WorldWideScience

Sample records for string magnetized barotropic

  1. Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in the Bimetric Theory of Gravitation

    International Nuclear Information System (INIS)

    Gaikwad, N. P.; Borkar, M. S.; Charjan, S. S.

    2011-01-01

    We investigate the Bianchi type-I massive string magnetized barotropic perfect fluid cosmological model in Rosen's bimetric theory of gravitation with and without a magnetic field by applying the techniques used by Latelier (1979, 1980) and Stachel (1983). To obtain a deterministic model of the universe, it is assumed that the universe is filled with barotropic perfect fluid distribution. The physical and geometrical significance of the model are discussed. By comparing our model with the model of Bali et al. (2007), it is realized that there are no big-bang and big-crunch singularities in our model and T = 0 is not the time of the big bang, whereas the model of Bali et al. starts with a big bang at T = 0. Further, our model is in agreement with Bali et al. (2007) as time increases in the presence, as well as in the absence, of a magnetic field. (geophysics, astronomy, and astrophysics)

  2. Bianchi type-I massive string magnetized barotropic perfect fluid

    Indian Academy of Sciences (India)

    Bianchi type-I massive string cosmological model for perfect fluid distribution in the presence of magnetic field is investigated in Rosen's [Gen. Relativ. Gravit. 4, 435 (1973)] bimetric theory of gravitation. To obtain the deterministic model in terms of cosmic time, we have used the condition A = ( B C ) n , where n is a constant, ...

  3. Variational analysis of topological stationary barotropic MHD in the case of single-valued magnetic surfaces

    International Nuclear Information System (INIS)

    Yahalom, A

    2014-01-01

    Variational principles for magnetohydrodynamics have been introduced by previous authors both in Lagrangian and Eulerian form. Yahalom and Lynden-Bell (2008) have previously introduced simpler Eulerian variational principles from which all the relevant equations of barotropic magnetohydrodynamics can be derived. These variational principles were given in terms of six independent functions for non-stationary barotropic flows with given topologies and three independent functions for stationary barotropic flows. This is less then the seven variables which appear in the standard equations of barotropic magnetohydrodynamics which are the magnetic field B-vector the velocity field v-vector and the density ρ. Later, Yahalom (2010) introduced a simpler variational principle in terms of four functions for non-stationary barotropic magnetohydrodynamics. It was shown that the above variational principles are also relevant for flows of non-trivial topologies and in fact using those variational variables one arrives at additional topological conservation laws in terms of cuts of variables which have close resemblance to the Aharonov- Bohm phase (Yahalom (2013)). In previous examples (Yahalom and Lynden-Bell (2008); Yahalom (2013)) the magnetic field lines with non-trivial topology were at the intersection of two surface one of which was always multivalued; in this paper an example is introduced in which the magnetic helicity is not zero yet both surfaces are single-valued

  4. Magnetic strings

    International Nuclear Information System (INIS)

    Chaves, Max

    2006-01-01

    The conception of the magnetic string is presented as an infinitely thin bundle of magnetic flux lines. The magnetic strings are surrounded by a film of current that rotates around them, and are a solution of Maxwell's equations. The magnetic potential contains a line singularity, and its stability can be established topologically. A few comments are added on the possibility that they may exist at a cosmological scale as relics of the Big Bang. (author) [es

  5. Electric magnetic duality in string theory

    International Nuclear Information System (INIS)

    Sen, A.

    1992-07-01

    The electric-magnetic duality transformation in four dimensional heterotic string theory discussed by Shapere, Trivedi and Wilczek is shown to be an exact symmetry of the equations of motion of low energy effective field theory even after including the scalar and the vector fields, arising due to compactification, in the effective field theory. Using this duality transformation we construct rotating black hole solutions in the effective field theory carrying both electric and magnetic charges. The spectrum of extremal magnetically charged black holes turn out to be similar to that of electrically charged elementary string excitations lying on the leading Regge trajectory. We also discuss the possibility that the duality symmetry is an exact symmetry of the full string theory under which electrically charged elementary string excitations get exchanged with magnetically charged soliton like solutions. This proposal might be made concrete following the suggestion of Dabholkar et. al. that fundamental strings may be regarded as soliton like classical solutions in the effective field theory. (author). 20 refs

  6. Cooldown of superconducting magnet strings

    International Nuclear Information System (INIS)

    Yuecel, A.; Carcagno, R.H.

    1995-01-01

    A numerical model for the cooldown of the superconducting magnet strings in the Accelerator System String Test (ASST) Facility at the Superconducting Super Collider (SSC) Laboratory is presented. Numerical results are compared with experimental data from the ASST test runs. Agreement between the numerical predictions and experiments is very good over the entire range from room temperature to liquid helium temperatures. The model can be readily adapted to predict the cooldown and warmup behavior of other superconducting magnets or cold masses

  7. Transmission line properties of long strings of superconducting magnets

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1980-09-01

    The purpose of this paper is to discuss the electrical characteristics of a long string of superconducting magnets, such as in a superconducting storage ring or accelerator. As the magnets have a shunt capacitance to ground as well as a series inductance, travelling waves can propagate along the string, as in a transmission line. As the string is of finite length, standing waves can also exist. In accelerator quality superconducting magnets, considerable effort has been devoted to minimizing ac losses, the net result being that the magnet string has a high Q precisely at the frequencies which are important for the standing and travelling waves. The magnitude of these effects are estimated, and the solution to be used at Fermilab will be discussed

  8. Thermodynamic properties of magnetic strings on a square lattice

    Science.gov (United States)

    Mol, Lucas; Oliveira, Denis Da Mata; Bachmann, Michael

    2015-03-01

    In the last years, spin ice systems have increasingly attracted attention by the scientific community, mainly due to the appearance of collective excitations that behave as magnetic monopole like particles. In these systems, geometrical frustration induces the appearance of degenerated ground states characterized by a local energy minimization rule, the ice rule. Violations of this rule were shown to behave like magnetic monopoles connected by a string of dipoles that carries the magnetic flux from one monopole to the other. In order to obtain a deeper knowledge about the behavior of these excitations we study the thermodynamics of a kind of magnetic polymer formed by a chain of magnetic dipoles in a square lattice. This system is expected to capture the main properties of monopole-string excitations in the artificial square spin ice. It has been found recently that in this geometry the monopoles are confined, but the effective string tension is reduced by entropic effects. To obtain the thermodynamic properties of the strings we have exactly enumerated all possible string configurations of a given length and used standard statistical mechanics analysis to calculate thermodynamic quantities. We show that the low-temperature behavior is governed by strings that satisfy ice rules. Financial support from FAPEMIG and CNPq (Brazilian agencies) are gratefully acknowledged.

  9. Magnetically-enhanced open string pair production

    Science.gov (United States)

    Lu, J. X.

    2017-12-01

    We consider the stringy interaction between two parallel stacks of D3 branes placed at a separation. Each stack of D3 branes in a similar fashion carry an electric flux and a magnetic flux with the two sharing no common field strength index. The interaction amplitude has an imaginary part, giving rise to the Schwinger-like pair production of open strings. We find a significantly enhanced rate of this production when the two electric fluxes are almost identical and the brane separation is on the order of string scale. This enhancement will be largest if the two magnetic fluxes are opposite in direction. This novel enhancement results from the interplay of the non-perturbative Schwinger-type pair production due to the electric flux and the stringy tachyon due to the magnetic flux, and may have realistic physical applications.

  10. LHC magnet string in 1994

    CERN Multimedia

    1994-01-01

    On 6-7 December 1994, a string of powerful superconducting magnets for CERN's next particle accelerator, the Large Hadron Collider (LHC), ran successfully at 8.36 tesla for 24 hours. This magnetic field is 100 000 times that of the Earth and is required to keep beams of protons travelling on the correct circular path over 27 km at 7 TeV in the new LHC accelerator.

  11. Propagators in magnetic string background and the problem of self-adjoint extensions

    International Nuclear Information System (INIS)

    Kaiser, H.J.

    1993-01-01

    Ghost and gluon propagators of a non-Abelian gauge theory in the background of a magnetic string are calculated. A simple technique to derive the ghost propagator is presented which makes use of the fact that the presence of a magnetic string of strength β shifts the differential operators ∂/∂φ to ∂/∂φ - iβ. In the case of a gluon propagator in the magnetic string background a difficulty arises from the presence of the magnetic field strength term involving a δ function. Here the ambiguities of a self-adjoint extension of the differential operator must be met. A proper treatment demands the specification of a limiting process starting from a string of finite thickness and well-defined structure and leading to the δ function string. Without this additional structure information about the background string the gauge field propagator is undetermined. (orig.)

  12. Barotropic FRW cosmologies with Chiellini damping

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP (Mexico); Mancas, Stefan C., E-mail: stefan.mancas@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Chen, Pisin, E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics (LeCosPA) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-05-08

    It is known that barotropic FRW equations written in the conformal time variable can be reduced to simple linear equations for an exponential function involving the conformal Hubble rate. Here, we show that an interesting class of barotropic universes can be obtained in the linear limit of a special type of nonlinear dissipative Ermakov–Pinney equations with the nonlinear dissipation built from Chiellini's integrability condition. These cosmologies, which evolutionary are similar to the standard ones, correspond to barotropic fluids with adiabatic indices rescaled by a particular factor and have amplitudes of the scale factors inverse proportional to the adiabatic index. - Highlights: • Chiellini-damped Ermakov–Pinney equations are used in barotropic FRW cosmological context. • Chiellini-damped scale factors of the barotropic FRW universes are introduced. • These scale factors are similar to the undamped ones.

  13. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    International Nuclear Information System (INIS)

    Kraushaar, P.; Burgett, W.; Dombeck, T.; McInturff, A.; Robinson, W.; Saladin, V.

    1993-05-01

    The Accelerator Systems String Test (ASST) R ampersand D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets

  14. Nonabelian gauge fields in the background of magnetic strings

    International Nuclear Information System (INIS)

    Wieczorek, E.

    1993-01-01

    Quantized nonabelian gauge fields are studied in the external classical background of a linear magnetic string. The determination of the gauge field propagator demands a specification of the string by suitable physical limiting procedures. The vacuum energy density is obtained after transforming the background problem into a Casimir problem. (orig.)

  15. Measured control characteristics of the half-cell 40mm aperture magnet string

    International Nuclear Information System (INIS)

    McInturff, A.; Flora, R.; Weisend, J.G. II; Wallis, D.B.; Dickey, C.E.

    1992-03-01

    The data presented here were obtained in the course of operating a five 40mm aperture dipole string. The eighty eight meter long string of dipoles was assembled to test the various proposed operational scenarios of the SSCL collider. As reported earlier, there had been a short control and system (data procurement) checkout run performed on an abbreviated two dipole string. The problems that were then uncovered with the exception of the high 20K shield heat load, were corrected. There has been over 5000 hours of running time on the system, 3000 hours on the five magnet string alone, and to date, no major problems or incidents have occurred. The quench (superconducting to normal transition) performance of the magnet string was excellent, with the exception of four premature quenches that occurred during power supply commissioning. The operational parameters were all found to be manageable or equal to or greater than design. The operational heat loads were within the budget with the exception of the 20K circuit which was a factor of three too high. The relative internal voltages of the magnets have been higher than previously measured in the shorter string by a significant amount. There will be a discussion of concerns and problems plus their possible solution. 6 refs

  16. String phase transitions in a strong magnetic field

    CERN Document Server

    Ferrara, Sergio; Ferrara, Sergio; Porrati, Massimo

    1993-01-01

    We consider open strings in an external constant magnetic field $H$. For an (infinite) sequence of critical values of $H$ an increasing number of (highest spin component) states lying on the first Regge trajectory becomes tachyonic. In the limit of infinite $H$ all these states are tachyons (with a common tachyonic mass) both in the case of the bosonic string and for the Neveu-Schwarz sector of the fermionic string. This result generalizes to extended object the same instability which occurs in ordinary non-Abelian gauge theories. The Ramond states have always positive square masses as is the case for ordinary QED. The weak field limit of the mass spectrum is the same as for a field theory with gyromagnetic ratio $g_S=2$ for all charged spin states. This behavior suggests a phase transition of the string as it has been argued for the ordinary electroweak theory.

  17. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7.

    Science.gov (United States)

    Morris, D J P; Tennant, D A; Grigera, S A; Klemke, B; Castelnovo, C; Moessner, R; Czternasty, C; Meissner, M; Rule, K C; Hoffmann, J-U; Kiefer, K; Gerischer, S; Slobinsky, D; Perry, R S

    2009-10-16

    Sources of magnetic fields-magnetic monopoles-have so far proven elusive as elementary particles. Condensed-matter physicists have recently proposed several scenarios of emergent quasiparticles resembling monopoles. A particularly simple proposition pertains to spin ice on the highly frustrated pyrochlore lattice. The spin-ice state is argued to be well described by networks of aligned dipoles resembling solenoidal tubes-classical, and observable, versions of a Dirac string. Where these tubes end, the resulting defects look like magnetic monopoles. We demonstrated, by diffuse neutron scattering, the presence of such strings in the spin ice dysprosium titanate (Dy2Ti2O7). This is achieved by applying a symmetry-breaking magnetic field with which we can manipulate the density and orientation of the strings. In turn, heat capacity is described by a gas of magnetic monopoles interacting via a magnetic Coulomb interaction.

  18. Investigation of Thermal and Vacuum Transients on the LHC Prototype Magnet String

    CERN Document Server

    Cruikshank, P; Riddone, G; Tavian, L

    1996-01-01

    The prototype magnet string, described in a companion paper, is a full-scale working model of a 50-m length of the future Large Hadron Collider (LHC), CERN's new accelerator project, which will use high-field superconducting magnets operating below 2 K in superfluid helium. As such, it provides an excellent test bed for practising standard operating modes of LHC insulation vacuum and cryogenics, as well as for experimentally assessing accidental behaviour and failure modes, and thus verifying design calculations. We present experimental investigation of insulation vacuum pumpdown, magnet forced-flow cooldown and warmup, and evolution of residual vacuum pressures and temperatures in natural warmup, as well as catastrophic loss of insulation vacuum. In all these transient modes, experimental results are compared with simulated behaviour, using a non-linear, one-dimensional thermal model of the magnet string.

  19. Cosmic global strings

    International Nuclear Information System (INIS)

    Sikivie, P.

    1991-01-01

    The topics are: global strings; the gravitational field of a straight global string; how do global strings behave?; the axion cosmological energy density; computer simulations of the motion and decay of global strings; electromagnetic radiation from the conversion of Nambu-Goldstone bosons in astrophysical magnetic fields. (orig.)

  20. Acoustic geometry for general relativistic barotropic irrotational fluid flow

    International Nuclear Information System (INIS)

    Visser, Matt; Molina-ParIs, Carmen

    2010-01-01

    'Acoustic spacetimes', in which techniques of differential geometry are used to investigate sound propagation in moving fluids, have attracted considerable attention over the last few decades. Most of the models currently considered in the literature are based on non-relativistic barotropic irrotational fluids, defined in a flat Newtonian background. The extension, first to special relativistic barotropic fluid flow and then to general relativistic barotropic fluid flow in an arbitrary background, is less straightforward than it might at first appear. In this paper, we provide a pedagogical and simple derivation of the general relativistic 'acoustic spacetime' in an arbitrary (d+1)-dimensional curved-space background.

  1. Duality relation between charged elastic strings and superconducting cosmic strings

    International Nuclear Information System (INIS)

    Carter, B.

    1989-01-01

    The mechanical properties of macroscopic electromagnetically coupled string models in a flat or curved background are treated using a covariant formalism allowing the construction of a duality transformation that relates the category of uniform ''electric'' string models, constructed as the (nonconducting) charged generalisation of ordinary uncoupled (violin type) elastic strings, to a category of ''magnetic'' string models comprising recently discussed varieties of ''superconducting cosmic strings''. (orig.)

  2. Experimental observation of Bethe strings

    Science.gov (United States)

    Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois

    2018-02-01

    Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.

  3. Can primordial magnetic fields seeded by electroweak strings cause an alignment of quasar axes on cosmological scales?

    Science.gov (United States)

    Poltis, Robert; Stojkovic, Dejan

    2010-10-15

    The decay of nontopological electroweak strings may leave an observable imprint in the Universe today in the form of primordial magnetic fields. Protogalaxies preferentially tend to form with their axis of rotation parallel to an external magnetic field, and, moreover, an external magnetic field produces torque which tends to align the galaxy axis with the magnetic field. We demonstrate that the shape of a magnetic field left over from two looped electroweak strings can explain the observed nontrivial alignment of quasar polarization vectors and make predictions for future observations.

  4. Real time control of the SSC string magnets

    International Nuclear Information System (INIS)

    Calvo, O.; Flora, R.; MacPherson, M.

    1987-01-01

    The system described in this paper, called SECAR, was designed to control the excitation of a test string of magnets for the proposed Superconducting Super Collider (SSC) and will be used to upgrade the present Tevatron Excitation, Control and Regulation (TECAR) hardware and software. It resides in a VME orate and is controlled by a 68020/68881 based CPU running the application software under a real time operating system named VRTX

  5. Full-power test of a string of magnets comprising a half-cell of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Burgett, W.; Christianson, M.; Coombes, R.

    1992-10-01

    In this paper we describe the full-powered operation of a string of industrially-fabricated magnets comprising a half-cell of the Superconducting Super Collider (SSC). The completion of these tests marks the first successful operation of a major SSC subsystem. The five 15-m long dipole magnets in the string had an aperture of 50 mm and the single 5-m long quadrupole aperture was 40 mm. Power and cryogenic connections were made to the string through spool pieces that are prototypes for SSC operations. The string was cooled to cryogenic temperatures in early July, 1992, and power tests were performed at progressively higher currents up to the nominal SSC operating point above 6500 amperes achieved in mid-August. In this paper we report on the electrical and cryogenic performance of the string components and the quench protection system during these initial tests

  6. Quench Protection and Powering in a String of Superconducting Magnets for the Large Hadron Collider

    CERN Document Server

    Krainz, G

    1997-01-01

    Practical experience has been attained on the LHC Test String (String~1), composed of one 3~m long superconducting twin-aperture prototype quadrupole and three 10~m long superconducting twin-aperture prototype dipoles. The protection diodes are housed in the cold mass of the short straight section. The quench protection system acts on the half-cell level. During the operation of the LHC Test String, magnet quenches have been provoked manually by firing the quench heaters or occured manually by exceeding the critical temperature or critical current density of the superconductor. Most of the data could be measured while some parameters (magnet current, diode current, average temperature, etc.) cannot be directly measured. A simulation progam has been developed to calculate the missing data. The validation of the model has been performed by comparing measured and simulated data. The modelling of the quench behaviour of the final version of the LHC magnets show that hot-spot temperatures and voltages to ground ca...

  7. Device for balancing parallel strings

    Science.gov (United States)

    Mashikian, Matthew S.

    1985-01-01

    A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.

  8. The DEBOT Model, a New Global Barotropic Ocean Tidal Model: Test Computations and an Application in Related Geophysical Disciplines

    Science.gov (United States)

    Einspigel, D.; Sachl, L.; Martinec, Z.

    2014-12-01

    We present the DEBOT model, which is a new global barotropic ocean model. The DEBOT model is primarily designed for modelling of ocean flow generated by the tidal attraction of the Moon and the Sun, however it can be used for other ocean applications where the barotropic model is sufficient, for instance, a tsunami wave propagation. The model has been thoroughly tested by several different methods: 1) synthetic example which involves a tsunami-like wave propagation of an initial Gaussian depression and testing of the conservation of integral invariants, 2) a benchmark study with another barotropic model, the LSGbt model, has been performed and 3) results of realistic simulations have been compared with data from tide gauge measurements around the world. The test computations prove the validity of the numerical code and demonstrate the ability of the DEBOT model to simulate the realistic ocean tides. The DEBOT model will be principaly applied in related geophysical disciplines, for instance, in an investigation of an influence of the ocean tides on the geomagnetic field or the Earth's rotation. A module for modelling of the secondary poloidal magnetic field generated by an ocean flow is already implemented in the DEBOT model and preliminary results will be presented. The future aim is to assimilate magnetic data provided by the Swarm satellite mission into the ocean flow model.

  9. The Effect of Barotropic and Baroclinic Tides on Coastal Stratification and Mixing

    Science.gov (United States)

    Suanda, S. H.; Feddersen, F.; Kumar, N.

    2017-12-01

    The effects of barotropic and baroclinic tides on subtidal stratification and vertical mixing are examined with high-resolution, three-dimensional numerical simulations of the Central Californian coastal upwelling region. A base simulation with realistic atmospheric and regional-scale boundary forcing but no tides (NT) is compared to two simulations with the addition of predominantly barotropic local tides (LT) and with combined barotropic and remotely generated, baroclinic tides (WT) with ≈ 100 W m-1 onshore baroclinic energy flux. During a 10 day period of coastal upwelling when the domain volume-averaged temperature is similar in all three simulations, LT has little difference in subtidal temperature and stratification compared to NT. In contrast, the addition of remote baroclinic tides (WT) reduces the subtidal continental shelf stratification up to 50% relative to NT. Idealized simulations to isolate barotropic and baroclinic effects demonstrate that within a parameter space of typical U.S. West Coast continental shelf slopes, barotropic tidal currents, incident energy flux, and subtidal stratification, the dissipating baroclinic tide destroys stratification an order of magnitude faster than barotropic tides. In WT, the modeled vertical temperature diffusivity at the top (base) of the bottom (surface) boundary layer is increased up to 20 times relative to NT. Therefore, the width of the inner-shelf (region of surface and bottom boundary layer overlap) is increased approximately 4 times relative to NT. The change in stratification due to dissipating baroclinic tides is comparable to the magnitude of the observed seasonal cycle of stratification.

  10. On magnetic monopoles (without a string) and the Clifford bundle formalism

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues, W.A. Jr.

    1990-07-01

    By adopting the Clifford Bundle language, we recently put forth a satisfactory lagrangian formalism for electromagnetism with magnetic monopoles without a string. Here, by taking advantage of the welcome opportunity of some recent comments by E. Comay (and while answering them), we ''complete'' that formalism. In particular, we show how the Lorentz forces and the motion equations, for both electric and magnetic charges, can be derived from the generalized Maxwell equations: without any further recourse to a variational principle. (author). 18 refs

  11. Spinor Green function in higher-dimensional cosmic string space-time in the presence of magnetic flux

    International Nuclear Information System (INIS)

    Spinelly, J.; Mello, E.R. Bezerra de

    2008-01-01

    In this paper we investigate the vacuum polarization effects associated with quantum fermionic charged fields in a generalized (d+1)-dimensional cosmic string space-times considering the presence of a magnetic flux along the string. In order to develop this analysis we calculate a general expression for the respective Green function, valid for several different values of d, which is expressed in terms of a bispinor associated with the square of the Dirac operator. Adopting this result, we explicitly calculate the renormalized vacuum expectation values of the energy-momentum tensors, (T A B ) Ren. , associated with massless fields. Moreover, for specific values of the parameters which codify the cosmic string and the fractional part of the ratio of the magnetic flux by the quantum one, we were able to present in closed forms the bispinor and the respective Green function for massive fields.

  12. Electrical characteristics of long strings of SSC superconducting dipoles

    International Nuclear Information System (INIS)

    Shafer, R.E.; Smedley, K.M.

    1992-01-01

    Because long strings of series-connected superconducting magnets have no dc resistance and low ac losses, the string behaves like a shorted transmission line. The string is thus resonant at multiple half-wavelengths unless damped by the inclusion of resistors that couple to the LdI/dt voltage across the magnet inductance. Based on the measured ac characteristics of individual magnets, it is possible to predict the electrical properties of long strings of magnets for a variety of damping resistors. These strings can be simulated using an analytic representation in FORTRAN (using complex-number notation) or a discrete-component equivalent-circuit modelling program (e.g., SPICE). Various electrical parameters, including characteristic impedance, signal velocity, induced power-supply ripple current, attenuation lengths, and driving-point impedances, can be predicted, and the damping resistor value can be optimized. Comparisons will be made to measurements on a long string of superconducting Tevatron magnets, and some predictions will be made for the SSC collider magnet system

  13. Strings in the Sun?

    International Nuclear Information System (INIS)

    Chudnovsky, E.; Vilenkin, A.

    1988-01-01

    If light superconducting strings were formed in the early Universe, then it is very likely that now they exist in abundance in the interstellar plasma and in stars. The dynamics of such strings can be dominated by friction, so that they are ''frozen'' into the plasma. Turbulence of the plasma twists and stretches the strings, forming a stochastic string network. Such networks must generate particles and magnetic fields, and may play an important role in the physics of stars and of the Galaxy

  14. Quench propagation tests on the LHC superconducting magnet string

    CERN Document Server

    Coull, L; Krainz, G; Rodríguez-Mateos, F; Schmidt, R

    1996-01-01

    The installation and testing of a series connection of superconducting magnets (three 10 m long dipoles and one 3 m long quadrupole) has been a necessary step in the verification of the viability of the Large Hadron Collider at CERN. In the LHC machine, if one of the lattice dipoles or quadrupoles quenches, the current will be by-passed through cold diodes and the whole magnet chain will be de-excited by opening dump switches. In such a scenario it is very important to know whether the quench propagates from the initially quenching magnet to adjacent ones. A series of experiments have been performed with the LHC Test String powered at different current levels and at different de-excitation rates in order to understand possible mechanisms for such a propagation, and the time delays involved. Results of the tests and implications regarding the LHC machine operation are described in this paper.

  15. Supervision software for string 2 magnet test facility of large hadron collider project

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Sanadhya, Vivek; Lal, Pradeep; Goel, Vijay; Mukhopadhyay, S.; Saha, Shilpi

    2001-01-01

    The Supervisory Control and Data Acquisition (SCADA) software for the String 2 test facility at CERN, Geneva is developed by BARC under the framework of CERN-DAE collaboration for LHC. The supervision application is developed using PCVue32 SCADA/MMI software. The String 2 test facility prototypes one full cell of LHC and is aimed at studying and validating the individual and collective behaviour of the superconducting magnets, before installing in the tunnel. The software integrates monitoring and supervisory control of all the main subsystems of String 2 such as Cryogenics, Vacuum, Power converters, Magnet protection, Energy extraction and interlock systems. It incorporates animated process synoptics, loop and equipment control panels, configurable trend windows for real-time and historical trending of process parameters, user settability for interlock and alarm thresholds, logging of process events, equipment faults and operator activity. The plant equipment are controlled by a variety of field located Programmable Logic Controllers and VME crates which communicate process IO to the central IO server using both vendor specific and custom protocols. The system leverages OPC (OLE for Process Controls) technology for realising a generic IO server. A large number of geographically distributed client stations are arranged to provide the process specific operator interface and these are connected to the Main IO server over CERN wide intranet and internet. (author)

  16. String 2, test facility for the LHC

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    String 2 is the long chain seen to the right, representing one complete cell of bending dipoles, focusing quadrupoles and corrector magnets. On 17 June 2002 the test string reached the nominal running current of 11 860 A and magnetic field of 8.335 T for the LHC.

  17. Open problems in string cosmology

    International Nuclear Information System (INIS)

    Toumbas, N.

    2010-01-01

    Some of the open problems in string cosmology are highlighted within the context of the recently constructed thermal and quantum superstring cosmological solutions. Emphasis is given on the high temperature cosmological regime, where it is argued that thermal string vacua in the presence of gravito-magnetic fluxes can be used to bypass the Hagedorn instabilities of string gas cosmology. This article is based on a talk given at the workshop on ''Cosmology and Strings'', Corfu, September 6-13, 2009. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Vortex-strings in N=2 SQCD and bulk-string decoupling

    Science.gov (United States)

    Gerchkovitz, Efrat; Karasik, Avner

    2018-02-01

    We study vortex-strings in four-dimensional N=2 supersymmetric SU( N c ) × U(1) gauge theories with N f hypermultiplets in the fundamental representation of SU( N c ) and general U(1) charges. If N f > N c , the vacuum is not gapped and the low-energy theory contains both the vacuum massless excitations and the string zero-modes. The question we address in this work is whether the vacuum and the string moduli decouple at low energies, allowing a description of the low-energy dynamics in terms of a two-dimensional theory on the string worldsheet. We find a simple condition controlling the bulk-string coupling: if there exist two flavors such that the product of their U(1) charge difference with the magnetic flux carried by the string configuration is not an integer multiple of 2 π, the string has zero-modes that decay slower than 1 /r, where r is the radial distance from the string core. These modes are coupled to the vacuum massless excitations even at low energies. If, however, all such products are integer multiples of 2 π, long-range modes of this type do not exist and the string moduli decouple from the bulk at low energies. This condition turns out to coincide with the condition of trivial Aharonov-Bohm phases for the particles in the spectrum. In addition to a derivation of the bulk-string decoupling criterion using classical analysis of the string zero-modes, we provide a non-perturbative derivation of the criterion, which uses supersymmetric localization techniques.

  19. The LHC test string first operational experience

    CERN Document Server

    Bézaguet, Alain-Arthur; Casas-Cubillos, J; Coull, L; Cruikshank, P; Dahlerup-Petersen, K; Faugeras, Paul E; Flemsæter, B; Guinaudeau, H; Hagedorn, Dietrich; Hilbert, B; Krainz, G; Kos, N; Lavielle, D; Lebrun, P; Leo, G; Mathewson, A G; Missiaen, D; Momal, F; Parma, Vittorio; Quesnel, Jean Pierre; Richter, D; Riddone, G; Rijllart, A; Rodríguez-Mateos, F; Rohmig, P; Saban, R I; Schmidt, R; Serio, L; Skiadelli, M; Suraci, A; Tavian, L; Walckiers, L; Wallén, E; Van Weelderen, R; Williams, L; McInturff, A

    1996-01-01

    CERN operates the first version of the LHC Test String which consists of one quadrupole and three 10-m twin aperture dipole magnets. An experimental programme aiming at the validation of the LHC systems started in February 1995. During this programme the string has been powered 100 times 35 of which at 12.4 kA or above. The experiments have yielded a number of results some of which, like quench recovery for cryogenics, have modified the design of subsystems of LHC. Others, like controlled helium leaks in the cold bore and quench propagation bewteen magnets, have given a better understanding on the evolution of the phenomena inside a string of superconducting magnets cooled at superfluid helium temperatures. Following the experimental programme, the string will be powered up and powered down in one hour cycles as a fatigue test of the structure thus simulating 20 years of operation of LHC.

  20. Cosmic strings and galaxy formation

    International Nuclear Information System (INIS)

    Bertschinger, E.

    1989-01-01

    Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings

  1. Cool Runnings For String 2

    CERN Multimedia

    2001-01-01

    String 2 is a series of superconducting magnets that are prototypes of those which will be installed in the LHC. It was cooled down to 1.9 Kelvin on September 14th. On Thursday last week, the dipoles of String 2 were successfully taken to nominal current, 11850 A.

  2. Electrical performance of a string of magnets representing a half-cell of the LHC machine

    International Nuclear Information System (INIS)

    Rodriguez-Mateos, F.; Coull, L.; Dahlerup-Petersen, K.; Hagedorn, D.; Krainz, G.; Rijllart, A.; McInturff, A.

    1996-01-01

    Tests have been carried out on a string of prototype superconducting magnets, consisting of one double-quadrupole and two double-dipoles forming the major part of a half-cell of the LHC machine. The magnets are protected individually by cold diodes and quench heaters. The electrical aspects of these tests are described here. The performance during quench of the protection diodes and the associated interconnections was studied. Tests determined the magnet quench performance in training and at different ramp-rates, and investigated the inter-magnet propagation of quenches. Current lead and inter-magnet contact resistances were controlled and the performance of the power converter and the dump switches assessed

  3. Electrical performance of a string of magnets representing a half-cell of the LHC machine

    International Nuclear Information System (INIS)

    Rodriguez-Mateos, F.; Coull, L.; Dahlerup-Petersen, K.; Hagedorn, D.; Krainz, G.; Rijllart, A.; McInturff, A.

    1995-01-01

    Tests have been carried out on a string prototype superconducting magnets, consisting of one double-quadrupole and two double-dipoles forming the major part of a half-cell of the LHC machine. The magnets are protected individually by ''cold diodes'' and quench heaters. The electrical aspects of these tests are described here. The performance during quench of the protection diodes and the associated interconnections was studied. Tests determined the magnet quench performance in training and at different ramp-rates, and investigated the inter-magnet propagation of quenches. Current lead and inter-magnet contact resistances were controlled and the performance of the power converter and the dump switches assessed

  4. Stable monopole-antimonopole string background in SU(2) QCD

    International Nuclear Information System (INIS)

    Cho, Y.M.; Pak, D.G.

    2006-01-01

    Motivated by the instability of the Savvidy-Nielsen-Olesen (SNO) vacuum we make a systematic search for a stable magnetic background in pure SU(2) QCD. It is shown that a pair of axially symmetric monopole and antimonopole strings is stable, provided that the distance between the two strings is less than a critical value. The existence of a stable monopole-antimonopole string background strongly supports that a magnetic condensation of monopole-antimonopole pairs can generate a dynamical symmetry breaking, and thus the magnetic confinement of color in QCD

  5. LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry

    Directory of Open Access Journals (Sweden)

    Raj Bali

    2013-01-01

    Full Text Available Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( is proportional to the expansion (. This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed.

  6. SUPERCOLLIDER: String test success

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    On 14 August at the Superconducting Supercollider (SSC) Laboratory in Ellis County, Texas, the Accelerator Systems String Test (ASST) successfully met its objective by operating a half-cell of five collider dipole magnets, one quadrupole magnet, and two spool pieces at the design current of 6500 amperes

  7. Performance of Barotropic Ocean Models on Shared and Distributed Memory Computers

    National Research Council Canada - National Science Library

    Piacsek, S

    1998-01-01

    The efficiency of explicit time integration schemes for barotropic models of the Mediterranean were investigated, in context of the vectorization and parallel modeling approaches employed on different architectures...

  8. Anisotropic Bulk Viscous String Cosmological Model in a Scalar-Tensor Theory of Gravitation

    Directory of Open Access Journals (Sweden)

    D. R. K. Reddy

    2013-01-01

    Full Text Available Spatially homogeneous, anisotropic, and tilted Bianchi type-VI0 model is investigated in a new scalar-tensor theory of gravitation proposed by Saez and Ballester (1986 when the source for energy momentum tensor is a bulk viscous fluid containing one-dimensional cosmic strings. Exact solution of the highly nonlinear field equations is obtained using the following plausible physical conditions: (i scalar expansion of the space-time which is proportional to the shear scalar, (ii the barotropic equations of state for pressure and energy density, and (iii a special law of variation for Hubble’s parameter proposed by Berman (1983. Some physical and kinematical properties of the model are also discussed.

  9. Numerical simulation of bosonic-superconducting-string interactions

    International Nuclear Information System (INIS)

    Laguna, P.; Matzner, R.A.

    1990-01-01

    Numerical simulations show that bosonic superconducting U(1) gauge cosmic strings interact by reconnecting and chopping off in a fashion similar to nonconducting strings. Cancellation of the electromagnetic current occurs when, in one of the strings, the direction of the U(1) gauge magnetic field is opposite to the electromagnetic current flow. Electric charge accumulates on the segments of the reconnected strings where the current is discontinuous or vanishes. A virtual photon appears after the collision and intercommutation, and a bubble of electromagnetic radiation emerges as the currents in the reconnected strings equalize. These phenomena suggest new possible mechanisms for void production in the large-scale distribution of galaxies

  10. Evolution of Bianchi I magnetized cosmic strings in Brans–Dicke gravity

    International Nuclear Information System (INIS)

    Sharif, M; Waheed, Saira

    2013-01-01

    In this paper, we consider a locally rotationally symmetric Bianchi I universe filled with magnetized viscous string fluid in Brans–Dicke gravity. For the exact solutions, we use the law of variation of the Hubble parameter that leads to volumetric expansion laws and assume power law ansatz for the scalar field. We discuss the nature of the resulting models through different parameters and their graphs. It is concluded that the constructed universe models yield an accelerated expanding behavior with an isotropic nature for the final stages of the universe evolution, which is consistent with recent observations. (paper)

  11. Nonassociativity, Malcev algebras and string theory

    International Nuclear Information System (INIS)

    Guenaydin, M.; Minic, D.

    2013-01-01

    Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelberg's generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Relativistic Landau levels in the rotating cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, M.S. [Universidade Estadual do Ceara, Grupo de Fisica Teorica (GFT), Fortaleza, CE (Brazil); Muniz, C.R. [Universidade Estadual do Ceara, Faculdade de Educacao, Ciencias e Letras de Iguatu, Iguatu, CE (Brazil); Christiansen, H.R. [Instituto Federal de Ciencia, Educacao e Tecnologia, IFCE Departamento de Fisica, Sobral (Brazil); Bezerra, V.B. [Universidade Federal da Paraiba-UFPB, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)

    2016-09-15

    In the spacetime induced by a rotating cosmic string we compute the energy levels of a massive spinless particle coupled covariantly to a homogeneous magnetic field parallel to the string. Afterwards, we consider the addition of a scalar potential with a Coulomb-type and a linear confining term and completely solve the Klein-Gordon equations for each configuration. Finally, assuming rigid-wall boundary conditions, we find the Landau levels when the linear defect is itself magnetized. Remarkably, our analysis reveals that the Landau quantization occurs even in the absence of gauge fields provided the string is endowed with spin. (orig.)

  13. The dual formulation of cosmic strings and vortices

    CERN Document Server

    Lee, Ki-Myeong

    1993-01-01

    We study four dimensional systems of global, axionic and local strings. By using the path integral formalism, we derive the dual formulation of these systems, where Goldstone bosons, axions and missive vector bosons are described by antisymmetric tensor fields, and strings appear as a source for these tensor fields. We show also how magnetic monopoles attached to local strings are described in the dual formulation. We conclude with some remarks.

  14. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Dombeck, T.; Gannon, J.; Kraushaar, P.; McInturff, A.; Savord, T.; Tool, G.

    1993-01-01

    The string test facility was constructed to provide a development test bed for the arc regions of the Superconducting Super Collider (SSC). Significant effort has been devoted to the development and testing of superconducting magnets, spools, and accelerator control systems required for the SSC. The string test facility provides the necessary environment required to evaluate the operational performance of these components as they are configured as an accelerator lens in the collider. This discussion will review the results of high current testing of the string conducted to evaluate magnet element uniformity and compatibility, the splice resistance used to connect the magnets, and system response to various quench conditions. Performance results of the spools, energy bypass systems, energy dump, and the power supply system are also discussed

  15. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Dombeck, T.; Gannon, J.; Kraushaar, P.; McInturff, A.; Savord, T.; Tool, G.

    1993-05-01

    The string test facility was constructed to provide a development test bed for the arc regions of the Superconducting Super Collider (SSC). Significant effort has been devoted to the development and testing of superconducting magnets, spools, and accelerator control systems required for the SSC. The string test facility provides the necessary environment required to evaluate the operational performance of these components as they are configured as an accelerator lens in the collider. This discussion will review the results of high current testing of the string conducted to evaluate magnet element uniformity and compatibility, the splice resistance used to connect the magnets, and system response to various quench conditions. Performance results of the spools, energy bypass systems, energy dump, and the power supply system are also discussed

  16. Exactly solvable string models of curved space-time backgrounds

    CERN Document Server

    Russo, J.G.; Russo, J G; Tseytlin, A A

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.

  17. Magnetic monopoles without strings by Kaehler-Clifford algebra

    International Nuclear Information System (INIS)

    Maia, A. Jr.; Recami, E.; Rodrigues, W.A. Jr.; Rosa, M.A.F.

    1990-01-01

    In place of Dirac monopoles with string, this paper presents monopoles without string on the basis of a generalized potential, the sum of a vector A and a pseudovector γB potential. By having recourse to the (graded) Clifford algebra which allows adding together tensors of different ranks (e.g., scalars + pseudoscalars + vectors + pseudovectors + . . .), in a previous paper we succeeded in constructing a Lagrangian and Hamiltonian formalism for interacting monopoles that can be regarded as satisfactory from various points of view. In the present note, after having completed that formalism, the authors put forth a purely geometrical interpretation of it within the Kahler algebra on differential forms, essential ingredients being the natural introduction of a generalized curvature and the Hodge decomposition. The authors thus pave the way for the extension of monopoles without string to non-abelian gauge groups. The analogies of this approach with supersymmetric theories are apparent

  18. Open bosonic string in background electromagnetic field

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1987-01-01

    The classical and quantum dynamics of an open string propagating in the D-dimensional space-time in the presence of a background electromagnetic field is investigated. An important point in this consideration is the use of the generalized light-like gauge. There are considered the strings of two types; the neutral strings with charges at their ends obeying the condition q 1 +q 2 =0 and the charged strings having a net charge q 1 +q 2 ≠ 0. The consistency of theory demands that the background electric field does not exceed its critical value. The distance between the mass levels of the neutral open string decreases (1-e 2 ) times in comparison with the free string, where e is the dimensionless strength of the electric field. The magnetic field does not affect this distance. It is shown that at a classical level the squared mass of the neutral open string has a tachyonic contribution due to the motion of the string as a whole in transverse directions. The tachyonic term disappears if one considers, instead of M 2 , the string energy in a special reference frame where the projection of the total canonical momentum of the string onto the electric field vanishes. The contributions due to zero point fluctuations to the energy spectrum of the neutral string and to the Virasoro operators in the theory of charged string are found

  19. Some exact solutions of magnetized viscous model in string ...

    Indian Academy of Sciences (India)

    Recently, the string cosmology has received considerable attention in the ... require a quantum theory of gravity, for which string theory seems to be the most promis- ..... where d2 is a constant of integration, which is taken as unity without the loss of ..... The solutions present interesting features in the presence of vis-.

  20. On noncommutative open string theories

    International Nuclear Information System (INIS)

    Russo, J.G.; Sheikh-Jabbari, M.M.

    2000-08-01

    We investigate new compactifications of OM theory giving rise to a 3+1 dimensional open string theory with noncommutative x 0 -x 1 and x 2 -x 3 coordinates. The theory can be directly obtained by starting with a D3 brane with parallel (near critical) electric and magnetic field components, in the presence of a RR scalar field. The magnetic parameter permits to interpolate continuously between the x 0 -x 1 noncommutative open string theory and the x 2 -x 3 spatial noncommutative U(N) super Yang-Mills theory. We discuss SL(2, Z) transformations of this theory. Using the supergravity description of the large N limit, we also compute corrections to the quark-antiquark Coulomb potential arising in the NCOS theory. (author)

  1. Klein-Gordon oscillator with position-dependent mass in the rotating cosmic string spacetime

    Science.gov (United States)

    Wang, Bing-Qian; Long, Zheng-Wen; Long, Chao-Yun; Wu, Shu-Rui

    2018-02-01

    A spinless particle coupled covariantly to a uniform magnetic field parallel to the string in the background of the rotating cosmic string is studied. The energy levels of the electrically charged particle subject to the Klein-Gordon oscillator are analyzed. Afterwards, we consider the case of the position-dependent mass and show how these energy levels depend on the parameters in the problem. Remarkably, it shows that for the special case, the Klein-Gordon oscillator coupled covariantly to a homogeneous magnetic field with the position-dependent mass in the rotating cosmic string background has the similar behaviors to the Klein-Gordon equation with a Coulomb-type configuration in a rotating cosmic string background in the presence of an external magnetic field.

  2. Experiments on barotropic vortex-wall interaction on a topographic β plane

    NARCIS (Netherlands)

    Zavala Sansón, L.; Heijst, van G.J.F.; Janssen, F.J.J.G.

    1999-01-01

    The problem of a barotropic cyclonic vortex, moving on a ß plane and interacting with a meridional vertical wall, is studied by means of laboratory experiments and a finite difference numerical model. In the laboratory, the vortex is produced in a rectangular rotating tank with a weakly sloping

  3. Exactly solvable string models of curved space-time backgrounds

    International Nuclear Information System (INIS)

    Russo, J.G.

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)

  4. Interacting-string picture of the fermionic string

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1986-01-01

    This report gives a review of the interacting-string picture of the Bose string. In the present lecture, the author outlines a similar treatment of the Fermionic string. The quantization of the free Fermionic string is carried out to the degrees of freedom x, representing the displacement of the string. Also presented are Grassman degrees of freedom S distributed along the string. The report pictures the fermionic string as a string of dipoles. The general picture of the interaction of such strings by joining and splitting is the same as for the Bose string. The author does not at present have the simplest formula for fermion string scattering amplitudes. A less detailed treatment is given than for the Bose string. The report sets up the functional-integration formalism, derives the analog mode, and indicates in general, terms how the conformal transformation to the z-plane may be performed. The paper concludes by stating without proof the formula for the N-article tree amplitude in the manifestly supersymmetric formalism

  5. Thermodynamic properties of open noncritical string in external electromagnetic field

    International Nuclear Information System (INIS)

    Lichtzier, I.M.; Odintsov, S.D.; Bytsenko, A.A.

    1991-01-01

    We investigate the thermodynamics of open noncritical string (charged and neutral) in an external constant magnetic field. The free energy and Hagedorn temperature are calculated. It is shown that Hagedorn temperature is the same as in the absence of constant magnetic field. We present also the expressions for the free energy and Hagedorn temperature of the neutral open noncritical string in an external constant electromagnetic field. In this case Hagedorn temperature depends on the external electric field. (author)

  6. Dualities in five dimensions and charged string solutions

    International Nuclear Information System (INIS)

    Kar, S.; Maharana, J.

    1996-01-01

    We consider an eleven dimensional supergravity compactified on K3 x T 2 and show that the resulting five dimensional theory has identical massless states as that of a heterotic string compactified on a specific five torus T 5 . The strong-weak coupling duality of the five dimensional theory is argued to represent a ten dimensional Type IIA string compactified on K3 x S 1 , supporting the conjecture of string-string duality in six dimensions. In this perspective, we present a magnetically charged solution of the low energy heterotic string effective action in five dimensions with a charge defined on a three sphere S 3 due to the two form potential. We use the Poincare duality to replace the antisymmetric two form with a gauge field in the effective action and obtain a string solution with charge on a two sphere S 2 instead of that on a three sphere S 3 in the five dimensional spacetime. We note that the string-particle duality is accompanied by a change of topology from S 3 to S 2 and vice versa. (orig.)

  7. Mechanical and thermal measurements on a 11 m long beam screen in the LHC Magnet Test String during RUN 3A

    CERN Document Server

    Artoos, K; Kos, N

    1999-01-01

    Two eleven meter long beam screens were installed in the third dipole of the LHC Magnet Test String. Instrumentation was used to measure the mechanical and thermal behaviour of the screens during thermal transients and quenches. The horizontal deformation, angular displacement, heating of the screen as a result of the quench induced eddy currents and relative longitudinal displacement between beam screen and magnet end were measured.

  8. String 2 reaches the home straight

    CERN Multimedia

    2002-01-01

    String 2 has entered its second phase of operation. With the addition of three more dipole magnets, this test chain now represents one complete LHC cell in the regular part of the arc. The main magnets have achieved nominal current and have embarked on an experimental programme which will continue until the end of the year.

  9. Heterotic strings on homogeneous spaces

    International Nuclear Information System (INIS)

    Israel, D.; Kounnas, C.; Orlando, D.; Petropoulos, P.M.

    2005-01-01

    We construct heterotic string backgrounds corresponding to families of homogeneous spaces as exact conformal field theories. They contain left cosets of compact groups by their maximal tori supported by NS-NS 2-forms and gauge field fluxes. We give the general formalism and modular-invariant partition functions, then we consider some examples such as SU(2)/U(1)∝S 2 (already described in a previous paper) and the SU(3)/U(1) 2 flag space. As an application we construct new supersymmetric string vacua with magnetic fluxes and a linear dilaton. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  10. New Z3 strings

    Directory of Open Access Journals (Sweden)

    Marco A.C. Kneipp

    2016-12-01

    Full Text Available We consider a Yang–Mills–Higgs theory with the gauge group SU(3 broken to its center Z3 by two scalar fields in the adjoint representation and obtain new Z3 strings asymptotic configurations with the gauge field and magnetic field in the direction of the step operators.

  11. Electromagnetic vacuum fluctuations around a cosmic string in de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Saharian, A.A.; Saharyan, N.A. [Yerevan State University, Department of Physics, Yerevan (Armenia); Manukyan, V.F. [Gyumri State Pedagogical Institute, Department of Physics and Mathematics, Gyumri (Armenia)

    2017-07-15

    The electromagnetic field correlators are evaluated around a cosmic string in background of (D + 1)-dimensional dS spacetime assuming that the field is prepared in the Bunch-Davies vacuum state. The correlators are presented in the decomposed form where the string-induced topological parts are explicitly extracted. With this decomposition, the renormalization of the local vacuum expectation values (VEVs) in the coincidence limit is reduced to the one for dS spacetime in the absence of the cosmic string. The VEVs of the squared electric and magnetic fields, and of the vacuum energy density are investigated. Near the string they are dominated by the topological contributions and the effects induced by the background gravitational field are small. In this region, the leading terms in the topological contributions are obtained from the corresponding VEVs for a string on the Minkowski bulk multiplying by the conformal factor. At distances from the string larger than the curvature radius of the background geometry, the pure dS parts in the VEVs dominate. In this region, for spatial dimensions D > 3, the influence of the gravitational field on the topological contributions is crucial and the corresponding behavior is essentially different from that for a cosmic string on the Minkowski bulk. There are well-motivated inflationary models which produce cosmic strings. We argue that, as a consequence of the quantum-to-classical transition of super-Hubble electromagnetic fluctuations during inflation, in the post-inflationary era these strings will be surrounded by large-scale stochastic magnetic fields. These fields could be among the distinctive features of the cosmic strings produced during the inflation and also of the corresponding inflationary models. (orig.)

  12. Manipulating lightcone fluctuations in an analogue cosmic string

    Directory of Open Access Journals (Sweden)

    Jiawei Hu

    2018-02-01

    Full Text Available We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.

  13. Manipulating lightcone fluctuations in an analogue cosmic string

    Science.gov (United States)

    Hu, Jiawei; Yu, Hongwei

    2018-02-01

    We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.

  14. Deriving the four-string and open-closed string interactions from geometric string field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1990-01-01

    One of the questions concerning the covariant open string field theory is why there are two distinct BRST theories and why the four-string interaction appears in one version but not the other. The authors solve this mystery by showing that both theories are gauge-fixed versions of a higher gauge theory, called the geometric string field theory, with a new field, a string verbein e μσ νρ , which allows us to gauge the string length and σ parametrization. By fixing the gauge, the authors can derive the endpoint gauge (the covariantized light cone gauge), the midpoint gauge of Witten, or the interpolating gauge with arbitrary string length. The authors show explicitly that the four-string interaction is a gauge artifact of the geometric theory (the counterpart of the four-fermion instantaneous Coulomb term of QED). By choosing the interpolating gauge, they produce a new class of four-string interactions which smoothly interpolate between the endpoint gauge and the midpoint gauge (where it vanishes). Similarly, they can extract the closed string as a bound state of the open string, which appears in the endpoint gauge but vanishes in the midpoint gauge. Thus, the four-string and open-closed string interactions do not have to be added to the action as long as the string vierbein is included

  15. Barotropic tidal model for the Bombay High, Gulf of Khambhat and surrounding areas

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Shetye, S.R.; Michael, G.S.

    A barotropic model is developed for the shelf region off the central west coast of India, which includes the regions of Bombay High and Gulf of Khambhat, in order to simulate tides and tidal currents in the region. The model is forced by a composite...

  16. Cosmic strings: A problem or a solution?

    International Nuclear Information System (INIS)

    Bennett, D.P.; Bouchet, F.R.

    1987-10-01

    The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis. 6 refs., 2 figs

  17. Exactly soluble dynamics of (p,q) string near macroscopic fundamental strings

    International Nuclear Information System (INIS)

    Bak, Dongsu; Rey, Soojong; Yee, Houng

    2004-01-01

    We study dynamics of type-IIB bound-state of a Dirichlet string and n fundamental strings in the background of N fundamental strings. Because of supergravity potential, the bound-state string is pulled to the background fundamental strings, whose motion is described by open string rolling radion field. The string coupling can be made controllably weak and, in the limit 1 2 st n 2 st N, the bound-state energy involved is small compared to the string scale. We thus propose rolling dynamics of open string radion in this system as an exactly solvable analog for rolling dynamics of open string tachyon in decaying D-brane. The dynamics bears a novel feature that the worldsheet electric field increases monotonically to the critical value as the bound-state string falls into the background string. Close to the background string, D string constituent inside the bound-state string decouples from fundamental string constituents. (author)

  18. Non-linear Model Predictive Control for cooling strings of superconducting magnets using superfluid helium

    CERN Document Server

    AUTHOR|(SzGeCERN)673023; Blanco Viñuela, Enrique

    In each of eight arcs of the 27 km circumference Large Hadron Collider (LHC), 2.5 km long strings of super-conducting magnets are cooled with superfluid Helium II at 1.9 K. The temperature stabilisation is a challenging control problem due to complex non-linear dynamics of the magnets temperature and presence of multiple operational constraints. Strong nonlinearities and variable dead-times of the dynamics originate at strongly heat-flux dependent effective heat conductivity of superfluid that varies three orders of magnitude over the range of possible operational conditions. In order to improve the temperature stabilisation, a proof of concept on-line economic output-feedback Non-linear Model Predictive Controller (NMPC) is presented in this thesis. The controller is based on a novel complex first-principles distributed parameters numerical model of the temperature dynamics over a 214 m long sub-sector of the LHC that is characterized by very low computational cost of simulation needed in real-time optimizat...

  19. BRST invariant mixed string vertex for the bosonic string

    International Nuclear Information System (INIS)

    Clarizia, A.; Pezzella, F.

    1987-09-01

    We construct a BRST invariant (N+M)-string vertex including both open and closed string states. When we saturate it with N open string and M closed string physical states it reproduces their corresponding scattering amplitude. As a particular case we obtain BRST invariant vertex for the open-closed string transition. (orig.)

  20. Introduction to string theory and string compactifications

    International Nuclear Information System (INIS)

    GarcIa-Compean, Hugo

    2005-01-01

    Basics of some topics on perturbative and non-perturbative string theory are reviewed. After a mathematical survey of the Standard Model of particle physics and GUTs, the bosonic string kinematics for the free case and with interaction is described. The effective action of the bosonic string and the spectrum is also discussed. T-duality in closed and open strings and the definition of D-brane are surveyed. Five perturbative superstring theories and their spectra is briefly outlined. Calabi-Yau three-fold compactifications of heterotic strings and their relation to some four-dimensional physics are given. Finally, non-perturbative issues like S-duality, M-theory and F-theory are also reviewed

  1. Open-closed string correspondence in open string field theory

    International Nuclear Information System (INIS)

    Baumgartl, M.; Sachs, I.

    2008-01-01

    We address the problem of describing different closed string backgrounds in background independent open string field theory: A shift in the closed string background corresponds to a collective excitation of open strings. As an illustration we apply the formalism to the case where the closed string background is a group manifold. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  2. Prediction of Tidal Elevations and Barotropic Currents in the Gulf of Bone

    Science.gov (United States)

    Purnamasari, Rika; Ribal, Agustinus; Kusuma, Jeffry

    2018-03-01

    Tidal elevation and barotropic current predictions in the gulf of Bone have been carried out in this work based on a two-dimensional, depth-integrated Advanced Circulation (ADCIRC-2DDI) model for 2017. Eight tidal constituents which were obtained from FES2012 have been imposed along the open boundary conditions. However, even using these very high-resolution tidal constituents, the discrepancy between the model and the data from tide gauge is still very high. In order to overcome such issues, Green’s function approach has been applied which reduced the root-mean-square error (RMSE) significantly. Two different starting times are used for predictions, namely from 2015 and 2016. After improving the open boundary conditions, RMSE between observation and model decreased significantly. In fact, RMSEs for 2015 and 2016 decreased 75.30% and 88.65%, respectively. Furthermore, the prediction for tidal elevations as well as tidal current, which is barotropic current, is carried out. This prediction was compared with the prediction conducted by Geospatial Information Agency (GIA) of Indonesia and we found that our prediction is much better than one carried out by GIA. Finally, since there is no tidal current observation available in this area, we assume that, when tidal elevations have been fixed, then the tidal current will approach the actual current velocity.

  3. Hyperbolic strings

    International Nuclear Information System (INIS)

    Popov, A.D.

    1991-01-01

    We introduce hyperbolic strings as closed bosonic strings with the target space R d-1,1 xT q+1,1 which has an additional time-like dimension in the internal space. The Fock spaces of the q-parametric family of standard bosonic, fermionic and heterotic strings with the target spaces of dimension n≤d+q are shown to be embedded into the Fock space of hyperbolic strings. The condition of the absence of anomaly fixes d and q for all three types of strings written in a bosonized form. (orig.)

  4. String theory

    International Nuclear Information System (INIS)

    Chan Hongmo.

    1987-10-01

    The paper traces the development of the String Theory, and was presented at Professor Sir Rudolf Peierls' 80sup(th) Birthday Symposium. The String theory is discussed with respect to the interaction of strings, the inclusion of both gauge theory and gravitation, inconsistencies in the theory, and the role of space-time. The physical principles underlying string theory are also outlined. (U.K.)

  5. Super string field theory and the Wess-Zumino-Witten action

    Czech Academy of Sciences Publication Activity Database

    Erler, Theodore

    2017-01-01

    Roč. 2017, č. 10 (2017), s. 1-63, č. článku 057. ISSN 1029-8479 R&D Projects: GA MŠk EF15_003/0000437 Institutional support: RVO:68378271 Keywords : string field theory * superstrings and heterotic strings Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 6.063, year: 2016

  6. Illuminating the hidden sector of string theory by shining light through a magnetic field

    International Nuclear Information System (INIS)

    Abel, S.A.; Khoze, V.V.

    2006-08-01

    It has recently been shown that the observation by the PVLAS collaboration of an anomalously large rotation of the polarization plane of light in the presence of a magnetic field in vacuum may originate from pair production of light, m f ∝0.1 eV, millicharged, Q f ∝3 x 10 -6 e, fermions. Such millicharges arise generically from kinetic-mixing in theories containing at least two U(1) gauge factors. In this letter, we point out that the required multiple U(1) factors, the size of kinetic-mixing, and suitable matter representations to explain the PVLAS data occur very naturally in the context of realistic extensions of the Standard Model (SM) of elementary particle physics based on string theory. (orig.)

  7. Bottom friction optimization for a better barotropic tide modelling

    Science.gov (United States)

    Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy

    2015-04-01

    At a regional scale, barotropic tides are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for tide modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global tide models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available tide gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction

  8. A reduced covariant string model for the extrinsic string

    International Nuclear Information System (INIS)

    Botelho, L.C.L.

    1989-01-01

    It is studied a reduced covariant string model for the extrinsic string by using Polyakov's path integral formalism. On the basis of this reduced model it is suggested that the extrinsic string has its critical dimension given by 13. Additionally, it is calculated in a simple way Poliakov's renormalization group law for the string rigidity coupling constants. (A.C.A.S.) [pt

  9. From fractals to wormholes via string theory

    International Nuclear Information System (INIS)

    Felce, A.G.

    1992-01-01

    The thesis is in two parts. The first part is devoted to a study of the definition of mass for soliton solutions in string theory. In the context of the low-energy effective field theory, there are three distinct quantities from which one can extract the mass of a soliton: the ADM mass, the static action and the kinetic energy. The three corresponding masses are carefully defined and shown to be equal for a representative class of string solitons, the so-called 'black fivebranes'. Along the way a potential confusion in the definition of the action is cleared up, and it is shown that the kinetic energy of a moving soliton is given in terms of a surface integral at spacelike infinity. This result for the kinetic energy is used to motivate a conjecture about the exact value of soliton masses in string theory: That in conformal field theory the kinetic mass is realized as the norm of the (1,1) deformation induced by the collective coordinate. Such deformations are usually treated as unphysical because they appear to be pure gauge and have zero norm. In a soliton conformal field theory, a finite number of these gauge transformations become physical because of a subtlety involving the boundary at spatial infinity. Some proposals for concrete exploration of this phenomenon are discussed. The second part of the thesis concerns the connection between string theory and an important problem in condensed matter physics. It has recently been shown that the dissipative Hofstadter model (dissipative quantum mechanics of an electron subject to uniform magnetic field and periodic potential in two dimensions) exhibit critical behavior on a network of lines in the dissipation/magnetic field plane. Apart from their obvious condensed matter interest, the corresponding critical theories represent non-trivial solutions of open string field theory containing a tachyon and gauge field background. A detailed account of their properties would be interesting from several points of view

  10. The heterotic string

    International Nuclear Information System (INIS)

    Gross, D.J.

    1986-01-01

    Traditional string theories, either bosonic or supersymmetric, came in two varieties, closed string theories and open string theories. Closed string are neutral objects which describe at low energies gravity or supergravity. Open strings have geometrically invariant ends to which charge can be attached, thereby obtaining, in addition to gravity, Yang-Mills gauge interactions. Recently a new kind of string theory was discovered--the heterotic string, which is a chiral hybrid of the closed superstring and the closed bosonic string, and which produces by an internal dynamical mechanism gauge interactions of a totally specified kind. Although this theory is found in an attempt to produce a superstring theory which would yield a low energy E/sub 8/xE/sub 8/ supersymmetric, anomaly free, gauge theory, as suggested by the anomaly cancellation mechanism of Green and Schwarz, it fits naturally into the general framework of consistent string theories

  11. String Gas Cosmology

    OpenAIRE

    Brandenberger, Robert H.

    2008-01-01

    String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...

  12. Spintronic and transport properties of linear atomic strings of transition metals (Fe, Co, Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Neha, E-mail: nehatyagi.phy@gmail.com [Department of Applied Physics, Delhi Technological University, New Delhi (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM-Indian Institute of Information Technology, Design & Manufacturing, Jabalpur (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology & Management, Gwalior (India)

    2016-05-06

    In the present work, first-principles investigations have been performed to study the spintronic and transport properties of linear atomic strings of Fe, Co and Ni. The structural stabilities of the considered strings were compared on the basis of binding energies which revealed that all the strings are energetically feasible to be achieved. Further, all the considered strings are found to be ferromagnetic and the observed magnetic moment ranges from 1.38 to 1.71 μ{sub B}. The observed transport properties and high spin polarization points towards their potential for nano interconnects and spintronic applications.

  13. Chern-Simons couplings for dielectric F-strings in matrix string theory

    International Nuclear Information System (INIS)

    Brecher, Dominic; Janssen, Bert; Lozano, Yolanda

    2002-01-01

    We compute the non-abelian couplings in the Chern-Simons action for a set of coinciding fundamental strings in both the type IIA and type IIB Matrix string theories. Starting from Matrix theory in a weakly curved background, we construct the linear couplings of closed string fields to type IIA Matrix strings. Further dualities give a type IIB Matrix string theory and a type IIA theory of Matrix strings with winding. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  14. Internal parity symmetry and degeneracy of Bethe Ansatz strings in the isotropic heptagonal magnetic ring

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J., E-mail: jsmilew@wp.pl [Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań (Poland); Lulek, B., E-mail: barlulek@amu.edu.pl [East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Lulek, T., E-mail: tadlulek@prz.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Łabuz, M., E-mail: labuz@univ.rzeszow.pl [University of Rzeszow, Institute of Physics, Rejtana 16a, 35-959 Rzeszów (Poland); Stagraczyński, R., E-mail: rstag@prz.edu.pl [Rzeszow University of Technology, The Faculty of Mathematics and Applied Physics, Powstańców Warszawy 6, 35-959 Rzeszów (Poland)

    2014-02-01

    The exact Bethe eigenfunctions for the heptagonal ring within the isotropic XXX model exhibit a doubly degenerated energy level in the three-deviation sector at the centre of the Brillouin zone. We demonstrate an explicit construction of these eigenfunctions by use of algebraic Bethe Ansatz, and point out a relation of degeneracy to parity conservation, applied to the configuration of strings for these eigenfunctions. Namely, the internal structure of the eigenfunctions (the 2-string and the 1-string, with opposite quasimomenta) admits generation of two mutually orthogonal eigenfunctions due to the fact that the strings which differ by their length are distinguishable objects.

  15. A string theory which isn't about strings

    Science.gov (United States)

    Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.

    2017-11-01

    Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.

  16. Zk string fluxes and monopole confinement in non-Abelian theories

    International Nuclear Information System (INIS)

    Kneipp, Marco A.C.; Centro Brasileiro de Pesquisas Fisicas

    2002-11-01

    Recently we considered N = 2 Super Yang-Mills with a mass breaking term and showed the existence of BPS Z k -string solutions for arbitrary simple gauge groups which are spontaneously broken to non-Abelian residual gauge groups. We also calculated their string tensions exactly. In doing so, we have considered in particular the hyper multiplet in the representation of a diquark condensate. In the present work we shall analyze some of the different phases of the theory and find that the magnetic fluxes of the monopoles and Z k strings of the theory are proportional to one another, allowing for monopole confinement in one of the phase transitions of the theory. Then we will calculate the threshold length for a string to break in a new pair of monopole-anti monopole. We will further show that some of the resulting confining theories can obtained by adding a deformation term to N 2 or N = 4 superconformal theories and, as such, may satisfy a gauge/string correspondence. (author)

  17. StringForce

    DEFF Research Database (Denmark)

    Barendregt, Wolmet; Börjesson, Peter; Eriksson, Eva

    2017-01-01

    In this paper, we present the forced collaborative interaction game StringForce. StringForce is developed for a special education context to support training of collaboration skills, using readily available technologies and avoiding the creation of a "mobile bubble". In order to play String......Force two or four physically collocated tablets are required. These tablets are connected to form one large shared game area. The game can only be played by collaborating. StringForce extends previous work, both technologically and regarding social-emotional training. We believe String......Force to be an interesting demo for the IDC community, as it intertwines several relevant research fields, such as mobile interaction and collaborative gaming in the special education context....

  18. Bosonic strings

    CERN Document Server

    Jost, Jürgen

    2007-01-01

    This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmüller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and D-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.

  19. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Gannon, J.; Kraushaar, P.; Mcinturff, A.; Nehring, R.; Saladin, V.; Savord, T.; Sorrensen, G.; Smellie, R.; Tool, G.; Voy, D.

    1993-05-01

    The intent of the Accelerator System String Test (ASST) is to obtain data for model verification and information on the magnitudes of pressures and voltages encountered in an accelerator environment. The ASST milestone run was achieved during July and August, 1992 and consisted of demonstrating the accelerator components could be configured together as a system operating at full current. Following the milestone run, the string was warmed to counteract some design flaws that impeded the operational range. The string was again cooled to cryogenic temperatures in October, and a comprehensive power testing program was conducted through the end of January, 1993. This paper describes how the collider arc components operate in an accelerator environment during quenches induced by firing both strip heaters and spot heaters. Evaluation of the data illustrates how variations in the design parameters on magnets used in a string environment can impact system performance

  20. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  1. String cosmology. Large-field inflation in string theory

    International Nuclear Information System (INIS)

    Westphal, Alexander

    2014-09-01

    This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index n s and the fractional tensor mode power r. Hence, we focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.

  2. Boundary string field theory and an open string one-loop

    International Nuclear Information System (INIS)

    Lee, Tae Jin; Viswanathan, K. S.; Yang, Yi

    2003-01-01

    We discuss the open string one-loop partition function in the tachyon condensation background of an unstable D-brane system. We evaluate the partition function by using the boundary-state formulation and find that it is in complete agreement with the result obtained in the boundary string field theory. This suggests that the open string higher loop diagrams may be produced consistently by using a closed string field theory, where the D-brane plays the role of a source for the closed string field

  3. Global transport calculations with an equivalent barotropic system

    Science.gov (United States)

    Salby, Murry L.; O'Sullivan, Donal; Garcia, Rolando R.; Tribbia, Joseph

    1990-01-01

    Transport properties of the two-dimensional equations governing equivalent barotropic motion are investigated on the sphere. This system has ingredients such as forcing, equivalent depth, and thermal dissipation explicitly represented, and takes into account compression effects associated with vertical motion along isentropic surfaces. Horizontal transport properties of this system are investigated under adiabatic and diabatic conditions for different forms of dissipation, and over a range of resolutions. It is shown that forcing represetative of time-mean and amplified conditions at 10 mb leads to the behavior typical of observations at this level. The displacement of the polar night vortex and its distortion into a comma shape are evident, as is irreversible mixing under sufficiently strong forcing amplitude. It is shown that thermal dissipation influences the behavior significantly by inhibiting the amplification of unstable eddies and thereby the horizontal stirring of air.

  4. Hot String Soup

    OpenAIRE

    Lowe, D. A.; Thorlacius, L.

    1994-01-01

    Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The average total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the ...

  5. String-driven inflation

    International Nuclear Information System (INIS)

    Turok, N.

    1988-01-01

    It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation

  6. String driven inflation

    International Nuclear Information System (INIS)

    Turok, N.

    1987-11-01

    It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation. 17 refs., 1 fig

  7. String field theory solution for any open string background

    Czech Academy of Sciences Publication Activity Database

    Erler, T.; Maccaferri, Carlo

    2014-01-01

    Roč. 10, Oct (2014), 1-37 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014

  8. Lattice strings

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs

  9. Background constraints in the infinite tension limit of the heterotic string

    Czech Academy of Sciences Publication Activity Database

    Azevedo, T.; Lipinski Jusinskas, Renann

    2016-01-01

    Roč. 2016, č. 8 (2016), s. 1-23, č. článku 133. ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : conformal field models in string theory * superstrings and heterotic strings Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 6.063, year: 2016

  10. String-coupling constant and dilaton vacuum expectation value in string field theory

    International Nuclear Information System (INIS)

    Yoneya, Tamiaki

    1987-01-01

    In the first quantized approaches to strings, it is well known that the string-coupling constant is determined by the vacuum expectation value of the dilaton field. This property, however, has never been demonstrated within the framework of string field theory. An explicit reparametrization of the string field associated with the shifts of the dilaton vacuum expectation value and the string-coupling constant is constructed exhibiting the above property in the light-cone field theory of the closed bosonic string. (orig.)

  11. Closed string field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1987-01-01

    A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)

  12. Conformal techniques in string theory and string field theory

    International Nuclear Information System (INIS)

    Giddings, S.B.

    1987-01-01

    The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string

  13. On the elliptic genus of three E-strings and heterotic strings

    International Nuclear Information System (INIS)

    Cai, Wenhe; Huang, Min-xin; Sun, Kaiwen

    2015-01-01

    A precise formula for the elliptic genus of three E-strings is presented. The related refined free energy coincides with the result calculated from topological string on local half K3 Calabi-Yau threefold up to genus twelve. The elliptic genus of three heterotic strings computed from M9 domain walls matches with the result from orbifold formula to high orders. This confirms the n=3 case of the recent conjecture that n pairs of E-strings can recombine into n heterotic strings.

  14. Minimal open strings

    International Nuclear Information System (INIS)

    Hosomichi, Kazuo

    2008-01-01

    We study FZZT-branes and open string amplitudes in (p, q) minimal string theory. We focus on the simplest boundary changing operators in two-matrix models, and identify the corresponding operators in worldsheet theory through the comparison of amplitudes. Along the way, we find a novel linear relation among FZZT boundary states in minimal string theory. We also show that the boundary ground ring is realized on physical open string operators in a very simple manner, and discuss its use for perturbative computation of higher open string amplitudes.

  15. String necklaces and primordial black holes from type IIB strings

    International Nuclear Information System (INIS)

    Lake, Matthew; Thomas, Steve; Ward, John

    2009-01-01

    We consider a model of static cosmic string loops in type IIB string theory, where the strings wrap cycles within the internal space. The strings are not topologically stabilised, however the presence of a lifting potential traps the windings giving rise to kinky cycloops. We find that PBH formation occurs at early times in a small window, whilst at late times we observe the formation of dark matter relics in the scaling regime. This is in stark contrast to previous predictions based on field theoretic models. We also consider the PBH contribution to the mass density of the universe, and use the experimental data to impose bounds on the string theory parameters.

  16. Testing effective string models of black holes with fixed scalars

    International Nuclear Information System (INIS)

    Krasnitz, M.; Klebanov, I.R.

    1997-01-01

    We solve the problem of mixing between the fixed scalar and metric fluctuations. First, we derive the decoupled fixed scalar equation for the four-dimensional black hole with two different charges. We proceed to the five-dimensional black hole with different electric (one-brane) and magnetic (five-brane) charges, and derive two decoupled equations satisfied by appropriate mixtures of the original fixed scalar fields. The resulting greybody factors are proportional to those that follow from coupling to dimension (2,2) operators on the effective string. In general, however, the string action also contains couplings to chiral operators of dimension (1,3) and (3,1), which cause disagreements with the semiclassical absorption cross sections. Implications of this for the effective string models are discussed. copyright 1997 The American Physical Society

  17. Coulomb string tension, asymptotic string tension, and the gluon chain

    OpenAIRE

    Greensite, Jeff; Szczepaniak, Adam P.

    2014-01-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  18. On Field Theory of Open Strings, Tachyon Condensation and Closed Strings

    OpenAIRE

    Shatashvili, Samson L.

    2001-01-01

    I review the physical properties of different vacua in the background independent open string field theory. Talk presented at Strings 2001, Mumbai, India, http://theory.theory.tifr.res.in/strings/Proceedings/#sha-s.

  19. Closed Strings From Nothing

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Albion

    2001-07-25

    We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order {alpha}' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting.

  20. Closed Strings From Nothing

    International Nuclear Information System (INIS)

    Lawrence, Albion

    2001-01-01

    We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order α' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting

  1. On string solutions of Bethe equations in N=4 supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Bytsko, A.G.; Shenderovich, I.E.

    2007-12-01

    The Bethe equations, arising in description of the spectrum of the dilatation operator for the su(2) sector of the N=4 supersymmetric Yang-Mills theory, are considered in the anti-ferromagnetic regime. These equations are deformation of those for the Heisenberg XXX magnet. It is proven that in the thermodynamic limit roots of the deformed equations group into strings. It is proven that the corresponding Yang's action is convex, which implies uniqueness of solution for centers of the strings. The state formed of strings of length (2n+1) is considered and the density of their distribution is found. It is shown that the energy of such a state decreases as n grows. It is observed that non-analyticity of the left hand side of the Bethe equations leads to an additional contribution to the density and energy of strings of even length. Whence it is concluded that the structure of the anti-ferromagnetic vacuum is determined by the behaviour of exponential corrections to string solutions in the thermodynamic limit and possibly involves strings of length 2. (orig.)

  2. On string solutions of Bethe equations in N=4 supersymmetric Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Bytsko, A.G. [Rossijskaya Akademiya Nauk, St. Petersburg (Russian Federation). Inst. Matematiki]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Shenderovich, I.E. [St. Petersburg State Univ. (Russian Federation). Physics Dept.

    2007-12-15

    The Bethe equations, arising in description of the spectrum of the dilatation operator for the su(2) sector of the N=4 supersymmetric Yang-Mills theory, are considered in the anti-ferromagnetic regime. These equations are deformation of those for the Heisenberg XXX magnet. It is proven that in the thermodynamic limit roots of the deformed equations group into strings. It is proven that the corresponding Yang's action is convex, which implies uniqueness of solution for centers of the strings. The state formed of strings of length (2n+1) is considered and the density of their distribution is found. It is shown that the energy of such a state decreases as n grows. It is observed that non-analyticity of the left hand side of the Bethe equations leads to an additional contribution to the density and energy of strings of even length. Whence it is concluded that the structure of the anti-ferromagnetic vacuum is determined by the behaviour of exponential corrections to string solutions in the thermodynamic limit and possibly involves strings of length 2. (orig.)

  3. How to simulate global cosmic strings with large string tension

    Energy Technology Data Exchange (ETDEWEB)

    Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, Darmstadt, D-64289 Germany (Germany)

    2017-10-01

    Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.

  4. String field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1987-01-01

    In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory

  5. One-loop potential in the new string model with negative stiffness

    International Nuclear Information System (INIS)

    Kleinert, H.; Chervyakov, A.M.; Nesterenko, V.V.

    1996-01-01

    The color-electric flux tube between quarks has a finite thickness therefore also a finite curvature stiffness. Contrary to earlier rigid-string proposal by Polyakov and Kleinert and motivated by the properties of a magnetic flux tube in a type-II superconductor, we put forward the hypothesis that the stiffness is negative. We set up and study the properties of an idealized string model with such negative stiffness. In contrast to the rigid string, the propagator in the new model has no unphysical pole. One-loop calculations show that the model generates an interquark potential which does not contain the square root singularity even for moderate values of a negative stiffness. At large distances, the potential has usual linearly rising term with the universal Luescher correction

  6. BPS limit of multi- D- and DF-strings in boundary string field theory

    International Nuclear Information System (INIS)

    Go, Gyungchoon; Ishida, Akira; Kim, Yoonbai

    2007-01-01

    A BPS limit is systematically derived for straight multi- D- and DF-strings from the D3D-bar3 system in the context of boundary superstring field theory. The BPS limit is obtained in the limit of thin D(F)-strings, where the Bogomolny equation supports singular static multi-D(F)-string solutions. For the BPS multi-string configurations with arbitrary separations, BPS sum rule is fulfilled under a Gaussian type tachyon potential and reproduces exactly the descent relation. For the DF-strings ((p,q)-strings), the distribution of fundamental string charge density coincides with its energy density and the Hamiltonian density takes the BPS formula of square-root form

  7. The arithmetic of strings

    International Nuclear Information System (INIS)

    Freund, P.G.O.

    1988-01-01

    According to the author nobody has succeeded as yet in extracting any new numbers from string theory. This paper discusses how if one cannot get new numbers from string theory, maybe one can get new strings out of number theory. Number theory is generally regarded as the purest form of mathematics. So how can it conceivably make contact with physics which aims at describing nature? The author discusses how the connecting link of these two disciplines is provided by the compact Riemann surfaces. These appear as world sheets of interacting strings. For instance, string-string scattering at the three-loop level involves the four external strings attaching themselves to a genus three compact surface

  8. Bowed Strings

    Science.gov (United States)

    Rossing, Thomas D.; Hanson, Roger J.

    In the next eight chapters, we consider some aspects of the science of bowed string instruments, old and new. In this chapter, we present a brief discussion of bowed strings, a subject that will be developed much more thoroughly in Chap. 16. Chapters 13-15 discuss the violin, the cello, and the double bass. Chapter 17 discusses viols and other historic string instruments, and Chap. 18 discusses the Hutchins-Schelleng violin octet.

  9. The theta-structure in string theories - 1: bosonic strings

    International Nuclear Information System (INIS)

    Li Miao.

    1985-09-01

    We explored the theta-structures in bosonic string theories which are similar to those in gauge field theories. The theta-structure of string is due to the multiply connected spatial compact subspace of space-time. The work of this paper shows that there is an energy band E(theta) in the string theory and one may move the tachyon out in theory by choosing some proper theta parameters. (author)

  10. Cosmic strings

    International Nuclear Information System (INIS)

    Bennett, D.P.

    1988-07-01

    Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs

  11. O(6,22) BPS configurations of the heterotic string

    International Nuclear Information System (INIS)

    Behrndt, K.; Kallosh, R.

    1996-01-01

    We present a static multicenter magnetic solution of toroidally compactified heterotic string theory, which is T-duality covariant. The space-time geometry depends on the mass M and on the O(6,22) norm N of the magnetic charges. For a different range of parameters the (M,N) solution includes (1) two-independent-positive-parameter extremal magnetic black holes with a nonsingular geometry in a stringy frame (a=1 black holes included), (2) a=√3 extremal black holes, and (3) singular massive and massless magnetic white holes (repulsons). The electric multicenter solution is also given in an O(6,22)-symmetric form. copyright 1996 The American Physical Society

  12. Why string theory?

    CERN Document Server

    Conlon, Joseph

    2016-01-01

    Is string theory a fraud or one of the great scientific advances? Why do so many physicists work on string theory if it cannot be tested? This book provides insight into why such a theory, with little direct experimental support, plays such a prominent role in theoretical physics. The book gives a modern and accurate account of string theory and science, explaining what string theory is, why it is regarded as so promising, and why it is hard to test.

  13. Multiflavor string-net models

    Science.gov (United States)

    Lin, Chien-Hung

    2017-05-01

    We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.

  14. Heterotic cosmic strings

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Krause, Axel

    2006-01-01

    We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion

  15. A novel string field theory solving string theory by liberating left and right movers

    International Nuclear Information System (INIS)

    Nielsen, Holger B.; Ninomiya, Masao

    2014-01-01

    We put forward ideas to a novel string field theory based on making some “objects” that essentially describe “liberated” left- and right- mover fields X L μ (τ+σ) and X R μ (τ−σ) on the string. Our novel string field theory is completely definitely different from any other string theory in as far as a “null set” of information in the string field theory Fock space has been removed relatively, to the usual string field theories. So our theory is definitely new. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. We finally suggest how to obtain the Veneziano amplitude in our model

  16. Z(2) vortices and the SU(2) string tension

    International Nuclear Information System (INIS)

    Goepfert, M.

    1981-01-01

    Topologically determined Z(2) variables in pure SU(2) lattice gauge theory are discussed. They count the number of 'vortex souls'. The high temperature expansion for the corresponding Z(2) loops is examined. They obey an area law. The coefficient of the area is shown to be equal to the string tension to all orders of the high temperature expansion. This shows that the string tension is determined by the probability distribution of the vortex souls, at least in the high temperature region. The dependence of the string tension α(β,h) on an external field h that is coupled to the Z(2) field strength is calculated to lowest order of the high temperature expansion. In this approximation, α(β,h) is determined by the free energy of a 2-dimensional Ising model in an external magnetic field 1/2log(β/4tanhh) at an inverse temperature 1/2log3/4π = 0.429. (orig.)

  17. Wilson lines for AdS5 black strings

    International Nuclear Information System (INIS)

    Hristov, Kiril; Katmadas, Stefanos

    2015-01-01

    We describe a simple method of extending AdS 5 black string solutions of 5d gauged supergravity in a supersymmetric way by addition of Wilson lines along a circular direction in space. When this direction is chosen along the string, and due to the specific form of 5d supergravity that features Chern-Simons terms, the existence of magnetic charges automatically generates conserved electric charges in a 5d analogue of the Witten effect. Therefore we find a rather generic, model-independent way of adding electric charges to already existing solutions with no backreaction from the geometry or breaking of any symmetry. We use this method to explicitly write down more general versions of the Benini-Bobev black strings (http://dx.doi.org/10.1103/PhysRevLett.110.061601, http://dx.doi.org/10.1007/JHEP06(2013)005) and comment on the implications for the dual field theory and the similarities with generalizations of the Cacciatori-Klemm black holes (http://dx.doi.org/10.1007/JHEP01(2010)085) in AdS 4 .

  18. Exceptional groups from open strings

    International Nuclear Information System (INIS)

    Gaberdiel, M.R.; Zwiebach, B.

    1998-01-01

    We consider type IIB theory compactified on a two-sphere in the presence of mutually non-local 7-branes. The BPS states associated with the gauge vectors of exceptional groups are seen to arise from open strings connecting the 7-branes, and multi-pronged open strings capable of ending on more than two 7-branes. These multi-pronged strings are built from open string junctions that arise naturally when strings cross 7-branes. The different string configurations can be multiplied as traditional open strings, and are shown to generate the structure of exceptional groups. (orig.)

  19. Evidence for string substructure

    International Nuclear Information System (INIS)

    Bergman, O.

    1996-06-01

    The author argues that the behavior of string theory at high temperature and high longitudinal boosts, combined with the emergence of p-branes as necessary ingredients in various string dualities, point to a possible reformulation of strings, as well as p-branes, as composites of bits. He reviews the string-bit models, and suggests generalizations to incorporate p-branes

  20. Black string first order flow in N=2, d=5 abelian gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Dietmar; Petri, Nicolò; Rabbiosi, Marco [Dipartimento di Fisica, Università di Milano andINFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy)

    2017-01-25

    We derive both BPS and non-BPS first-order flow equations for magnetically charged black strings in five-dimensional N=2 abelian gauged supergravity, using the Hamilton-Jacobi formalism. This is first done for the coupling to vector multiplets only and U(1) Fayet-Iliopoulos (FI) gauging, and then generalized to the case where also hypermultiplets are present, and abelian symmetries of the quaternionic hyperscalar target space are gauged. We then use these results to derive the attractor equations for near-horizon geometries of extremal black strings, and solve them explicitely for the case where the constants appearing in the Chern-Simons term of the supergravity action satisfy an adjoint identity. This allows to compute in generality the central charge of the two-dimensional conformal field theory that describes the black strings in the infrared, in terms of the magnetic charges, the CY intersection numbers and the FI constants. Finally, we extend the r-map to gauged supergravity and use it to relate our flow equations to those in four dimensions.

  1. Strings, texture, and inflation

    International Nuclear Information System (INIS)

    Hodges, H.M.; Primack, J.R.

    1991-01-01

    We examine mechanisms, several of which are proposed here, to generate structure formation, or to just add large-scale features, through either gauged or global cosmic strings or global texture, within the framework of inflation. We first explore the possibility that strings or texture form if there is no coupling between the topological theory and the inflaton or spacetime curvature, via (1) quantum creation, and (2) a sufficiently high reheat temperature. In addition, we examine the prospects for the inflaton field itself to generate strings or texture. Then, models with the string/texture field coupled to the curvature, and an equivalent model with coupling to the inflaton field, are considered in detail. The requirement that inflationary density fluctuations are not so large as to conflict with observations leads to a number of constraints on model parameters. We find that strings of relevance for structure formation can form in the absence of coupling to the inflaton or curvature through the process of quantum creation, but only if the strings are strongly type I, or if they are global strings. If formed after reheating, naturalness suggests that gauged cosmic strings correspond to a type-I superconductor. Similarly, gauged strings formed during inflation via conformal coupling ξ=1/6 to the spacetime curvature (in a model suggested by Yokoyama in order to evade the millisecond pulsar constraint on cosmic strings) are expected to be strongly type I

  2. String Theory - The Physics of String-Bending and Other Electric Guitar Techniques

    Science.gov (United States)

    Grimes, David Robert

    2014-01-01

    Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880

  3. String theory--the physics of string-bending and other electric guitar techniques.

    Directory of Open Access Journals (Sweden)

    David Robert Grimes

    Full Text Available Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.

  4. String theory--the physics of string-bending and other electric guitar techniques.

    Science.gov (United States)

    Grimes, David Robert

    2014-01-01

    Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.

  5. The drift-flux asymptotic limit of baro-tropic two-phase two-pressure models

    International Nuclear Information System (INIS)

    Ambroso, A.; Galie, Th.; Chalons, Ch.; Coquel, F.; Godlewski, E.; Raviart, P.A.; Seguin, N.; Coquel, F.

    2008-01-01

    We study the asymptotic behavior of the solutions of baro-tropic two-phase two-pressure models, with pressure relaxation, drag force and external forces. Using Chapman-Enskog expansions close to the expected equilibrium, a drift-flux model with a Darcy type closure law is obtained. Also, restricting this closure law to permanent flows (defined as steady flows in some Lagrangian frame), we can obtain a drift-flux model with an algebraic closure law, in the spirit of Zuber-Findlay models. The example of a two-phase flow in a vertical pipe is described. (authors)

  6. The SSC full cell prototype string test

    International Nuclear Information System (INIS)

    Kraushaar, P.; Burgett, W.; Cromer, L.

    1994-11-01

    At the conclusion of the SSC half cell magnet string testing program. In February, 1993, the preliminary data analysis revealed that several substantive technical questions remained unresolved. These questions were: (1) could the high voltages to ground (>2 kV) measured during fault (quench) conditions be substantially reduced, (2) could the number of magnetic elements that became resistive (quenched) be controlled and (3) did the cryostats of the magnetic elements provide adequate insulation and isolation to meet designed refrigeration loads. To address these and other existing question a prototypical full cell of collider magnets (ten dipoles and two quadrupoles) was assembled and tested. At the conclusion of this testing there were definitive answers to most of the questions with numerical substantiation, the notable exception being the beat leak question. These answers and other results and issues are presented in this paper

  7. The SSC full cell prototype string test

    International Nuclear Information System (INIS)

    McInturff, A.D.; Kraushaar, P.; Burgett, W.; Cromer, L.

    1994-01-01

    At the conclusion of the SSC half cell magnet string testing program in February, 1993, the preliminary data analysis revealed that several substantive technical questions remained unresolved. These questions were: (1) could the high voltages to ground (>2 kV) measured during fault (quench) conditions be substantially reduced, (2) could the number of magnetic elements that became resistive (quenched) be controlled and 3) did the cryostats of the magnetic elements provide adequate insulation and isolation to meet designed refrigeration loads. To address these and other existing questions, a prototypical fall cell of collider magnets (ten dipoles and two quadrupoles) was assembled and tested. At the conclusion of this testing there were definitive answers to most of the questions with numerical substantiation, the notable exception being the beat leak question. These answers and other results and issues are presented in this paper

  8. String Theory and M-Theory

    Science.gov (United States)

    Becker, Katrin; Becker, Melanie; Schwarz, John H.

    String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line

  9. New expressions for string loop amplitudes leading to an ultra-simple conception of string dynamics

    International Nuclear Information System (INIS)

    Chan Hongmo; Tsou Sheungtsun; Bordes, J.; Nellen, L.

    1990-11-01

    New expressions are derived for string loop amplitudes as overlap integrals of string wave functionals. They are shown to take the form of exchange terms coming from the Bose-Einstein symmetrisation between string segments. One is thus led to the ultra-simple conception that string theory is basically free, and that 'string interactions' are due merely to the fact that strings are composite objects with Bose-Einstein segments as constituents. (author)

  10. Stretching cosmic strings

    International Nuclear Information System (INIS)

    Turok, N.; Bhattacharjee, P.

    1984-01-01

    The evolution of a network of strings produced at a grand-unification phase transition in an expanding universe is discussed, with particular reference to the processes of energy exchange between the strings and the rest of the universe. This is supported by numerical calculations simulating the behavior of strings in an expanding universe. It is found that in order that the energy density of the strings does not come to dominate the total energy density there must be an efficient mechanism for energy loss: the only plausible one being the production of closed loops and their subsequent decay via gravitational radiation

  11. Measurement of ac electrical characteristics of SSC dipole magnets at Brookhaven

    International Nuclear Information System (INIS)

    Smedley, K.

    1992-04-01

    The SSC collider is designed to have circumference of 87 km. The superconducting magnets along the collider ring are grouped into ten sectors. Each sector, a string of average length of 8.7 km,m is powered by one power source located near the center of the sector. Because of the alternating-current (ac) electrical characteristics of the magnets, the power supply ripple currents and transients form a time and space distribution in the magnet string which affects particle motions. Additionally, since the power supply load is a magnet string, the current regulation loop design is highly dependent upon the ac electrical characteristics of the magnets. A means is needed to accurately determine the ac electrical characteristics of the superconducting magnets. The ac characteristics of magnets will be used to predict the ripple distribution of the long string of superconducting magnets. Magnet ac characteristics can also provide necessary information for the regulation loop design. This paper presents a method for measuring the ac characteristics of superconducting magnets. Two collider dipole magnets, one superconducting and one at room temperature, were tested at Brookhaven National Lab

  12. M-strings, Elliptic Genera and N=4 String Amplitudes

    CERN Document Server

    Hohenegger, Stefan

    2014-01-01

    We study mass-deformed N=2 gauge theories from various points of view. Their partition functions can be computed via three dual approaches: firstly, (p,q)-brane webs in type II string theory using Nekrasov's instanton calculus, secondly, the (refined) topological string using the topological vertex formalism and thirdly, M theory via the elliptic genus of certain M-strings configurations. We argue for a large class of theories that these approaches yield the same gauge theory partition function which we study in detail. To make their modular properties more tangible, we consider a fourth approach by connecting the partition function to the equivariant elliptic genus of R^4 through a (singular) theta-transform. This form appears naturally as a specific class of one-loop scattering amplitudes in type II string theory on T^2, which we calculate explicitly.

  13. String Math 2017

    CERN Document Server

    The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.

  14. Does a String-Particle Dualism Indicate the Uncertainty Principle's Philosophical Dichotomy?

    Science.gov (United States)

    Mc Leod, David; Mc Leod, Roger

    2007-04-01

    String theory may allow resonances of neutrino-wave-strings to account for all experimentally detected phenomena. Particle theory logically, and physically, provides an alternate, contradictory dualism. Is it contradictory to symbolically and simultaneously state that λp = h, but, the product of position and momentum must be greater than, or equal to, the same (scaled) Plank's constant? Our previous electron and positron models require `membrane' vibrations of string-linked neutrinos, in closed loops, to behave like traveling waves, Tws, intermittently metamorphosing into alternately ascending and descending standing waves, Sws, between the nodes, which advance sequentially through 360 degrees. Accumulated time passages as Tws detail required ``loop currents'' supplying magnetic moments. Remaining time partitions into the Sws' alternately ascending and descending phases: the physical basis of the experimentally established 3D modes of these ``particles.'' Waves seem to indicate that point mass cannot be required to exist instantaneously at one point; Mott's and Sneddon's Wave Mechanics says that a constant, [mass], is present. String-like resonances may also account for homeopathy's efficacy, dark matter, and constellations' ``stick-figure projections,'' as indicated by some traditional cultures, all possibly involving neutrino strings. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C2.5

  15. Gravitational effects of global strings

    International Nuclear Information System (INIS)

    Aryal, M.; Everett, A.E.

    1986-01-01

    We have obtained the gravitational field, in the weak-field approximation, of cosmic strings formed in a phase transition in which a global symmetry is broken (global strings). The effect of this field on light rays passing a global string is found, and the resulting formation of double images and production of discontinuities in the microwave background temperature compared with the corresponding results for gauge strings. There are some differences in the case of global strings, reflecting the fact that the space surrounding such strings is not purely conical. However, the differences between gauge and global strings with masses suitable to explain galaxy formation are small, and the task of distinguishing them observationally appears difficult at best

  16. International conference on string theory

    CERN Document Server

    2017-01-01

    The Strings 2017 conference is part of the "Strings" series of annual conferences, that bring the entire string theory community together. It will include reviews of major developments in the field, and specialized talks on specific topics. There will also be several public lectures given by conference participants, a pre-Strings school at the Technion, and a post-Strings workshop at the Weizmann Institute.

  17. Cosmic strings and inflation

    International Nuclear Information System (INIS)

    Vishniac, E.T.

    1987-01-01

    We examine the compatibility of inflation with the cosmic string theory for galaxy formation. There is a general conflict between having sufficient string tension to effect galaxy formation, and reheating after inflation to a high enough temperature that strings may form in a thermal phase transition. To escape this conflict, we propose a class of models where the inflation is coupled to the string-producing field. The strings are formed late in inflation as the inflaton rolls towards its zero-temperature value. A large subset of these models have a novel large-scale distribution of galaxies that is fractal, displays biasing without dynamics or feedback mechanisms, and contains voids. (orig.)

  18. String-Math 2015

    CERN Document Server

    2015-01-01

    Welcome to String-Math 2015 at Sanya. The conference will be opened in December 31, 2015- January 4, 2016. String theory plays a central role in theoretical physics as a candidate for the quantum theory unifying gravity with other interactions. It has profound connections with broad branches of modern mathematics ever since the birth. In the last decades, the prosperous interaction, built upon the joint efforts from both mathematicians and physicists, has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side. The interplay is two-fold. The mathematics has provided powerful tools to fulfill the physical interconnection of ideas and clarify physical structures to understand the nature of string theory. On the other hand, ideas from string theory and quantum field theory have been a source of sign...

  19. String Theory Methods for Condensed Matter Physics

    Science.gov (United States)

    Nastase, Horatiu

    2017-09-01

    Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger

  20. Evaluating Models of The Neutral, Barotropic Planetary Boundary Layer using Integral Measures: Part I. Overview

    Science.gov (United States)

    Hess, G. D.; Garratt, J. R.

    Data for the cross-isobaric angle 0, the geostrophic drag coefficient Cg, and the functions A and B of Rossby number similarity theory, obtained from meteorological field experiments, are used to evaluate a range of models of the neutral, barotropic planetary boundary layer. The data give well-defined relationships for 0, Cg, and the integrated dissipation rate over the boundary layer, as a function of the surface Rossby number. Lettau's first-order closure mixing-length model gives an excellent fit to the data; other simple models give reasonable agreement. However more sophisticated models, e.g., higher-order closure, large-eddy simulation, direct numerical simulation and laboratory models, give poor fits to the data. The simplemodels have (at least) one free parameter in their turbulence closure that is matched toatmospheric observations; the more sophisticated models either base their closure onmore general flows or have no free closure parameters. It is suggested that all of theatmospheric experiments that we could locate violate the strict simplifying assumptionsof steady, homogeneous, neutral, barotropic flow required by the sophisticated models.The angle 0 is more sensitive to violations of the assumptions than is Cg.The behaviour of the data varies in three latitude regimes. In middle and high latitudes the observed values of A and B exhibit little latitudinal dependence; the best estimates are A = 1.3 and B = 4.4. In lower latitudes the neutral, barotropic Rossby number theory breaks down. The value of B increases towards the Equator; the determination of A is ambiguous - the trend can increase or decrease towards the Equator. Between approximately 5° and 30° latitude, the scatter in the data is thought to be primarily due to the inherent presence of baroclinicity. The presence of the trade-wind inversion, thermal instability and the horizontal component of the Earth's rotation ΩH also contribute.Marked changes in the values of A and B occur in the

  1. Notes on the ambitwistor pure spinor string

    Czech Academy of Sciences Publication Activity Database

    Lipinski Jusinskas, Renann

    2016-01-01

    Roč. 2016, č. 5 (2016), s. 1-12, č. článku 116. ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : ambitwistor string * pure spinor formalism Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 6.063, year: 2016

  2. Deterministic indexing for packed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye

    2017-01-01

    Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time...... or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet σ...

  3. Topics in string theory

    International Nuclear Information System (INIS)

    Neveu, A.

    1986-01-01

    There exist several string models. In the first lecture, the simplest one, the open bosonic string, which turns out to live most naturally in 26 dimensions will be described in some detail. In the second lecture, the closed bosonic strings, and the open and closed 10-dimensional strings (superstrings) are reviewed. In the third lecture, various compactification schemes which have been proposed to deal with the extra space dimensions, from 4 to 10 or 26 are dealt with; in particular, the Frenkel-Kac construction which builds non-Abelian internal symmetry groups out of the compactified dimensions, and the resulting heterotic string are described. Finally, in the fourth lecture, the important problem of the second quantization of string theories, and of the underlying gauge invariance which is responsible for the possibility of dealing, in a consistent fashion, with interacting high-spin states without negative metric is addressed. 41 references, 8 figures

  4. Oriented open-closed string theory revisited

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1998-01-01

    String theory on D-brane backgrounds is open-closed string theory. Given the relevance of this fact, we give details and elaborate upon our earlier construction of oriented open-closed string field theory. In order to incorporate explicitly closed strings, the classical sector of this theory is open strings with a homotopy associative A ∞ algebraic structure. We build a suitable Batalin-Vilkovisky algebra on moduli spaces of bordered Ricmann surfaces, the construction of which involves a few subtleties arising from the open string punctures and cyclicity conditions. All vertices coupling open and closed strings through disks are described explicitly. Subalgebras of the algebra of surfaces with boundaries are used to discuss symmetries of classical open string theory induced by the closed string sector, and to write classical open string field theory on general closed string backgrounds. We give a preliminary analysis of the ghost-dilaton theorem. copyright 1998 Academic Press, Inc

  5. Multiquark strings

    International Nuclear Information System (INIS)

    Wang, F.; Chun, W.

    1985-01-01

    The use of basis states described as hadronic (or hadron-hadron) or hidden-colour (or colour-colour) for a system of quarks does not necessarily imply that connected exotic multiquark hadrons do exist. Antisymmetrization of quark wave functions tends to make these descriptions ill defined. It appears necessary to have stable collective structures called strings or bags to provide the physical connections required by quark confinement. The masses of multiquark hadrons can then be estimated by using semplified string, bag and NR potential models. The results turn out to be qualitatively similar in all these models. The stability problem for multiquark strings is briefly discussed

  6. Open string model building

    International Nuclear Information System (INIS)

    Ishibashi, Nobuyuki; Onogi, Tetsuya

    1989-01-01

    Consistency conditions of open string theories, which can be a powerful tool in open string model building, are proposed. By making use of these conditions and assuming a simple prescription for the Chan-Paton factors, open string theories in several backgrounds are studied. We show that 1. there exist a large number of consistent bosonic open string theories on Z 2 orbifolds, 2. SO(32) type I superstring is the unique consistent model among fermionic string theories on the ten-dimensional flat Minkowski space, and 3. with our prescription for the Chan-Paton factors, there exist no consistent open superstring theories on (six-dimensional Minkowski space-time) x (Z 2 orbifold). (orig.)

  7. Progress in string theory research

    CERN Document Server

    2016-01-01

    At the first look, the String Theory seems just an interesting and non-trivial application of the quantum mechanics and the special relativity to vibrating strings. By itself, the quantization of relativistic strings does not call the attention of the particle physicist as a significant paradigm shift. However, when the string quantization is performed by applying the standard rules of the perturbative Quantum Field Theory, one discovers that the strings in certain states have the same physical properties as the gravity in the flat space-time. Chapter one of this book reviews the construction of the thermal bosonic string and D-brane in the framework of the Thermo Field Dynamics (TFD). It briefly recalls the wellknown light-cone quantization of the bosonic string in the conformal gauge in flat space-time, and gives a bird’s eye view of the fundamental concepts of the TFD. Chapter two examines a visual model inspired by string theory, on the system of interacting anyons. Chapter three investigate the late-ti...

  8. String-localized quantum fields

    International Nuclear Information System (INIS)

    Mund, Jens; Santos, Jose Amancio dos; Silva, Cristhiano Duarte; Oliveira, Erichardson de

    2009-01-01

    Full text. The principles of physics admit (unobservable) quantum fields which are localized not on points, but on strings in the sense of Mandelstam: a string emanates from a point in Minkowski space and extends to infinity in some space-like direction. This type of localization might permit the construction of new models, for various reasons: (a) in general, weaker localization implies better UV behaviour. Therefore, the class of renormalizable interactions in the string-localized has a chance to be larger than in the point-localized case; (b) for certain particle types, there are no point-localized (free) quantum fields - for example Anyons in d = 2 + 1, and Wigner's massless 'infinite spin' particles. For the latter, free string-localized quantum fields have been constructed; (c) in contrast to the point-localized case, string-localization admits covariant vector/tensor potentials for fotons and gravitons in a Hilbert space representation with positive energy. We shall present free string-localized quantum fields for various particle types, and some ideas about the perturbative construction of interacting string-localized fields. A central point will be an analogue of gauge theories, completely within a Hilbert space and without ghosts, trading gauge dependence with dependence on the direction of the localization string. In order to discuss renormalizability (item (a)), methods from microlocal analysis (wave front set and scaling degree) are needed. (author)

  9. Thermodynamics of quantum strings

    CERN Document Server

    Morgan, M J

    1994-01-01

    A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)

  10. Dynamics of Carroll strings

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Biel [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Gomis, Joaquim [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Department of Physics, Faculty of Science, Chulalongkorn University,Bangkok 10330 (Thailand); Pons, Josep M. [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain)

    2016-07-11

    We construct the canonical action of a Carroll string doing the Carroll limit of a canonical relativistic string. We also study the Killing symmetries of the Carroll string, which close under an infinite dimensional algebra. The tensionless limit and the Carroll p-brane action are also discussed.

  11. Cosmic strings and cosmic structure

    International Nuclear Information System (INIS)

    Albrecht, A.; Brandenberger, R.; Turok, N.

    1987-01-01

    The paper concerns the application of the theory of cosmic strings to explain the structure of the Universe. The formation of cosmic strings in the early Universe is outlined, along with the Big Bang theory, Grand Unified theories, and the first three minutes after the Big Bang. A description is given of the shaping of the Universe by cosmic strings, including the evolution of the string. The possibility for direct observation of cosmic strings is discussed. (U.K.)

  12. Random surfaces and strings

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-08-01

    The theory of strings is the theory of random surfaces. I review the present attempts to regularize the world sheet of the string by triangulation. The corresponding statistical theory of triangulated random surfaces has a surprising rich structure, but the connection to conventional string theory seems non-trivial. (orig.)

  13. Hagedorn Behavior of Little String Theories from string corrections to NS5-branes

    DEFF Research Database (Denmark)

    Harmark, Troels; Obers, N. A.

    2000-01-01

    We examine the Hagedorn behavior of little string theory using its conjectured duality with near-horizon NS5-branes. In particular, by studying the string-corrected NS5-brane supergravity solution, it is shown that tree-level corrections to the temperature vanish, while the leading one-loop string...... correction generates the correct temperature dependence of the entropy near the Hagedorn temperature. Finally, the Hagedorn behavior of ODp-brane theories, which are deformed versions of little string theory, is considered via their supergravity duals....

  14. Lectures on strings and dualities

    International Nuclear Information System (INIS)

    Vafa, C.

    1997-01-01

    In this set of lectures I review recent developments in string theory emphasizing their non-perturbative aspects and their recently discovered duality symmetries. The goal of the lectures is to make the recent exciting developments in string theory accessible to those with no previous background in string theory who wish to join the research effort in this area. Topics covered include a brief review of string theory, its compactifications, solitons and D-branes, black hole entropy and wed of string dualities. (author)

  15. String GUTs

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1995-01-01

    Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)

  16. String theory and water waves

    International Nuclear Information System (INIS)

    Iyer, Ramakrishnan; Johnson, Clifford V; Pennington, Jeffrey S

    2011-01-01

    We uncover a remarkable role that an infinite hierarchy of nonlinear differential equations plays in organizing and connecting certain c-hat <1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A, A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A, D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.

  17. Macroscopic fundamental strings in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Aharonov, Y; Englert, F; Orloff, J

    1987-12-24

    We show that, when D greater than or equal to 4, theories of closed strings of closed strings in D, non-compact space-time dimensions exhibit a phase transition. The high-temperature phase is characterized by a condensate of arbitrarily long strings with Hausdorff dimension two (area filling curves). We suggest that this stringy phase is the ancestor of the adiabatic era. Fundamental strings could then both drive the inflation and seed, in a way reminiscent of the cosmic string mechanism, the large structures in the universe.

  18. Interpolating string field theories

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1992-01-01

    This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles

  19. Baryon string model

    International Nuclear Information System (INIS)

    Klimenko, S.V.; Kochin, V.N.; Plyushchaj, M.S.; Pron'ko, G.P.; Razumov, A.V.; Samarin, A.V.

    1985-01-01

    Partial solutions to classical equations of three-string motion are considered. Simplest solutions, when three-string center moving with high velocity, are co nsidered. Single-mode solutions are studied. Explicit form of their parametrization is obtained and three-string dynamics visualization is made. Means of graphic packet ''Atom'' were used for visualization. A set of processes for graphic representation of multiparametric functions is developed. Peculiarity of these processes is a wide class of functions, which are represented by parametric, coordinate and functional isolines

  20. String theory compactifications

    CERN Document Server

    Graña, Mariana

    2017-01-01

    The lectures in this book provide graduate students and non-specialist researchers with a concise introduction to the concepts and formalism required to reduce the ten-dimensional string theories to the observable four-dimensional space-time - a procedure called string compactification. The text starts with a very brief introduction to string theory, first working out its massless spectrum and showing how the condition on the number of dimensions arises. It then dwells on the different possible internal manifolds, from the simplest to the most relevant phenomenologically, thereby showing that the most elegant description is through an extension of ordinary Riemannian geometry termed generalized geometry, which was first introduced by Hitchin. Last but not least, the authors review open problems in string phenomenology, such as the embedding of the Standard Model and obtaining de Sitter solutions.

  1. Observation of Motion of Bowed Strings and Resonant Strings in Violin Performances

    Science.gov (United States)

    Matsutani, Akihiro

    2013-10-01

    The motion of a bowed string and a resonant string of a violin were simultaneously observed for the first time. The results of the direct observation of string motion in double stops and harmonics are also presented. The importance of the resonance was experimentally demonstrated from these observations. It is suggested that players should take account of the resonance and ideal Helmholtz motion in violin performances.

  2. Magnetic monopoles without string in the Kaehler-Clifford algebra: a geometrical interpretation

    International Nuclear Information System (INIS)

    Maia Junior, A.; Recami, E.; Rodrigues Junior, W.A.; Rosa, M.A.F.

    1989-01-01

    In substitution for Dirac monopoles with string (and for topological monopoles) we have recently introduced monopoles without string on the basis of a generalized potential, the sum of a vector A and a pseudo-vector sub(γ5)B potential. By making recourse to the Clifford bundle C (τ M,g) [ T sub(x) M,g) = IR sup(1,3); C (T sub(x) M,g) = IR sub(1,3)], which just allows adding together for each x ε M tensors of different ranks, in a previous paper we succeeded in constructing a lagrangian and hamiltonian formalism for interacting monopoles and charges that can be regarded as satisfactory from various points of view. In the present note, after having completed our formalism, we put forth a purely geometrical interpretation of it within the Kaehler-Clifford bundle K (τ sup(*) M

  3. Maximal unbordered factors of random strings

    DEFF Research Database (Denmark)

    Cording, Patrick Hagge; Knudsen, Mathias Bæk Tejs

    2016-01-01

    A border of a string is a non-empty prefix of the string that is also a suffix of the string, and a string is unbordered if it has no border. Loptev, Kucherov, and Starikovskaya [CPM 2015] conjectured the following: If we pick a string of length n from a fixed alphabet uniformly at random...

  4. Non-critical Poincare invariant bosonic string backgrounds and closed string tachyons

    International Nuclear Information System (INIS)

    Alvarez, Enrique; Gomez, Cesar; Hernandez, Lorenzo

    2001-01-01

    A new family of non critical bosonic string backgrounds in arbitrary space-time dimension D and with ISO(1,D-2) Poincare invariance are presented. The metric warping factor and dilaton agree asymptotically with the linear dilaton background. The closed string tachyon equation of motion enjoys, in the linear approximation, an exact solution of 'kink' type interpolating between different expectation values. A renormalization group flow interpretation, based on a closed string tachyon potential of type -T 2 e -T , is suggested

  5. Quantum backreaction in string theory

    International Nuclear Information System (INIS)

    Evnin, O.

    2012-01-01

    There are situations in string theory when a finite number of string quanta induce a significant backreaction upon the background and render the perturbation theory infrared-divergent. The simplest example is D0-brane recoil under an impact by closed strings. A more physically interesting case is backreaction on the evolution of a totally compact universe due to closed string gas. Such situations necessitate qualitative amendments to the traditional formulation of string theory in a fixed classical background. In this contribution to the proceedings of the XVII European Workshop on String Theory in Padua, I review solved problems and current investigations in relation to this kind of quantum backreaction effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. String model of elementary particles

    International Nuclear Information System (INIS)

    Kikkawa, Keiji

    1975-01-01

    Recent development of the models of elementary particles is described. The principal features of elementary particle physics can be expressed by quark model, mass spectrum, the Regge behavior of scattering amplitude, and duality. Venezians showed in 1968 that the B function can express these features. From the analysis of mass spectrum, the string model was introduced. The quantization of the string is performed with the same procedure as the ordinary quantum mechanics. The motion of the string is determined by the Nambu-Goto action integral, and the Schroedinger equation is obtained. Mass spectrum from the string model was same as that from the duality model such as Veneziano model. The interaction between strings can be introduced, and the Lagrangian can be formulated. The relation between the string model and the duality model has been studied. The string model is the first theory of non-local field, and the further development is attractive. The relation between this model and the quark model is still not clear. (Kato, T.)

  7. Inflationary string theory?

    Indian Academy of Sciences (India)

    strongly motivate a detailed search for inflation within string theory, although it has ... between string theory and observations provides a strong incentive for ..... sonably be expected to arise for any system having very many degrees of freedom.

  8. Open strings on AdS2 branes

    International Nuclear Information System (INIS)

    Lee, Peter; Ooguri, Hirosi.; Park, Jongwon; Tannenhauser, Jonathan

    2001-01-01

    We study the spectrum of open strings on AdS 2 branes in AdS 3 in an NS-NS background, using the SL(2,R) WZW model. When the brane carries no fundamental string charge, the open string spectrum is the holomorphic square root of the spectrum of closed strings in AdS 3 . It contains short and long strings, and is invariant under spectral flow. When the brane carries fundamental string charge, the open string spectrum again contains short and long strings in all winding sectors. However, branes with fundamental string charge break half the spectral flow symmetry. This has different implications for short and long strings. As the fundamental string charge increases, the brane approaches the boundary of AdS 3 . In this limit, the induced electric field on the worldvolume reaches its critical value, producing noncommutative open string theory on AdS 2

  9. String Theory for Pedestrians (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  10. String Theory for Pedestrians (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  11. String Theory for Pedestrians (3/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  12. 6d string chains

    Science.gov (United States)

    Gadde, Abhijit; Haghighat, Babak; Kim, Joonho; Kim, Seok; Lockhart, Guglielmo; Vafa, Cumrun

    2018-02-01

    We consider bound states of strings which arise in 6d (1,0) SCFTs that are realized in F-theory in terms of linear chains of spheres with negative self-intersections 1,2, and 4. These include the strings associated to N small E 8 instantons, as well as the ones associated to M5 branes probing A and D type singularities in M-theory or D5 branes probing ADE singularities in Type IIB string theory. We find that these bound states of strings admit (0,4) supersymmetric quiver descriptions and show how one can compute their elliptic genera.

  13. Gravity and strings

    CERN Document Server

    Ortín, Tomás

    2015-01-01

    Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.

  14. Instability of colliding metastable strings

    International Nuclear Information System (INIS)

    Hiramatsu, Takashi; Kobayashi, Tatsuo; Ookouchi, Yutaka; Kyoto Univ.

    2013-04-01

    We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.

  15. String theory in four dimensions

    International Nuclear Information System (INIS)

    Dine, M.

    1988-01-01

    A representative sample of current ideas about how one might develop a string phenomenology is presented. Some of the obstacles which lie in between string theory and contact with experiment are described. It is hoped that this volume will provide the reader with ways of thinking about string theory in four dimensions and provide tools for asking questions about string theory and ordinary physics. 102 refs

  16. Instability of colliding metastable strings

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Takashi [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research

    2013-04-15

    We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.

  17. Are Stopped Strings Preferred in Sad Music?

    OpenAIRE

    David Huron; Caitlyn Trevor

    2017-01-01

    String instruments may be played either with open strings (where the string vibrates between the bridge and a hard wooden nut) or with stopped strings (where the string vibrates between the bridge and a performer's finger pressed against the fingerboard). Compared with open strings, stopped strings permit the use of vibrato and exhibit a darker timbre. Inspired by research on the timbre of sad speech, we test whether there is a tendency to use stopped strings in nominally sad music. Specifica...

  18. Superconducting cosmic strings

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.; Field, G.B.; Spergel, D.N.; Vilenkin, A.

    1986-01-01

    Superconducting loops of string formed in the early Universe, if they are relatively light, can be an important source of relativistic particles in the Galaxy. They can be observed as sources of synchrotron radiation at centimeter wavelengths. We propose a string model for two recently discovered radio sources, the ''thread'' in the galactic center and the source G357.7-0.1, and predict that the filaments in these sources should move at relativistic speeds. We also consider superheavy superconducting strings, and the possibility that they be observed as extragalactic radio sources

  19. Rotating circular strings, and infinite non-uniqueness of black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto

    2004-01-01

    We present new self-gravitating solutions in five dimensions that describe circular strings, i.e., rings, electrically coupled to a two-form potential (as e.g., fundamental strings do), or to a dual magnetic one-form. The rings are prevented from collapsing by rotation, and they create a field analogous to a dipole, with no net charge measured at infinity. They can have a regular horizon, and we show that this implies the existence of an infinite number of black rings, labeled by a continuous parameter, with the same mass and angular momentum as neutral black rings and black holes. We also discuss the solution for a rotating loop of fundamental string. We show how more general rings arise from intersections of branes with a regular horizon (even at extremality), closely related to the configurations that yield the four-dimensional black hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large extremal ring through a microscopic calculation. Finally, we discuss some qualitative ideas for a microscopic understanding of neutral and dipole black rings. (author)

  20. Transverse structure of the QCD string

    International Nuclear Information System (INIS)

    Meyer, Harvey B.

    2010-01-01

    The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length β defined from the slope of its gravitational form factor, is given by (d-1/2πσ)log(β/4r 0 ) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2πσ)log(r/r 0 ). We also obtain predictions for transition form factors among closed-string states.

  1. Disordered chaotic strings

    DEFF Research Database (Denmark)

    Schäfer, Mirko; Greiner, Martin

    2011-01-01

    to chaotic strings. Inhomogeneous coupling weights as well as small-world perturbations of the ring-network structure are discussed. It is found that certain combinations of coupling and network disorder preserve the empirical relationship between chaotic strings and the weak and strong sector...

  2. QCD and string theories

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1990-01-01

    This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality

  3. QCD and hadronic strings

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1989-01-01

    This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)

  4. Tadpole resummations in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    While R-R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in 'wrong' vacua. In this Letter we investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from the tadpole resummation. This result is consistent with the fact that this (unstable) configuration is free from tadpoles of massless closed-string modes, although there is a tadpole of the closed string tachyon. The application of this method to superstring models with broken supersymmetry is also discussed

  5. String bit models for superstring

    International Nuclear Information System (INIS)

    Bergman, O.; Thorn, C.B.

    1995-01-01

    The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D - 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D - 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring

  6. String bit models for superstring

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, O.; Thorn, C.B.

    1995-12-31

    The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.

  7. String-math 2012

    CERN Document Server

    Katz, Sheldon; Klemm, Albrecht; Morrison, David R

    2015-01-01

    This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.

  8. Fast Searching in Packed Strings

    DEFF Research Database (Denmark)

    Bille, Philip

    2009-01-01

    Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear time which is optimal if we can only read one character at the time....... However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let m...... word-RAM with logarithmic word size we present an algorithm using time O(n/log(sigma) n + m + occ) Here occ is the number of occurrences of P in Q. For m = o(n) this improves the O(n) bound...

  9. Comparing double string theory actions

    International Nuclear Information System (INIS)

    De Angelis, L.; Gionti, S.J.G.; Marotta, R.; Pezzella, F.

    2014-01-01

    Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed

  10. Comparing double string theory actions

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L. [Dipartimento di Fisica, Università degli Studi “Federico II” di Napoli,Complesso Universitario Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy); Gionti, S.J.G. [Specola Vaticana, Vatican City, V-00120, Vatican City State and Vatican Observatory Research Group, Steward Observatory, The University Of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 (United States); Marotta, R.; Pezzella, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy)

    2014-04-28

    Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed.

  11. Are Stopped Strings Preferred in Sad Music?

    Directory of Open Access Journals (Sweden)

    David Huron

    2017-01-01

    Full Text Available String instruments may be played either with open strings (where the string vibrates between the bridge and a hard wooden nut or with stopped strings (where the string vibrates between the bridge and a performer's finger pressed against the fingerboard. Compared with open strings, stopped strings permit the use of vibrato and exhibit a darker timbre. Inspired by research on the timbre of sad speech, we test whether there is a tendency to use stopped strings in nominally sad music. Specifically, we compare the proportion of potentially open-to-stopped strings in a sample of slow, minor-mode movements with matched major-mode movements. By way of illustration, a preliminary analysis of Samuel Barber's famous Adagio from his Opus 11 string quartet shows that the selected key (B-flat minor provides the optimum key for minimizing open string tones. However, examination of a broader controlled sample of quartet movements by Haydn, Mozart and Beethoven failed to exhibit the conjectured relationship. Instead, major-mode movements were found to avoid possible open strings more than slow minor-mode movements.

  12. Barotropic Interactions Between Summertime Tropical Cyclones/Sub-Monthly Wave Patterns and Intraseasonal Oscillations over the Western North Pacific

    Directory of Open Access Journals (Sweden)

    Ken-Chung Ko Huang-Hsiung Hsu

    2014-01-01

    Full Text Available This study used the barotropic kinetic energy conversion to record the active eddy-mean flow interaction between the TC/sub-monthly wave pattern (TSM and the intraseasonal oscillation (ISO in the western North Pacific (WNP. Overall, the TSM extracted (lost kinetic energy from (to the cyclonic (anticyclonic circulation of the ISO, which is located in the South China Sea and the Philippine Sea, during the ISO westerly (easterly phase. The phase change in barotropic energy conversion was due to the opposite background flow set up by the ISO. When the climatological-mean southwesterly was retained as part of the background flow in both ISO westerly and easterly phases as in previous studies, the ISO along with the low-frequency background flow always provided kinetic energy to the TSM regardless of the phase. The stronger (weaker southwesterly in the ISO westerly (easterly phase, the stronger (weaker energy conversion to the TSM. Climatological mean flow exclusion showed an upscale feedback in the TSM to the ISO during the easterly phase. However, this feedback was weaker than the downscale conversion from the ISO to the TSM during the westerly phase.

  13. Metastable cosmic strings in realistic models

    International Nuclear Information System (INIS)

    Holman, R.

    1992-01-01

    The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2) L x SU(2) R x U(1) B-L are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed

  14. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    International Nuclear Information System (INIS)

    Caldwell, R.R.; Gates, E.

    1993-05-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and μ, the cosmic string mass-per-unit-length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and μ is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict μ, and therefore limit the viability of the cosmic string large-scale structure scenario

  15. String Chopping and Time-ordered Products of Linear String-localized Quantum Fields

    Science.gov (United States)

    Cardoso, Lucas T.; Mund, Jens; Várilly, Joseph C.

    2018-03-01

    For a renormalizability proof of perturbative models in the Epstein-Glaser scheme with string-localized quantum fields, one needs to know what freedom one has in the definition of time-ordered products of the interaction Lagrangian. This paper provides a first step in that direction. The basic issue is the presence of an open set of n-tuples of strings which cannot be chronologically ordered. We resolve it by showing that almost all such string configurations can be dissected into finitely many pieces which can indeed be chronologically ordered. This fixes the time-ordered products of linear field factors outside a nullset of string configurations. (The extension across the nullset, as well as the definition of time-ordered products of Wick monomials, will be discussed elsewhere).

  16. Geometric phase for a neutral particle in rotating frames in a cosmic string spacetime

    International Nuclear Information System (INIS)

    Bakke, Knut; Furtado, Claudio

    2009-01-01

    We study of the appearance of geometric quantum phases in the dynamics of a neutral particle that possess a permanent magnetic dipole moment in rotating frames in a cosmic string spacetime. The relativistic dynamics of spin-1/2 particle in this frame is investigated and we obtain several contributions to relativistic geometric phase due rotation and topology of spacetime. We also study the geometric phase in the nonrelativistic limit. We obtain effects analogous to the Sagnac effect and Mashhoon effect in a rotating frame in the background of a cosmic string.

  17. Perspectives on string phenomenology

    CERN Document Server

    Kane, Gordon; Kumar, Piyush

    2015-01-01

    The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M Theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model. This book contains perspectives on stri...

  18. Cosmic strings and galaxy formation

    Science.gov (United States)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  19. On the null origin of the ambitwistor string

    Energy Technology Data Exchange (ETDEWEB)

    Casali, Eduardo [Mathematical Institute, University of Oxford,Woodstock Road, Oxford, OX2 6GG (United Kingdom); Tourkine, Piotr [Department of Applied Mathematics and Theoretical Physics,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2016-11-07

    In this paper we present the null string origin of the ambitwistor string. Classically, the null string is the tensionless limit of string theory, and so too is the ambitwistor string. Both have as constraint algebra the Galilean Conformal Algebra in two dimensions. But something interesting happens in the quantum theory since there is an ambiguity in quantizing the null string. We show that, given a particular choice of quantization scheme and a particular gauge, the null string coincides with the ambitwistor string both classically and quantum mechanically. We also show that the same holds for the spinning versions of the null string and ambitwistor string. With these results we clarify the relationship between the ambitwistor string, the null string, the usual string and the Hohm-Siegel-Zwiebach theory.

  20. The QCD Effective String

    International Nuclear Information System (INIS)

    Espriu, D.

    2003-01-01

    QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)

  1. Minimal string theories and integrable hierarchies

    Science.gov (United States)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non

  2. Test particle trajectories near cosmic strings

    Indian Academy of Sciences (India)

    We present a detailed analysis of the motion of test particle in the gravitational field of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.

  3. Worldsheet factorization for twistor-strings

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Tim [Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2014-04-10

    We study the multiparticle factorization properties of two worldsheet theories which — at tree-level — describe the scattering of massless particles in four dimensions: the Berkovits-Witten twistor-string for N=4 super-Yang-Mills coupled to N=4 conformal supergravity, and the Skinner twistor-string for N=8 supergravity. By considering these string-like theories, we can study factorization at the level of the worldsheet before any Wick contractions or integrals have been performed; this is much simpler than considering the factorization properties of the amplitudes themselves. In Skinner’s twistor-string this entails the addition of worldsheet gravity as well as a formalism that represents all external states in a manifestly symmetric way, which we develop explicitly at genus zero. We confirm that the scattering amplitudes of Skinner’s theory, as well as the gauge theory amplitudes for the planar sector of the Berkovits-Witten theory, factorize appropriately at genus zero. In the non-planar sector, we find behavior indicative of conformal gravity in the Berkovits-Witten twistor-string. We contrast factorization in twistor-strings with the story in ordinary string theory, and also make some remarks on higher genus factorization and disconnected prescriptions.

  4. Worldsheet factorization for twistor-strings

    International Nuclear Information System (INIS)

    Adamo, Tim

    2014-01-01

    We study the multiparticle factorization properties of two worldsheet theories which — at tree-level — describe the scattering of massless particles in four dimensions: the Berkovits-Witten twistor-string for N=4 super-Yang-Mills coupled to N=4 conformal supergravity, and the Skinner twistor-string for N=8 supergravity. By considering these string-like theories, we can study factorization at the level of the worldsheet before any Wick contractions or integrals have been performed; this is much simpler than considering the factorization properties of the amplitudes themselves. In Skinner’s twistor-string this entails the addition of worldsheet gravity as well as a formalism that represents all external states in a manifestly symmetric way, which we develop explicitly at genus zero. We confirm that the scattering amplitudes of Skinner’s theory, as well as the gauge theory amplitudes for the planar sector of the Berkovits-Witten theory, factorize appropriately at genus zero. In the non-planar sector, we find behavior indicative of conformal gravity in the Berkovits-Witten twistor-string. We contrast factorization in twistor-strings with the story in ordinary string theory, and also make some remarks on higher genus factorization and disconnected prescriptions

  5. Fermions on the electroweak string

    CERN Document Server

    Moreno, J M; Quirós, Mariano; Moreno, J M; Oaknin, D H; Quiros, M

    1995-01-01

    We construct a simple class of exact solutions of the electroweak theory including the naked Z--string and fermion fields. It consists in the Z--string configuration (\\phi,Z_\\theta), the {\\it time} and z components of the neutral gauge bosons (Z_{0,3},A_{0,3}) and a fermion condensate (lepton or quark) zero mode. The Z--string is not altered (no feed back from the rest of fields on the Z--string) while fermion condensates are zero modes of the Dirac equation in the presence of the Z--string background (no feed back from the {\\it time} and z components of the neutral gauge bosons on the fermion fields). For the case of the n--vortex Z--string the number of zero modes found for charged leptons and quarks is (according to previous results by Jackiw and Rossi) equal to |n|, while for (massless) neutrinos is |n|-1. The presence of fermion fields in its core make the obtained configuration a superconducting string, but their presence (as well as that of Z_{0,3},A_{0,3}) does not enhance the stability of the Z--stri...

  6. The STRING database in 2011

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Franceschini, Andrea; Kuhn, Michael

    2011-01-01

    present an update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING); it provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information. Interactions in STRING are provided with a confidence score...... models, extensive data updates and strongly improved connectivity and integration with third-party resources. Version 9.0 of STRING covers more than 1100 completely sequenced organisms; the resource can be reached at http://string-db.org....

  7. Racetrack inflation and cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Brax, P. [CEA-Saclay, Gif sur Yvette (France). CEA/DSM/SPhT, Unite de Recherche Associee au CNRS, Service de Physique Theorique; Bruck, C. van de [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics; Davis, A.C.; Davis, S.C. [Cambridge Univ. (United Kingdom). DAMTP, Centre for Mathematical Sciences; Jeannerot, R. [Instituut-Lorentz for Theoretical Physics, Leiden (Netherlands); Postma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)

    2008-05-15

    We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)

  8. Racetrack inflation and cosmic strings

    International Nuclear Information System (INIS)

    Brax, P.; Postma, M.

    2008-05-01

    We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)

  9. Geometric derivation of string field theory from first principles: Closed strings and modular invariance

    International Nuclear Information System (INIS)

    Kaku, M.

    1988-01-01

    We present an entirely new approach to closed-string field theory, called Igeometric string field theory R, which avoids the complications found in Becchi-Rouet-Stora-Tyutin string field theory (e.g., ghost counting, infinite overcounting of diagrams, midpoints, lack of modular invariance). Following the analogy with general relativity and Yang-Mills theory, we define a new infinite-dimensional local gauge group, called the unified string group, which uniquely specifies the connection fields, the curvature tensor, the measure and tensor calculus, and finally the action itself. Geometric field theory, when gauge fixed, yields an entirely new class of gauges called the interpolating gauge which allows us to smoothly interpolate between the midpoint gauge and the end-point gauge (''covariantized light-cone gauge''). We can show that geometric string field theory reproduces one copy of the Shapiro-Virasoro model. Surprisingly, after the gauge is broken, a new Iclosed four-string interactionR emerges as the counterpart of the instantaneous four-fermion Coulomb term in QED. This term restores modular invariance and precisely fills the missing region of the complex plane

  10. Cosmological magnetic fields - V

    Indian Academy of Sciences (India)

    Magnetic fields seem to be everywhere that we can look in the universe, from our own ... The field tensor is observer-independent, while the electric and magnetic .... based on string theory [11], in which vacuum fluctuations of the field are ...

  11. String theory as a Lilliputian world

    International Nuclear Information System (INIS)

    Ambjørn, J.; Makeenko, Y.

    2016-01-01

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  12. String theory as a Lilliputian world

    Energy Technology Data Exchange (ETDEWEB)

    Ambjørn, J., E-mail: ambjorn@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); IMAPP, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Makeenko, Y., E-mail: makeenko@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)

    2016-05-10

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  13. Barotropic response in a lake to wind-forcing

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2001-03-01

    Full Text Available We report results gained with a three-dimensional, semi-implicit, semi-spectral model of the shallow water equations on the rotating Earth that allowed one to compute the wind-induced motion in lakes. The barotropic response to unidirectional, uniform winds, Heaviside in time, is determined in a rectangular basin with constant depth, and in Lake Constance, for different values and vertical distributions of the vertical eddy viscosities. It is computationally demonstrated that both the transitory oscillating, as well as the steady state current distribution, depends strongly upon the absolute value and vertical shape of the vertical eddy viscosity. In particular, the excitation and attenuation in time of the inertial waves, the structure of the Ekman spiral, the thickness of the Ekman layer, and the exact distribution and magnitude of the upwelling and downwelling zones are all significantly affected by the eddy viscosities. Observations indicate that the eddy viscosities must be sufficiently small so that the oscillatory behaviour can be adequately modelled. Comparison of the measured current-time series at depth in one position of Lake Constance with those computed on the basis of the measured wind demonstrates fair agreement, including the rotation-induced inertial oscillation.Key words. Oceanography: general (limnology – Oceanography: physical (Coriolis effects; general circulation

  14. Barotropic response in a lake to wind-forcing

    Directory of Open Access Journals (Sweden)

    Y. Wang

    Full Text Available We report results gained with a three-dimensional, semi-implicit, semi-spectral model of the shallow water equations on the rotating Earth that allowed one to compute the wind-induced motion in lakes. The barotropic response to unidirectional, uniform winds, Heaviside in time, is determined in a rectangular basin with constant depth, and in Lake Constance, for different values and vertical distributions of the vertical eddy viscosities. It is computationally demonstrated that both the transitory oscillating, as well as the steady state current distribution, depends strongly upon the absolute value and vertical shape of the vertical eddy viscosity. In particular, the excitation and attenuation in time of the inertial waves, the structure of the Ekman spiral, the thickness of the Ekman layer, and the exact distribution and magnitude of the upwelling and downwelling zones are all significantly affected by the eddy viscosities. Observations indicate that the eddy viscosities must be sufficiently small so that the oscillatory behaviour can be adequately modelled. Comparison of the measured current-time series at depth in one position of Lake Constance with those computed on the basis of the measured wind demonstrates fair agreement, including the rotation-induced inertial oscillation.

    Key words. Oceanography: general (limnology – Oceanography: physical (Coriolis effects; general circulation

  15. Relativistic classical strings. II

    International Nuclear Information System (INIS)

    Galvao, C.A.P.

    1985-01-01

    The interactions of strings with electromagnetic and gravitational fields are extensively discussed. Some concepts of differential geometry are reviewed. Strings in Kaluza-Klein manifolds are studied. (L.C.) [pt

  16. A rotating string

    International Nuclear Information System (INIS)

    Jensen, B.

    1993-06-01

    The author presents a global solution of Einstein's equations which represents a rotating cosmic string with a finite coreradius. The importance of pressure for the generation of closed timelike curves outside the coreregion of such strings is clearly displayed in this model due to the simplicity of the source. 10 refs

  17. The ABCDEFG of Little Strings

    OpenAIRE

    Haouzi, Nathan; Kozçaz, Can

    2017-01-01

    Starting from type IIB string theory on an $ADE$ singularity, the (2,0) little string arises when one takes the string coupling $g_s$ to 0. In this setup, we give a unified description of the codimension-two defects of the little string, for any simple Lie algebra ${\\mathfrak{g}}$. Geometrically, these are D5 branes wrapping 2-cycles of the singularity. Equivalently, the defects are specified by a certain set of weights of $^L {\\mathfrak{g}}$, the Langlands dual of ${\\mathfrak{g}}$. As a firs...

  18. Strings, conformal fields and topology

    International Nuclear Information System (INIS)

    Kaku, Michio

    1991-01-01

    String Theory has advanced at an astonishing pace in the last few years, and this book aims to acquaint the reader with the most active topics of research in the field. Building on the foundations laid in his Introduction to Superstrings, Professor Kaku discusses such topics as the classification of conformal string theories, knot theory, the Yang-Baxter relation, quantum groups, the non-polynominal closed string field theory, matrix models, and topological field theory. Several chapters review the fundamentals of string theory, making the presentation of the material self-contained while keeping overlap with the earlier book to a minimum. The book conveys the vitality of current research in string theory and places readers at its forefront. (orig.) With 40 figs. in 50 parts

  19. Basic concepts of string theory

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph

    2013-01-01

    The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.

  20. String fragmentation; La fragmentation des cordes

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J.; Werner, K. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France)

    1997-10-01

    The classical string model is used in VENUS as a fragmentation model. For the soft domain simple 2-parton strings were sufficient, whereas for higher energies up to LHC, the perturbative regime of the QCD gives additional soft gluons, which are mapped on the string as so called kinks, energy singularities between the leading partons. The kinky string model is chosen to handle fragmentation of these strings by application of the Lorentz invariant area law. The `kinky strings` model, corresponding to the perturbative gluons coming from pQCD, takes into consideration this effect by treating the partons and gluons on the same footing. The decay law is always the Artru-Menessier area law which is the most realistic since it is invariant to the Lorentz and gauge transformations. For low mass strings a manipulation of the rupture point is necessary if the string corresponds already to an elementary particle determined by the mass and the flavor content. By means of the fragmentation model it will be possible to simulate the data from future experiments at LHC and RHIC 3 refs.

  1. Querying and Mining Strings Made Easy

    KAUST Repository

    Sahli, Majed

    2017-10-13

    With the advent of large string datasets in several scientific and business applications, there is a growing need to perform ad-hoc analysis on strings. Currently, strings are stored, managed, and queried using procedural codes. This limits users to certain operations supported by existing procedural applications and requires manual query planning with limited tuning opportunities. This paper presents StarQL, a generic and declarative query language for strings. StarQL is based on a native string data model that allows StarQL to support a large variety of string operations and provide semantic-based query optimization. String analytic queries are too intricate to be solved on one machine. Therefore, we propose a scalable and efficient data structure that allows StarQL implementations to handle large sets of strings and utilize large computing infrastructures. Our evaluation shows that StarQL is able to express workloads of application-specific tools, such as BLAST and KAT in bioinformatics, and to mine Wikipedia text for interesting patterns using declarative queries. Furthermore, the StarQL query optimizer shows an order of magnitude reduction in query execution time.

  2. First quantized noncritical relativistic Polyakov string

    International Nuclear Information System (INIS)

    Jaskolski, Z.; Meissner, K.A.

    1994-01-01

    The first quantization of the relativistic Brink-DiVecchia-Howe-Polyakov (BDHP) string in the range 1 < d 25 is considered. It is shown that using the Polyakov sum over bordered surfaces in the Feynman path integral quantization scheme one gets a consistent quantum mechanics of relativistic 1-dim extended objects in the range 1 < d < 25. In particular, the BDHP string propagator is exactly calculated for arbitrary initial and final string configurations and the Hilbert space of physical states of noncritical BDHP string is explicitly constructed. The resulting theory is equivalent to the Fairlie-Chodos-Thorn massive string model. In contrast to the conventional conformal field theory approach to noncritical string and random surfaces in the Euclidean target space the path integral formulation of the Fairlie-Chodos-Thorn string obtained in this paper does not rely on the principle of conformal invariance. Some consequences of this feature for constructing a consistent relativistic string theory based on the ''splitting-joining'' interaction are discussed. (author). 42 refs, 1 fig

  3. Functional integral approach to string theories

    International Nuclear Information System (INIS)

    Sakita, B.

    1987-01-01

    Fermionic string theory can be made supersymmetric: the superstring. It contains among others mass zero gauge fields of spin 1 and 2. The recent revival of interests in string field theories is due to the recognition of the compactified superstring theory as a viable theory of grandunification of all interactions, especially after Green and Schwarz's discovery of the gauge and gravitational anomaly cancellation in 0(32) superstring theory. New developments include string phenomenology, general discussions of compactification, new models, especially the heterotic string. These are either applications or extensions of string field theories. Although these are very exciting developments, the author limits his attention to the basics of the bosonic string theory

  4. Black string in dRGT massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Tannukij, Lunchakorn [Mahidol University, Department of Physics, Faculty of Science, Bangkok (Thailand); Hanyang University, Department of Physics, Seoul (Korea, Republic of); Naresuan University, The Institute for Fundamental Study, Phitsanulok (Thailand); Wongjun, Pitayuth [Naresuan University, The Institute for Fundamental Study, Phitsanulok (Thailand); Ministry of Education, Thailand Center of Excellence in Physics, Bangkok (Thailand); Ghosh, Suchant G. [Jamia Millia Islamia, Centre of Theoretical Physics, New Delhi (India); University of Kwazulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)

    2017-12-15

    We present a cylindrically symmetric solution, both charged and uncharged, which is known as a black string solution to the nonlinear ghost-free massive gravity found by de Rham, Gabadadze, and Tolley (dRGT). This ''dRGT black string'' can be thought of as a generalization of the black string solution found by Lemos. Moreover, the dRGT black string solution includes other classes of black string solution such as the monopole-black string ones since the graviton mass contributes to the global monopole term as well as the cosmological-constant term. To investigate the solution, we compute mass, temperature, and entropy of the dRGT black string. We found that the existence of the graviton mass drastically affects the thermodynamics of the black string. Furthermore, the Hawking-Page phase transition is found to be possible for the dRGT black string as well as the charged dRGT black string. The dRGT black string solution is thermodynamically stable for r > r{sub c} with negative thermodynamical potential and positive heat capacity while it is unstable for r < r{sub c} where the potential is positive. (orig.)

  5. Strings and quantum gravity

    International Nuclear Information System (INIS)

    Vega, H.J. de

    1990-01-01

    One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)

  6. String Theory in a Nutshell

    CERN Document Server

    Kiritsis, Elias

    2007-01-01

    This book is the essential new introduction to modern string theory, by one of the world's authorities on the subject. Concise, clearly presented, and up-to-date, String Theory in a Nutshell brings together the best understood and most important aspects of a theory that has been evolving since the early 1980s. A core model of physics that substitutes one-dimensional extended ""strings"" for zero-dimensional point-like particles (as in quantum field theory), string theory has been the leading candidate for a theory that would successfully unify all fundamental forces of nature, includin

  7. String theory and quark confinement

    International Nuclear Information System (INIS)

    Polyakov, A.M.

    1998-01-01

    This article is based on a talk given at the ''Strings '97'' conference. It discusses the search for the universality class of confining strings. The key ingredients include the loop equations, the zigzag symmetry, the non-linear renormalization group. Some new tests for the equivalence between gauge fields and strings are proposed. (orig.)

  8. Casimir energy of a nonuniform string

    Science.gov (United States)

    Hadasz, L.; Lambiase, G.; Nesterenko, V. V.

    2000-07-01

    The Casimir energy of a nonuniform string built up from two pieces with different speeds of sound is calculated. A standard procedure of subtracting the energy of an infinite uniform string is applied, the subtraction being interpreted as the renormalization of the string tension. It is shown that in the case of a homogeneous string this method is completely equivalent to zeta renormalization.

  9. A Note on Tensionless Strings in M-Theory

    OpenAIRE

    Davis, K.

    1996-01-01

    In this article we examine the appearance of tensionless strings in M-Theory. We subsequently interpret these tensionless strings in a String Theory context. In particular, we examine tensionless strings appearing in M-Theory on $S^{1}$, M-Theory on $S^{1} / {\\bf Z}_{2}$, and M-Theory on $T^{2}$; we then interpret the appearance of such strings in a String Theory context. Then we reverse this process and examine the appearance of some tensionless strings in String Theory. Subsequently we inte...

  10. Open strings in the SL(2, R) WZWN model with solution for a rigidly rotating string

    DEFF Research Database (Denmark)

    Lomholt, Michael Andersen; Larsen, A.L.

    2003-01-01

    Boundary conditions and gluing conditions for open strings and D-branes in the SL(2, R) WZWN model, corresponding to AdS , are discussed. Some boundary conditions and gluing conditions previously considered in the literature are shown to be incompatible with the variation principle. We then consi......Boundary conditions and gluing conditions for open strings and D-branes in the SL(2, R) WZWN model, corresponding to AdS , are discussed. Some boundary conditions and gluing conditions previously considered in the literature are shown to be incompatible with the variation principle. We...... then consider open string boundary conditions corresponding to a certain field-dependent gluing condition. This allows us to consider open strings with constant energy and angular momentum. Classically, these open strings naturally generalize the open strings in flat Minkowski space. For rigidly rotating open...

  11. Poisson hierarchy of discrete strings

    International Nuclear Information System (INIS)

    Ioannidou, Theodora; Niemi, Antti J.

    2016-01-01

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  12. Basic Concepts of String Theory

    CERN Document Server

    Blumenhagen, Ralph; Theisen, Stefan

    2013-01-01

    The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.

  13. Poisson hierarchy of discrete strings

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

    2016-01-28

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  14. Testing string theory at LHC?

    CERN Multimedia

    CERN. Geneva

    2002-01-01

    A theory with such mathematical beauty cannot be wrong: this is one of the main arguments in favour of string theory, which unifies all known physical theories of fundamental interactions in a single coherent description of the universe. But no one has ever observed strings, not even indirectly, nor the space of extra dimensions where they live. However there are good reasons to believe that the 'hidden' dimensions of string theory may be much larger than what we thought in the past and that they may be within experimental reach in the near future - together with the strings themselves. In my talk, I will give an elementary introduction of string theory and describe the main experimental predictions.Organiser(s): Jasper Kirkby / EP DivisionNote: Tea & coffee will be served at 16.00 hrs.

  15. String theory and quantum gravity '92

    International Nuclear Information System (INIS)

    Harvey, J.; Iengo, R.; Narain, K.S.; Randjbar Daemi, S.; Verlinde, H.

    1993-01-01

    These proceedings of the 1992 Trieste Spring School and Workshop on String Theory and Quantum Gravity contains introductions and overviews of recent work on the use of two-dimensional string inspired models in the study of black holes, a lecture on gravitational scattering at planckian energies, another on the physical properties of higher-dimensional black holes and black strings in string theory, a discussion on N=2 superconformal field theories, a lecture about the application of matrix model techniques to the study of string theory in two dimensions, and an overview of the current status and developments in string field theory. Connections with models in statistical mechanics are also discussed. These proceedings contain seven lectures and ten contributions. Refs and figs

  16. Collisions of cosmic F- and D-strings

    International Nuclear Information System (INIS)

    Jones, N.

    2004-01-01

    Recent theoretical advances and upcoming experimental measurements make the testing of generic predictions of string theory models of cosmology feasible. Brane anti-brane models of inflation within superstring theory are promising as string theory descriptions of the physics of the early universe. While varied in their construction, these models can have the generic and observable consequence that cosmic strings will be abundant in the early universe. This leads to possible detectable effects in the cosmic microwave background, gravitational wave physics and gravitational lensing. Detailed calculations of cosmic string interactions within string theory are presented, in order to distinguish these cosmic strings from those in more conventional theories; these interaction probabilities can be very different from conventional 4-dimension strings, providing the possibility of experimental tests of string theory. (authors)

  17. Strings and superstrings. Electron linear colliders

    International Nuclear Information System (INIS)

    Alessandrini, V.; Bambade, P.; Binetruy, P.; Kounnas, C.; Le Duff, J.; Schwimmer, A.

    1989-01-01

    Basic string theory; strings in interaction; construction of strings and superstrings in arbitrary space-time dimensions; compactification and phenomenology; linear e+e- colliders; and the Stanford linear collider were discussed [fr

  18. Dynamical evolution of cosmic strings

    International Nuclear Information System (INIS)

    Bouchet, F.R.

    1988-01-01

    The author have studied by means of numerical simulations the dynamical evolution of a network of cosmic strings, both in the radiation and matter era. Our basic conclusion is that a scaling solution exists, i.e., the string energy density evolves as t -2 . This means that the process by which long strings dump their energy into closed loops (which can gravitationally radiate away) is efficient enough to prevent the string domination over other forms of energy. This conclusion does not depend on the initial string energy density, nor on the various numerical parameters. On the other hand, the generated spectrum of loop sizes does depend on the value of our numerical lower cutoff (i.e., the minimum length of loop we allow to be chopped off the network). Furthermore, the network evolution is very different from what was assumed before), namely the creation of a few horizon sized loops per horizon volume and per hubble time, which subsequently fragment into about 10 smaller daughter loops. Rather, many tiny loops are directly cut from the network of infinite strings, and it appears that the only fundamental scale (the horizon) has been lost. This is probably because a fundamental ingredient had been overlooked, namely the kinks. These kinks are created in pairs at each intercommutation, and very rapidly, the long strings appear to be very kinky. Thus the number of long strings per horizon is still of the order of a few, but their total length is fairly large. Furthermore, a large number of kinks favors the formation of small loops, and their sizes might well be governed by the kink density along the long strings. Finally, we computed the two-point correlation function of the loops and found significant differences from the work of Turok

  19. Fast searching in packed strings

    DEFF Research Database (Denmark)

    Bille, Philip

    2011-01-01

    Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth–Morris–Pratt algorithm [SIAM J. Comput. 6 (2) (1977) 323–350] solves the string matching problem in linear time which is optimal if we can only read one character...... at the time. However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation....... Let m⩽n be the lengths P and Q, respectively, and let σ denote the size of the alphabet. On a standard unit-cost word-RAM with logarithmic word size we present an algorithm using timeO(nlogσn+m+occ). Here occ is the number of occurrences of P in Q. For m=o(n) this improves the O(n) bound of the Knuth...

  20. Dynamics of strings between walls

    International Nuclear Information System (INIS)

    Eto, Minoru; Fujimori, Toshiaki; Nagashima, Takayuki; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke

    2009-01-01

    Configurations of vortex strings stretched between or ending on domain walls were previously found to be 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) states in N=2 supersymmetric gauge theories in 3+1 dimensions. Among zero modes of string positions, the center of mass of strings in each region between two adjacent domain walls is shown to be non-normalizable whereas the rests are normalizable. We study dynamics of vortex strings stretched between separated domain walls by using two methods, the moduli space (geodesic) approximation of full 1/4 BPS states and the charged particle approximation for string end points in the wall effective action. In the first method we explicitly obtain the effective Lagrangian in the strong coupling limit, which is written in terms of hypergeometric functions, and find the 90 deg. scattering for head-on collision. In the second method the domain wall effective action is assumed to be U(1) N gauge theory, and we find a good agreement between two methods for well-separated strings.

  1. A new approach to strings and superstrings

    International Nuclear Information System (INIS)

    Sparano, G.

    1988-01-01

    The subject of this thesis is a new, more general, action principle for strings, superstrings, and extended objects in any number of dimensions. The origin and motivations for this approach can be found in the context of the study of the symmetries of string theories and, more specifically, are related to the application of K.S.K. (Kirillov, Souriau, Kostant) construction to strings. The main results we find are: (A) A classification of string theories analogous to the classification of relativistic point particles as massive, massless and tachionic with or without spin. Nambu-Goto string and Schild null string emerge as special cases of a more general classification of strings. (B) A new method to introduce spin in strings by using a Wess-Zumino term in the action. (C) Several results are obtained through the study of the configuration space which shows a rich topological structure: for the Nambu-Goto string in any number of dimensions it is found the existence of theta states analogous to the theta-vacua of nonabelian gauge theories. For the closed Schild Null string, in four dimensions, this analysis shows Z2 solitons and the possibility of quantizing the system so that the states are spinorial (have half odd integral spin) even though the Lagrangian consists only of bosonic variables. (D) Unlike Nambu-Goto string, the quantization of Schild Null string is consistent in any number of space-time dimensions. Besides these concrete results, the formalism we introduce will hopefully give also new insights in the problem of the hidden symmetries of the string

  2. Hydroball string sensing system

    International Nuclear Information System (INIS)

    Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.

    1991-01-01

    This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means

  3. Field theory of strings

    International Nuclear Information System (INIS)

    Ramond, P.

    1987-01-01

    We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 -anti L 0 =0 should not be imposed on all the fields of the closed string in the gauge invariant formalism; we show that it can be incorporated in the gauge invariant formalism at the price of being unable to extract the equations of motion from a Langrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. (orig.)

  4. Formation of a high intensity low energy positron string

    Science.gov (United States)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  5. Formation of a high intensity low energy positron string

    International Nuclear Information System (INIS)

    Donets, E.D.; Donets, E.E.; Syresin, E.M.; Itahashi, T.; Dubinov, A.E.

    2004-01-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5x10 9 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production

  6. String theory in four dimensions

    CERN Document Server

    1988-01-01

    ``String Theory in Four Dimensions'' contains a representative collection of papers dealing with various aspects of string phenomenology, including compactifications on smooth manifolds and more general conformal field theories. Together with the lucid introduction by M. Dine, this material gives the reader a good working knowledge of our present ideas for connecting string theory to nature.

  7. One-loop masses of open-string scalar fields in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    In phenomenological models with D-branes, there are in general open-string massless scalar fields, in addition to closed-string massless moduli fields corresponding to the compactification. It is interesting to focus on the fate of such scalar fields in models with broken supersymmetry, because no symmetry forbids their masses. The one-loop effect may give non-zero masses to them, and in some cases mass squared may become negative, which means the radiative gauge symmetry breaking. In this article we investigate and propose a simple method for calculating the one-loop corrections using the boundary state formalism. There are two categories of massless open-string scalar fields. One consists the gauge potential fields corresponding to compactified directions, which can be understood as scalar fields in uncompactified space-time (related with Wilson line degrees of freedom). The other consists 'gauge potential fields' corresponding to transverse directions of D-brane, which emerge as scalar fields in D-brane world-volume (related with brane moduli fields). The D-brane boundary states with constant backgrounds of these scalar fields are constructed, and one-loop scalar masses are calculated in the closed string picture. Explicit calculations are given in the following four concrete models: one D25-brane with a circle compactification in bosonic string theory, one D9-brane with a circle compactification in superstring theory, D3-branes at a supersymmetric C 3 /Z 3 orbifold singularity, and a model of brane supersymmetry breaking with D3-branes and anti-D7-branes at a supersymmetric C 3 /Z 3 orbifold singularity. We show that the sign of the mass squared has a strong correlation with the sign of the related open-string one-loop vacuum amplitude.

  8. Interacting bosonic strings in subcritical dimensions

    International Nuclear Information System (INIS)

    Hwang, S.; Marnelius, R.

    1988-01-01

    Interaction theory for relativistic bosonic string in spacetime dimensions below the critical value 26 is formulated using BRST techniques with an extra scalar field. One-loop zero-point amplitudes for closed strings are modular invariant. For a free scalar field, vertex operators are constructed leading to, e.g., the old dual N-tachyon tree amplitudes in D < 26. The N-tachyon one-loop expressions contain closed string poles for open strings, and are modular invariant for closed strings. However, the threshold cuts are wrong in D < 25. Only for D=25 to the considered vertex operators lead to consistency. (orig.)

  9. Micro string resonators as temperature sensors

    DEFF Research Database (Denmark)

    Larsen, T.; Schmid, S.; Boisen, A.

    2013-01-01

    The resonance frequency of strings is highly sensitive to temperature. In this work we have investigated the applicability of micro string resonators as temperature sensors. The resonance frequency of strings is a function of the tensile stress which is coupled to temperature by the thermal...... to the low thermal mass of the strings. A temperature resolution of 2.5×10-4 °C has been achieved with silicon nitride strings. The theoretical limit for the temperature resolution of 8×10-8 °C has not been reached yet and requires further improvement of the sensor....

  10. A primer on string theory

    CERN Document Server

    Schomerus, Volker

    2017-01-01

    Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.

  11. Splitting strings on integrable backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Vicedo, Benoit

    2011-05-15

    We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)

  12. T-Duality Group for Open String Theory

    OpenAIRE

    Kajiura, Hiroshige

    2001-01-01

    We study T-duality for open strings on tori $\\T^d$. The general boundary conditions for the open strings are constructed, and it is shown that T-duality group, which preserves the mass spectrum of closed strings, preserves also the mass spectrum of the open strings. The open strings are transformed to those with different boundary conditions by T-duality. We also discuss the T-duality for D-brane mass spectrum, and show that the D-branes and the open strings with both ends on them are transfo...

  13. Integrated hydraulic booster/tool string technology for unfreezing of stuck downhole strings in horizontal wells

    Science.gov (United States)

    Tian, Q. Z.

    2017-12-01

    It is common to use a jarring tool to unfreeze stuck downhole string. However, in a horizontal well, influenced by the friction caused by the deviated section, jarring effect is poor; on the other hand, the forcing point can be located in the horizontal section by a hydraulic booster and the friction can be reduced, but it is time-consuming and easy to break downhole string using a large-tonnage and constant pull force. A hydraulic booster - jar tool string has been developed for unfreezing operation in horizontal wells. The technical solution involves three elements: a two-stage parallel spring cylinder structure for increasing the energy storage capacity of spring accelerators; multiple groups of spring accelerators connected in series to increase the working stroke; a hydraulic booster intensifying jarring force. The integrated unfreezing tool string based on these three elements can effectively overcome the friction caused by a deviated borehole, and thus unfreeze a stuck string with the interaction of the hydraulic booster and the mechanical jar which form an alternatively dynamic load. Experimental results show that the jarring performance parameters of the hydraulic booster-jar unfreezing tool string for the horizontal wells are in accordance with original design requirements. Then field technical parameters were developed based on numerical simulation and experimental data. Field application shows that the hydraulic booster-jar unfreezing tool string is effective to free stuck downhole tools in a horizontal well, and it reduces hook load by 80% and lessens the requirement of workover equipment. This provides a new technology to unfreeze stuck downhole string in a horizontal well.

  14. Introduction to field theory of strings

    International Nuclear Information System (INIS)

    Kikkawa, K.

    1987-01-01

    The field theory of bosonic string is reviewed. First, theory is treated in a light-cone gauge. After a brief survey of the first quantized theory of free string, the second quantization is discussed. All possible interactions of strings are introduced based on a smoothness condition of work sheets swept out by strings. Perturbation theory is developed. Finally a possible way to the manifest covariant formalism is discussed

  15. Windings of twisted strings

    Science.gov (United States)

    Casali, Eduardo; Tourkine, Piotr

    2018-03-01

    Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.

  16. Covariant N-string amplitude

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Sciuto, S.; Nakayama, R.; Petersen, J.L.; Sidenius, J.R.

    1986-11-01

    The BRST-invariant N-Reggeon vertex (for the bosonic string) previously given by us in the operator formulation is considered in more detail. In particular we present a direct derivation from the string path integral. Several crucial symmetry properties found a posteriori before, become a priori clearer in this formulation. A number of delicate points related to zero modes, cut off procedures and normal ordering prescriptions are treated in some detail. The old technique of letting the string field acquire a small dimension ε/2 → 0 + is found especially elegant. (orig.)

  17. A disintegrating cosmic string

    International Nuclear Information System (INIS)

    Griffiths, J B; Docherty, P

    2002-01-01

    We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave. (letter to the editor)

  18. Stable Dyonic Thin-Shell Wormholes in Low-Energy String Theory

    Directory of Open Access Journals (Sweden)

    Ali Övgün

    2017-01-01

    Full Text Available Considerable attention has been devoted to the wormhole physics in the past 30 years by exploring the possibilities of finding traversable wormholes without the need for exotic matter. In particular, the thin-shell wormhole formalism has been widely investigated by exploiting the cut-and-paste technique to merge two space-time regions and to research the stability of these wormholes developed by Visser. This method helps us to minimize the amount of the exotic matter. In this paper, we construct a four-dimensional, spherically symmetric, dyonic thin-shell wormhole with electric charge Q, magnetic charge P, and dilaton charge Σ, in the context of Einstein-Maxwell-dilaton theory. We have applied Darmois-Israel formalism and the cut-and-paste method by joining together two identical space-time solutions. We carry out the dyonic thin-shell wormhole stability analyses by using a linear barotropic gas, Chaplygin gas, and logarithmic gas for the exotic matter. It is shown that, by choosing suitable parameter values as well as equation of state parameter, under specific conditions, we obtain a stable dyonic thin-shell wormhole solution. Finally, we argue that the stability domain of the dyonic thin-shell wormhole can be increased in terms of electric charge, magnetic charge, and dilaton charge.

  19. Strings for quantumchromodynamics

    International Nuclear Information System (INIS)

    Schomerus, V.

    2007-04-01

    During the last decade, intriguing dualities between gauge and string theory have been found and explored. they provide a novel window on strongly couplde gauge physics, including QCD-like models. Based on a short historical review of modern string theory, we explain how so-called AdS/CFT dualities emerged at the end of the 1990s. Some of their concrete implications and remarkable recent progress are then illustrated for the simplest example, namely the multicolor limit of N=4 SYM theory in four dimensions. We end with a few comments on existing extensions to more realistic models and applications, in particular to the sQGP. This text is meant as a non-technical introduction to gauge/string dualities for (particle) physicists. (orig.)

  20. Strings for quantumchromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, V.

    2007-04-15

    During the last decade, intriguing dualities between gauge and string theory have been found and explored. they provide a novel window on strongly couplde gauge physics, including QCD-like models. Based on a short historical review of modern string theory, we explain how so-called AdS/CFT dualities emerged at the end of the 1990s. Some of their concrete implications and remarkable recent progress are then illustrated for the simplest example, namely the multicolor limit of N=4 SYM theory in four dimensions. We end with a few comments on existing extensions to more realistic models and applications, in particular to the sQGP. This text is meant as a non-technical introduction to gauge/string dualities for (particle) physicists. (orig.)

  1. Application of a compressible flow solver and barotropic cavitation model for the evaluation of the suction head in a low specific speed centrifugal pump impeller channel

    International Nuclear Information System (INIS)

    Limbach, P; Müller, T; Skoda, R

    2015-01-01

    Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model. (paper)

  2. Superconducting cosmic string loops as sources for fast radio bursts

    Science.gov (United States)

    Cao, Xiao-Feng; Yu, Yun-Wei

    2018-01-01

    The cusp burst radiation of superconducting cosmic string (SCS) loops is thought to be a possible origin of observed fast radio bursts with the model-predicted radiation spectrum and the redshift- and energy-dependent event rate, we fit the observational redshift and energy distributions of 21 Parkes fast radio bursts and constrain the model parameters. It is found that the model can basically be consistent with the observations, if the current on the SCS loops has a present value of ˜1016μ179 /10 esu s-1 and evolves with redshift as an empirical power law ˜(1 +z )-1.3 , where μ17=μ /1017 g cm-1 is the string tension. This current evolution may provide a clue to probe the evolution of the cosmic magnetic fields and the gathering of the SCS loops to galaxy clusters.

  3. Remarks on entanglement entropy in string theory

    Science.gov (United States)

    Balasubramanian, Vijay; Parrikar, Onkar

    2018-03-01

    Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.

  4. Is the string theory doomed?

    International Nuclear Information System (INIS)

    Le Meur, H.; Daninos, F.; Bachas, C.

    2007-01-01

    Since its beginning, in the sixties, the string theory has succeeded in overcoming a lot of theoretical difficulties but now the complete absence of experimental validation entertains doubts about its ability to represent the real world and questions its hegemony in today's theoretical physics. Other space-time theories like the twistors, or the non-commutative geometry, or the loop quantum gravity, or the causal dynamics triangulation might begin receiving more attention. Despite all that, the string theory can be given credit for 4 achievements. First, the string theory has provided a consistent quantum description of gravity. Secondly, the string theory has built a theoretical frame that has allowed the unification of the 4 basic interactions. Thirdly, the string theory applied to astrophysics issues has demonstrated that the evaporation of a black hole does not necessarily lead to a loss of information which comforts the universality of the conservation of the quantity of information in any system and as a consequence put a fatal blow to the so-called paradox observed in black holes. Fourthly, the string theory has given a new and original meaning on the true nature of space-time. (A.C.)

  5. Introduction to string theory

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    I will present a simple and non-technical overview of string theory, aimed for non-experts who like to get some idea what string theory is about. Besides introductory material, I intend to cover also some of the more recent developments.

  6. Unification of string dualities

    International Nuclear Information System (INIS)

    Sen, A.

    1997-01-01

    We argue that all conjectured dualities involving various string, M- and F-theory compactifications can be 'derived' from the conjectured duality between type I and SO(32) heterotic string theory, T-dualities and the definition of M-and F-theories. (orig.)

  7. Hosotani model in closed string theory

    International Nuclear Information System (INIS)

    Shiraishi, Kiyoshi.

    1988-11-01

    Hosotani mechanism in the closed string theory with current algebra symmetry is described by the (old covariant) operator method. We compare the gauge symmetry breaking mechanism in a string theory which has SU(2) symmetry with the one in an equivalent compactified closed string theory. We also investigate the difference between Hosotani mechanism and Higgs mechanism in closed string theories by calculation of a fourpoint amplitude of 'Higgs' bosons at tree level. (author)

  8. ((F, D1), D3) bound state, S-duality and noncommutative open string/Yang-Mills theory

    International Nuclear Information System (INIS)

    Lu, J.X.; Roy, S.; Singh, H.

    2000-01-01

    We study decoupling limits and S-dualities for noncommutative open string/Yang-Mills theory in a gravity setup by considering an SL(2,Z) invariant supergravity solution of the form ((F, D1), D3) bound state of type IIB string theory. This configuration can be regarded as D3-branes with both electric and magnetic fields turned on along one of the spatial directions of the brane and preserves half of the space-time supersymmetries of the string theory. Our study indicates that there exists a decoupling limit for which the resulting theory is an open string theory defined in a geometry with noncommutativity in both space-time and space-space directions. We study S-duality of this noncommutative open string (NCOS) and find that the same decoupling limit in the S-dual description gives rise to a space-space noncommutative Yang-Mills theory (NCYM). We also discuss independently the decoupling limit for NCYM in this D3 brane background. Here we find that S-duality of NCYM theory does not always give a NCOS theory. Instead, it can give an ordinary Yang-Mills with a singular metric and an infinitely large coupling. We also find that the open string coupling relation between the two S-duality related theories is modified such that S-duality of a strongly coupled open-string/Yang-Mills theory does not necessarily give a weakly coupled theory. The relevant gravity dual descriptions of NCOS/NCYM are also given. (author)

  9. String breaking with Wilson loops?

    CERN Document Server

    Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de

    2003-01-01

    A convincing, uncontroversial observation of string breaking, when the static potential is extracted from Wilson loops only, is still missing. This failure can be understood if the overlap of the Wilson loop with the broken string is exponentially small. In that case, the broken string ground state will only be seen if the Wilson loop is long enough. Our preliminary results show string breaking in the context of the 3d SU(2) adjoint static potential, using the L\\"uscher-Weisz exponential variance reduction approach. As a by-product, we measure the fundamental SU(2) static potential with improved accuracy and see clear deviations from Casimir scaling.

  10. Architectures and representations for string transduction

    NARCIS (Netherlands)

    Chrupala, Grzegorz

    2015-01-01

    String transduction problems are ubiquitous in natural language processing: they include transliteration, grapheme-to-phoneme conversion, text normalization and translation. String transduction can be reduced to the simpler problems of sequence labeling by expressing the target string as a sequence

  11. Introduction to strings and superstrings

    International Nuclear Information System (INIS)

    Traubenberg, M.R. de.

    1988-01-01

    We discuss the main features on the formulation of string theory that, in a primitive level, describe the hadronic phenomenon of duality. We also study an extension of the models of closed and strings with spin. Then, by using supersymmetry, it is formulated the theory of superstrings and heterotic strings with the aim of unify the fundamental interactions and matter. (M.W.O.) [pt

  12. Singleton strings

    International Nuclear Information System (INIS)

    Engquist, J.; Sundell, P.; Tamassia, L.

    2007-01-01

    The group theoretical structure underlying physics in anti de Sitter (AdS) spacetime is intrinsically different with respect to the flat case, due to the presence of special ultra-short representations, named singletons, that do not admit a flat space limit. The purpose of this collaboration is to exploit this feature in the study of string and brane dynamics in AdS spacetime, in particular while trying to establish a connection between String Theory in AdS backgrounds (in the tensionless limit) and Higher-Spin Gauge Theory. (orig.)

  13. Aspects of some dualities in string theory

    Science.gov (United States)

    Kim, Bom Soo

    AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma

  14. String cosmology modern string theory concepts from the cosmic structure

    CERN Document Server

    2009-01-01

    The field of string cosmology has matured considerably over the past few years, attracting many new adherents to this multidisciplinary Field. This book fills a critical gap by bringing together strains of current research into one single volume. The resulting collection of selected articles presents the latest, ongoing results from renowned experts currently working in the field. This offers the possibility for practitioners to become conversant with many different aspects of string cosmology

  15. Semilocal and electroweak strings

    NARCIS (Netherlands)

    Achucarro, A; Vachaspati, T

    We review a class of non-topological defects in the standard electroweak model, and their implications. Starting with the semilocal string, which provides a counterexample to many well-known properties of topological vortices, we discuss electroweak strings and their stability with and without

  16. Twenty-five questions for string theorists

    Energy Technology Data Exchange (ETDEWEB)

    Binetruy, Pierre; /Orsay, LPT; Kane, G.L.; /Michigan U., MCTP; Lykken, Joseph D.; /Fermilab; Nelson, Brent D.; /Pennsylvania U.

    2005-09-01

    In an effort to promote communication between the formal and phenomenological branches of the high-energy theory community, we provide a description of some important issues in supersymmetric and string phenomenology. We describe each within the context of string constructions, illustrating them with specific examples where applicable. Each topic culminates in a set of questions that we believe are amenable to direct consideration by string theorists, and whose answers we think could help connect string theory and phenomenology.

  17. Nonrelativistic closed string theory

    International Nuclear Information System (INIS)

    Gomis, Jaume; Ooguri, Hirosi

    2001-01-01

    We construct a Galilean invariant nongravitational closed string theory whose excitations satisfy a nonrelativistic dispersion relation. This theory can be obtained by taking a consistent low energy limit of any of the conventional string theories, including the heterotic string. We give a finite first order worldsheet Hamiltonian for this theory and show that this string theory has a sensible perturbative expansion, interesting high energy behavior of scattering amplitudes and a Hagedorn transition of the thermal ensemble. The strong coupling duals of the Galilean superstring theories are considered and are shown to be described by an eleven-dimensional Galilean invariant theory of light membrane fluctuations. A new class of Galilean invariant nongravitational theories of light-brane excitations are obtained. We exhibit dual formulations of the strong coupling limits of these Galilean invariant theories and show that they exhibit many of the conventional dualities of M theory in a nonrelativistic setting

  18. Strings draw theorists together

    International Nuclear Information System (INIS)

    Green, Michael

    2000-01-01

    Theorists are confident that they are closer than ever to finding a quantum theory that unites gravity with the three other fundamental forces in nature. Many of the leading figures in the world of string theory met at the California Institute of Technology in January to discuss recent progress in the field and to reflect on the state of the theory. The enthusiastic mood of the gathering was based on the fact that string theory provides an elegant framework for a unified theory of all the forces and particles in nature, and also gives a consistent quantum-mechanical description of general relativity. String theory, and more precisely superstring theory, describes the assortment of elementary particles such as quarks and leptons, and the gauge bosons responsible for mediating forces in a unified manner as different modes of vibration of a single extended string. This version of the theory also embodies supersymmetry a conjectured symmetry that unifies fermions and bosons. Furthermore, the fact that the string has a fundamental length scale - the ''string length'' - apparently cures the short-distance problems of uniting general relativity with quantum theory. The main problem with the early formulations of superstring theory was that they emphasized the ''perturbative'' point of view, an approximation that describes string-like quantum-mechanical particles moving through classical (that is non quantum-mechanical) space-time. However, very general arguments require that any quantum theory of gravity should also describe space-time geometry in a quantum-mechanical manner. The classical geometry of space-time should then emerge as an approximate description at distance scales much larger than the so-called Planck scale of 10 -33 m. This requires an understanding of the theory beyond the perturbative approximation. It is the quest for this more fundamental description of string theory that has provided the main challenge for string theorists over the past decade. Much

  19. Non-linear σ-models and string theories

    International Nuclear Information System (INIS)

    Sen, A.

    1986-10-01

    The connection between σ-models and string theories is discussed, as well as how the σ-models can be used as tools to prove various results in string theories. Closed bosonic string theory in the light cone gauge is very briefly introduced. Then, closed bosonic string theory in the presence of massless background fields is discussed. The light cone gauge is used, and it is shown that in order to obtain a Lorentz invariant theory, the string theory in the presence of background fields must be described by a two-dimensional conformally invariant theory. The resulting constraints on the background fields are found to be the equations of motion of the string theory. The analysis is extended to the case of the heterotic string theory and the superstring theory in the presence of the massless background fields. It is then shown how to use these results to obtain nontrivial solutions to the string field equations. Another application of these results is shown, namely to prove that the effective cosmological constant after compactification vanishes as a consequence of the classical equations of motion of the string theory. 34 refs

  20. Boundary terms in Nambu-Goto string action

    OpenAIRE

    Hadasz, Leszek; Wegrzyn, Pawel

    1994-01-01

    We investigate classical strings defined by the Nambu-Goto action with the boundary term added. We demonstrate that the latter term has a significant bearing on the string dynamics. It is confirmed that new action terms that depend on higher order derivatives of string coordinates cannot be considered as continuous perturbations from the starting string functional. In the case the boundary term reduces to the Gauss-Bonnet term, a stability analysis is performed on the rotating rigid string so...

  1. Charting the Landscape of Supercritical String Theory

    International Nuclear Information System (INIS)

    Hellerman, Simeon; Swanson, Ian

    2007-01-01

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories

  2. New Results in {mathcal {N}}=2 N = 2 Theories from Non-perturbative String

    Science.gov (United States)

    Bonelli, Giulio; Grassi, Alba; Tanzini, Alessandro

    2018-03-01

    We describe the magnetic phase of SU(N) $\\mathcal{N}=2$ Super Yang-Mills theories in the self-dual Omega background in terms of a new class of multi-cut matrix models. These arise from a non-perturbative completion of topological strings in the dual four dimensional limit which engineers the gauge theory in the strongly coupled magnetic frame. The corresponding spectral determinants provide natural candidates for the tau functions of isomonodromy problems for flat spectral connections associated to the Seiberg-Witten geometry.

  3. E(lementary) Strings in Six-Dimensional Heterotic F-Theory

    OpenAIRE

    Choi, Kang-Sin; Rey, Soo-Jong

    2017-01-01

    Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small in...

  4. D2-D8 system with massive strings and the Lifshitz spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harvendra [Theory Division, Saha Institute of Nuclear Physics,1/AF, Bidhannagar, Kolkata 700064 (India); Homi Bhabha National Institute,Anushakti Nagar, Mumbai 400094 (India)

    2017-04-04

    The Romans’ type IIA supergravity allows fundamental strings to have explicit mass term at the tree level. We show that there exists a (F1,D2,D8) brane configuration which gives rise to Lif{sub 4}{sup (2)}×R{sup 1}×S{sup 5} vacua supported by the massive strings. The presence of D8-branes naturally excites massive fundamental strings. A compactification on circle relates these Lifshitz massive type-IIA background with the axion-flux Lif{sub 4}{sup (2)}×S{sup 1}×S{sup 5} vacua in ordinary type-IIB theory. The massive T-duality in eight dimensions further relates them to yet another (Lif)-tilde {sub 4}{sup (2)}×S{sup 1}×S{sup 5} vacua constituted by (F1,D0,D6) system in ordinary type IIA theory. The latter vacua after compactification to four dimensions generate two ‘distinct’ electric charges and a constant magnetic field, all living over 2-dimensional plane. This somewhat reminds us of a similar set up in quantum Hall systems.

  5. Differential geometry in string models

    International Nuclear Information System (INIS)

    Alvarez, O.

    1986-01-01

    In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold

  6. Hollow micro string based calorimeter device

    DEFF Research Database (Denmark)

    2014-01-01

    positions so as to form a free released double clamped string in-between said two longitudinally distanced positions said micro-channel string comprising a microfluidic channel having a closed cross section and extending in the longitudinal direction of the hollow string, acoustical means adapted...

  7. Experimenting with string musical instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  8. Final Report: "Strings 2014"

    Energy Technology Data Exchange (ETDEWEB)

    Witten, Edward

    2015-10-21

    The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.

  9. String Formatting Considered Harmful for Novice Programmers

    Science.gov (United States)

    Hughes, Michael C.; Jadud, Matthew C.; Rodrigo, Ma. Mercedes T.

    2010-01-01

    In Java, "System.out.printf" and "String.format" consume a specialised kind of string commonly known as a format string. In our study of first-year students at the Ateneo de Manila University, we discovered that format strings present a substantial challenge for novice programmers. Focusing on their first laboratory we found…

  10. Strings and fundamental physics

    International Nuclear Information System (INIS)

    Baumgartl, Marco; Brunner, Ilka; Haack, Michael

    2012-01-01

    The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)

  11. Strings and fundamental physics

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartl, Marco [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Brunner, Ilka; Haack, Michael (eds.) [Muenchen Univ. (Germany). Fakultaet fuer Physik

    2012-07-01

    The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)

  12. Spin chains and string theory.

    Science.gov (United States)

    Kruczenski, Martin

    2004-10-15

    Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.

  13. Dyonic black hole in heterotic string theory

    International Nuclear Information System (INIS)

    Jatkar, D.P.; Mukherji, S.

    1997-01-01

    We study some features of the dyonic black hole solution in heterotic string theory on a six-torus. This solution has 58 parameters. Of these, 28 parameters denote the electric charge of the black hole, another 28 correspond to the magnetic charge, and the other two parameters are the mass and the angular momentum of the black hole. We discuss the extremal limit and show that in various limits it reduces to the known black hole solutions. The solutions saturating the Bogomolnyi bound are identified. An explicit solution is presented for the non-rotating dyonic black hole. (orig.)

  14. Cosmic strings in unified gauge theories

    International Nuclear Information System (INIS)

    Everett, A.E.

    1981-01-01

    Some spontaneously broken gauge theories can give rise to stringlike vacuum structures (vortices). It has been pointed out by Vilenkin that in grand unified theories these can be sufficiently massive to have cosmological implications, e.g., in explaining the formation of galaxies. The circumstances in which such structures occur are examined. They do not occur in the simplest grand unified theories, but can occur in some more elaborate models which have been proposed. The cross section for the scattering of elementary particles by strings is estimated. This is used to evaluate the effect of collisions on the dynamics of a collapsing circular string, with particular attention to the question of whether energy dissipation by collision can reduce the rate of formation of black holes by collapsed strings, which may be unacceptably large in models where strings occur. It is found that the effect of collisions is not important in the case of grand unified strings, although it can be important for lighter strings

  15. Matrix String Theory

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.

  16. Rotating strings in confining AdS/CFT backgrounds

    International Nuclear Information System (INIS)

    Armoni, Adi; Barbon, Jose L.F.; Petkou, Anastasios C.

    2002-01-01

    We study semiclassical rotating strings in AdS/CFT backgrounds that exhibit both confinement and finite-size effects. The energy versus spin dispersion relation for short strings is the expected Regge trajectory behaviour, with the same string tension as is measured by the Wilson loop. Long strings probe the interplay between confinement and finite-size effects. In particular, the dispersion relation for long strings shows a characteristic dependence on the string tension and the finite-size scale. (author)

  17. 2-Dim. gravity and string theory

    International Nuclear Information System (INIS)

    Narain, K.S.

    1991-01-01

    The role of 2-dim. gravity in string theory is discussed. In particular d=25 string theory coupled to 2-d. gravity is described and shown to give rise to the physics of the usual 26-dim. string theory (where one does not quantise 2-d. gravity. (orig.)

  18. Sa’Unine String Orchestra, Orkes Geseknya Indonesia

    Directory of Open Access Journals (Sweden)

    Ranti - Rachmawanti

    2012-04-01

    Full Text Available ABSTRACT   This article explains the result of Sa’Unine String Orchestra as one of Indonesian orchestras in popular culture. Main idea of this research is to uncover and describe the characteristic, func- tion, and role of Sa’Unine String Orchestra within the popular culture in Indonesia. This research used qualitative method with ethnographical approaches to identify all facts that discovered during research. The conclusions of this research show that Sa’Unine String Orchestra moves in two ways, there are; the idealism which had a vision to create a real Indonesian string orchestra and a part of music industry. At the end, these two ways are connected to each other because of the earnings of those. Music industry becomes a support factor which create the idealism of Sa’Unine String Or- chestra to be an Indonesian String Orchestra.   Keywords: String Orchestra, Music, Popular Culture.

  19. On background-independent open-string field theory

    International Nuclear Information System (INIS)

    Witten, E.

    1992-01-01

    A framework for background-independent open-string field theory is proposed. The approach involves using the Batalin-Vilkovisky formalism, in a way suggested by recent developments in closed-string field theory, to implicitly define a gauge-invariant Lagrangian in a hypothetical ''space of all open-string world-sheet theories.'' It is built into the formalism that classical solutions of the string field theory are Becchi-Rouet-Stora-Tyutin- (BRST-) invariant open-string world-sheet theories and that, when expanding around a classical solution, the infinitesimal gauge transformations are generated by the world-sheet BRST operator

  20. Deformation of the cubic open string field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin, E-mail: taejin@kangwon.ac.kr

    2017-05-10

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  1. Deformation of the cubic open string field theory

    International Nuclear Information System (INIS)

    Lee, Taejin

    2017-01-01

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  2. Deformation of the cubic open string field theory

    Directory of Open Access Journals (Sweden)

    Taejin Lee

    2017-05-01

    Full Text Available We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  3. String moduli inflation. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quevedo, Fernando [Cambridge Univ. (United Kingdom). DAMTP/CMS; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2011-06-15

    We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the {eta}-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)

  4. String moduli inflation. An overview

    International Nuclear Information System (INIS)

    Cicoli, Michele; Quevedo, Fernando

    2011-06-01

    We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the η-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)

  5. Cosmological horizons, quintessence and string theory

    International Nuclear Information System (INIS)

    Kaloper, Nemanja

    2003-01-01

    String theory is presently the best candidate for a quantum theory of gravity unified with other forces. It is natural to hope that applications of string theory to cosmology may shed new light on the cosmological conundra, such as singularities, initial conditions, cosmological constant problem and the origin of inflation. Before we can apply string theory to cosmology, there are important conceptual and practical problems which must be addressed. We have reviewed here some of these problems, related to how one defines string theory in a cosmological setting. (author)

  6. Gauge invariant actions for string models

    International Nuclear Information System (INIS)

    Banks, T.

    1986-06-01

    String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs

  7. Joining-Splitting Interaction of Noncritical String

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    The joining-splitting interaction of noncritical bosonic string is analyzed in the light-cone formulation. The Mandelstam method of constructing tree string amplitudes is extended to the bosonic massive string models of the discrete series. The general properties of the Liouville longitudinal excitations which are necessary and sufficient for the Lorentz covariance of the light-cone amplitudes are derived. The results suggest that the covariant and the light-cone approach are equivalent also in the noncritical dimensions. Some aspects of unitarity of interacting noncritical massive string theory are discussed.

  8. Lattice gravity and strings

    International Nuclear Information System (INIS)

    Jevicki, A.; Ninomiya, M.

    1985-01-01

    We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)

  9. Cosmic string induced CMB maps

    International Nuclear Information System (INIS)

    Landriau, M.; Shellard, E. P. S.

    2011-01-01

    We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.

  10. Classical theory of radiating strings

    Science.gov (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  11. Highly excited strings I: Generating function

    Directory of Open Access Journals (Sweden)

    Dimitri P. Skliros

    2017-03-01

    Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.

  12. Exotic configurations for gauge theory strings

    International Nuclear Information System (INIS)

    Yajnik, U.A.

    1987-01-01

    This paper discusses a class of string configurations occuring in nonabelian gauge theories, which are such that a component of the charged scalar field responsible for the string has a nonvanishing expectation value in the core of the string. A systematic procedure is given for setting up the ansatz for such configurations. (orig.)

  13. Test particle trajectories near cosmic strings

    Indian Academy of Sciences (India)

    Gauge strings have their energy concentrated in a very thin tube, the radius of which is of the order of the symmetry- breaking scale whereas the global strings are such that their energy extends to regions far beyond the central core. Strings have an important astrophysical consequence, namely, the double quasar problem ...

  14. Introduction to the theory of strings

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1985-10-01

    These lectures present, from an introductory perspective, some basic aspects of the quantum theory of strings. They treat (1) the kinematics, spectrum, and scattering amplitude of the bosonic string, (2) the spectrum and supersymmetry of Green-Schwarz superstring, and (3) the identification of the underlying gauge invariances of the string theory. 43 refs

  15. The status and future prospects of string theory

    International Nuclear Information System (INIS)

    Gross, D.J.

    1990-01-01

    After a general introduction to the description of the fundamental forces by gauge theories and the difficulties occurring in the attemps of unifying these theories with gravity the reasons for the introduction of string theory are explained. After a description of the construction of a string theory the string theory of gravity is considered. Then the problems of string theory are described. Thereafter elastic scattering in string theory at energies comparable with the Planck mass is considered. Finally some prospects for string theory are discussed. (HSI)

  16. N-loop string amplitude

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1986-06-01

    Work on the derivation of an explicit perturbation series for string and superstring amplitudes is reviewed. The light-cone approach is emphasized, but some work on the Polyakov approach is also mentioned, and the two methods are compared. The calculation of the measure factor is outlined in the interacting-string picture

  17. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, Andrei V

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)

  18. Drill-string design for directional wells

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, R; Corbett, K T [Exxon Production Research Co., Houston, TX (USA)

    1983-01-01

    This paper is concerned with predicting the tension and torsion loads on drill strings in directional wells and with adjusting the string design or well plan to provide adequate strength. Drill-string drag is the incremental force that is required to move the pipe up or down in the hole; torque is the moment required to rotate the pipe. Drag forces are usually given relative to the string weight measured with the string roating but not reciprocating. Measured from the roating string weight, the pick-up drag is usually slightly greater than the slack-off drag. The magnitudes of torque and drag are related in any particular well; high drag forced and exessive torque loads normally occur together. There are a number of phenomena wich contribute to torque and drag. Included are tight hole conditions, sloughing hole, keyseats, differential sticking, cuttings build up due to poor hole cleaning and sliding wellbore friction. With the exception of sliding friction, these causes are associated with problem conditions in the wellbore. Conversely, in wells with good hole conditions, the primary source of torque and drag is sliding friction. This paper is only concerned with the torque and drag caused by sliding friction. The cabability to predict frictional loads on drill pipe has two main benefits. First, more complete knowledge of drill-string loading allows use of improved drill-string design techniques. Drill-string components can be chosen using a systematic approach considering the force involved. Second, deep, highly-deviated wells can be planned to minimize torque and drag. Use of torque and drag as a criteria to select the most appropriate well path will help ensure successful drilling operations to total depth. 1 fig., 2 tabs. (Author).

  19. String theory on the edge

    International Nuclear Information System (INIS)

    Thorlacius, L.

    1989-01-01

    Open string vacuum configurations are described in terms of a one-dimensional field theory on the worldsheet boundary. The one-dimensional path integral has direct physical interpretation as a source term for closed string fields. This means that the vacuum divergences (Mobius infinities) of the path integral must be renormalized correctly. The author shows that reparametrization invariance Ward identities, apart from specifying the equations of motion of spacetime background gauge fields, also serve to fix the renormalization scheme of the vacuum divergences. He argues that vacuum configurations of open strings correspond to Caldeira-Leggett models of dissipative quantum mechanics (DQM) evaluated at a delocalization critical point. This connection reveals that critical DQM will manifest reparametrization invariance (inherited from the conformal invariance of string theory) rather than just scale invariance. This connection should open up new ways of constructing analytic and approximate solutions of open string theory (in particular, topological solitons such as monopoles and instantons). Type I superstring theory gives rise to a supersymmetric boundary field theory. Bose-Fermi cancellation eliminates vacuum divergences but the one-loop beta function remains the same as in the bosonic theory. Reparametrization invariance Ward identities dictate a boundary state normalization which yields consistent string-loop corrections to spacetime equations of motion, in both the periodic and anti-periodic fermion sectors

  20. Regularization of finite temperature string theories

    International Nuclear Information System (INIS)

    Leblanc, Y.; Knecht, M.; Wallet, J.C.

    1990-01-01

    The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)

  1. Mechanical Properties of Nylon Harp Strings

    Science.gov (United States)

    Lynch-Aird, Nicolas; Woodhouse, Jim

    2017-01-01

    Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young’s modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young’s modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings. PMID:28772858

  2. Mechanical Properties of Nylon Harp Strings

    Directory of Open Access Journals (Sweden)

    Nicolas Lynch-Aird

    2017-05-01

    Full Text Available Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young’s modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young’s modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings.

  3. Perturbation theory for quantized string fields

    International Nuclear Information System (INIS)

    Thorn, C.B.; Florida Univ., Gainesville

    1987-01-01

    We discuss the problem of gauge fixing in string field theory. We show that BRST invariance requires the gauge-fixed action to contain terms cubic in the ghost... of ghost of ghost fields. The final BRST invariant gauge-fixed action for the gauge b 0 A=0 is extremely simple: with the proper interpretation (as given in this article), it is essentially the one anticipated earlier in the work of Giddings, Martinec, and Witten in their analysis of the BRST invariant world-sheet approach to string theory. We derive the Feynman rules from this action and explain in detail how the sum over sufaces of the BRST first-quantized string is reproduced. This result depends crucially on the correct assignment for the Grassmann character of the string field and its ghost... of ghost of ghost string fields. If all these fields are unified in a single string field Φ containing all ghost numbers, the requirements is that Φ be uniformly Grassmann odd. Finally, we do some sample calculations which provide some simple checks on our general results. (orig.)

  4. Multi-branes boundary states with open string interactions

    International Nuclear Information System (INIS)

    Pesando, Igor

    2008-01-01

    We derive boundary states which describe configurations of multiple parallel branes with arbitrary open string states interactions in bosonic string theory. This is obtained by a careful discussion of the factorization of open/closed string states amplitudes taking care of cycles needed by ensuring vertices commutativity: in particular the discussion reveals that already at the tree level open string knows of the existence of closed string

  5. Optimal Packed String Matching

    DEFF Research Database (Denmark)

    Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany

    2011-01-01

    In the packed string matching problem, each machine word accommodates – characters, thus an n-character text occupies n/– memory words. We extend the Crochemore-Perrin constantspace O(n)-time string matching algorithm to run in optimal O(n/–) time and even in real-time, achieving a factor – speed...

  6. Regularized strings with extrinsic curvature

    International Nuclear Information System (INIS)

    Ambjoern, J.; Durhuus, B.

    1987-07-01

    We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)

  7. The stability of D-term cosmic strings

    International Nuclear Information System (INIS)

    Collinucci, A.; Smyth, P.; Van Proeyen, A.

    2007-01-01

    In this article, we discuss the semi-classical stability of the D-term string solution of D=4, N=1 supergravity with a constant Fayet-Iliopoulos term. Regardless of the particular theory one is interested in, the stability of cosmic strings is necessary if we hope to observe them. We apply the spinorial Witten-Nester method to prove a positive energy theorem for the D-term cosmic string background with positive deficit angle. We also pay particular attention to the negative deficit angle D-term string, which is known to violate the dominant energy condition. Within the class of string solutions we consider, this violation implies that the negative deficit angle D-term string must have a naked pathology and therefore the positive energy theorem we prove does not apply to it. (orig.)

  8. Stringing physics along

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, M. [Stanford University and the University of California, Santa Cruz (United States)]. E-mail: mriordan@ucsc.edu

    2007-02-15

    In the last few decades, however, physical theory has drifted away from the professional norms advocated by Newton and other enlightenment philosophers. A vast outpouring of hypotheses has occurred under the umbrella of what is widely called string theory. But string theory is not really a 'theory' at all - at least not in the strict sense that scientists generally use the term. It is instead a dense, weedy thicket of hypotheses and conjectures badly in need of pruning. That pruning, however, can come only from observation and experiment, to which string theory (a phrase I will grudgingly continue using) is largely inaccessible. String theory was invented in the 1970s in the wake of the Standard Model of particle physics. Encouraged by the success of gauge theories of the strong, weak and electromagnetic forces, theorists tried to extend similar ideas to energy and distance scales that are orders of magnitude beyond what can be readily observed or measured. The normal, healthy intercourse between theory and experiment - which had led to the Standard Model - has broken down, and fundamental physics now finds itself in a state of crisis. So it is refreshing to hear from a theorist - one who was deeply involved with string theory and championed it in his previous book, Three Roads to Quantum Gravity - that all is not well in this closeted realm. Smolin argues from the outset that viable hypotheses must lead to observable consequences by which they can be tested and judged. String theory by its very nature does not allow for such probing, according to Smolin, and therefore it must be considered as an unprovable conjecture. Towards the end of his book, Smolin suggests other directions fundamental physics can take, particularly in the realm of quantum gravity, to resolve its crisis and reconnect with the observable world. From my perspective, he leans a bit too heavily towards highly speculative ideas such as doubly special relativity, modified Newtonian

  9. String loop divergences and effective lagrangians

    International Nuclear Information System (INIS)

    Fischler, W.; Klebanov, I.; Susskind, L.

    1988-01-01

    We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory, with a covariant cosmological term implied by the counting of string coupling constants. We find an inconsistency between the two. This might be a problem in eliminating divergences from the bosonic string. (orig.)

  10. Quark potential of spontaneous strings

    International Nuclear Information System (INIS)

    German, G.; Kleinert, H.

    1989-01-01

    The authors present some recent developments in string models with an extrinsic curvature term in action. Particular emphasis is placed upon the static quark potential and on the thermal deconfinement properties of spontaneous strings

  11. Study of system-size effects on the emergent magnetic monopoles and Dirac strings in artificial kagome spin ice

    Science.gov (United States)

    Leon, Alejandro

    2012-02-01

    In this work we study the dynamical properties of a finite array of nanomagnets in artificial kagome spin ice at room temperature. The dynamic response of the array of nanomagnets is studied by implementing a ``frustrated celular aut'omata'' (FCA), based in the charge model. In this model, each dipole is replaced by a dumbbell of two opposite charges, which are situated at the neighbouring vertices of the honeycomb lattice. The FCA simulations, allow us to study in real-time and deterministic way, the dynamic of the system, with minimal computational resource. The update function is defined according to the coordination number of vertices in the system. Our results show that for a set geometric parameters of the array of nanomagnets, the system exhibits high density of Dirac strings and high density emergent magnetic monopoles. A study of the effect of disorder in the arrangement of nanomagnets is incorporated in this work.

  12. Heterotic string construction

    International Nuclear Information System (INIS)

    Schellekens, A.N.

    1989-01-01

    In this paper an elementary introduction to the principles of four-dimensional string construction will be given. Although the emphasis is on lattice constructions, almost all results have further, and often quite straightforward generalizations to other constructions. Since heterotic strings look phenomenologically more promising than type-II theories the authors only consider the former, although everything can easily be generalized to type-II theories. Some additional aspects of lattice constructions are discussed, and an extensive review can be found

  13. Derandomizing from random strings

    NARCIS (Netherlands)

    Buhrman, H.; Fortnow, L.; Koucký, M.; Loff, B.

    2010-01-01

    In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R(K). It was previously known that PSPACE, and hence BPP is Turing-reducible to R(K). The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial

  14. Some Comments on the String Singularity of the Yang-Mills-Higgs Theory

    International Nuclear Information System (INIS)

    Lim, Kok-Geng; Teh, Rosy

    2010-01-01

    We are going to make use of the regulated polar angle which had been introduced by Boulware et al.. to show that in the SU(2) Yang-Mills-Higgs theory when the magnetic monopole is carried by the gauge field, the Higgs field does not carry the monopole and vice versa. In the Yang-Mills-Higgs theory, our solution shows that when the parameter ε ≠ 0, the monopole is carried by the gauge field and there is a string singularity in the gauge field. When the parameter ε → 0, the monopole is transferred from the gauge field to the Higgs field and the string singularity disappeared. The solution is only singular at the origin, that is at r = 0 as it becomes the Wu-Yang monopole.

  15. Strings draw theorists together

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge (United Kingdom)

    2000-03-01

    Theorists are confident that they are closer than ever to finding a quantum theory that unites gravity with the three other fundamental forces in nature. Many of the leading figures in the world of string theory met at the California Institute of Technology in January to discuss recent progress in the field and to reflect on the state of the theory. The enthusiastic mood of the gathering was based on the fact that string theory provides an elegant framework for a unified theory of all the forces and particles in nature, and also gives a consistent quantum-mechanical description of general relativity. String theory, and more precisely superstring theory, describes the assortment of elementary particles such as quarks and leptons, and the gauge bosons responsible for mediating forces in a unified manner as different modes of vibration of a single extended string. This version of the theory also embodies supersymmetry a conjectured symmetry that unifies fermions and bosons. Furthermore, the fact that the string has a fundamental length scale - the ''string length'' - apparently cures the short-distance problems of uniting general relativity with quantum theory. The main problem with the early formulations of superstring theory was that they emphasized the ''perturbative'' point of view, an approximation that describes string-like quantum-mechanical particles moving through classical (that is non quantum-mechanical) space-time. However, very general arguments require that any quantum theory of gravity should also describe space-time geometry in a quantum-mechanical manner. The classical geometry of space-time should then emerge as an approximate description at distance scales much larger than the so-called Planck scale of 10{sup -33} m. This requires an understanding of the theory beyond the perturbative approximation. It is the quest for this more fundamental description of string theory that has provided the main challenge for

  16. Document retrieval on repetitive string collections.

    Science.gov (United States)

    Gagie, Travis; Hartikainen, Aleksi; Karhu, Kalle; Kärkkäinen, Juha; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2017-01-01

    Most of the fastest-growing string collections today are repetitive, that is, most of the constituent documents are similar to many others. As these collections keep growing, a key approach to handling them is to exploit their repetitiveness, which can reduce their space usage by orders of magnitude. We study the problem of indexing repetitive string collections in order to perform efficient document retrieval operations on them. Document retrieval problems are routinely solved by search engines on large natural language collections, but the techniques are less developed on generic string collections. The case of repetitive string collections is even less understood, and there are very few existing solutions. We develop two novel ideas, interleaved LCPs and precomputed document lists , that yield highly compressed indexes solving the problem of document listing (find all the documents where a string appears), top- k document retrieval (find the k documents where a string appears most often), and document counting (count the number of documents where a string appears). We also show that a classical data structure supporting the latter query becomes highly compressible on repetitive data. Finally, we show how the tools we developed can be combined to solve ranked conjunctive and disjunctive multi-term queries under the simple [Formula: see text] model of relevance. We thoroughly evaluate the resulting techniques in various real-life repetitiveness scenarios, and recommend the best choices for each case.

  17. Boundary terms in the Nambu-Goto string action

    Science.gov (United States)

    Hadasz, Leszek; Wȩgrzyn, Paweł

    1995-03-01

    We investigate classical strings defined by the Nambu-Goto action with the boundary term added. We demonstrate that the latter term has a significant bearing on the string dynamics. It is confirmed that new action terms that depend on higher order derivatives of string coordinates cannot be considered as continuous perturbations from the starting string functional. In the case when the boundary term reduces to the Gauss-Bonnet term, a stability analysis is performed on the rotating rigid string solution. We determine the most generic solution that the fluctuations grow to. Longitudinal string excitations are found. The Regge trajectories are nonlinear.

  18. Boundary terms in the Nambu-Goto string action

    International Nuclear Information System (INIS)

    Hadasz, L.; Wegrzyn, P.

    1995-01-01

    We investigate classical strings defined by the Nambu-Goto action with the boundary term added. We demonstrate that the latter term has a significant bearing on the string dynamics. It is confirmed that new action terms that depend on higher order derivatives of string coordinates cannot be considered as continuous perturbations from the starting string functional. In the case when the boundary term reduces to the Gauss-Bonnet term, a stability analysis is performed on the rotating rigid string solution. We determine the most generic solution that the fluctuations grow to. Longitudinal string excitations are found. The Regge trajectories are nonlinear

  19. Worldsheet geometries of ambitwistor string

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Kantaro [Department of Physics, the University of Tokyo,Hongo, Bunkyo-ku, Tokyo 133-0022 (Japan)

    2015-06-12

    Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.

  20. Spin chain for quantum strings

    International Nuclear Information System (INIS)

    Beisert, N.

    2005-01-01

    We review and compare the integrable structures in N=4 gauge theory and string theory on AdS 5 x S 5 . Recently, Bethe ansaetze for gauge theory/weak coupling and string theory/strong coupling were proposed to describe scaling dimensions in the su(2) subsector. Here we investigate the Bethe equations for quantum string theory, naively extrapolated to weak coupling. Excitingly, we find a spin chain Hamiltonian similar, but not equal, to the gauge theory dilatation operator. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  1. Remanent magnetization stratigraphy of lunar cores

    Science.gov (United States)

    Banerjee, S. K.; Gingrich, D.; Marvin, J. A.

    1977-01-01

    Depth dependent fluctuations have been observed in the natural remanent magnetizations (NRM) of drive cores and drill strings from Apollo 16 and 17 missions. Partial demagnetization of unstable secondary magnetizations and identification of characteristic error signals from a core which is known to have been recently disturbed allow us to identify and isolate the stable NRM stratigraphy in double drive core 60010/60009 and drill strings 60002-60004. The observed magnetization fluctuations persist after normalization to take into account depth dependent variations in the carriers of stable NRM. We tentatively ascribe the stable NRM stratigraphy to instantaneous records of past magnetic fields at the lunar surface and suggest that the stable NRM stratigraphy technique could develop as a new relative time-stratigraphic tool, to be used with other physical measurements such as relative intensity of ferromagnetic resonance and charged particle track density to study the evolution of the lunar regolith.

  2. Comparison of string models for heavy ion collisions

    International Nuclear Information System (INIS)

    Werner, K.

    1990-01-01

    An important method to explore new domains in physics is to compare new results with extrapolations from known areas. For heavy ion collision this can be done with string models, which extrapolate from light to heavy systems and which also may be used to extrapolate to higher energies. That does not mean that these string models are only background models, one may easily implement new ideas on top of the known aspects, providing much more reliable models than those formed from scratch. All the models to be considered in this paper have in common that they consist of three independent building blocks: (a) geometry, (b) string formation and (c) string fragmentation. The geometry aspect is treated quite similar in all models: nucleons are distributed inside each nucleus according to some standard parameterization of nuclear densities. The nuclei move through each other on a straight line trajectory, with all the nucleon positions being fixed. Whenever a projectile and a target nucleon come close, they interact. Such an interaction results in string formation. In the last step these strings decay into observable hadrons according to some string fragmentation procedure. The three building blocks are independent, so one can combine different methods in an arbitrary manner. Therefore rather than treating the models one after the other, the author discusses the procedures for string formation and string fragmentation as used by the models. He considers string models in a very general sense, so he includes models where the authors never use the word string, but which may be most naturally interpreted as string models and show strong similarities with real string models. Although very important he does not discuss - for time and space reasons - recent developments concerning secondary scattering

  3. Scaling properties of cosmic (super)string networks

    International Nuclear Information System (INIS)

    Martins, C J A P

    2014-01-01

    I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings

  4. 'Hard' effects in Monte Carlo proton-(anti) proton events of soft two-string dual parton model, e+e- annihilation and cascade scaling break of string and the theory of the open string

    International Nuclear Information System (INIS)

    Lugovoj, V.V.

    1998-01-01

    At proton-(anti) proton scattering in the frame of two-string Dual Parton Model the semihard parton-parton interactions can lead to the valence (anti) (di) quark excitations which lead to the production of up to four fast hadron leaders, and the process of soft colour interaction between constituents leads to formation of two primary strings, which decay into secondary hadrons according to a new cascade model of string breaking, which corresponds to the fundamental interaction of the theory of the open string. Therefore the recent results of the theory of QCD open string (about the small deviations of the string stretch direction near the longitudinal direction) are used in the algorithm of string breaking. For the fitted values of the free parameters in the process of decay of mother string into two daughter strings the energy (momentum) distributions for the first and second daughter strings are similar to momentum distributions for valence quark and antiquark in meson. This Monte Carlo model with 9 free parameters agrees well with the multiplicity, pseudorapidity, transverse momentum (up to p T =4GeV) distributions and correlations between the average transverse momentum and multiplicity of secondary particles produced by ISR, SS, Tevatron experiments (√s=27 to 1800 GeV). There is quantitative (and qualitative) explanation for correlations between the average transverse momentum and multiplicity for different types of secondary particles (antiprotons, kaons, pions) at √s =1800 GeV. A cascade model of string breaking is a new Monte Carlo model for hadronization which agrees well with the experimental multiplicity, rapidity, transverse momentum distributions of secondary particles produced by e + e - annihilation at E c.m. =3GeV. (author)

  5. The energy and stability of D-term strings

    International Nuclear Information System (INIS)

    Collinucci, Andres; Smyth, Paul; Proeyen, Antoine van

    2007-01-01

    Cosmic strings derived from string theory, supergravity or any theory of choice should be stable if we hope to observe them. In this paper we consider D-term strings in D = 4 , N = 1 supergravity with a constant Fayet-Iliopoulos term. We show that the positive deficit angle supersymmetric D-term string is non-perturbatively stable by using standard Witten-Nester techniques to prove a positive energy theorem. Particular attention is paid to the negative deficit angle D-term string, which is known to violate the dominant energy condition. Within the class of string solutions we consider, this violation implies that the negative deficit angle D-term string must have a naked pathology and therefore the positive energy theorem we prove does not apply to it. As an interesting aside, we show that the Witten-Nester charge calculates the total gravitational energy of the D-term string without the need for a cut-off, which may not have been expected

  6. A model for string-breaking in QCD

    International Nuclear Information System (INIS)

    Antonov, Dmitri; Del Debbio, Luigi; Di Giacomo, Adriano

    2003-01-01

    We present a model for string breaking based on the existence of chromoelectric flux tubes. We predict the form of the long-range potential and obtain an estimate of the string breaking length. A prediction is also obtained for the behaviour with temperature of the string breaking length near the deconfinement phase transition. We plan to use this model as a guide for a program of study of string breaking on the lattice. (author)

  7. String Resonances at Hadron Colliders

    CERN Document Server

    Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R

    2014-01-01

    [Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...

  8. σ-models and string theories

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.

    1987-01-01

    The propagation of closed bosonic strings interacting with background gravitational and dilaton fields is reviewed. The string is treated as a quantum field theory on a compact 2-dimensional manifold. The question is posed as to how the conditions for the vanishing trace anomaly and the ensuing background field equations may depend on global features of the manifold. It is shown that to the leading order in σ-model perturbation theory the string loop effects do not modify the gravitational and the dilaton field equations. However for the purely bosonic strings new terms involving the modular parameter of the world sheet are induced by quantum effects which can be absorbed into a re-definition of the background fields. The authors also discuss some aspects of several regularization schemes such as dimensional, Pauli-Villars and the proper-time cut off in an appendix

  9. Transplanckian censorship and global cosmic strings

    International Nuclear Information System (INIS)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-01-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections between various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants fM p /f, the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t∼e Δa/M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  10. Transplanckian censorship and global cosmic strings

    Science.gov (United States)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-04-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections be-tween various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants f M p /f , the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t ˜ e Δ a/ M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  11. Transplanckian censorship and global cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Matthew J. [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne,Melbourne, 3010 (Australia); Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts,Amherst, MA 01003 (United States)

    2017-04-21

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections between various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants fM{sub p}/f, the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t∼e{sup Δa/M{sub p}}. For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  12. A universality test of the quantum string Bethe ansatz

    DEFF Research Database (Denmark)

    Freyhult, L.; Kristjansen, C.

    2006-01-01

    We show that the quantum corrected string Bethe ansatz passes an important universality test by demonstrating that it correctly incorporates the non-analytical terms in the string sigma model one-loop correction for rational three-spin strings with two out of the three spins identical. Subsequent......, we use the quantum corrected string Bethe ansatz to predict the exact form of the non-analytic terms for the generic rational three-spin string.......We show that the quantum corrected string Bethe ansatz passes an important universality test by demonstrating that it correctly incorporates the non-analytical terms in the string sigma model one-loop correction for rational three-spin strings with two out of the three spins identical. Subsequently...

  13. Improved algorithms for approximate string matching (extended abstract

    Directory of Open Access Journals (Sweden)

    Papamichail Georgios

    2009-01-01

    Full Text Available Abstract Background The problem of approximate string matching is important in many different areas such as computational biology, text processing and pattern recognition. A great effort has been made to design efficient algorithms addressing several variants of the problem, including comparison of two strings, approximate pattern identification in a string or calculation of the longest common subsequence that two strings share. Results We designed an output sensitive algorithm solving the edit distance problem between two strings of lengths n and m respectively in time O((s - |n - m|·min(m, n, s + m + n and linear space, where s is the edit distance between the two strings. This worst-case time bound sets the quadratic factor of the algorithm independent of the longest string length and improves existing theoretical bounds for this problem. The implementation of our algorithm also excels in practice, especially in cases where the two strings compared differ significantly in length. Conclusion We have provided the design, analysis and implementation of a new algorithm for calculating the edit distance of two strings with both theoretical and practical implications. Source code of our algorithm is available online.

  14. Observing string breaking with Wilson loops

    CERN Document Server

    Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de

    2003-01-01

    An uncontroversial observation of adjoint string breaking is proposed, while measuring the static potential from Wilson loops only. The overlap of the Wilson loop with the broken-string state is small, but non-vanishing, so that the broken-string groundstate can be seen if the Wilson loop is long enough. We demonstrate this in the context of the (2+1)d SU(2) adjoint static potential, using an improved version of the Luscher-Weisz exponential variance reduction. To complete the picture we perform the more usual multichannel analysis with two basis states, the unbroken-string state and the broken-string state (two so-called gluelumps). As by-products, we obtain the temperature-dependent static potential measured from Polyakov loop correlations, and the fundamental SU(2) static potential with improved accuracy. Comparing the latter with the adjoint potential, we see clear deviations from Casimir scaling.

  15. String theory of the Regge intercept.

    Science.gov (United States)

    Hellerman, S; Swanson, I

    2015-03-20

    Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.

  16. Plucked Strings and the Harpsichord

    Science.gov (United States)

    GIORDANO, N.; WINANS, J. P.

    1999-07-01

    The excitation of a harpsichord string when it is set into motion, i.e., plucked, by a plectrum is studied. We find that the amplitude of the resulting string vibration is approximately independent of the velocity with which the key is depressed. This result is in accord with conventional wisdom, but at odds with a recent theoretical model. A more realistic theoretical treatment of the plucking process is then described, and shown to be consistent with our measurements. The experiments reveal several other interesting aspects of the plectrum-string interaction.

  17. Geometry, topology, and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  18. Geometry, topology, and string theory

    International Nuclear Information System (INIS)

    Varadarajan, Uday

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated

  19. On integrable c < 1 open-closed string theory

    International Nuclear Information System (INIS)

    Johnson, C.V.

    1994-01-01

    The integrable structure of open-closed string theories in the (p, q) conformal minimal model backgrounds is presented. The relation between the τ-function of the closed string theory and that of the open-closed string theory is uncovered. The resulting description of the open-closed string theory is shown to fit very naturally into the framework of the sl(q, C) KdV hierarchies. In particular, the twisted bosons which underlie and organise the structure of the closed string theory play a similar role here and may be employed to derive loop equations and correlation function recursion relations for the open-closed strings in a simple way. (orig.)

  20. Counting states of black strings with traveling waves

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Marolf, D.

    1997-01-01

    We consider a family of solutions to string theory which depend on arbitrary functions and contain regular event horizons. They describe six-dimensional extremal black strings with traveling waves and have an inhomogeneous distribution of momentum along the string. The structure of these solutions near the horizon is studied and the horizon area computed. We also count the number of BPS string states at weak coupling whose macroscopic momentum distribution agrees with that of the black string. It is shown that the number of such states is given by the Bekenstein-Hawking entropy of the black string with traveling waves. copyright 1997 The American Physical Society

  1. String field representation of the Virasoro algebra

    Energy Technology Data Exchange (ETDEWEB)

    Mertes, Nicholas [Institute of Physics AS CR,Na Slovance 2, Prague 8 (Czech Republic); Department of Physics, University of Miami,Coral Gables, FL (United States); Schnabl, Martin [Institute of Physics AS CR,Na Slovance 2, Prague 8 (Czech Republic)

    2016-12-29

    We construct a representation of the zero central charge Virasoro algebra using string fields in Witten’s open bosonic string field theory. This construction is used to explore extensions of the KBc algebra and find novel algebraic solutions of open string field theory.

  2. General relativity invariance and string field theory

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Volovich, I.V.

    1987-04-01

    The general covariance principle in the string field theory is considered. The algebraic properties of the string Lie derivative are discussed. The string vielbein and spin connection are introduced and an action invariant under general co-ordinate transformation is proposed. (author). 18 refs

  3. A one-loop test of string duality

    International Nuclear Information System (INIS)

    Vafa, C.

    1995-01-01

    We test Type IIA-heterotic string duality in six dimensions by showing that the sigma model anomaly of the heterotic string is generated by a combination of a tree level and a string one-loop correction on the Type IIA side. (orig.)

  4. String model of black hole microstates

    International Nuclear Information System (INIS)

    Larsen, F.

    1997-01-01

    The statistical mechanics of black holes arbitrarily far from extremality is modeled by a gas of weakly interacting strings. As an effective low-energy description of black holes the string model provides several highly nontrivial consistency checks and predictions. Speculations on a fundamental origin of the model suggest surprising simplifications in nonperturbative string theory, even in the absence of supersymmetry. copyright 1997 The American Physical Society

  5. Dilatation transformation in the string model

    Energy Technology Data Exchange (ETDEWEB)

    Chikashige, Y [Tokyo Univ. (Japan). Coll. of General Education; Hosoda, M; Saito, S

    1975-05-01

    Dilatation transformation is discussed in the string model. We show that it becomes meaningful in the infinite slope limit of Regge trajectories for the motion of a free string. It turns out to be equivalent to the high energy limit of the dual amplitudes, with the Regge slope kept finite, in the case of interacting strings. The scaling phenomenon is explained from this point of view.

  6. A global string with an event horizon

    International Nuclear Information System (INIS)

    Harari, D.; Polychronakos, A.P.

    1990-01-01

    An idealized infinite straight global string in flat space-time has a logarithmically divergent energy per unit length. With gravity included, the standard field theoretical model for a straight global string has been shown to give rise to a repulsive gravitational field, and to develop a curvature singularity at a finite proper distance off the string core. Here we point out that alternative (although probably unrealistic) equations of state for the core of the global string produce a non-singular cylindrically symmetric metric with an event horizon at a finite proper distance off the core, such that timelike observers beyond the horizon are bound to move away from the string. The same geometric structure applies to the standard field theoretical model for a vortex in (2+1)-dimensional gravity. Thermal effects in a quantum field theory around the string due to the presence of the horizon are also calculated. (orig.)

  7. From UV/IR mixing to closed strings

    International Nuclear Information System (INIS)

    Lopez, Esperanza

    2003-01-01

    It was shown in [1] that the leading UV/IR mixing effects in noncommutative gauge theories on D-branes are able to capture information about the closed string spectrum of the parent string theory. The analysis was carried out for D-branes on nonsupersymmetric C 3 /Z N orbifolds of Type IIB. In this paper we consider D-branes on twisted circles compactifications of Type II string theory. We find that the signs of the leading UV/IR mixing effects know about the (mass) 2 gap between the lowest modes in NSNS and RR closed string towers. Moreover, the relevant piece of the field theory effective action can be reproduced purely in the language of closed strings. Remarkably, this approach unifies in a single structure, that of a closed string exchange between D-branes, both the leading planar and nonplanar effects associated to the absence of supersymmetry. (author)

  8. An equivalence between momentum and charge in string theory

    International Nuclear Information System (INIS)

    Horne, J.H.; Horowitz, G.T.; Steif, A.R.

    1992-01-01

    It is shown that for a translationally invariant solution to string theory, spacetime duality interchanges the momentum in the symmetry direction and the axion charge per unit length. As one application, we show explicitly that charged black strings are equivalent to boosted (uncharged) black strings. The extremal black strings (which correspond to the field outside of a fundamental macroscopic string) are equivalent to plane-fronted waves describing strings moving at the speed of light

  9. Correspondence principle for black holes and strings

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Polchinski, J.

    1997-01-01

    For most black holes in string theory, the Schwarzschild radius in string units decreases as the string coupling is reduced. We formulate a correspondence principle, which states that (i) when the size of the horizon drops below the size of a string, the typical black hole state becomes a typical state of strings and D-branes with the same charges, and (ii) the mass does not change abruptly during the transition. This provides a statistical interpretation of black hole entropy. This approach does not yield the numerical coefficient, but gives the correct dependence on mass and charge in a wide range of cases, including neutral black holes. copyright 1997 The American Physical Society

  10. How many N = 4 strings exist?

    International Nuclear Information System (INIS)

    Ketov, S.V.

    1994-09-01

    Possible ways of constructing extended fermionic strings with N=4 world-sheet supersymmetry are reviewed. String theory constraints form, in general, a non-linear quasi(super)conformal algebra, and can have conformal dimensions ≥1. When N=4, the most general N=4 quasi-superconformal algebra to consider for string theory building is D(1, 2; α), whose linearisation is the so-called ''large'' N=4 superconformal algebra. The D(1, 2; α) algebra has su(2)sub(κ + )+su(2)sub(κ - )+u(1) Kac-Moody component, and α=κ - /κ + . We check the Jacobi identities and construct a BRST charge for the D(1, 2; α) algebra. The quantum BRST operator can be made nilpotent only when κ + =κ - =-2. The D(1, 2; 1) algebra is actually isomorphic to the SO(4)-based Bershadsky-Knizhnik non-linear quasi-superconformal algebra. We argue about the existence of a string theory associated with the latter, and propose the (non-covariant) hamiltonian action for this new N=4 string theory. Our results imply the existence of two different N=4 fermionic string theories: the old one based on the ''small'' linear N=4 superconformal algebra and having the total ghost central charge c gh =+12, and the new one with non-linearly realised N=4 supersymmetry, based on the SO(4) quasi-superconformal algebra and having c gh =+6. Both critical string theories have negative ''critical dimensions'' and do not admit unitary matter representations. (orig.)

  11. STRING v10

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Franceschini, Andrea; Wyder, Stefan

    2015-01-01

    , and the available data exhibit notable differences in terms of quality and completeness. The STRING database (http://string-db.org) aims to provide a critical assessment and integration of protein-protein interactions, including direct (physical) as well as indirect (functional) associations. The new version 10...... into families at various levels of phylogenetic resolution. Further improvements in version 10.0 include a completely redesigned prediction pipeline for inferring protein-protein associations from co-expression data, an API interface for the R computing environment and improved statistical analysis...

  12. String figures as mathematics? an anthropological approach to string figure-making in oral tradition societies

    CERN Document Server

    Vandendriessche, Eric

    2015-01-01

    This book addresses the mathematical rationality contained in the making of string figures. It does so by using interdisciplinary methods borrowed from anthropology, mathematics, history and philosophy of mathematics. The practice of string figure-making has long been carried out in many societies, and particularly in those of oral tradition. It consists in applying a succession of operations to a string (knotted into a loop), mostly using the fingers and sometimes the feet, the wrists or the mouth. This succession of operations is intended to generate a final figure. The book explores differ

  13. Observational constraints on the types of cosmic strings

    International Nuclear Information System (INIS)

    Sazhina, Olga S.; Sazhin, Mikhail V.; Scognamiglio, Diana

    2014-01-01

    This paper is aimed at setting observational limits to the number of cosmic strings (Nambu-Goto, Abelian-Higgs, semilocal) and other topological defects (textures). Radio maps of CMB anisotropy, provided by the space mission Planck for various frequencies, were filtered and then processed by the method of convolution with modified Haar functions (MHF) to search for cosmic string candidates. This method was designed to search for solitary strings, without additional assumptions as regards the presence of networks of such objects. The sensitivity of the MHF method is δT ∼ 10 μK in a background of δT ∼ 100 μK. The comparison of these with previously known results on search string network shows that strings can only be semilocal in the range of 1 / 5, with the upper restriction on individual string tension (linear density) of Gμ/c 2 ≤ 7.36 x 10 -7 . The texture model is also legal. There are no strings with Gμ/c 2 > 7.36 x 10 -7 . However, a comparison with the data for the search of non-Gaussian signals shows that the presence of several (up to three) Nambu-Goto strings is also possible. For Gμ/c 2 ≤ 4.83 x 10 -7 the MHF method is ineffective because of unverifiable spurious string candidates. Thus the existence of strings with tensions Gμ/c 2 ≤ 4.83 x 10 -7 is not prohibited but it is beyond the Planck data possibilities. The same string candidates have been found in the WMAP 9-year data. Independence of Planck and WMAP data sets serves as an additional argument to consider those string candidates as very promising. However, the final proof should be given by optical deep surveys. (orig.)

  14. Gauge and general covariance of string interactions

    International Nuclear Information System (INIS)

    Das, S.R.

    1986-01-01

    All fundamental interactions at observable energies seem to arise out of local symmetries - gauge invariances and general coordinate invariance. In usual field theories of point particles these invariances are postulated a priori: the idea is to deduce everything else from the symmetry group and the representation content of the matter fields. In string theories, the situation is rather different. Here the basic principle is reparametrization invariance on the world sheet swept out by the string. The authors consider the simplest string models-those defined on flat Minkowski space-time. The transverse oscillations of the string lead to an infinite tower of modes which may be thought of as the ''particles'' constituting the string. The interacting string theory is defined, in the first quantized formulation, by specifying the interaction of these modes with the string. These interaction vertices must satisfy a basic requirement: when any dual amplitude is factorized only physical states (i.e. those satisfying the Virasoro conditions) must occur as on-mass-shell intermediate states. This means that the vertices respect the reparametrization invariance of the world sheet, since it is this symmetry which eliminates ghost states by virtue of Virasoro conditions

  15. A Platonic Sextet for Strings

    Science.gov (United States)

    Schaffer, Karl

    2012-01-01

    The use of traditional string figures by the Dr. Schaffer and Mr. Stern Dance Ensemble led to experimentation with polyhedral string constructions. This article presents a series of polyhedra made with six loops of three colors which sequence through all the Platonic Solids.

  16. Ultrasensitive string-based temperature sensors

    DEFF Research Database (Denmark)

    Larsen, Tom; Schmid, Silvan; Gronberg, L.

    2011-01-01

    Resonant strings are a promising concept for ultra sensitive temperature detection. We present an analytical model for the sensitivity with which we optimize the temperature response of resonant strings by varying geometry and material. The temperature sensitivity of silicon nitride and aluminum ...

  17. Towards optimal packed string matching

    DEFF Research Database (Denmark)

    Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany

    2014-01-01

    -size string-matching instruction wssm is available in contemporary commodity processors. The other word-size maximum-suffix instruction wslm is only required during the pattern pre-processing. Benchmarks show that our solution can be efficiently implemented, unlike some prior theoretical packed string...

  18. IDE Support of String-Embedded Languages

    Directory of Open Access Journals (Sweden)

    S. Grigorev

    2014-01-01

    Full Text Available Complex information systems are often implemented by using more than one programming language. Sometimes this variety takes a form of one host and one or few string-embedded languages. Textual representation of clauses in a string-embedded language is built at run time by a host program and then analyzed, compiled or interpreted by a dedicated runtime component (database, web browser etc. Most general-purpose programming languages may play the role of the host; one of the most evident examples of the string-embedded language is the dynamic SQL which was specified in ISO SQL standard and is supported by the majority of DBMS. Standard IDE functionality such as code completion or syntax highlighting can really helps the developers who use this technique. There are several tools providing this functionality, but they all process only one concrete string-embedded language and cannot be easily extended for supporting another language. We present a platform which allows to easily create tools for string-embedded language processing.

  19. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, A.V.

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru

  20. Topological Strings and Integrable Hierarchies

    CERN Document Server

    Aganagic, M; Klemm, A D; Marino, M; Vafa, C; Aganagic, Mina; Dijkgraaf, Robbert; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun

    2006-01-01

    We consider the topological B-model on local Calabi-Yau geometries. We show how one can solve for the amplitudes by using W-algebra symmetries which encodes the symmetries of holomorphic diffeomorphisms of the Calabi-Yau. In the highly effective fermionic/brane formulation this leads to a free fermion description of the amplitudes. Furthermore we argue that topological strings on Calabi-Yau geometries provide a unifying picture connecting non-critical (super)strings, integrable hierarchies, and various matrix models. In particular we show how the ordinary matrix model, the double scaling limit of matrix models, and Kontsevich-like matrix model are all related and arise from studying branes in specific local Calabi-Yau three-folds. We also show how A-model topological string on P^1 and local toric threefolds (and in particular the topological vertex) can be realized and solved as B-model topological string amplitudes on a Calabi-Yau manifold.

  1. Electron string phenomenon: physics and use

    International Nuclear Information System (INIS)

    Donets, Evgeny D

    2004-01-01

    Electron string phenomenon arises as a result of phase transition of a state of multiply reflected electron beam to this new discovered state of one component electron plasma and can be easily observed in the reflex mode of EBIS operation. The transition goes via a strong instability, which causes considerable electron energy spread, which in its turn suppresses the instability. Electron string state is a stationary state of hot pure electron plasma, which is heated by injected electron beam and cooled because of electron loses. Electron string is quiet in broad regions of experimental parameters, so that it is used for confinement and ionization of positive ions by electron impact to highly charge states similar to electron beams in EBIS. Application of electron strings instead of electron beams for ion production allows to save about 99% of electric power of electron beam and simultaneously to improve reliability of an ion source considerably. The JINR EBIS 'Krion-2' in the string mode of operation is used for production of N 7+ , Ar 16+ and Fe 24+ ion beams and their acceleration to relativistic energies on the facility of the JINR super conducting one turn injection synchrotron 'Nuklotron'. The tubular electron string possibly can exist and it is under study now theoretically and experiments are prepared now. Estimations show that a Tubular Electron String Ion Source (TESIS) could have up to three orders of magnitude higher ion output then a Linear one (LESIS). In frames of nuclear astrophysics electron strings can be used for research of fusion nuclear reactions at low energies in conditions when both beam and target nuclei do not carry orbital electrons. The project NARITA - Nuclear Astrophysics Researches in an Ion Trap Apparatus is proposed. Polarization effects also can be studied

  2. Electron string phenomenon: physics and use

    Science.gov (United States)

    Donets, Evgeny D.

    2004-01-01

    Electron string phenomenon arises as a result of phase transition of a state of multiply reflected electron beam to this new discovered state of one component electron plasma and can be easily observed in the reflex mode of EBIS operation. The transition goes via a strong instability, which causes considerable electron energy spread, which in its turn suppresses the instability. Electron string state is a stationary state of hot pure electron plasma, which is heated by injected electron beam and cooled because of electron loses. Electron string is quiet in broad regions of experimental parameters, so that it is used for confinement and ionization of positive ions by electron impact to highly charge states similar to electron beams in EBIS. Application of electron strings instead of electron beams for ion production allows to save about 99% of electric power of electron beam and simultaneously to improve reliability of an ion source considerably. The JINR EBIS `Krion-2' in the string mode of operation is used for production of N7+, Ar16+ and Fe24+ ion beams and their acceleration to relativistic energies on the facility of the JINR super conducting one turn injection synchrotron `Nuklotron'. The tubular electron string possibly can exist and it is under study now theoretically and experiments are prepared now. Estimations show that a Tubular Electron String Ion Source (TESIS) could have up to three orders of magnitude higher ion output then a Linear one (LESIS). In frames of nuclear astrophysics electron strings can be used for research of fusion nuclear reactions at low energies in conditions when both beam and target nuclei do not carry orbital electrons. The project NARITA — Nuclear Astrophysics Researches in an Ion Trap Apparatus is proposed. Polarization effects also can be studied.

  3. Rotating and orbiting strings in Dp-brane background

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Sagar; Panigrahi, Kamal L. [Department of Physics, Indian Institute of Technology Kharagpur,721302, Kharagpur (India)

    2015-03-04

    We probe the open fundamental strings in Dp-brane (p=1, 3, 5) backgrounds and find new classes of rotating and orbiting string solutions. We show that for various worldsheet embedding ansatz we get solutions of the string equations of motion that correspond to the well known giant magnon and single spikes, in addition to few new solutions corresponding to the orbiting strings. We make a systematic study of both rigidly rotating and orbiting strings in D1, D3 and D5-brane backgrounds.

  4. Stability of barotropic vortex strip on a rotating sphere.

    Science.gov (United States)

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  5. Stability of barotropic vortex strip on a rotating sphere

    Science.gov (United States)

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  6. Bonder for Solar-Cell Strings

    Science.gov (United States)

    Garwood, G.; Frasch, W.

    1982-01-01

    String bonder for solar-cell arrays eliminates tedious manual assembly procedure that could damage cell face. Vacuum arm picks up face-down cell from cell-inverting work station and transfers it to string conveyor without changing cell orientation. Arm is activated by signal from microprocessor.

  7. Deformations of topological open strings

    NARCIS (Netherlands)

    Hofman, C.; Ma, Whee Ky

    Deformations of topological open string theories are described, with an emphasis on their algebraic structure. They are encoded in the mixed bulk-boundary correlators. They constitute the Hochschild complex of the open string algebra - the complex of multilinear maps on the boundary Hilbert space.

  8. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.

    1999-01-01

    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  9. String dynamics in QCD

    International Nuclear Information System (INIS)

    Gervais, J.L.; Neveu, A.

    1980-01-01

    Recent works of the authors on string interpretation of the Wilson loop operators in QCD are reviewed in a self-contained fashion. Although most of the results habe already appeared in print, some new material is presented in renormalization of the Wilson loop operator and on the use of light-cone expansion to derive a linear string-like equation in light-cone formalism. (orig.)

  10. System and method for damping vibration in a drill string using a magnetorheological damper

    Science.gov (United States)

    Wassell, Mark Ellsworth; Burgess, Daniel E.; Barbely, Jason R.; Thompson, Fred Lamar

    2018-05-22

    A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid. A remanent magnetic field is induced in the valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils except temporarily when changing the amount of damping required. The current to be supplied to the coil for inducing a desired magnetic field in the valve is determined based on the limiting hysteresis curve of the valve and the history of the magnetization of the value using a binary search methodology. The history of the magnetization of the valve is expressed as a series of sets of current and it resulting magnetization at which the current experienced a reversal compared to prior values of the current.

  11. Perturbative string theory in BRST invariant formalism

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Hornfeck, K.; Frau, M.; Lerda, A.

    1988-01-01

    In this talk we present a constructive and very explicit way of calculating multiloop amplitudes in string theories. The main ingredients are the BRST invariant N String Vertex and the BRST invariant twisted propagator. This approach naturally leads to the Schottky parametrization of moduli space in terms of multipliers and fixed points of the g projective transformations which characterize a Riemann surface of genus g. The complete expression (including measure) of the multiloop corrections to the N String Vertex for the bosonic string is exhibited. (orig.)

  12. Two-loop string theory on null compactifications

    International Nuclear Information System (INIS)

    Cove, Henry C.D.; Szabo, Richard J.

    2006-01-01

    We compute the two-loop contributions to the free energy in the null compactification of perturbative string theory at finite temperature. The cases of bosonic, type II and heterotic strings are all treated. The calculation exploits an explicit reductive parametrization of the moduli space of infinite-momentum frame string worldsheets in terms of branched cover instantons. Various arithmetic and physical properties of the instanton sums are described. Applications to symmetric product orbifold conformal field theories and to the matrix string theory conjecture are also briefly discussed

  13. String-mediated electroweak baryogenesis a critical analysis

    CERN Document Server

    Cline, J M; Moore, G D; Riotto, Antonio; Cline, Jim; Espinosa, Jose; Moore, Guy D.; Riotto, Antonio

    1999-01-01

    We study the scenario of electroweak baryogenesis mediated by nonsuperconducting cosmic strings. This idea relies upon electroweak symmetry being restored in a region around the core of the topological defect so that, within this region, the rate of baryon number violation is enhanced. We compute numerically how effectively baryon number is violated along a cosmic string, at an epoch when the baryon number violation rate elsewhere is negligible. We show that B-violation along nonsuperconducting strings is quite inefficient. When proper accounting is taken of the velocity dependence of the baryon number production by strings, it proves too small to explain the observed abundance by at least ten orders of magnitude, whether the strings are in the friction dominated or the scaling regime.

  14. Large-D gravity and low-D strings.

    Science.gov (United States)

    Emparan, Roberto; Grumiller, Daniel; Tanabe, Kentaro

    2013-06-21

    We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α' expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.

  15. Field theory of relativistic strings: I. Trees

    International Nuclear Information System (INIS)

    Kaku, M.; Kikkawa, K.

    1985-01-01

    The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken

  16. Gravitational effects of cosmic strings in Friedmann universes

    International Nuclear Information System (INIS)

    Veeraraghavan, S.

    1988-01-01

    Cosmic strings have been invoked recently as a possible source of the primordial density fluctuations in matter which gave rise to large-scale structure by the process of gravitational collapse. If cosmic strings did indeed seed structure formation then they would also leave an observable imprint upon the microwave and gravitational wave backgrounds, and upon structure on the very largest scales. In this work, the energy-momentum tensor appropriate to a cosmic string configuration in the flat Friedmann universe is first obtained and then used in the linearized Einstein equations to obtain the perturbations of the background space-time and the ambient matter. The calculation is full self-consistent to linear order because it takes into account compensation, or the response of the ambient matter density field to the presence of the string configuration, and is valid for an arbitrarily curved and moving configuration everywhere except very close to a string segment. The single constraint is that the dimensionless string tension Gμ/c 2 must be small compared to unity, but this condition is satisfied in any theory that leads to strings of cosmological relevance. The gravitational wave spectrum and the microwave background temperature fluctuations from a single infinite straight and static string are calculated. The statistically expected fluctuations from an ensemble of such strings with a mean density equal to that found in computer simulations of the evolution of string networks is also calculated. These fluctuations are compared with the observational data on the microwave background to constrain Gμ. Lastly, the role of infinite strings in the formation of the large-scale structure on scales of tens of Megaparsecs observed in deep redshift surveys is examined

  17. String Theory in a Nutshell

    International Nuclear Information System (INIS)

    Skenderis, Kostas

    2007-01-01

    The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to

  18. Perceiving the affordance of string tension for power strokes in badminton: expertise allows effective use of all string tensions.

    Science.gov (United States)

    Zhu, Qin

    2013-01-01

    Affordances mean opportunities for action. These affordances are important for sports performance and relevant to the abilities developed by skilled athletes. In racquet sports such as badminton, different players prefer widely different string tension because it is believed to provide opportunities for effective strokes. The current study examined whether badminton players can perceive the affordance of string tension for power strokes and whether the perception of affordance itself changed as a function of skill level. The results showed that string tension constrained the striking performance of both novice and recreational players, but not of expert players. When perceptual capability was assessed, perceptual mode did not affect perception of the optimal string tension. Skilled players successfully perceived the affordance of string tension, but only experts were concerned about saving energy. Our findings demonstrated that perception of the affordance of string tension in badminton was determined by action abilities. Furthermore, experts could adjust the action to maintain a superior level of performance based on the perception of affordance.

  19. String Theory Volume 1: An Introduction to the Bosonic String and Volume 2: Superstring Theory and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Carlip, S [Department of Physics, University of California, Davis, CA 95616 (United States)

    2006-10-21

    The early 1980s, when I first learned theory, were desperate times for graduate students. We searched frantically for coherent introductions, passing tattered copies of review articles around like samizdat, struggling over obscure references to ancient models of strong interactions, and flocking to lectures-not least those by Joe Polchinski-that promised to really explain what was going on. If only this book had been around, it would have saved much grief. Volume I, The Bosonic String, offers a clear and well organized introduction to bosonic string theory. Topics range from the 'classical' (spectra, vertex operators, consistency conditions, etc.) to the 'modern' (D-branes first appear in an exercise at the end of chapter 1, noncommutative geometry shows up in chapter 8). Polchinski does not hesitate to discuss sophisticated matters-path integral measures, BRST symmetries, etc.-but his approach is pedagogical, and his writing is lucid, if sometimes a bit terse. Chapters end with problems that are sometimes difficult but never impossible. A very useful annotated bibliography directs readers to resources for further study, and a nearly 30-page glossary provides short but clear definitions of key terms. There is much here that will appeal to relativists. Polchinski uses the covariant Polyakov path integral approach to quantization from early on; he clearly distinguishes Weyl invariance from conformal invariance; he is appropriately careful about using complex coordinates on topologically nontrivial manifolds; he keeps the string world sheet metric explicit at the start instead of immediately hiding it by a gauge choice. Volume II includes an elegant introduction to anticommuting coordinates and superconformal transformations. A few conventions may cause confusion-%, Polchinski's stress-energy tensor, for instance, differs from the standard general relativistic definition by a factor of -2{pi}, and while this is briefly mentioned in the text

  20. The tension as perturbative parameter in string theory

    International Nuclear Information System (INIS)

    Gamboa, J.

    1990-01-01

    We propose an approach to string theory where the zero theory is the null string. We find an explicit form of the propagator for the null string in the momentum space. We show that considering the tension as perturbative parameter, the perturbative series is completely summable and we find the propagator of the bosonic open string with tension T. (author) [pt

  1. STRING v9.1

    DEFF Research Database (Denmark)

    Franceschini, A.; Simonovic, M.; Roth, A.

    2013-01-01

    for certain model organisms and functional systems. Currently, protein interactions and associations are annotated at various levels of detail in online resources, ranging from raw data repositories to highly formalized pathway databases. For many applications, a global view of all the available interaction...... data is desirable, including lower-quality data and/or computational predictions. The STRING database (http://string-db.org/) aims to provide such a global perspective for as many organisms as feasible. Known and predicted associations are scored and integrated, resulting in comprehensive protein...... networks covering >1100 organisms. Here, we describe the update to version 9.1 of STRING, introducing several improvements: (i) we extend the automated mining of scientific texts for interaction information, to now also include full-text articles; (ii) we entirely re-designed the algorithm for transferring...

  2. The issue of supersymmetry breaking in strings

    International Nuclear Information System (INIS)

    Binetruy, P.

    1989-12-01

    We discuss the central role that supersymmetry plays in string models, both in spacetime and at the level of the string world-sheet. The problems associated with supersymmetry-breaking are reviewed together with some of the attempts to solve them, in the string as well as the field theory approach

  3. Apparatus and method for vibrating a casing string during cementing

    International Nuclear Information System (INIS)

    Rankin, R.E.; Rankin, K.T.

    1992-01-01

    This patent describes a method of cementing a string of casing in a well. It comprises: securing a vibrating device into the string of casing near the lower end of the string of casing; lowering the string of casing into the well to the desired depth; pumping a cement slurry down the string of casing; causing a portion of the cement slurry being pumped down the string of casing to vibrate the vibrating device; and wherein the vibrating device is secured in the string of casing by cementing the vibrating device within a sub, then securing the sub into the string of casing prior to lowering the string of casing into the well

  4. African Easterly Jet: Barotropic Instability, Waves, and Cyclogenesis

    Science.gov (United States)

    Wu, Man-Li C; Reale, Oreste; Schubert, Siegfried D.; Suarez, Max J.; Thorncroft, Chris D.

    2012-01-01

    This study investigates the structure of the African easterly jet, focusing on instability processes on a seasonal and subseasonal scale, with the goal of identifying features that could provide increased predictability of Atlantic tropical cyclogenesis. The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is used as the main investigating tool. MERRA is compared with other reanalyses datasets from major operational centers around the world and was found to describe very effectively the circulation over the African monsoon region. In particular, a comparison with precipitation datasets from the Global Precipitation Climatology Project shows that MERRA realistically reproduces seasonal precipitation over that region. The verification of the generalized Kuo barotropic instability condition computed from seasonal means is found to have the interesting property of defining well the location where observed tropical storms are detected. This property does not appear to be an artifact of MERRA and is present also in the other adopted reanalysis datasets. Therefore, the fact that the areas where the mean flow is unstable seems to provide a more favorable environment for wave intensification, could be another factor to include-in addition to sea surface temperature, vertical shear, precipitation, the role of Saharan air, and others-among large-scale forcings affecting development and tropical cyclone frequency. In addition, two prominent modes of variability are found based on a spectral analysis that uses the Hilbert-Huang transform: a 2.5-6-day mode that corresponds well to the African easterly waves and also a 6-9-day mode that seems to be associated with tropical- extratropical interaction.

  5. Tensor constructions of open string theories. I. Foundations

    International Nuclear Information System (INIS)

    Gaberdiel, M.R.; Zwiebach, B.

    1997-01-01

    The possible tensor constructions of open string theories are analyzed from first principles. To this end the algebraic framework of open string field theory is clarified, including the role of the homotopy associative A ∞ algebra, the odd symplectic structure, cyclicity, star conjugation, and twist. It is also shown that two string theories are off-shell equivalent if the corresponding homotopy associative algebras are homotopy equivalent in a strict sense. It is demonstrated that a homotopy associative star algebra with a compatible even bilinear form can be attached to an open string theory. If this algebra does not have a space-time interpretation, positivity and the existence of a conserved ghost number require that its cohomology is at degree zero, and that it has the structure of a direct sum of full matrix algebras. The resulting string theory is shown to be physically equivalent to a string theory with a familiar open string gauge group. (orig.)

  6. BPS dynamics of the triple (p,q) string junction

    International Nuclear Information System (INIS)

    Rey, S.-J.; Yee, J.-T.

    1998-01-01

    We study the dynamics of the triple junction of (p,q) strings in type IIB string theory. We probe the tension and mass density of (p,q) strings by studying harmonic fluctuations of the triple junction. We show that they agree perfectly with the BPS formula provided a suitable geometric interpretation of the junction is given. We provide a precise statement of the BPS limit and force-balance property. At weak coupling and sufficiently dense limit, we argue that a (p,q) string embedded in the string network is a 'wiggly string', whose low-energy dynamics can be described via a renormalization group evolved, smooth effective non-relativistic string. We also suggest the possibility that, upon type IIB strings being promoted to the M-theory membrane, there can exist 'evanescent' bound-states at the triple junction in the continuum. (orig.)

  7. Diffusion of massive particles around an Abelian-Higgs string

    Science.gov (United States)

    Saha, Abhisek; Sanyal, Soma

    2018-03-01

    We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.

  8. Confinement and strings in MQCD

    International Nuclear Information System (INIS)

    Hanany, A.; Strassler, M.J.; Zaffaroni, A.

    1998-01-01

    We study aspects of confinement in the M-theory fivebrane version of QCD (MQCD). We show heavy quarks are confined in hadrons (which take the form of membrane-fivebrane bound states) for N=1 and softly broken N=2 SU(N) MQCD. We explore and clarify the transition from the exotic physics of the latter to the standard physics of the former. In particular, the many strings and quark-antiquark mesons found in N=2 field theory by Douglas and Shenker are reproduced. It is seen that in the N=1 limit all but one such meson disappears while all of the strings survive. The strings of softly broken N=2, N=1, and even non-supersymmetric SU(N) MQCD have a common ratio for their tensions as a function of the amount of flux they carry. We also comment on the almost BPS properties of the Douglas-Shenker strings and discuss the brane picture for monopole confinement on N=2 QCD Higgs branches. (orig.)

  9. Pattern recognition and string matching

    CERN Document Server

    Cheng, Xiuzhen

    2002-01-01

    The research and development of pattern recognition have proven to be of importance in science, technology, and human activity. Many useful concepts and tools from different disciplines have been employed in pattern recognition. Among them is string matching, which receives much theoretical and practical attention. String matching is also an important topic in combinatorial optimization. This book is devoted to recent advances in pattern recognition and string matching. It consists of twenty eight chapters written by different authors, addressing a broad range of topics such as those from classifica­ tion, matching, mining, feature selection, and applications. Each chapter is self-contained, and presents either novel methodological approaches or applications of existing theories and techniques. The aim, intent, and motivation for publishing this book is to pro­ vide a reference tool for the increasing number of readers who depend upon pattern recognition or string matching in some way. This includes student...

  10. String Formation Beyond Leading Colour

    CERN Document Server

    Christiansen, Jesper R.

    2015-08-03

    We present a new model for the hadronisation of multi-parton systems, in which colour correlations beyond leading $N_C$ are allowed to influence the formation of confining potentials (strings). The multiplet structure of $SU(3)$ is combined with a minimisation of the string potential energy, to decide between which partons strings should form, allowing also for "baryonic" configurations (e.g., two colours can combine coherently to form an anticolour). In $e^+e^-$collisions, modifications to the leading-colour picture are small, suppressed by both colour and kinematics factors. But in $pp$ collisions, multi-parton interactions increase the number of possible subleading connections, counteracting their naive $1/N_C^2$ suppression. Moreover, those that reduce the overall string lengths are kinematically favoured. The model, which we have implemented in the PYTHIA 8 generator, is capable of reaching agreement not only with the important $\\left(n_\\mathrm{charged})$ distribution but also with measured rates (and ra...

  11. Relativistic string dynamics and its connection with hadron physics

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Nesterenko, V.V.

    1976-01-01

    Physical reasons for using the relativistic string as a hadron model are briefly discussed. The classical and quantum dynamics of the string which is the first example of a relativistic elongated object are presented. The connection between the string and the dual-resonance models, together with the Born-Infeld field model is indicated. As it turned out from the study of the string behaviour in a constant electromagnetic field, even in the classical theory states with the negative square of the string mass - tachyons - appear. As an illustration, a series of examples of classical motion of a free string and a string in an external electromagnetic field from a given initial state is presented

  12. Sigma models and renormalization of string loops

    International Nuclear Information System (INIS)

    Tseytlin, A.A.

    1989-05-01

    An extension of the ''σ-model β-functions - string equations of motion'' correspondence to the string loop level is discussed. Special emphasis is made on how the renormalization group acts in string loops and, in particular, on the renormalizability property of the generating functional Z-circumflex for string amplitudes (related to the σ model partition function integrated over moduli). Renormalization of Z-circumflex at one and two loop order is analyzed in some detail. We also discuss an approach to renormalization based on operators of insertion of topological fixtures. (author). 70 refs

  13. Energy distribution of a magnetic stringy black hole

    International Nuclear Information System (INIS)

    Radinschi, Irina

    2004-01-01

    In this paper we calculate the energy distribution of a magnetic stringy black hole solution in the Landau and Lifshitz and Weinberg prescriptions. It is well-known that a main property of the low energy theory is that there are two different frames in which the features of the space-time may look very different. These two frames are the Einstein frame and the string frame. We choose the string frame to carry out the calculations. We study the dependence of the energy associated with the magnetic stringy black hole solution on its mass M and charge Q. (authors)

  14. Non-perturbative topological strings and conformal blocks

    NARCIS (Netherlands)

    Cheng, M.C.N.; Dijkgraaf, R.; Vafa, C.

    2011-01-01

    We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to

  15. Open Wilson lines as states of closed string

    International Nuclear Information System (INIS)

    Murakami, Koichi; Nakatsu, Toshio

    2003-01-01

    A system of a D-brane in bosonic string theory on a constant B field background is studied in order to obtain further insight into the bulk-boundary duality. Boundary states which describe arbitrary numbers of open-string tachyons and gluons are given. The UV behavior of field theories on the non-commutative world-volume is investigated by using these states. We take the zero-slope limits of the generating functions of one-loop amplitudes of gluons (and open-string tachyons) in which the region of the small open-string proper time is magnified. The existence of a B field allows the limits to be slightly different from the standard field theory limits of a closed-string. These limits enable us to obtained world-volume theories at a trans-string scale. In this limit the generating functions are shown to be factorized into two curved open Wilson lines (and their analogues) and become integrals on the space of paths with a Gaussian distribution around straight lines. These facts indicate the possibility that field theories on the non-commutative world-volume are topological at such a trans-string scale. We also give a proof of the Dhar-Kitazawa conjecture by determining an explicit correspondence between the closed-string states and the paths. Momentum eigenstates of closed-string or momentum loops also play an important role in these analyses. (author)

  16. A Yang-Mills structure for string field theory

    International Nuclear Information System (INIS)

    Tsousheung Tsun

    1990-01-01

    String theorists believe that one way to achieve a fully quantized theory of string is through string field theory. The other way is to study conformal field theory on Riemann surfaces of different genera, which is the subject of many of the talks at this Conference. In a way, string field theory is the more conservative approach, since it aims just to replace the spacetime points of conventional quantum field theory by string, which are extended objects. However, from this point of view string theory has one rather unsatisfactory aspect, in the sense that although it has been very well developed and minutely studied, we are still rather unclear about its basic structure. We can contrast this to both general relativity, which is based on the geometry of spacetime, and to gauge theory, which is about the structure of various natural bundles over spacetime. And yet string theory is supposed to embody both these two essentially geometric theories. To paraphrase Witten, in string theory we seem to have to work backwards to get at the still unknown basic structure. Some joint work with Chan Hong-Mo is reported in an attempt to gain some understanding in that general direction. It seems that one could in some sense consider string field theory as a generalized Yang-Mills theory. This idea is explored. (author)

  17. Efficient Disk-Based Techniques for Manipulating Very Large String Databases

    KAUST Repository

    Allam, Amin

    2017-05-18

    Indexing and processing strings are very important topics in database management. Strings can be database records, DNA sequences, protein sequences, or plain text. Various string operations are required for several application categories, such as bioinformatics and entity resolution. When the string count or sizes become very large, several state-of-the-art techniques for indexing and processing such strings may fail or behave very inefficiently. Modifying an existing technique to overcome these issues is not usually straightforward or even possible. A category of string operations can be facilitated by the suffix tree data structure, which basically indexes a long string to enable efficient finding of any substring of the indexed string, and can be used in other operations as well, such as approximate string matching. In this document, we introduce a novel efficient method to construct the suffix tree index for very long strings using parallel architectures, which is a major challenge in this category. Another category of string operations require clustering similar strings in order to perform application-specific processing on the resulting possibly-overlapping clusters. In this document, based on clustering similar strings, we introduce a novel efficient technique for record linkage and entity resolution, and a novel method for correcting errors in a large number of small strings (read sequences) generated by the DNA sequencing machines.

  18. Relativistic Anandan quantum phase and the Aharonov–Casher effect under Lorentz symmetry breaking effects in the cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Furtado, C., E-mail: furtado@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)

    2016-09-15

    From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov–Casher geometric quantum phase in the nonrelativistic limit.

  19. String Theory Volume 1: An Introduction to the Bosonic String and Volume 2: Superstring Theory and Beyond

    International Nuclear Information System (INIS)

    Carlip, S

    2006-01-01

    The early 1980s, when I first learned theory, were desperate times for graduate students. We searched frantically for coherent introductions, passing tattered copies of review articles around like samizdat, struggling over obscure references to ancient models of strong interactions, and flocking to lectures-not least those by Joe Polchinski-that promised to really explain what was going on. If only this book had been around, it would have saved much grief. Volume I, The Bosonic String, offers a clear and well organized introduction to bosonic string theory. Topics range from the 'classical' (spectra, vertex operators, consistency conditions, etc.) to the 'modern' (D-branes first appear in an exercise at the end of chapter 1, noncommutative geometry shows up in chapter 8). Polchinski does not hesitate to discuss sophisticated matters-path integral measures, BRST symmetries, etc.-but his approach is pedagogical, and his writing is lucid, if sometimes a bit terse. Chapters end with problems that are sometimes difficult but never impossible. A very useful annotated bibliography directs readers to resources for further study, and a nearly 30-page glossary provides short but clear definitions of key terms. There is much here that will appeal to relativists. Polchinski uses the covariant Polyakov path integral approach to quantization from early on; he clearly distinguishes Weyl invariance from conformal invariance; he is appropriately careful about using complex coordinates on topologically nontrivial manifolds; he keeps the string world sheet metric explicit at the start instead of immediately hiding it by a gauge choice. Volume II includes an elegant introduction to anticommuting coordinates and superconformal transformations. A few conventions may cause confusion-%, Polchinski's stress-energy tensor, for instance, differs from the standard general relativistic definition by a factor of -2π, and while this is briefly mentioned in the text, it could easily be missed

  20. Confusing the heterotic string

    Science.gov (United States)

    Benett, D.; Brene, N.; Mizrachi, Leah; Nielsen, H. B.

    1986-10-01

    A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model.

  1. Manipulating Strings in Python

    Directory of Open Access Journals (Sweden)

    William J. Turkel

    2012-07-01

    Full Text Available This lesson is a brief introduction to string manipulation techniques in Python. Knowing how to manipulate strings plays a crucial role in most text processing tasks. If you’d like to experiment with the following lessons, you can write and execute short programs as we’ve been doing, or you can open up a Python shell / Terminal to try them out on the command line.

  2. Pre-geometrical field theory of the open string

    International Nuclear Information System (INIS)

    Nojiri, M.M.; Nojiri, Shin'ichi

    1988-01-01

    We propose a gauge invariant, background independent string action, which contains open and closed string fields and no kinetic terms. The kinetic term is generated through the condensation of the string fields, which is the solution of the equations of motion. We solve the equations and show that the action is classically equivalent to the open string action proposed by Hata et al. (orig.)

  3. Symmetry breaking in string theory

    International Nuclear Information System (INIS)

    Potting, R.

    1998-01-01

    A mechanism for a spontaneous breakdown of CPT symmetry appears in string theory, with possible implications for particle models. A realistic string theory might exhibit CPT violation at levels detectable in current or future experiments. A possible new mechanism for baryogenesis in the early Universe is also discussed

  4. Complex world-sheets from N=2 strings

    International Nuclear Information System (INIS)

    Barbon, J.L.F.

    1996-01-01

    We study some properties of target space strings constructed from (2,1) heterotic strings. We argue that world-sheet complexification is a general property of the bosonic sector of such target world-sheets. We give a target space interpretation of this fact and relate it to the non-gaussian nature of free string field theory. We provide several one-loop calculations supporting the stringy construction of critical world-sheets in terms of (2,1) models. Using finite-temperature boundary conditions in the underlying (2,1) string we obtain non-chiral target space spin structures, and point out some of the problems arising for chiral spin structures, such as the heterotic world-sheet. To this end, we study the torus partition function of the corresponding asymmetric orbifold of the (2,1) string. (orig.)

  5. Extended Galilean symmetries of non-relativistic strings

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, E-08808 Vilanova i la Geltrú (Spain); Gomis, Joaquim; Not, Daniel [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-02-09

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  6. Specifications for Managed Strings, Second Edition

    Science.gov (United States)

    2010-05-01

    const char * cstr , const size_t maxsize, const char *charset); 10 | CMU/SEI-2010-TR-018 Runtime-Constraints s shall not be a null pointer...strcreate_m function creates a managed string, referenced by s, given a conventional string cstr (which may be null or empty). maxsize specifies the...characters to those in the null-terminated byte string cstr (which may be empty). If charset is a null pointer, no restricted character set is defined. If

  7. Cosmological string theory with thermal energy

    International Nuclear Information System (INIS)

    Shiraishi, Kiyoshi.

    1988-09-01

    An attempt to construct a cosmological scenario directly from string theory is made. Cosmological string theory was presented by Antoniadis, Bachas, Ellis and Nanopoulos. They also expect loop effects on cosmological string theory. In this paper, we point out the other importance of the one-loop effect, the finite temperature effect. The equations of motion for background geometry at finite temperature is given. We address a problem on derivation of the effective action at non-zero temperature. (author)

  8. Quantum field theory of point particles and strings

    CERN Document Server

    Hatfield, Brian

    1992-01-01

    The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.

  9. Note on closed-string interactions a la Witten

    Energy Technology Data Exchange (ETDEWEB)

    Romans, L.J.

    1987-08-20

    We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by 'stuttering' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed.

  10. Continuing between closed and open strings

    International Nuclear Information System (INIS)

    Green, M.B.; Thorn, C.B.

    1991-01-01

    A family of dual models is defined that interpolates between the tree diagrams of non-orientable bosonic closed-string theory (which has a massless spin-2 state) and the open-string theory with no internal symmetry (in which the lowest-mass spin-2 state is massive). These models are parametrized by the intercept, Δ, of the leading Regge pole. The only models that have an infinite-dimensional conformal invariance and are consequently free of ghosts are the two familiar string theories with Δ=2 (closed strings) and Δ=1 (open strings with no internal symmetry). For arbitrary Δ the models are invariant under the finite dimensional conformal group, SO(Δ,2), which guarantees the crossing symmetry and consistent factorization of tree amplitudes. The spectrum of the level-two states is exhibited explicitly as Δ varies from 2 to 1 in order to illustrate the manner in which the graviton (the lowest-mass spin-2 state) acquires a mass. The scalar ghost generically associated with massive gravity cancels with the 'dilaton' precisely at Δ=1. (orig.)

  11. N=1 Mirror Symmetry and Open/Closed String Duality

    CERN Document Server

    Mayr, Peter

    2002-01-01

    We show that the exact N=1 superpotential of a class of 4d string compactifications is computed by the closed topological string compactified to two dimensions. A relation to the open topological string is used to define a special geometry for N=1 mirror symmetry. Flat coordinates, an N=1 mirror map for chiral multiplets and the exact instanton corrected superpotential are obtained from the periods of a system of differential equations. The result points to a new class of open/closed string dualities which map individual string world-sheets with boundary to ones without. It predicts an mathematically unexpected coincidence of the closed string Gromov-Witten invariants of one Calabi-Yau geometry with the open string invariants of the dual Calabi-Yau.

  12. Gauge coupling unification in realistic free-fermionic string models

    International Nuclear Information System (INIS)

    Dienes, K.R.; Faraggi, A.E.

    1995-01-01

    We discuss the unification of gauge couplings within the framework of a wide class of realistic free-fermionic string models which have appeared in the literature, including the flipped SU(5), SO(6)xSO(4), and various SU(3)xSU(2)xU(1) models. If the matter spectrum below the string scale is that of the Minimal Supersymmetric Standard Model (MSSM), then string unification is in disagreement with experiment. We therefore examine several effects that may modify the minimal string predictions. First, we develop a systematic procedure for evaluating the one-loop heavy string threshold corrections in free-fermionic string models, and we explicitly evaluate these corrections for each of the realistic models. We find that these string threshold corrections are small, and we provide general arguments explaining why such threshold corrections are suppressed in string theory. Thus heavy thresholds cannot resolve the disagreement with experiment. We also study the effect of non-standard hypercharge normalizations, light SUSY thresholds, and intermediate-scale gauge structure, and similarly conclude that these effects cannot resolve the disagreement with low-energy data. Finally, we examine the effects of additional color triplets and electroweak doublets beyond the MSSM. Although not required in ordinary grand unification scenarios, such states generically appear within the context of certain realistic free-fermionic string models. We show that if these states exist at the appropriate thresholds, then the gauge couplings will indeed unify at the string scale. Thus, within these string models, string unification can be in agreement with low-energy data. (orig.)

  13. Zero-point length from string fluctuations

    International Nuclear Information System (INIS)

    Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.

    2006-01-01

    One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a 'virtual memory' of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., α ' . Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory

  14. Experimenting with String Musical Instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  15. High-energy string-brane scattering: leading eikonal and beyond

    CERN Document Server

    D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele

    2010-01-01

    We extend previous techniques for calculations of transplanckian-energy string-string collisions to the high-energy scattering of massless closed strings from a stack of N Dp-branes in Minkowski spacetime. We show that an effective non-trivial metric emerges from the string scattering amplitudes by comparing them against the semiclassical dynamics of high-energy strings in the extremal p-brane background. By changing the energy, impact parameter and effective open string coupling, we are able to explore various interesting regimes and to reproduce classical expectations, including tidal-force excitations, even beyond the leading-eikonal approximation.

  16. Formation of Electron Strings in Narrow Band Polar Semiconductors

    Science.gov (United States)

    Kusmartsev, F. V.

    2000-01-01

    We show that linear electron strings may arise in polar semiconductors. A single string consists of M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the particles are free although they interact with each other via Coulomb forces. The strings arise as a result of an electronic phase separation associated with an instability of small adiabatic polarons. We have found the length of the string which depends on dielectric constants of semiconductors. The appearance of these electron strings may have an impact on the effect of stripe formation observed in a variety of high- Tc experiments.

  17. String theory as a quantum theory of gravity

    International Nuclear Information System (INIS)

    Horowitz, G.T.

    1990-01-01

    First, the connection between string theory and gravity is discussed - at first sight the theory of strings seem to have nothing to do with gravity but an intimate connection is shown. Then the quantum perturbation expansion is discussed. Thirdly, string theory is considered as a classical theory of gravity and finally recent speculation about a phase of string theory which is independent of a spacetime metric is discussed. (author)

  18. String field theory. Algebraic structure, deformation properties and superstrings

    International Nuclear Information System (INIS)

    Muenster, Korbinian

    2013-01-01

    This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the

  19. The confining trailing string

    CERN Document Server

    Kiritsis, E; Nitti, F

    2014-01-01

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  20. Topological strings from quantum mechanics

    International Nuclear Information System (INIS)

    Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki

    2014-12-01

    We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P 2 , local P 1 x P 1 and local F 1 . In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.

  1. Scaling laws for nonintercommuting cosmic string networks

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.

    2004-01-01

    We study the evolution of noninteracting and entangled cosmic string networks in the context of the velocity-dependent one-scale model. Such networks may be formed in several contexts, including brane inflation. We show that the frozen network solution L∝a, although generic, is only a transient one, and that the asymptotic solution is still L∝t as in the case of ordinary (intercommuting) strings, although in the present context the universe will usually be string dominated. Thus the behavior of two strings when they cross does not seem to affect their scaling laws, but only their densities relative to the background

  2. A non-perturbative approach to strings

    International Nuclear Information System (INIS)

    Orland, P.

    1986-03-01

    After briefly reviewing the theory of strings in the light-cone gauge, a lattice regularized path integral for the amplitudes is discussed. The emphasis is put on a toy string model; the U(N) Veneziano model in the limit as N->infinite with g 0 2 N fixed. The lattice methods of Giles and Thorn are used extensively, but are found to require modification beyond perturbation theory. The twenty-six-dimensional toy string model is recast as a two-dimensional spin system. (orig.)

  3. On sibling and expectational W-strings

    International Nuclear Information System (INIS)

    Lu, H.; Pope, C.N.; Schrans, S.; Wang, X.J.

    1992-01-01

    We discuss the physical spectrum for W-strings based on the algebras B n , D n , E 6 , E 7 and E 8 . For a simply laced W-string, we find a connection with the (h, h+1) unitary Virasoro minimal model, where h is the dual Coxeter number of the underlying Lie algebra. For the W-string based on B n , we find a connection with the (2h, 2h+2) unitary N=1 super-Virasoro minimal model. (orig.)

  4. Big bang models in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes Pleinlaan 2, B-1050 Brussels (Belgium)

    2006-11-07

    These proceedings are based on lectures delivered at the 'RTN Winter School on Strings, Supergravity and Gauge Theories', CERN, 16-20 January 2006. The school was mainly aimed at PhD students and young postdocs. The lectures start with a brief introduction to spacetime singularities and the string theory resolution of certain static singularities. Then they discuss attempts to resolve cosmological singularities in string theory, mainly focusing on two specific examples: the Milne orbifold and the matrix big bang.

  5. Confusing the heterotic string

    International Nuclear Information System (INIS)

    Benett, D.L.; Mizrachi, L.

    1986-01-01

    A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8 's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model. (orig.)

  6. Confusing the heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Benett, D.L.; Brene, N.; Nielsen, H.B.; Mizrachi, L.

    1986-10-02

    A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E/sub 8/'s of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E/sub 8/ only, thereby removing the shadow world from the original model.

  7. Lectures on string theory

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    Several topics are discussed in string theory presented as three lectures to the Spring School on Superstrings at the ICTP at Trieste, Italy, in April, 1988. The first lecture is devoted to some general aspects of conformal invariance and duality. The second sketches methods for carrying out perturbative calculations in string field theory. The final lecture presents an alternative lattice approach to a nonperturbative formulation of the sum over world surfaces. 35 refs., 12 figs

  8. Notes on entanglement entropy in string theory

    International Nuclear Information System (INIS)

    He, Song; Numasawa, Tokiro; Takayanagi, Tadashi; Watanabe, Kento

    2015-01-01

    In this paper, we study the conical entropy in string theory in the simplest setup of dividing the nine dimensional space into two halves. This corresponds to the leading quantum correction to the horizon entropy in string theory on the Rindler space. This entropy is also called the conical entropy and includes surface term contributions. We first derive a new simple formula of the conical entropy for any free higher spin fields. Then we apply this formula to computations of conical entropy in open and closed superstring. In our analysis of closed string, we study the twisted conical entropy defined by making use of string theory on Melvin backgrounds. This quantity is easier to calculate owing to the folding trick. Our analysis shows that the conical entropy in closed superstring is UV finite owing to the string scale cutoff.

  9. Reconstruction of piano hammer force from string velocity.

    Science.gov (United States)

    Chaigne, Antoine

    2016-11-01

    A method is presented for reconstructing piano hammer forces through appropriate filtering of the measured string velocity. The filter design is based on the analysis of the pulses generated by the hammer blow and propagating along the string. In the five lowest octaves, the hammer force is reconstructed by considering two waves only: the incoming wave from the hammer and its first reflection at the front end. For the higher notes, four- or eight-wave schemes must be considered. The theory is validated on simulated string velocities by comparing imposed and reconstructed forces. The simulations are based on a nonlinear damped stiff string model previously developed by Chabassier, Chaigne, and Joly [J. Acoust. Soc. Am. 134(1), 648-665 (2013)]. The influence of absorption, dispersion, and amplitude of the string waves on the quality of the reconstruction is discussed. Finally, the method is applied to real piano strings. The measured string velocity is compared to the simulated velocity excited by the reconstructed force, showing a high degree of accuracy. A number of simulations are compared to simulated strings excited by a force derived from measurements of mass and acceleration of the hammer head. One application to an historic piano is also presented.

  10. The bispectrum of matter perturbations from cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Regan, Donough; Hindmarsh, Mark, E-mail: d.regan@sussex.ac.uk, E-mail: m.b.hindmarsh@sussex.ac.uk [Astronomy Centre, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom)

    2015-03-01

    We present the first calculation of the bispectrum of the matter perturbations induced by cosmic strings. The calculation is performed in two different ways: the first uses the unequal time correlators (UETCs) of the string network - computed using a Gaussian model previously employed for cosmic string power spectra. The second approach uses the wake model, where string density perturbations are concentrated in sheet-like structures whose surface density grows with time. The qualitative and quantitative agreement of the two gives confidence to the results. An essential ingredient in the UETC approach is the inclusion of compensation factors in the integration with the Green's function of the matter and radiation fluids, and we show that these compensation factors must be included in the wake model also. We also present a comparison of the UETCs computed in the Gaussian model, and those computed in the unconnected segment model (USM) used by the standard cosmic string perturbation package CMBACT. We compare numerical estimates for the bispectrum of cosmic strings to those produced by perturbations from an inflationary era, and discover that, despite the intrinsically non-Gaussian nature of string-induced perturbations, the matter bispectrum is unlikely to produce competitive constraints on a population of cosmic strings.

  11. String creation, D-branes and effective field theory

    International Nuclear Information System (INIS)

    Hung Lingyan

    2008-01-01

    This paper addresses several unsettled issues associated with string creation in systems of orthogonal Dp-D(8-p) branes. The interaction between the branes can be understood either from the closed string or open string picture. In the closed string picture it has been noted that the DBI action fails to capture an extra RR exchange between the branes. We demonstrate how this problem persists upon lifting to M-theory. These D-brane systems are analysed in the closed string picture by using gauge-fixed boundary states in a non-standard lightcone gauge, in which RR exchange can be analysed precisely. The missing piece in the DBI action also manifests itself in the open string picture as a mismatch between the Coleman-Weinberg potential obtained from the effective field theory and the corresponding open string calculation. We show that this difference can be reconciled by taking into account the superghosts in the (0+1) effective theory of the chiral fermion, that arises from gauge fixing the spontaneously broken world-line local supersymmetries

  12. Pinching parameters for open (super) strings

    Science.gov (United States)

    Playle, Sam; Sciuto, Stefano

    2018-02-01

    We present an approach to the parametrization of (super) Schottky space obtained by sewing together three-punctured discs with strips. Different cubic ribbon graphs classify distinct sets of pinching parameters; we show how they are mapped onto each other. The parametrization is particularly well-suited to describing the region within (super) moduli space where open bosonic or Neveu-Schwarz string propagators become very long and thin, which dominates the IR behaviour of string theories. We show how worldsheet objects such as the Green's function converge to graph theoretic objects such as the Symanzik polynomials in the α ' → 0 limit, allowing us to see how string theory reproduces the sum over Feynman graphs. The (super) string measure takes on a simple and elegant form when expressed in terms of these parameters.

  13. Vacuum strings in FRW models

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C; Oattes, L M; Starkman, G D

    1988-01-01

    The authors find that vacuum string solutions cannot be embedded in an FRW model in the spirit of the swiss cheese model for inhomogeneities. Since all standard lensing calculations rely implicitly on the Swiss Cheese model, this result indicates that the previous lensing results for the vacuum string may be in error.

  14. Differential formulation in string theories

    International Nuclear Information System (INIS)

    Guzzo, M.M.

    1987-01-01

    The equations of gauge invariance motion for theories of boson open strings and Neveu-Schwarz and Ramond superstring are derived. A construction for string theories using differential formalism, is introduced. The importance of BRST charge for constructing such theories and the necessity of introduction of auxiliary fields are verified. (M.C.K.) [pt

  15. Two field formulation of closed string field theory

    International Nuclear Information System (INIS)

    Bogojevic, A.R.

    1990-09-01

    A formulation of closed string field theory is presented that is based on a two field action. It represents a generalization of Witten's Chern-Simons formulation of 3d gravity. The action contains only 3 string interactions and no string field truncations, unlike the previous non-polynomial action of Zwiebach. The two field action is found to follow from a purely cubic, background independent action similar to the one for open strings. (orig.)

  16. Open string in the constant B-field background

    International Nuclear Information System (INIS)

    Jing Jian; Long Zhengwen

    2005-01-01

    A new method is proposed to quantize open strings in this paper. To illustrate our method, we analyze free open string as well as open string in the D-brane background with a nonvanishing B-field, respectively. The Poisson brackets among Fourier components are obtained firstly then we get the Poisson brackets among open string's coordinates. The noncommutativity of coordinates along the D-brane is reproduced. Some ambiguities in the previous discussions can be avoided

  17. What is the magnetic Weak Gravity Conjecture for axions

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Arthur; Henkenjohann, Philipp [Institute for Theoretical Physics, University of Heidelberg (Germany); Witkowski, Lukas T. [APC, Universite Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cite, Paris (France)

    2017-03-15

    The electric Weak Gravity Conjecture demands that axions with large decay constant f couple to light instantons. The resulting large instantonic corrections pose problems for natural inflation. We explore an alternative argument based on the magnetic Weak Gravity Conjecture for axions, which we try to make more precise. Roughly speaking, it demands that the minimally charged string coupled to the dual 2-form-field exists in the effective theory. Most naively, such large-f strings curve space too much to exist as static solutions, thus ruling out large-f axions. More conservatively, one might allow non-static string solutions to play the role of the required charged objects. In this case, topological inflation would save the superplanckian axion. Furthermore, a large-f axion may appear in the low-energy effective theory based on two subplanckian axions in the UV. The resulting effective string is a composite object built from several elementary strings and domain walls. It may or may not satisfy the magnetic Weak Gravity Conjecture depending on how strictly the latter is interpreted and on the cosmological dynamics of this composite object, which remain to be fully understood. Finally, we recall that large-field brane inflation is naively possible in the codimension-one case. We show how string-theoretic back-reaction closes this apparent loophole of large-f (non-periodic) pseudo-axions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Stationary strings near a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Stevens, Kory A.

    2004-01-01

    We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D (five-dimensional) Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration that crosses the infinite redshift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole, there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a space-time with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string

  19. String duality and novel theories without gravity

    International Nuclear Information System (INIS)

    Kachru, Shamit

    1998-01-01

    We describe some of the novel 6d quantum field theories which have been discovered in studies of string duality. The role these theories (and their 4d descendants) may play in alleviating the vacuum degeneracy problem in string theory is reviewed. The DLCQ of these field theories is presented as one concrete way of formulating them, independent of string theory

  20. Predictions for PP-wave string amplitudes from perturbative SYM

    International Nuclear Information System (INIS)

    Gursoy, Umut

    2003-01-01

    The role of general two-impurity multi-trace operators in the BMN correspondence is explored. Surprisingly, the anomalous dimensions of all two-impurity multi-trace BMN operators to order g 2 2 λ' are completely determined in terms of single-trace anomalous dimensions. This is due to suppression of connected field theory diagrams in the BMN limit and this fact has important implications for some string theory processes on the PP-wave background. We also make gauge theory predictions for the matrix elements of the light-cone string field theory Hamiltonian in the two string-two string and one string-three string sectors. (author)

  1. Hermiticity and CPT in string theory

    International Nuclear Information System (INIS)

    Sonoda, Hidenori

    1989-01-01

    In the application of conformal field theory to string theory S-matrix elements are obtained from correlation functions of vertex operators. By studying the relation between the vertex operators for the incoming states and those for the outgoing states we obtain two results: First we show that hermiticity of the string vertices is equivalent to the CPT invariance of the corresponding conformal field theory. Secondly we prove that the S-matrix elements in any string theory in flat space-time background are invariant under CPT. (orig.)

  2. A non-perturbative approach to strings

    International Nuclear Information System (INIS)

    Orland, P.

    1986-01-01

    After briefly reviewing the theory of strings in the light-cone gauge, a lattice regularized path integral for the amplitudes is discussed. The emphasis is put on a toy string model; the U(N) Veneziano model in the limit as N → ∞, with g/sup 2//sub o/N fixed. The lattice methods of Giles and Thorn are used extensively, but are found to require modification beyond perturbation theory. The twenty-six-dimensional toy string model is recast as a two-dimensional spin system

  3. Gauge invariance of string fields

    International Nuclear Information System (INIS)

    Banks, T.; Peskin, M.E.

    1985-10-01

    Some work done to understand the appearance of gauge bosons and gravitons in string theories is reported. An action has been constructed for free (bosonic) string field theory which is invariant under an infinite set of gauge transformations which include Yang-Mills transformations and general coordinate transformations as special cases. 15 refs., 1 tab

  4. Parton fragmentation and string dynamics

    International Nuclear Information System (INIS)

    Andersson, B.; Gustafson, G.; Ingelman, G.; Sjoestrand, T.

    1983-01-01

    While much has been learned recently about quark and gluon interactions in the framework of perturbative Quantum Chromodynamics, the relation between calculated parton properties and observed hadron densities involves models where dynamics and jet empirical rules have to be combined. The purpose of this article is to describe a presently successful approach which is based on a cascade jet model using String dynamics. It can readily lead to Monte Carlo jet programmes of great use when analyzing data. Production processes in an iterative cascade approach, with tunneling in a constant force field, are reviewed. Expected differences between quark and gluon jets are discussed. Low transverse momentum phenomena are also reviewed with emphasis on hyperon polarization. In so far as this approach uses a fragmentation scheme based on String dynamics, it was deemed appropriate to also include under the same cover a special report on the Classical theory of relativistic Strings, seen as the classical limit of the Dual Resonance model. The Equations of motion and interaction among strings are presented. (orig.)

  5. Defect branes as Alice strings

    International Nuclear Information System (INIS)

    Okada, Takashi; Sakatani, Yuho

    2015-01-01

    There exist various defect-brane backgrounds in supergravity theories which arise as the low energy limit of string theories. These backgrounds typically have non-trivial monodromies, and if we move a charged probe around the center of a defect, its charge will be changed by the action of the monodromy. During the process, the charge conservation law seems to be violated. In this paper, to resolve this puzzle, we examine a dynamics of the charge changing process and show that the missing charge of the probe is transferred to the background. We then explicitly construct the resultant background after the charge transfer process by utilizing dualities. This background has the same monodromy as the original defect brane, but has an additional charge which does not have any localized source. In the literature, such a charge without localized source is known to appear in the presence of Alice strings. We argue that defect branes can in fact be regarded as a realization of Alice strings in string theory and examine the charge transfer process from that perspective.

  6. Defect branes as Alice strings

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi [Theoretical Biology Laboratory, RIKEN,Wako 351-0198 (Japan); Sakatani, Yuho [Department of Physics and Astronomy,Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-03-25

    There exist various defect-brane backgrounds in supergravity theories which arise as the low energy limit of string theories. These backgrounds typically have non-trivial monodromies, and if we move a charged probe around the center of a defect, its charge will be changed by the action of the monodromy. During the process, the charge conservation law seems to be violated. In this paper, to resolve this puzzle, we examine a dynamics of the charge changing process and show that the missing charge of the probe is transferred to the background. We then explicitly construct the resultant background after the charge transfer process by utilizing dualities. This background has the same monodromy as the original defect brane, but has an additional charge which does not have any localized source. In the literature, such a charge without localized source is known to appear in the presence of Alice strings. We argue that defect branes can in fact be regarded as a realization of Alice strings in string theory and examine the charge transfer process from that perspective.

  7. Tracing the string: BMN correspondence at finite J2/N

    International Nuclear Information System (INIS)

    Pearson, John; Vaman, Diana; Verlinde, Herman; Volovich, Anastasia; Spradlin, Marcus

    2003-01-01

    Employing the string bit formalism of hep-th/0209215, we identify the basis transformation that relates BMN operators in N=4 gauge theory to string states in the dual string field theory at finite g 2 =J 2 /N. In this basis, the supercharge truncates at linear order in g 2 , and the mixing amplitude between 1 and 2-string states precisely matches with the (corrected) answer of hep-th/0206073 for the 3-string amplitude in light-cone string field theory. Supersymmetry then predicts the order g 2 2 contact term in the string bit Hamiltonian. The resulting leading order mass renormalization of string states agrees with the recently computed shift in conformal dimension of BMN operators in the gauge theory. (author)

  8. Covariant amplitudes in Polyakov string theory

    International Nuclear Information System (INIS)

    Aoyama, H.; Dhar, A.; Namazie, M.A.

    1986-01-01

    A manifestly Lorentz-covariant and reparametrization-invariant procedure for computing string amplitudes using Polyakov's formulation is described. Both bosonic and superstring theories are dealt with. The computation of string amplitudes is greatly facilitated by this formalism. (orig.)

  9. The NMSSM and string theory

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Ramos-Sanchez, Saul

    2009-12-01

    We study the possibility of constructing the NMSSM from the heterotic string. String derived NMSSMs are much more rare than MSSMs due to the extra requirement that there exist a light singlet which couples to the Higgs pairs. They share the common feature that the singlet self-interactions are typically suppressed, leading to either the ''decoupling'' or to the Peccei-Quinn limit of the NMSSM. In the latter case, the spectrum contains a light pseudoscalar which may be relevant to the MSSM fine-tuning problem.We provide a Z 6 heterotic orbifold example of the NMSSM with approximate Peccei-Quinn symmetry, whose origin lies in the string selection rules combined with our choice of the vacuum configuration. (orig.)

  10. Bosonization and current algebra of spinning strings

    International Nuclear Information System (INIS)

    Stern, A.

    1996-01-01

    We write down a general geometric action principle for spinning strings in d-dimensional Minkowski space, which is formulated without the use of Grassmann coordinates. Instead, it is constructed in terms of the pull-back of a left invariant Maurer-Cartan form on the d-dimensional Poincare group to the world-sheet. The system contains some interesting special cases. Among them are the Nambu string (as well as, null and tachyonic strings) where the spin vanishes, and also the case of a string with a spin current - but no momentum current. We find the general form for the Virasoro generators, and show that they are first class constraints in the Hamiltonian formulation of the theory. The current algebra associated with the momentum and angular momentum densities are shown, in general, to contain rather complicated anomaly terms which obstruct quantization. As expected, the anomalies vanish when one specializes to the case of the Nambu string, and there one simply recovers the algebra associated with the Poincare loop group. We speculate that there exist other cases where the anomalies vanish, and that these cases give the bosonization of the known pseudoclassical formulations of spinning strings. (orig.)

  11. String cosmology in Bianchi type-VI 0 dusty Universe with ...

    Indian Academy of Sciences (India)

    In this paper, the effect of electromagnetic field in the string Bianchi type-VI0 Universe is investigated. Einstein's field equations have been solved exactly with suitable physical assumptions for two types of strings: (i) massive strings and (ii) Nambu strings. It is found that when the Universe is dominated by massive strings, ...

  12. Unified model for vortex-string network evolution

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Moore, J.N.; Shellard, E.P.S.

    2004-01-01

    We describe and numerically test the velocity-dependent one-scale string evolution model, a simple analytic approach describing a string network with the averaged correlation length and velocity. We show that it accurately reproduces the large-scale behavior (in particular the scaling laws) of numerical simulations of both Goto-Nambu and field theory string networks. We explicitly demonstrate the relation between the high-energy physics approach and the damped and nonrelativistic limits which are relevant for condensed matter physics. We also reproduce experimental results in this context and show that the vortex-string density is significantly reduced by loop production, an effect not included in the usual 'coarse-grained' approach

  13. Supergravity duals of matrix string theory

    International Nuclear Information System (INIS)

    Morales, Jose F.; Samtleben, Henning

    2002-01-01

    We study holographic duals of type II and heterotic matrix string theories described by warped AdS 3 supergravities. By explicitly solving the linearized equations of motion around near horizon D-string geometries, we determine the spectrum of Kaluza-Klein primaries for type I, II supergravities on warped AdS 3 xS 7 . The results match those coming from the dual two-dimensional gauge theories living on the D-string worldvolumes. We briefly discuss the connections with the N=(8,8), N=(8,0) orbifold superconformal field theories to which type IIB/heterotic matrix strings flow in the infrared. In particular, we associate the dimension (h,h-bar) (32,32) twisted operator which brings the matrix string theories out from the conformal point (R; 8 ) N /S N with the dilaton profile in the supergravity background. The familiar dictionary between masses and 'scaling' dimensions of field and operators are modified by the presence of non-trivial warp factors and running dilatons. These modifications are worked out for the general case of domain wall/QFT correspondences between supergravities on warped AdS d+1 xS q geometries and super Yang-Mills theories with 16 supercharges. (author)

  14. String theory : physics or metaphysics?

    CERN Document Server

    Veneziano, Gabriele

    2010-01-01

    I will give arguments for why the enormous progress made during the last century on understanding elementary particles and their fundamental interactions suggests strings as the truly elementary constituents of Nature. I will then address the issue of whether the string paradigm can in principle be falsified or whether it should be considered as mere metaphysics.

  15. Experimental Signatures of Strings and Branes

    CERN Document Server

    Antoniadis, I.

    2007-01-01

    Type I string theory provides a D-brane world description of our universe and leads to two new scenaria for physics beyond the Standard Model: low string scale and plit supersymmetry. Lowering the string scale in the TeV region provides a heoretical framework for solving the mass hierarchy problem and unifymg all interactions. The apparent weakn'ess of gravity can then be accounted by the existence of large internal dimensions, in the submillimeter region, and transverse to a braneworld where we must be confined. I review the main properties of this scenario and its implications for observations at both particle cofiders, and in non-accelerator gravity experiments. I also review the main properties of split supersymmetry and present a concrete string realization which guarantees gauge coupling unification at the conventional scale $M_{GUT}\\approx2$ x $10^{16}$GeV.

  16. Instantons, hypermultiplets and the heterotic string

    International Nuclear Information System (INIS)

    Halmagyi, Nick; Melnikov, Ilarion V.; Sethi, Savdeep

    2007-01-01

    Hypermultiplet couplings in type IIA string theory on a Calabi-Yau space can be quantum corrected by D2-brane instantons wrapping special Lagrangian cycles. On the other hand, hypermultiplet couplings in the heterotic string on a K3 surface are corrected by world-sheet instantons wrapping curves. In a class of examples, we relate these two sets of instanton corrections. We first present an analogue of the c-map for the heterotic string via a dual flux compactification of M-theory. Using this duality, we propose two ways of capturing quantum corrections to hypermultiplets. We then use the orientifold limit of certain F-theory compactifications to relate curves in K3 to special Lagrangians in dual type IIA compactifications. We conclude with some results from perturbative string theory for hypermultiplet F-terms and a conjecture about the topology of brane instantons

  17. Fayet-Iliopoulos D terms in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A.

    1987-06-01

    One loop scalar masses induced by Fayet-Ilipoulos D terms in string theory are calculated directly in the heterotic string theory for an arbitrary compactification which preserves space-time supersymmetry at the string tree level. The result is shown to be a total derivative in the moduli space of a torus with two punctures, and hence receives contribution only from the boundary of this moduli space.

  18. Fayet-Iliopoulos D terms in string theory

    International Nuclear Information System (INIS)

    Sen, A.

    1987-06-01

    One loop scalar masses induced by Fayet-Ilipoulos D terms in string theory are calculated directly in the heterotic string theory for an arbitrary compactification which preserves space-time supersymmetry at the string tree level. The result is shown to be a total derivative in the moduli space of a torus with two punctures, and hence receives contribution only from the boundary of this moduli space

  19. Vortex-like and string-like solutions for the 2+1 dimensional SU(2) Yang-Mills theory with the Chern-Simons term

    International Nuclear Information System (INIS)

    Teh, R.

    1989-07-01

    Vortex-like and string-like solutions of 2+1 Dim. SU(2) YM theory with the Chern-Simons term are discussed. Two ansatze are constructed which yield respectively analytic Bessel function solutions and elliptic function solutions. The Bessel function solutions are vortex-like and tend to the same vacuum state as the Ginzburg-Landau vortex solution at large ρ. The Jacobi elliptic function solutions are string-like, have finite energy and magnetic flux concentrated along a line in the x 1 - x 2 plane. (author). 18 refs

  20. The String and the Cosmic Bounce

    Directory of Open Access Journals (Sweden)

    Bozza V.

    2014-04-01

    Full Text Available String theory introduces a new fundamental scale (the string length that is expected to regularize the singularities of classical general relativity. In a cosmological context, the Big Bang is no longer regarded as the beginning of time, but just a transition between a Pre-Big Bang collapse phase and the current expansion. We will review old and recent attempts to build consistent bouncing cosmologies inspired to string theories, discussing their solved and unsolved problems, focussing on the observables that may distinguish them from standard inflationary scenarios.