trends are reported.

  6. The role of point defects and defect complexes in silicon device processing. Summary report and papers

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.; Tan, T.Y.

    1994-08-01

    This report is a summary of a workshop hold on August 24--26, 1992. Session 1 of the conference discussed characteristics of various commercial photovoltaic silicon substrates, the nature of impurities and defects in them, and how they are related to the material growth. Session 2 on point defects reviewed the capabilities of theoretical approaches to determine equilibrium structure of defects in the silicon lattice arising from transitional metal impurities and hydrogen. Session 3 was devoted to a discussion of the surface photovoltaic method for characterizing bulk wafer lifetimes, and to detailed studies on the effectiveness of various gettering operations on reducing the deleterious effects of transition metals. Papers presented at the conference are also included in this summary report.

  7. 29 CFR 785.17 - On-call time.

    Science.gov (United States)

    2010-07-01

    ... On-call time. An employee who is required to remain on call on the employer's premises or so close... employee who is not required to remain on the employer's premises but is merely required to leave word at his home or with company officials where he may be reached is not working while on call. (Armour & Co...

  8. CALLING AQUARIUM LOVERS...

    CERN Multimedia

    2002-01-01

    CERN's anemones will soon be orphans. We are looking for someone willing to look after the aquarium in the main building, for one year. If you are interested, or if you would like more information, please call 73830. (The anemones living in the aquarium thank you in anticipation.)

  9. Calling 911! What role does the pediatrician play?

    Science.gov (United States)

    Grossman, Devin; Kunkov, Sergey; Kaplan, Carl; Crain, Ellen F

    2013-06-01

    The objective of this study was to compare admission rates and medical interventions among children whose caregivers called their child's primary care provider (PCP) before taking an ambulance to the pediatric emergency department (PED) versus those who did not. This was a prospective cohort study of patients brought to an urban, public hospital PED via emergency medical system (EMS). Children were included if the caregiver called 911 to have them transported via EMS and was present in the PED. The main variable was whether the child's PCP was called before EMS utilization. Study outcomes were medical interventions, such as intravenous line insertion or laboratory tests, and hospital admission. χ Test and logistic regression were used to evaluate the relationship of the main variable to the study outcomes. Six hundred fourteen patients met inclusion criteria and were enrolled. Five hundred eighty-five patients (95.3%) were reported to have a PCP. Seventy-four caregivers (12.1%) called their child's PCP before calling EMS. Two hundred seventy-seven patients (45.1%) had medical interventions performed; of these, 42 (15.2%) called their PCP (P = 0.03). Forty-two patients (6.8%) were admitted; among these, 14 (33.3%) called their PCP (P < 0.01). Adjusting for triage level, patients whose caregiver called the PCP before calling EMS were 3.2 times (95% confidence interval, 1.9-5.2 times) more likely to be admitted and 1.7 times (95% confidence interval, 1.1-2.9 times) more likely to have a medical intervention compared with patients whose caregivers did not call their child's PCP. Children were more likely to be admitted or require a medical intervention if their caregiver called their PCP before calling EMS. The availability of a PCP for telephone triage may help to optimize EMS utilization.

  10. Defect structure of electrodeposited chromium layers

    International Nuclear Information System (INIS)

    Marek, T.; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U.

    2000-01-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  11. Defect structure of electrodeposited chromium layers

    Energy Technology Data Exchange (ETDEWEB)

    Marek, T. E-mail: marek@para.chem.elte.hu; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U

    2000-06-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  12. Detection of paint polishing defects

    Science.gov (United States)

    Rebeggiani, S.; Wagner, M.; Mazal, J.; Rosén, B.-G.; Dahlén, M.

    2018-06-01

    Surface finish plays a major role on perceived product quality, and is the first thing a potential buyer sees. Today end-of-line repairs of the body of cars and trucks are inevitably to secure required surface quality. Defects that occur in the paint shop, like dust particles, are eliminated by manual sanding/polishing which lead to other types of defects when the last polishing step is not performed correctly or not fully completed. One of those defects is known as ‘polishing roses’ or holograms, which are incredibly hard to detect in artificial light but are clearly visible in sunlight. This paper will present the first tests with a measurement set-up newly developed to measure and analyse polishing roses. The results showed good correlations to human visual evaluations where repaired panels were estimated based on the defects’ intensity, severity and viewing angle.

  13. Hole Defects Affect the Dynamic Fracture Behavior of Nearby Running Cracks

    Directory of Open Access Journals (Sweden)

    R. S. Yang

    2018-01-01

    Full Text Available Effects of defects on the dynamic fracture behavior of engineering materials cannot be neglected. Using the experimental system of digital laser dynamic caustics, the effects of defects on the dynamic fracture behavior of nearby running cracks are studied. When running cracks propagate near to defects, the crack path deflects toward the defect; the degree of deflection is greater for larger defect diameters. When the running crack propagates away from the defect, the degree of deflection gradually reduces and the original crack path is restored. The intersection between the caustic spot and the defect is the direct cause of the running crack deflection; the intersection area determines the degree of deflection. In addition, the defect locally inhibits the dynamic stress intensity factor of running cracks when they propagate toward the defect and locally promotes the dynamic stress intensity factor of running cracks when they propagate away from the defect.

  14. Sharing programming resources between Bio* projects through remote procedure call and native call stack strategies

    DEFF Research Database (Denmark)

    Prins, Pjotr; Goto, Naohisa; Yates, Andrew

    2012-01-01

    Open-source software (OSS) encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, OSS comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times...... for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor. In this chapter, we compare the two principal approaches for sharing software between different programming languages: either by remote...... procedure call (RPC) or by sharing a local call stack. RPC provides a language-independent protocol over a network interface; examples are RSOAP and Rserve. The local call stack provides a between-language mapping not over the network interface, but directly in computer memory; examples are R bindings, RPy...

  15. Indico CONFERENCE: Define the Call for Abstracts

    CERN Multimedia

    CERN. Geneva; Ferreira, Pedro

    2017-01-01

    In this tutorial, you will learn how to define and open a call for abstracts. When defining a call for abstracts, you will be able to define settings related to the type of questions asked during a review of an abstract, select the users who will review the abstracts, decide when to open the call for abstracts, and more.

  16. Two-Dimensional Impact Reconstruction Method for Rail Defect Inspection

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2014-01-01

    Full Text Available The safety of train operating is seriously menaced by the rail defects, so it is of great significance to inspect rail defects dynamically while the train is operating. This paper presents a two-dimensional impact reconstruction method to realize the on-line inspection of rail defects. The proposed method utilizes preprocessing technology to convert time domain vertical vibration signals acquired by wireless sensor network to space signals. The modern time-frequency analysis method is improved to reconstruct the obtained multisensor information. Then, the image fusion processing technology based on spectrum threshold processing and node color labeling is proposed to reduce the noise, and blank the periodic impact signal caused by rail joints and locomotive running gear. This method can convert the aperiodic impact signals caused by rail defects to partial periodic impact signals, and locate the rail defects. An application indicates that the two-dimensional impact reconstruction method could display the impact caused by rail defects obviously, and is an effective on-line rail defects inspection method.

  17. Anisotropic bias dependent transport property of defective phosphorene layer

    Science.gov (United States)

    Umar Farooq, M.; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, no systematic studies on the transport properties modified due to defects have been performed. Here, we present the electronic band structure, defect formation energy and bias dependent transport property of various defective systems. We found that the defect formation energy is much less than that in graphene. The defect configuration strongly affects the electronic structure. The band gap vanishes in single vacancy layers, but the band gap reappears in divacancy layers. Interestingly, a single vacancy defect behaves like a p-type impurity for transport property. Unlike the common belief, we observe that the vacancy defect can contribute to greatly increasing the current. Along the zigzag direction, the current in the most stable single vacancy structure was significantly increased as compared with that found in the pristine layer. In addition, the current along the armchair direction was always greater than along the zigzag direction and we observed a strong anisotropic current ratio of armchair to zigzag direction. PMID:26198318

  18. Call for Research

    International Development Research Centre (IDRC) Digital Library (Canada)

    Marie-Isabelle Beyer

    2014-10-03

    Oct 3, 2014 ... 5.Submission process. 6.Eligibility criteria. 7.Selection Process. 8. Format and requirements. 9.Evaluation criteria. 10.Country clearance requirements. 11. .... It is envisaged that through this call a single consortium will undertake 6-8 projects within a total budget of up to ... principle qualify for IDRC's support.

  19. Iodide-trapping defect of the thyroid

    International Nuclear Information System (INIS)

    Pannall, P.R.; Steyn, A.F.; Van Reenen, O.

    1978-01-01

    We describe a grossly hypothyroid 50-year-old woman, mentally retarded since birth. On the basis of her history of recurrent goitre, absence of 131 I neck uptake and a low saliva/plasma 131 I ratio, congenital hypothyroidism due to a defect of the iodide-trapping mechanism was diagnosed. Other family members studied did not have the defect

  20. Mean Glenoid Defect Size and Location Associated With Anterior Shoulder Instability

    Science.gov (United States)

    Gottschalk, Lionel J.; Bois, Aaron J.; Shelby, Marcus A.; Miniaci, Anthony; Jones, Morgan H.

    2017-01-01

    Background: There is a strong correlation between glenoid defect size and recurrent anterior shoulder instability. A better understanding of glenoid defects could lead to improved treatments and outcomes. Purpose: To (1) determine the rate of reporting numeric measurements for glenoid defect size, (2) determine the consistency of glenoid defect size and location reported within the literature, (3) define the typical size and location of glenoid defects, and (4) determine whether a correlation exists between defect size and treatment outcome. Study Design: Systematic review; Level of evidence, 4. Methods: PubMed, Ovid, and Cochrane databases were searched for clinical studies measuring glenoid defect size or location. We excluded studies with defect size requirements or pathology other than anterior instability and studies that included patients with known prior surgery. Our search produced 83 studies; 38 studies provided numeric measurements for glenoid defect size and 2 for defect location. Results: From 1981 to 2000, a total of 5.6% (1 of 18) of the studies reported numeric measurements for glenoid defect size; from 2001 to 2014, the rate of reporting glenoid defects increased to 58.7% (37 of 63). Fourteen studies (n = 1363 shoulders) reported defect size ranges for percentage loss of glenoid width, and 9 studies (n = 570 shoulders) reported defect size ranges for percentage loss of glenoid surface area. According to 2 studies, the mean glenoid defect orientation was pointing toward the 3:01 and 3:20 positions on the glenoid clock face. Conclusion: Since 2001, the rate of reporting numeric measurements for glenoid defect size was only 58.7%. Among studies reporting the percentage loss of glenoid width, 23.6% of shoulders had a defect between 10% and 25%, and among studies reporting the percentage loss of glenoid surface area, 44.7% of shoulders had a defect between 5% and 20%. There is significant variability in the way glenoid bone loss is measured, calculated

  1. Electronic transport of bilayer graphene with asymmetry line defects

    International Nuclear Information System (INIS)

    Zhao Xiao-Ming; Chen Chan; Liang Ying; Kou Su-Peng; Wu Ya-Jie

    2016-01-01

    In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer–Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. (paper)

  2. Identification of biochemical features of defective Coffea arabica L. beans.

    Science.gov (United States)

    Casas, María I; Vaughan, Michael J; Bonello, Pierluigi; McSpadden Gardener, Brian; Grotewold, Erich; Alonso, Ana P

    2017-05-01

    Coffee organoleptic properties are based in part on the quality and chemical composition of coffee beans. The presence of defective beans during processing and roasting contribute to off flavors and reduce overall cup quality. A multipronged approach was undertaken to identify specific biochemical markers for defective beans. To this end, beans were split into defective and non-defective fractions and biochemically profiled in both green and roasted states. A set of 17 compounds in green beans, including organic acids, amino acids and reducing sugars; and 35 compounds in roasted beans, dominated by volatile compounds, organic acids, sugars and sugar alcohols, were sufficient to separate the defective and non-defective fractions. Unsorted coffee was examined for the presence of the biochemical markers to test their utility in detecting defective beans. Although the green coffee marker compounds were found in all fractions, three of the roasted coffee marker compounds (1-methylpyrrole, 5-methyl- 2-furfurylfuran, and 2-methylfuran) were uniquely present in defective fractions. Published by Elsevier Ltd.

  3. Driving down defect density in composite EUV patterning film stacks

    Science.gov (United States)

    Meli, Luciana; Petrillo, Karen; De Silva, Anuja; Arnold, John; Felix, Nelson; Johnson, Richard; Murray, Cody; Hubbard, Alex; Durrant, Danielle; Hontake, Koichi; Huli, Lior; Lemley, Corey; Hetzer, Dave; Kawakami, Shinichiro; Matsunaga, Koichi

    2017-03-01

    Extreme ultraviolet lithography (EUVL) technology is one of the leading candidates for enabling the next generation devices, for 7nm node and beyond. As the technology matures, further improvement is required in the area of blanket film defectivity, pattern defectivity, CD uniformity, and LWR/LER. As EUV pitch scaling approaches sub 20 nm, new techniques and methods must be developed to reduce the overall defectivity, mitigate pattern collapse and eliminate film related defect. IBM Corporation and Tokyo Electron Limited (TELTM) are continuously collaborating to develop manufacturing quality processes for EUVL. In this paper, we review key defectivity learning required to enable 7nm node and beyond technology. We will describe ongoing progress in addressing these challenges through track-based processes (coating, developer, baking), highlighting the limitations of common defect detection strategies and outlining methodologies necessary for accurate characterization and mitigation of blanket defectivity in EUV patterning stacks. We will further discuss defects related to pattern collapse and thinning of underlayer films.

  4. The function of migratory bird calls

    DEFF Research Database (Denmark)

    Reichl, Thomas; Andersen, Bent Bach; Larsen, Ole Næsbye

    The function of migratory bird calls: do they influence orientation and navigation?   Thomas Reichl1, Bent Bach Andersen2, Ole Naesbye Larsen2, Henrik Mouritsen1   1Institute of Biology, University of Oldenburg, Oldenburg, D-26111 Oldenburg, Germany 2Institute of Biology, University of Southern...... migration and to stimulate migratory restlessness in conspecifics. We wished to test if conspecific flight calls influence the flight direction of a nocturnal migrant, the European Robin (Erithacus rubecula), i.e. if flight calls help migrants keeping course. Wild caught birds showing migratory restlessness...... the experimental bird could be activated successively to simulate a migrating Robin cruising E-W, W-E, S-N or N-S at a chosen height (mostly about 40 m), at 10 m/s and emitting Robin flight calls of 80 dB(A) at 1 m. The simulated flight of a "ding" sound served as a control. During an experiment the bird was first...

  5. Observation of defects evolution in electronic materials

    Science.gov (United States)

    Jang, Jung Hun

    Advanced characterization techniques have been used to obtain a better understanding of the microstructure of electronic materials. The structural evolution, especially defects, has been investigated during the film growth and post-growth processes. Obtaining the relation between the defect evolution and growth/post-growth parameters is very important to obtain highly crystalline films. In this work, the growth and post-growth related defects in GaN, ZnO, strained-Si/SiGe films have been studied using several advanced characterization techniques. First of all, the growth of related defects in GaN and p-type ZnO films have been studied. The effect of growth parameters, such as growth temperature, gas flow rate, dopants used during the deposition, on the crystalline quality of the GaN and ZnO layers was investigated by high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM). In GaN films, it was found that the edge and mixed type threading dislocations were the dominant defects so that the only relevant figure of merit (FOM) for the crystalline quality should be the FWHM value of o-RC of the surface perpendicular plane which could be determined by a grazing incidence x-ray diffraction (GIXD) technique as shown in this work. The understanding of the relationship between the defect evolution and growth parameters allowed for the growth of high crystalline GaN films. For ZnO films, it was found that the degree of texture and crystalline quality of P-doped ZnO films decreased with increasing the phosphorus atomic percent. In addition, the result from the x-ray diffraction line profile analysis showed that the 0.5 at % P-doped ZnO film showed much higher microstrain than the 1.0 at % P-doped ZnO film, which indicated that the phosphorus atoms were segregated with increasing P atomic percentage. Finally, post-growth related defects in strained-Si/SiGe films were investigated. Postgrowth processes used in this work included high temperature N2

  6. An empirical analysis of the corporate call decision

    International Nuclear Information System (INIS)

    Carlson, M.D.

    1998-01-01

    An economic study of the the behaviour of financial managers of utility companies was presented. The study examined whether or not an option pricing based model of the call decision does a better job of explaining callable preferred share prices and call decisions compared to other models. In this study, the Rust (1987) empirical technique was extended to include the use of information from preferred share prices in addition to the call decisions. Reasonable estimates were obtained from data of shares of the Pacific Gas and Electric Company (PGE) for the transaction costs associated with a call. It was concluded that the managers of the PGE clearly take into account the value of the option to delay the call when making their call decisions

  7. Reduction in Defect Content of ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ritherdon, J

    2001-05-15

    The work detailed within this report is a continuation of earlier work carried out under contract number 1DX-SY382V. The earlier work comprises a literature review of the sources and types of defects found principally in Fe-based ODS alloys as well as experimental work designed to identify defects in the prototype ODS-Fe{sub 3}Al alloy, deduce their origins and to recommend methods of defect reduction. The present work is an extension of the experimental work already reported and concentrates on means of reduction of defects already identified rather than the search for new defect types. This report also includes results gathered during powder separation trials, conducted by the University of Groningen, Netherlands and coordinated by the University of Liverpool, involving the separation of different metallic powders in terms of their differing densities. The scope and objectives of the present work were laid out in the technical proposal ''Reduction in Defect Content in ODS Alloys-III''. All the work proposed in the ''Statement of Work'' section of the technical proposal has been carried out and all work extra to the ''Statement of Work'' falls within the context of an ODS-Fe{sub 3}Al alloy of improved overall quality and potential creep performance in the consolidated form. The outturn of the experimental work performed is reported in the following sections.

  8. Perceived Calling and Work Engagement Among Nurses.

    Science.gov (United States)

    Ziedelis, Arunas

    2018-03-01

    The purpose of this study was to explore the relationship of perceived calling and work engagement in nursing over and above major work environment factors. In all, 351 nurses from various health care institutions completed the survey. Data were collected about the most demanding aspects of nursing, major job resources, the degree to which nursing is perceived as a meaningful calling, work engagement, and main demographic information. Hierarchical linear regression was applied to assess the relation between perceived calling and work engagement, while controlling for demographic and work environment factors, and perceived calling was significantly related to two out of three components of nurses' work engagement. The highest association was found with dedication component, and vigor component was related insignificantly. Results have shown that perceived calling might motivate nurses to engage in their work even in burdensome environment, although possible implications for the occupational well-being of nurses themselves remains unclear.

  9. Proceedings of the European Meeting on Positron Studies of Defects

    International Nuclear Information System (INIS)

    1987-01-01

    The meeting dealt with both theoretical and experimental aspects of positron studies of defects using conventional and novel positron techniques. The subjects are indicated in the following headings: (1) theory of positrons in imperfect solids, (2) vacancies in metals and alloys, (3) dislocation and deformation effects, (4) amorphous alloys and fine-grained materials, (5) phase transitions, (6) precipitation phenomena, (7) gas impurity-defect interaction and irradiation effects, (8) defects in elemental semiconductors, (9) defects in compound semiconductors, (10) slow positron studies of defects, (11) defects in oxides and halides, (12) defects in molecular solids, and (13) advances in experimental techniques and data treatment. Althogether 141 contributions (invited plenary lectures, short lectures, and posters) are presented as titles with abstracts. Most of them are in INIS scope and are processed individually for the database

  10. PREFACE: The International Workshop on Positron Studies of Defects 2014

    Science.gov (United States)

    Sugita, Kazuki; Shirai, Yasuharu

    2016-01-01

    The International Workshop on Positron Studies of Defects 2014 (PSD-14) was held in Kyoto, Japan from 14-19 September, 2014. The PSD Workshop brought together positron scientists interested in studying defects to an international platform for presenting and discussing recent results and achievements, including new experimental and theoretical methods in the field. The workshop topics can be characterized as follows: • Positron studies of defects in semiconductors and oxides • Positron studies of defects in metals • New experimental methods and equipment • Theoretical calculations and simulations of momentum distributions, positron lifetimes and other characteristics for defects • Positron studies of defects in combination with complementary methods • Positron beam studies of defects at surfaces, interfaces, in sub-surface regions and thin films • Nanostructures and amorphous materials

  11. Deep sub-wavelength metrology for advanced defect classification

    Science.gov (United States)

    van der Walle, P.; Kramer, E.; van der Donck, J. C. J.; Mulckhuyse, W.; Nijsten, L.; Bernal Arango, F. A.; de Jong, A.; van Zeijl, E.; Spruit, H. E. T.; van den Berg, J. H.; Nanda, G.; van Langen-Suurling, A. K.; Alkemade, P. F. A.; Pereira, S. F.; Maas, D. J.

    2017-06-01

    Particle defects are important contributors to yield loss in semi-conductor manufacturing. Particles need to be detected and characterized in order to determine and eliminate their root cause. We have conceived a process flow for advanced defect classification (ADC) that distinguishes three consecutive steps; detection, review and classification. For defect detection, TNO has developed the Rapid Nano (RN3) particle scanner, which illuminates the sample from nine azimuth angles. The RN3 is capable of detecting 42 nm Latex Sphere Equivalent (LSE) particles on XXX-flat Silicon wafers. For each sample, the lower detection limit (LDL) can be verified by an analysis of the speckle signal, which originates from the surface roughness of the substrate. In detection-mode (RN3.1), the signal from all illumination angles is added. In review-mode (RN3.9), the signals from all nine arms are recorded individually and analyzed in order to retrieve additional information on the shape and size of deep sub-wavelength defects. This paper presents experimental and modelling results on the extraction of shape information from the RN3.9 multi-azimuth signal such as aspect ratio, skewness, and orientation of test defects. Both modeling and experimental work confirm that the RN3.9 signal contains detailed defect shape information. After review by RN3.9, defects are coarsely classified, yielding a purified Defect-of-Interest (DoI) list for further analysis on slower metrology tools, such as SEM, AFM or HIM, that provide more detailed review data and further classification. Purifying the DoI list via optical metrology with RN3.9 will make inspection time on slower review tools more efficient.

  12. On-call work and health: a review

    Directory of Open Access Journals (Sweden)

    Botterill Jackie S

    2004-12-01

    Full Text Available Abstract Many professions in the fields of engineering, aviation and medicine employ this form of scheduling. However, on-call work has received significantly less research attention than other work patterns such as shift work and overtime hours. This paper reviews the current body of peer-reviewed, published research conducted on the health effects of on-call work The health effects studies done in the area of on-call work are limited to mental health, job stress, sleep disturbances and personal safety. The reviewed research suggests that on-call work scheduling can pose a risk to health, although there are critical gaps in the literature.

  13. Light-induced defects in hybrid lead halide perovskite

    Science.gov (United States)

    Sharia, Onise; Schneider, William

    One of the main challenges facing organohalide perovskites for solar application is stability. Solar cells must last decades to be economically viable alternatives to traditional energy sources. While some causes of instability can be avoided through engineering, light-induced defects can be fundamentally limiting factor for practical application of the material. Light creates large numbers of electron and hole pairs that can contribute to degradation processes. Using ab initio theoretical methods, we systematically explore first steps of light induced defect formation in methyl ammonium lead iodide, MAPbI3. In particular, we study charged and neutral Frenkel pair formation involving Pb and I atoms. We find that most of the defects, except negatively charged Pb Frenkel pairs, are reversible, and thus most do not lead to degradation. Negative Pb defects create a mid-gap state and localize the conduction band electron. A minimum energy path study shows that, once the first defect is created, Pb atoms migrate relatively fast. The defects have two detrimental effects on the material. First, they create charge traps below the conduction band. Second, they can lead to degradation of the material by forming Pb clusters.

  14. Cariogenic properties of Streptococcus mutans clinical isolates with sortase defects.

    Science.gov (United States)

    Lapirattanakul, Jinthana; Takashima, Yukiko; Tantivitayakul, Pornpen; Maudcheingka, Thaniya; Leelataweewud, Pattarawadee; Nakano, Kazuhiko; Matsumoto-Nakano, Michiyo

    2017-09-01

    In Streptococcus mutans, a Gram-positive pathogen of dental caries, several surface proteins are anchored by the activity of sortase enzyme. Although various reports have shown that constructed S. mutans mutants deficient of sortase as well as laboratory reference strains with a sortase gene mutation have low cariogenic potential, no known studies have investigated clinical isolates with sortase defects. Here, we examined the cariogenic properties of S. mutans clinical isolates with sortase defects as well as caries status in humans harboring such defective isolates. Sortase-defective clinical isolates were evaluated for biofilm formation, sucrose-dependent adhesion, stress-induced dextran-dependent aggregation, acid production, and acid tolerance. Additionally, caries indices of subjects possessing such defective isolates were determined. Our in vitro results indicated that biofilm with a lower quantity was formed by sortase-defective as compared to non-defective isolates. Moreover, impairments of sucrose-dependent adhesion and stress-induced dextran-dependent aggregation were found among the isolates with defects, whereas no alterations were seen in regard to acid production or tolerance. Furthermore, glucan-binding protein C, a surface protein anchored by sortase activity, was predominantly detected in culture supernatants of all sortase-defective S. mutans isolates. Although the sortase-defective isolates showed lower cariogenic potential because of a reduction in some cariogenic properties, deft/DMFT indices revealed that all subjects harboring those isolates had caries experience. Our findings suggest the impairment of cariogenic properties in S. mutans clinical isolates with sortase defects, though the detection of these defective isolates seemed not to imply low caries risk in the subjects harboring them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Systems configured to distribute a telephone call, communication systems, communication methods and methods of routing a telephone call to a service representative

    Science.gov (United States)

    Harris, Scott H.; Johnson, Joel A.; Neiswanger, Jeffery R.; Twitchell, Kevin E.

    2004-03-09

    The present invention includes systems configured to distribute a telephone call, communication systems, communication methods and methods of routing a telephone call to a customer service representative. In one embodiment of the invention, a system configured to distribute a telephone call within a network includes a distributor adapted to connect with a telephone system, the distributor being configured to connect a telephone call using the telephone system and output the telephone call and associated data of the telephone call; and a plurality of customer service representative terminals connected with the distributor and a selected customer service representative terminal being configured to receive the telephone call and the associated data, the distributor and the selected customer service representative terminal being configured to synchronize, application of the telephone call and associated data from the distributor to the selected customer service representative terminal.

  16. Extended defects in MBE-grown CdTe-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wichrowska, Karolina; Wosinski, Tadeusz; Kret, Slawomir; Chusnutdinow, Sergij; Karczewski, Grzegorz [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Rawski, Michal [Analytical Laboratory, Maria Curie-Sklodowska University, Lublin (Poland); Yastrubchak, Oksana [Institute of Physics, Maria Curie-Sklodowska University, Lublin (Poland)

    2015-08-15

    Extended defects in the p -ZnTe/n -CdTe heterojunctions grown by the molecular-beam epitaxy technique on two different substrates, GaAs and CdTe, have been investigated by deep-level transient spectroscopy (DLTS) and transmission electron microscopy (TEM). Four hole traps, called H1 to H4, and one electron trap, called E3, have been revealed in the DLTS spectra measured for the heterojunctions grown on the GaAs substrates. The H1, H3, H4 and E3 traps have been attributed to the electronic states of dislocations on the ground of their logarithmic capture kinetics. The DLTS peaks associated with the H1 and E3 traps were not observed in the DLTS spectra measured for the heterojunction grown on the CdTe substrate. They are most likely associated with threading dislocations generated at the mismatched interface with the GaAs substrate. Cross-sectional TEM images point out that they are dislocations of the 60 -type. In both the types of heterojunctions the H4 trap was observed only under forward-bias filling pulse, suggesting that this trap is associated with the CdTe/ZnTe interface. In addition, TEM images revealed also the presence of intrinsic and extrinsic stacking faults in the CdTe layers, which may considerably affect their electronic properties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Defects in low temperature electron irradiated InP

    International Nuclear Information System (INIS)

    Suski, J.; Bourgoin, J.

    1984-01-01

    n and p-InP has been irradiated at 25K with 1MeV electrons and the created defects were studied by deep level transient spectroscopy (DLTS) in the range 25K-400K. In n-InP, four traps are directly observed, with low introduction rates except for one. They anneal in three stages, and four new centers of still lower concentration appear after 70 0 C heat treatment. In p-InP, two dominant traps stable up to approx.= 400K with introduction rates close to the theoretical ones, which might be primary defects are found, while another one is clearly a secondary defect likely associated to Zn dopant. At least two of the low concentration irradiation induced electron traps, created between 25K and 100K are also secondary defects, which implies a mobility of some primary defects down to 100K at least. (author)

  18. Reality check on girth weld defect acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    Brust, Bud; Kalyanam, Suresh; Shim, Do-Jun; Wilkowski, Gery [Engineering Mechanics Corporation of Columbus, Columbus, OH, (United States)

    2010-07-01

    Girth weld defect tolerance criteria for pipeline construction has evolved with time. Recently, ERPG recommended a new Tier 2 girth weld defect acceptance criterion. This paper described the new development on girth weld defect acceptance criteria. The inherent conservatisms of alternative girth weld defect acceptance criteria from the 2007 API 1104 Appendix A, CSA Z662 Appendix K, are compared to those from the proposed EPRG Tier 2 criteria. It is found that the API and CSA codes have the same empirical limit-load criteria. As well, there are conservatisms in the proposed EPRG Tier 2. The results showed that there are various reasons why large amounts of conservatism in the allowable flaw lengths in the CSA Appendix K,2007 API 1104 Appendix A, and proposed EPRG Tier 2 girth weld defect criterion exist. Small conservatisms on failure stress can result in large conservatisms in flaw size.

  19. Investigation of Shrinkage Defect in Castings by Quantitative Ishikawa Diagram

    Directory of Open Access Journals (Sweden)

    Chokkalingam B.

    2017-03-01

    Full Text Available Metal casting process involves processes such as pattern making, moulding and melting etc. Casting defects occur due to combination of various processes even though efforts are taken to control them. The first step in the defect analysis is to identify the major casting defect among the many casting defects. Then the analysis is to be made to find the root cause of the particular defect. Moreover, it is especially difficult to identify the root causes of the defect. Therefore, a systematic method is required to identify the root cause of the defect among possible causes, consequently specific remedial measures have to be implemented to control them. This paper presents a systematic procedure to identify the root cause of shrinkage defect in an automobile body casting (SG 500/7 and control it by the application of Pareto chart and Ishikawa diagram. with quantitative Weightage. It was found that the root causes were larger volume section in the cope, insufficient feeding of riser and insufficient poured metal in the riser. The necessary remedial measures were taken and castings were reproduced. The shrinkage defect in the castings was completely eliminated.

  20. Phase defects and spatiotemporal disorder in traveling-wave convection patterns

    International Nuclear Information System (INIS)

    La Porta, A.; Surko, C.M.

    1997-01-01

    Spatiotemporal disorder is studied in traveling-wave convection in ethanol-water mixtures. Spectral measures of disorder, linear correlation functions, and mutual information are used to characterize the patterns, and are found to give a weak indication of the level of disorder. The calculation of the complex order parameter for experimental patterns is described. It is found that the ordering of the patterns is accompanied by a dramatic change in the topological structure of the order parameter. Specific arrangements of defects are found to be associated with the elements of traveling-wave patterns, and the net charge and total number of defects is introduced as a measure of disorder in the patterns. The coarsening of the patterns is marked by an accumulation of net charge and a dramatic decrease in the number of defects. The physical significance of the defects is discussed, and it is shown that the phase velocity of the waves is lower in the vicinity of the defects. The defect-defect correlation functions are calculated for the convection patterns. It is shown that the ordering of the patterns is closely related to the apparent defect-defect interactions. copyright 1997 The American Physical Society

  1. ROLE OF DATA MINING CLASSIFICATION TECHNIQUE IN SOFTWARE DEFECT PREDICTION

    OpenAIRE

    Dr.A.R.Pon Periyasamy; Mrs A.Misbahulhuda

    2017-01-01

    Software defect prediction is the process of locating defective modules in software. Software quality may be a field of study and apply that describes the fascinating attributes of software package product. The performance should be excellent with none defects. Software quality metrics are a set of software package metrics that target the standard aspects of the product, process, and project. The software package defect prediction model helps in early detection of defects and contributes to t...

  2. Transient fatty cortical defects following fractures in children

    International Nuclear Information System (INIS)

    Malghem, J.; Maldague, B.

    1986-01-01

    Self-regressing subperiosteal defects appearing during consolidation of fractures were observed in two children aged 6 and 10 years, in the tibia and the radious respectively. These transient defects appeared several weeks after fracture, at a distance from the fracture site. They involved the newly formed subperiosteal bone, did not enlarge, and were replaced progressively by normal-appearing bone. A computed tomography (CT) study performed on one of these defects demonstrated a density consistent with a fatty content. It is suggested that these transient post-traumatic defect could result from the inclusion of medulary fat drops within the subperiosteal heamtoma near the fracture site. (orig.)

  3. Intrinsic Defects and H Doping in WO3

    KAUST Repository

    Zhu, Jiajie

    2017-01-18

    WO3 is widely used as industrial catalyst. Intrinsic and/or extrinsic defects can tune the electronic properties and extend applications to gas sensors and optoelectonics. However, H doping is a challenge to WO3, the relevant mechanisms being hardly understood. In this context, we investigate intrinsic defects and H doping by density functional theory and experiments. Formation energies are calculated to determine the lowest energy defect states. O vacancies turn out to be stable in O-poor environment, in agreement with X-ray photoelectron spectroscopy, and O-H bond formation of H interstitial defects is predicted and confirmed by Fourier transform infrared spectroscopy.

  4. No Call for Action? Why There Is No Union (Yet in Philippine Call Centers

    Directory of Open Access Journals (Sweden)

    Niklas Reese

    2013-01-01

    Full Text Available This contribution presents findings from a qualitative study which focused on young urban professionals in the Philippines who work(ed in international call centers – workplaces usually characterized by job insecurity and other forms of precarity, factory-like working conditions, and disembeddedness. Nevertheless, trade unions in these centers have not come into existence. Why collective action is not chosen by call center agents as an option to tackle the above mentioned problems – this is what the research project this article is based on tried to understand. After outlining some workrelated problems identified by Filipino call center agents, the article will focus on the strategies the agents employ to counter these problems (mainly accommodation and everyday resistance. By highlighting five objective and five subjective reasons (or reasons by circumstances and reasons by framing, we conclude that it is not repressive regulation policies, but rather the formative power and the internalization of discourses of rule within individual life strategies that are preventing the establishment of unions and other collective action structures.

  5. Micromagnetic simulation of exploratory magnetic logic device with missing corner defect

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokuo, E-mail: yangxk0123@163.com; Cai, Li; Zhang, Bin; Cui, Huanqing; Zhang, Mingliang

    2015-11-15

    Magnetic film nanostructures are attractive components of nonvolatile magnetoresistive memories and nanomagnet logic circuits. Recently, we studied switching properties (i.e., null logic preserving) of rectangle shape nanomagnet subjected to fabrication imperfections. Specifically, we presented typical missing corner material-related imperfections and adopted an isosceles triangle to model this defect for nanomagnets. Micromagnetic simulation shows that this kind of imperfections modeling method agrees well with previous experimental observations. Using the proposed defect modeling scheme, we investigate in detail the switching characteristics of different defective stand-alone and coupled nanomagnets. The results suggest that the state transition of defective nanomagnet element highly depends on defect type and device’s aspect ratio, and the defect type B{sub d} needs the largest coercive field, while the defect type D requires the largest null field for switching. These findings can provide key technical parameters and guides for nanomagnet logic circuit design. - Highlights: • We have modeled missing corner defect issue for nanomagnet logic device. • The logic state of defective NML element highly depends on defect type and AR. • The NML device with defect type B{sub d} needs the largest coercive field to reverse state. • The defect type D in the NML devices requires the largest null field to switch.

  6. Breakdown, fractoemission, diffusion: role of defects in dielectrics

    International Nuclear Information System (INIS)

    Vigouroux, J.P.; Serruys, Y.

    1987-01-01

    During the surface analysis of dielectric materials, the impinging ionising particles induce point defects localised in the band gap and build an electrical charge. The electric field created by the charged defects modifies the physico-chemical properties of surface and bulk. We show that the fundamental study of defects allows a better understanding of technological phenomena such as dielectric breakdown, fracture and diffusion [fr

  7. Automated Diagnosis and Classification of Steam Generator Tube Defects

    International Nuclear Information System (INIS)

    Garcia, Gabe V.

    2004-01-01

    A major cause of failure in nuclear steam generators is tube degradation. Tube defects are divided into seven categories, one of which is intergranular attack/stress corrosion cracking (IGA/SCC). Defects of this type usually begin on the outer surface of the tubes and propagate both inward and laterally. In many cases these defects occur at or near the tube support plates. Several different methods exist for the nondestructive evaluation of nuclear steam generator tubes for defect characterization

  8. A Study of Defect Behavior in Almandine Garnet

    Science.gov (United States)

    Geiger, C. A.; Brearley, A. J.; Dachs, E.; Tipplet, G.; Rossman, G. R.

    2016-12-01

    Transport and diffusion in crystals are controlled by defects. However, a good understanding of the defect types in many silicates, including garnet, is not at hand. We undertook a study on synthetic almandine, ideal end-member Fe3Al2Si3O12, to better understand its precise chemical and physical properties and defect behavior. Crystals were synthesized at high pressures and temperatures under different fO2 conditions using various starting materials with H2O and without. The almandine obtained came in polycrystalline and single-crystal form. The synthetic reaction products and crystals were carefully characterized using X-ray powder diffraction, electron microprobe and TEM analysis and with 57Fe Mössbauer, UV/VIS single-crystal absorption and IR single-crystal spectroscopy. Various possible intrinsic defects, such as the Frenkel, Schottky and site-disorder types, along with Fe3+, in both synthetic and natural almandine crystals, were analyzed based on model defects expressed in Kröger-Vink notation. Certain types of minor microscopic- to macroscopic-sized precipitation or exsolution phases, including some that are nanosized, that are observed in synthetic almandine (e.g., magnetite), as well as in more compositionally complex natural crystals (e.g., magnetite, rutile, ilmenite), may result from defect reactions. An explanation for their origin through minor amounts of defects in garnet has certain advantages over other models that have been put forth in the literature that assume strict garnet stoichiometry for their formation and/or open-system atomic transport over relatively long length scales. Physical properties, including magnetic, electrical conductivity and diffusion behavior, as well as the color, of almandine are also analyzed in terms of various possible model defects. It is difficult, if not impossible, to synthesize stoichiometric end-member almandine, Fe3Al2Si3O12, in the laboratory, as small amounts of extrinsic OH- and/or Fe3+ defects, for example

  9. Effect of Defects Distribution on Fatigue Life of Wind Turbine Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    by a Poisson process / field where the defects form clusters that consist of a parent defect and related defects around the parent defect. The fatigue life is dependent on the number, type, location and size of the defects in the component and is therefore quite uncertain and needs to be described...

  10. Proceedings of defect engineering in semiconductor growth, processing and device technology

    International Nuclear Information System (INIS)

    Ashok, S.; Chevallier, J.; Sumino, K.; Weber, E.

    1992-01-01

    This volume results from a symposium that was part of the 1992 Spring Meeting of the Materials Research Society, held in San Francisco from April 26 to May 1, 1992. The symposium, entitled Defect Engineering in Semiconductor Growth, Processing and Device Technology, was the first of its kind at MRS and brought together academic and industrial researchers with varying perspectives on defects in semiconductors. Its aim was to go beyond defect control, and focus instead on deliberate and controlled introduction and manipulation of defects in order to engineer some desired properties in semiconductor materials and devices. While the concept of defect engineering has at least a vague perception in techniques such as impurity/defect gettering and the use of the EL2 level in GaAs, more extensive as well as subtle uses of defects are emerging to augment the field. This symposium was intended principally to encourage creative new applications of defects in all aspects of semiconductor technology. The organization of this proceedings volume closely follows the topics around which the sessions were built. The papers on grown-in defects in bulk crystals deal with overviews of intrinsic and impurity-related defects, their influence on electrical, optical and mechanical properties, as well as the use of impurities to arrest certain types of defects during growth and defects to control growth. The issues addressed by the papers on defects in thin films include impurity and stoichiometry control, defects created by plasmas and the use of electron/ion irradiation for doping control

  11. Reducing juvenile delinquency with automated cell phone calls.

    Science.gov (United States)

    Burraston, Bert O; Bahr, Stephen J; Cherrington, David J

    2014-05-01

    Using a sample of 70 juvenile probationers (39 treatment and 31 controls), we evaluated the effectiveness of a rehabilitation program that combined cognitive-behavioral training and automated phone calls. The cognitive-behavioral training contained six 90-min sessions, one per week, and the phone calls occurred twice per day for the year following treatment. Recidivism was measured by whether they were rearrested and the total number of rearrests during the 1st year. To test the impact of the phone calls, those who received phone calls were divided into high and low groups depending on whether they answered more or less than half of their phone calls. Those who completed the class and answered at least half of their phone calls were less likely to have been arrested and had fewer total arrests.

  12. Direct Observation of Radiation Defects: Experiment and Interpretation

    International Nuclear Information System (INIS)

    Dudarev, S.L.

    2012-01-01

    Electron microscopy is arguably the only available experimental method suitable for the direct visualization of nano-scale defect structures formed under irradiation. Images of dislocation loops and point-defect clusters in crystals are usually produced using diffraction contrast methods. For relatively large defects, a combination of dynamical imaging and image contrast simulations is required for determining the nature of visible radiation defects. At the same time, density functional theory (DFT) models developed over the last decade have provided unique information about the structure of nano-scale defects produced by irradiation, including the defects that are so small that they cannot be observed in an electron microscope, and about the pathways of migration and interaction between radiation defects. DFT models, involving no experimental input parameters and being as quantitatively accurate and informative as the most advanced experimental techniques for the direct observation of defects, have created a new paradigm for the scientific investigation of radiation damage phenomena. In particular, DFT models offer new insight into the origin of temperature-dependent response of materials to irradiation, a problem of pivotal significance for applications. By combining information derived from the first-principles models for radiation defects with information derived from small-scale experimental observations it may be possible to acquire quantitative knowledge about how materials respond to irradiation and, using this knowledge, develop materials suitable for advanced applications in fission and fusion. It now appears possible to pose the question about the development of integrated fusion power plant models, combining neutron transport calculations and microscopic models for microstructural evolution of materials, for example models for ab initio prediction of helium embrittlement. Such models, based on scientific principles and quantitative data, and developed

  13. Contribution to the study of defect quenching in gold

    International Nuclear Information System (INIS)

    Hillairet, J.; Delaplace, J.; Mairy, C.; Adda, Y.

    1964-01-01

    We have studied by resistivity measurements at low temperatures the influence of quenching conditions on the behaviour of defects in gold. We have quenched from a high temperature and in various liquids gold wires of 0.3 and 0.5 mm diameter having a purity of 99.999 per cent. For cooling rates of 25,000 deg C/second and above all the defects in equilibrium at high temperature are retained by quenching. The annealing of the defects thus obtained occurs in two stages, the first below 150 deg C and the second between 450 and 650 deg C. The mobility energy of the defects which are annealed during the first stage is 0.70 ± 0.06 eV, The annealing kinetics depend on the initial concentration of the defects and of the diameter of the sample. The second stage corresponds to disappearance of the stacking fault tetrahedra which are formed from defect packets during annealing. The formation energy of the defects measured on the 0. 5 mm samples is 0.94 eV. The values obtained with 0,3 mm diameter samples, much lower than 0.94 eV, can be explained by assuming that packets of defects occur at the end of the annealing of the samples. Electron microscope observations have been carried out on strips of annealed gold. (authors) [fr

  14. Effectiveness of the Call in Beach Volleyball Attacking Play

    Directory of Open Access Journals (Sweden)

    Künzell Stefan

    2014-12-01

    Full Text Available In beach volleyball the setter has the opportunity to give her or his hitter a “call”. The call intends that the setter suggests to her or his partner where to place the attack in the opponent’s court. The effectiveness of a call is still unknown. We investigated the women’s and men’s Swiss National Beach Volleyball Championships in 2011 and analyzed 2185 attacks. We found large differences between female and male players. While men called in only 38.4% of attacks, women used calls in 85.5% of attacks. If the male players followed a given call, 63% of the attacks were successful. The success rate of attacks without any call was 55.8% and 47.6% when the call was ignored. These differences were not significant (χ2(2 = 4.55, p = 0.103. In women’s beach volleyball, the rate of successful attacks was 61.5% when a call was followed, 35% for attacks without a call, and 42.6% when a call was ignored. The differences were highly significant (χ2(2 = 23.42, p < 0.0005. Taking into account the findings of the present study, we suggested that the call was effective in women’s beach volleyball, while its effect in men’s game was unclear. Considering the quality of calls we indicate that there is a significant potential to increase the effectiveness of a call.

  15. Call for volunteers

    CERN Document Server

    2008-01-01

    CERN is calling for volunteers from all members of the Laboratory for organizing the two exceptional Open days.CERN is calling for volunteers from all members of the Laboratory’s personnel to help with the organisation of these two exceptional Open Days, for the visits of CERN personnel and their families on the Saturday and above all for the major public Open Day on the Sunday. As for the 50th anniversary in 2004, the success of the Open Days will depend on a large number of volunteers. All those working for CERN as well as retired members of the personnel can contribute to making this event a success. Many guides will be needed at the LHC points, for the activities at the surface and to man the reception and information points. The aim of these major Open Days is to give the local populations the opportunity to discover the fruits of almost 20 years of work carried out at CERN. We are hoping for some 2000 volunteers for the two Open Days, on the Saturday from 9 a.m. to ...

  16. Defects and permutation branes in the Liouville field theory

    DEFF Research Database (Denmark)

    Sarkissian, Gor

    2009-01-01

    The defects and permutation branes for the Liouville field theory are considered. By exploiting cluster condition, equations satisfied by permutation branes and defects reflection amplitudes are obtained. It is shown that two types of solutions exist, discrete and continuous families.......The defects and permutation branes for the Liouville field theory are considered. By exploiting cluster condition, equations satisfied by permutation branes and defects reflection amplitudes are obtained. It is shown that two types of solutions exist, discrete and continuous families....

  17. Indicators for Building Process without Final Defects -

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten; Rasmussen, Grane Mikael Gregaard; Thuesen, Christian Langhoff

    2011-01-01

    This article introduces the preliminary data analysis, as well as the underlying theories and methods for identifying the indicators for building process without final defects. Since 2004, the Benchmark Centre for the Danish Construction Sector (BEC) has collected information about legal defects...

  18. Birth defects in children with newborn encephalopathy

    NARCIS (Netherlands)

    Felix, JF; Badawi, N; Kurinczuk, JJ; Bower, C; Keogh, JM; Pemberton, PJ

    2000-01-01

    This study was designed to investigate birth defects found in association with newborn encephalopathy. All possible birth defects were ascertained in a population-based study of 276 term infants with moderate or severe encephalopathy and 564 unmatched term control infants. A strong association

  19. Modeling defect production in high energy collision cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Singh, B.N.

    1993-01-01

    A multi-model approach roach (MMA) to simulating defect production processes at the atomic scale is described that incorporates molecular dynamics (MD), binary collision approximation (BCA) calculations and stochastic annealing simulations. The central hypothesis of the MMA is that the simple, fast computer codes capable of simulating large numbers of high energy cascades (e.g., BCA codes) can be made to yield the correct defect configurations when their parameters are calibrated using the results of the more physically realistic MD simulations. The calibration procedure is investigated using results of MD simulations of 25 keV cascades in copper. The configurations of point defects are extracted from the MD cascade simulations at the end of the collisional phase, similar to the information obtained with a binary collision model. The MD collisional phase defect configurations are used as input to the ALSOME annealing simulation code, and values of the ALSOME quenching parameters are determined that yield the best fit to the post-quenching defect configurations of the MD simulations

  20. Oxygen defects in Fe-substituted Tl-system superconductors

    Institute of Scientific and Technical Information of China (English)

    李阳; 曹国辉; 王耘波; 马庆珠; 熊小涛; 陈宁; 马如璋; 郭应焕; 许祝安; 王劲松; 张小俊; 焦正宽; 彭获田; 周思海

    1996-01-01

    For Fe-doped T1-1223 phase,the excess oxygen defects induced by Fe dopants are studied by means of Hall coefficient,thermogravimetric measurements,Mossbauer spectroscopy,and the model calculation of the effective bond valence.The extra oxygen defects have effects on carrier density and microstructure of the superconductors.In the light doping level of Fe (x=0-0.05),the superconducting transition and carrier density have significant corresponding relation--the zero resistance temperature Tco and carrier densities decrease linearly with Fe dopants increasing.The thermogravimetric measurements show that the Fe3+ ions’ substituting for Cu2+ ions can bring the extra oxygen into the lattice to form extra oxygen defects.The calculation of the effective bond valence shows that the decrease of carrier density originates the strongly localized binding of the extra oxygen defects.The distortion of Cu-O layer induced by the extra oxygen defects decreases the superconductive transition temperature.The microstructure

  1. A criterion and mechanism for power ramp defects

    International Nuclear Information System (INIS)

    Garlick, A.; Gravenor, J.G.

    1978-02-01

    The problem of power ramp defects in water reactor fuel pins is discussed in relation to results recently obtained from ramp experiments in the Steam Generating Heavy Water Reactor. Cladding cracks in the defected fuel pins were similar, both macro- and micro structurally, to those in unirradiated Zircaloy exposed to iodine stress-corrosion cracking (scc) conditions. Furthermore, when the measured stress levels for scc in short-term tests were taken as a criterion for ramp defects, UK fuel modelling codes were found to give a useful indication of defect probability under reactor service conditions. The likelihood of sticking between fuel and cladding is discussed and evidence presented which suggests that even at power a degree of adhesion may be expected in some fuel pins. The ramp defect mechanism is discussed in terms of fission product scc, initiation being by intergranular penetration and propagation by cleavage when suitably orientated grains are exposed to large dilatational stresses ahead of the main crack. (author)

  2. Multi-frequency Defect Selective Imaging via Nonlinear Ultrasound

    Science.gov (United States)

    Solodov, Igor; Busse, Gerd

    The concept of defect-selective ultrasonic nonlinear imaging is based on visualization of strongly nonlinear inclusions in the form of localized cracked defects. For intense excitation, the ultrasonic response of defects is affected by mechanical constraint between their fragments that makes their vibrations extremely nonlinear. The cracked flaws, therefore, efficiently generate multiple new frequencies, which can be used as a nonlinear "tag" to detect and image them. In this paper, the methodologies of nonlinear scanning laser vibrometry (NSLV) and nonlinear air-coupled emission (NACE) are applied for nonlinear imaging of various defects in hi-tech and constructional materials. A broad database obtained demonstrates evident advantages of the nonlinear approach over its linear counterpart. The higher-order nonlinear frequencies provide increase in signal-to-noise ratio and enhance the contrast of imaging. Unlike conventional ultrasonic instruments, the nonlinear approach yields abundant multi-frequency information on defect location. The application of image recognition and processing algorithms is described and shown to improve reliability and quality of ultrasonic imaging.

  3. Defective TFH Cell Function and Increased TFR Cells Contribute to Defective Antibody Production in Aging.

    Science.gov (United States)

    Sage, Peter T; Tan, Catherine L; Freeman, Gordon J; Haigis, Marcia; Sharpe, Arlene H

    2015-07-14

    Defective antibody production in aging is broadly attributed to immunosenescence. However, the precise immunological mechanisms remain unclear. Here, we demonstrate an increase in the ratio of inhibitory T follicular regulatory (TFR) cells to stimulatory T follicular helper (TFH) cells in aged mice. Aged TFH and TFR cells are phenotypically distinct from those in young mice, exhibiting increased programmed cell death protein-1 expression but decreased ICOS expression. Aged TFH cells exhibit defective antigen-specific responses, and programmed cell death protein-ligand 1 blockade can partially rescue TFH cell function. In contrast, young and aged TFR cells have similar suppressive capacity on a per-cell basis in vitro and in vivo. Together, these studies reveal mechanisms contributing to defective humoral immunity in aging: an increase in suppressive TFR cells combined with impaired function of aged TFH cells results in reduced T-cell-dependent antibody responses in aged mice. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow

    KAUST Repository

    Cheng, X.; Xu, X.; Rice, S. A.; Dinner, A. R.; Cohen, I.

    2011-01-01

    under shear, there are conflicting predictions about whether particles link up into string-like structures along the shear flow direction. Here, using confocal microscopy, we measure the shear-induced suspension structure. Surprisingly, rather than flow

  5. Perpetual Cancellable American Call Option

    OpenAIRE

    Emmerling, Thomas J.

    2010-01-01

    This paper examines the valuation of a generalized American-style option known as a Game-style call option in an infinite time horizon setting. The specifications of this contract allow the writer to terminate the call option at any point in time for a fixed penalty amount paid directly to the holder. Valuation of a perpetual Game-style put option was addressed by Kyprianou (2004) in a Black-Scholes setting on a non-dividend paying asset. Here, we undertake a similar analysis for the perpetua...

  6. Identification of equilibrium and irradiation-induced defects in nuclear ceramics: electronic structure calculations of defect properties and positron annihilation characteristics

    International Nuclear Information System (INIS)

    Wiktor, Julia

    2015-01-01

    During in-pile irradiation the fission of actinide nuclei causes the creation of large amounts of defects, which affect the physical and chemical properties of materials inside the reactor, in particular the fuel and structural materials. Positron annihilation spectroscopy (PAS) can be used to characterize irradiation induced defects, empty or containing fission products. This non-destructive experimental technique involves detecting the radiation generated during electron-positron annihilation in a sample and deducing the properties of the material studied. As positrons get trapped in open volume defects in solids, by measuring their lifetime and momentum distributions of the annihilation radiation, one can obtain information on the open and the chemical environments of the defects. In this work electronic structure calculations of positron annihilation characteristics were performed using two-component density functional theory (TCDFT). To calculate the momentum distributions of the annihilation radiation, we implemented the necessary methods in the open-source ABINIT program. The theoretical results have been used to contribute to the identification of the vacancy defects in two nuclear ceramics, silicon carbide (SiC) and uranium dioxide (UO 2 ). (author) [fr

  7. Leveraging management information in improving call centre productivity

    Directory of Open Access Journals (Sweden)

    Manthisana Mosese

    2016-04-01

    Objectives: This research explored the use of management information and its impact on two fundamental functions namely, improving productivity without compromising the quality of service, in the call centre of a well-known South African fashion retailer, Edcon. Following the implementation of the call centre technology project the research set out to determine how Edcon can transform their call centre to improve productivity and customer service through effective utilisation of their management information. Method: Internal documents and reports were analysed to provide the basis of evaluation between the measures of productivity prior to and post the implementation of a technology project at Edcon’s call centre. Semi-structured in-depth and group interviews were conducted to establish the importance and use of management information in improving productivity and customer service. Results: The results indicated that the availability of management information has indeed contributed to improved efficiency at the Edcon call centre. Although literature claims that there is a correlation between a call centre technology upgrade and improvement in performance, evident in the return on investment being realised within a year or two of implementation, it fell beyond the scope of this study to investigate the return on investment for Edcon’s call centre. Conclusion: Although Edcon has begun realising benefits in improved productivity in their call centre from their available management information, information will continue to play a crucial role in supporting management with informed decisions that will improve the call centre operations. [pdf to follow

  8. Maxillectomy defects: a suggested classification scheme.

    Science.gov (United States)

    Akinmoladun, V I; Dosumu, O O; Olusanya, A A; Ikusika, O F

    2013-06-01

    The term "maxillectomy" has been used to describe a variety of surgical procedures for a spectrum of diseases involving a diverse anatomical site. Hence, classifications of maxillectomy defects have often made communication difficult. This article highlights this problem, emphasises the need for a uniform system of classification and suggests a classification system which is simple and comprehensive. Articles related to this subject, especially those with specified classifications of maxillary surgical defects were sourced from the internet through Google, Scopus and PubMed using the search terms maxillectomy defects classification. A manual search through available literature was also done. The review of the materials revealed many classifications and modifications of classifications from the descriptive, reconstructive and prosthodontic perspectives. No globally acceptable classification exists among practitioners involved in the management of diseases in the mid-facial region. There were over 14 classifications of maxillary defects found in the English literature. Attempts made to address the inadequacies of previous classifications have tended to result in cumbersome and relatively complex classifications. A single classification that is based on both surgical and prosthetic considerations is most desirable and is hereby proposed.

  9. Graphene defects induced by ion beam

    Science.gov (United States)

    Gawlik, Grzegorz; Ciepielewski, Paweł; Baranowski, Jacek; Jagielski, Jacek

    2017-10-01

    The CVD graphene deposited on the glass substrate was bombarded by molecular carbon ions C3+ C6+ hydrocarbon ions C3H4+ and atomic ions He+, C+, N+, Ar+, Kr+ Yb+. Size and density of ion induced defects were estimated from evolution of relative intensities of Raman lines D (∼1350 1/cm), G (∼1600 1/cm), and D‧ (∼1620 1/cm) with ion fluence. The efficiency of defect generation by atomic ions depend on ion mass and energy similarly as vacancy generation directly by ion predicted by SRIM simulations. However, efficiency of defect generation in graphene by molecular carbon ions is essentially higher than summarized efficiency of similar group of separate atomic carbon ions of the same energy that each carbon ion in a cluster. The evolution of the D/D‧ ratio of Raman lines intensities with ion fluence was observed. This effect may indicate evolution of defect nature from sp3-like at low fluence to a vacancy-like at high fluence. Observed ion graphene interactions suggest that the molecular ion interacts with graphene as single integrated object and should not be considered as a group of atomic ions with partial energy.

  10. Investigation of a weld defect, reactor vessel head Ringhals 2

    International Nuclear Information System (INIS)

    Embring, G.; Pers-Anderson, E.B.

    1994-01-01

    During the summer-outage 1993 Ringhals unit 2 vessel head was inspected at weld-area of Alloy 182. One major defect was found Two plus two ''boat-samples'' were taken out from the zone between the weld and the stainless cladding. All samples were sent to Studsviks laboratories for detailed investigations. The metallographic and fractographic investigations revealed that the major weld-defect had been there from manufacturing. The defect was located between the Alloy 182-buttering and the pressure vessel steel SA 533 grB cl 1. No indications of PWSCC or IDSCC were found. An inspection programme was defined. Different types of reference blocks were provided by Ringhals in cooperation with ABB TRC. Reference reflectors of type flat bottom hole (FBH) and eroded notches (EDM), with different sizes and separation were manufactured. One weld sample with manufacturing defects -lack of fusion and slag was inclusions- was present. ABB TRC performed UT inspection in the gap between the penetration and the thermal sleeve. Inspection results like defect identification, defect separation and defect sizing accuracy were compared with result from the destructive inspection. No relevant additional defects were found. An analysing and repair program was performed. A special designed disc sealed off the defect area. (authors). 5 figs., 3 refs

  11. Stochastic annealing simulations of defect interactions among subcascades

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States); Singh, B.N.

    1997-04-01

    The effects of the subcascade structure of high energy cascades on the temperature dependencies of annihilation, clustering and free defect production are investigated. The subcascade structure is simulated by closely spaced groups of lower energy MD cascades. The simulation results illustrate the strong influence of the defect configuration existing in the primary damage state on subsequent intracascade evolution. Other significant factors affecting the evolution of the defect distribution are the large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. Annealing simulations are also performed on high-energy, subcascade-producing cascades generated with the binary collision approximation and calibrated to MD results.

  12. An Inherited Platelet Function Defect in Basset Hounds

    Science.gov (United States)

    Johnstone, I. B.; Lotz, F.

    1979-01-01

    An inherited platelet function defect occurring in a family of basset hounds has been described. The trait is transmitted as an autosomal characteristic and appears to be expressed clinically only in the homozygous state. The characteristics of this platelet defect include: 1) marked bleeding tendencies and prolonged skin bleeding times in either male or female dogs. 2) normal blood coagulation mechanism. 3) adequate numbers of circulating platelets which appear morphologically normal by light microscopy. 4) normal whole blood clot retraction. 5) deficient in vivo platelet consumption and in vitro platelet retention in glass bead columns. 6) defective ADP-induced platelet aggregation in homozygotes, apparently normal ADP response in heterozygotes, and defective collagen-induced platelet aggregation in both. PMID:509382

  13. Light-induced defect creation in hydrogenated polymorphous silicon

    International Nuclear Information System (INIS)

    Morigaki, K.; Takeda, K.; Hikita, H.; Roca i Cabarrocas, P.

    2005-01-01

    Light-induced defect creation in hydrogenated polymorphous silicon (pm-Si:H) is investigated from electron spin resonance measurements and is compared with that in hydrogenated amorphous silicon (a-Si:H). Light-induced defect creation occurs at room temperature similarly for both types of films prepared at 250 deg. C. Thermal annealing of light-induced defects is also investigated as a function of temperature. Different behaviours of annealing characteristics for pm-Si:H from those for a-Si:H are observed and discussed. In particular, we observed a decrease of the light-induced defect creation efficiency with repeated light-soaking-annealing cycles and discuss it with respect to the hydrogen bonding in pm-Si:H films

  14. Left-right correlation in coupled F-center defects.

    Science.gov (United States)

    Janesko, Benjamin G

    2016-08-07

    This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of "strong" left-right correlation, symptoms similar to those seen in stretched H2. Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centers may fail for adjacent F-centers.

  15. Left-right correlation in coupled F-center defects

    International Nuclear Information System (INIS)

    Janesko, Benjamin G.

    2016-01-01

    This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of “strong” left-right correlation, symptoms similar to those seen in stretched H 2 . Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centers may fail for adjacent F-centers.

  16. Electron transport in ethanol & methanol absorbed defected graphene

    Science.gov (United States)

    Dandeliya, Sushmita; Srivastava, Anurag

    2018-05-01

    In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.

  17. Tuning thermal conduction via extended defects in graphene

    Science.gov (United States)

    Huang, Huaqing; Xu, Yong; Zou, Xiaolong; Wu, Jian; Duan, Wenhui

    2013-05-01

    Designing materials for desired thermal conduction can be achieved via extended defects. We theoretically demonstrate the concept by investigating thermal transport in graphene nanoribbons (GNRs) with the extended line defects observed by recent experiments. Our nonequilibrium Green's function study excluding phonon-phonon interactions finds that thermal conductance can be tuned over wide ranges (more than 50% at room temperature), by controlling the orientation and the bond configuration of the embedded extended defect. Further transmission analysis reveals that the thermal-conduction tuning is attributed to two fundamentally different mechanisms, via modifying the phonon dispersion and/or tailoring the strength of defect scattering. The finding, applicable to other materials, provides useful guidance for designing materials with desired thermal conduction.

  18. Smart Grid Technology and Consumer Call Center Readiness

    OpenAIRE

    Schamber, Kelsey L.

    2010-01-01

    The following reasearch project deals with utility call center readiness to address customer concerns and questions about the Smart Grid and smart meter technology. Since consumer engagement is important for the benefits of the Smart Grid to be realized, the readiness and ability of utilities to answer consumer questions is an important issue. Assessing the readiness of utility call centers to address pertinant customer concerns was accomplished by calling utility call centers with Smart Grid...

  19. Impacts of reactor. Induced cladding defects on spent fuel storage

    International Nuclear Information System (INIS)

    Johnson, A.B.

    1978-01-01

    Defects arise in the fuel cladding on a small fraction of fuel rods during irradiation in water-cooled power reactors. Defects from mechanical damage in fuel handling and shipping have been almost negligible. No commercial water reactor fuel has yet been observed to develop defects while stored in spent fuel pools. In some pools, defective fuel is placed in closed canisters as it is removed from the reactor. However, hundreds of defective fuel bundles are stored in numerous pools on the same basis as intact fuel. Radioactive species carried into the pool from the reactor coolant must be dealt with by the pool purification system. However, additional radiation releases from the defective fuel during storage appear tu be minimal, with the possible exception of fuel discharged while the reactor is operating (CANDU fuel). Over approximately two decades, defective commercial fuel has been handled, stored, shipped and reprocessed. (author)

  20. Curvature-Controlled Topological Defects

    Directory of Open Access Journals (Sweden)

    Luka Mesarec

    2017-05-01

    Full Text Available Effectively, two-dimensional (2D closed films exhibiting in-plane orientational ordering (ordered shells might be instrumental for the realization of scaled crystals. In them, ordered shells are expected to play the role of atoms. Furthermore, topological defects (TDs within them would determine their valence. Namely, bonding among shells within an isotropic liquid matrix could be established via appropriate nano-binders (i.e., linkers which tend to be attached to the cores of TDs exploiting the defect core replacement mechanism. Consequently, by varying configurations of TDs one could nucleate growth of scaled crystals displaying different symmetries. For this purpose, it is of interest to develop a simple and robust mechanism via which one could control the position and number of TDs in such atoms. In this paper, we use a minimal mesoscopic model, where variational parameters are the 2D curvature tensor and the 2D orientational tensor order parameter. We demonstrate numerically the efficiency of the effective topological defect cancellation mechanism to predict positional assembling of TDs in ordered films characterized by spatially nonhomogeneous Gaussian curvature. Furthermore, we show how one could efficiently switch among qualitatively different structures by using a relative volume v of ordered shells, which represents a relatively simple naturally accessible control parameter.

  1. Mobile telephones: a comparison of radiated power between 3G VoIP calls and 3G VoCS calls.

    Science.gov (United States)

    Jovanovic, Dragan; Bragard, Guillaume; Picard, Dominique; Chauvin, Sébastien

    2015-01-01

    The purpose of this study is to assess the mean RF power radiated by mobile telephones during voice calls in 3G VoIP (Voice over Internet Protocol) using an application well known to mobile Internet users, and to compare it with the mean power radiated during voice calls in 3G VoCS (Voice over Circuit Switch) on a traditional network. Knowing that the specific absorption rate (SAR) is proportional to the mean radiated power, the user's exposure could be clearly identified at the same time. Three 3G (High Speed Packet Access) smartphones from three different manufacturers, all dual-band for GSM (900 MHz, 1800 MHz) and dual-band for UMTS (900 MHz, 1950 MHz), were used between 28 July and 04 August 2011 in Paris (France) to make 220 two-minute calls on a mobile telephone network with national coverage. The places where the calls were made were selected in such a way as to describe the whole range of usage situations of the mobile telephone. The measuring equipment, called "SYRPOM", recorded the radiation power levels and the frequency bands used during the calls with a sampling rate of 20,000 per second. In the framework of this study, the mean normalised power radiated by a telephone in 3G VoIP calls was evaluated at 0.75% maximum power of the smartphone, compared with 0.22% in 3G VoCS calls. The very low average power levels associated with use of 3G devices with VoIP or VoCS support the view that RF exposure resulting from their use is far from exceeding the basic restrictions of current exposure limits in terms of SAR.

  2. Full transmission modes and steady states in defect gratings,

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; Altena, G; Geuzebroek, D.H.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  3. Buildability as a tool for optimisation of building defects

    DEFF Research Database (Denmark)

    Nielsen, Jørgen; Hansen, Ernst Jan de Place; Aagaard, Niels-Jørgen

    2009-01-01

    Defects in buildings harm the reputation of the construction industry and the amount of defects is believed to represent a loss in economy. The purpose is to study whether the buildability concept could serve as an efficient tool for reduction of defects. The project includes a literature study a...

  4. Study of EUV induced defects on few-layer graphene

    NARCIS (Netherlands)

    Gao, An; Rizo, P.J.; Zoethout, E.; Scaccabarozzi, L.; Lee, Christopher James; Banine, V.; Bijkerk, Frederik

    2012-01-01

    Defects in graphene greatly affect its properties1-3. Radiation induced-defects may reduce the long-term survivability of graphene-based nano-devices. Here, we expose few-layer graphene to extreme ultraviolet (EUV, 13.5nm) radiation and show there is a power-dependent increase in defect density. We

  5. Hardening in AlN induced by point defects

    International Nuclear Information System (INIS)

    Suematsu, H.; Mitchell, T.E.; Iseki, T.; Yano, T.

    1991-01-01

    Pressureless-sintered AIN was neutron irradiated and the hardness change was examined by Vickers indentation. The hardness was increased by irradiation. When the samples were annealed at high temperature, the hardness gradually decreased. Length was also found to increase and to change in the same way as the hardness. A considerable density of dislocation loops still remained, even after the hardness completely recovered to the value of the unirradiated sample. Thus, it is concluded that the hardening in AIN is caused by isolated point defects and small clusters of point defects, rather than by dislocation loops. Hardness was found to increase in proportion to the length change. If the length change is assumed to be proportional to the point defect density, then the curve could be fitted qualitatively to that predicted by models of solution hardening in metals. Furthermore, the curves for three samples irradiated at different temperatures and fluences are identical. There should be different kinds of defect clusters in samples irradiated at different conditions, e.g., the fraction of single point defects is the highest in the sample irradiated at the lowest temperature. Thus, hardening is insensitive to the kind of defects remaining in the sample and is influenced only by those which contribute to length change

  6. Crystal defect studies using x-ray diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  7. Crystal defect studies using x-ray diffuse scattering

    International Nuclear Information System (INIS)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above

  8. Cracklike defects detection and sizing from co-occurrence matrices

    International Nuclear Information System (INIS)

    Moysan, J.; Benoist, P.; Magnin, I.

    1991-01-01

    The inspection of austenitic welds used in nuclear field with ultrasounds poses problems in interpretation: strong grain noise makes difficult the detection of the crack top and the crack bottom. Since corresponding echoes enable the defect sizing, defect sizing also becomes difficult. The formation of 2D images (BSCAN), and their processing enable an increase in the effectiveness of testing. We present a segmentation method, based on co-occurrence matrix, which separates defects zones and noise zones. Examples of segmentation improvement applied to artificial defects are presented

  9. Defect detection module

    International Nuclear Information System (INIS)

    Ernwein, R.; Westermann, G.

    1986-01-01

    The ''defect detector'' module is aimed at exceptional event or state recording. Foreseen for voltage presence monitoring on high supply voltage module of drift chambers, its characteristics can also show up the vanishing of supply voltage and take in account transitory fast signals [fr

  10. Low-defect reflective mask blanks for extreme ultraviolet lithography

    International Nuclear Information System (INIS)

    Burkhart, S C; Cerjarn, C; Kearney, P; Mirkarimi, P; Ray-Chaudhuri, A; Walton, C.

    1999-01-01

    Extreme Ultraviolet Lithgraphy (EUVL) is an emerging technology for fabrication of sub-100 nm feature sizes on silicon, following the SIA road map well into the 21st century. The specific EUVL system described is a scanned, projection lithography system with a 4:1 reduction, using a laser plasma EUV source. The mask and all of the system optics are reflective, multilayer mirrors which function in the extreme ultraviolet at 13.4 nm wavelength. Since the masks are imaged to the wafer exposure plane, mask defects greater than 80% of the exposure plane CD (for 4:1 reduction) will in many cases render the mask useless, whereas intervening optics can have defects which are not a printing problem. For the 100 nm node, we must reduce defects to less than 0.01/cm ampersand sup2; at sign 80nm or larger to obtain acceptable mask production yields. We have succeeded in reducing the defects to less than 0.1/cm ampersand sup2; for defects larger than 130 nm detected by visible light inspection tools, however our program goal is to achieve 0.01/cm ampersand sup2; in the near future. More importantly though, we plan to have a detailed understanding of defect origination and the effect on multilayer growth in order to mitigate defects below the 10 -2 /cm ampersand sup2; level on the next generation of mask blank deposition systems. In this paper we will discuss issues and results from the ion-beam multilayer deposition tool, details of the defect detection and characterization facility, and progress on defect printability modeling

  11. Selected topics in high temperature chemistry defect chemistry of solids

    CERN Document Server

    Johannesen, Ø

    2013-01-01

    The properties of materials at high temperature play a vital role in their processing and practical use. The real properties of materials at elevated temperatures are very often governed by defects in their structure. Lattice defects may consist of point defects like vacancies, interstitial atoms or substituted atoms. These classes are discussed in general and specifically for oxides, nitrides, carbides and sulfides. Defect aggregates, shear structures and adaptive structures are also described. Special attention is paid to hydrogen defects which seem to play an important role in several mater

  12. Constitutional and thermal point defects in B2 NiAl

    DEFF Research Database (Denmark)

    Korzhavyi, P. A.; Ruban, Andrei; Lozovoi, A. Y.

    2000-01-01

    The formation energies of point defects and the interaction energies of various defect pairs in NiAl are calculated from first principles within an order N, locally self-consistent Green's-function method in conjunction with multipole electrostatic corrections to the atomic sphere approximation...... distance on their sublattice. The dominant thermal defects in Ni-rich and stoichiometric NiAl are calculated to be triple defects. In Al-rich alloys another type of thermal defect dominates, where two Ni vacancies are replaced by one antisite Al atom. As a result, the vacancy concentration decreases...

  13. Effect of interaction between irradiation-induced defects and intrinsic defects in the pinning improvement of neutron irradiated YBaCuO sample

    International Nuclear Information System (INIS)

    Topal, Ugur; Sozeri, Huseyin; Yavuz, Hasbi

    2004-01-01

    Interaction between the intrinsic (native) defects and the irradiation-induced defects created by neutron irradiation was examined for the YBCO sample. For this purpose, non-superconducting Y-211 phase was included to the Y-123 samples at different contents as a source of large pinning center. The critical current density enhancement with the irradiation for these samples were analysed and then the role of defects on pinning improvement was discussed

  14. Effect of interaction between irradiation-induced defects and intrinsic defects in the pinning improvement of neutron irradiated YBaCuO sample

    Energy Technology Data Exchange (ETDEWEB)

    Topal, Ugur; Sozeri, Huseyin; Yavuz, Hasbi

    2004-08-01

    Interaction between the intrinsic (native) defects and the irradiation-induced defects created by neutron irradiation was examined for the YBCO sample. For this purpose, non-superconducting Y-211 phase was included to the Y-123 samples at different contents as a source of large pinning center. The critical current density enhancement with the irradiation for these samples were analysed and then the role of defects on pinning improvement was discussed.

  15. Benign gastric filling defect

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K K; Lee, Y H; Cho, O K; Park, C Y [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  16. Benign gastric filling defect

    International Nuclear Information System (INIS)

    Oh, K. K.; Lee, Y. H.; Cho, O. K.; Park, C. Y.

    1979-01-01

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  17. Benign gastric filling defect

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K. K.; Lee, Y. H.; Cho, O. K.; Park, C. Y. [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  18. Defect characterization with positron annihilation

    International Nuclear Information System (INIS)

    Granatelli, L.; Lynn, K.G.

    1980-01-01

    Positron annihilation in metal crystals is reviewed. A brief introduction to the positron annihilation technique is presented first. Then the ability of the positron technique to perform microstructural characterization of four types of lattice defects (vacancies, voids, dislocations, grain boundaries) is discussed. It is frequently not possible to obtain samples that contain only one type of defect in nonnegligible concentrations. Such situations exist for some alloys and for fatigued metal samples. Finally, the current limitations and some future prospects of the technique are presented. 79 references, 14 figures, 1 table

  19. Thermal conductivity of layered borides: The effect of building defects on the thermal conductivity of TmAlB4 and the anisotropic thermal conductivity of AlB2

    Directory of Open Access Journals (Sweden)

    X. J. Wang

    2014-04-01

    Full Text Available Rare earth metal borides have attracted great interest due to their unusual properties, such as superconductivity and f-electron magnetism. A recent discovery attributes the tunability of magnetism in rare earth aluminoborides to the effect of so-called “building defects.” In this paper, we report data for the effect of building defects on the thermal conductivities of α-TmAlB4 single crystals. Building defects reduce the thermal conductivity of α-TmAlB4 by ≈30%. At room temperature, the thermal conductivity of AlB2 is nearly a factor of 5 higher than that of α-TmAlB4. AlB2 single crystals are thermally anisotropic with the c-axis thermal conductivity nearly twice the thermal conductivity of the a-b plane. Temperature dependence of the thermal conductivity near and above room temperature reveals that both electrons and phonons contribute substantially to thermal transport in AlB2 with electrons being the dominant heat carriers.

  20. The Wireless Nursing Call System

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2006-01-01

    This paper discusses a research project in which social scientists were involved both as analysts and supporters during a pilot with a new wireless nursing call system. The case thus exemplifies an attempt to participate in developing dependable health care systems and offers insight into the cha......This paper discusses a research project in which social scientists were involved both as analysts and supporters during a pilot with a new wireless nursing call system. The case thus exemplifies an attempt to participate in developing dependable health care systems and offers insight...

  1. Integrating heterogeneous healthcare call centers.

    Science.gov (United States)

    Peschel, K M; Reed, W C; Salter, K

    1998-01-01

    In a relatively short period, OHS has absorbed multiple call centers supporting different LOBs from various acquisitions, functioning with diverse standards, processes, and technologies. However, customer and employee satisfaction is predicated on OHS's ability to thoroughly integrate these heterogeneous call centers. The integration was initiated and has successfully progressed through a balanced program of focused leadership and a defined strategy which includes site consolidation, sound performance management philosophies, and enabling technology. Benefits have already been achieved with even more substantive ones to occur as the integration continues to evolve.

  2. Classification and printability of EUV mask defects from SEM images

    Science.gov (United States)

    Cho, Wonil; Price, Daniel; Morgan, Paul A.; Rost, Daniel; Satake, Masaki; Tolani, Vikram L.

    2017-10-01

    Classification and Printability of EUV Mask Defects from SEM images EUV lithography is starting to show more promise for patterning some critical layers at 5nm technology node and beyond. However, there still are many key technical obstacles to overcome before bringing EUV Lithography into high volume manufacturing (HVM). One of the greatest obstacles is manufacturing defect-free masks. For pattern defect inspections in the mask-shop, cutting-edge 193nm optical inspection tools have been used so far due to lacking any e-beam mask inspection (EBMI) or EUV actinic pattern inspection (API) tools. The main issue with current 193nm inspection tools is the limited resolution for mask dimensions targeted for EUV patterning. The theoretical resolution limit for 193nm mask inspection tools is about 60nm HP on masks, which means that main feature sizes on EUV masks will be well beyond the practical resolution of 193nm inspection tools. Nevertheless, 193nm inspection tools with various illumination conditions that maximize defect sensitivity and/or main-pattern modulation are being explored for initial EUV defect detection. Due to the generally low signal-to-noise in the 193nm inspection imaging at EUV patterning dimensions, these inspections often result in hundreds and thousands of defects which then need to be accurately reviewed and dispositioned. Manually reviewing each defect is difficult due to poor resolution. In addition, the lack of a reliable aerial dispositioning system makes it very challenging to disposition for printability. In this paper, we present the use of SEM images of EUV masks for higher resolution review and disposition of defects. In this approach, most of the defects detected by the 193nm inspection tools are first imaged on a mask SEM tool. These images together with the corresponding post-OPC design clips are provided to KLA-Tencor's Reticle Decision Center (RDC) platform which provides ADC (Automated Defect Classification) and S2A (SEM

  3. Substitution and defect chemistry of La-Cu-O systems

    International Nuclear Information System (INIS)

    Gai, P.L.; McCarron, E.M.; Kunchur, M.

    1991-01-01

    In this paper substitutional effects of strontium in La-Cu-O system and defects accommodating stoichiometric deviations is investigated. The extended shear defects are analyzed using electron microscopy and the role in superconducting transport properties has been examined by magnetic measurements. The initial results suggest that the defects enhance flux pinning

  4. Nucleation of voids and other irradiation-produced defect aggregates

    International Nuclear Information System (INIS)

    Wiedersich, H.; Katz, J.L.

    1976-01-01

    The nucleation of defect clusters in crystalline solids from radiation-produced defects is different from the usual nucleation processes in one important aspect: the condensing defects, interstitial atoms and vacancies, can mutually annihilate and are thus similar to matter and antimatter. The nucleation process is described as the simultaneous reaction of vacancies and interstitials (and gas atoms if present) with embryos of all sizes. The reaction rates for acquisition of point defects (and gas atoms) are calculated from their respective jump frequencies and concentrations in the supersaturated system. The reaction rates for emission of point defects are derived from the free energies of the defect clusters in the thermodynamic equilibrium system, i.e., the system without excess point defects. This procedure differs from that used in conventional nucleation theory and permits the inclusion of the ''antimatter'' defect into the set of reaction-rate equations in a straightforward manner. The method is applied to steady-state nucleation, during irradiation, of both dislocation loops and voids in the absence and in the presence of immobile and mobile gas. The predictions of the nucleation theory are shown to be in qualitative agreement with experimental observations, e.g., void densities increase with increasing displacement rates; gases such as helium enhance void nucleation; at low displacement rates and at high temperatures the presence of gas is essential to void formation. For quantitative predictions, the theory must be extended to include the termination of nucleation

  5. Defects improved photocatalytic ability of TiO2

    International Nuclear Information System (INIS)

    Li, Lei; Tian, Hong-Wei; Meng, Fan-Ling; Hu, Xiao-Ying; Zheng, Wei-Tao; Sun, Chang Q.

    2014-01-01

    Highlights: • Defect improves the photocatalytic ability by band gap narrowing and carrier life prolonging. • Atomic undercoordination shortens the local bonds, entraps, and polarizes electrons. • Polarization lowers the local workfunction and lengthens carrier life. • Entrapment and polarization narrows the band gap tuning the wavelength of absorption. - Abstract: Defect generation forms an important means modulating the photocatalytic ability of TiO 2 with mechanisms that remain yet unclear. Here we show that a spectral distillation clarifies the impact of defect on modulating the band gap, electroaffinity, and work function of the substance. Firstly, by analyzing XPS measurements, we calibrated the 2p 3/2 level of 451.47 eV for an isolated Ti atom and its shifts by 2.14 and 6.94 eV, respectively, upon Ti and TiO 2 bulk formation. Spectral difference between the defected and the un-defected TiO 2 skin revealed then that the 2p 3/2 level shifts further from 6.94 to 9.67 eV due to the defect-induced quantum entrapment. This entrapment is associated with an elevation of the upper edges of both the 2p 3/2 and the conduction band by polarization. The shortening and strengthening of bonds between undercoordinated atoms densify and entrap the core electrons, which in turn polarize the dangling bond electrons of defect atoms. The entrapment and polarization mediate thus the band gap, the electroaffinity, the work function, and the photocatalytic ability of TiO 2

  6. Point defects in ZnO crystals grown by various techniques

    International Nuclear Information System (INIS)

    Čížek, J; Vlček, M; Hruška, P; Lukáč, F; Melikhova, O; Anwand, W; Selim, F; Hugenschmidt, Ch; Egger, W

    2017-01-01

    In the present work point defects in ZnO crystals were characterized by positron lifetime spectroscopy combined with back-diffusion measurement of slow positrons. Defects in ZnO crystals grown by various techniques were compared. Hydrothermally grown ZnO crystals contain defects characterized by lifetime of ≈181 ps. These defects were attributed to Zn vacancies associated with hydrogen. ZnO crystals prepared by other techniques (Bridgman, pressurized melt growth, and seeded chemical vapour transport) exhibit shorter lifetime of ≈165 ps. Positron back-diffusion studies revealed that hydrothermally grown ZnO crystals contain higher density of defects than the crystals grown by other techniques. The lowest concentration of defects was detected in the crystal grown by seeded chemical vapor transport. (paper)

  7. Skull defect reconstruction based on a new hybrid level set.

    Science.gov (United States)

    Zhang, Ziqun; Zhang, Ran; Song, Zhijian

    2014-01-01

    Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.

  8. Ultrasonic characterization of defective porcelain tiles

    Directory of Open Access Journals (Sweden)

    Eren, E.

    2012-08-01

    Full Text Available The aim of this work is the optimization of ultrasonic methods in the non-destructive testing of sintered porcelain tiles containing defects. For this reason, a silicon nitride ball, carbon black and PMMA (Polymethylmethacrylate were imbedded in porcelain tile granules before pressing to make special defects in tiles. After sintering at 1220ºC, the time of flight of the ultrasonic waves and ultrasonic signal amplitudes through the sintered porcelain tiles were measured by a contact ultrasonic transducer operating on pulse-echo mode. This method can allow for defect detection using the A-scan. The results of the test showed that the amplitude of the received peak for a defective part is smaller than for a part which has no defects. Depending on the size, shape and position of the defect, its peak can be detected. Additionally, an immersion pulse-echo C-scan method was also used to differentiate between defects in porcelain tiles. By using this technique, it is possible to determine the place and shape of defects. To support the results of the ultrasonic investigation, a SEM characterization was also made.

    El fin principal de este trabajo es la optimización de métodos ultrasónicos en la prueba no destructiva de azulejos sinterizados de porcelana que contienen defectos. Por lo tanto, bolas del nitruro de silicio, negros de carbón y PMMA (polimetilmetacrilato fueron encajados en gránulos del azulejo de porcelana antes de presionar para hacer defectos especiales en azulejos. Después de sinterizado en 1220ºC, el tiempo de vuelo de las ondas ultrasónicas fue medido a través del azulejo sinterizado de la porcelana. El tiempo del vuelo de ondas ultrasónicas fue medido por un transductor de contacto ultrasónico operando en modo eco-pulso. Este método puede permitir la detección de defectos usando escaneo-A. Los resultados de la prueba demostraron que la amplitud del pico recibido por partes defectuosas es más pequeño que la parte

  9. Treatment of osteochondral defects of the talus

    NARCIS (Netherlands)

    van Bergen, C. J. A.; de Leeuw, P. A. J.; van Dijk, C. N.

    2008-01-01

    This review article provides a current concepts overview of osteochondral defects of the talus, with special emphasis on treatment options, their indications and future developments. Osteochondral defects of the talar dome are mostly caused by a traumatic event. They may lead to deep ankle pain on

  10. DFM for maskmaking: design-aware flexible mask-defect analysis

    Science.gov (United States)

    Driessen, Frank A. J. M.; Westra, J.; Scheffer, M.; Kawakami, K.; Tsujimoto, E.; Yamaji, M.; Kawashima, T.; Hayashi, N.

    2007-10-01

    We present a novel software system that combines design intent as known by EDA designers with defect inspection results from the maskshop to analyze the severity of defects on photomasks. The software -named Takumi Design- Driven Defect Analyzer (TK-D3A)- analyzes defects by combining actions in the image domain with actions in the design domain and outputs amongst others flexible mask-repair decisions in production formats used by the maskshop. Furthermore, TK-D3A outputs clips of layout (GDS/OASIS) that can be viewed with its graphical user interface for easy review of the defects and associated repair decisions. As inputs the system uses reticle defect-inspection data (text and images) and the respective multi-layer design layouts with the definitions of criticalities. The system does not require confidential design data from IDM, Fabless Design House, or Foundry to be sent to the maskshop and it also has minimal impact on the maskshop's mode of operation. The output of TK-D3A is designed to realize value to the maskshop and its customers in the forms of: 1) improved yield, 2) reduction of delivery times of masks to customers, and 3) enhanced utilization of the maskshop's installed tool base. The system was qualified together with a major IDM on a large set of production reticles in the 90 and beyond-65 nm technology nodes of which results will be presented that show the benefits for maskmaking. The accuracy in detecting defects is extremely high. We show the system's capability to analyze defects well below the pixel resolution of all inspection tools used, as well as the capability to extract multiple types of transmission defects. All of these defects are analyzed design-criticality-aware by TK-D3A, resulting in a large fraction of defects that do not need to be repaired because they are located in non-critical or less-critical parts of the layout, or, more importantly, turn out to be repairable or negligible despite of originally being classified as

  11. Association between patellar cartilage defects and patellofemoral geometry: a matched-pair MRI comparison of patients with and without isolated patellar cartilage defects.

    Science.gov (United States)

    Mehl, Julian; Feucht, Matthias J; Bode, Gerrit; Dovi-Akue, David; Südkamp, Norbert P; Niemeyer, Philipp

    2016-03-01

    To compare the geometry of the patellofemoral joint on magnetic resonance images (MRI) between patients with isolated cartilage defects of the patella and a gender- and age-matched control group of patients without patellar cartilage defects. A total of 43 patients (17 female, 26 male) with arthroscopically verified grade III and IV patellar cartilage defects (defect group) were compared with a matched-pair control group of patients with isolated traumatic rupture of the anterior cruciate ligament without cartilage defects of the patellofemoral joint. Preoperative MRI images were analysed retrospectively with regard to patellar geometry (width, thickness, facet angle), trochlear geometry (dysplasia according to Dejour, sulcus angle, sulcus depth, lateral condyle index, trochlea facet asymmetry, lateral trochlea inclination) and patellofemoral alignment (tibial tuberosity-trochlear groove distance, patella height, lateral patella displacement, lateral patellofemoral angle, patella tilt, congruence angle). In addition to the comparison of group values, the measured values were compared to normal values reported in the literature, and the frequency of patients with pathologic findings was compared between both groups. The defect group demonstrated a significantly higher proximal chondral sulcus angle (p patellofemoral joint. In particular, a flat and shallow trochlea, trochlea dysplasia and patella alta seem to contribute to the development of patellar cartilage defects, which must be taken into consideration when planning to do surgical cartilage repair at the patella. III.

  12. The renewal of hydroelectric concessions in competitive call

    International Nuclear Information System (INIS)

    2013-01-01

    This document discusses various issues associated with the planned competitive call on the French hydraulic power plants. The principles of this competitive call for hydroelectric concessions are first addressed: administrative regime of concessions, competitive call process, criteria of selection of the concession holder, case of 'concession of valleys', potential competitors. It outlines and discusses the difficulties of this competitive call: France is the single country to implement this procedure; it concerns a national asset; it questions the guarantee of a future use of equipment at best for the energy benefits of French consumers; the competitive call is a nice idea indeed but extremely complex. A note discusses the profitability aspects of Plants for Transfer of Energy by Pumping

  13. Prenatal nitrate intake from drinking water and selected birth defects in offspring of participants in the national birth defects prevention study.

    Science.gov (United States)

    Brender, Jean D; Weyer, Peter J; Romitti, Paul A; Mohanty, Binayak P; Shinde, Mayura U; Vuong, Ann M; Sharkey, Joseph R; Dwivedi, Dipankar; Horel, Scott A; Kantamneni, Jiji; Huber, John C; Zheng, Qi; Werler, Martha M; Kelley, Katherine E; Griesenbeck, John S; Zhan, F Benjamin; Langlois, Peter H; Suarez, Lucina; Canfield, Mark A

    2013-09-01

    Previous studies of prenatal exposure to drinking-water nitrate and birth defects in offspring have not accounted for water consumption patterns or potential interaction with nitrosatable drugs. We examined the relation between prenatal exposure to drinking-water nitrate and selected birth defects, accounting for maternal water consumption patterns and nitrosatable drug exposure. With data from the National Birth Defects Prevention Study, we linked addresses of 3,300 case mothers and 1,121 control mothers from the Iowa and Texas sites to public water supplies and respective nitrate measurements. We assigned nitrate levels for bottled water from collection of representative samples and standard laboratory testing. Daily nitrate consumption was estimated from self-reported water consumption at home and work. With the lowest tertile of nitrate intake around conception as the referent group, mothers of babies with spina bifida were 2.0 times more likely (95% CI: 1.3, 3.2) to ingest ≥ 5 mg nitrate daily from drinking water (vs. nitrate daily (vs. water nitrate intake did not increase associations between prenatal nitrosatable drug use and birth defects. Higher water nitrate intake was associated with several birth defects in offspring, but did not strengthen associations between nitrosatable drugs and birth defects.

  14. Discriminant Analysis of Defective and Non-Defective Field Pea (Pisum sativum L.) into Broad Market Grades Based on Digital Image Features.

    Science.gov (United States)

    McDonald, Linda S; Panozzo, Joseph F; Salisbury, Phillip A; Ford, Rebecca

    2016-01-01

    Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective.

  15. Reactive evaporation of low-defect density hafnia

    International Nuclear Information System (INIS)

    Chow, R.; Falabella, S.; Loomis, G.E.; Rainer, F.; Stolz, C.J.; Kozlowski, M.R.

    1993-01-01

    Motivation for this work includes observations at Lawrence Livermore National Laboratory of a correlation between laser damage thresholds and both the absorption and the nodular-defect density of coatings. Activated oxygen is used to increase the metal-oxidation kinetics at the coated surface during electron-beam deposition. A series of hafnia layers are made with various conditions: two μ-wave configuations, two sources (hafnium and hafnia), and two reactive oxygen pressures. Laser damage thresholds (1064-nm, 10-ns pulses), absorption (at 511 nm), and nodular-defect densities from these coatings are reported. The damage thresholds are observed to increase as the absorption of the coatings decreases. However, no significant increase in damage thresholds are observed with the coatings made from a low nodular-defect density source material (hafnium). Hafnia coatings can be made from hafnium sources that have lower nodular-defect densities, lower absorption, and damage thresholds that are comparable with coatings made from a conventional hafnia source

  16. Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.

    2013-11-01

    Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.

  17. Extrinsic- and intrinsic-defect creation in amorphous SiO2

    International Nuclear Information System (INIS)

    Devine, R.A.B.; Francou, J.

    1990-01-01

    We have studied the creation efficiency of various intrinsic and extrinsic defects in high-[OH] amorphous silica subjected to the ultraviolet emission from an O 2 plasma or 60 Co γ-ray radiation. Both oxygen-vacancy- and nitrogen-related defects are observed following γ-ray irradiation or ultraviolet exposure. The wavelength range responsible for defect creation is estimated to be 200 approx-lt λ approx-lt 300 nm (4 approx-lt E photon approx-lt 5.9 eV). The ultraviolet power output of the plasma estimated by comparing defect yields with those from a Hg lamp (λ=185 and 254 nm) suggests 200 approx-lt P approx-lt 900 mW cm -2 for a plasma power density ∼300 mW cm -3 . Nonbridging oxygen-hole centers and hydrogen-related defect centers as well as methyl radical (CH 3 . ) defects are observed after γ-ray irradiation but not after ultraviolet exposure. The efficiency of creation of the various defects is material dependent

  18. A defect-driven diagnostic method for machine tool spindles.

    Science.gov (United States)

    Vogl, Gregory W; Donmez, M Alkan

    2015-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition.

  19. CT appearance of congenital defect resembling the Hangman's fracture

    International Nuclear Information System (INIS)

    Williams, J.P. III; Baker, D.H.; Miller, W.A.

    1999-01-01

    Purpose. Congenital defects of C2 are rare and can be confused with Hangman's fractures. CT has been advocated as aiding in differentiation between an acute fracture and congenital defects. Methods. We present a case of a 2-year-old recent accident victim, who was erroneously diagnosed by plain film and CT as having a Hangman's fracture. Results. The CT demonstrated an atypical appearance of a congenital defect. Conclusion. This case shows that the radiographic differentiation between a Hangman's fracture and a congenital defect is more difficult than previously described. (orig.)

  20. High Defect Tolerance in Lead Halide Perovskite CsPbBr3.

    Science.gov (United States)

    Kang, Jun; Wang, Lin-Wang

    2017-01-19

    The formation energies and charge-transition levels of intrinsic point defects in lead halide perovskite CsPbBr 3 are studied from first-principles calculations. It is shown that the formation energy of dominant defect under Br-rich growth condition is much lower than that under moderate or Br-poor conditions. Thus avoiding the Br-rich condition can help to reduce the defect concentration. Interestingly, CsPbBr 3 is found to be highly defect-tolerant in terms of its electronic structure. Most of the intrinsic defects induce shallow transition levels. Only a few defects with high formation energies can create deep transition levels. Therefore, CsPbBr 3 can maintain its good electronic quality despite the presence of defects. Such defect tolerance feature can be attributed to the lacking of bonding-antibonding interaction between the conduction bands and valence bands.