Sample records for strike-slip faults oriented

  1. Assemblage of strike-slip faults and tectonic extension and ...

    Indian Academy of Sciences (India)


    Assemblage of strike-slip faults and tectonic. 1 extension and compression analysis: A case. 2 study of a Lower Permian commercial coal. 3 reservoir in China. 4. 5. Shuai Yina,*, Dawei Lvb, Zhonghu Wu c .... high-quality reservoirs, and tectonic action is a leading factor for oil and gas. 70 enrichment. Therefore, it is of great ...

  2. Onset of aseismic creep on major strike-slip faults

    KAUST Repository

    Çakir, Ziyadin


    Time series analysis of spaceborne synthetic aperture radar (SAR) data, GPS measurements, and fi eld observations reveal that the central section of the Izmit (Turkey) fault that slipped with a supershear rupture velocity in the A.D. 1999, Mw7.4, Izmit earthquake began creeping aseismically following the earthquake. Rapid initial postseismic afterslip decayed logarithmically with time and appears to have reached a steady rate comparable to the preearthquake full fault-crossing rate, suggesting that it may continue for decades and possibly until late in the earthquake cycle. If confi rmed by future monitoring, these observations identify postseismic afterslip as a mechanism for initiating creep behavior along strike-slip faults. Long-term afterslip and/or creep has signifi cant implications for earthquake cycle models, recurrence intervals of large earthquakes, and accordingly, seismic hazard estimation along mature strike-slip faults, in particular for Istanbul which is believed to lie adjacent to a seismic gap along the North Anatolian fault in the Sea of Marmara. © 2012 Geological Society of America.

  3. San Andreas-sized Strike-slip Fault on Europa (United States)


    This mosaic of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, about the size of the California portion of the San Andreas fault, which runs from the California-Mexico border north to the San Francisco Bay. In a strike-slip fault, two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. Overall motion along the fault seems to have followed a continuous narrow crack along the feature's entire length, with a path resembling steps on a staircase crossing zones that have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. The fault's opposite sides can be reconstructed like a puzzle, matching the shape of the sides and older, individual cracks and ridges broken by its movements. [figure removed for brevity, see original site] The red line marks the once active central crack of the fault. The black line outlines the fault zone, including material accumulated in the regions which have been pulled apart. Bends in the fault have allowed the surface to be pulled apart. This process created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling-apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, in Death Valley and the Dead Sea. In those cases, the pulled-apart regions can include upwelled materials, but may be filled mostly by sedimentary and eroded material from above. One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. Tidal tension opens the fault and

  4. Assemblage of strike-slip faults and tectonic extension and ...

    Indian Academy of Sciences (India)


    and its effect on the productivity of the tight reservoirs. The study will not only guide. 95 the oil-gas ..... 5 Effect of tectonic extension and compression on coal reservoir productivity. 288. 5.1 Strike-slip compression and ..... staff of all the authors that cooperated in performing the analyses. We are also. 425 grateful to the ...

  5. The morphology of strike-slip faults - Examples from the San Andreas Fault, California (United States)

    Bilham, Roger; King, Geoffrey


    The dilatational strains associated with vertical faults embedded in a horizontal plate are examined in the framework of fault kinematics and simple displacement boundary conditions. Using boundary element methods, a sequence of examples of dilatational strain fields associated with commonly occurring strike-slip fault zone features (bends, offsets, finite rupture lengths, and nonuniform slip distributions) is derived. The combinations of these strain fields are then used to examine the Parkfield region of the San Andreas fault system in central California.

  6. The cenozoic strike-slip faults and TTHE regional crust stability of Beishan area

    International Nuclear Information System (INIS)

    Guo Zhaojie; Zhang Zhicheng; Zhang Chen; Liu Chang; Zhang Yu; Wang Ju; Chen Weiming


    The remote sensing images and geological features of Beishan area indicate that the Altyn Tagh fault, Sanweishan-Shuangta fault, Daquan fault and Hongliuhe fault are distributed in Beishan area from south to north. The faults are all left-lateral strike-slip faults with trending of NE40-50°, displaying similar distribution pattern. The secondary branch faults are developed at the end of each main strike-slip fault with nearly east to west trending form dendritic oblique crossings at the angle of 30-50°. Because of the left-lateral slip of the branch faults, the granites or the blocks exposed within the branch faults rotate clockwisely, forming 'Domino' structures. So the structural style of Beishan area consists of the Altyn Tagh fault, Sanweishan-Shuangta fault, Daquan fault, Hongliuhe fault and their branch faults and rotational structures between different faults. Sedimentary analysis on the fault valleys in the study area and ESR chronological test of fault clay exhibit that the Sanweishan-Shuangta fault form in the late Pliocene (N2), while the Daquan fault displays formation age of l.5-1.2 Ma, and the activity age of the relevant branch faults is Late Pleistocene (400 ka). The ages become younger from the Altyn Tagh fault to the Daquan fault and strike-slip faults display NW trending extension, further revealing the lateral growth process of the strike-slip boundary at the northern margin during the Cenozoic uplift of Tibetan Plateau. The displacement amounts on several secondary faults caused by the activities of the faults are slight due to the above-mentioned structural distribution characteristics of Beishan area, which means that this area is the most stable active area with few seismic activities. We propose the main granitic bodies in Beishan area could be favorable preselected locations for China's high level radioactive waste repository. (authors)

  7. Stress near geometrically complex strike-slip faults - Application to the San Andreas fault at Cajon Pass, southern California (United States)

    Saucier, Francois; Humphreys, Eugene; Weldon, Ray, II


    A model is presented to rationalize the state of stress near a geometrically complex major strike-slip fault. Slip on such a fault creates residual stresses that, with the occurrence of several slip events, can dominate the stress field near the fault. The model is applied to the San Andreas fault near Cajon Pass. The results are consistent with the geological features, seismicity, the existence of left-lateral stress on the Cleghorn fault, and the in situ stress orientation in the scientific well, found to be sinistral when resolved on a plane parallel to the San Andreas fault. It is suggested that the creation of residual stresses caused by slip on a wiggle San Andreas fault is the dominating process there.

  8. A note on 2-D lithospheric deformation due to a blind strike-slip fault

    Indian Academy of Sciences (India)

    Chinnery and Jovanovich (1972) extended the solution to a three-layer model. Savage and Prescott (1978) constructed a simple two-dimensional model of an earthquake cycle that takes place on a transform fault. Singh and Rani (1994) obtained an analytical solution for the problem of a long inclined strike- slip fault in an ...

  9. The Role of Near-Fault Relief in Creating and Maintaining Strike-Slip Landscape Features (United States)

    Harbert, S.; Duvall, A. R.; Tucker, G. E.


    Geomorphic landforms, such as shutter ridges, offset river terraces, and deflected stream channels, are often used to assess the activity and slip rates of strike-slip faults. However, in some systems, such as parts of the Marlborough Fault System (South Island, NZ), an active strike-slip fault does not leave a strong landscape signature. Here we explore the factors that dampen or enhance the landscape signature of strike-slip faulting using the Channel-Hillslope Integrated Landscape Development model (CHILD). We focus on variables affecting the length of channel offsets, which enhance the signature of strike-slip motion, and the frequency of stream captures, which eliminate offsets and reduce this signature. We model a strike-slip fault that passes through a mountain ridge, offsetting streams that drain across this fault. We use this setup to test the response of channel offset length and capture frequency to fault characteristics, such as slip rate and ratio of lateral to vertical motion, and to landscape characteristics, such as relief contrasts controlled by erodibility. Our experiments show that relief downhill of the fault, whether generated by differential uplift across the fault or by an erodibility contrast, has the strongest effect on offset length and capture frequency. This relief creates shutter ridges, which block and divert streams while being advected along a fault. Shutter ridges and the streams they divert have long been recognized as markers of strike-slip motion. Our results show specifically that the height of shutter ridges is most responsible for the degree to which they create long channel offsets by preventing stream captures. We compare these results to landscape metrics in the Marlborough Fault System, where shutter ridges are common and often lithologically controlled. We compare shutter ridge length and height to channel offset length in order to assess the influence of relief on offset channel features in a real landscape. Based on our

  10. High tsunami frequency as a result of combined strike-slip faulting and coastal landslides (United States)

    Hornbach, Matthew J.; Braudy, Nicole; Briggs, Richard W.; Cormier, Marie-Helene; Davis, Marcy B.; Diebold, John B.; Dieudonne, Nicole; Douilly, Roby; Frohlich, Cliff; Gulick, Sean P.S.; Johnson, Harold E.; Mann, Paul; McHugh, Cecilia; Ryan-Mishkin, Katherine; Prentice, Carol S.; Seeber, Leonardo; Sorlien, Christopher C.; Steckler, Michael S.; Symithe, Steeve Julien; Taylor, Frederick W.; Templeton, John


    Earthquakes on strike-slip faults can produce devastating natural hazards. However, because they consist predominantly of lateral motion, these faults are rarely associated with significant uplift or tsunami generation. And although submarine slides can generate tsunami, only a few per cent of all tsunami are believed to be triggered in this way. The 12 January Mw 7.0 Haiti earthquake exhibited primarily strike-slip motion but nevertheless generated a tsunami. Here we present data from a comprehensive field survey that covered the onshore and offshore area around the epicentre to document that modest uplift together with slope failure caused tsunamigenesis. Submarine landslides caused the most severe tsunami locally. Our analysis suggests that slide-generated tsunami occur an order-of-magnitude more frequently along the Gonave microplate than global estimates predict. Uplift was generated because of the earthquake's location, where the Caribbean and Gonave microplates collide obliquely. The earthquake also caused liquefaction at several river deltas that prograde rapidly and are prone to failure. We conclude that coastal strike-slip fault systems such as the Enriquillo-Plantain Garden fault produce relief conducive to rapid sedimentation, erosion and slope failure, so that even modest predominantly strike-slip earthquakes can cause potentially catastrophic slide-generated tsunami - a risk that is underestimated at present.

  11. A note on 2-D lithospheric deformation due to a blind strike-slip fault

    Indian Academy of Sciences (India)

    mic deformation. Several researchers have devel- oped models of coseismic lithospheric deformation. Rybicki (1971) found a closed-form analytical solu- tion for the problem of a long vertical strike-slip fault in a two-layer model of the earth. Chinnery and Jovanovich (1972) extended the solution to a three-layer model.

  12. Strike slip faulting inferred from offsetting of drainages: Lower ...

    Indian Academy of Sciences (India)

    (a) Geological map of a part of lower Narmada valley showing disposition of active faults and structures (Agarwal. 1986). Red dotted box represents the area of figure 1(b). (b) Digital Elevation Model (DEM) of the part of Narmada valley showing various tectonic geomorphic features like fault scarp, palaeobank, linear valley ...

  13. Strike slip faulting inferred from offsetting of drainages: Lower ...

    Indian Academy of Sciences (India)

    The evolution of fault scarps, deformed rivers, marine terraces and the morphology of the moun- tain fronts have been studied for understanding neotectonic evolution of an area (Morisawa and. Hack 1985; Merritts and Hesterberg 1994; Keller and Printer 1996). Tricart (1974) discussed long- term effects of faulting and ...

  14. A note on 2-D lithospheric deformation due to a blind strike-slip fault

    Indian Academy of Sciences (India)

    Analytical solution for the problem of a surface-breaking long strike-slip fault in an elastic layer overlying an elastic half-space is well known. The purpose of this note is to obtain the corresponding solution for a blind fault. Since the solution is valid for arbitrary values of the fault-depth and the dip angle, the effects of these ...

  15. Fault and fracture patterns around a strike-slip influenced salt wall (United States)

    Alsop, G. I.; Weinberger, R.; Marco, S.; Levi, T.


    The trends of faults and fractures in overburden next to a salt diapir are generally considered to be either parallel to the salt margin to form concentric patterns, or at right angles to the salt contact to create an overall radial distribution around the diapir. However, these simple diapir-related patterns may become more complex if regional tectonics influences the siting and growth of a diapir. Using the Sedom salt wall in the Dead Sea Fault system as our case study, we examine the influence of regional strike-slip faulting on fracture patterns around a salt diapir. This type of influence is important in general as the distribution and orientation of fractures on all scales may influence permeability and hence control fluid and hydrocarbon flow. Fractures adjacent to the N-S trending salt wall contain fibrous gypsum veins and injected clastic dykes, attesting to high fluid pressures adjacent to the diapir. Next to the western flank of the salt wall, broad (∼1000 m) zones of upturn or 'drape folds' are associated with NW-SE striking conjugate extensional fractures within the overburden. Within 300 m of the salt contact, fracture patterns in map view display a progressive ∼30°-35° clockwise rotation with more NNW-SSE strikes immediately adjacent to the salt wall. While some extensional faults display growth geometries, indicating that they were syn-depositional and initiated prior to tilting of beds associated with drape folding, other fractures display increasing dips towards the salt, suggesting that they have formed during upturn of bedding near the diapir. These observations collectively suggest that many fractures developed to accommodate rotation of beds during drape folding. Extensional fractures in the overburden define a mean strike that is ∼45° anticlockwise (counter-clockwise) of the N-S trending salt wall, and are therefore consistent with sinistral transtension along the N-S trending Sedom Fault that underlies the salt wall. Our outcrop

  16. Strike slip faulting inferred from offsetting of drainages: Lower ...

    Indian Academy of Sciences (India)

    The detailed analysis of landforms,drainages and geology of the area between the rivers Amaravati and Karjan was carried out in order to understand the tectonic history of the lower Narmada basin. Movement along the various faults in the area was studied on the basis of the drainage offsetting. Horizontal offsetting of ...

  17. Continental strike slip fault zones in geologically complex lithosphere: the North Anatolian Fault, Turkey. (United States)

    Cornwell, David; Thompson, David; Papaleo, Elvira; Rost, Sebastian; Houseman, Gregory; Kahraman, Metin; Turkelli, Niyazi; Teoman, Ugur; Altuncu Poyraz, Selda; Gulen, Levent; Utkucu, Murat


    As part of the multi-disciplinary Faultlab project, we present new detailed images in a geologically complex region where the crust and upper mantle is bisected by a major continental strike-slip fault system. Our study region samples the north Anatolian fault zone (NAFZ) near the epicentres of two large earthquakes that occurred in 1999 at Izmit (M7.5) and Düzce (M7.2) and where estimates of present day slip rate are 20-25 mm/yr. Using recordings of teleseismic earthquakes from a rectangular seismometer array spanning the NAFZ with 66 stations at a nominal inter-station spacing of 7 km and 7 additional stations further afield, we build a detailed 3-D image of structure and anisotropy using receiver functions, tomography and shear wave splitting and illuminate major changes in the architecture and properties of the upper crust, lower crust and upper mantle, both across and along the two branches of the NAFZ, at length scales of less than 20 km. We show that the northern NAFZ branch depth extent varies from the mid-crust to the upper mantle and it is likely to be less than 10 km wide. A high velocity lower crust and a region of crustal underthrusting appear to add strength to a heterogeneous crust and play a role in dictating the variation in faulting style and postseismic deformation. Sharp changes in lithospheric mantle velocity and anisotropy are constrained as the NAFZ is crossed, whereas crustal structure and anisotropy vary considerably both parallel and perpendicular to the faulting. We use our observations to test current models of the localisation of strike-slip deformation and develop new ideas to explain how narrow fault zones develop in extremely heterogeneous lithosphere.

  18. How seismicity impacts the evolution and branching of strike-slip faults (United States)

    Preuss, S.; van Dinther, Y.; Ampuero, J. P.; Herrendoerfer, R.; Gerya, T.


    Strike-slip fault systems are capable of producing large earthquakes on both their main fault and on secondary and potentially unknown faults. A recent example is the 2016 Mw 7.8 Kaikōura earthquake that resulted in surface ruptures along at least 12 major crustal faults. Strike-slip faults are surrounded by inelastic off-fault deformation zones whose displacement accounts for up to 60% of the total displacement. Secondary faults in California accommodate up to 43% of the total fault slip rate of mapped faults taken from the SCEC catalog, while unknown faults arguably accommodate up to 30% of the long-term strain. To better understand these complexities and the long-term evolution of branching fault structures, we quantify the parameters influencing branching structure with a particular focus on the role of seismicity. We incorporate the relevant dynamics of both long-term fault evolution and short-term seismogenesis using the continuum visco-elasto-plastic tools of Seismo-Thermo-Mechanical (STM) modeling approach (van Dinther et al., 2013, Herrendörfer et al., in prep). Long-term fault evolution is governed by Drucker-Prager plasticity and plastic strain weakening of cohesion, while frictional weakening and rapid slip is governed by either strongly rate-dependent (RDF) or rate-and-state friction (RSF). We use a 2D, plane view, natural scale model setup (1200 km x 1000 km), which contains the end of a dextral mature strike-slip fault on one side. Episodic slip events on this pre-existing fault patch propagate into the undamaged host rock. As faults grow they develop a fan-like plastic strain envelope, whose width keeps growing with fault length and accumulated on-fault slip. We interpret this zone as a splay-fault network, which is typically seen ahead of propagating fault tips. We analyze the evolving faults in terms of dissipated strain energy GC, accumulated slip D and fault length L. Results show that a single event is capable of producing a several hundreds

  19. Propagation of strike-slip faults across Holocene volcano-sedimentary deposits, Pasto, Colombia (United States)

    Rovida, Andrea; Tibaldi, Alessandro


    This study contributes to the understanding of shear failure development on the basis of macroscopic field data collected in latest Pleistocene-Holocene pyroclastic and fluvio-lacustrine deposits in the Pasto Valley, SW Colombia. Here there is a pervasive system of microfaults and joints. Right-lateral strike-slip microfaults strike N065°, whereas left-lateral strike-slip microfaults strike N120°. Three main joint sets strike N, N065° and N020° in decreasing order of frequency. Stress computation gives a horizontal σ1 trending ˜N060° and a horizontal σ3 trending ˜N150°, consistent with earthquake focal mechanisms and stress inversion of main faults. Synthetic shears dominate resulting from nucleation of older cracks. In the basement cropping out northeast of Pasto, the NE- to ENE-striking Buesaco, Aranda and Pasto Faults show evidence of latest Pleistocene-Holocene right-lateral strike-slip motions. The structures in the Pasto Valley can be interpreted as a Mode III damage zone representing the up-dip propagation of the main faults across the young volcano-sedimentary deposits.

  20. Influence of fault steps on rupture termination of strike-slip earthquake faults (United States)

    Li, Zhengfang; Zhou, Bengang


    A statistical analysis was completed on the rupture data of 29 historical strike-slip earthquakes across the world. The purpose of this study is to examine the effects of fault steps on the rupture termination of these events. The results show good correlations between the type and length of steps with the seismic rupture and a poor correlation between the step number and seismic rupture. For different magnitude intervals, the smallest widths of the fault steps (Lt) that can terminate the rupture propagation are variable: Lt = 3 km for Ms 6.5 6.9, Lt = 4 km for Ms 7.0 7.5, Lt = 6 km for Ms 7.5 8.0, and Lt = 8 km for Ms 8.0 8.5. The dilational fault step is easier to rupture through than the compression fault step. The smallest widths of the fault step for the rupture arrest can be used as an indicator to judge the scale of the rupture termination of seismic faults. This is helpful for research on fault segmentation, as well as estimating the magnitude of potential earthquakes, and is thus of significance for the assessment of seismic risks.

  1. The Mechanics, Geometry and Distribution of Strike Slip Faults in a Fold and Thrust Belt, County Clare, Ireland (United States)

    Nenna, F. A.; Aydin, A.


    Fundamental structures such as opening mode joints and veins, and closing mode pressure solution seams (PSSs) can form dense orthogonal arrays in collisional deformation belts and play important roles in the initiation and development of larger scale faults. We describe the deformation processes and the evolution of fault architecture using systematic documentation of field observations from arrays of strike-slip faults in the Carboniferous Ross Sandstone. This unit is exposed on the Loop Head Peninsula, County Clare, Ireland and was subject to compressive stresses associated with the Variscan orogeny at the end of the Carboniferous producing broad regional east-west trending folds and also tight low-amplitude folds cored by thrust faults. Near these faults, orthogonal sets of PSSs and joints/veins form contemporaneous arrays with pressure solution seams that are sub-parallel to the thrust fault traces and fold axes. A stress or material rotation during the Variscan Orogeny (or perhaps a major second stage of deformation either in late phase of the orogeny or post-orogeny) has lead to left-lateral shear of the PSSs evidenced by pressure solution splays and pull-aparts between their sheared segments, and right-lateral shear on the joints/veins evidenced by splay fractures. The splays of the sheared joints are in the same orientation of the joints in the pull-aparts of the sheared PSSs with which they merge. This indicates that the shearing of the joints/veins and the PSSs was likely to have occurred simultaneously under the same remote loading conditions. With increased shear, extensive splay fractures and pull-apart networks form weak damage zones through which strike-slip faults systems develop with slip of up to 2km. As a higher proportion of the shear is resolved on the joint system than that of the PSS system, the more prominent strike-slip faults are sub-parallel to or slightly inclined to the pre-existing joint/vein set and have a right-lateral sense of slip

  2. Lower Miocene coeval thrusting and strike-slip faulting in the Western Betics (United States)

    Frasca, Gianluca; Gueydan, Frédéric; Brun, Jean-Pierre


    In the framework of the Africa-Europe convergence, the Mediterranean system presents a complex interaction between subduction rollback and upper subduction plate deformation since 30 Ma. The western end of the system shows an arcuate geometry across the Gibraltar arc, the Betico-Rifean belt, in which the relationship between slab dynamics and onshore tectonics is poorly constrained. The present study focuses on the Western Betics, which is characterized by two major thrusts: 1/ the Alboran Front limits the metamorphic domain (Alboran Domain) from the fold-and-thrust belts involving the Mesozoic cover of the Iberian margin (Subbetics Domain); 2/ the Alboran Internal Thrust allows the juxtaposition of a strongly attenuated lithosphere section, containing the large Ronda subcontinental mantle bodies, on top of crustal rocks. New structural data show that two major E-W strike-slip corridors controlled the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60° thrusts and N140° normal faults developed simultaneously during dextral strike-slip simple shear. The Alozaina piggy-back Basin, mainly formed by olistotromic deposits of Lower Miocene age, provides an age estimate for the continuous westward translation of the Alboran Domain, with reference to Iberia, that is accommodated mainly by an E-W lateral strike-slip ramp and a N60° frontal thrust ramp. In this context, a thrust sequence led to the piling up of thrust units in the Western Betics and to the crustal emplacement of the Ronda Peridotites bodies.

  3. Transpressional segment boundaries in strike-slip fault systems offshore southern California: Implications for fluid expulsion and cold seep habitats (United States)

    Maloney, Jillian M.; Grupe, Benjamin M.; Pasulka, Alexis L.; Dawson, Katherine S.; Case, David H.; Frieder, Christina A.; Levin, Lisa A.; Driscoll, Neal W.


    The importance of tectonics and fluid flow in controlling cold seep habitats has long been appreciated at convergent margins but remains poorly understood in strike-slip systems. Here we present geophysical, geochemical, and biological data from an active methane seep offshore from Del Mar, California, in the inner California borderlands (ICB). The location of this seep appears controlled by localized transpression associated with a step in the San Diego Trough fault zone and provides an opportunity to examine the interplay between fluid expulsion and restraining step overs along strike-slip fault systems. These segment boundaries may have important controls on seep locations in the ICB and other margins characterized by strike-slip faulting (e.g., Greece, Sea of Marmara, and Caribbean). The strike-slip fault systems offshore southern California appear to have a limited distribution of seep sites compared to a wider distribution at convergent plate boundaries, which may influence seep habitat diversity and connectivity.

  4. Analysis of the growth of strike-slip faults using effective medium theory

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, A.; Berryman, J.G.


    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  5. The San Andreas Fault and a Strike-slip Fault on Europa (United States)


    The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay. The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left). A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements. Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled materials, but may

  6. The San Andreas Fault and a Strike-slip Fault on Europa (United States)


    The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay. The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left). A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements. Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled materials, but may

  7. Multiple strike slip faults sets: A case study from the Dead Sea transform (United States)

    Ron, Hagai; Nur, Amos; Eyal, Y.


    In many strike slip tectonic settings, large rotations of crust blocks about vertical axes have been inferred from paleomagnetic data. These blocks are bounded by sets of parallel faults which presumably accommodate the relative motion between the blocks as regional deformation progress. A mechanical model by Nur et al., (1986) suggests that rotations greater than phi sub c equals 25 to 45 degrees must be accommodated by more than one set of faults, with angle phi sub c between their direction; consequently the sum of the angles between sets must be roughly equal to the total tectonic material rotation. To test this model, the authors investigated the fault geometry and field relation of fault sets in the Mt. Hermon area in northern Israel, where paleomagnetic declination implies data 69 degrees plus or minus 13 degrees counter-clockwise block rotation. The statistical and field relation analysis of over 315 faults shows that the faulting is predominantly right lateral strike slip consisting of three distinct sets. The oldest set strikes 253 degrees, the second oldest set strikes 293 degrees and the youngest strikes 339 degrees. This last direction is consistent also with the current north-south direction of the maximum principle stress axis. The angle phi sub c between the first and second sets is 39 degrees and between the second and third sets 46 degrees, in good agreement with the phi sub c angle predicted from mechanical considerations. The sum of the two angles is 85 degrees, in good agreement with the 69 degrees plus or minus 13 degrees CCW paleomagnetically derived rotation. The results suggest specifically that the sequential development of multiple intersecting fault sets is responsible for the faulting in the Mt. Hermon area; and generally that the model of block rotation with multiple faults provides very good simple rules for analyzing very complex fault patterns.

  8. Source study of the Jan Mayen transform fault strike-slip earthquakes (United States)

    Rodríguez-Pérez, Q.; Ottemöller, L.


    Seismic source parameters of oceanic transform zone earthquakes have been relatively poorly studied. Previous studies showed that this type of earthquakes has unique characteristics such as not only the relatively common occurrence of slow events with weak seismic radiation at high frequencies but also the occurrence of some events that have high apparent stress indicating strong high frequency radiation. We studied 5 strike-slip earthquakes in the Jan Mayen fracture zone with magnitudes in the range of 5.9 centroid time delay compared to other oceanic transform fault earthquakes.

  9. Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault (United States)

    Andrews, D.J.; Ma, Shuo


    Large dynamic stress off the fault incurs an inelastic response and energy loss, which contributes to the fracture energy, limiting the rupture and slip velocity. Using an explicit finite element method, we model three-dimensional dynamic ruptures on a vertical strike-slip fault in a homogeneous half-space. The material is subjected to a pressure-dependent Drucker-Prager yield criterion. Initial stresses in the medium increase linearly with depth. Our simulations show that the inelastic response is confined narrowly to the fault at depth. There the inelastic strain is induced by large dynamic stresses associated with the rupture front that overcome the effect of the high confining pressure. The inelastic zone increases in size as it nears the surface. For material with low cohesion (~5 MPa) the inelastic zone broadens dramatically near the surface, forming a "flowerlike" structure. The near-surface inelastic strain occurs in both the extensional and the compressional regimes of the fault, induced by seismic waves ahead of the rupture front under a low confining pressure. When cohesion is large (~10 MPa), the inelastic strain is significantly reduced near the surface and confined mostly to depth. Cohesion, however, affects the inelastic zone at depth less significantly. The induced shear microcracks show diverse orientations near the surface, owing to the low confining pressure, but exhibit mostly horizontal slip at depth. The inferred rupture-induced anisotropy at depth has the fast wave direction along the direction of the maximum compressive stress.

  10. A preliminary study on surface ground deformation near shallow foundation induced by strike-slip faulting (United States)

    Wong, Pei-Syuan; Lin, Ming-Lang


    According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation

  11. Crimea-Kopet Dagh zone of concentrated orogenic deformations as a transregional late collisional right-lateral strike-slip fault (United States)

    Patina, I. S.; Leonov, Yu. G.; Volozh, Yu. A.; Kopp, M. L.; Antipov, M. P.


    It is shown that the Crimea, Caucasus, and Kopet Dagh fold systems make up a single whole unified by a lithospheric strike-slip fault zone of concentrated dislocations. The strike-slip fault that dissects the sedimentary cover and consolidated crust is rooted in subcrustal layers of the mantle. The notions about strike-slip dislocations in the structure of the Crimea-Kopet Dagh System are considered. Comparative analysis of structure, age, and amplitude of strike-slip fault segments is carried out. The effect of strike-slip faulting on the deep-seated and near-surface structure of the Earth's crust is considered. Based on estimation of strike-slip offsets, the paleogeography of Paleogene basins is refined; their initial contours, which have been disturbed and fragmented by slipping motion strike-slip displacement, have been reconstructed.

  12. Left-Lateral Strike-Slip Faulting in the East Alborz, NE Iran (United States)

    Hollingsworth, J.; Walker, R.; Jackson, J.; Bolourchi, M. J.; Eshraghi, S. A.


    The East Alborz mountains of NE Iran are actively deforming as a result of Arabia-Eurasia collision. We combine observations of the geomorphology made using high resolution satellite, topographic and field data, with historical and recent seismicity to map major active faults in this poorly studied region. Deformation on the north side of the range occurs by range-normal shortening on the Khazar thrust fault, which separates Central Iran from the South Caspian. South of the range, deformation involves both left-lateral slip on the previously undocumented Shahrud fault system, which comprises several range-bounding fault segments, and shortening on (probably minor) thrust faults. Faulting south of the range is responsible for major historical earthquakes at Damghan (856AD) and Shahrud (1890). Deformation accommodated across the East Alborz is estimated from the difference in GPS velocities north and south of the range. South of the Alborz, northward GPS velocities across Central Iran decrease eastwards and the strike of the deforming belt changes to become more sub-parallel to the direction of South Caspian- Iran relative motion. This reduces the shortening component across the East Alborz, resulting in lower elevations between 54--57°E. West of 55.5°E, the more arc-normal shortening is achieved by partitioning of deformation onto the Khazar thrust (~1 mm/yr) and the Astaneh and Firuzkuh strike-slip faults (~3 mm/yr). East of 55.5°E, the Khazar fault ends and East Alborz deformation is accommodated primarily on the left-lateral Shahrud fault system, which may slip up to 3~mm/yr. Due to the long gap in seismicity along the eastern Shahrud fault system, the city of Jajarm (15,000 pop.) is considered at high risk from future earthquakes.

  13. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults (United States)

    Sakran, Shawky; Said, Said Mohamed


    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  14. Strike-slip faulting in the Inner California Borderlands, offshore Southern California. (United States)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Sahakian, V. J.; Holmes, J. J.; Klotsko, S.; Kell, A. M.; Wesnousky, S. G.


    In the Inner California Borderlands (ICB), offshore of Southern California, modern dextral strike-slip faulting overprints a prominent system of basins and ridges formed during plate boundary reorganization 30-15 Ma. Geodetic data indicate faults in the ICB accommodate 6-8 mm/yr of Pacific-North American plate boundary deformation; however, the hazard posed by the ICB faults is poorly understood due to unknown fault geometry and loosely constrained slip rates. We present observations from high-resolution and reprocessed legacy 2D multichannel seismic (MCS) reflection datasets and multibeam bathymetry to constrain the modern fault architecture and tectonic evolution of the ICB. We use a sequence stratigraphy approach to identify discrete episodes of deformation in the MCS data and present the results of our mapping in a regional fault model that distinguishes active faults from relict structures. Significant differences exist between our model of modern ICB deformation and existing models. From east to west, the major active faults are the Newport-Inglewood/Rose Canyon, Palos Verdes, San Diego Trough, and San Clemente fault zones. Localized deformation on the continental slope along the San Mateo, San Onofre, and Carlsbad trends results from geometrical complexities in the dextral fault system. Undeformed early to mid-Pleistocene age sediments onlap and overlie deformation associated with the northern Coronado Bank fault (CBF) and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, we interpret the northern CBF to be inactive, and slip rate estimates based on linkage with the Holocene active Palos Verdes fault are unwarranted. In the western ICB, the San Diego Trough fault (SDTF) and San Clemente fault have robust linear geomorphic expression, which suggests that these faults may accommodate a significant portion of modern ICB slip in a westward temporal migration of slip. The SDTF offsets young sediments between the US/Mexico border and the

  15. Strike-Slip Fault Patterns on Europa: Obliquity or Polar Wander? (United States)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Manga, Michael


    Variations in diurnal tidal stress due to Europa's eccentric orbit have been considered as the driver of strike-slip motion along pre-existing faults, but obliquity and physical libration have not been taken into account. The first objective of this work is to examine the effects of obliquity on the predicted global pattern of fault slip directions based on a tidal-tectonic formation model. Our second objective is to test the hypothesis that incorporating obliquity can reconcile theory and observations without requiring polar wander, which was previously invoked to explain the mismatch found between the slip directions of 192 faults on Europa and the global pattern predicted using the eccentricity-only model. We compute predictions for individual, observed faults at their current latitude, longitude, and azimuth with four different tidal models: eccentricity only, eccentricity plus obliquity, eccentricity plus physical libration, and a combination of all three effects. We then determine whether longitude migration, presumably due to non-synchronous rotation, is indicated in observed faults by repeating the comparisons with and without obliquity, this time also allowing longitude translation. We find that a tidal model including an obliquity of 1.2?, along with longitude migration, can predict the slip directions of all observed features in the survey. However, all but four faults can be fit with only 1? of obliquity so the value we find may represent the maximum departure from a lower time-averaged obliquity value. Adding physical libration to the obliquity model improves the accuracy of predictions at the current locations of the faults, but fails to predict the slip directions of six faults and requires additional degrees of freedom. The obliquity model with longitude migration is therefore our preferred model. Although the polar wander interpretation cannot be ruled out from these results alone, the obliquity model accounts for all observations with a value

  16. Role of N-S strike-slip faulting in structuring of north-eastern Tunisia; geodynamic implications (United States)

    Arfaoui, Aymen; Soumaya, Abdelkader; Ben Ayed, Noureddine; Delvaux, Damien; Ghanmi, Mohamed; Kadri, Ali; Zargouni, Fouad


    Three major compressional events characterized by folding, thrusting and strike-slip faulting occurred in the Eocene, Late Miocene and Quaternary along the NE Tunisian domain between Bou Kornine-Ressas-Msella and Cap Bon Peninsula. During the Plio-Quaternary, the Grombalia and Mornag grabens show a maximum of collapse in parallelism with the NNW-SSE SHmax direction and developed as 3rd order distensives zones within a global compressional regime. Using existing tectonic and geophysical data supplemented by new fault-kinematic observations, we show that Cenozoic deformation of the Mesozoic sedimentary sequences is dominated by first order N-S faults reactivation, this sinistral wrench system is responsible for the formation of strike-slip duplexes, thrusts, folds and grabens. Following our new structural interpretation, the major faults of N-S Axis, Bou Kornine-Ressas-Messella (MRB) and Hammamet-Korbous (HK) form an N-S first order compressive relay within a left lateral strike-slip duplex. The N-S master MRB fault is dominated by contractional imbricate fans, while the parallel HK fault is characterized by a trailing of extensional imbricate fans. The Eocene and Miocene compression phases in the study area caused sinistral strike-slip reactivation of pre-existing N-S faults, reverse reactivation of NE-SW trending faults and normal-oblique reactivation of NW-SE faults, creating a NE-SW to N-S trending system of east-verging folds and overlaps. Existing seismic tomography images suggest a key role for the lithospheric subvertical tear or STEP fault (Slab Transfer Edge Propagator) evidenced below this region on the development of the MRB and the HK relay zone. The presence of extensive syntectonic Pliocene on top of this crustal scale fault may be the result of a recent lithospheric vertical kinematic of this STEP fault, due to the rollback and lateral migration of the Calabrian slab eastward.

  17. Dynamics of a strike-slip fault analog model : Effects of the tectonic loading rate (United States)

    Caniven, Y.; Dominguez, S.; Soliva, R.; Cattin, R.; Peyret, M.; Chéry, J.; Romano, C.


    The average seismic cycle duration extends from hundred to a few thousands years but geodetic measurements and seismological data extend over less than one century. This short time observation scale renders difficult to constrain the role of key parameters such as fault friction and geometry, crust rheology, stress and strain rate that control the kinematics and mechanics of active faults. To solve this time scale issue, we have developed a new experimental set-up that reproduces scaled micro-earthquakes and several hundreds of seismic cycles along a strike-slip fault. The model is constituted by two polyurethane foam plates laterally in contact, lying on a basal silicone layer, which simulate the mechanical behaviour of an elastoplastic upper crust over a ductile lower crust, respectively. To simulate the boundary conditions of a strike-slip fault, a computerized motoreductor system moves the two compartments on an opposite sens at a constant low velocity (a few μm/s). The model scaling, deduces from analog material physical parameters, implies that 1 cm in the model represents 2-3 km in the nature and 1 s is equivalent to 5-15 years. Surface-horizontal strain field is quantified by sub-pixel correlation of digital camera pictures recorded every 16 μm of displacement. We record about 2000 horizontal-velocity field measurements for each experiment. The analysis of model-interseismic and coseismic surface displacements and their comparison to seismogenic natural faults demonstrate that our analog model reproduces correctly both near and far-field surface strains. To compare the experiments, we have developed several algorithms that allow studying the main spatial and temporal evolution of the physical parameters and surface deformation processes that characterise the seismic cycle (magnitudes, stress, strain, friction coefficients, interseismic locking depth, recurrence time, ...). We also performed surface-velocity field inversions to assess the spatial

  18. Holocene paleoearthquakes on the strike-slip Porters Pass Fault, Canterbury, New Zealand

    International Nuclear Information System (INIS)

    Howard, M.; Nicol, A.; Campbell, J.; Pettinga, J.R.


    The Porters Pass Fault comprises a series of discontinuous Holocene active traces which extend for c. 40 km between the Rakaia and Waimakariri Rivers in the foothills of the Southern Alps. There have been no historical earthquakes on the Porters Pass Fault (i.e., within the last 150 yr), and the purpose of this paper is to establish the timing and magnitudes of displacements on the fault at the ground surface during Holocene paleoearthquakes. Displaced geomorphic features (e.g., relict streams, stream channels, and ridge crests), measured using either tape measure (n = 20) or surveying equipment (n = 5), range from 5.5 to 33 m right lateral strike slip and are consistent with six earthquakes characterised by slip per event of c. 5-7 m. The timing of these earthquakes is constrained by radiocarbon dates from four trenches excavated across the fault and two auger sites from within swamps produced by ponding of drainage along the fault scarp. These data indicate markedly different Holocene earthquake histories along the fault length separated by a behavioural segment boundary near Lake Coleridge. On the eastern segment at least six Holocene earthquakes were identified at 8400-9000, 5700-6700, 4500-6000, 2300-2500, 800-1100, and 500-600 yr BP, producing an average recurrence interval of c. 1500 yr. On the western segment of the fault in the Rakaia River valley, a single surface-rupturing earthquake displaced Acheron Advance glacial deposits (c.10,000-14,000 yr in age) and may represent the southward continuation of the 2300-2500 yr event identified on the eastern segment. These data suggest Holocene slip rates of 3.2-4.1 mm/yr and 0.3-0.9 mm/yr on the eastern and western sections of the fault, respectively. Displacement and timing data suggest that earthquakes ruptured the western segment of the fault in no more than one-sixth of cases and that for a sample period of 10,000 yr the recurrence intervals were not characteristic. (auth). 45 refs., 10 figs., 3 tabs

  19. A nonlinear least-squares inverse analysis of strike-slip faulting with application to the San Andreas fault (United States)

    Williams, Charles A.; Richardson, Randall M.


    A nonlinear weighted least-squares analysis was performed for a synthetic elastic layer over a viscoelastic half-space model of strike-slip faulting. Also, an inversion of strain rate data was attempted for the locked portions of the San Andreas fault in California. Based on an eigenvector analysis of synthetic data, it is found that the only parameter which can be resolved is the average shear modulus of the elastic layer and viscoelastic half-space. The other parameters were obtained by performing a suite of inversions for the fault. The inversions on data from the northern San Andreas resulted in predicted parameter ranges similar to those produced by inversions on data from the whole fault.

  20. Earthquake Activities Along the Strike-Slip Fault System on the Thailand-Myanmar Border

    Directory of Open Access Journals (Sweden)

    Santi Pailoplee


    Full Text Available This study investigates the present-day seismicity along the strike-slip fault system on the Thailand-Myanmar border. Using the earthquake catalogue the earthquake parameters representing seismic activities were evaluated in terms of the possible maximum magnitude, return period and earthquake occurrence probabilities. Three different hazardous areas could be distinguished from the obtained results. The most seismic-prone area was located along the northern segment of the fault system and can generate earthquakes of magnitude 5.0, 5.8, and 6.8 mb in the next 5, 10, and 50 years, respectively. The second most-prone area was the southern segment where earthquakes of magnitude 5.0, 6.0, and 7.0 mb might be generated every 18, 60, and 300 years, respectively. For the central segment, there was less than 30 and 10% probability that 6.0- and 7.0-mb earthquakes will be generated in the next 50 years. With regards to the significant infrastructures (dams in the vicinity, the operational Wachiralongkorn dam is situated in a low seismic hazard area with a return period of around 30 - 3000 years for a 5.0 - 7.0 mb earthquake. In contrast, the Hut Gyi, Srinakarin and Tha Thung Na dams are seismically at risk for earthquakes of mb 6.4 - 6.5 being generated in the next 50 years. Plans for a seismic-retrofit should therefore be completed and implemented while seismic monitoring in this region is indispensable.

  1. Analog modeling of strike-slip surface ruptures: Implications for Greendale Fault (New Zealand) mechanics and paleoseismology (United States)

    Sasnett, P.; Quigley, M.; Cruden, A. R.; Boutelier, D. A.; Villamor, P.


    Analog modeling of strike-slip faulting provides insight into the development and behavior of surface ruptures with progressive slip, with relevance for understanding how coseismic displacements from fault ruptures are recorded in paleoseismic trenches. Patterns of surface deformation were investigated in analogue experiments using cohesive and non-cohesive granular materials above a vertical, planar, strike-slip basement fault. Surface deformation during the experiments was monitored by 3D PIV (Particle Imaging Velocimetry) and 2D time-lapse photography. Analysis of the experiments focused on fault zone morphology and development, as well as comparisons between the models and surface deformation observed along the Greendale Fault that resulted from the 2010 Darfield earthquake, New Zealand. Complex surface rupture patterns with similar characteristics to the Greendale Fault (en echelon fractures, Riedel shears, pop-up structures, etc.) were generated by a simple fault plane of uniform dip, slip, and frictional properties. The main controls on surface rupture morphology were found to be the properties and thickness of the overburden, the nature of the material surface, and the overall displacement of the underlying fault. Mapping the evolution of fracture patterns with progressive shear strain reveals that Riedel shears, striking 0-30° from the underlying basement fault, are more frequently reactivated during multiple displacement (earthquake) cycles, and are thus most likely to provide reliable paleoseismic records. This information will assist in the identification of suitable locations for paleoseismic trenches and in the interpretation of trench records from the Greendale Fault and other active, strike-slip faults in analogous geologic settings. The results also highlight the tendency of trenching studies of faults of this type to underestimate the number of and displacements on previous ruptures, which potentially leads to an underestimate of the magnitude


    Directory of Open Access Journals (Sweden)

    Mokhamad Nur Cahyadi


    Full Text Available Using Total Electron Content (TEC measurements with Global Positioning System we studied ionospheric responses to three large earthquakes with difference focal mechanism that occurred in the Sumatra Andaman 26 December 2004, North off Sumatra 11 April 2012, and North Japan 7 December 2012. These earthquakes have different focal mechanisms, i.e. high-angle reverse, strike-slip, and normal faulting, respectively. TEC responses to the Sumatra Andaman 2004 and north Japan 2012 events initiated with positive changes. On the other hand, the initial TEC changes in the Sumatra 2012 earthquake showed both positive and negative polarities depending on the azimuth around the focal area. Such a variety may reflect differences in coseismic vertical crustal displacements, which are dominated by uplift and subsidence in the Sumatra 2012 event. This phenomena has same characteristic with 1994 Kuril Arch earthquake. There are three different propagation velocity in the Sumatra 2012 earthquake, within the first 300 km until 430 km, the CID propagation velocity was ~3 km/s, which is equal to the secod sound speed at the height of the ionospheric F-layer. Starting from 380 km until 750 km out from the epicenter, the disturbance seems to divide into two separate perturbations, with each propagating at a different velocity, about 1 km/s for the one and about 0.4 m/s for the other. The apparent velocity in the Sumatra Andaman 2004 and Japan 2012 propagated ~ 1 km/s and ~ 0.3 km/s, consistent with the sound speed at the ionospheric F layer height and internal gravity wave respectively. Resonant oscillation of TEC with a frequency of ~ 3.7 mHZ and ~4.4 mHz have been found in the Sumatra 2012 and Sumatra Andaman 2004 events. Those earthquakes, which occurred during a period of quiet geomagnetic activity, also showed clear preseismic TEC anomalies similar to those before the 2011 Tohoku-Oki and 2007 Bengkulu earthquake.   The positive anomalies started 30-60 minutes

  3. Role of the offshore Pedro Banks left-lateral strike-slip fault zone in the plate tectonic evolution of the northern Caribbean (United States)

    Ott, B.; Mann, P.; Saunders, M.


    Previous workers, mainly mapping onland active faults on Caribbean islands, defined the northern Caribbean plate boundary zone as a 200-km-wide bounded by two active and parallel strike-slip faults: the Oriente fault along the northern edge of the Cayman trough with a GPS rate of 14 mm/yr, and and the Enriquillo-Plaintain Garden fault zone (EPGFZ) with a rate of 5-7 mm/yr. In this study we use 5,000 km of industry and academic data from the Nicaraguan Rise south and southwest of the EPGFZ in the maritime areas of Jamaica, Honduras, and Colombia to define an offshore, 700-km-long, active, left-lateral strike-slip fault in what has previously been considered the stable interior of the Caribbean plate as determined from plate-wide GPS studies. The fault was named by previous workers as the Pedro Banks fault zone because a 100-km-long segment of the fault forms an escarpment along the Pedro carbonate bank of the Nicaraguan Rise. Two fault segments of the PBFZ are defined: the 400-km-long eastern segment that exhibits large negative flower structures 10-50 km in width, with faults segments rupturing the sea floor as defined by high resolution 2D seismic data, and a 300-km-long western segment that is defined by a narrow zone of anomalous seismicity first observed by previous workers. The western end of the PBFZ terminates on a Quaternary rift structure, the San Andres rift, associated with Plio-Pleistocene volcanism and thickening trends indicating initial rifting in the Late Miocene. The southern end of the San Andreas rift terminates on the western Hess fault which also exhibits active strands consistent with left-lateral, strike-slip faults. The total length of the PBFZ-San Andres rift-Southern Hess escarpment fault is 1,200 km and traverses the entire western end of the Caribbean plate. Our interpretation is similar to previous models that have proposed the "stable" western Caribbean plate is broken by this fault whose rate of displacement is less than the threshold

  4. Late Pleistocene-Holocene Activity of the Strike-slip Xianshuihe Fault Zone, Tibetan Plateau, Inferred from Tectonic Landforms (United States)

    Lin, A.; Yan, B.


    Knowledges on the activity of the strike-slip fault zones on the Tibetan Plateau have been promoted greatly by the interpretation of remote sensing images (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1977). The active strike-slip Xianshuihe-Xiaojiang Fault System (XXFS), with the geometry of an arc projecting northeastwards, plays an important role in the crustal deformation of the Tibetan Plateau caused by the continental collision between the Indian and Eurasian plates. The Xianshuihe Fault Zone (XFZ) is located in the central segment of the XXFS and extends for 370 km, with a maximum sinistral offset of 60 km since 13‒5 Ma. In this study, we investigated the tectonic landforms and slip rate along the central segment of the left-lateral strike-slip XFZ. Field investigations and analysis of ttectonic landforms show that horizontal offset has been accumulated on the topographical markers of different scales that developed since the Last Glacial Maximum (LGM). The central segment of the XFZ is composed of three major faults: Yalahe, Selaha, and Zheduotang faults showing a right-stepping echelon pattern, that is characterized by systematical offset of drainages, alluvial fans and terrace risers with typical scissoring structures, indicating a structural feature of left-lateral strike-slip fault. Based on the offset glacial morphology and radiocarbon dating ages, we estimate the Late Pleistocene-Holocene slip rate to be 10 mm/yr for the central segment of the XFZ, which is consistent with that estimated from the GPS observations and geological evidence as reported previously. Across the central segment of the XFZ, the major Selaha and Zheduotang faults participate a slip rate of 5.8 mm/yr and 3.4 mm/yr, respectively. Detailed investigations of tectonic landforms are essential for the understanding the activity of active faults. Our findings suggest that the left-lateral slipping of the XFZ partitions the deformation of eastward extrusion and northeastward

  5. Structural evolution of the La Trocha fault zone: Oblique collision and strike-slip basins in the Cuban Orogen (United States)

    Cruz-Orosa, Israel; Sã Bat, Francesc; Ramos, Emilio; Rivero, LluíS.; VáZquez-Taset, Yaniel M.


    The La Trocha fault zone acted as a major left-lateral transfer zone and is bounded by the La Trocha (LTF), Zaza-Tuinicú (ZTF), Cristales (CTF) and Taguasco (TGF) faults. These faults were consistent with the clockwise rotation of convergence and shortening in central Cuba. From the Paleocene to the Early Eocene (65-48 Ma), a SSW-NNE shortening produced transtension in the LTF and transpression in the ZTF. Subsequently, during the Middle Eocene (48-37 Ma), shortening shifted to a SW-NE direction, resulting in the normal component of the LTF and transpression in the ZTF and CTF. Since the Late Eocene (37 Ma), central Cuba has been welded to the North American Plate. The post-welding deformation gave rise to transtension of the LTF and TGF. This deformation is consistent with a WSW-ENE shortening and reflects activity in the transform boundary of the Cayman Trough. Both the normal and thrust displacements of these previous faults are corroborated by structural data whereas left-lateral displacement is deduced from the concordance between oblique collision and structural features. Plate-kinematics and the structural evolution of the La Trocha fault zone indicate that the related Central Basin is a strike-slip polygenetic basin and that the formation of this system (i.e., fault zone - strike-slip basin) was a consequence of the Paleogene oblique collision between the Caribbean Volcanic Arc and the Bahamas Borderland (North American plate).

  6. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet (United States)

    England, Philip; Molnar, Peter


    Bounds are placed here on the rate of rotation proposed by Cobbold and Davy (1988) for the major strike-slip faults in the eastern Tibetan Plateau. It is also concluded here that the image of lateral transport on such faults, known also as continental escape, extrusion, or expulsion, is an illusion, and that instead the left-lateral slip on east-striking plates in eastern Tibet is a manifestation of north-striking right-lateral simple shear. If this conclusion is correct, the east-striking left-lateral faults and the crustal blocks between them are rotating clockwise at 1-2 deg/Myr, the east-west dimension of eastern Tibet is shortening at 10-20 mm/yr, and little material is moving eastward out of India's path into Eursasia by left-lateral simple shear.

  7. The geometry of the active strike-slip El Tigre Fault, Precordillera of San Juan, Central-Western Argentina: integrating resistivity surveys with structural and geomorphological data (United States)

    Fazzito, Sabrina Y.; Cortés, José M.; Rapalini, Augusto E.; Terrizzano, Carla M.


    The geometry and related geomorphological features of the right-lateral strike-slip El Tigre Fault, one of the main morphostructural discontinuities in the Central-Western Precordillera of Argentina, were investigated. Achievements of this survey include: recognition of structural and geometrical discontinuities along the fault trace, identification and classification of landforms associated with local transpressional and transtensional sectors, observation of significant changes in the fault strike and detection of right and left bends of different wavelength. In the Central Segment of the El Tigre Fault, 2D electrical resistivity tomography surveys were carried out across the fault zone. The resistivity imaging permitted to infer the orientation of the main fault surface, the presence of blind fault branches along the fault zone, tectonic tilting of the Quaternary sedimentary cover, subsurface structure of pressure ridges and depth to the water table. Based on this information, it is possible to characterize the El Tigre Fault also as an important hydro-geological barrier. Our survey shows that the main fault surface changes along different segments from a high-angle to a subvertical setting whilst the vertical-slip component is either reverse or normal, depending on the local transpressive or transtensive regime induced by major bends along the trace. These local variations are expressed as sections of a few kilometres in length with relatively homogeneous behaviour and frequently separated by oblique or transversal structures.

  8. Modeling the evolution of the lower crust with laboratory derived rheological laws under an intraplate strike slip fault (United States)

    Zhang, X.; Sagiya, T.


    The earth's crust can be divided into the brittle upper crust and the ductile lower crust based on the deformation mechanism. Observations shows heterogeneities in the lower crust are associated with fault zones. One of the candidate mechanisms of strain concentration is shear heating in the lower crust, which is considered by theoretical studies for interplate faults [e.g. Thatcher & England 1998, Takeuchi & Fialko 2012]. On the other hand, almost no studies has been done for intraplate faults, which are generally much immature than interplate faults and characterized by their finite lengths and slow displacement rates. To understand the structural characteristics in the lower crust and its temporal evolution in a geological time scale, we conduct a 2-D numerical experiment on the intraplate strike slip fault. The lower crust is modeled as a 20km thick viscous layer overlain by rigid upper crust that has a steady relative motion across a vertical strike slip fault. Strain rate in the lower crust is assumed to be a sum of dislocation creep and diffusion creep components, each of which flows the experimental flow laws. The geothermal gradient is assumed to be 25K/km. We have tested different total velocity on the model. For intraplate fault, the total velocity is less than 1mm/yr, and for comparison, we use 30mm/yr for interplate faults. Results show that at a low slip rate condition, dislocation creep dominates in the shear zone near the intraplate fault's deeper extension while diffusion creep dominates outside the shear zone. This result is different from the case of interplate faults, where dislocation creep dominates the whole region. Because of the power law effect of dislocation creep, the effective viscosity in the shear zone under intraplate faults is much higher than that under the interplate fault, therefore, shear zone under intraplate faults will have a much higher viscosity and lower shear stress than the intraplate fault. Viscosity contract between

  9. Analogue Modeling of Oblique Convergent Strike-Slip Faulting and Application to The Seram Island, Eastern Indonesia

    Directory of Open Access Journals (Sweden)

    Benyamin Sapiie


    Full Text Available DOI:10.17014/ijog.v1i3.189Sandbox experiment is one of the types of analogue modeling in geological sciences in which the main purpose is simulating deformation style and structural evolution of the sedimentary basin.  Sandbox modeling is one of the effective ways in conducting physically modeling and evaluates complex deformation of sedimentary rocks. The main purpose of this paper is to evaluate structural geometry and deformation history of oblique convergent deformation using of integrated technique of analogue sandbox modeling applying to deformation of Seram Fold-Thrust-Belt (SFTB in the Seram Island, Eastern Indonesia. Oblique convergent strike-slip deformation has notoriously generated area with structural complex geometry and pattern resulted from role of various local parameters that control stress distributions. Therefore, a special technique is needed for understanding and solving such problem in particular to relate 3D fault geometry and its evolution. The result of four case (Case 1 to 4 modeling setting indicated that two of modeling variables clearly affected in our sandbox modeling results; these are lithological variation (mainly stratigraphy of Seram Island and pre-existing basement fault geometry (basement configuration. Lithological variation was mainly affected in the total number of faults development.  On the other hand, pre-existing basement fault geometry was highly influenced in the end results particularly fault style and pattern as demonstrated in Case 4 modeling.  In addition, this study concluded that deformation in the Seram Island is clearly best described using oblique convergent strike-slip (transpression stress system.

  10. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia) (United States)

    Prentice, Carol S.; Rizza, M.; Ritz, J.F.; Baucher, R.; Vassallo, R.; Mahan, S.


    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans—particularly well preserved in the arid environment of the Gobi region—allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is∼1 mm yr–1 along the WIB and EIB segments and∼0.5 mm yr–1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78–7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of∼2500

  11. Characteristics of the Late Quaternary right-lateral strike-slip movement of Bolokenu-Aqikekuduk fault in northern Tianshan Mountains, NW China

    Directory of Open Access Journals (Sweden)

    Jun Shen


    A typical strain partitioning style in the compression area has developed between the intermontane Bo-A fault and the piedmont thrust structures of Northern Tianshan Mountains, under the effect of oblique compression, as indicated by the piedmont thrust structure and the strike-slip fault in the mountains.

  12. Palaeopermeability anisotropies of a strike-slip fault damage zone: 3D Insights of quantitative fluid flow from µCT analysis. (United States)

    Gomila, R.; Arancibia, G.; Nehler, M.; Bracke, R.; Morata, D.


    Fault zones and their related structural permeability are a key aspect in the migration of fluids through the continental crust. Therefore, the estimation of the hydraulic properties (palaeopermeability conditions; k) and the spatial distribution of the fracture mesh within the damage zone (DZ) are critical in the assessment of fault zones behavior for fluids. The study of the real spatial distribution of the veinlets of the fracture mesh (3D), feasible with the use of µCT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, and the validation of previous (and classical) estimations made in 2D analyses in thin-sections. This work shows the results of a fault-related fracture mesh and its 3D spatial distribution in the damage-zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of drilling 5 mm vertically oriented plugs at several locations within the JF damage zone. Each specimen was scanned with an X-Ray µCT scanner, to assess the fracture mesh, with a voxel resolution of ca. 4.5 µm in the 3D reconstructed data. Tensor permeability modeling, using Lattice-Boltzmann Method, through the segmented microfracture mesh show GMkmin (geometric mean values) of 2.1x10-12 and 9.8x10-13 m2, and GMkmax of 6.4x10-12 and 2.1x10-12 m2. A high degree of anisotropy of the DZ permeability tensor both sides of the JF (eastern and western side, respectively) is observed, where the k values in the kmax plane are 2.4 and 1.9 times higher than the kmin direction at the time of fracture sealing. This style of anisotropy is consistent with the obtained for bedded sandstones supporting the idea that damage zones have an analogous effect - but vertically orientated - on bulk permeability (in low porosity rocks) as

  13. Ductile shear zones beneath strike-slip faults: Implications for the thermomechanics of the San Andreas fault zone (United States)

    Thatcher, W.; England, P.C.


    We have carried out two-dimensional (2-D) numerical experiments on the bulk flow of a layer of fluid that is driven in a strike-slip sense by constant velocities applied at its boundaries. The fluid has the (linearized) conventional rheology assumed to apply to lower crust/upper mantle rocks. The temperature dependence of the effective viscosity of the fluid and the shear heating that accompanies deformation have been incorporated into the calculations, as has thermal conduction in an overlying crustal layer. Two end-member boundary conditions have been considered, corresponding to a strong upper crust driving a weaker ductile substrate and a strong ductile layer driving a passive, weak crust. In many cases of practical interest, shear heating is concentrated close to the axial plane of the shear zone for either boundary condition. For these cases, the resulting steady state temperature field is well approximated by a cylindrical heat source embedded in a conductive half-space at a depth corresponding to the top of the fluid layer. This approximation, along with the application of a theoretical result for one-dimensional shear zones, permits us to obtain simple analytical approximations to the thermal effects of 2-D ductile shear zones for a range of assumed rheologies and crustal geotherms, making complex numerical calculations unnecessary. Results are compared with observable effects on heat flux near the San Andreas fault using constraints on the slip distribution across the entire fault system. Ductile shearing in the lower crust or upper mantle can explain the observed increase in surface heat flux southeast of the Mendocino triple junction and match the amplitude of the regional heat flux anomaly in the California Coast Ranges. Because ductile dissipation depends only weakly on slip rate, faults moving only a few millimeters per year can be important heat sources, and the superposition of effects of localized ductile shearing on both currently active and now

  14. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California (United States)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.


    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and

  15. The Iceland Plate Boundary Zone: Propagating Rifts, Migrating Transforms, and Rift-Parallel Strike-Slip Faults (United States)

    Karson, J. A.


    Unlike most of the Mid-Atlantic Ridge, the North America/Eurasia plate boundary in Iceland lies above sea level where magmatic and tectonic processes can be directly investigated in subaerial exposures. Accordingly, geologic processes in Iceland have long been recognized as possible analogs for seafloor spreading in the submerged parts of the mid-ocean ridge system. Combining existing and new data from across Iceland provides an integrated view of this active, mostly subaerial plate boundary. The broad Iceland plate boundary zone includes segmented rift zones linked by transform fault zones. Rift propagation and transform fault migration away from the Iceland hotspot rearrange the plate boundary configuration resulting in widespread deformation of older crust and reactivation of spreading-related structures. Rift propagation results in block rotations that are accommodated by widespread, rift-parallel, strike-slip faulting. The geometry and kinematics of faulting in Iceland may have implications for spreading processes elsewhere on the mid-ocean ridge system where rift propagation and transform migration occur.

  16. Strike-slip fault Kinematics and mechanics at the seismic cycle time-scale : Results from new analogue model experiments. (United States)

    Caniven, Yannick; Dominguez, Stéphane; Soliva, Roger; Cattin, Rodolphe; Peyret, Michel; Chéry, Jean; Romano, Christian


    The average seismic cycle duration extends from hundred to a few thousands years but geodetic measurements, including trilateration, GPS, Insar and seismological data extend over less than one century. This short time observation scale renders difficult, then, to constrain the role of key parameters such as fault friction and geometry, crust rheology, stress and strain rate that control the kinematics and mechanics of active faults. To solve this time scale issue, we have developed a new experimental set-up that reproduces scaled micro-earthquakes and several hundreds of seismic cycles along a strike-slip fault. The model is constituted by two polyurethane foam plates laterally in contact, lying on a basal silicone layer, which simulate the mechanical behaviour of an elastoplastic upper crust over a ductile lower crust, respectively. To simulate the boundary conditions of a strike-slip fault, a computerized motoreductor system moves the two compartments on an opposite sens and at a constant very low velocity (a few µm/s). The model spatial and temporal scaling, deduces from analog material physical and mechanical parameters, implies that 1 cm in the model represents 2-3 km in the nature and 1 s is equivalent to 5-15 years. Surface-horizontal strain field is quantified by sub-pixel correlation of digital camera pictures recorded every 16 µm of displacement. For each experience about 2000 horizontal-velocity field measurements are recorded. The analysis of model-interseismic and coseismic surface displacements and their comparison to seismogenic natural faults demonstrate that our analog model reproduces correctly both near and far-field surface strains. To compare the experiences, we have developed several algorithms that allow studying the main spatial and temporal evolution of the physical parameters and surface deformation processes that characterise the seismic cycle (magnitudes, stress, strain, friction coefficients, interseismic locking depth, recurrence

  17. A Physical Analog Model of Strike-Slip Faulting for Model-Based Inquiry in the Classroom (United States)

    Curren, I. S.; Glesener, G.


    Geoscience educators often use qualitative physical analog models to demonstrate natural processes; while these are effective teaching tools, they often neglect the fundamental scientific practices that make up the core of scientific work. Physical analog models with dynamic properties that can be manipulated and measured quantitatively in real-time, on the other hand, can give students the opportunity to explore, observe and empirically test their own ideas and hypotheses about the relevant target concepts within a classroom setting. Providing classroom content for inquiry, such as a hands-on physical analog model, which fosters students' production and refinement of their mental models in participatory and discursive activities have been argued by many education researchers to help students build a deeper understanding of science and scientific reasoning. We present a physical analog model that was originally developed by UCLA's Modeling and Educational Demonstrations Laboratory (MEDL) for the purpose of engaging students in the study of elastic rebound on a strike-slip fault; it was later modified to accommodate research of complex tectonic processes associated with strike-slip faulting, which are currently debated by scientists in both the geology and geophysics disciplines. During experimentation, it became clear that this new design could be used as a relevant resource for inquiry from which students would be able to make and discuss real-time empirical measurements and observations to help them infer causal accounts of theoretical and/or unobservable dynamic processes within the Earth's crust. In our poster session, we will: 1) demonstrate the physical analog model; 2) describe various real-time data collection tools, as well as quantitative methods students can use to process their data; and 3) describe the surficial, structural and relational similarities between the physical analog model and the target concepts intended for students to explore in the

  18. Turkish earthquakes reveal dynamics of fracturing along a major strike-slip fault zone (United States)

    Çemen, Ibrahim; Gökten, Ergun; Varol, Baki; Kiliç, Recep; Özaksoy, Volkan; Erkmen, Cenk; Pinar, Ali

    During the last 5 months of 1999, northwestern Turkey experienced two major earthquakes along the North Anatolian Fault Zone (NAFZ). The first earthquake struck the country at 3:01 A.M. local time on August 17, and caused extensive damage in the towns of Yalova, Gölcük, Izmit, Adapazari, and Düzce (Figure 1). The second earthquake occurred at 6:57 P.M. local time on November 12 and caused damage mostly in Düzce and Kaynasli.The 7.4-Mw main shock of the August 17 Izmit earthquake was centered at 40.702°N, 29.987°E and originated at a depth of 17 km. The center was about 11 km southeast of Izmit, a major industrial town (Figure 1). The earthquake was a devastating natural disaster that claimed close to 20,000 lives and left more than 100,000 people homeless.

  19. Pseudodynamic Source Characterization for Strike-Slip Faulting Including Stress Heterogeneity and Super-Shear Ruptures

    KAUST Repository

    Mena, B.


    Reliable ground‐motion prediction for future earthquakes depends on the ability to simulate realistic earthquake source models. Though dynamic rupture calculations have recently become more popular, they are still computationally demanding. An alternative is to invoke the framework of pseudodynamic (PD) source characterizations that use simple relationships between kinematic and dynamic source parameters to build physically self‐consistent kinematic models. Based on the PD approach of Guatteri et al. (2004), we propose new relationships for PD models for moderate‐to‐large strike‐slip earthquakes that include local supershear rupture speed due to stress heterogeneities. We conduct dynamic rupture simulations using stochastic initial stress distributions to generate a suite of source models in the magnitude Mw 6–8. This set of models shows that local supershear rupture speed prevails for all earthquake sizes, and that the local rise‐time distribution is not controlled by the overall fault geometry, but rather by local stress changes on the faults. Based on these findings, we derive a new set of relations for the proposed PD source characterization that accounts for earthquake size, buried and surface ruptures, and includes local rise‐time variations and supershear rupture speed. By applying the proposed PD source characterization to several well‐recorded past earthquakes, we verify that significant improvements in fitting synthetic ground motion to observed ones is achieved when comparing our new approach with the model of Guatteri et al. (2004). The proposed PD methodology can be implemented into ground‐motion simulation tools for more physically reliable prediction of shaking in future earthquakes.

  20. Relationships between along-fault heterogeneous normal stress and fault slip patterns during the seismic cycle: Insights from a strike-slip fault laboratory model (United States)

    Caniven, Yannick; Dominguez, Stéphane; Soliva, Roger; Peyret, Michel; Cattin, Rodolphe; Maerten, Frantz


    We use a strike-slip fault analog model to study experimentally the role played by along-fault non-uniform and asymmetric applied normal stress on both coseismic slip and long-term fault behavior. Our model is based on a visco-elasto-plastic multi-layered rheology that allows to produce several hundreds of scaled analog microquakes and associated seismic cycles. Uniform or heterogeneous applied normal stress along the fault plane is imposed and maintained constant during the whole experiment durations. Our results suggest that coseismic slip patterns are strongly controlled by spatial normal stress variations and subsequent accumulated shear stress along fault strike. Major microquakes occur preferentially in zones of major shear stress asperities. Coseismic slip distributions exhibit a pattern similar to the along-fault applied normal stress distribution. The occurrence of isolated low to moderate microquakes where residual stresses persist around secondary stress asperities, indicates that stress conditions along the fault also control the whole variability of fault slip events. Moreover, when fault slip stability conditions are modulated by normal stress distribution, our experiments suggest that the along-fault stress heterogeneity influences the seismic cycle regularity and, consequently, long-term fault slip behavior. Uniform applied normal stress favors irregular seismic cycles and the occurrence of earthquakes clustering, whereas non-uniform normal stress with a single high amplitude stress asperity generates strong characteristic microquake events with stable return periods. Together our results strengthen the assumption that coseismic slip distribution and earthquake variability along an active fault may provide relevant information on long term tectonic stress and could thus improve seismic hazard assessment.


    Directory of Open Access Journals (Sweden)

    Korhan ESAT


    Full Text Available The Eskişehir Fault Zone is one of the prominent neotectonic structures of Turkey. It separates the west  Anatolian extensional province and the strike-slip induced northwest central Anatolian contractional area in the Anatolian Block. Its southeastern part is generally divided into three branches, namely the Ilıca, Yeniceoba, and Cihanbeyli from north to south, respectively. The right lateral strike-slip Ilıca branch (IB is an approximately 100-km-long fault and it is composed of several segments in a northwest-southeast direction. The slickensides, subsidiary fractures, cataclastic zone, fracture-controlled drainage pattern, right lateral stream deflections, deformation in the Quaternary unit observing in the seismic reflection sections, and seismicity of the region all indicate that the IB is an active right lateral strike-slip fault. The IB has also a regional tectonic importance as a boundary fault between the contractional and the extensional regions in central Anatolia considering that it is the southern limit of the contraction-related structures in the west-southwest of Ankara.

  2. Active and recent strike-slip tectonics (United States)

    Nur, Amos; Boccaletti, Mario

    An international workshop cosponsored by the Department of Geology, University of Florence, Italy and the Department of Geophysics, Stanford University, Stanford, Calif., was held in Florence, Italy, April 18-20, 1989,on the topic of active and recent strike-slip tectonics in the continental crust. Workshop participants from Turkey, Ethiopia, Israel, Greece, and various universities in Italy, Spain, West Germany, France, the United Kingdom, Brazil, and the United States reported on a broad range of studies involving strike-slip faulting in continental crustal setting. As it turned out, much of the work reported on involved aspects of strike-slip faulting that are only poorly understood, especially crustal deformation, which is distributed over a multiplicity of faults, or even fault domains.One of the rewarding aspects of this workshop was the diversity of geographic areas and geological settings covered by the reporters. The north and east Anatolian faults, the Dead Sea transform zone, western Turkey, north and central Greece, Malta, Sicily, southern Italy, the bethic Cordillera in southern Spain, Tunisia, Tibet and southwest China, offshore Brazil, Alaska, Nevada, and California. A recurring observation reported for all those areas was mixed mode faulting, i.e., the coterminous or sequential occurrence of strike-slip and normal faulting, or strike-slip and thrust, and in many instances also strikeslip, normal and thrust faulting in a single tectonic setting.

  3. A recent Mw 4.3 earthquake proving activity of a shallow strike-slip fault in the northern part of the Western Desert, Egypt (United States)

    Ezzelarab, Mohamed; Ebraheem, Mohamed O.; Zahradník, Jiří


    The Mw 4.3 earthquake of September 2015 is the first felt earthquake since 1900 A.D in the northern part of the Western Desert, Egypt, south of the El-Alamein City. The available waveform data observed at epicentral distances 52-391 km was collected and carefully evaluated. Nine broad-band stations were selected to invert full waveforms for the centroid position (horizontal and vertical) and for the focal mechanism solution. The first-arrival travel times, polarities and low-frequency full waveforms (0.03-0.08 Hz) are consistently explained in this paper as caused by a shallow source of the strike-slip mechanism. This finding indicates causal relation of this earthquake to the W-E trending South El-Alamein fault, which developed in Late Cretaceous as dextral strike slip fault. Recent activity of this fault, proven by the studied rare earthquake, is of fundamental importance for future seismic hazard evaluations, underlined by proximity (∼65 km) of the source zone to the first nuclear power plant planned site in Egypt. Safe exploration and possible future exploitation of hydrocarbon reserves, reported around El-Alamein fault in the last decade, cannot be made without considering the seismic potential of this fault.

  4. Mechanics of evenly spaced strike-slip faults and its implications for the formation of tiger-stripe fractures on Saturn's moon Enceladus (United States)

    Yin, An; Zuza, Andrew V.; Pappalardo, Robert T.


    We present the first mechanical analysis based on realistic rheology and boundary conditions on the formation of evenly spaced strike-slip faults. Two quantitative models employing the stress-shadow concept, widely used for explaining extensional-joint spacing, are proposed in this study: (1) an empirically based stress-rise-function model that simulates the brittle-deformation process during the formation of evenly spaced parallel strike-slip faults, and (2) an elastic plate model that relates fault spacing to the thickness of the fault-hosting elastic medium. When applying the models for the initiation and development of the tiger-stripe fractures (TSF) in the South Polar Terrain (SPT) of Enceladus, the mutually consistent solutions of the two models, as constrained by the mean spacing of the TSF at ∼35 km, requires that the brittle ice-shell thickness be ∼30 km, the elastic thickness be ∼0.7 km, and the cohesive strength of the SPT ice shell be ∼30 kPa. However, if the brittle and elastic models are decoupled and if the ice-shell cohesive strength is on the order of ∼1 MPa, the brittle ice shell would be on the order of ∼10 km.

  5. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf


    Understanding earthquake (EQ) recurrence relies on information about the timing and size of past EQ ruptures along a given fault. Knowledge of a fault\\'s rupture history provides valuable information on its potential future behavior, enabling seismic hazard estimates and loss mitigation. Stratigraphic and geomorphic evidence of faulting is used to constrain the recurrence of surface rupturing EQs. Analysis of the latter data sets culminated during the mid-1980s in the formulation of now classical EQ recurrence models, now routinely used to assess seismic hazard. Within the last decade, Light Detection and Ranging (lidar) surveying technology and other high-resolution data sets became increasingly available to tectono-geomorphic studies, promising to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault\\'s offset accumulation pattern from geomorphic evidence. We address sources of uncertainty affecting offset measurement and advocate approaches to minimize them. A number of recent studies focus on single-EQ slip distributions and along-fault slip accumulation patterns. We put them in context with paleoseismic studies along the respective faults by comparing coefficients of variation CV for EQ inter-event time and slip-per-event and find that a) single-event offsets vary over a wide range of length-scales and the sources for offset variability differ with length-scale, b) at fault-segment length-scales, single-event offsets are essentially constant, c) along-fault offset accumulation as resolved in the geomorphic record is dominated by essentially same-size, large offset increments, and d) there is generally no one-to-one correlation between the offset accumulation pattern constrained in the geomorphic record and EQ occurrence as identified in the stratigraphic record, revealing the higher resolution and preservation potential of

  6. The 2015 M7.2 Sarez, Central Pamir, Earthquake And The Importance Of Strike-Slip Faulting In The Pamir Interior: Insights From Geodesy And Field Observations (United States)

    Metzger, Sabrina; Schurr, Bernd; Ratschbacher, Lothar; Schöne, Tilo; Kufner, Sofia-Katerina; Zhang, Yong; Sudhaus, Henriette


    The Pamir mountain range, located in the Northwest of the India-Asia collision zone, accommodates approximately one third of the northward advance of the Indian continent at this longitude (i. e. ˜34 mm/yr) mostly by shortening at its northern thrust system. Geodetic and seismic data sets reveal here a narrow zone of high deformation and M7+ earthquakes of mostly thrust type with some dextral strike-slip faulting observed, too. The Pamir interior shows sinistral strike-slip and normal faulting indicating north-south compression and east-west extension. In this tectonic setting the two largest instrumentally recorded earthquakes, the M7+ 1911 and 2015 earthquake events in the central Pamir occurred with left-lateral shear along a NE-SW rupture plane. We present the co-seismic deformation field of the 2015 earthquake observed by radar satellite interferometry (InSAR), SAR amplitude pixel offsets and high-rate Global Positioning System (GPS). The InSAR and pixel offset results suggest a 50+ km long rupture with sinistral fault offsets at the surface of more than 2 m on a yet unmapped fault trace of the Sarez Karakul Fault System (SKFS). A distributed slip model with a data-driven slip patch resolution yields a sub-vertical fault plane with a strike of N39.5 degrees and a rupture area of ˜80 x 40 km with a maximum slip of 2 m in the upper 10 km of the crust near the surface rupture. Field observations collected some nine months after the earthquake confirm the rupture mechanism, surface trace location and fault offset measurements as constrained by geodetic data. Diffuse deformation was observed across a 1-2 km wide zone, hosting primary fractures sub-parallel to the rupture strike with offsets of 2 m and secondary, en echelon fractures including Riedel shears and hybrid fractures often related to gravitational mass movements. The 1911 and 2015 earthquakes demonstrate the importance of sinistral strike-slip faulting on the SKFS, contributing both to shear between the

  7. Rupture model of the 2015 M7.2 Sarez, Central Pamir, earthquake and the importance of strike-slip faulting in the Pamir interior (United States)

    Metzger, S.; Schurr, B.; Schoene, T.; Zhang, Y.; Sudhaus, H.


    The Pamir mountain range, located in the Northwest of the India-Asia collision zone, accommodates approximately one third of the northward advance of the Indian continent at this longitude (i.e. 34 mm/yr) mostly by shortening at its northern thrust system. Geodetic and seismic data sets reveal here a narrow zone of high deformation and M7+ earthquakes of mostly thrust type with some dextral strike-slip faulting observed, too. The Pamir interior shows sinistral strike-slip and normal faulting indicating north-south compression and east-west extension. In this tectonic setting the two largest instrumentally recorded earthquakes, the M7+ 1911 and 2015 earthquake events in the central Pamir occurred with left-lateral shear along a NE-SW rupture plane. We present the co-seismic deformation field of the 2015 earthquake observed by Radar satellite interferometry (InSAR), SAR amplitude offsets and high-rate Global Positioning System (GPS). The InSAR and offset results reveal that the earthquake created a 50 km long surface rupture with maximum left-lateral offsets of more than two meters on a yet unmapped fault trace of the Sarez Karakul Fault System (SKFS). We further derive a distributed slip-model including a thorough model parameter uncertainty study. Using a two-step approach to first find the optimal rupture geometry and then invert for slip on discrete patches, we show that a data-driven patch resolution produces yields a better representation of the near-surface slip and an increased slip precision than a uniform patch approach without increasing the number of parameters and thus calculation time. Our best-fit model yields a sub-vertical fault plane with a strike of N39.5 degrees and a rupture area of 80 x 40 km2 with a maximum slip of 2 meters in the upper 10 km of the crust near the surface rupture. The 1911 and 2015 earthquakes demonstrate the importance of sinistral strike-slip faulting on the SKFS, contributing both to shear between the western and eastern

  8. Hematite (U-Th)/He thermochronometry constrains intraplate strike-slip faulting on the Kuh-e-Faghan Fault, central Iran (United States)

    Calzolari, Gabriele; Rossetti, Federico; Ault, Alexis K.; Lucci, Federico; Olivetti, Valerio; Nozaem, Reza


    The Kuh-e-Faghan strike-slip fault system (KFF), located to the northern edge of the Lut Block in central Iran, developed through a Neogene-Quaternary pulsed history of eastward fault propagation and fault-related exhumation. This system is a consequence of the residual stresses transmitted from the Arabia-Eurasia convergent plate boundary. Here we integrate structural and textural analysis with new and previously published apatite fission-track (AFT) and apatite (U-Th)/He (apatite He) results, chlorite thermomentry, and hematite (U-Th)/He data from hematite-coated brittle fault surfaces to constrain the timing of tectonic activity and refine patterns of late Miocene-Pliocene burial and exhumation associated with the propagation of the KFF. Twenty-nine hematite (U-Th)/He (hematite He) dates from three striated hematite coated slip surfaces from the KFF fault core and damage zone yield individual dates from 12-2 Ma. Petrographic analysis and chlorite thermometry of a polyphase, fossil fluid system in the KFF fault core document that fluid circulation and mineralization transitioned from a closed system characterized by pressure solution and calcite growth to an open system characterized by hot hydrothermal (T = 239 ± 10 °C) fluids and hematite formation. Hematite microtextures and grain size analysis reveal primary and secondary syntectonic hematite fabrics, no evidence of hematite comminution and similar hematite He closure temperatures ( 60-85 °C) in each sample. Integration of these results with thermal history modeling of AFT and apatite He data shows that KFF activity in the late Miocene is characterized by an early stage of fault nucleation, fluid circulation, hematite mineralization, and eastward propagation not associated with vertical movement that lasted from 12 to 7 Ma. Hematite He, AFT, and apatite He data track a second phase of fault system activity involving fault-related exhumation initiating at 7 Ma and continuing until present time. Our new data

  9. Cenozoic structural inversion from transtension to transpression in Yingxiong Range, western Qaidam Basin: New insights into strike-slip superimposition controlled by Altyn Tagh and Eastern Kunlun Faults (United States)

    Cheng, Xiang; Zhang, Daowei; Jolivet, Marc; Yu, Xiangjiang; Du, Wei; Liu, Runchao; Guo, Zhaojie


    A Cenozoic structural inversion event from transtension to transpression involving salt tectonics has been uncovered in the Yingxiong Range, the western Qaidam Basin. Seismic reflection data show that there are two common structural styles in the Yingxiong Range: (1) the positive flower structure; (2) the thrust-controlled fold at shallow depth and the positive inverted flower structure at deep levels, which are separated by a salt layer in the upper Xiaganchaigou Formation. The Yingxiong Range experienced a first stage of transtension in the Eocene, induced by the Altyn Tagh Fault, and a second stage of transpression from the early Miocene to present, jointly controlled by the Altyn Tagh and Eastern Kunlun Faults. The Eocene transtension produced numerous NW-striking right-stepping en-échelon transtensional normal faults or fractures in the Yingxiong Range. At the same time, evaporites and mudstone were deposited in the vicinity of these faults. In the early Miocene, the Eocene transtensional normal faults were reactivated in a reverse sense, and the thrust-controlled folds at shallow depth started to form simultaneously. With transpression enhanced in the late Cenozoic, positive flower structures directly formed in places without evaporites. The Cenozoic transtension to transpression inversion of the Yingxiong Range is the result of strike-slip superimposition controlled by the Altyn Tagh and Eastern Kunlun Faults in time and space.

  10. The late Quaternary slip history of the North Anatolian Fault, Turkey: Implications for the spatial and temporal behaviour of large strike-slip fault belts (United States)

    Zabcı, Cengiz; Akyüz, H. Serdar; Sançar, Taylan; Güneç Kıyak, Nafiye


    The study of the spatial and temporal behaviour of active faults by estimating the geologic and geodetic slip rates is critical not only for assessing the seismic potential of these tectonic structures, but also for understanding their geodynamics. Geodetic data can provide detailed spatial coverage but represent a short time interval of a single earthquake cycle, while geologic rates are derived as average values for multiple events at spatially limited sites. In the complex tectonic setting of the eastern Mediterranean, the westward extrusion of the Anatolian scholle is mainly accommodated by two major tectonic structures, the North Anatolian (NASZ) and the East Anatolian (EASZ) shear zones, respectively forming the northern and eastern boundaries. The rate of deformation all along the North Anatolian Fault (NAF) is spatially well documented mainly by GPS and InSAR based geodetic studies during the last two decades. Furthermore, the number of the morphochronology-based geologic slip rate studies significantly increased, covering the different sections of this large strike slip fault for various time intervals. In this study, we do not only compile all previous geologic slip rate estimates, but we also present data for three new and two revised sites from central to the most eastern parts of the NAF in order to understand the spatial and temporal behaviour of this important fault system. The integrated dataset of geologic studies were classified into two groups to represent the central to eastern sections (Model I) and the western part (Model II). The geographical diversion between two models is about at the 31° E longitude, where the NAF bifurcates into two branches from this point toward west into the Marmara Region. To test any secular variation in fault's slip history, we used the Monte Carlo approach of Gold and Cowgill (2011). After the removal of rates, which do not account the near fault deformation or the existing parallel/sub-parallel faults, the Model

  11. Offset of latest pleistocene shoreface reveals slip rate on the Hosgri strike-slip fault, offshore central California (United States)

    Johnson, Samuel Y.; Hartwell, Stephen R.; Dartnell, Peter


    The Hosgri fault is the southern part of the regional Hosgri–San Gregorio dextral strike‐slip fault system, which extends primarily in the offshore for about 400 km in central California. Between Morro Bay and San Simeon, high‐resolution multibeam bathymetry reveals that the eastern strand of the Hosgri fault is crossed by an ∼265  m wide slope interpreted as the shoreface of a latest Pleistocene sand spit. This sand spit crossed an embayment and connected a western fault‐bounded bedrock peninsula and an eastern bedrock highland, a paleogeography resembling modern coastal geomorphology along the San Andreas fault. Detailed analysis of the relict shoreface with slope profiles and slope maps indicates a lateral slip rate of 2.6±0.9  mm/yr, considered a minimum rate for the Hosgri given the presence of an active western strand. This slip rate indicates that the Hosgri system takes up the largest share of the strike‐slip fault budget and is the most active strike‐slip fault west of the San Andreas fault in central California. This result further demonstrates the value and potential of high‐resolution bathymetry in characterization of active offshore faults.

  12. Seismically-triggered soft-sediment deformation structures close to a major strike-slip fault system in the Eastern Alps (Hirlatz cave, Austria) (United States)

    Salomon, Martina Lan; Grasemann, Bernhard; Plan, Lukas; Gier, Susanne; Schöpfer, Martin P. J.


    We investigate episodic soft-sediment deformation structures cross-cut by normal faults preserved in unlithified finely laminated calcite rich sediments in the Hirlatz cave in the Northern Calcareous Alps (Austria). These sediments comprise varve-like alternations of brighter carbonate/quartz rich layers, and darker clay mineral rich layers. The deformed sediments contain abundant millimeter to centimeter-scale soft-sediment structures (load casts, ball-and-pillow structures), sheet slumps (thrust faults and folds), erosive channels filled with slides and chaotic slumps. After deposition and soft-sediment deformation normal faults developed within the entire sedimentary succession, an event that probably correlates with an offset of c. 10 cm of the passage wall above the outcrop. Our major conclusions are: (i) The sediments have a glacial origin and were deposited in the Hirlatz cave under phreatic fluvio-lacustrine conditions. The deposition and the soft-sediment deformation occurred most likely during the last glaciation (i.e. around 25 ka ago); (ii) The liquefaction and formation of the soft-sediment structures in water-saturated stratified layers was triggered by episodic seismic events; (iii) The internally deformed sediments were later displaced by normal faults; (iv) A possible source for the seismic events is the active sinistral Salzach-Ennstal-Mariazeller-Puchberger (SEMP) strike-slip fault which is located about 10 km south of the outcrop and plays a major role in accommodating the extrusion of the Eastern Alps towards the Pannonian Basin. To our knowledge, the described structures are the first report of liquefaction and seismically induced soft-sediment deformations in Quaternary sediments in the Eastern Alps.

  13. From 2012 HAITI-SIS Survey: thick-skin versus thin-skin tectonics partitioned along offshore strike-slip Faults-Haïti (United States)

    Ellouz, N.; Leroy, S. D.; Momplaisir, R.; Mercier de Lepinay, B.


    The characterization of the deformation along large strike-slip fault-systems like transpressive boundaries between N. Caribbean/N America is a challenging topic, which requires a multi-scale approach. Thanks to Haiti-sis new data, the precise description of the fault segmentation pattern, the sedimentogical distribution, the uplift/subsidence rates, the along-fault and intra-basin fluids circulations, allows to actualize the evolution of the deformation history up to present-day . All the co-seismic surface to near-surface events, have to be also identified in order to integrate geophysical solutions for the earthquake, within the present-day geological and structural pattern. These two approaches, ranging from geological to instantaneous time-scales have been used during multi-tools Haiti-Sis oceanographic survey, allowing to document and image these different aspects at a large scale. The complex strike-slip North Caribbean boundary registered significative stress partitioning. Oblique convergence is expressed by along-strike evolution; from rifted segments (Cayman Through) to transpressive ones (Haiti, Dominican Rep.), to subduction (Porto Rico). In the Haiti-Sis survey, we acquired new offshore data surrounding the active fault areas, in the Gonâve Bay, the Jamaica Channel and along Southern Peninsula. Mapping the sea-floor, and HR seismic acquisition were our main objectives, in order to characterize the fault and fold architecture, with a new delineation of active segments. Offshore piston cores, have been used as representative of the modern basin sedimentation, and to document the catastrophic events (earthquakes, massive flood or sudden destabilization of the platform ) represented by turbiditic or mass-flow sequences, with the objective to track the time recurrence of seismic events by dating some of these catastrophic sediment deposition. At surface, the other markers of the fault activity are linked with along-fault permeability and fluid circulation

  14. Paleoearthquakes on the Anninghe and Zemuhe fault along the southeastern margin of the Tibetan Plateau and implications for fault rupture behavior at fault bends on strike-slip faults (United States)

    Wang, Hu; Ran, Yongkang; Chen, Lichun; Li, Yanbao


    Fault bends can serve as fault segment boundaries and are used in seismic hazard assessment. Recent studies addressing whether rupture propagation would be arrested at such structural complexities have commonly focused on computational modeling. However, multi-cycle paleoseismic rupture observations through fault bends have seldom been reported. In this study, we used trenching and radiocarbon dating to reveal paleoseismic rupture histories on the southern segment of the Anninghe fault (ANHF) along the southeastern margin of the Tibetan Plateau to explore multi-cycle surface rupture behavior at an extensional fault bend (with an angle of about 30°) at Xichang between the ANHF and Zemuhe fault (ZMHF). Specifically, nine trenches were opened in a fault depression at Maoheshan site and five paleoseismic events were identified. These have been named E1 through E5 respectively corresponding to events at 1400-935 BCE, 420-875 CE, 830-1360 CE, 1295-1715 CE, and 1790 CE-Present. After comparison with the historical records of earthquakes around Xichang and previous paleoseismic results, we suggest that the five seismic events are constrained at: 1365 BCE-935 BCE, 814 CE, 950 CE- 1145 CE, 1536 CE and 1850 CE, respectively. The average recurrence interval of earthquakes along the southern segment of the ANHF is about 700-800 yr. Furthermore, the evidence indicates that surface-faulting events along the southern segment of the ANHF appear to be unevenly spaced in time. Moreover, based on comparisons of seismic events along the ANHF and ZMHF, we find that two fault segments simultaneous ruptured during the 814 CE and 1850 CE earthquakes, event E3 and the 1536 CE earthquake ruptured the ANHF but not rupture the ZMHF. We suggest that the Xichang fault bend is not a persistent fault boundary, indicating that extensional fault bends with an angle of about 30° may not effectively terminate seismic ruptures on strike-slip faults.

  15. A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle

    NARCIS (Netherlands)

    Caniven, Y.; Dominguez, S.; Soliva, R.; Cattin, R.; Peyret, M.; Marchandon, M.; Romano, C.; Strak, V.


    Nowadays, technological advances in satellite imagery measurements as well as the development of dense geodetic and seismologic networks allow for a detailed analysis of surface deformation associated with active fault seismic cycle. However, the study of earthquake dynamics faces several limiting

  16. Reconstructing the magnitude and timing of late Pleistocene and Holocene strike-slip events within the Marlborough Fault Zone, New Zealand (United States)

    Rhodes, Ed; Dolan, James; Van Dissen, Russ; Langridge, Rob; Zinke, Rob; Hatem, Alex; McGuire, Chris; Brown, Nathan


    In most instances, information about the timing of pre-historic earthquake events comes from palaeoseismic trenches located within sediments that were deposited gradually and are close to the fault. Earthquake events are recognised by disturbed stratigraphy, and the timing provided by radiocarbon dating of organic materials that constrain the youngest disturbances for each event. In contrast, fault slip rates are typically derived from the dating of geomorphic features that are offset by one or more slip events. In this latter case, it is often hard to locate suitable organic material for dating these features which often comprise fluvial terraces or channels, and a variety of alternative chronological approaches has been taken including the use of terrestrial cosmogenic nuclides (TCNs; 10Be, 36Cl), U-series dating of carbonate overgrowths on pebbles, and/or luminescence dating of sediments. Using luminescence dating based on single grains of K-feldspar and a post-IR IRSL (Infra-Red Stimulated Luminescence) measurement protocol, we have been able to control the age of several offset terrace units from a number of major strike slip faults of the Marlborough Fault Zone, New Zealand. In the past, arguments concerning the selection of which geomorphic terrace feature to date have been presented, and typically a single age estimate, or small number of dates were used to constrain the derived slip rate. In the Marlborough region, we have sampled several locations characterised by multiple fluvial terraces dating from the late Glacial period (c. 16,000 years ago) through the Holocene. By using a high sampling density involving multiple age estimates within each terrace, dating each one of the terraces, and applying a Bayesian statistical approach to constrain the age of deposition and incision events, we are able to approach a situation where we can derive slip-per-event data and event timing from the same dataset. This can overcome problems of relating observed slip

  17. Strike-slip tectonics during rift linkage (United States)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.


    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  18. The 2014 Mw6.9 Gokceada and 2017 Mw6.3 Lesvos Earthquakes in the Northern Aegean Sea: The Transition from Right-Lateral Strike-Slip Faulting on the North Anatolian Fault to Extension in the Central Aegean (United States)

    Cetin, S.; Konca, A. O.; Dogan, U.; Floyd, M.; Karabulut, H.; Ergintav, S.; Ganas, A.; Paradisis, D.; King, R. W.; Reilinger, R. E.


    The 2014 Mw6.9 Gokceada (strike-slip) and 2017 Mw6.3 Lesvos (normal) earthquakes represent two of the set of faults that accommodate the transition from right-lateral strike-slip faulting on the North Anatolian Fault (NAF) to normal faulting along the Gulf of Corinth. The Gokceada earthquake was a purely strike-slip event on the western extension of the NAF where it enters the northern Aegean Sea. The Lesvos earthquake, located roughly 200 km south of Gokceada, occurred on a WNW-ESE-striking normal fault. Both earthquakes respond to the same regional stress field, as indicated by their sub-parallel seismic tension axis and far-field coseismic GPS displacements. Interpretation of GPS-derived velocities, active faults, crustal seismicity, and earthquake focal mechanisms in the northern Aegean indicates that this pattern of complementary faulting, involving WNW-ESE-striking normal faults (e.g. Lesvos earthquake) and SW-NE-striking strike-slip faults (e.g. Gokceada earthquake), persists across the full extent of the northern Aegean Sea. The combination of these two "families" of faults, combined with some systems of conjugate left-lateral strike-slip faults, complement one another and culminate in the purely extensional rift structures that form the large Gulfs of Evvia and Corinth. In addition to being consistent with seismic and geodetic observations, these fault geometries explain the increasing velocity of the southern Aegean and Peloponnese regions towards the Hellenic subduction zone. Alignment of geodetic extension and seismic tension axes with motion of the southern Aegean towards the Hellenic subduction zone suggests a direct association of Aegean extension with subduction, possibly by trench retreat, as has been suggested by prior investigators.

  19. Structural evolution of Cenozoic basins in northeastern Tunisia, in response to sinistral strike-slip movement on the El Alia-Teboursouk Fault (United States)

    Bejaoui, Hamida; Aïfa, Tahar; Melki, Fetheddine; Zargouni, Fouad


    This paper resolves the structural complexity of Cenozoic sedimentary basins in northeastern Tunisia. These basins trend NE-SW to ∼ E-W, and are bordered by old fracture networks. Detailed descriptions of the structural features in outcrop and in subsurface data suggest that the El Alia-Teboursouk Fault zone in the Bizerte area evolved through a series of tectonic events. Cross sections, lithostratigraphic correlations, and interpretation of seismic profiles through the basins show evidence for: (i) a Triassic until Jurassic-Early Cretaceous rifting phase that induced lateral variations of facies and strata thicknesses; (ii) a set of faults oriented NE-SW, NW-SE, N-S, and E-W that guided sediment accumulation in pull-apart basins, which were subject to compressive and transpressive deformation during Eocene (Lutetian-Priabonian), Miocene (Tortonian), and Pliocene-Quaternary; and (iii) NNW-SSE to NS contractional events that occurred during the Late Pliocene. Part of the latest phase has been the formation of different synsedimentary folded structures with significant subsidence inversion. Such events have been responsible for the reactivation of inherited faults, and the intrusion of Triassic evaporites, ensuring the role of a slip layer. The combined effects of the different paleoconstraints and halokinetic movements are at the origin of the evolution of these pull-apart basins. The subsurface data suggest that an important fault displacement occurred during the Mesozoic-Cenozoic. The patterns of sediment accumulation in the different basins reflect a high activity of deep ancient faults.

  20. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California (United States)

    Kluesner, Jared W.; Brothers, Daniel


    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  1. Analogue modelling of strike-slip fault propagation across a rheological/morphological crustal anisotropy: implications for the morphotectonic evolution of the Gloria Fault - Tore Madeira Rise area in NE Atlantic. (United States)

    Tomás, Ricardo; Rosas, Filipe M.; Duarte, João C.; Terrinha, Pedro; Kullberg, Maria C.; Almeida, Jaime; Barata, Frederico; Carvalho, Bruno; Almeida, Pedro


    The Gloria Fault (GF) marks the E-W dextral transcurrent plate boundary between Eurasia and Africa in NE Atlantic, displaying complying high magnitude (historical and instrumental) seismic activity (e.g. M=7.1 in 1939 and M=8.4 in 1941, Bufforn et al., 1988), and cutting across a NNE-SSW 1000 km long bathymetric ridge: the so called Tore-Madeira Rise - TMR (rising in average 3km above the abyssal plain). The precise origin and tectono-magmatic evolution of the TMR is still not fully understood, although reported wide-angle refraction data points to a rheological configuration comprising an isostatically compensated thickened oceanic crust, possibly formed during a period of high accretion in the Mid-Atlantic Ridge (Pierce and Barton, 1991). Widespread evidence for volcanic activity has also been recognized, spanning from late Cretaceous to Present (Geldmacher et al. 2006, Merle et al. 2009), noticeably with the most recent volcanism (~500 Ky) occurring as tectonically aligned volcanic plugs, distributed along the E-W tectonic trend of the GF-related structures. To better understand the complex interference at play in this key area between the tectonic structures (essentially determined by the Gloria Fault system), the present and past magmatic activity and the resulting seafloor morphology, a series of dynamically scaled analogue modelling experiments have been conceived and carried out. The main focus of this experimental work was to decipher the potential influence of a rheological vs. morphological anisotropy (accounting for the TMR) on the lateral propagation of a major right-lateral strike-slip fault (representing the GF). The preliminary comparison of the obtained experimental results with the natural morphotectonic pattern in the study area reveals, not only a strong tectonic control of the ongoing volcanism, manifested by the observed preferred directions of aligned volcanic plugs, but also a so far unsuspected deflection/distributed pattern of several

  2. Mesozoic strike-slip movement of the Dunhua-Mishan Fault Zone in NE China: A response to oceanic plate subduction (United States)

    Liu, Cheng; Zhu, Guang; Zhang, Shuai; Gu, Chengchuan; Li, Yunjian; Su, Nan; Xiao, Shiye


    The NE-striking Dunhua-Mishan Fault Zone (DMFZ) is one of two branches of the continental-scale sinistral Tan-Lu Fault Zone in NE China. The field data presented here indicate that the ca. 1000 km long DMFZ records two phases of sinistral faulting. The structures produced by these two phases of faulting include NE-SW-striking ductile shear belts and brittle faults, respectively. Mylonite-hosted microstructures and quartz c-axis fabrics suggest deformation temperatures of 450 °C-500 °C for the ductile shear belts. Combining new zircon U-Pb dates for 14 igneous rock samples analyzed during this study with the geology of this region indicates these shear belts formed during the earliest Early Cretaceous. This phase of sinistral displacement represents the initial formation of the DMFZ in response to the northward propagation of the Tan-Lu Fault Zone into NE China. A phase of Early Cretaceous rifting was followed by a second phase of sinistral faulting at 102-96 Ma, as evidenced by our new U-Pb ages for associated igneous rocks. Combining our new data with the results of previous research indicates that the DFMZ records a four-stage Cretaceous evolutionary history, where initial sinistral faulting at the beginning of the Early Cretaceous gave way to rifting during the rest of the Early Cretaceous. This was followed by a second phase of sinistral faulting at the beginning of the Late Cretaceous and a second phase of local rifting during the rest of the Late Cretaceous. The Cretaceous evolution of the DMFZ records the synchronous tectonic evolution of the NE China continent bordering the Pacific Ocean. Two phases of regional N-S compression generated the two phases of sinistral faulting within the DMFZ, whereas two-stage regional extension generated the two phases of rifting. The two compressive events were the result of the rapid low-angle subduction of the Izanagi and Pacific plates, whereas the two-stage extension was caused by the roll-back of these respective

  3. Potassic late orogenic Stephanian volcanism in the South West french Massif Central (Decazeville, Figeac, Lacapelle-Marival basins): an example for mantle metasomatism along strike-slip faults?


    Lapierre, Henriette; Basile, Christophe; Berly, Thomas; Canard, Emmanuel


    International audience; In the Southwestern part of the French Massif central (Decazeville basin, at the Sillon Houiller fault termination; Figeac and Lacapelle-Marival basins along the Argentat fault), Stephanian volcanism exhibits shoshonitic affinities. Their chondrite-normalized Rare Earth Element (REE) patterns are enriched in light REE, but almost flat for heavy REE, with marked negative Eu anomalies. Primitive mantle-normalized element spectra show negative Nb, Ta, P, Sm, Ti, and posit...

  4. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility (United States)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.


    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  5. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    KAUST Repository

    Ruch, Joel


    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic and structural field data along the strike-slip Central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion; consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activity steadily migrated eastward and currently focus on a 10 km long x 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter-term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the Central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  6. Significado tectónico y migración de fluidos hidrotermales en una red de fallas y vetas de un Dúplex de rumbo: un ejemplo del Sistema de Falla de Atacama Tectonic significance and hydrothermal fluid migration within a strike-slip duplex fault-vein network: an example from the Atacama Fault System

    Directory of Open Access Journals (Sweden)

    Viviana Olivares


    Full Text Available El Dúplex Caleta Coloso es una estructura de rumbo desarrollada durante la deformación frágil del Sistema de Falla de Atacama (SFA en el Cretácico Temprano. En su interior hay un sistema de vetas hidrotermales que documentan la naturaleza de la relación entre el transporte de fluidos y el desarrollo del dúplex. El sistema de vetas de orientación dominante NW se localiza en la roca de caja, adyacentes a las zonas de falla. Según su mineralogía dominante hay vetas de clorita, epidota-cuarzo y calcita-limonita, y según las relaciones de corte o su estructura interna, se definieron vetas tempranas (clorita, intermedias (epidota-cuarzo y tardías (calcita-limonitas. Algunas vetas muestran cristales perpendiculares u oblicuos a sus paredes (vetas de extensión y de extensión oblicua o fibras minerales orientadas paralelas a las estrías de las fallas (vetas-fallas. Estas últimas tienen indicadores cinemáticos compatibles con las fallas, evidenciando que fueron sincinemáticas con el desarrollo del dúplex. Según su microestructura, ellas se habrían formado en fracturas abiertas llenas de fluidos, bajo condiciones de presión inferior a la hidrostática, lo cual indicaría que la precipitación mineral ocurrió por caídas abruptas de la presión en una corteza somera (The Caleta Coloso Duplex is a brittle strike-slip structure developed along the Atacama Fault System during the Early Cretaceous. A hydrothermal vein system existing within the duplex documents the nature of the link between fluid transport and progressive structural development. The dominantly NW-striking vein system occurs near or at the damage zone of the duplex fault zones. Veins can be classified according to their composition and crosscutting relationships into early chlorite veins, intermediate epidotic-quartz veins and late calcite-limonite veins. Some of them exhibit minerals with their long axes oriented orthogonally or obliquely with respect to the vein walls

  7. Strike-slip deformation reflects complex partitioning of strain in the Nankai Accretionary Prism (SE Japan) (United States)

    Azevedo, Marco C.; Alves, Tiago M.; Fonseca, Paulo E.; Moore, Gregory F.


    Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is geometrically close to the convergence vector. This work is relevant because it shows a progressive change from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in this latter region.

  8. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa (United States)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.


    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  9. Recent geodynamics of major strike-slip zones

    Directory of Open Access Journals (Sweden)

    Vladimir G. Trifonov


    In all of the cases mentioned above, strike-slip deformation was expressed only or mainly during strong earthquakes. At other times, the rate of its accumulation was small and the dominant stress conditions led to transverse shortening, rarely resulting in local lengthening of the tectonic zone. These variations are caused by the tectonic peculiarities of these zones. The sinistral component of the deformation is related to the shift of the Arabian Plate relative to the African one, but also the transverse component is related to the continental slope and is expressed by the Coastal range shortening that exists in the El Ghab segment zone. There is not only a dextral deformation component, but also a transverse component, expressed by shortening of the Fergana and Talas ranges existing in the Talas-Fergana fault zone. In both zones, the shortening component became appreciable or dominant when the strike-slip deformation rate decreased. Similar, but more local, relationships were expressed in the epicentral area of the 2003 Altai earthquake and in the Western Palmyrides.

  10. Neotectonics of a subduction/strike-slip transition: the northeastern Dominican Republic

    Energy Technology Data Exchange (ETDEWEB)

    Winslow, M.A.; McCann, W.R.


    The Septentrional fault system in the northeastern Dominican Republic marks the zone where the North American-Carribean plate boundary is evolving from subduction to strike-slip motion, and where terranes appear to be forming and migrating laterally in a subduction complex/forearc region. On the Island of Hispaniola, slip vectors are oblique to the strike of the Puerto Rico trench, and oblique subduction thrusts the upper plate over normal seafloor. The offshore geology and seismicity of the northern Caribbean suggest that uplift, broad crustal warping, thrusting, and strike-slip faulting (ie. collisional tectonics) should be present in the northern part of the Dominican Republic. The high topography (>1000m), high levels of seismicity, and large earthquakes support the hypothesis of contemporary deformation in Hispaniola. In this region, the subduction regime dies out toward the west, and deformation is transferred to onshore, oblique-slip faults. As this change in tectonic style has occurred in Neogene to Recent times, we are investigating the modern evolution of a plate boundary. We have already documented: (1) the presence of a strike-slip faulting in the northeastern Dominican Republic; (2) an anomalous push-up structure; and (3) a region of numerous splay faults. In conclusion, recent seismicity suggest a wide zone of deformation and variations in interplate motions near Hispaniola. This island lies at the western limit of active underthrusting and at the eastern limit of onshore faulting, i.e., at an important transition from a subduction to strike-slip regime.

  11. The role of post-collisional strike-slip tectonics in the geological evolution of the late Neoproterozoic volcano-sedimentary Guaratubinha Basin, southern Brazil (United States)

    Barão, Leonardo M.; Trzaskos, Barbara; Vesely, Fernando F.; de Castro, Luís Gustavo; Ferreira, Francisco J. F.; Vasconcellos, Eleonora M. G.; Barbosa, Tiago C.


    The Guaratubinha Basin is a late Neoproterozoic volcano-sedimentary basin included in the transitional-stage basins of the South American Platform. The aim of this study is to investigate its tectonic evolution through a detailed structural analysis based on remote sensing and field data. The structural and aerogeophysics data indicate that at least three major deformational events affected the basin. Event E1 caused the activation of the two main basin-bounding fault zones, the Guaratubinha Master Fault and the Guaricana Shear Zone. These structures, oriented N20-45E, are associated with well-defined right-lateral to oblique vertical faults, conjugate normal faults and vertical flow structures. Progressive transtensional deformation along the two main fault systems was the main mechanism for basin formation and the deposition of thick coarse-grained deposits close to basin-borders. The continuous opening of the basin provided intense intermediate and acid magmatism as well as deposition of volcaniclastic sediments. Event E2 characterizes generalized compression, recorded as minor thrust faults with tectonic transport toward the northwest and left-lateral activation of the NNE-SSW Palmital Shear Zone. Event E3 is related to the Mesozoic tectonism associated with the South Atlantic opening, which generated diabase dykes and predominantly right-lateral strike-slip faults oriented N10-50W. Its rhomboidal geometry with long axis parallel to major Precambrian shear zones, the main presence of high-angle, strike-slip or oblique faults, the asymmetric distribution of geological units and field evidence for concomitant Neoproterozoic magmatism and strike-slip movements are consistent with pull-apart basins reported in the literature.

  12. Carpathian Shear Corridor – A strike-slip boundary of an extruded crustal segment

    Czech Academy of Sciences Publication Activity Database

    Marko, F.; Andriessen, P.A.M.; Tomek, Č.; Bezák, V.; Fojtíková, Lucia; Bošanský, M.; Piovarči, M.; Reichenwalder, P.

    703-704, APR 22 (2017), s. 119-134 ISSN 0040-1951 Grant - others:Slovak Foundation Grant(SK) VEGA 2/0188/15 Institutional support: RVO:67985891 Keywords : extrusion * Neo-alpine evolution * strike-slip faulting * uplift history * Western Carpathians Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Geology Impact factor: 2.693, year: 2016

  13. States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling (United States)

    Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley


    Orogenic belts at oblique convergent subduction margins accommodate deformation in several trench-parallel domains, one of which is the magmatic arc, commonly regarded as taking up the margin-parallel, strike-slip component. However, the stress state and kinematics of volcanic arcs is more complex than usually recognized, involving first- and second-order faults with distinctive slip senses and mutual interaction. These are usually organized into regional scale strike-slip duplexes, associated with both long-term and short-term heterogeneous deformation and magmatic activity. This is the case of the 1100 km-long Liquiñe-Ofqui Fault System in the Southern Andes, made up of two overlapping margin-parallel master faults joined by several NE-striking second-order faults. We present a finite element model addressing the nature and spatial distribution of stress across and along the volcanic arc in the Southern Andes to understand slip partitioning and the connection between tectonics and magmatism, particularly during the interseismic phase of the subduction earthquake cycle. We correlate the dynamics of the strike-slip duplex with geological, seismic and magma transport evidence documented by previous work, showing consistency between the model and the inferred fault system behavior. Our results show that maximum principal stress orientations are heterogeneously distributed within the continental margin, ranging from 15° to 25° counter-clockwise (with respect to the convergence vector) in the master faults and 10-19° clockwise in the forearc and backarc domains. We calculate the stress tensor ellipticity, indicating simple shearing in the eastern master fault and transpressional stress in the western master fault. Subsidiary faults undergo transtensional-to-extensional stress states. The eastern master fault displays slip rates of 5 to 10 mm/yr, whereas the western and subsidiary faults show slips rates of 1 to 5 mm/yr. Our results endorse that favorably oriented

  14. 3D deformation in strike-slip systems: Analogue modelling and numerical restoration Deformación 3D en sistemas de rumbo: modelación analógica y restauración numérica

    Directory of Open Access Journals (Sweden)

    Daniel González


    Full Text Available Regional and local strike-slip systems in Chile are complex and pose interesting questions, such as the interaction between strike-slip and reverse faults, how they evolve, and the relationship between shortening, rotation and uplift. Within this context, we developed a new analytical method based on analogue and numerical modelling applied to 3D, pure and transtensional-transpressional strike-slip systems. Analogue modelling results indicate that in restraining stepovers of strike-slip fault systems, where antiformal pop-up structures are usually formed, pre-existent basement structures with a high angle to the main strike-slip fault will generate a higher rotation of blocks. However, when these structures are oriented at a high angle with respect to the main stress convergence vector, the rotation will be less and therefore a higher tendency to uplift will be produced. These results were applied to NW- and SE-striking basement faults oblique to N-S mega-thrust faults in central Chile (32°-35°S, for which we propose a simultaneous development based on the analogue model results. Moreover, we propose that strike-slip movement occurred on thrust faults in central Chile. Furthermore, we performed a numerical restoration of an analogue experiment which modeled a pure strike-slip system, and concluded that the restoration is very sensitive to shortening data as well as to rotational data. These results are extremely important for future numerical and regional analysis of strike-slip systems.Los sistemas de rumbo regionales y locales en Chile son complejos y plantean interesantes preguntas, tales como la interacción entre fallas de rumbo y fallas inversas, cómo evolucionan ellas, y la relación entre acortamiento, rotación y alzamiento. En este contexto, desarrollamos un nuevo método analítico basado en modelamiento analógico y numérico de sistemas de rumbo de cizalle puro y sistemas transpresionales-trantensionales en 3D. Los resultados del

  15. Aseismic strike-slip associated with the 2007 dike intrusion episode in Tanzania (United States)

    Himematsu, Yuji; Furuya, Masato


    In July 2007, an earthquake swarm initiated in northern Tanzania near Lake Natron and lasted for about two months. Mt. Oldoinyo Lengai, located to the southwest of the swarm, began to erupt effusively about a month prior to the swarm, and increased its eruption intensity on September when the swarm almost ceased. Several previous studies have already reported the crustal deformation signals associated with the swarm using Interferometric Synthetic Aperture Radar (InSAR). However, nearly all the published data are based on the C-band ENVISAT/ASAR images acquired only from the descending path. We use the L-band ALOS/PALSAR images acquired from both ascending and descending paths, which allow us to examine the deformation signals in more detail. In addition to the InSAR data, we employ the offset-tracking technique to detect the signals along the azimuth direction. Using InSAR and offset-tracking data, we obtain the full 3D displacement fields associated with the episode. Besides the horizontal extension and subsidence signals due to the dike intrusion as already reported, the inferred full 3D displacements further indicate that the subsiding zone was horizontally moving by ~ 48 cm toward SSW. To explain the displacements, we performed fault source modeling, assuming an elastic half space. The fault slip distribution indicates that the contribution of the strike-slip component is about 20% of total moment release. Because almost all the focal mechanisms of earthquakes during the 2007 event indicate nearly pure normal faulting, aseismic strike-slip must have been responsible for the horizontal movement of the subsiding zone. The strike-slip at the shallowest depths suggests the presence of transtensive stress, which seems to be reasonable to generate the relay zones that are widely observed in the East African Rift. We also confirmed that the stress changes due to the dike intrusion were consistent with the inferred fault slip distributions.

  16. Strike-slip pull-apart process and emplacement of Xiangshan uranium-producing volcanic basin

    International Nuclear Information System (INIS)

    Qiu Aijin; Guo Lingzhi; Shu Liangshu


    Xiangshan volcanic basin is one of the famous uranium-producing volcanic basins in China. Emplacement mechanism of Xiangshan uranium-producing volcanic basin is discussed on the basis of the latest research achievements of deep geology in Xiangshan area and the theory of continental dynamics. The study shows that volcanic activity in Xiangshan volcanic basin may be divided into two cycles, and its emplacement is controlled by strike-ship pull-apart process originated from the deep regional faults. Volcanic apparatus in the first cycle was emplaced in EW-trending structure activated by clockwise strike-slipping of NE-trending deep fault, forming the EW-trending fissure-type volcanic effusion belt. Volcanic apparatus in the second cycle was emplaced at junction points of SN-trending pull-apart structure activated by sinistral strike-slipping of NE-trending deep faults and EW-trending basement faults causing the center-type volcanic magma effusion and extrusion. Moreover, the formation mechanism of large-rich uranium deposits is discussed as well

  17. Are "uncharacteristic" earthquakes spatially linked to strike-slip restraining bends? (United States)

    Mann, P.


    On the basis of a compilation of paleoseismological data from the Wasatch and San Andreas faults, Schwartz and Coppersmith (1984) proposed that both plate boundary and intraplate faults tend to generate essentially same size earthquakes having a relatively narrow range of magnitudes near the maximum. They referred to these earthquakes as "characteristic earthquakes". Their hypothesis suggests that the historical record of earthquakes documented for periods of time ranging from centuries to millennia in different parts of the world that could allow predictions of future ruptures. The characteristic earthquake model works surprisingly well for major strike-slip faults like the North Anatolian fault of Turkey and the North Tabriz strike-slip fault in Iran which both show a progressive, uni-direction pattern of rupture starting at one point and "unzippering" over a distance of hundreds of kilometers in a series of earthquakes. This regular periodicity has been attributed to systematic changes in Coulomb failure stress on individual faults or interconnected fault networks defined by distinctive changes in fault strike, or stepover faults, or by the intersection of a neighboring fault. However, studies of the San Andreas, Wasatch, and Dead Sea faults show that earthquake ruptures are not periodic and instead form clusters of events with no obvious "recurrence interval" as predicted by the characteristic earthquake model. Some of these hard-to-forecast "uncharacteristic" earthquakes initiate as blind thrust faults formed at deeper levels in the crust near the brittle-plastic transition zone as illustrated by the 1989 M 6.9 Loma Prieta earthquake of California. Such events would produce little or no surface rupture of the main fault plane so the effects of this type of earthquake would remain impossible for future paleoseismologists to discern (other than from shaking effects and the broad vertical uplift related to vertical motions on deeply buried faults). More recently

  18. A Possible Differentially Shortened Strike-slip Plate Boundary: the Okhotsk Plate Example. (United States)

    Hindle, D.; Egorov, V.; Mackey, K. G.; Fujita, K.


    The Okhotsk plate has been postulated based on a combination of GPS geodetic inversions (REVEL1), seimsicity, geologic and lineament data. Lying between the North American and Eurasian plates, its northwestern corner would appear to be undergoing compression in a scissors motion between the two bounding plates. Extrusion tectonics along multiple, large strike-slip faults within the Okhotsk plate itself have been suggested to allow the escape of material away from the apex of Eurasia-North America. The plate boundary between Okhotsk and North America has been suggested to be diffuse, based on widely scattered minor seismicity. However, the large, left lateral, Ulakhan fault has also been suggested as a candidate plate boundary. We present field geological and geomorphological evidence of the partitioning of deformation between the Ulakhan fault, and several parallel and oblique, linked faults. The Ulakhan fault strand appears to have a maximum displacement of 24 km based on river valley offsets and closing large pull apart basins. Some of the displacement from the Ulakhan fault appears relayed into the plate margin along oblique trending, thrust/oblique slip faults. Estimated shortening over these faults is equivalent to the amount of shortening relayed into the plate margin from the plate boundary. There may be several thrust/oblique slip faults along the Ulakhan fault, which leads to the interesting situation of a segmented, strike-slip plate boundary being actively shortened in a margin parallel direction. This may be the result of postulated extrusion of the Okhotsk plate due to North America/Eurasia convergence. Such a situation would have important consequences for the interpretation of GPS data in a plate tectonic context.

  19. Strike-slip and extrusion tectonics of the Greater Caucasus-Kopetdagh region (United States)

    Kopp, M. L.


    In the Paleogene-Early Miocene, the areas of the modern Greater Caucasus and Kopetdagh were occupied by marginal seas (parts of the Paratethys intracontinental sea) inheriting the Cretaceous back-arc basins. In the Early Miocene, a collisional compression of the seas began at the time when the Arabian plate detached from Africa to move northward. The compression proceeded in a good accordance with the Arabia movement that was manifested in a general synchroneity of the Late Alpine orogenies in the Caucasus and Kopetdagh with the rifting and spreading phases in the Aden Gulf and the Red Sea. The earliest orogeny was the Styrian one of the terminal Early Miocene. It corresponds to the initial stage of the rift opening and was mostly pronounced in the east, in Kopetdagh and East Iran, where a recent structure has been formed by the initial Middle Miocene. In the Greater Caucasus, the Styrian deformations occurred in its central part only (i.e., in front of the Arabian plate northern tip) where the main Caucasian thrusts and conjugate asymmetrical megaanticline of the Central Caucasus were formed. An essential feature of the earliest, Styrian, structure of the whole Caucasus-Kopetdagh region was a series of regional right-lateral strike-slip faults. In the Kopetdagh, the strike-slips have no submeridional but northwestern direction although they occurred in the northern continuation of the submeridional right-lateral strike-slip faults framing the Lut block. In the Caucasus, they became even sublatitudinal, in parallel with the North Anatolian fault, thus constituting a single domain with the latter. So, the right-lateral strike-slip faults of East Iran, Kopetdagh, and the Caucasus compose an extensive arc convex to the north and appeared probably as a result of the right-lateral shear caused by the known counterclockwise rotation of the Arabian lithospheric plate. The Middle Miocene was characterized by a tectonic pause both in the Red Sea-Aden rift system and in the

  20. Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere earth models (United States)

    Savage, J.C.


    By virtue of the images used in the dislocation solution, the deformation at the free surface produced throughout the earthquake cycle by slippage on a long strike-slip fault in an Earth model consisting of an elastic plate (lithosphere) overlying a viscoelastic half-space (asthenosphere) can be duplicated by prescribed slip on a vertical fault embedded in an elastic half-space. Inversion of 1973-1988 geodetic measurements of deformation across the segment of the San Andreas fault in the Transverse Ranges north of Los Angeles for the half-space equivalent slip distribution suggests no significant slip on the fault above 30 km and a uniform slip rate of 36 mm/yr below 30 km. One equivalent lithosphere-asthenosphere model would have a 30-km thick lithosphere and an asthenosphere relaxation time greater than 33 years, but other models are possible. -from Author

  1. The Strike-slip Systems in Northern Venezuela Review of Neotectonic, Paleoseismological and Seismic Investigations (United States)

    Audemard, F.; Schmitz, M.; Levander, A.


    The complex Caribbean-South America plate boundary zone in northern Venezuela, which extends from the Southern Caribbean Deformation Front in the north to the Guayana Shield in the south, is the result of stress transfer generated by the relative movement of 2 cm/a between both plates. The movement is active since Cretaceous time and progressively migrates from west to east, and the major movement is accommodated along a roughly 1000 km long strike-slip system in northern Venezuela, comprising the Oca-Ancon, San Sebastian and El Pilar right-lateral fault systems. Neotoectonic and paleoseismological investigations have been carried out during the last two decades, and recently have been complemented by research activities within the interdisciplinary projects BOLIVAR (Broadband Ocean-Land Investigations of Venezuela and the Antilles arc Region) and GEODINOS (Recent Geodynamics of the Northern Limit of the South American Plate). By means of geological, seismicity and structural seismic investigations, the structures of the strike- slip zones are investigated from their surface expression through the crust and into the upper mantle. High velocity zones are identified at crustal levels and near surface investigations give insight to the detailed tectonic structures. Contribution from GEODINOS (FONACIT-2002000478) and BOLIVAR working groups.

  2. Three-dimensional shuffling of horses in a strike-slip duplex: an example from the Lambertville sill, New Jersey (United States)

    Laney, Stephen E.; Gates, Alexander E.


    Detailed analysis of a dextral strike-slip duplex within the relatively isotropic rocks of the Lambertville sill, New Jersey indicates that horses have experienced vertical, horizontal and oblique movements resulting from extrusional shuffling within a restraining bend. This is the first documentation of the three-dimensional movement of horses within a strike-slip duplex. Deformation within the duplex shows a complex system of early synthetic fractures and reverse faults followed by antithetic fractures which dissect previously continuous slab-shaped horses into diamond-shaped lenses. Most faults are oblique slip. Antithetic fault movements and clockwise rigid rotation of horses dominate the south half of the duplex and synthetic movements and counterclockwise rotations dominate the north half. Slickenline plunges on curved horse-bounding fault surfaces within the duplex range from nearly horizontal to 40° resulting in both lateral movements (middle) to normal movements (tails) on a single horse. Curved slickensides commonly have opposite senses of movement on either side of individual horses indicating relative emergence or submergence. Such a geometry could also result from a group of horses moving in the same oblique direction but at different rates. These complex extrusional-type movements were observed in both cross-sectional and plan views. The net result of the movements is a contraction or flattening of the duplex normal to the bounding faults. The horses shifted to accommodate this flattening as overall displacement was transferred between the bounding faults along curved internal faults.

  3. Models of recurrent strike-slip earthquake cycles and the state of crustal stress (United States)

    Lyzenga, Gregory A.; Raefsky, Arthur; Mulligan, Stephanie G.


    Numerical models of the strike-slip earthquake cycle, assuming a viscoelastic asthenosphere coupling model, are examined. The time-dependent simulations incorporate a stress-driven fault, which leads to tectonic stress fields and earthquake recurrence histories that are mutually consistent. Single-fault simulations with constant far-field plate motion lead to a nearly periodic earthquake cycle and a distinctive spatial distribution of crustal shear stress. The predicted stress distribution includes a local minimum in stress at depths less than typical seismogenic depths. The width of this stress 'trough' depends on the magnitude of crustal stress relative to asthenospheric drag stresses. The models further predict a local near-fault stress maximum at greater depths, sustained by the cyclic transfer of strain from the elastic crust to the ductile asthenosphere. Models incorporating both low-stress and high-stress fault strength assumptions are examined, under Newtonian and non-Newtonian rheology assumptions. Model results suggest a preference for low-stress (a shear stress level of about 10 MPa) fault models, in agreement with previous estimates based on heat flow measurements and other stress indicators.

  4. Tectonic stress orientations and magnitudes, and friction of faults, deduced from earthquake focal mechanism inversions over the Korean Peninsula (United States)

    Soh, Inho; Chang, Chandong; Lee, Junhyung; Hong, Tae-Kyung; Park, Eui-Seob


    We characterize the present-day stress state in and around the Korean Peninsula using formal inversions of earthquake focal mechanisms. Two different methods are used to select preferred fault planes in the double-couple focal mechanism solutions: one that minimizes average misfit angle and the other choosing faults with higher instability. We invert selected sets of fault planes for estimating the principal stresses at regularly spaced grid points, using a circular-area data-binning method, where the bin radius is optimized to yield the best possible stress inversion results based on the World Stress Map quality ranking scheme. The inversions using the two methods yield well constrained and fairly comparable results, which indicate that the prevailing stress regime is strike-slip, and the maximum horizontal principal stress (SHmax) is oriented ENE-WSW throughout the study region. Although the orientation of the stresses is consistent across the peninsula, the relative stress magnitude parameter (R-value) varies significantly, from 0.22 in the northwest to 0.89 in the southeast. Based on our knowledge of the R-values and stress regime, and using a value for vertical stress (Sv) estimated from the overburden weight of rock, together with a value for the maximum differential stress (based on the Coulomb friction of faults optimally oriented for slip), we estimate the magnitudes of the two horizontal principal stresses. The horizontal stress magnitudes increase from west to east such that SHmax/Sv ratio rises from 1.5 to 2.4, and the Shmin/Sv ratio from 0.6 to 0.8. The variation in the magnitudes of the tectonic stresses appears to be related to differences in the rigidity of crustal rocks. Using the complete stress tensors, including both orientations and magnitudes, we assess the possible ranges of frictional coefficients for different types of faults. We show that normal and reverse faults have lower frictional coefficients than strike-slip faults, suggesting that

  5. Tectonic stress orientations and magnitudes, and friction of faults, deduced from earthquake focal mechanism inversions over the Korean Peninsula (United States)

    Soh, Inho; Chang, Chandong; Lee, Junhyung; Hong, Tae-Kyung; Park, Eui-Seob


    We characterize the present-day stress state in and around the Korean Peninsula using formal inversions of earthquake focal mechanisms. Two different methods are used to select preferred fault planes in the double-couple focal mechanism solutions: one that minimizes average misfit angle and the other choosing faults with higher instability. We invert selected sets of fault planes for estimating the principal stresses at regularly spaced grid points, using a circular-area data-binning method, where the bin radius is optimized to yield the best possible stress inversion results based on the World Stress Map quality ranking scheme. The inversions using the two methods yield well constrained and fairly comparable results, which indicate that the prevailing stress regime is strike-slip, and the maximum horizontal principal stress (SHmax) is oriented ENE-WSW throughout the study region. Although the orientation of the stresses is consistent across the peninsula, the relative stress magnitude parameter (R-value) varies significantly, from 0.22 in the northwest to 0.89 in the southeast. Based on our knowledge of the R-values and stress regime, and using a value for vertical stress (Sv) estimated from the overburden weight of rock, together with a value for the maximum differential stress (based on the Coulomb friction of faults optimally oriented for slip), we estimate the magnitudes of the two horizontal principal stresses. The horizontal stress magnitudes increase from west to east such that SHmax/Sv ratio rises from 1.5 to 2.4, and the Shmin/Sv ratio from 0.6 to 0.8. The variation in the magnitudes of the tectonic stresses appears to be related to differences in the rigidity of crustal rocks. Using the complete stress tensors, including both orientations and magnitudes, we assess the possible ranges of frictional coefficients for different types of faults. We show that normal and reverse faults have lower frictional coefficients than strike-slip faults, suggesting that

  6. Fault Orientations at Obliquely Rifted Margins: Where? When? Why? (United States)

    Brune, Sascha


    Present-day knowledge of rifted margin formation is largely based on 2D seismic lines, 2D conceptual models, and corroborated by 2D numerical experiments. However, the 2D assumption that the extension direction is perpendicular to the rift trend is often invalid. In fact, worldwide more than 75% of all rifted margin segments have been formed under significant obliquity exceeding 20° (angle measured between extension direction and rift trend normal): During formation of the Atlantic Ocean, oblique rifting dominated at the sheared margins of South Africa and Patagonia, the Equatorial Atlantic margins, separation of Greenland and North America, and it played a major role in the protracted rift history of the North East Atlantic. Outside the Atlantic Ocean, oblique rifting occurred during the split between East and West Gondwana, the separation of India and Australia, India and Madagascar, Australia and Antarctica, as well as Arabia and Africa. It is presently observed in the Gulf of California, the Aegean and in the East African Rift. Despite its significance, the degree to which oblique lithospheric extension affects first-order rift and passive margin properties like surface stress pattern, fault azimuths, and basin geometry, is still not entirely clear. This contribution provides insight in crustal stress patterns and fault orientations by applying a 3D numerical rift model to oblique extensional settings. The presented forward experiments cover the whole spectrum of oblique extension (i.e. rift-orthogonal extension, low obliquity, high obliquity, strike-slip deformation) from initial deformation to breakup. They are conducted using an elasto-visco-plastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Results are thoroughly compared to previous analogue experiments, which yields many similarities but also distinct differences for late rift stages and for high obliquity. Even though the model

  7. Strong paleoearthquakes along the Talas-Fergana Fault, Kyrgyzstan

    Directory of Open Access Journals (Sweden)

    A.M. Korzhenkov


    Full Text Available The Talas-Fergana Fault, the largest strike-slip structure in Centred. Asia, forms an obliquely oriented boundary between the northeastern and southwestern parts of the Tianshan mountain belt. The fault underwent active right-lateral strike-slip during the Paleozoic, with right-lateral movements being rejuvenated in the Late Cenozoic. Tectonic movements along the intracontinental strike-slip faults contribute to absorb part of the regional crustal shortening linked to the India-Eurasia collision; knowledge of strike-slip motions along the Talas-Fergana Fault are necessary for a complete assessment of the active deformation of the Tianshan orogen. To improve our understanding of the intracontinental deformation of the Tianshan mountain belt and the occurrence of strong earthquakes along the whole length of the Talas-Fergana Fault, we identify features of relief arising during strong paleoearthquakes along the Talas-Fergana Fault, fault segmentation, the length of seismogenic ruptures, and the energy and age of ancient catastrophes. We show that during neotectonic time the fault developed as a dextral strike-slip fault, with possible dextral displacements spreading to secondary fault planes north of the main fault trace. We determine rates of Holocene and Late Pleistocene dextral movements, and our radiocarbon dating indicates tens of strong earthquakes occurring along the fault zone during arid interval of 15800 years. The reoccurrence of strong earthquakes along the Talas-Fergana Fault zone during the second half of the Holocene is about 300 years. The next strong earthquake along the fault will most probably occur along its southeastern chain during the next several decades. Seismotectonic deformation parameters indicate that M > 7 earthquakes with oscillation intensity I > IX have occurred.

  8. Viscoelastic shear zone model of a strike-slip earthquake cycle (United States)

    Pollitz, F.F.


    I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) and within the boundaries of a finite width shear zone. The viscoelastic coupling model of Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling model predicts that sufficiently long after initiation of the system, (1) average fault-parallel velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities equal the same constant rate. Because of the sensitivity to the mechanical properties of the schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this model has been used to infer such properties from measurements of interseismic velocity. Such inferences exploit the predicted behavior at a known time within the earthquake cycle. By modifying the viscoelastic coupling model to satisfy the additional constraint that the absolute velocity at prescribed shear zone boundaries is constant, I find that even though the time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation (particularly its temporal variation within an earthquake cycle) is markedly different from that predicted by the conventional viscoelastic coupling model. These differences are magnified as plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is lengthened. Application to the interseismic velocity field along the Mojave section of the San Andreas fault suggests that the region behaves mechanically like a ???600-km-wide shear zone accommodating 50 mm/yr fault

  9. Strike-slip tectonics within the northernmost Philippine Sea plate in an arc-continent collisional setting (United States)

    Gong, Wei; Jiang, Xiaodian; Guo, Yufan; Xing, Junhui; Li, Congying; Sun, Yang


    The geological processes in the northernmost Philippine Sea plate, which is bounded by the Suruga and Sagami troughs, are a typical example of an active collision zone. We attempt to illustrate the stress field through seismic estimations and geodetic analysis and propose the kinematic mode of the northernmost tip of the Philippine Sea plate. Seven events (M ≥ 4.0) are chosen for waveform inversion by the ISOLA software to distinguish the stress field. In particular, six of the chosen events, which exhibit strike-slip motion, are distributed in the eastern area, where few focal mechanisms have been reported by previous studies. According to the available focal mechanisms, strike-slip faults with similar P and T axes are widely distributed in the study area. The stress inversion suggests that the northern area is characterized by a NW-SE compression and a NE-SW extension stress regime, although some spatial differences exist. As indicated by an analysis of the geodesy, epicenters, focal mechanisms, gravity anomalies and velocity structure, the deformation in the northernmost tip is mainly accommodated by several conjugate strike-slip fault systems with steep dips that center on the Izu volcanic line. Generally, the maximum principal stress of the kinematics is derived from the collision between the Philippine Sea plate and Central Japan. Because of the different subduction angles, rates and directions of the down-going plate, diverging slab-pull forces along the Suruga and Sagami troughs may be causing the NE-NNE extension in most of the areas that are bounded by the two troughs. The extension propagates southwards along the Izu volcanic line and reaches the area adjacent to Miyake-jima.

  10. Kinematics of transition from subduction to strike-slip: an example from the New Zealand plate boundary (Invited) (United States)

    Wallace, L. M.; Barnes, P.; Beavan, R. J.; van Dissen, R.; Pondard, N.; Litchfield, N. J.; Lamarche, G.; Little, T. A.


    We develop a kinematic model for the transition from oblique subduction beneath the North Island to strike-slip in the South Island, New Zealand, constrained by GPS velocities and onshore and new offshore active fault slip rate and location data. To interpret these data, we simultaneously invert the kinematic data for poles of rotation of tectonic blocks (block boundaries chosen to coincide with known active faults) and the degree of interseismic coupling on faults in the region, including the Hikurangi subduction thrust. Our best-fitting kinematic models require that the northeastern corner of the South Island undergoes significant vertical axis rotation as a part of the rapidly rotating (3-4°/Myr) North Island forearc block, while the remainder of the tectonic blocks in the South Island undergo negligible vertical axis rotation relative to the Pacific Plate. This result agrees well with clockwise paleomagnetic declinations from ~4 Ma rock samples in the northeastern South Island, and suggests that paleomagnetically-observed rotation of that region is continuing today. The poles of rotation between the more rapidly rotating northeastern South Island blocks and the non-rotating South Island blocks (further south) coincide with the boundary between the rotating and non-rotating domains of the South Island. This result is consistent with structural mapping of the rotation/non-rotation boundary by Little and Roberts (1997), and suggests that the transition from the rapidly rotating forearc of the Hikurangi subduction margin to a strike-slip dominated plate boundary in the South Island is accommodated by a crustal-scale kink or hinge in the upper plate of that subduction zone. This result highlights a remarkable consistency between datasets spanning decades (GPS), thousands of years (active fault data), and millions of years (paleomagnetic data and bedrock structure) in the northeastern South Island. Although the interseismic coupling coefficients that we estimate for


    Energy Technology Data Exchange (ETDEWEB)



    We report results of foam-rubber modeling of the effect of a shallow weak layer on ground motion from strike-slip ruptures. Computer modeling of strong ground motion from strike-slip earthquakes has involved somewhat arbitrary assumptions about the nature of slip along the shallow part of the fault (e.g., fixing the slip to be zero along the upper 2 kilometers of the fault plane) in order to match certain strong motion accelerograms. Most modeling studies of earthquake strong ground motion have used what is termed kinematic dislocation modeling. In kinematic modeling the time function for slip on the fault is prescribed, and the response of the layered medium is calculated. Unfortunately, there is no guarantee that the model and the prescribed slip are physically reasonable unless the true nature of the medium and its motions are known ahead of time. There is good reason to believe that in many cases faults are weak along the upper few kilometers of the fault zone and may not be able to maintain high levels of shear strain required for high dynamic energy release during earthquakes. Physical models of faulting, as distinct from numerical or mathematical models, are guaranteed to obey static and dynamic mechanical laws. Foam-rubber modeling studies have been reported in a number of publications. The object of this paper is to present results of physical modeling using a shallow weak layer, in order to verify the physical basis for assuming a long rise time and a reduced high frequency pulse for the slip on the shallow part of faults. It appears a 2-kilometer deep, weak zone along strike-slip faults could indeed reduce the high frequency energy radiated from shallow slip, and that this effect can best be represented by superimposing a small amplitude, short rise-time pulse at the onset of a much longer rise-time slip. A weak zone was modeled by inserting weak plastic layers of a few inches in thickness into the foam rubber model. For the 15 cm weak zone the average

  12. (Plio-)Pleistocene alluvial-lacustrine basin infill evolution in a strike-slip active zone (Northern Andes, Western-Central Cordilleras, Colombia)




    The (Plio)-Pleistocene Zarzal Formation was deposited in the Cauca Depression and Quindío-Risaralda Basin between the Western and Central Cordilleras (Northern Andes). This area is structurally located on the transcurrent Romeral Fault System (RFS). Because of the interaction between the Nazca plate and the Chocó-Panamá block (an active indenter), the RFS strike-slip component changes direction around the study zone (dextral in the south, senestral in the north). Zarzal sediments are the olde...

  13. The Implications of Strike-Slip Earthquake Source Properties on the Transform Boundary Development Process (United States)

    Neely, J. S.; Huang, Y.; Furlong, K.


    Subduction-Transform Edge Propagator (STEP) faults, produced by the tearing of a subducting plate, allow us to study the development of a transform plate boundary and improve our understanding of both long-term geologic processes and short-term seismic hazards. The 280 km long San Cristobal Trough (SCT), formed by the tearing of the Australia plate as it subducts under the Pacific plate near the Solomon and Vanuatu subduction zones, shows along-strike variations in earthquake behaviors. The segment of the SCT closest to the tear rarely hosts earthquakes > Mw 6, whereas the SCT sections more than 80 - 100 km from the tear experience Mw7 earthquakes with repeated rupture along the same segments. To understand the effect of cumulative displacement on SCT seismicity, we analyze b-values, centroid-time delays and corner frequencies of the SCT earthquakes. We use the spectral ratio method based on Empirical Green's Functions (eGfs) to isolate source effects from propagation and site effects. We find high b-values along the SCT closest to the tear with values decreasing with distance before finally increasing again towards the far end of the SCT. Centroid time-delays for the Mw 7 strike-slip earthquakes increase with distance from the tear, but corner frequency estimates for a recent sequence of Mw 7 earthquakes are approximately equal, indicating a growing complexity in earthquake behavior with distance from the tear due to a displacement-driven transform boundary development process (see figure). The increasing complexity possibly stems from the earthquakes along the eastern SCT rupturing through multiple asperities resulting in multiple moment pulses. If not for the bounding Vanuatu subduction zone at the far end of the SCT, the eastern SCT section, which has experienced the most displacement, might be capable of hosting larger earthquakes. When assessing the seismic hazard of other STEP faults, cumulative fault displacement should be considered a key input in

  14. E–W strike slip shearing of Kinwat granitoid at South East Deccan ...

    Indian Academy of Sciences (India)

    R D Kaplay


    Jul 21, 2017 ... cO Indian Academy of Sciences. DOI 10.1007/s12040-017-0853-8. E–W strike slip shearing of Kinwat granitoid at South East. Deccan ...... shear zone, Sutlej section-structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes; Int. J.


    Dickerson, R. P.; Fryer, W.


    The permeability changes resulting from finely comminuted material in fault cores and the fractured and brecciated rock in fault damage zones allows faults to channelize groundwater flow along the plane of the fault. The efficiency of faults as permeability structures depends on fault zone width, fault offset, depth at which the fault developed, type of faulted rock, extent of secondary mineralization, and fault orientation within current stress field. Studies of faulted volcanic rocks at Yucca Mountain, Nevada, indicate that fault zone width and brecciation increase with fault offset, that faulted welded tuff is more permeable than nonwelded or bedded tuff, and that non-hydrothermal secondary mineralization commonly diminishes fracture permeability. These results are applied to the groundwater conceptual flow model for Yucca Flat (YF) on the Nevada Test Site (NTS). Yucca Flat contains Tertiary volcanic rocks similar to thoise at Yucca Mountain deposited on Paleozoic carbonate rocks whose thickness is increased by local thrust-faults. The YF basin contains north-striking normal faults and is bordered by southwest-striking strike-slip faults to the south and east. Fault permeability values derived from faulted volcanic rocks at Yucca Mountain suggests that major normal faults in Yucca Flat potentially manifest permeability values along the fault plane equal to the highest values determined for volcanic aquifers. Numerous minor faults not assigned specific permeability values are assumed to imbue the basin with a hydraulic anisotropy favoring fault-parallel flow. In this scenario groundwater flows generally from north to south in the Yucca Flat basin, even as the head gradient is primarily towards the centrally located Yucca Fault, which acts as the main subsurface drainage feature within the basin. Studies show that the regional stress field has rotated clockwise such that southwest-striking strike-slip faults are currently under tension. In this scenario these

  16. Identification of Lembang fault, West-Java Indonesia by using controlled source audio-magnetotelluric (CSAMT) (United States)

    Sanny, Teuku A.


    The objective of this study is to determine boundary and how to know surrounding area between Lembang Fault and Cimandiri fault. For the detailed study we used three methodologies: (1). Surface deformation modeling by using Boundary Element method and (2) Controlled Source Audiomagneto Telluric (CSAMT). Based on the study by using surface deformation by using Boundary Element Methods (BEM), the direction Lembang fault has a dominant displacement in east direction. The eastward displacement at the nothern fault block is smaller than the eastward displacement at the southern fault block which indicates that each fault block move in left direction relative to each other. From this study we know that Lembang fault in this area has left lateral strike slip component. The western part of the Lembang fault move in west direction different from the eastern part that moves in east direction. Stress distribution map of Lembang fault shows difference between the eastern and western segments of Lembang fault. Displacement distribution map along x-direction and y-direction of Lembang fault shows a linement oriented in northeast-southwest direction right on Tangkuban Perahu Mountain. Displacement pattern of Cimandiri fault indicates that the Cimandiri fault is devided into two segment. Eastern segment has left lateral strike slip component while the western segment has right lateral strike slip component. Based on the displacement distribution map along y-direction, a linement oriented in northwest-southeast direction is observed at the western segment of the Cimandiri fault. The displacement along x-direction and y-direction between the Lembang and Cimandiri fault is nearly equal to zero indicating that the Lembang fault and Cimandiri Fault are not connected to each others. Based on refraction seismic tomography that we know the characteristic of Cimandiri fault as normal fault. Based on CSAMT method th e lembang fault is normal fault that different of dip which formed as

  17. Strike-slip earthquakes in the oceanic lithosphere: Observations of exceptionally high apparent stress (United States)

    Choy, George; McGarr, A.


    The radiated energies, ES, and seismic moments, M0, for 942 globally distributed earthquakes that occurred between 1987 to 1998 are examined to find the earthquakes with the highest apparent stresses (τa=μES/M0, where μ is the modulus of rigidity). The globally averaged τa for shallow earthquakes in all tectonic environments and seismic regions is 0.3 MPa. However, the subset of 49 earthquakes with the highest apparent stresses (τa greater than about 5.0 MPa) is dominated almost exclusively by strike-slip earthquakes that occur in oceanic environments. These earthquakes are all located in the depth range 7–29 km in the upper mantle of the young oceanic lithosphere. Many of these events occur near plate-boundary triple junctions where there appear to be high rates of intraplate deformation. Indeed, the small rapidly deforming Gorda Plate accounts for 10 of the 49 high-τa events. The depth distribution of τa, which shows peak values somewhat greater than 25 MPa in the depth range 20–25 km, suggests that upper bounds on this parameter are a result of the strength of the oceanic lithosphere. A recently proposed envelope for apparent stress, derived by taking 6 per cent of the strength inferred from laboratory experiments for young (less than 30 Ma) deforming oceanic lithosphere, agrees well with the upper-bound envelope of apparent stresses over the depth range 5–30 km. The corresponding depth-dependent shear strength for young oceanic lithosphere attains a peak value of about 575 MPa at a depth of 21 km and then diminishes rapidly as the depth increases. In addition to their high apparent stresses, which suggest that the strength of the young oceanic lithosphere is highest in the depth range 10–30 km, our set of high-τa earthquakes show other features that constrain the nature of the forces that cause interplate motion. First, our set of events is divided roughly equally between intraplate and transform faulting with similar depth distributions

  18. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations

    Directory of Open Access Journals (Sweden)

    Faqi Diao


    Full Text Available Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA or the North Anatolian Fault (Turkey. A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a change of related hazards. The North Anatolian Fault displays such complexities nearby the mega city Istanbul, which is a place where earthquake risks are high, but secondary processes are not well understood. In this paper, long-term persistent scatterer interferometry (PSI analysis of synthetic aperture radar (SAR data time series was used to precisely identify the surface deformation pattern associated with the faulting complexity at the prominent bend of the North Anatolian Fault near Istanbul city. We elaborate the relevance of local faulting activity and estimate the fault status (slip rate and locking depth for the first time using satellite SAR interferometry (InSAR technology. The studied NW-SE-oriented fault on land is subject to strike-slip movement at a mean slip rate of ~5.0 mm/year and a shallow locking depth of <1.0 km and thought to be directly interacting with the main fault branch, with important implications for tectonic coupling. Our results provide the first geodetic evidence on the segmentation of a major crustal fault with a structural complexity and associated multi-hazards near the inhabited regions of Istanbul, with similarities also to other major strike-slip faults that display changes in fault traces and mechanisms.

  19. Fethiye-Burdur Fault Zone (SW Turkey): a myth? (United States)

    Kaymakci, Nuretdin; Langereis, Cornelis; Özkaptan, Murat; Özacar, Arda A.; Gülyüz, Erhan; Uzel, Bora; Sözbilir, Hasan


    Fethiye Burdur Fault Zone (FBFZ) is first proposed by Dumont et al. (1979) as a sinistral strike-slip fault zone as the NE continuation of Pliny-Strabo trench in to the Anatolian Block. The fault zone supposed to accommodate at least 100 km sinistral displacement between the Menderes Massif and the Beydaǧları platform during the exhumation of the Menderes Massif, mainly during the late Miocene. Based on GPS velocities Barka and Reilinger (1997) proposed that the fault zone is still active and accommodates sinistral displacement. In order to test the presence and to unravel its kinematics we have conducted a rigorous paleomagnetic study containing more than 3000 paleomagnetic samples collected from 88 locations and 11700 fault slip data collected from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene. The obtained rotation senses and amounts indicate slight (around 20°) counter-clockwise rotations distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, the slickenside pitches and constructed paleostress configurations, along the so called FBFZ and also within the 300 km diameter of the proposed fault zone, indicated that almost all the faults, oriented parallel to subparallel to the zone, are normal in character. The fault slip measurements are also consistent with earthquake focal mechanisms suggesting active extension in the region. We have not encountered any significant strike-slip motion in the region to support presence and transcurrent nature of the FBFZ. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking faults which are transfer faults that accommodated extension and normal motion. Therefore, we claim that the sinistral Fethiye Burdur Fault (Zone) is a myth and there is no tangible

  20. The 2015 Mw7.2 Sarez Strike-Slip Earthquake in the Pamir Interior: Response to the Underthrusting of India's Western Promontory (United States)

    Metzger, Sabrina; Schurr, Bernd; Ratschbacher, Lothar; Sudhaus, Henriette; Kufner, Sofia-Katerina; Schöne, Tilo; Zhang, Yong; Perry, Mason; Bendick, Rebecca


    The Pamir orogen, Central Asia, is the result of the ongoing northward advance of the Indian continent causing shortening inside Asia. Geodetic and seismic data place the most intense deformation along the northern rim of the Pamir, but the recent 7 December 2015, Mw7.2 Sarez earthquake occurred in the Pamir's interior. We present a distributed slip model of this earthquake using coseismic geodetic data and postseismic field observations. The earthquake ruptured an ˜80 km long, subvertical, sinistral fault consisting of three right-stepping segments from the surface to ˜30 km depth with a maximum slip of three meters in the upper 10 km of the crust. The coseismic slip model agrees well with en échelon secondary surface breaks that are partly influenced by liquefaction-induced mass movements. These structures reveal up to 2 m of sinistral offset along the northern, low-offset segment of modeled rupture. The 2015 event initiated close to the presumed epicenter of the 1911 Mw˜7.3 Lake Sarez earthquake, which had a similar strike-slip mechanism. These earthquakes highlight the importance of NE trending sinistral faults in the active tectonics of the Pamir. Strike-slip deformation accommodates shear between the rapidly northward moving eastern Pamir and the Tajik basin in the west and is part of the westward (lateral) extrusion of thickened Pamir plateau crust into the Tajik basin. The Sarez-Karakul fault system and the two large Sarez earthquakes likely are crustal expressions of the underthrusting of the northwestern leading edge of the Indian mantle lithosphere beneath the Pamir.

  1. Coseismic conjugate faulting structures produced by the 2016 Mw 7.1 Kumamoto earthquake, Japan (United States)

    Lin, Aiming; Chiba, Tatsuro


    Field investigations and analyses of airborne LiDAR data reveal that the 2016 Mw7.1 Kumamoto earthquake produced a ∼40-km-long surface rupture zone with a typical conjugate Riedel shearing fault structure along the pre-existing right-lateral strike-slip Hinagu-Futagawa Fault Zone (HFFZ). The conjugate Riedel shearing structure comprises two sets of coseismic shear fault zones that are oriented to NE-SW to ENE-WSW and WNW-ESE to E-W. The NE-SW to ENE-WSW-trending shear fault zone is characterized by R Riedel shear structures with right-lateral strike-slip displacement of up to 2.5 m, including left-stepping en echelon cracks (T-shear) and mole tracks (P-shear). In contrast, the WNW-ESE to E-W-trending shear fault zone is dominated by R‧ Riedel shear structures with left-lateral displacement of up to 1.3 m, including right-stepping en echelon tension cracks (T) and mole tracks (P), which are concentrated in a zone of strike-slip faults of HFFZ under the present E-W compressive stress in the study area, associated with the ongoing penetration of the Philippine Sea Plate into the Eurasian Plate.

  2. Dynamic response to strike-slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska (United States)

    Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.


    The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.

  3. Which Fault Orientations Occur during Oblique Rifting? Combining Analog and Numerical 3d Models with Observations from the Gulf of Aden (United States)

    Autin, J.; Brune, S.


    Oblique rift systems like the Gulf of Aden are intrinsically three-dimensional. In order to understand the evolution of these systems, one has to decode the fundamental mechanical similarities of oblique rifts. One way to accomplish this, is to strip away the complexity that is generated by inherited fault structures. In doing so, we assume a laterally homogeneous segment of Earth's lithosphere and ask how many different fault populations are generated during oblique extension inbetween initial deformation and final break-up. We combine results of an analog and a numerical model that feature a 3D segment of a layered lithosphere. In both cases, rift evolution is recorded quantitatively in terms of crustal fault geometries. For the numerical model, we adopt a novel post-processing method that allows to infer small-scale crustal fault orientation from the surface stress tensor. Both models involve an angle of 40 degrees between the rift normal and the extensional direction which allows comparison to the Gulf of Aden rift system. The resulting spatio-temporal fault pattern of our models shows three normal fault orientations: rift-parallel, extension-orthogonal, and intermediate, i.e. with a direction inbetween the two previous orientations. The rift evolution involves three distinct phases: (i) During the initial rift phase, wide-spread faulting with intermediate orientation occurs. (ii) Advanced lithospheric necking enables rift-parallel normal faulting at the rift flanks, while strike-slip faulting in the central part of the rift system indicates strain partitioning. (iii) During continental break-up, displacement-orthogonal as well as intermediate faults occur. We compare our results to the structural evolution of the Eastern Gulf of Aden. External parts of the rift exhibit intermediate and displacement-orthogonal faults while rift-parallel faults are present at the rift borders. The ocean-continent transition mainly features intermediate and displacement

  4. The role of E–W basement faults in the Mesozoic geodynamic ...

    Indian Academy of Sciences (India)

    Dorra Tanfous Amri


    Oct 10, 2017 ... and occurred only along main strike-slip faults. In addition, seismic lines show that Triassic rocks are .... ated anticlines are due to an E–W strike-slip fault, whereas Zargouni (1985), Boukadi (1994), Zouari ...... right–lateral oblique–slip features such as the Gafsa fault (Boukadi and Bédir 1996; Hlaiem 1999; ...

  5. Active Fault Geometry and Crustal Deformation Along the San Andreas Fault System Through San Gorgonio Pass, California: The View in 3D From Seismicity (United States)

    Nicholson, C.; Hauksson, E.; Plesch, A.


    Understanding the 3D geometry and deformation style of the San Andreas fault (SAF) is critical to accurate dynamic rupture and ground motion prediction models. We use 3D alignments of hypocenter and focal mechanism nodal planes within a relocated earthquake catalog (1981-2011) [Hauksson et al., 2012] to develop improved 3D fault models for active strands of the SAF and adjacent secondary structures. Through San Gorgonio Pass (SGP), earthquakes define a mechanically layered crust with predominantly high-angle strike-slip faults in the upper ~10 km, while at greater depth, intersecting sets of strike-slip, oblique slip and low-angle thrust faults define a wedge-shaped volume deformation of the lower crust. In some places, this interface between upper and lower crustal deformation may be an active detachment fault, and may have controlled the down-dip extent of recent fault rupture. Alignments of hypocenters and nodal planes define multiple principal slip surfaces through SGP, including a through-going steeply-dipping predominantly strike-slip Banning fault strand at depth that upward truncates a more moderately dipping (40°-50°) blind, oblique North Palm Springs fault. The North Palm Springs fault may be the active down-dip extension of the San Gorgonio Pass thrust offset at depth by the principal, through-going Banning strand. In the northern Coachella Valley, seismicity indicates that the Garnet Hill and Banning fault strands are most likely sub-parallel and steeply dipping (~70°NE) to depths of 8-10 km, where they intersect and merge with a stack of moderately dipping to low-angle oblique thrust faults. Gravity and water well data confirm that these faults are sub-parallel and near vertical in the upper 2-3 km. Although the dense wedge of deep seismicity below SGP and largely south of the SAF contains multiple secondary fault sets of different orientations, the predominant fault set appears to be a series of en echelon NW-striking oblique strike-slip faults

  6. Source characteristics of the 2015 Mw6.5 Lefkada, Greece, strike-slip earthquake (United States)

    Melgar, Diego; Ganas, Athanassios; Geng, Jianghui; Liang, Cunren; Fielding, Eric J.; Kassaras, Ioannis


    We present a kinematic slip model from the inversion of 1 Hz GPS, strong motion, and interferometric synthetic aperture radar (InSAR) data for the 2015 Mw6.5 Lefkada, Greece, earthquake. We will show that most of the slip during this event is updip of the hypocenter (10.7 km depth) with substantial slip (>0.5 m) between 5 km depth and the surface. The peak slip is 1.6 m, and the inverted rake angles show predominantly strike-slip motion. Slip concentrates mostly to the south of the hypocenter, and the source time function indicates a total duration of 17 s with peak moment rate at 6 s. We will show that a 65° dipping geometry is the most plausible due to a lack of polarity reversals in the InSAR data and good agreement with Coulomb stress modeling, aftershock locations, and regional moment tensors. We also note that there was an 20 cm peak-to-peak tsunami observed at one tide gauge station 300 km away from the earthquake. We will discuss tsunami modeling results and study the possible source of the amplitude discrepancy between the modeled and the observed data at far-field tide gauges.

  7. A Comparison of Geodetic and Geologic Rates Prior to Large Strike-Slip Earthquakes: A Diversity of Earthquake-Cycle Behaviors? (United States)

    Dolan, James F.; Meade, Brendan J.


    Comparison of preevent geodetic and geologic rates in three large-magnitude (Mw = 7.6-7.9) strike-slip earthquakes reveals a wide range of behaviors. Specifically, geodetic rates of 26-28 mm/yr for the North Anatolian fault along the 1999 MW = 7.6 Izmit rupture are ˜40% faster than Holocene geologic rates. In contrast, geodetic rates of ˜6-8 mm/yr along the Denali fault prior to the 2002 MW = 7.9 Denali earthquake are only approximately half as fast as the latest Pleistocene-Holocene geologic rate of ˜12 mm/yr. In the third example where a sufficiently long pre-earthquake geodetic time series exists, the geodetic and geologic rates along the 2001 MW = 7.8 Kokoxili rupture on the Kunlun fault are approximately equal at ˜11 mm/yr. These results are not readily explicable with extant earthquake-cycle modeling, suggesting that they may instead be due to some combination of regional kinematic fault interactions, temporal variations in the strength of lithospheric-scale shear zones, and/or variations in local relative plate motion rate. Whatever the exact causes of these variable behaviors, these observations indicate that either the ratio of geodetic to geologic rates before an earthquake may not be diagnostic of the time to the next earthquake, as predicted by many rheologically based geodynamic models of earthquake-cycle behavior, or different behaviors characterize different fault systems in a manner that is not yet understood or predictable.

  8. Investigation of intraplate seismicity near the sites of the 2012 major strike-slip earthquakes in the eastern Indian Ocean through a passive-source OBS experiment (United States)

    Guo, L.; Lin, J.; Yang, H.


    The 11 April 2012 Mw8.6 earthquake off the coast of Sumatra in the eastern Indian Ocean was the largest strike-slip earthquake ever recorded. The 2012 mainshock and its aftershock sequences were associated with complex slip partitioning and earthquake interactions of an oblique convergent system, in a new plate boundary zone between the Indian and Australian plates. The detail processes of the earthquake interactions and correlation with seafloor geological structure, however, are still poorly known. During March-April 2017, an array of broadband OBS (ocean bottom seismometer) were deployed, for the first time, near the epicenter region of the 2012 earthquake sequence. During post-expedition data processing, we identified 70 global earthquakes from the National Earthquake Information Center (NEIC) catalog that occurred during our OBS deployment period. We then picked P and S waves in the seismic records and analyzed their arrival times. We further identified and analyzed multiple local earthquakes and examined their relationship to the observed seafloor structure (fracture zones, seafloor faults, etc.) and the state of stresses in this region of the eastern Indian Ocean. The ongoing analyses of the data obtained from this unique seismic experiment are expected to provide important constraints on the large-scale intraplate deformation in this part of the eastern Indian Ocean.

  9. Deformation at a Complex Strike-Slip Plate Boundary: Modeling the Southern California GPS Velocity Field (United States)

    Thatcher, W. R.; Murray-Moraleda, J. R.


    Because of EarthScope and related deployments, Southern California has perhaps the highest Global Positioning System (GPS) station density of any of Earth’s seismically active regions. Here we provide an updated analysis of the Southern California velocity field to illustrate both the strengths of high station density and the inherent limitations of surface geodetic measurements for quantifying earthquake-related deformation processes. Modeling GPS velocity fields in seismically active regions worldwide indicates deformation can be efficiently and usefully described as relative motions among elastic, fault-bounded crustal blocks. However, subjective choices of block geometry are unavoidable and introduce significant uncertainties in model formulation and in the resultant GPS fault slip rate estimates. To facilitate comparison between GPS and geologic results in southern California we use the SCEC Community Fault Model (CFM) and geologic slip rates tabulated in the 2008 Uniform California Earthquake Rupture Forecast (UCERF2) report as starting points for identifying the most important faults and specifying the block geometry. We then apply this geometry in an inversion of the SCEC Crustal Motion Model (CMM4) GPS velocity field to estimate block motions and intra-block fault slip rates and compare our results with previous work. In most parts of southern California—for example, north of the San Andreas Big Bend and SE of Los Angeles--our block geometry closely resembles that assumed in previous studies (McCaffrey 2005 JGR; Meade & Hager 2005 JGR; Becker et al. 2005 GJI). In these regions GPS slip rates can be reliably estimated and values for individual faults generally agree from one study to another and are also consistent with geologic estimates. However, there is no consensus on block geometry in the Transverse Ranges, Los Angeles Basin and Central Mojave Desert, where CFM faults are densely distributed, UCERF2 slip rates on several faults are comparable, and

  10. The characteristics of the western extension of the Karakax fault in NW Tibet and its tectonic implications (United States)

    Ge, C.; Liu, D.; Li, H.; Zheng, Y.; Pan, J.


    The Karakax strike-slip fault, located in northwest Tibet, is a mature deformation belt with a long-time evolutionary history, which is also active at present and plays an important role in the tectonic deformation of the northwestern Tibetan Plateau. Nowadays, most geologists consider that the Karakax fault is generally east-west striking along the Karakax river valley, and northwest striking until to the Tashkorgan in the Mazar area. However, an ENE-WSW fault was identified at the Mazar area, which sited at the bend of the Karakax fault, we named this fault as the Matar fault. Via the detailed geological survey, the similar geometry and kinematic characteristics were identified between the Karakax and Matar faults: (1) The similar fault zone scale(Karakax:90 300m; Matar:100 220m); (2) The similar preferred orientation (nearly EW) of the stretching lineations and foliations; (3) All the fault planes of the both faults have a high dip angle and is nearly EW striking; (4) Lots of ductile deformations, such as σ-type quartz rotational mortar, S-C fabric, symmetric drag fold and so on, indicated that the Matar fault is a right-lateral strike-slip and thrust fault during the early ductile deformation stage; (5) the deluvium, sheared by Matar fault, indicated that the Matar fault has already transformed into a left-lateral strike-slip fault during the later brittle deformation stage. All the above showed that the Matar fault has a similar geometry and kinematic characteristics with the Karakax fault, and the former is the probable the western extension of the latter. Moreover, the form of the Karakax-Matar fault may had an impact to the geomorphology of the west Kunlun-Pamir area, such as the strike of the moutains and faults. considering the age of west Kunlun mountains uplifting and Karakax fault activating, we regard that the Matar fault (the westward extension of Karakax fault) may contributes much in forming the modern geomorphology features of the west Kunlun

  11. High-rate GPS results for the April 2012 Sumatra earthquake sequence, an unusual, complex, and very large intraplate strike-slip event (United States)

    Hill, E. M.; Hermawan, I.; Lay, T.; Yue, H.; Banerjee, P.; Qiu, Q.; Macpherson, K. A.; Feng, L.; Tsang, L. L.; Lubis, A.; Tapponnier, P.; Sieh, K. E.


    The 11 April 2012 Mw 8.6 Sumatra earthquake was one of the largest strike-slip earthquakes ever recorded, and also one of the largest intraplate earthquakes. It was followed 2 hours later by another great earthquake, of Mw 8.2, in a similar location. The events occurred ~400 km from northern Sumatra, on the oceanic side of the Sunda megathrust. The event was recorded by high-rate GPS stations from our 50-station Sumatra GPS Array (SuGAr). We will present the coseismic displacements and constraints on slip obtained from this network. The location of the events is very interesting. Scientists have long been puzzled by the nature and location of the boundary between the Indian and Australian plates in the depths of the Indian Ocean. Because of the resistance provided by the collision of India with Tibet far to the north, the Indian plate is moving relatively northwards at about 1 cm/yr slower than the Australian plate; this difference in velocity causes strain between the Indian and Australian plates. These earthquakes provide important new evidence that this strain is reactivating a system of faults on the seafloor that were inherited from an older geological epoch, and bring up questions about why this deformation appears to be diffuse, rather than behaving as a proper plate boundary. The events also highlight a back-and-forth interaction between the intraplate faults and the Sunda megathrust; the 2004 megathrust event brought these earthquakes ahead in time, but these earthquakes will in turn have stressed the megathrust. Published seismological results have indicated great complexity in the rupture patterns for these events, with a cascading failure of multiple conjugate faults. Surprisingly, the majority of slip seems to have occurred on the WNW-trending, right-lateral faults, rather than the NNE-trending left-lateral faults that are prominent features of the seafloor. The seismological results also show that the ruptures are likely to have extended from the

  12. Slip vectors and fault mechanics in the Makran Accretionary Wedge, southwest Pakistan (United States)

    Platt, John Paul; Leggett, Jeremy K.; Alam, S.


    The Makran is a broadly east-west trending arcuate accretionary wedge currently forming where the oceanic floor of the Gulf of Oman is being subducted north-northeastward beneath the south Asian margin. Two traverses across the Makran Coast Ranges, extending about 80 km inland from the coastline (which lies about 100 km north of the wedge front), show that the structure of this region is dominated by large back-rotated south directed thrust faults and associated folds. Related structures include duplexes, fault gouge containing Reidel shears, and melange along fault zones. These structures are cut by later north directed backthrusts, out-of-sequence south directed thrusts, and apparently conjugate sets of NNE trending sinistral and NW trending dextral strike-slip faults. Slip vectors were determined from slickenlines, fiber lineations, gouge fabrics, and Riedel shears. Vectors from early thrusts and bedding-parallel slip surfaces, corrected for tectonic rotation, form a broad south directed concentration lying between the normal to the regional strike (varying from 160° to 180°) and the present plate convergence vector (200°). Locally, the concentration is bimodal. This pattern may represent the interaction between plate forces and body forces in the accretionary wedge. The late thrusts have widely variable slip vectors and stair-step off the early thrusts. They overlap in orientation and slip vector with gently dipping sinistral strike-slip faults, suggesting that they also stair-step in plan off the latter. The steep strike-slip faults represent the final tectonic stage, involving minor N-S shortening and longitudinal extension. These three stages probably occurred in sequence in any one area but migrated diachronously southward as the wedge grew.

  13. Seismic Evidence for Conjugate Slip and Block Rotation Within the San Andreas Fault System, Southern California (United States)

    Nicholson, Craig; Seeber, Leonardo; Williams, Patrick; Sykes, Lynn R.


    The pattern of seismicity in southern California indicates that much of the activity is presently occurring on secondary structures, several of which are oriented nearly orthogonal to the strikes of the major through-going faults. Slip along these secondary transverse features is predominantly left-lateral and is consistent with the reactivation of conjugate faults by the current regional stress field. Near the intersection of the San Jacinto and San Andreas faults, however, these active left-lateral faults appear to define a set of small crustal blocks, which in conjunction with both normal and reverse faulting earthquakes, suggests contemporary clockwise rotation as a result of regional right-lateral shear. Other left-lateral faults representing additional rotating block systems are identified in adjacent areas from geologic and seismologic data. Many of these structures predate the modern San Andreas system and may control the pattern of strain accumulation in southern California. Geodetic and paleomagnetic evidence confirm that block rotation by strike-slip faulting is nearly ubiquitous, particularly in areas where shear is distributed, and that it accommodates both short-term elastic and long-term nonelastic strain. A rotating block model accounts for a number of structural styles characteristic of strike-slip deformation in California, including: variable slip rates and alternating transtensional and transpressional features observed along strike of major wrench faults; domains of evenly-spaced antithetic faults that terminate against major fault boundaries; continued development of bends in faults with large lateral displacements; anomalous focal mechanisms; and differential uplift in areas otherwise expected to experience extension and subsidence. Since block rotation requires a detachment surface at depth to permit rotational movement, low-angle structures like detachments, of either local or regional extent, may be involved in the contemporary strike-slip

  14. Slip events propagating along a ductile mid-crustal strike-slip shear zone (Malpica-Lamego line, Variscan Orogen, NW Iberia) (United States)

    Llana-Fúnez, Sergio; de Paola, Nicola; Pozzi, Giacomo; Lopez-Sanchez, Marco Antonio


    The current level of erosion in NW Iberian peninsula exposes Variscan mid-crustal depths, where widespread deformation during orogenesis produced dominantly ductile structures. It constitutes an adequate window for the observation of structures close to the brittle-plastic transition in the continental crust. The shear zone object of this work is the Malpica-Lamego line (MLL), a major Variscan structure formed in the late stages of the Variscan collision. The MLL is a mostly strike-slip major structure that offsets laterally by several kilometres the assembly of allochthonous complexes, that contain a sub-horizontal suture zone, which are the remnants of the plate duplication during the Variscan convergence. The shear zone is exposed along the northern coast of Galicia (NW Spain). It is characterized by phyllonites and quartz-mylonites in a zone which is tens of meters in thickness. Within the phyllonites, a few seams of cataclastic rocks have been found in bands along the main fabric. Their cohesive character, the parallelism between the different bands, the fact that host rocks maintain mineral assemblage and that no cross-cutting relations in the field were identified, are considered indicative of these brittle structures forming coetaneously with the ductile shearing producing the phyllonites. Samples from the phyllonites, also from quartz-mylonites, were prepared and powdered to characterize friction properties in a rotary shear apparatus at high, seismic velocities (m/s). Preliminary experiments run at room temperature and effective normal stresses between 10 to 25 MPa, show that friction coefficients µ are relatively high and a limited drop in friction coefficient occurs after 10-20 cm of slip, with µ decreasing from 0.7 to 0.5. Fracturing seems coetaneous with dominant ductile shearing within the shear zone, however, given the frictional properties of the phyllonites, it is unlikely that brittle deformation nucleates within these fault rocks. Instead, it

  15. Structural evidence for strike-slip deformation in the Izmir-Balikesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey)

    NARCIS (Netherlands)

    Uzel, B.; Sözbilir, H.; Özkaymak, T.; Kaymakci, N.; Langereis, C.G.


    The Izmir-Balikesir transfer zone (IBTZ) is a recently recognized strike-slip dominated shear zone that accommodates the differential deformation between the Cycladic and Menderes core complexes within the Aegean Extensional System. Here, we present new structural and kinematic data obtained from

  16. Interactions between strike-slip earthquakes and the subduction interface near the Mendocino Triple Junction (United States)

    Gong, Jianhua; McGuire, Jeffrey J.


    The interactions between the North American, Pacific, and Gorda plates at the Mendocino Triple Junction (MTJ) create one of the most seismically active regions in North America. The earthquakes rupture all three plate boundaries but also include considerable intraplate seismicity reflecting the strong internal deformation of the Gorda plate. Understanding the stress levels that drive these ruptures and estimating the locking state of the subduction interface are especially important topics for regional earthquake hazard assessment. However owing to the lack of offshore seismic and geodetic instruments, the rupture process of only a few large earthquakes near the MTJ have been studied in detail and the locking state of the subduction interface is not well constrained. In this paper, first, we use the second moments inversion method to study the rupture process of the January 28, 2015 Mw 5.7 earthquake on the Mendocino transform fault that was unusually well recorded by both onshore and offshore strong motion instruments. We estimate the rupture dimension to be approximately 6 km by 3 km corresponding to a stress drop of ∼4 MPa for a crack model. Next we investigate the frictional state of the subduction interface by simulating the afterslip that would be expected there as a result of the stress changes from the 2015 earthquake and a 2010 Mw 6.5 intraplate earthquake within the subducted Gorda plate. We simulate afterslip scenarios for a range of depths of the downdip end of the locked zone defined as the transition to velocity strengthening friction and calculate the corresponding surface deformation expected at onshore GPS monuments. We can rule out a very shallow downdip limit owing to the lack of a detectable signal at onshore GPS stations following the 2010 earthquake. Our simulations indicate that the locking depth on the slab surface is at least 14 km, which suggests that the next M8 earthquake rupture will likely reach the coastline and strong shaking

  17. Object-oriented fault tree evaluation program for quantitative analyses (United States)

    Patterson-Hine, F. A.; Koen, B. V.


    Object-oriented programming can be combined with fault free techniques to give a significantly improved environment for evaluating the safety and reliability of large complex systems for space missions. Deep knowledge about system components and interactions, available from reliability studies and other sources, can be described using objects that make up a knowledge base. This knowledge base can be interrogated throughout the design process, during system testing, and during operation, and can be easily modified to reflect design changes in order to maintain a consistent information source. An object-oriented environment for reliability assessment has been developed on a Texas Instrument (TI) Explorer LISP workstation. The program, which directly evaluates system fault trees, utilizes the object-oriented extension to LISP called Flavors that is available on the Explorer. The object representation of a fault tree facilitates the storage and retrieval of information associated with each event in the tree, including tree structural information and intermediate results obtained during the tree reduction process. Reliability data associated with each basic event are stored in the fault tree objects. The object-oriented environment on the Explorer also includes a graphical tree editor which was modified to display and edit the fault trees.

  18. Onshore-offshore seismic reflection profiling across the southern margin of the Sea of Japan: back-arc opening, shortening and active strike-slip deformation (United States)

    Sato, Hiroshi; Ishiyama, Tatsuya; Kato, Naoko; Toda, Shigeru; Kawasaki, Shinji; Fujiwara, Akira; Tanaka, Yasuhisa; Abe, Susumu


    Pliocene to early Pleistocene along the limited fault system. The change in the direction of the motion of PHS at 1 Ma produced major change in stress regime from NS compression to EW compression in the back-arc. Following the change of stress regime, former reverse faults reactivated as strike-slip fault. Reuse of pre-existing faults are common, and crustal deformation concentrates relatively narrow zone in the back-arc failed rifts. Two-months after from our survey, Mw 6.2 Tottoriken-chubu earthquake occurred just beneath the onshore part of the seismic line. The source fault corresponds to the boundary of abrupt change in P-wave velocity, however there were no surface ruptures and distinctive geologic faults. The bottom of seismogenic layer corresponds to TWT 4.5 sec., which is almost the top horizon of reflective middle crust.

  19. The tsunami-like sea level disturbance in Crotone harbor, Italy, after the Mw6.5 strike-slip earthquake of 17 November 2015 in Lefkada Isl., Ionian Sea, Greece (United States)

    Novikova, Tatyana; Annunziato, Alessandro; Charalampakis, Marinos; Romano, Fabrizio; Volpe, Manuela; Tonini, Roberto; Gerardinger, Andrea; Papadopoulos, Gerassimos A.


    On 17 November 2015 an Mw6.5 earthquake ruptured offshore Lefkada Isl. in Ionian Sea, Greece, causing two human victims, minor damage and several ground failures including coastal landslides. Fault plane solutions released by CMT/Harvard, NOA and other institutes have indicated that the faulting style was strike-slip right-lateral, which is quite typical for the area, as for example, the Mw6.3 event that occurred on August 14, 2003, in exactly the same fault zone. In spite of the very low tsunami potential commonly associated to this faulting mechanism, a tsunami-like sea level change was recorded after the earthquake by one tide-gauge in the Crotone harbor, Italy. Preliminary tsunami numerical simulations were performed to reproduce the observed signal. The spectral analysis of the synthetic mareograms close to the entrance of the harbor shows the presence of some peaks that could justify the relation between the natural port resonance and the observed wave amplification. Of particular interest is the coupling between the tsunami energy and the natural modes of basin oscillation enhancing tsunami wave amplitude in harbors through resonance, as shown in some historical events in the Mediterranean Sea and elsewhere. This research is a contribution to the EU-FP7 tsunami research project ASTARTE (Assessment, Strategy And Risk Reduction for Tsunamis in Europe), grant agreement no: 603839, 2013-10-30.

  20. Excitation of tsunami by a pure strike-slip earthquake. ; Izu Oshima kinkai earthquake tsunami on Feb. 20, 1990. Yokozure danso jishin ni yoru tsunami no reiki. ; 1990 nen 2 gatsu 20 nichi Izu Oshima kinkai jishin tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. (Nippon Dental University, Tokyo (Japan). Niigata Junior College); Okada, M. (Meteorological Research Institute, Tsukuba (Japan))


    A numerical experiment was performed to reproduce the tsunami from the Izu-Oshima Kinkai Earthquake which occurred on February 20, 1990, using a tsunami excited by a pure strike-slip fault. An existence of a vertical fault with a length of 15 km and a width of 12 km was hypothesized in the south-north direction on the ocean bottom around the focal region. Then, a tsunami was assumed to have been excited when the fault was given a side-slip movement to create discrepancies of 1 m in the fault. Water level change for one hour after onset of the tsunami was calculated in one-second interval in each unit square with a side length of 1 km over an ocean area of 200 km from east to west and 150 km from north to south centering on the wave source. The results obtained from the calculation were harmonious with tsunami waveforms observed at five stations in the subject region and their spectral analytic results. Reproduced were the two predominant frequencies commonly observed at more than two stations, and difference in predominant cycles that appear according to azimuths of the observation points to the epicenter. These facts endorse the reasonability of the above hypothesis. 9 refs., 11 figs.

  1. Fracture structures of active Nojima fault, Japan, revealed by borehole televiewer imaging (United States)

    Nishiwaki, T.; Lin, A.


    Most large intraplate earthquakes occur as slip on mature active faults, any investigation of the seismic faulting process and assessment of seismic hazards require an understanding of the nature of active fault damage zones as seismogenic source. In this study, we focus on the fracture structures of the Nojima Fault (NF) that triggered the 1995 Kobe Mw 7.2 earthquake using ultrasonic borehole televiewer (BHTV) images from a borehole wall. The borehole used in this study was drilled throughout the NF at 1000 m in depth by a science project of Drilling into Fault Damage Zone(DFDZ) in 2016 (Lin, 2016; Miyawaki et al., 2016). In the depth of consolidated sandstone and conglomerate of the Plio-Pleistocene Osaka-Group and mudstone and sandstone of the Miocene Kobe Group. The basement rock in the depth of >230 m consist of pre-Neogene granitic rock. Based on the observations of cores and analysis of the BHTV images, the main fault plane was identified at a depth of 529.3 m with a 15 cm thick fault gouge zone and a damage zone of 100 m wide developed in the both sides of the main fault plane. Analysis of the BHTV images shows that the fractures are concentrated in two groups: N45°E (Group-1), parallel to the general trend of the NF, and another strikes N70°E (Group-2), oblique to the fault with an angle of 20°. It is well known that Riedel shear structures are common within strike-slip fault zones. Previous studies show that the NF is a right-lateral strike-slip fault with a minor thrust component, and that the fault damage zone is characterized by Riedel shear structures dominated by Y shears (main faults), R shears and P foliations (Lin, 2001). We interpret that the fractures of Group (1) correspond to Y Riedel fault shears, and those of Group (2) are R shears. Such Riedel shear structures indicate that the NF is a right-lateral strike-slip fault which is activated under a regional stress field oriented to the direction close to east-west, coincident with that

  2. Seismic evidence of conjugate normal faulting: The 1994 Devil Canyon earthquake sequence near Challis, Idaho

    International Nuclear Information System (INIS)

    Jackson, S.M.


    In this study, the term ''conjugate'' refers to faults that occur in two intersecting sets and coordinated kinematically, with each set being distinctive in both orientation and sense of shear (Davis, 1984). Contemporaneous activity along the conjugate faults is defined as occurring within the time frame of the mainshock-aftershock sequence (three weeks for this sequence and generally less than one month in other observed cases). Detailed recordings of microearthquakes from a dense array of temporary analog seismic stations are analyzed. The focal mechanisms and hypocenter spatial and temporal characteristics are combined with geological information to assess the style, geometry, timing, kinematics, and mechanics of conjugate normal faulting. The characteristics of conjugate normal faulting observed in the Devil Canyon sequence are compared to other conjugate normal faulting sequences, and strike-slip and thrust conjugate sequences worldwide

  3. New active faults on Eurasian-Arabian collision zone: Tectonic activity of Özyurt and Gülsünler faults (Eastern Anatolian Plateau, Van-Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Dicle, S.; Üner, S.


    The Eastern Anatolian Plateau emerges from the continental collision between Arabian and Eurasian plates where intense seismicity related to the ongoing convergence characterizes the southern part of the plateau. Active deformation in this zone is shared by mainly thrust and strike-slip faults. The Özyurt thrust fault and the Gülsünler sinistral strike-slip fault are newly determined fault zones, located to the north of Van city centre. Different types of faults such as thrust, normal and strike-slip faults are observed on the quarry wall excavated in Quaternary lacustrine deposits at the intersection zone of these two faults. Kinematic analysis of fault-slip data has revealed coeval activities of transtensional and compressional structures for the Lake Van Basin. Seismological and geomorphological characteristics of these faults demonstrate the capability of devastating earthquakes for the area.

  4. New active faults on Eurasian-Arabian collision zone: Tectonic activity of Özyurt and Gülsünler faults (Eastern Anatolian Plateau, Van-Turkey)

    International Nuclear Information System (INIS)

    Dicle, S.; Üner, S.


    The Eastern Anatolian Plateau emerges from the continental collision between Arabian and Eurasian plates where intense seismicity related to the ongoing convergence characterizes the southern part of the plateau. Active deformation in this zone is shared by mainly thrust and strike-slip faults. The Özyurt thrust fault and the Gülsünler sinistral strike-slip fault are newly determined fault zones, located to the north of Van city centre. Different types of faults such as thrust, normal and strike-slip faults are observed on the quarry wall excavated in Quaternary lacustrine deposits at the intersection zone of these two faults. Kinematic analysis of fault-slip data has revealed coeval activities of transtensional and compressional structures for the Lake Van Basin. Seismological and geomorphological characteristics of these faults demonstrate the capability of devastating earthquakes for the area.

  5. Causative Fault of 2016 ML 5.8 Gyeongju Earthquake (SE Korea): Structural and Seismic characteristics (United States)

    Ha, S.; Cheon, Y.; Lee, Y.; Kim, J.; Kim, K. H.; Son, M.


    A ML 5.8 earthquake, the largest instrumental earthquake in the Korean peninsula, occurred on 12 September 2016 in the Gyeongju-city, SE Korea, where is regarded as a stable intraplate region. The earthquake was widely felt in the southern peninsula and had a maximum MMI VIII in the epicentral region. Most of the intraplate earthquakes occur along preexisting weaknesses, but the potentially seismogenic structures are mostly not exposed at the surface. This study focuses on (1) the structural features in the neighboring area of the epicenter, (2) the distribution of earthquake hypocenter locations during the first 10 days of the aftershock sequence of the Gyeongju earthquake, and (3) the focal mechanism solution of select events to reveal the geometry and kinematics of its causative fault. The earthquake hypocenters in plan view clearly show a linear distribution of N 28°E, which extends about 7 km southwestward from the Yangsan Fault to the Deokcheon Fault. In cross-sectional views along N28°E and perpendicularly, the hypocenters at depths between 11 and 16 km clearly delineate a subsurface fault which has a rupturing size of about 3 ´ 3 km2 and a dip of 78°SE. Based on focal mechanism solutions, the fault acted as dextral strike-slip fault under ENE-WSW compressional stress that has been widely known as the major component of current stress field in and around Korean peninsula. The general trend, N 28°E, of the seismogenic fault slightly differs from the strike of the adjacent NNE-striking Yangsan Fault with an angular difference of 15°. The Yangsan fault is the most prominent dextral strike-slip fault in SE Korea, which can be traced for 170 km with a right-lateral offset of 30 km. The strike-slip movement is well-reported to have occurred during the Paleogene. At that time, probably numerous subsidiary fractures, such as Y-, R-, R'-, and T fractures, in various directions were produced along the Yangsan master fault. It is thus interpreted that a large R

  6. Origin and model of transform faults in the Okinawa Trough (United States)

    Liu, Bo; Li, Sanzhong; Jiang, Suhua; Suo, Yanhui; Guo, Lingli; Wang, Yongming; Zhang, Huixuan


    Transform faults in back-arc basins are the key to revealing the opening and development of marginal seas. The Okinawa Trough (OT) represents an incipient and active back-arc or marginal sea basin oriented in a general NE-SW direction. To determine the strikes and spatial distribution of transform faults in the OT, this paper dissects the NW- and NNE-SN-trending fault patterns on the basis of seismic profiles, gravity anomalies and region geological data. There are three main NW-trending transpressional faults in the OT, which are the seaward propagation of NW-trending faults in the East China Continent. The NNE-SN-trending faults with right-stepping distribution behave as right-lateral shearing. The strike-slip pull-apart process or transtensional faulting triggered the back-arc rifting or extension, and these faults evolved into transform faults with the emergence of oceanic crust. Thus, the transform fault patterns are inherited from pre-existing oblique transtensional faults at the offsets between rifting segments. Therefore, the OT performs the oblique spreading mechanism similar to nascent oceans such as the Red Sea and Gulf of Aden.

  7. Extremely Shallow Extensional Faulting Near Geothermal Fields (United States)

    Hudnut, K. W.; Wei, S.; Donnellan, A.; Fielding, E. J.; Graves, R. W.; Helmberger, D. V.; Liu, Z.; Parker, J. W.; Treiman, J. A.


    Surface faulting has been discovered in association with a shallow extensional M 4.9 earthquake, the source properties of which have also been studied by modeling of broadband seismic data and geodetic imagery. This M 4.9 and also a M 4.6 shallow normal event occurred late in the Brawley Swarm of August 2012, a dominantly strike-slip sequence with events up to M 5.5 (Hauksson et al., SRL 2013 and Wei et al., GRL 2013). The point source waveform inversions reveal normal mechanisms and centroid depths of ~2.5 km for both events, while the modeling of the geodetic data indicates a compatible depth of ~2.0 km. The M 4.9 event had unusually large (~40 cm) and sudden (~1.0 - 1.5 km/sec) slip, considering its extremely shallow depth. The earlier and larger strike-slip events during the Aug. 2012 swarm were on a left-lateral SW-NE oriented vertical planar cross-fault, whereas the M 4.6 and M 4.9 occurred on a SSW-NNE oriented, west-dipping plane. Airborne imagery obtained using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) revealed a surface fault rupture that was subsequently confirmed and documented in the field in May 2013. A pre-existing but previously un-mapped fault sustained west-down surface slip of up to 18 × 2 cm along breaks extending ~3.5 km along a NNE orientation, and ruptured beneath and under a railroad track and pipeline (without breaking them). UAVSAR and seismological data were used jointly to image the source properties of the M 4.9 earthquake in detail. Typically, the uppermost few kms of right-lateral faults in the Salton Trough exhibit creep, especially after larger earthquakes, as in 1979 and 1987. On this basis, general models of stable sliding within the uppermost few kms have been developed. In this case, however, the joint inversion indicates that seismic energy was radiated by slip of up to 40 cm on a fault plane extending from the surface to a depth of only ~3 km, extending ~4 km along-strike, and dipping ~45° west, with west

  8. New Insights into Old Events: Improving Estimates of the Spatial Heterogeneity and Distribution of Co-Seismic Slip with Depth for Several Large Magnitude Strike-Slip Earthquakes using Geodetic Observations of the Near-Field Deformation. (United States)

    Milliner, C. W. D.; Burgmann, R.; Wang, T.


    Finite-fault inversions of geodetic data to estimate co-seismic slip at depth, provide important information for faulting mechanics, understanding the behavior of the rupture process and constraints for dynamic rupture simulations. However, incorporating measurement of the near-field surface deformation has typically been difficult, due to decorrelation of the InSAR phase caused by complex ground deformation, and the difficulty of measuring diffuse, `off-fault' deformation in geologic field surveys. Such a lack of near-field data has been found to artificially generate deficits of shallow slip, by (a) overestimating slip at larger depths (3-8 km) by up to 30% [Xu et al. 2016], and (b) limiting the size of near-surface patches, with coarser meshes found to underestimate shallow slip [Huang et al. 2015], in turn distorting the spatial variation of slip across the rupture plane. Here we will present new results of kinematic slip inversions for the 1999 Mw 7.1 Hector Mine, 1999 Mw 7.6 Izmit and 2015 Mw 7.2 Tajikistan earthquakes using GPS data, SAR interferograms with refined phase unwrapping using SNAPHU, new SAR azimuth offsets, and optical image correlation results that can provide important near-field constraints of surface motion. Improved slip distributions for these large strike-slip earthquakes, which span a range of structural maturities, will allow us to assess whether more mature, `smoother' faults exhibit smoother slip distributions as predicted by quasi-static [Dieterich and Smith, 2009] and dynamic numerical rupture simulations [Dunham et al. 2011], and whether deficits of shallow slip are robust features. Understanding whether ruptures exhibit a deficit of shallow slip, and how the spatial heterogeneity of slip may vary between different fault systems holds significance for understanding how strain is released throughout the seismic cycle, generating realistic synthetic simulations of earthquake ruptures and the expected amount of ground shaking.

  9. The Cephalonia Transform Fault and its extension to western Lefkada Island (Greece) (United States)

    Louvari, E.; Kiratzi, A. A.; Papazachos, B. C.


    The central area of the Ionian Islands is dominated by the existence of a major tectonic structure called the Cephalonia Transform Fault (CTF). Its main part (Cephalonia segment) has been identified by previous work based on the spatial distribution of earthquake foci, fault plane solutions of strong earthquakes, active tectonics, structural studies and geodetic measurements. This part (Cephalonia segment) which exhibits strike-slip motion with a thrust component, strikes in a northeast direction, dips to the southeast and has a length of ˜90 km. In the present paper information concerning new fault plane solutions, orientation of isoseismals, sea bottom topography and recent GPS results are used to further check the properties of this southern part of the CTF and to explore its northeastward prolongation to Lefkada Island. It is shown that the CTF is extended to the western coast of Lefkada. This northern branch (Lefkada segment) of the CTF which is also characterized by strike-slip motion with a thrust component, strikes in a north-northeast direction, dips to the east-southeast and has a length of ˜40 km. These two segments of the CTF form a major kinematic boundary where the slip rate is 2-3 cm/yr.


    Directory of Open Access Journals (Sweden)

    Yaşar EREN


    Full Text Available The Yazır fault, located to the east of the Konya fault zone bordering west side of the Konya basin, is approximately 10 km in length and is formed by en echelon groupings of the sub-parallel fault sets. NNE-SSW trending Yazır fault cuts the Miocene-Pleistocene aged lacustrine rocks and Quaternary alluvial deposits of Konya basin. In the quarries opened between the Parsana and Yazır districts, the fault brought the lacustrine and Quaternary alluvial deposits side by side. Due to faulting, the lacustrine rocks were moved upwards relative to the alluvial deposits. The Yazır and Çiftlikbaşı faults formed a small triangular shaped graben structure in the area. Between the Parsana and Yazır districts, the fault surface is nearly vertical, and has NNE-SSW orientatiton. Although the slickenlines indicate that the fault has a small right hand strike slip movement, the fault mainly is a high angle east dipping normal fault. Surface data demonstrates that, due to this faulting, at least 25-30 m of vertical displacement was taken place in the area. Depending on the movements of the Yazır fault, two extensional sets of filled fissures were formed, one set is paralel to the main fault plane the other set erpendicular. These fissures are filled by alluvial deposits, and are triangular in shape closing downward. Their width range from 15 cm to 2 m, and their length reach up to 10 m, in vertical plane. The fissures have N10E, 90 and N80 W, 85 SW main orientation. Field observations indicate that these filled fissures were formed as surface cracks during movements of the Yazır fault at least twice. The orientations of these extensional cracks show that this part of the Konya plain was affected by east-west and north-south horizontally oriented tensional stresses.

  11. Analysis of the impact of fault mechanism radiation patterns on macroseismic fields in the epicentral area of 1998 and 2004 Krn Mountains earthquakes (NW Slovenia). (United States)

    Gosar, Andrej


    Two moderate magnitude (Mw = 5.6 and 5.2) earthquakes in Krn Mountains occurred in 1998 and 2004 which had maximum intensity VII-VIII and VI-VII EMS-98, respectively. Comparison of both macroseismic fields showed unexpected differences in the epicentral area which cannot be explained by site effects. Considerably, different distribution of the highest intensities can be noticed with respect to the strike of the seismogenic fault and in some localities even higher intensities have been estimated for the smaller earthquake. Although hypocentres of both earthquakes were only 2 km apart and were located on the same seismogenic Ravne fault, their focal mechanisms showed a slight difference: almost pure dextral strike-slip for the first event and a strike-slip with small reverse component on a steep fault plane for the second one. Seismotectonically the difference is explained as an active growth of the Ravne fault at its NW end. The radiation patterns of both events were studied to explain their possible impact on the observed variations in macroseismic fields and damage distribution. Radiation amplitude lobes were computed for three orthogonal directions: radial P, SV, and SH. The highest intensities of both earthquakes were systematically observed in directions of four (1998) or two (2004) large amplitude lobes in SH component (which corresponds mainly to Love waves), which have significantly different orientation for both events. On the other hand, radial P direction, which is almost purely symmetrical for the strike-slip mechanism of 1998 event, showed for the 2004 event that its small reverse component of movement has resulted in a very pronounced amplitude lobe in SW direction where two settlements are located which expressed higher intensities in the case of the 2004 event with respect to the 1998 one. Although both macroseismic fields are very complex due to influences of multiple earthquakes, retrofitting activity after 1998, site effects, and sparse

  12. Evolution of the Rodgers Creek–Maacama right-lateral fault system and associated basins east of the northward-migrating Mendocino Triple Junction, northern California (United States)

    McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Wagner, David L.; Fleck, Robert J.; Langenheim, V.E.; Jachens, Robert C.; Clahan, Kevin; Allen, James R.


    The Rodgers Creek–Maacama fault system in the northern California Coast Ranges (United States) takes up substantial right-lateral motion within the wide transform boundary between the Pacific and North American plates, over a slab window that has opened northward beneath the Coast Ranges. The fault system evolved in several right steps and splays preceded and accompanied by extension, volcanism, and strike-slip basin development. Fault and basin geometries have changed with time, in places with younger basins and faults overprinting older structures. Along-strike and successional changes in fault and basin geometry at the southern end of the fault system probably are adjustments to frequent fault zone reorganizations in response to Mendocino Triple Junction migration and northward transit of a major releasing bend in the northern San Andreas fault. The earliest Rodgers Creek fault zone displacement is interpreted to have occurred ca. 7 Ma along extensional basin-forming faults that splayed northwest from a west-northwest proto-Hayward fault zone, opening a transtensional basin west of Santa Rosa. After ca. 5 Ma, the early transtensional basin was compressed and extensional faults were reactivated as thrusts that uplifted the northeast side of the basin. After ca. 2.78 Ma, the Rodgers Creek fault zone again splayed from the earlier extensional and thrust faults to steeper dipping faults with more north-northwest orientations. In conjunction with the changes in orientation and slip mode, the Rodgers Creek fault zone dextral slip rate increased from ∼2–4 mm/yr 7–3 Ma, to 5–8 mm/yr after 3 Ma. The Maacama fault zone is shown from several data sets to have initiated ca. 3.2 Ma and has slipped right-laterally at ∼5–8 mm/yr since its initiation. The initial Maacama fault zone splayed northeastward from the south end of the Rodgers Creek fault zone, accompanied by the opening of several strike-slip basins, some of which were later uplifted and compressed

  13. Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting (United States)

    Green, Robert G.; White, Robert S.; Greenfield, Tim


    Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.

  14. Mantle strength of the San Andreas fault system and the role of mantle-crust feedbacks

    NARCIS (Netherlands)

    Chatzaras, V.; Tikoff, B.; Newman, J.; Withers, A.C.; Drury, M.R.


    In lithospheric-scale strike-slip fault zones, upper crustal strength is well constrained from borehole observations and fault rock deformation experiments, but mantle strength is less well known. Using peridotite xenoliths, we show that the upper mantle below the San Andreas fault system

  15. Implementing Fault-Tolerant Services in Goal-Oriented Multi-Agent Systems

    Directory of Open Access Journals (Sweden)

    BORA, S.


    Full Text Available In this paper, findings and analysis detail the implementation of fault tolerance services into a goal-oriented multi-agent systems development platform. Fault tolerance services are used to provide replication-based fault tolerance policies (i.e. static and adaptive to multi-agent systems. This approach provided flexibility and reusability to multi-agent systems because fault tolerance policies were implemented as reusable plan structures. Thus, whenever an agent was needed to be made fault-tolerant, plans for fault tolerance policies were simply activated by sending a request message.

  16. Imaging active faulting in a region of distributed deformation from the joint clustering of focal mechanisms and hypocentres: Application to the Azores-western Mediterranean region (United States)

    Custódio, Susana; Lima, Vânia; Vales, Dina; Cesca, Simone; Carrilho, Fernando


    The matching between linear trends of hypocentres and fault planes indicated by focal mechanisms (FMs) is frequently used to infer the location and geometry of active faults. This practice works well in regions of fast lithospheric deformation, where earthquake patterns are clear and major structures accommodate the bulk of deformation, but typically fails in regions of slow and distributed deformation. We present a new joint FM and hypocentre cluster algorithm that is able to detect systematically the consistency between hypocentre lineations and FMs, even in regions of distributed deformation. We apply the method to the Azores-western Mediterranean region, with particular emphasis on western Iberia. The analysis relies on a compilation of hypocentres and FMs taken from regional and global earthquake catalogues, academic theses and technical reports, complemented by new FMs for western Iberia. The joint clustering algorithm images both well-known and new seismo-tectonic features. The Azores triple junction is characterised by FMs with vertical pressure (P) axes, in good agreement with the divergent setting, and the Iberian domain is characterised by NW-SE oriented P axes, indicating a response of the lithosphere to the ongoing oblique convergence between Nubia and Eurasia. Several earthquakes remain unclustered in the western Mediterranean domain, which may indicate a response to local stresses. The major regions of consistent faulting that we identify are the mid-Atlantic ridge, the Terceira rift, the Trans-Alboran shear zone and the north coast of Algeria. In addition, other smaller earthquake clusters present a good match between epicentre lineations and FM fault planes. These clusters may signal single active faults or wide zones of distributed but consistent faulting. Mainland Portugal is dominated by strike-slip earthquakes with fault planes coincident with the predominant NNE-SSW and WNW-ESE oriented earthquake lineations. Clusters offshore SW Iberia are

  17. The last interglacial period at Guantanamo Bay, Cuba and an estimate of late Quaternary tectonic uplift rate in a strike-slip regime (United States)

    Schweig, E. S.; Muhs, D. R.; Simmons, K. R.; Halley, R. B.


    Guantanamo Bay, Cuba is an area dominated by a strike-slip tectonic regime and is therefore expected to have very low Quaternary uplift rates. We tested this hypothesis by study of an unusually well preserved emergent reef terrace around the bay. Up to 12 m of unaltered, growth-position reef corals are exposed at about 40 sections examined around ˜40 km of coastline. Maximum reef elevations in the protected, inner part of the bay are ˜11-12 m, whereas outer-coast shoreline angles of wave-cut benches are as high as ˜14 m. Fifty uranium-series analyses of unrecrystallized corals from six localities yield ages ranging from ˜134 ka to ˜115 ka, when adjusted for small biases due to slightly elevated initial 234U/238U values. Thus, ages of corals correlate this reef to the peak of the last interglacial period, marine isotope stage (MIS) 5.5. Previously, we dated the Key Largo Limestone to the same high-sea stand in the tectonically stable Florida Keys. Estimates of paleo-sea level during MIS 5.5 in the Florida Keys are ~6.6 to 8.3 m above present. Assuming a similar paleo-sea level in Cuba, this yields a long-term tectonic uplift rate of 0.04-0.06 m/ka over the past ~120 ka. This estimate supports the hypothesis that the tectonic uplift rate should be low in this strike-slip regime. Nevertheless, on the southeast coast of Cuba, east of our study area, we have observed flights of multiple marine terraces, suggesting either (1) a higher uplift rate or (2) an unusually well-preserved record of pre-MIS 5.5 terraces not observed at Guantanamo Bay.

  18. Intra-arc Seismicity: Geometry and Kinematic Constraints of Active Faulting along Northern Liquiñe-Ofqui and Andean Transverse Fault Systems [38º and 40ºS, Southern Andes (United States)

    Sielfeld, G.; Lange, D.; Cembrano, J. M.


    Intra-arc crustal seismicity documents the schizosphere tectonic state along active magmatic arcs. At oblique-convergent margins, a significant portion of bulk transpressional deformation is accommodated in intra-arc regions, as a consequence of stress and strain partitioning. Simultaneously, crustal fluid migration mechanisms may be controlled by the geometry and kinematics of crustal high strain domains. In such domains shallow earthquakes have been associated with either margin-parallel strike-slip faults or to volcano-tectonic activity. However, very little is known on the nature and kinematics of Southern Andes intra-arc crustal seismicity and its relation with crustal faults. Here we present results of a passive seismicity study based on 16 months of data collected from 33 seismometers deployed along the intra-arc region of Southern Andes between 38˚S and 40˚S. This region is characterized by a long-lived interplay among margin-parallel strike-slip faults (Liquiñe-Ofqui Fault System, LOFS), second order Andean-transverse-faults (ATF), volcanism and hydrothermal activity. Seismic signals recorded by our network document small magnitude (0.2P and 2,796 S phase arrival times have been located with NonLinLoc. First arrival polarities and amplitude ratios of well-constrained events, were used for focal mechanism inversion. Local seismicity occurs at shallow levels down to depth of ca. 16 km, associated either with stratovolcanoes or to master, N10˚E, and subsidiary, NE to ENE, striking branches of the LOFS. Strike-slip focal mechanisms are consistent with the long-term kinematics documented by field structural-geology studies. Unexpected, well-defined NW-SE elongated clusters are also reported. In particular, a 72-hour-long, N60˚W-oriented seismicity swarm took place at Caburgua Lake area, describing a ca. 36x12x1km3 faulting crustal volume. Results imply a unique snapshot on shallow crustal tectonics, contributing to the understanding of faulting processes

  19. An Aspect-Oriented Approach to Assessing Fault Tolerance (United States)


    misconfiguration, and so forth. The Hadoop File System [8] includes a fault injection framework built using AspectJ similar to that which we describe in...this paper. The main differences between our framework and Hadoop fault injectors is that the Hadoop fault injector only supports probabilistic...Transformation and Net-Centric Systems Conference, Orlando, Florida, April 2009. [8] “ Hadoop fault injection,

  20. Structure of the la VELA Offshore Basin, Western Venezuela: AN Obliquely-Opening Rift Basin Within the South America-Caribbean Strike-Slip Plate Boundary (United States)

    Blanco, J. M.; Mann, P.


    Bathymetric, gravity and magnetic maps show that the east-west trend of the Cretaceous Great Arc of the Caribbean in the Leeward Antilles islands is transected by an en echelon series of obliquely-sheared rift basins that show right-lateral offsets ranging from 20 to 40 km. The basins are 75-100 km in length and 20-30 km in width and are composed of sub-parallel, oblique slip normal faults that define deep, bathymetric channels that bound the larger islands of the Leeward Antilles including Aruba, Curacao and Bonaire. A single basin of similar orientation and structure, the Urumaco basin, is present to the southwest in the Gulf of Venezuela. We mapped structures and sedimentation in the La Vela rift basin using a 3D seismic data volume recorded down to 6 seconds TWT. The basin can be mapped from the Falcon coast where it is correlative with the right-lateral Adicora fault mapped onshore, and its submarine extension. To the southeast of the 3D survey area, previous workers have mapped a 70-km-wide zone of northeast-striking, oblique, right-lateral faults, some with apparent right-lateral offsets of the coastline. On seismic data, the faults vary in dip from 45 to 60 degrees and exhibit maximum vertical offsets of 600 m. The La Vela and other obliquely-opening rifts accommodate right-lateral shear with linkages to intervening, east-west-striking right-lateral faults like the Adicora. The zone of oblique rifts is restricted to the trend of the Great Arc of the Caribbean and may reflect the susceptiblity of this granitic basement to active shearing. The age of onset for the basins known from previous studies on the Leeward Antilles is early Miocene. As most of these faults occur offshore their potential to generate damaging earthquakes in the densely populated Leeward Antilles is not known.

  1. Major earthquakes occur regularly on an isolated plate boundary fault. (United States)

    Berryman, Kelvin R; Cochran, Ursula A; Clark, Kate J; Biasi, Glenn P; Langridge, Robert M; Villamor, Pilar


    The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.

  2. Recurring extensional and strike-slip tectonics after the Neoproterozoic collisional events in the southern Mantiqueira province

    Directory of Open Access Journals (Sweden)

    Renato P. Almeida


    Full Text Available In Eastern South America, a series of fault-bounded sedimentary basins that crop out from Southern Uruguay to Southeastern Brazil were formed after the main collisional deformation of the Brasiliano Orogeny and record the tectonic events that affected the region from the Middle Ediacaran onwards. We address the problem of discerning the basin-forming tectonics from the later deformational events through paleostress analysis of more than 600 fault-slip data, mainly from the Camaquã Basin (Southern Brazil, sorted by stratigraphic level and cross-cutting relationships of superposed striations, and integrated with available stratigraphic and geochronological data. Our results show that the Camaquã Basin was formed by at least two distinct extensional events, and that rapid paleostress changes took place in the region a few tens of million years after the major collision (c.a. 630 Ma, probably due to the interplay between local active extensional tectonics and the distal effects of the continued amalgamation of plates and terranes at the margins of the still-forming Gondwana Plate. Preliminary paleostress data from the Castro Basin and published data from the Itajaí Basin suggest that these events had a regional nature.No Leste da América do Sul, um conjunto de bacias sedimentares que afloram do sul do Uruguai ao sudeste do Brasil formou-se após os eventos colisionais da Orogenia Brasiliana, registrando os eventos tectônicos que afetaram a região a partir do Mesoediacarano. O problema da distinção entre a tectônica formadora das bacias e os eventos deformacionais posteriores é aqui abordado através da análise de paleotensões de mais de 600 dados de falhas com estrias, obtidos principalmente na Bacia Camaquã (Sul do Brasil, que foram classificados por nível estratigráfico e relações de corte entre estrias sobrepostas, e intergrados a dados estratigráficos e geocronológicos disponíveis. Nossos resultados revelam que a Bacia Camaqu

  3. Evolution of fault activity reflecting the crustal deformation: Insights from crustal stress and fault orientations in the northeast-southwest Japan (United States)

    Miyakawa, A.; Otsubo, M.


    We evaluated fault activity in northeast- southwest Japan based on the regional stress and the fault orientation field for both active faults and inactive faults (here, an inactive fault is a fault which activity has not been identified in Quaternary). The regional stress field was calculated using the stress inversion method [Hardebeck and Michael, 2006] applied to earthquake focal mechanisms in the northeast-southwest Japan. The locations and orientations (i.e., strike and dip, assuming a planar fault geometry) of active faults in the study area were obtained from the Active Fault Database of Japan and inactive faults from a database compiled by Kosaka et al. [2011]. We employed slip tendency analysis [Morris et al., 1996] to evaluate the likelihood of fault slip. The values of the slip tendency is generally higher along active faults than along inactive faults. The difference between the slip tendencies of active and inactive faults reflects the difference in their activities. Furthermore the high slip tendency observed for some inactive faults suggests their high activity. These high slip tendencies imply that they have potential to be active. We propose the temporal evolution from inactive to active faulting during long-term crustal deformation to explain the potential for fault activity along inactive faults. When a region undergoes the transition from inactive to active faulting, potential active faults are observed as inactive faults with a high Part of this findig have been submitted to Tectonics (AGU Journal) (2015-07-27). We will presentate some new findings.slip tendency. The average slip tendency of inactive faults gradually increases from northeast to southwest Japan, because a relatively large number of inactive faults in southwest Japan have a high slip tendency. The representative deformation zones in Japan shows a relationship with the observed spatial variations in the evolution from inactive to active faulting. This study was supported by MEXT

  4. 3D Dynamic Rupture Simulations Across Interacting Faults: the Mw7.0, 2010, Haiti Earthquake (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.; Aagaard, B.


    The mechanisms controlling rupture propagation between fault segments during an earthquake are key to the hazard posed by fault systems. Rupture initiation on a fault segment sometimes transfers to a larger fault, resulting in a significant event (e.g.i, 2002 M7.9Denali and 2010 M7.1 Darfield earthquakes). In other cases rupture is constrained to the initial segment and does not transfer to nearby faults, resulting in events of moderate magnitude. This is the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigatethe rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacenent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a Finite Element Model to simulate the nucleation and propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence. The best-fit simulation is in remarkable agreement with several finite fault inversions and predicts ground displacement in very good agreement with geodetic and geological observations. The two slip patches inferred from finite-fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure. Although our simulation results replicate well the ground deformation consistent with the geodetic surface observation but convolving the ground motion with the soil amplification from the microzonation study will correctly account for the heterogeneity of the PGA throughout the rupture area.

  5. Origins of oblique-slip faulting during caldera subsidence (United States)

    Holohan, Eoghan P.; Walter, Thomas R.; Schöpfer, Martin P. J.; Walsh, John J.; van Wyk de Vries, Benjamin; Troll, Valentin R.


    Although conventionally described as purely dip-slip, faults at caldera volcanoes may have a strike-slip displacement component. Examples occur in the calderas of Olympus Mons (Mars), Miyakejima (Japan), and Dolomieu (La Reunion). To investigate this phenomenon, we use numerical and analog simulations of caldera subsidence caused by magma reservoir deflation. The numerical models constrain mechanical causes of oblique-slip faulting from the three-dimensional stress field in the initial elastic phase of subsidence. The analog experiments directly characterize the development of oblique-slip faulting, especially in the later, non-elastic phases of subsidence. The combined results of both approaches can account for the orientation, mode, and location of oblique-slip faulting at natural calderas. Kinematically, oblique-slip faulting originates to resolve the following: (1) horizontal components of displacement that are directed radially toward the caldera center and (2) horizontal translation arising from off-centered or "asymmetric" subsidence. We informally call these two origins the "camera iris" and "sliding trapdoor" effects, respectively. Our findings emphasize the fundamentally three-dimensional nature of deformation during caldera subsidence. They hence provide an improved basis for analyzing structural, geodetic, and geophysical data from calderas, as well as analogous systems, such as mines and producing hydrocarbon reservoirs.

  6. Researchers investigate submarine faults north of Puerto Rico (United States)

    Grindlay, N.; Mann, P.; Dolan, J.

    A 23-day marine geophysical expedition in the summer of 1996 revealed a previously unidentified strike-slip fault zone within 60-100 km of the densely populated northern coast of Puerto Rico. The purpose of the expedition, which was held aboard the U.S. research vessel Maurice Ewing, was to map the northeastern portion of the North America Caribbean plate boundary.The 3000-km-long North America-Caribbean plate boundary stretches from Guatemala to the Lesser Antilles arc. The dominantly left-lateral strike-slip boundary accommodates slow (1-2.6 cm/yr) eastward motion of the Caribbean plate relative to North America. Distributed interplate motion in the region generates large earthquakes (Figure 1, inset). In 1976, an M 7.5 left-lateral, strike-slip earthquake in Guatemala killed approximately 23,000 people and left a quarter of the nation's population homeless.

  7. Core Description and Characteristics of Fault Zones from Hole-A of the Taiwan Chelungpu-Fault Drilling Project

    Directory of Open Access Journals (Sweden)

    En-Chao Yeh


    Full Text Available Taiwan Chelungpu-fault Drilling Project was conducted in drill site Dakeng, Taichung City of central western Taiwan during 2004 - 2005 principally to investigate the rupture mechanism in the northern segment of the Chi-Chi earthquake of 21 September 1999, and also to examine regional stratigraphy and tectonics. Core examination (500 - 1800 m of Hole-A gave profound results aiding in illustrating the lithologic column, deformation structure, and architectural pattern of fault zones along the borehole. Lithology column of Hole-A was identified downward as the Cholan Formation (500 - 1027 m, Chinshui Shale (1027 - 1268 m, Kueichulin Formation (1268 - 1712 m, and back to the Cholan Formation (1712 - 2003 m again. A dramatic change is observed regarding sedimentation age and deformation structure around 1712 m. Along the core, most bedding dips _ _ Around 1785 m, bedding dip jumps up to _ the bottom of borehole. Five structure groups of different orientations (dip direction/dip are observed throughout the core. Based on the orientation and sense of shear, they are categorized as thrust (105/30, left-lateral fault (015/30 - 80, right-lateral fault (195/30 - 80, normal fault (105/5 - 10, and backthrust (285/40 - 50. Ten fault zones have been recognized between 500 and 2003 m. We interpret the fault zone located at around 1111 m as being the most likely candidate for rupture deformation during Chi-Chi earthquake. The fault zone seated around 1712 m is recognized as the Sanyi fault zone which is 600 m beneath the Chelungpu fault zone. Ten fault zones including thrust faults, strike-slip faults and backthrust are classified as the Chelungpu Fault System (1500 m. According to the deformation textures within fault zones, the fault zones can be categorized as three types of deformation: distinct fracture deformation, clayey-gouge deformation, and soft-rock deformation. Fracture deformation is dominant within the Chelungpu Fault System and abother two

  8. New insights into the distribution and evolution of the Cenozoic Tan-Lu Fault Zone in the Liaohe sub-basin of the Bohai Bay Basin, eastern China (United States)

    Huang, Lei; Liu, Chi-yang; Xu, Chang-gui; Wu, Kui; Wang, Guang-yuan; Jia, Nan


    As the largest strike-slip fault system in eastern China, the northeast-trending Tan-Lu Fault Zone (TLFZ) is a significant tectonic element contributing to the Mesozoic-Cenozoic regional geologic evolution of eastern Asia, as well as to the formation of ore deposits and oilfields. Because of the paucity of data, its distribution and evolutionary history in the offshore Liaohe sub-basin of the northern Bohai Bay Basin (BBB) are still poorly understood. Investigations of the strike-slip fault system in the western portion of the offshore Liaohe sub-basin via new seismic data provide us with new insights into the characteristics of the Cenozoic TLFZ. Results of this study show that Cenozoic dextral strike-slip faults occurred near the center of the Liaoxi graben in the offshore Liaohe sub-basin; these strike-slip faults connect with their counterparts to the north, the western part of the onshore Liaohe sub-basin, and have similar characteristics to those in other areas of the BBB in terms of kinematics, evolutionary history, and distribution; consequently, these faults are considered as the western branch of the TLFZ. All strike-slip faults within the Liaoxi graben merge at depth with a central subvertical basement fault induced by the reactivation of a pre-existing strike-slip basement fault, the pre-Cenozoic TLFZ. Data suggest that the TLFZ across the whole Liaohe sub-basin comprises two branches and that the Cenozoic distribution of this system was inherited from the pre-Cenozoic TLFZ. This characteristic distribution might be possessed by the whole TLFZ, thus the new understandings about the distribution and evolutionary model of the TLFZ in this study can be inferred in many research fields along the whole fault zone, such as regional geology, ore deposits, petroleum exploration and earthquake hazard.

  9. Fault self-defection of automatic testing systems by means of aspect-oriented programming

    CERN Document Server

    Arpaia, P; Di Lucca, G; Inglese, V; Spiezia, G


    An Aspect Oriented approach to implement fault detection in automatic measurement systems is proposed. Faults are handled by means of "aspects", a specific software unit to better modularize issues transversal to many modules ("crosscutting concerns"). In this way, maintainability and reusability of a measurement software are improved: indeed, once a modification of the fault detection policy occurs, only the related aspects have to be modified. As an experimental case study, this technique has been applied to the fault self-detection of a flexible framework for magnetic measurements, developed at the European Organization for Nuclear Research (CERN).

  10. Stress orientations in subduction zones and the strength of subduction megathrust faults. (United States)

    Hardebeck, Jeanne L


    Subduction zone megathrust faults produce most of the world's largest earthquakes. Although the physical properties of these faults are difficult to observe directly, their frictional strength can be estimated indirectly by constraining the orientations of the stresses that act on them. A global investigation of stress orientations in subduction zones finds that the maximum compressive stress axis plunges systematically trenchward, consistently making an angle of 45° to 60° with respect to the subduction megathrust fault. These angles indicate that the megathrust fault is not substantially weaker than its surroundings. Together with several other lines of evidence, this implies that subduction zone megathrusts are weak faults in a low-stress environment. The deforming outer accretionary wedge may decouple the stress state along the megathrust from the constraints of the free surface. Copyright © 2015, American Association for the Advancement of Science.

  11. The Latemar: A Middle Triassic polygonal fault-block platform controlled by synsedimentary tectonics (United States)

    Preto, Nereo; Franceschi, Marco; Gattolin, Giovanni; Massironi, Matteo; Riva, Alberto; Gramigna, Pierparide; Bertoldi, Luca; Nardon, Sergio


    Detailed field mapping of a Middle Triassic carbonate buildup, the Latemar in the western Dolomites, northern Italy, has been carried out. The Latemar is an isolated carbonate buildup that nucleates on a fault-bounded structural high (horst) cut into the underlying late Anisian carbonate bank of the Contrin Fm. This study demonstrates that extensional synsedimentary tectonics is the main factor controlling its geometry and provides an age for this tectonic phase. In an early phase, slopes were mostly composed of well bedded, clinostratified grainstones and rudstones. In a later stage, the deposition of grainstones was accompanied by the emplacement of clinostratified megabreccias. The upper portion of slopes is a microbial boundstone with abundant Tubiphytes and patches or lenses of grainstone. Boundstones may occasionally expand into the platform interior and downward to the base of the slope. The depositional profile was that of a mounded platform. The buildup is dissected by a dense framework of high angle fractures and faults, and by magmatic and sedimentary dikes, exhibiting two principal directions trending NNW-SSE and ENE-WSW. Faults trending WNW-ESE were also observed. Magmatic dikes are related to the emplacement of the nearby Predazzo intrusion and are thus upper Ladinian. Kinematic indicators of strike-slip activity were observed on fault planes trending NNE-SSW and NNW-SSE, that can be attributed to Cenozoic Alpine tectonics. Faults, magmatic dikes and sedimentary dikes show systematic cross-cutting relationships, with strike-slip faults cutting magmatic dikes, and magmatic dikes cutting sedimentary (neptunian) dikes. ENE-WSW and WNW-ESE faults are cut by all other structures, and record the oldest tectonic activity in the region. Structural analysis attributes this tectonic phase to an extensional stress field, with a direction of maximum extension oriented ca. N-S. Several lines of evidence, including sealed faults and growth wedge geometries allow us

  12. Slip Potential of Faults in the Fort Worth Basin (United States)

    Hennings, P.; Osmond, J.; Lund Snee, J. E.; Zoback, M. D.


    Similar to other areas of the southcentral United States, the Fort Worth Basin of NE Texas has experienced an increase in the rate of seismicity which has been attributed to injection of waste water in deep saline aquifers. To assess the hazard of induced seismicity in the basin we have integrated new data on location and character of previously known and unknown faults, stress state, and pore pressure to produce an assessment of fault slip potential which can be used to investigate prior and ongoing earthquake sequences and for development of mitigation strategies. We have assembled data on faults in the basin from published sources, 2D and 3D seismic data, and interpretations provided from petroleum operators to yield a 3D fault model with 292 faults ranging in strike-length from 116 to 0.4 km. The faults have mostly normal geometries, all cut the disposal intervals, and most are presumed to cut into the underlying crystalline and metamorphic basement. Analysis of outcrops along the SW flank of the basin assist with geometric characterization of the fault systems. The interpretation of stress state comes from integration of wellbore image and sonic data, reservoir stimulation data, and earthquake focal mechanisms. The orientation of SHmax is generally uniform across the basin but stress style changes from being more strike-slip in the NE part of the basin to normal faulting in the SW part. Estimates of pore pressure come from a basin-scale hydrogeologic model as history-matched to injection test data. With these deterministic inputs and appropriate ranges of uncertainty we assess the conditional probability that faults in our 3D model might slip via Mohr-Coulomb reactivation in response to increases in injected-related pore pressure. A key component of the analysis is constraining the uncertainties associated with each of the principal parameters. Many of the faults in the model are interpreted to be critically-stressed within reasonable ranges of uncertainty.

  13. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system (United States)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei


    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  14. Active faults pattern and interplay in the Azerbaijan region (NW Iran) (United States)

    Faridi, M.; Burg, J.-P.; Nazari, H.; Talebian, M.; Ghorashi, M.


    Northwest Iran is dominated by two main sets of active strike slip faults that accommodate oblique convergence between the Arabian and Iranian Plates. The best known are the right-lateral North-Tabriz, Qoshadagh, Maragheh and Zagros (Main Recent) strike slip Faults. This work reports that these dominant NW-SE to E-W striking faults are conjugate to smaller, NNE-SSW striking, left-lateral faults with minor dip slip component. All of these active faults displace Precambrian rock units, which suggests that they root in the crystalline basement of the NW Iranian microcontinent. Coulomb stress variance during co-seismic rupture along one of these faults may cause reactivation of the other faults. The minor set of left-lateral fault is therefore important to introduce in seismic risk assessment.

  15. Three-dimensional dynamic rupture simulations across interacting faults: The Mw7.0, 2010, Haiti earthquake (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.


    The mechanisms controlling rupture propagation between fault segments during a large earthquake are key to the hazard posed by fault systems. Rupture initiation on a smaller fault sometimes transfers to a larger fault, resulting in a significant event (e.g., 2002 M7.9 Denali USA and 2010 M7.1 Darfield New Zealand earthquakes). In other cases rupture is constrained to the initial fault and does not transfer to nearby faults, resulting in events of more moderate magnitude. This was the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigate the rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a finite element model to simulate propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence, in particular, the ground displacement. The two slip patches inferred from finite fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure.

  16. Performance-Oriented Fault Tolerance in Computing Systems

    NARCIS (Netherlands)

    Borodin, D.


    In this dissertation we address the overhead reduction of fault tolerance (FT) techniques. Due to technology trends such as decreasing feature sizes and lowering voltage levels, FT is becoming increasingly important in modern computing systems. FT techniques are based on some form of redundancy. It

  17. Paleoseismological investigations on a slow-moving active fault in central Anatolia, Tecer Fault, Sivas

    Directory of Open Access Journals (Sweden)

    Husnu Serdar Akyuz


    Full Text Available Tecer Fault is a N60˚-70˚E-trending, left-lateral, strike-slip fault to the south of the town of Sivas, Turkey. This fault is considered as the eastward continuation of Deliler Fault, which was classified as a probably active, left-lateral fault on the Active Fault Map of Turkey. We investigated the field characteristics and paleoseismic history of Tecer Fault in detail. After analyzing aerial photographs and satellite images, we mapped the exact fault trace on a 1/25,000 scale topographic map, between the towns of Deliilyas in southwest and Bogazdere in northeast. Tecer Fault is characterized by morphological features such as offset streams and gullies, linear depressions and scarps, and elongated hills. Four paleoseismological trenches were excavated on the northeastern extent of the fault. Two past earthquakes were identified in these trenches, and the dates of the collected charcoal samples suggested that the first of these earthquakes occurred about 8000 B.C. while the more recent event took place around 3500 B.C. Field observations and paleoseismic data indicate that Tecer Fault is an active, pure sinistral, strike-slip fault, and that there is about a 4500 years time span between the two earthquakes. It is also clear that there has not been any surface-ruptured faulting over the last 800 years. Compared with the earthquake characteristics of other strike-slip fault zones in Turkey in terms of time-slip relations, the slip rate can be estimated as about 1 mm/yr on Tecer Fault.

  18. Slicken 1.0: Program for calculating the orientation of shear on reactivated faults (United States)

    Xu, Hong; Xu, Shunshan; Nieto-Samaniego, Ángel F.; Alaniz-Álvarez, Susana A.


    The slip vector on a fault is an important parameter in the study of the movement history of a fault and its faulting mechanism. Although there exist many graphical programs to represent the shear stress (or slickenline) orientations on faults, programs to quantitatively calculate the orientation of fault slip based on a given stress field are scarce. In consequence, we develop Slicken 1.0, a software to rapidly calculate the orientation of maximum shear stress on any fault plane. For this direct method of calculating the resolved shear stress on a planar surface, the input data are the unit vector normal to the involved plane, the unit vectors of the three principal stress axes, and the stress ratio. The advantage of this program is that the vertical or horizontal principal stresses are not necessarily required. Due to its nimble design using Java SE 8.0, it runs on most operating systems with the corresponding Java VM. The software program will be practical for geoscience students, geologists and engineers and will help resolve a deficiency in field geology, and structural and engineering geology.

  19. Superimposed basin formation during Neogene-Quaternary extensional tectonics in SW-Anatolia (Turkey): Insights from the kinematics of the Dinar Fault Zone (United States)

    Alçiçek, M. Cihat; Brogi, Andrea; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco


    In the extensional province of SW-Anatolia, the cross-cutting relationship between the NW- and NE-oriented Neogene and Quaternary basins is an ongoing debate in the understanding of the tectonic evolution of this area. In order to contribute to this issue, we carried out a structural and kinematic study along the seismogenic NW-trending Dinar Fault Zone (DFZ). This structure was initially controlled by the sedimentary and tectonic evolution of the NE-oriented Neogene Baklan, Acıgöl and Burdur basins and, later, by the NW-oriented Quaternary Dinar Basin. On the basis of > 1000 structural and kinematic data, in conjunction with basin stratigraphy, the DFZ can be divided into three almost parallel and continuous bands, that are: (a) the Hangingwall where Quaternary sediments are deformed by normal faults with mechanical striations; (b) the Inner Zone, corresponding to the present Dinar fault scarp, where NW-trending normal faults with mechanical striations are dominant, and (c) the Outer Zone, located in the footwall of the structure comprising the area between the fault scarp and undeformed bedrock, where faults exhibit variable orientation and kinematics, from strike-slip to normal dip-slip. These kinematics are mainly indicated by calcite shear veins and superimposed mechanical striations, respectively. This suggests that the DFZ changed kinematics over time, i.e., the DFZ initiated as dominant dextral strike-slip to oblique-slip fault system and continued with a dominant normal movement. Therefore, we hypothesize that the NW-trending DFZ was initially a transfer zone during the late Miocene-Pliocene, coeval to the sedimentary and structural evolution of the NE-trending Baklan, Acigöl and Burdur basins. During the Quaternary the DFZ, representing an already weakened crustal sector, played the role of a normal fault system providing the accommodation space for the Quaternary Dinar Basin. Hydrothermal circulation and volcanism at NE-/NW-trending faults

  20. Constraints on the rheology of the lower crust in a strike-slip plate boundary: evidence from the San Quintín xenoliths, Baja California, Mexico (United States)

    van der Werf, Thomas; Chatzaras, Vasileios; Marcel Kriegsman, Leo; Kronenberg, Andreas; Tikoff, Basil; Drury, Martyn R.


    The rheology of lower crust and its transient behavior in active strike-slip plate boundaries remain poorly understood. To address this issue, we analyzed a suite of granulite and lherzolite xenoliths from the upper Pleistocene-Holocene San Quintín volcanic field of northern Baja California, Mexico. The San Quintín volcanic field is located 20 km east of the Baja California shear zone, which accommodates the relative movement between the Pacific plate and Baja California microplate. The development of a strong foliation in both the mafic granulites and lherzolites, suggests that a lithospheric-scale shear zone exists beneath the San Quintín volcanic field. Combining microstructural observations, geothermometry, and phase equilibria modeling, we estimated that crystal-plastic deformation took place at temperatures of 750-890 °C and pressures of 400-560 MPa, corresponding to 15-22 km depth. A hot crustal geotherm of 40 ° C km-1 is required to explain the estimated deformation conditions. Infrared spectroscopy shows that plagioclase in the mafic granulites is relatively dry. Microstructures are interpreted to show that deformation in both the uppermost lower crust and upper mantle was accommodated by a combination of dislocation creep and grain-size-sensitive creep. Recrystallized grain size paleopiezometry yields low differential stresses of 12-33 and 17 MPa for plagioclase and olivine, respectively. The lower range of stresses (12-17 MPa) in the mafic granulite and lherzolite xenoliths is interpreted to be associated with transient deformation under decreasing stress conditions, following an event of stress increase. Using flow laws for dry plagioclase, we estimated a low viscosity of 1.1-1.3×1020 Pa ṡ s for the high temperature conditions (890 °C) in the lower crust. Significantly lower viscosities in the range of 1016-1019 Pa ṡ s, were estimated using flow laws for wet plagioclase. The shallow upper mantle has a low viscosity of 5.7×1019 Pa ṡ s

  1. Magnetostratigraphy of the Xiaolongtan Formation bearing Lufengpithecus keiyuanensis in Yunnan, southwestern China : Constraint on the initiation time of the southern segment of the Xianshuihe–Xiaojiang fault

    NARCIS (Netherlands)

    Li, S.; Deng, Chenglong; Dong, Wei; Sun, Lu; Liu, S.; Qin, Huafeng; Yin, Jiyun; Ji, Xueping; Zhu, Rixiang


    The late Cenozoic extensional basins in Yunnan Province (southwestern China), which are kinematically linked with the regional strike-slip faults, can provide meaningful constraints on the fault activity history and tectonic evolution of the southeast margin of the Tibetan Plateau (SEMTP), and

  2. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore (United States)

    Melia, S.; Hall, R.


    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  3. Slip distribution of the 2015 Lefkada earthquake and its implications for fault segmentation (United States)

    Bie, Lidong; González, Pablo J.; Rietbrock, Andreas


    It is widely accepted that fault segmentation limits earthquake rupture propagations and therefore earthquake size. While along-strike segmentation of continental strike-slip faults is well observed, direct evidence for segmentation of off-shore strike-slip faults is rare. A comparison of rupture behaviours in multiple earthquakes might help reveal the characteristics of fault segmentation. In this work, we study the 2015 Lefkada earthquake, which ruptured a major active strike slip fault offshore Lefkada Island, Greece. We report ground deformation mainly on the Lefkada Island measured by interferometric synthetic radar (InSAR), and infer a coseismic distributed slip model. To investigate how the fault location affects the inferred displacement based on our InSAR observations, we conduct a suite of inversions by taking various fault location from different studies as a prior. The result of these test inversions suggests that the Lefkada fault trace is located just offshore Lefkada Island. Our preferred model shows that the 2015 earthquake main slip patches are confined to shallow depth (Lefkada fault, we suggest that the 2015 earthquake closed the seismic gap, at least partially, left by the 2003 earthquake by rupturing the shallow part of the Lefkada fault. The spatial variation in slip distributions for the two earthquakes reveals segmentation along strike, and possibly downdip of the Lefkada fault. A comparison of aftershock locations and coseismic slip distribution shows that most aftershocks appear near the edge of main coseismic slip patches.

  4. Simulation of Co-Seismic Off-Fault Stress Effects: Influence of Fault Roughness and Pore Pressure Coupling (United States)

    Fälth, B.; Lund, B.; Hökmark, H.


    Aiming at improved safety assessment of geological nuclear waste repositories, we use dynamic 3D earthquake simulations to estimate the potential for co-seismic off-fault distributed fracture slip. Our model comprises a 12.5 x 8.5 km strike-slip fault embedded in a full space continuum where we apply a homogeneous initial stress field. In the reference case (Case 1) the fault is planar and oriented optimally for slip, given the assumed stress field. To examine the potential impact of fault roughness, we also study cases where the fault surface has undulations with self-similar fractal properties. In both the planar and the undulated cases the fault has homogeneous frictional properties. In a set of ten rough fault models (Case 2), the fault friction is equal to that of Case 1, meaning that these models generate lower seismic moments than Case 1. In another set of ten rough fault models (Case 3), the fault dynamic friction is adjusted such that seismic moments on par with that of Case 1 are generated. For the propagation of the earthquake rupture we adopt the linear slip-weakening law and obtain Mw 6.4 in Case 1 and Case 3, and Mw 6.3 in Case 2 (35 % lower moment than Case 1). During rupture we monitor the off-fault stress evolution along the fault plane at 250 m distance and calculate the corresponding evolution of the Coulomb Failure Stress (CFS) on optimally oriented hypothetical fracture planes. For the stress-pore pressure coupling, we assume Skempton's coefficient B = 0.5 as a base case value, but also examine the sensitivity to variations of B. We observe the following: (I) The CFS values, and thus the potential for fracture slip, tend to increase with the distance from the hypocenter. This is in accordance with results by other authors. (II) The highest CFS values are generated by quasi-static stress concentrations around fault edges and around large scale fault bends, where we obtain values of the order of 10 MPa. (III) Locally, fault roughness may have a

  5. The use of an object oriented technique for fault diagnosis in nuclear reactors

    International Nuclear Information System (INIS)

    Jalel, N.A.; Nicholson, H.


    In recent years there has been an increased growth of interest in object oriented programming which is a new approach to software construction having wide application. The possibility of using object oriented programming to build a software package that will assist the nuclear reactor operator in diagnosing any faults or alarms in the Loss Of Fluid Test (LOFT), a small scale pressurised water reactor, reactor is investigated in this work. (author)

  6. Analysis of the Impact of Fault Mechanism Radiation Patterns on Macroseismic Fields in the Epicentral Area of 1998 and 2004 Krn Mountains Earthquakes (NW Slovenia) (United States)


    Two moderate magnitude (Mw = 5.6 and 5.2) earthquakes in Krn Mountains occurred in 1998 and 2004 which had maximum intensity VII-VIII and VI-VII EMS-98, respectively. Comparison of both macroseismic fields showed unexpected differences in the epicentral area which cannot be explained by site effects. Considerably, different distribution of the highest intensities can be noticed with respect to the strike of the seismogenic fault and in some localities even higher intensities have been estimated for the smaller earthquake. Although hypocentres of both earthquakes were only 2 km apart and were located on the same seismogenic Ravne fault, their focal mechanisms showed a slight difference: almost pure dextral strike-slip for the first event and a strike-slip with small reverse component on a steep fault plane for the second one. Seismotectonically the difference is explained as an active growth of the Ravne fault at its NW end. The radiation patterns of both events were studied to explain their possible impact on the observed variations in macroseismic fields and damage distribution. Radiation amplitude lobes were computed for three orthogonal directions: radial P, SV, and SH. The highest intensities of both earthquakes were systematically observed in directions of four (1998) or two (2004) large amplitude lobes in SH component (which corresponds mainly to Love waves), which have significantly different orientation for both events. On the other hand, radial P direction, which is almost purely symmetrical for the strike-slip mechanism of 1998 event, showed for the 2004 event that its small reverse component of movement has resulted in a very pronounced amplitude lobe in SW direction where two settlements are located which expressed higher intensities in the case of the 2004 event with respect to the 1998 one. Although both macroseismic fields are very complex due to influences of multiple earthquakes, retrofitting activity after 1998, site effects, and sparse

  7. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California (United States)

    Cochran, W. J.; Spotila, J. A.


    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire

  8. Complex fragmentation and silicification structures in fault zones: quartz mineralization and repeated fragmentation along the Fountain Range Fault (Mt. Isa Inlier, Australia) (United States)

    Seybold, Lina; Blenkinsop, Tom; Heuss, Soraya; Ord, Alison; Kruhl, Jörn H.


    In large-scale fault zones fracture networks are commonly generated by high volumes of pressurized fluids, followed by quartz precipitation. In this way large amounts of quartz are formed as microcrystalline masses and as complex vein systems, with partly highly different textures, as a result of different formation processes. Based on field and microstructural data and the quantification of vein patterns, the spatial and temporal connection between fragmentation, quartz crystallization and fluid and material flow along the Fountain Range Fault at Fountain Springs was investigated. Dextral strike-slip led to up to 25 km horizontal displacement along the fault. Due to various fragmentation and quartz formation processes, a ca. 100 m high, 80 - 100 m wide and km-long quartz ridge with numerous vein systems and variable microfabrics was formed. Locally, lenses of highly altered metamorphic wall-rocks occur in the quartz zone. Where exposed, the contact to wall rocks is sharp. Millimetre- to decimetre-thick quartz veins penetrate the wall-rocks only within metre distance from the contact. Several clearly distinguishable fine-grained reddish, brownish to dark and pigment-rich quartz masses form up to 50 m wide and up to several 100 m long steep lenses that build the major part of the silicified fault zone. A chronology can be established. Some of these lenses are oriented slightly oblique to the general trend of the quartz zone, in agreement with the supposed dextral strike slip along the fault. Numerous generations of typically µm-cm thick quartz veins transect the microcrystalline quartz masses and, locally, form anisotropic networks. In the quartz masses, angular fragments often composed of quartz with, again, internal fragmentation structures, indicate earlier fracturing and silicification events. Within the veins, quartz forms geodes, locally filled with fine-grained reddish quartz and palisade structures with feathery textures and fluid-inclusion zoning

  9. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany

    Directory of Open Access Journals (Sweden)

    Ulrich Schreiber


    Full Text Available In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

  10. Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan (United States)

    Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.


    The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface

  11. Fault plane orientations of deep earthquakes in the Izu-Bonin-Marianas subduction zone system (United States)

    Myhill, R.; Warren, L. M.


    We present the results of directivity analysis on 45 deep earthquakes within the Izu-Bonin-Marianas subduction zone between 1993 and 2011. The age of the subducting Pacific plate increases from north to south along the trench, from 120 Ma offshore Tokyo to over 150 Ma east of the Mariana Islands. The dip of the deep slab generally increases from north to south, and is steep to overturned beneath the southern Bonin Islands and Marianas. Between 34 and 26 degrees north, a peak in seismicity at 350-450 km depth marks a decrease in dip as the slab approaches the base of the upper mantle. We observe directivity for around 60 percent of the analysed earthquakes, and use the propagation characteristics to find the best fitting rupture vector. In 60-70 percent of cases with well constrained rupture directivity, the best fitting rupture vector allows discrimination of the fault plane and the auxiliary plane of the focal mechanism. The identified fault planes between 100 km and 500 km are predominantly near-horizontal or south-southwest dipping. Rotated into the plane of the slab, the fault plane poles form a single cluster, since the more steeply dipping fault planes are found within more steeply dipping sections of slab. The dominance of near-horizontal fault planes at intermediate depth agrees with results from previous studies of the Tonga and Middle-America subduction zones. However, the presence of a single preferred fault plane orientation for large deep-focus earthquakes has not been previously reported, and contrasts with the situation for deep-focus earthquakes in the Tonga-Kermadec subduction system. Ruptures tend to propagate away from the top surface of the slab. We discuss potential causes of preferred fault plane orientations within subducting slabs in the light of existing available data, and the implications for mechanisms of faulting at great depths within the Earth.

  12. New field and geophysical data about transpressional deformation: An improved model for the structural style of Sha Gou fault area in southern Ningxia, northeastern edge of Tibetan Plateau, China (United States)

    Xia, Lu; Liu, Zhen; Zhao, Haihua; Wang, Jun; Xiang, Peng; Liu, Jingjing; Cui, Hongzhuang; Ji, Jianqing


    Situated near the northeastern edge of the Tibetan Plateau, the Sha Gou fault area (SGFA) represents an important area to understand Cenozoic regional interactions between northeastern (NE) Tibetan Plateau and southwestern (SW) Liupan Shan Basin. Within this region, several km-scale arcuate fault systems such as the Lijun fault and the Madong Shan piedmont fault accommodate the transpressive deformation, but their structural style is still controversial. Predecessors regarded these bow-like faults as southwest-dipping thrust systems with large-scale nappes, however, this opinion is not compatible with the new field and geophysical data. In this study, we aim to ascertain the structural pattern of this area based on the analyses of field observation data, interpretation of seismic reflection profiles and two-dimensional gravity forward modeling. According to the present fieldwork, the structural cleavages, low-angle slickenlines, sub-vertical fault surfaces, "ribbon effect" as well as the linear geomorphic features in plane view indicate that these faults belong to a strike-slip system. Newly acquired seismic profiles, characterized by distinct positive flower structures, strongly suggest that this area is again a strike-slip fault system rather than a thrusting system. Furthermore, gravity forward modeling results show that the reverse strike-slip model without large-scale thrust nappes is closer to the present structural style of this area. The gravity forward modeling is an effective method to identify km-scale thrust nappes, which could be used for reference by the structural style analysis in other similar regions. Based on these evidences, a new transpressional shear model for the structural pattern is proposed. The overall structural style of the SGFA is not characterized by large-scale thrust nappes, but is dominated by a transpressional shear system with significant strike-slip faulting. Such a new model can be an additional evidence for the tectonic escape

  13. Transfer fault earthquake in compressionally reactivated back-arc failed rift: 1948 Fukui earthquake (M7.1), Japan (United States)

    Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin


    Back-arc rift structures in many subduction zones are recognized as mechanically and thermally weak zones that possibly play important roles in strain accommodation at later post-rift stages within the overriding plates. In case of Miocene back-arc failed rift structures in the Sea of Japan in the Eurasian-Pacific subduction system, the mechanical contrasts between the crustal thrust wedges of the pre-rift continental crust and high velocity lower crust have fundamentally controlled the styles of post-rift, Quaternary active deformation (Ishiyama et al. 2016). In this study, we show a possibility that strike-slip M>7 devastating earthquakes in this region have been gregion enerated by reactivation of transfer faults highly oblique to the rift axes. The 1948 Fukui earthquake (M7.1), onshore shallow seismic event with a strike-slip faulting mechanism (Kanamori, 1973), resulted in more than 3,500 causalities and destructive damages on the infrastructures. While geophysical analyses on geodetic measurements based on leveling and triangulation networks clearly show coseismic left-lateral fault slip on a NNW striking vertical fault plane beneath the Fukui plain (Sagiya, 1999), no evidence for coseismic surface rupture has been identified based on both post-earthquake intensive fieldwork and recent reexamination of stereopair interpretations using 1/3,000 aerial photographs taken in 1948 (Togo et al., 2000). To find recognizable fault-related structures that deform Neogene basin fill sediments, we collected new 9.6-km-long high-resolution seismic reflection data across the geodetically estimated fault plane and adjacent subparallel active strike slip faults, using 925 offline recorders and Envirovib truck as a seismic source. A depth-converted section to 1.5 km depth contains discontinuous seismic reflectors correlated to Miocene volcaniclastic deposits and depression of the overlying Plio-Pleistocene sediments above the geodetically determined fault plane. We interpreted

  14. Reliability database development for use with an object-oriented fault tree evaluation program (United States)

    Heger, A. Sharif; Harringtton, Robert J.; Koen, Billy V.; Patterson-Hine, F. Ann


    A description is given of the development of a fault-tree analysis method using object-oriented programming. In addition, the authors discuss the programs that have been developed or are under development to connect a fault-tree analysis routine to a reliability database. To assess the performance of the routines, a relational database simulating one of the nuclear power industry databases has been constructed. For a realistic assessment of the results of this project, the use of one of existing nuclear power reliability databases is planned.

  15. Influence of fault asymmetric dislocation on the gravity changes

    Directory of Open Access Journals (Sweden)

    Duan Hurong


    Full Text Available A fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement. Large faults within the Earth’s crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, energy release associated with rapid movement on active faults is the cause of most earthquakes. The relationship between unevenness dislocation and gravity changes was studied on the theoretical thought of differential fault. Simulated observation values were adopted to deduce the gravity changes with the model of asymmetric fault and the model of Okada, respectively. The characteristic of unevennes fault momentum distribution is from two end points to middle by 0 according to a certain continuous functional increase. However, the fault momentum distribution in the fault length range is a constant when the Okada model is adopted. Numerical simulation experiments for the activities of the strike-slip fault, dip-slip fault and extension fault were carried out, respectively, to find that both the gravity contours and the gravity variation values are consistent when either of the two models is adopted. The apparent difference lies in that the values at the end points are 17. 97% for the strike-slip fault, 25. 58% for the dip-slip fault, and 24. 73% for the extension fault.

  16. Stress evolution and fault stability during the Weichselian glacial cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Bjoern; Schmidt, Peter; Hieronymus, Christoph (Dept. of Earth Sciences, Uppsala Univ., Uppsala (Sweden))


    glaciation while in a reverse faulting background stress field our models show unstable conditions at the end of the glaciation, in general agreement with the observations. The assumed background stress field, with the direction of maximum horizontal stress in the direction of local plate motion, predicts a fault orientation in general agreement with the overall strike of the Paervie fault. Our simulations of fault stability show a very strong dependence of fault stability on the glacially induced excess pore pressure. Increasing the pressure head to 90% of the local ice weight will cause wide-spread instability during ice covered conditions in a strike-slip background field, while in a reverse field instability is promoted earlier in the glacial cycle. Our approach to estimating the induced pore pressure in this study has been one of very simple static conditions and high permeability, implying an immediate propagation of pressures at the base of the ice sheet to the studied depth.

  17. Stress evolution and fault stability during the Weichselian glacial cycle

    International Nuclear Information System (INIS)

    Lund, Bjoern; Schmidt, Peter; Hieronymus, Christoph


    through the glaciation while in a reverse faulting background stress field our models show unstable conditions at the end of the glaciation, in general agreement with the observations. The assumed background stress field, with the direction of maximum horizontal stress in the direction of local plate motion, also predicts a fault orientation in general agreement with the overall strike of the Paervie fault. Our simulations of fault stability show a very strong dependence of fault stability on the glacially induced excess pore pressure. Increasing the pressure head to 90% of the local ice weight will cause wide-spread instability during ice covered conditions in a strike-slip background field, while in a reverse field instability is promoted earlier in the glacial cycle. Our approach to estimating the induced pore pressure in this study has been one of very simple static conditions and high permeability, implying an immediate propagation of pressures at the base of the ice sheet to the studied depth. Pore pressure diffusion modelling or poroelastic simulations are probably necessary to correctly estimate induced stresses and pore pressures. All of the above simulations were performed with the same ice history. The results for the overall pattern of the induced stresses, stress magnitudes and their duration through time, may be very different for a different ice history. However, since Forsmark and Oskarshamn are both located within the ice sheet margin, stress magnitudes are mostly determined by the thickness and duration of the ice sheet

  18. Morphometric analysis of El Salvador Fault Zone. Implications to the tectonic evolution. Central America. (United States)

    Alonso-Henar, Jorge; Jesús Martínez-Díaz, José; Álvarez-Gómez, José Antonio


    It is considered that the study of the recent topography development, and the use of geomorphological indexes are good tools for the quantification of the active tectonics. We have used quantitative geomorphology in order to improve our understanding of the recent activity and tectonic evolution of the El Salvador Fault Zone (ESFZ); an E-W oriented strike-slip fault zone that extends 150 km through El Salvador (Martínez-Díaz et al. 2004). Previous studies propose a transtensive tectonic regime at the Central America Volcanic Arc in El Salvador, which induces relative vertical motions on the faults within El Salvador Fault Zone (i.e. Álvarez-Gómez et al., 2008, Cáceres et al. 2005,). This relative vertical displacement can be quantified with the use of hypsometry as a geomorphological character. The morphometric analysis done contributes to a better understanding of the ESFZ. We have defined km scale tectonic block relative displacements that may be useful to constrain the strain distribution along the ESFZ, length of segments with homogeneous vertical movements and lateral relay of active structures. This study supports the hypothesis of a recent migration in the maximum shortening direction, and the accomodation of the current deformation through the reactivation of pre-existing structures inherited from a previous tectonic frame. A similar tectonic evolution as described Weinberg (1992) in Nicaragua, is interpreted from the results of this study.

  19. The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone. (United States)

    Singh, Satish C; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E; Carton, Helene; Wei, Shengji; Nugroho, Adam B; Gemilang, Wishnu A; Sieh, Kerry; Barbot, Sylvain


    The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude ( M w ) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin.

  20. Basement Fault Reactivation by Fluid Injection into Sedimentary Reservoirs (United States)

    Peter, Eichhubl; Fan, Zhiqiang; Zhu, Cheng


    Many suspected injection-induced earthquakes occur in crystalline basement rather than in the overlying sedimentary injection reservoir. To address why earthquakes nucleate in the basement rather than the injection layer we investigate the relationship between pore pressure diffusion, rock matrix deformation, and induced fault reactivation through 3D fully coupled poroelastic finite element models. These models simulate the temporal and spatial perturbation of pore pressure and solid stresses within a basement fault that extends into overlying sedimentary layers and that is conductive for flow along the fault but a barrier for flow across. We compare the effects of direct pore pressure communication and indirect poroelastic stress transfer from the injection reservoir to the fault on increasing the Coulomb failure stress that could reactivate the basement fault for normal, reverse, and strike-slip faulting stress regimes. Our numerical results demonstrate that volumetric expansion of the reservoir causes a bending of the fault near the injector and induces shear tractions along the downdip direction of the fault in the basement. These induced shear tractions act to increase the Coulomb failure stress for a normal faulting stress regime, and decrease the Coulomb failure stress for a reverse faulting regime. For a strike-slip faulting stress regime, the induced shear tractions increase the Coulomb failure stress both in the reservoir and basement. The induced normal traction on the fault reduces the Coulomb failure stress in all three tectonic regimes, but is larger in the reservoir than in the basement due to the more pronounced poroelastic effect in the reservoir. As a result, strike-slip stress regimes favor fault reactivation in the basement. Whereas the magnitude of the direct pore pressure increase exceeds the magnitude of induced poroelastic stress change, the poroelastic stress change increases the Coulomb failure stress in the basement fault for the normal

  1. Overview of the Mechanics of the Active Mai'iu Low Angle Normal Fault (Dayman Dome), Southeastern Papua New Guinea (United States)

    Little, T. A.; Boulton, C. J.; Webber, S. M.; Mizera, M.; Oesterle, J.; Ellis, S. M.; Norton, K. P.; Wallace, L.; Biemiller, J.; Seward, D.; Boles, A.


    The Mai'iu Fault is a corrugated low-angle normal fault (LANF) that has slipped >24 km. It emerges near sea level at 21° N dip, and flattens southward over the dome crest at 3000 m. This reactivated Paleogene suture is slipping at up to 1 cm/year based on previous GPS data and preliminary 10Be cosmogenic nuclide exposure scarp dating. An alignment of microseismicity (Eilon et al. 2015) suggests a dip of 30° N at 15-25 km depth. Pseudotachylites are abundant in lower, mylonitic parts of the footwall. One vein yielded 40Ar/39Ar ages of 1.9-2.2 Ma, implying seismicity at 8-10 km depth at the above slip rate. Widespread, antithetic normal faults in the footwall are attributed to rolling-hinge controlled yielding during exhumation. A single rider block is downfolded into synformal megamullion. Unconformities within this block, and ductile folding and conjugate strike-slip faulting of mylonitic footwall fabrics record prolonged EW shortening and constriction. Many normal and strike-slip faults cut the metabasaltic footwall recording Andersonian stresses and flipping between σ1 and σ2. To exhume the steep faults, the LANF must have remained active despite differential stress being locally high enough to initiate well-oriented faults—relationships that bracket the frictional strength of the LANF. Quantitative XRD on mafic and serpentinitic gouges reveal the Mai'iu fault core is enriched in weak clays corrensite and saponite. Hydrothermal friction experiments were done at effective normal stresses of 30-210 MPa, and temperatures of 50-450oC. At shallow depths (T≤200 oC), clay-rich fault gouges are frictionally weak (μ=0.13-0.15 and 0.20-0.28) and velocity-strengthening. At intermediate depths (T>200 oC), the footwall is frictionally strong (μ=0.71-0.78 and 0.50-0.64) and velocity-weakening. Velocity-strengthening is observed at T≥400 oC. The experiments provide evidence for deep unstable slip, consistent with footwall pseudotachylites and microseismicity at

  2. GPR measurements to assess the Emeelt active fault's characteristics in a highly smooth topographic context, Mongolia (United States)

    Dujardin, Jean-Rémi; Bano, Maksim; Schlupp, Antoine; Ferry, Matthieu; Munkhuu, Ulziibat; Tsend-Ayush, Nyambayar; Enkhee, Bayarsaikhan


    To estimate the seismic hazard, the geometry (dip, length and orientation) and the dynamics (type of displacements and amplitude) of the faults in the area of interest need to be understood. In this paper, in addition to geomorphologic observations, we present the results of two ground penetrating radar (GPR) campaigns conducted in 2010 and 2011 along the Emeelt fault in the vicinity of Ulaanbaatar, capital of Mongolia, located in an intracontinental region with low deformation rate that induces long recurrence time between large earthquakes. As the geomorphology induced by the fault activity has been highly smoothed by erosion processes since the last event, the fault location and geometry is difficult to determine precisely. However, by using GPR first, a non-destructive and fast investigation, the fault and the sedimentary deposits near the surface can be characterized and the results can be used for the choice of trench location. GPR was performed with a 50 MHz antenna over 2-D lines and with a 500 MHz antenna for pseudo-3-D surveys. The 500 MHz GPR profiles show a good consistency with the trench observations, dug next to the pseudo-3-D surveys. The 3-D 500 MHz GPR imaging of a palaeochannel crossed by the fault allowed us to estimate its lateral displacement to be about 2 m. This is consistent with a right lateral strike-slip displacement induced by an earthquake around magnitude 7 or several around magnitude 6. The 2-D 50 MHz profiles, recorded perpendicular to the fault, show a strong reflection dipping to the NE, which corresponds to the fault plane. Those profiles provided complementary information on the fault such as its location at shallow depth, its dip angle (from 23° to 35°) and define its lateral extension.

  3. The 2012 Mw 8.6 Wharton Basin sequence: A cascade of great earthquakes generated by near-orthogonal, young, oceanic mantle faults (United States)

    Hill, Emma M.; Yue, Han; Barbot, Sylvain; Lay, Thorne; Tapponnier, Paul; Hermawan, Iwan; Hubbard, Judith; Banerjee, Paramesh; Feng, Lujia; Natawidjaja, Danny; Sieh, Kerry


    We improve constraints on the slip distribution and geometry of faults involved in the complex, multisegment, Mw 8.6 April 2012 Wharton Basin earthquake sequence by joint inversion of high-rate GPS data from the Sumatran GPS Array (SuGAr), teleseismic observations, source time functions from broadband surface waves, and far-field static GPS displacements. This sequence occurred under the Indian Ocean, ˜400 km offshore Sumatra. The events are extraordinary for their unprecedented rupture of multiple cross faults, deep slip, large strike-slip magnitude, and potential role in the formation of a discrete plate boundary between the Indian and Australian plates. The SuGAr recorded static displacements of up to ˜22 cm, along with time-varying arrivals from the complex faulting, which indicate that the majority of moment release was on young, WNW trending, right-lateral faults, counter to initial expectations that an old, lithospheric, NNE trending fracture zone played the primary role. The new faults are optimally oriented to accommodate the present-day stress field. Not only was the greatest moment released on the younger faults, but it was these that sustained very deep slip and high stress drop (>20 MPa). The rupture may have extended to depths of up to 60 km, suggesting that the oceanic lithosphere in the northern Wharton Basin may be cold and strong enough to sustain brittle failure at such depths. Alternatively, the rupture may have occurred with an alternative weakening mechanism, such as thermal runaway.

  4. Earthquake fault superhighways (United States)

    Robinson, D. P.; Das, S.; Searle, M. P.


    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  5. Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist

    International Nuclear Information System (INIS)

    Wenk, Hans-Rudolf; Kanitpanyacharoen, Waruntorn; Voltolini, Marco


    Samples of fault gouge from the San Andreas Fault drill hole (SAFOD), a shale from the North Sea sedimentary basin and schists from metamorphic rocks in the Alps have been analyzed with high energy synchrotron X-rays to determine preferred orientation of mica and clay minerals. The method relies on obtaining 2D diffraction images which are then processed with the crystallographic Rietveld method, implemented in the software MAUD, allowing for deconvolution of phases and extraction of their orientation distributions. It is possible to distinguish between detrital illite/muscovite and authigenic illite/smectite, kaolinite and chlorite, and muscovite and biotite, with strongly overlapping peaks in the diffraction pattern. The results demonstrate that phyllosilicates show large texture variations in various environments, where different mechanisms produce the rock microfabrics: fault gouge fabrics are quite weak and asymmetric with maxima for (001) in the range of 1.5-2.5 multiples of random distribution (m.r.d.). This is attributed to heterogeneous deformation with randomization, as well as dissolution-precipitation reactions. Shale fabrics have maxima ranging from 3 to 9 m.r.d. and this is due to sedimentation and compaction. The strongest fabrics were observed in metamorphic schists (10-14 m.r.d.) and developed by deformation as well as recrystallization in a stress field. In the analyzed samples, fabrics of co-existing quartz are weak. All phyllosilicate textures can be explained by orientation of (001) platelets, with no additional constraints on a-axes.

  6. The Effects of Pre-stress Assumptions on Dynamic Rupture with Complex Fault Geometry in the San Gorgonio Pass, CA Region (United States)

    Kyriakopoulos, C.; Tarnowski, J. M.; Oglesby, D. D.


    We use 3D dynamic finite element models to investigate potential rupture paths of earthquakes propagating along faults in the western San Gorgonio Pass (SGP) region. The SGP is a structurally complex region along the San Andreas fault system (SAF) in southern California. We focus on the San Bernardino strand of the SAF, the San Gorgonio Pass Fault Zone, and a portion of the Garnet Hill strand of the SAF. The San Bernardino and Garnet Hill strands are predominately right-lateral strike-slip faults. Thrust faults dominate the San Gorgonio Pass Fault Zone, with small right-lateral tear faults between the thrust faults. We use the finite element code FaultMod (Barall, 2009) to observe differences in rupture propagation along a meshed fault geometry that reflects most of the surface trace complexity. We test three different types of pre-stress assumptions: 1) constant tractions, 2) regional stress regimes, and 3) long-term stressing rates from quasi-static crustal deformation modeling. Models with constant tractions assume pure right-lateral strike-slip motion on the San Bernardino and Garnet Hill strands and oblique thrust/right-lateral strike-slip motion on the San Gorgonio Pass Fault Zone. Preliminary results from models with constant tractions suggest that the complexity of the fault geometry may inhibit rupture propagation, depending on nucleation location.

  7. Characteristics of the active Luoshan Fault since Late Pleistocene, North Central China

    Directory of Open Access Journals (Sweden)

    M. Fengying


    Full Text Available The Luoshan Fault located at the northeastern margin of Tibet plateau strikes roughly N-S, and is composed of six left-stepping sections with a total length of 60 km. Much evidence suggests that the Luoshan Fault is a reverse right-lateral strike-slip fault. The largest right-lateral strike-slip displacement and the most abundant dextral offset phenomena are located along the central section. Based on the right-lateral strike-slip offsets of the oldest alluvial fan, and of a gully and on the average displacement of the same order of gullies, the minimum slip-rate has been 2.15 ± 0.2 mm/yr since Late Pleistocene. Many surface rupture phenomena, such as fault scarps with fresh free-face, ground fissures, displacements of very young gullies, imply that a recent earthquake occurred along this fault. Combining the historical catalogue and our results, we believe that the 1561 A.D. earthquake was produced by the Luoshan Fault. Three paleoearthquakes were determined by means of paleoseismic studies along the Luoshan Fault: they occurred after 8200 ± 600 years BP, between 3130 ± 240 years BP and 4150 ± ± 120 years C.BP, and before 2230 ± 170 years BP, respectively.

  8. Constraints from Mesozoic siliciclastic cover rocks and satellite image analysis on the slip history of regional E-W faults in the southeast Western Desert, Egypt (United States)

    Tewksbury, Barbara J.; Mehrtens, Charlotte J.; Gohlke, Steven A.; Tarabees, Elhamy A.; Hogan, John P.


    In the southeast Western Desert of Egypt, a prominent set of E-W faults and co-located domes and basins involve sedimentary cover rock as young as the early Eocene. Although earlier Mesozoic slip on faults in southern Egypt has been widely mentioned in the literature and attributed to repeated reactivation of basement faults, evidence is indirect and based on the idea that regional stresses associated with tectonic events in the Syrian Arc would likely have reactivated basement faults in south Egypt in dextral strike slip during the Mesozoic as well as the Cenozoic. Here, we present direct evidence from the rock record for the sequence of development of features along these faults. Southwest of Aswan, a small structural dome in Mesozoic Nubia facies rocks occurs where the Seiyal Fault bends northward from west to east. The dome is cut by strands of the Seiyal Fault and a related set of cataclastic deformation bands showing dominantly right lateral strike slip, as well as by younger calcite veins with related patchy poikilotopic cement. High resolution satellite image analysis of the remote southwest Kharga Valley shows a similar sequence of events: older structural domes and basins located where E-W faults bend northward from west to east, right lateral offset of domes and basins along the E-W faults, and two sets of deformation band faults that lack co-located domes and basins. We suggest that field data, image analysis, and burial depth estimates are best explained by diachronous development of features along the E-W fault system. We propose that Late Mesozoic right lateral strike slip produced domes and basins in Nubia facies rocks in stepover regions above reactivated basement faults. We further suggest that the extensively linked segments of the E-W fault system in Nubia facies rocks, plus the deformation band systems, formed during the late Eocene when basement faults were again reactivated in dominantly right lateral strike slip.

  9. Role of seismogenic processes in fault-rock development: An example from Death Valley, California (United States)

    Pavlis, Terry L.; Serpa, Laura F.; Keener, Charles


    Fault rocks developed along the Mormon Point turtleback of southern Death Valley suggest that a jog in the oblique-slip Death Valley fault zone served as an ancient seismic barrier, where dominantly strike-slip ruptures were terminated at a dilatant jog. Dramatic spatial variations in fault-rock thickness and type within the bend are interpreted as the products of: (1) fault "overshoot," in which planar ruptures bypass the intersection of the two faults composing the bend and slice into the underlying footwall; and (2) implosion brecciation, in which coseismic ruptures arrested at a releasing bend in the fault lead to catastrophic collapse brecciation, fluid influx, and mineralization.

  10. Direct evaluation of fault trees using object-oriented programming techniques (United States)

    Patterson-Hine, F. A.; Koen, B. V.


    Object-oriented programming techniques are used in an algorithm for the direct evaluation of fault trees. The algorithm combines a simple bottom-up procedure for trees without repeated events with a top-down recursive procedure for trees with repeated events. The object-oriented approach results in a dynamic modularization of the tree at each step in the reduction process. The algorithm reduces the number of recursive calls required to solve trees with repeated events and calculates intermediate results as well as the solution of the top event. The intermediate results can be reused if part of the tree is modified. An example is presented in which the results of the algorithm implemented with conventional techniques are compared to those of the object-oriented approach.

  11. Fault plane solutions of the January 26th, 2001 Bhuj earthquake ...

    Indian Academy of Sciences (India)

    Fault-plane solutions of the best- located and selected cluster of events that occurred along the NE trend, at a depth of 15-38 km, show reverse faulting with a large left-lateral strike-slip motion, which are comparable with the main-shock solution. The NW trending upper crustal aftershocks at depth < 10 km, on the other hand ...

  12. 3D Constraints On Fault Architecture and Strain Distribution of the Newport-Inglewood Rose Canyon and San Onofre Trend Fault Systems (United States)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.


    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) Fault is a dextral strike-slip system that is primarily offshore for approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC Fault Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC Fault is the San Onofre Trend (SOT) along the continental slope. Previous work concluded that this is part of a strike-slip system that eventually merges with the NIRC Fault. Others have interpreted this system as deformation associated with the Oceanside Blind Thrust Fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D Parallel Cable (P-Cable) seismic surveys of the NIRC and SOT faults as part of the Southern California Regional Fault Mapping project. Analysis of stratigraphy and 3D mapping of this new data has yielded a new kinematic fault model of the area that provides new insight on deformation caused by interactions in both compressional and extensional regimes. For the first time, we can reconstruct fault interaction and investigate how strain is distributed through time along a typical strike-slip margin using 3D constraints on fault

  13. Fault type predictions from stress distributions on planetary surfaces - Importance of fault initiation depth (United States)

    Golombek, M. P.


    The prediction of fault type on planetary surfaces from model stresses calculated at depth is discussed. These fault-type predictions yield different faults than those predicted using the surface criteria commonly employed in geophysical models. For elastic-plate flexure models of mascon loading on the moon, stresses calculated at the surface predict the occurrence of strike-slip faulting at the radial distance where grabens are found. Normal faults bounding lunar grabens and thrust faults responsible for wrinkle ridges are analyzed. It is found that the former initiate at the mechanical discontinuity that separates the breccia of the megaregolith from in situ fractured rock and that the latter initiate at the mechanical discontinuity between basalt layers and the underlying basin floor. The difference between elastic constants for the outer few kilometers of brecciated megaregolith and the underlying lunar lithosphere are evaluated. Superposing nonisotropic stresses resulting from the weight of overburden to the depth of the relevant mechanical discontinuity yield stresses that predict wrinkle ridges in the basin centers and grabens outside the basin margin, and eliminate the predicted zone of strike-slip faults.

  14. Application of Anisotropy of Magnetic Susceptibility to large-scale fault kinematics: an evaluation (United States)

    Casas, Antonio M.; Roman-Berdiel, Teresa; Marcén, Marcos; Oliva-Urcia, Belen; Soto, Ruth; Garcia-Lasanta, Cristina; Calvin, Pablo; Pocovi, Andres; Gil-Imaz, Andres; Pueyo-Anchuela, Oscar; Izquierdo-Llavall, Esther; Vernet, Eva; Santolaria, Pablo; Osacar, Cinta; Santanach, Pere; Corrado, Sveva; Invernizzi, Chiara; Aldega, Luca; Caricchi, Chiara; Villalain, Juan Jose


    be observed within the same fault zone, depending on the proximity to the core zone. The transition between them is usually defined by oblate fabrics, with the long and intermediate axes contained within the main foliation plane in SC-like structures. The faults studied in this work are located in Northeast Iberia; most of them were formed during the Late-Variscan fracturing stage and constitute first-order structures controlling the Mesozoic and Cenozoic evolution of the Iberian plate. They include (i) large-scale (Cameros-Demanda) and plurikilometric (Monroyo, Rastraculos), thrusts resulting from basement thrusting and Mesozoic basin inversion, and (ii) strike-slip to transpressional structures in the Iberian Chain (Río Grío and Daroca faults, Aragonian Branch) and the Catalonian Range (Vallès fault). Application of AMS in combination with structural analysis has allowed us a deeper approach into the kinematics of these fault zones and namely to (i) accurately define the transport direction of Cenozoic thrusts (NNW to NE-SW for the studied E-W segments) and the flow directions of décollements and to evaluate the representativity of small-scale structures linked to thrusting; (ii) to assess the transpressional character of deformation for the main NW-SE and NE-SW Late-Variscan faults in NE Iberia during the Cenozoic (horizontal to intermediate-plunging transport directions) and (iii) to define the strain partitioning between different thrust sheets and strike-slip faults to finally establish the pattern of displacements in this intra-plate setting.

  15. Interseismic Strain Accumulation of the Gazikoy-Saros segment (Ganos fault) of the North Anatolian Fault Zone (United States)

    Havazli, E.; Wdowinski, S.; Amelung, F.


    The North Anatolian Fault Zone (NAFZ) is one of the most active continental transform faults in the world. A westward migrating earthquake sequence has started in 1939 in Erzincan and the last two events of this sequence occurred in 1999 in Izmit and Duzce manifesting the importance of NAFZ on the seismic hazard potential of the region. NAFZ exhibits slip rates ranging from 14-30 mm/yr along its 1500 km length with a right lateral strike slip characteristic. In the East of the Marmara Sea, the NAFZ splits into two branches. The Gazikoy-Saros segment (Ganos Fault) is the westernmost and onshore segment of the northern branch. The ENE-WSW oriented Ganos Fault is seismically active. It produced a Ms 7.2 earthquake in 1912, which was followed by several large aftershocks, including Ms 6.3 and Ms 6.9 events. Since 1912, the Ganos Fault did not produce any significant earthquakes (> M 5), in contrast to its adjacent segments, which produced 20 M>5 earthquakes, including a M 6.7 event, offshore in Gulf of Saros. Interseismic strain accumulation along the Ganos Fault was assessed from sparse GPS measurements along a single transect located perpendicular to the fault zone, suggesting strain accumulation rate of 20-25 mm/yr. Insofar, InSAR studies, based on C-band data, didn't produce conclusive results due to low coherence over the fault zone area, which is highly vegetated. In this study, we present a detailed interseismic velocity map of the Ganos Fault zone derived from L-band InSAR observations. We use 21 ALOS PALSAR scenes acquired over a 5-year period, from 2007 to 2011. We processed the ALOS data using the PySAR software, which is the University of Miami version of the Small Baseline (SB) method. The L-band observations enabled us to overcome the coherence issue in the study area. Our initial results indicate a maximum velocity of 15 mm/yr across the fault zone. The high spatial resolution of the InSAR-based interseismic velocity map will enable us to better to

  16. Ankara Orogenic Phase, Its Age and Transition From Thrusting-dominated Paleotectonic Period to the Strike-slip Neotectonic Period, Ankara (Turkey)




    The Ankara section of the İzmir-Ankara-Erzincan Suture Zone (IAESZ) is characterized by two major groups of contractional structures, namely the Ankara forced folds-monoclines and the southward-verging foreland fold-imbricate thrust to reverse fault zone (AFITFZ). In the Ankara region, one of the areas where the various phases of deformation and related structures are particularly well-preserved and exposed is the Edige (Elmadağ) area, 48 km east-southeast of the city of Ankara. The youngest ...

  17. A Natural Model of Active Transpressional Tectonics the en Échelon Structures of the Oriente Deep, Along the Northern Caribbean Transcurrent Plate Boundary (Southern Cuban Margin Un modèle naturel de tectonique transpressive active Les structures en échelon de la fosse de l'Oriente le long de la limite de plaques décrochante Nord-Caraïbe

    Directory of Open Access Journals (Sweden)

    Calais E.


    Full Text Available A seabearn and seismic reflection structural study of the Oriente Deep, located along the northern Caribbean transcurrent plate boundary, allows us to image in three dimensions active transpressional structures (cruise SEA-CARIB II, R/V Jean Charcot. These structures are folds and reverse faults. The folds display an en échelon arrangement and are set within three E-W trending alignments. The folds appear with an axis trending 30° to 40° to the shear direction. Their axes have undergone a rotation which gives them in plan a sigmoidal Zshape. The reverse faults formed after the folds and are located at the bases of the anticlines. The folding occurs outside the main strike-slip fault, above inactive burried faults affecting the basement of the Oriente Deep. The Oriente Deep is a exceptional natural model for the study of active transpressional deformation along a major strike-slip fault. La campagne océanographique SEACARIB II du N/O Jean Charcot a permis l'étude structurale du bassin de l'Oriente, situé le long de la limite de plaques décrochante nord caraïbe au sud de Cuba. Cette étude, par Seabeam et sismique réflexion, y a révélé des structures transpressives actives (plis et failles inverses et a permis de les illustrer en trois dimensions. Au sein de ce bassin, les plis sont disposés en échelon en trois alignements E-W. La direction de l'axe des plis naissant fait un angle de 30° à 40° avec la direction du décrochement principal. Les axes des plis subissent ensuite une rotation qui leur donne, en carte, une forme sigmoïdale en Z . Des failles inverses se forment après les plis à la base des anticlinaux. Le plissement est localisé en avant du décrochement principal, au-dessus de failles inactives enfouies affectant le substratum du bassin de l'Oriente. Le bassin de l'Oriente est un modèle naturel exceptionnel pour l'étude de déformations transpressives actives le long d'un décrochement actif majeur.

  18. Northward expansion of Tibet beyond the Altyn Tagh Fault (United States)

    Cunningham, D.; Zhang, J.; Yanfeng, L.; Vernon, R.


    For many tectonicists, the evolution of northern Tibet stops at the Altyn Tagh Fault (ATF). This study challenges that assumption. Structural field observations and remote sensing analysis indicate that the Sanweishan and Nanjieshan basement-cored ridges of the Archean Dunhuang Block, which interrupt the north Tibetan foreland directly north of the ATF, are bound and cut by an array of strike-slip, thrust and oblique-slip faults that have been active in the Quaternary and remain potentially active. The Sanweishan is essentially a SE-tilted block that is bound on its NW margin by a steep south-dipping thrust fault that has also accommodated sinistral strike-slip displacements. The Nanjieshan consists of parallel, but offset basement ridges that record NNW and SSE thrust displacements and sinistral strike-slip. Regional folds characterize the extreme eastern Nanjieshan perhaps above blind thrust faults which are emergent further west. At the surface, local fault reactivation of basement fabrics is an important control on the kinematics of deformation. Previously published magnetotelluric data for the region suggest that the major faults of the Sanweishan and Nanjieshan ultimately root to the south within conductive zones that merge into the ATF. Therefore, although the southern margin of the Dunhuang Block focuses significant deformation along the ATF, the adjacent cratonic basement to the north is also affected. Collectively, the ATF and structurally linked Sanweishan and Nanjieshan fault array represent a regional asymmetric half-flower structure that is dominated by non-strain partitioned sinistral transpression. The NW-trending Dengdengshan thrust fault array near Yumen City appears to define the northeastern limit of the Sanweishan-Nanjieshan block, which may be viewed regionally as the most northern, but early-stage expression of Tibetan Plateau growth into a reluctantly deforming, mechanically stiff Archean craton.

  19. Online Open Circuit Fault Diagnosis for Rail Transit Traction Converter Based on Object-Oriented Colored Petri Net Topology Reasoning


    Lei Wang; Chunmei Xu; Lijun Diao; Jie Chen; Ruichang Qiu; Peizhen Wang


    For online open circuit fault diagnosis of the traction converter in rail transit vehicles, conventional approaches depend heavily on component parameters and circuit layouts. For better universality and less parameter sensitivity during the diagnosis, this paper proposes a novel topology analysis approach to diagnose switching device open circuit failures. During the diagnosis, the topology is analyzed with fault reasoning mechanism, which is based on object-oriented Petri net (OOCPN). The O...

  20. Orientations of Pre-existing Structures along the Scarp of the Bilila-Mtakataka Fault in the Central Malawi Rift. (United States)

    Elifritz, E. A.; Johnson, S.; Beresh, S. C. M.; Mendez, K.; Mynatt, W. G.; Mayle, M.; Laó-Dávila, D. A.; Atekwana, E. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalindekafe, L.; Kalaguluka, D.; Salima, J.


    The NW-SE Bilila-Mtakataka Fault is suggested to be 100 km in length and is located in the Malawi Rift, a portion of the magma-poor Western Branch of the East African Rift System. This fault is exposed south of Lake Malawi and occurs close to the epicenter of the 1989 6.2 magnitude Salima Earthquake. Moreover, it traverses rocks with inherited Precambrian fabrics that may control the modern rifting process. The effect of the orientation of the pre-existing fabric on the formation of this potentially seismogenic fault has not been well studied. In this project, we measured the older foliations, dikes, and joints in addition to younger faults and striations to understand how the active faulting of the Bilila-Mtakataka Fault is affected by the older fabric. The Fault is divided into 5 segments and 4 linkage zones. All four linkage zones were studied in detail and a Brunton compass was used to determine orientations of structures. The linkage zone between segments 1 and 2 occurs between a regional WNW-ESE joint and the border fault, which is identified by a zig-zag pattern in SRTM data. Precambrian gneiss is cut by oblique steeply-dipping faults in this area. Striations and layer offsets suggest both right-lateral and normal components. This segment strikes NE-SW, in contrast with the NW-SE average strike of the entire fault. The foliations, faults, dikes, and joints collected in this area strike NE-SW, therefore running parallel to the segment. The last 3 southern linkage zones all strike NW-SE and the linkage zone between segment 3 and 4 has a steep dip angle. Dip angles of structures vary from segment to segment, having a wide range of results. Nonetheless, all four linkage zones show structures striking parallel to its segment direction. The results show that pre-existing meso-scale and regional structures and faults strike parallel to the fault scarp. The parallelism of the structures suggest that they serve as planes of weakness, controlling the localization of

  1. Paleoseismic and geomorphologic evidence of recent tectonic activity of the Pozohondo Fault (Betic Cordillera, SE Spain) (United States)

    Rodríguez-Pascua, M.A.; Pérez-López, R.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Silva, P.G.; Perucha-Atienza, M.A.; Hernández-Madrigal, V.M.; Bischoff, J.


    Instrumental and historical seismicity in the Albacete province (External Prebetic Zone) has been scarcely recorded. However, major strike-slip faults showing NW-SE trending provide geomorphologic and paleoseismic evidence of recent tectonic activity (Late Pleistocene to Present). Moreover, these faults are consistently well oriented under the present stress tensor and therefore, they can trigger earthquakes of magnitude greater than M6, according to the lengths of surface ruptures and active segments recognized in fieldwork. Present landscape nearby the village of Hellin (SE of Albacete) is determined by the recent activity of the Pozohondo Fault (FPH), a NW-SE right-lateral fault with 90 km in length. In this study, we have calculated the Late Quaternary tectonic sliprate of the FPH from geomorphological, sedimentological, archaeoseimological, and paleoseismological approaches. All of these data suggest that the FPH runs with a minimum slip-rate of 0.1 mm/yr during the last 100 kyrs (Upper Pleistocene-Holocene). In addition, we have recognized the last two major paleoearthquakes associated to this fault. Magnitudes of these paleoearthquakes were gretarer than M6 and their recurrence intervals ranged from 6600 to 8600 yrs for the seismic cycle of FPH. The last earthquake was dated between the 1st and 6th centuries, though two earthquakes could be interpreted in this wide time interval, one at the FPH and other from a far field source. Results obtained here, suggest an increasing of the tectonic activity of the Pozohondo Fault during the last 10,000 yrs.

  2. Correlation of data on strain accumulation adjacent to the San Andreas Fault with available models (United States)

    Turcotte, Donald L.


    Theoretical and numerical studies of deformation on strike slip faults were performed and the results applied to geodetic observations performed in the vicinity of the San Andreas Fault in California. The initial efforts were devoted to an extensive series of finite element calculations of the deformation associated with cyclic displacements on a strike-slip fault. Measurements of strain accumulation adjacent to the San Andreas Fault indicate that the zone of strain accumulation extends only a few tens of kilometers away from the fault. There is a concern about the tendency to make geodetic observations along the line to the source. This technique has serious problems for strike slip faults since the vector velocity is also along the fault. Use of a series of stations lying perpendicular to the fault whose positions are measured relative to a reference station are suggested to correct the problem. The complexity of faulting adjacent to the San Andreas Fault indicated that the homogeneous elastic and viscoelastic approach to deformation had serious limitations. These limitation led to the proposal of an approach that assumes a fault is composed of a distribution of asperities and barriers on all scales. Thus, an earthquake on a fault is treated as a failure of a fractal tree. Work continued on the development of a fractal based model for deformation in the western United States. In order to better understand the distribution of seismicity on the San Andreas Fault system a fractal analog was developed. The fractal concept also provides a means of testing whether clustering in time or space is a scale-invariant process.

  3. Fault ride-through enhancement using an enhanced field oriented control technique for converters of grid connected DFIG and STATCOM for different types of faults. (United States)

    Ananth, D V N; Nagesh Kumar, G V


    With increase in electric power demand, transmission lines were forced to operate close to its full load and due to the drastic change in weather conditions, thermal limit is increasing and the system is operating with less security margin. To meet the increased power demand, a doubly fed induction generator (DFIG) based wind generation system is a better alternative. For improving power flow capability and increasing security STATCOM can be adopted. As per modern grid rules, DFIG needs to operate without losing synchronism called low voltage ride through (LVRT) during severe grid faults. Hence, an enhanced field oriented control technique (EFOC) was adopted in Rotor Side Converter of DFIG converter to improve power flow transfer and to improve dynamic and transient stability. A STATCOM is coordinated to the system for obtaining much better stability and enhanced operation during grid fault. For the EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process DC-Offset component of flux is controlled, decomposition during symmetric and asymmetric faults. The offset decomposition of flux will be oscillatory in a conventional field oriented control, whereas in EFOC it was aimed to damp quickly. This paper mitigates voltage and limits surge currents to enhance the operation of DFIG during symmetrical and asymmetrical faults. The system performance with different types of faults like single line to ground, double line to ground and triple line to ground was applied and compared without and with a STATCOM occurring at the point of common coupling with fault resistance of a very small value at 0.001Ω. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Four-Dimensional Transform Fault Processes: Evolution of Step-Overs and Bends at Different Scales (United States)

    Wakabayashi, J.; Hengesh, J. V.; Sawyer, T. L.


    Many bends or step-overs along strike-slip faults may evolve by propagation of the strike-slip fault on one side of the structure and progressive shut off of the strike-slip fault on the other side. In such a process, new transverse structures form, old ones become inactive, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike-slip duplex. Consequences of this type of step-over evolution include the following: 1. the amount of vertical structural relief in restraining step-over or bend regions is less than expected (apatite fission track ages associated with these step-over regions predate the strike-slip faulting); 2. pull-apart basin deposits are left outside of the active basin and commonly subjected to contractional deformation and uplift; and 3. local basin inversion occurs that is not linked to regional plate motion changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California. Examples of pull-apart basin deposits related to migrating releasing () bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault in the Mission Peak area, and the Greenville to the Concord fault at Mount Diablo (10 km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Another


    Directory of Open Access Journals (Sweden)

    K. Zh. Seminsky


    shearing, standard patterns of fractures systems for their impact zones are members of the above described paragenesis of faults and fractures, which is spatially oriented in such a way that its position and displacements along Y-shears are correspondent to the right- or left-lateral strike-slip faults and also to normal and reverse faults with different dip angles. Under this approach, it has become possible to construct standard circle diagrams / patterns, each containing a complete set of fracture systems of one of the main types of fault zones (Fig. 6. In the process of specialized mapping, the patterns are compared with diagrams based on mass crustal fracture measurements taken on sites in the regions of studies. This procedure yields local solutions showing a presence of fault zones of specific types and spatial orientations; such solutions are shown as points at the corresponding sites on the schematic map of the territory under study, and points with similar paragenesises are then connected by lines so that to outline the boundaries of the revealed fault zones.Besides construction of a schematic map of a fault structures, specialized mapping provides for identification of stress fields wherein elements of such a fault structure has formed or activated at some stages. With this goal, the identified fault zones are classified by ranks. At the first phase of such analysis, types and orientations of all the initial local solutions are compared with types and orientation of the members of the ‘ideal’ paragenesis of the 2nd order, which corresponds to a strike-slip, reverse (thrust or normal fault (Fig. 8. This procedure reveals solutions showing the presence of fault zones varying in types and classified in the higher rank, which correspond to the regional stress field known form the history of the region under study. Such regional solutions are used as a basis for further iterations with reference to ‘ideal’ fault paragenesises, until possibilities to classify

  6. Deformed Fluvial Terraces of Little Rock Creek Capture Off-Fault Strain Adjacent to the Mojave Section of the San Andreas Fault (United States)

    Moulin, A.; Scharer, K. M.; Cowgill, E.


    Examining discrepancies between geodetic and geomorphic slip-rates along major strike-slip faults is essential for understanding both fault behavior and seismic hazard. Recent work on major strike-slip faults has highlighted off-fault deformation and its potential impact on fault slip rates. However, the extent of off-fault deformation along the San Andreas Fault (SAF) remains largely uncharacterized. Along the Mojave section of the SAF, Little Rock Creek drains from south to north across the fault and has cut into alluvial terraces abandoned between 15 and 30 ka1. The surfaces offer a rare opportunity to both characterize how right-lateral slip has accumulated along the SAF over hundreds of seismic cycles, and investigate potential off-fault deformation along secondary structures, where strain accumulates at slower rates. Here we use both field observations and DEM analysis of B4 lidar data to map alluvial and tectonic features, including 9 terrace treads that stand up to 80 m above the modern channel. We interpret the abandonment and preservation of the fluvial terraces to result from episodic capture of Little Rock Creek through gaps in a shutter ridge north of the fault, followed by progressive right deflection of the river course during dextral slip along the SAF. Piercing lines defined by fluvial terrace risers suggest that the amount of right slip since riser formation ranges from 400m for the 15-ka-riser to 1200m for the 30-ka-riser. Where they are best-preserved NE of the SAF, terraces are also cut by NE-facing scarps that trend parallel to the SAF in a zone extending up to 2km from the main fault. Exposures indicate these are fault scarps, with both reverse and normal stratigraphic separation. Geomorphic mapping reveals deflections of both channel and terrace risers (up to 20m) along some of those faults suggesting they could have accommodated a component of right-lateral slip. We estimated the maximum total amount of strike-slip motion recorded by the

  7. Relationships among in-situ stress, fractures and faults, and fluid flow: Monterey formation, Santa Maria Basin, California (United States)

    Finkbeiner, T.; Barton, C.A.; Zoback, M.D.


    We used borehole televiewer (BHTV) data from four wells within the onshore and offshore Santa Maria basin, California, to investigate the relationships among fracture distribution, orientation, and variation with depth and in-situ stress. Our analysis of stress-induced well-bore breakouts shows a uniform northeast maximum horizontal stress (SH max) orientation in each well. This direction is consistent with the SH max direction determined from well-bore breakouts in other wells in this region, the northwest trend of active fold axes, and kinematic inversion of nearby earthquake focal plane mechanisms. In contrast to the uniformity of the stress field, fracture orientation, dip, and frequency vary considerably from well to well and within each well. With depth, fractures can be divided into distinct subsets on the basis of fracture frequency and orientation, which correlate with changes of lithology and physical properties. Although factors such as tectonic history, diagenesis, and structural variations obviously have influenced fracture distribution, integration of the in-situ stress and fracture data sets indicates that many of the fractures, faults, and bedding planes are active, small-scale strike-slip and reverse faults in the current northeast-trending transpressive stress field. In fact, we observed local breakout rotations in the wells, providing kinematic evidence for recent shear motion along fracture and bedding-parallel planes. Only in the onshore well do steeply dipping fractures strike parallel to SHmax. Drill-stem tests from two of the offshore wells indicate that formation permeability is greatly enhanced in sections of the wells where fractures are favorably oriented for shear failure in the modern stress field. Thus, relatively small-scale active faults provide important conduits along which fluids migrate.

  8. The role of E-W basement faults in the Mesozoic geodynamic evolution of the Gafsa and Chotts basins, south-central Tunisia (United States)

    Amri, Dorra Tanfous; Dhahri, Ferid; Soussi, Mohamed; Gabtni, Hakim; Bédir, Mourad


    The Gafsa and Chotts intracratonic basins in south-central Tunisia are transitional zones between the Atlasic domain to the north and the Saharan platform to the south. The principal aim of this paper is to unravel the geodynamic evolution of these basins following an integrated approach including seismic, well log and gravity data. These data are used to highlight the tectonic control on the deposition of Jurassic and Lower Cretaceous series and to discuss the role of the main faults that controlled the basin architecture and Cretaceous-Tertiary inversion. The horizontal gravity gradient map of the study area highlights the pattern of discontinuities within the two basins and reveals the presence of deep E-W basement faults. Primary attention is given to the role played by the E-W faults system and that of the NW-SE Gafsa fault which was previously considered active since the Jurassic. Facies and thickness analyses based on new seismic interpretation and well data suggest that the E-W-oriented faults controlled the subsidence distribution especially during the Jurassic. The NW-SE faults seem to be key structures that controlled the basins paleogeography during Late Cretaceous-Cenozoic time. The upper Triassic evaporite bodies, which locally outline the main NW-SE Gafsa fault, are regarded as intrusive salt bodies rather than early diapiric extrusions as previously interpreted since they are rare and occurred only along main strike-slip faults. In addition, seismic lines show that Triassic rocks are deep and do not exhibit true diapiric features.

  9. Probabilistic Risk Assessment: Piping Fragility due to Earthquake Fault Mechanisms

    Directory of Open Access Journals (Sweden)

    Bu Seog Ju


    Full Text Available A lifeline system, serving as an energy-supply system, is an essential component of urban infrastructure. In a hospital, for example, the piping system supplies elements essential for hospital operations, such as water and fire-suppression foam. Such nonstructural components, especially piping systems and their subcomponents, must remain operational and functional during earthquake-induced fires. But the behavior of piping systems as subjected to seismic ground motions is very complex, owing particularly to the nonlinearity affected by the existence of many connections such as T-joints and elbows. The present study carried out a probabilistic risk assessment on a hospital fire-protection piping system’s acceleration-sensitive 2-inch T-joint sprinkler components under seismic ground motions. Specifically, the system’s seismic capacity, using an experimental-test-based nonlinear finite element (FE model, was evaluated for the probability of failure under different earthquake-fault mechanisms including normal fault, reverse fault, strike-slip fault, and near-source ground motions. It was observed that the probabilistic failure of the T-joint of the fire-protection piping system varied significantly according to the fault mechanisms. The normal-fault mechanism led to a higher probability of system failure at locations 1 and 2. The strike-slip fault mechanism, contrastingly, affected the lowest fragility of the piping system at a higher PGA.

  10. Performance of grid connected DFIG during recurring symmetrical faults using Internal Model Controller based Enhanced Field Oriented Control

    Directory of Open Access Journals (Sweden)



    Full Text Available The modern grid rules forces DFIG to withstand and operate during single as well as multiple low voltage grid faults. The system must not lose synchronism during any type of fault for a given time period. This withstanding capacity is called low voltage ride through (LVRT. To improve performance during LVRT, enhanced field oriented control (EFOC method is adopted in rotor side converter. This method helps in improving power transfer capability during steady state and better dynamic and transient stability during abnormal conditions. In this technique, rotor flux reference change from synchronous speed to some smaller speed or zero during the fault for injecting current at the rotor slip frequency. In this process, DC-Offset component of flux is controlled beyond decomposing to a lower value during faults and maintaining it. This offset decomposition of flux will be oscillatory in conventional FOC, whereas in EFOC with internal model controller, flux can damp quickly not only for single fault but during multiple faults. This strategy can regulate stator and rotor current waveform to sinusoidal without distortion during and after fault. It has better damped torque oscillations, control in rotor speed and generator flux during and after fault. The fluctuations in DC bus voltage across capacitor are also controlled using proposed EFOC technique. The system performance with under-voltage grid fault of 30% and 60% of the rated voltage occurring at the point of common coupling during 1 to 1.25 and another fault between 1.6 to 1.85 seconds are analyzed using simulation studies.

  11. Electrical resistivity variations associated with earthquakes on the san andreas fault. (United States)

    Mazzella, A; Morrison, H F


    A 24 percent precursory change in apparent electrical resistivity was observed before a magnitude 3.9 earthquake of strike-slip nature on the San Andreas fault in central California. The experimental configuration and numerical calculations suggest that the change is associated with a volume at depth rather than some near-surface phenomenon. The character and duration of the precursor period agree well with those of other earthquake studies and support a dilatant earthquake mechanism model.

  12. Perspective View, San Andreas Fault (United States)


    The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour

  13. Late Pleistocene dip-slip faulting along the Dunajec Fault, West Carpathians: Insights from alluvial sediments (United States)

    Olszak, Janusz


    This paper presents vertical movement along the Dunajec Fault during the Late Pleistocene and suggests Quaternary tectonic reactivation of diagonal strike-slip faults and their transformation into dip-slip faults in the West Carpathians. Optically stimulated luminescence (OSL) dating of Pleistocene alluvial sediments of the Dunajec and the Ochotnica rivers was employed to determine the time range of deposition of these sediments. Vertical and spatial distribution of the obtained OSL ages imply that the alluvial sediments were affected by the Dunajec Fault, which appears to have acted as a scissor fault during the Late Pleistocene. The results contribute to the discussion on the recent evolution of the Carpathians, and may support the concept of extensional collapse of the orogen.

  14. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes. (United States)

    Arun Dominic, D; Chelliah, Thanga Raj


    To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary (United States)

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.


    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  16. Multiple Event Analysis of the 2008 Mw 7.9 Wenchuan Earthquake: Implications for Variations in Radiated Seismic Energy During Faulting

    Directory of Open Access Journals (Sweden)

    Ruey-Der Hwang


    Full Text Available A forward modeling of P-waves for the 2008 Wenchuan earthquake revealed at least seven sub-events that occurred during faulting with the largest event (i.e., the third sub-event located at a position ~50 km northeast of the epicenter. Simulations of P-waves showed that it would be more appropriate to model the P-waves using thrust faulting for the first three sub-events and using strike-slip faulting for the last four. In other words, the faulting for the 2008 Wenchuan earthquake was composed substantially of two mechanisms; the former was a thrust faulting and the latter was a strike-slip rupture. The mechanical transition was near the town of Beichuan, ~100 km northeast of the epicenter. Variations in radiated seismic energy (ES showed the largest ES released from the fourth sub-event. Results also indicated remarkable distinctions between ES and ES0 (called the available energy. On the whole, the total ES, which was higher than ES0 estimated from static stress drop, suggested that the earthquake should be interrupted by a stress model of abrupt-locking. Further, the former thrust faulting released a relatively lower amount of ES than the latter strike-slip event. Orowan¡¦s stress model, i.e., ES ≈ ES0, can specify former thrust ruptures implying a high rupture velocity. Because ES > ES0 for latter strike-slip ruptures, a stress model of abrupt-locking, implying higher dynamic stress drop and lower friction during an earthquake, can account for the feature of the latter ruptures. This might suggest that the 2008 Wenchuan earthquake should have a high rupture velocity, perhaps approaching the crustal S-wave velocity or even higher.

  17. Three Types of Flower Structures in a Divergent-Wrench Fault Zone (United States)

    Huang, Lei; Liu, Chi-yang


    Flower structures are typical features of wrench fault zones. In conventional studies, two distinct kinds of flower structures have been identified based on differences in their internal structural architecture: (1) negative flower structures characterized by synforms and normal separations and (2) positive flower structures characterized by antiforms and reverse separations. In addition to negative and positive flower structures, in this study, a third kind of flower structure was identified in a divergent-wrench fault zone, a hybrid characterized by both antiforms and normal separations. Negative flower structures widely occur in divergent-wrench fault zones, and their presence indicates the combined effects of extensional and strike-slip motion. In contrast, positive and hybrid flower structures occur only in fault restraining bends and step overs. A hybrid flower structure can be considered as product of a kind of structural deformation typical of divergent-wrench zones; it is the result of the combined effects of extensional, compressional, and strike-slip strains under a locally appropriate compressional environment. The strain situation in it represents the transition stage that in between positive and negative flower structures. Kinematic and dynamic characteristics of the hybrid flower structures indicate the salient features of structural deformation in restraining bends and step overs along divergent-wrench faults, including the coexistence of three kinds of strains (i.e., compression, extension, and strike-slip) and synchronous presence of compressional (i.e., typical fault-bend fold) and extensional (normal faults) deformation in the same place. Hybrid flower structures are also favorable for the accumulation of hydrocarbons because of their special structural configuration in divergent-wrench fault zones.

  18. Protracted deformation during cooling of the Paleoproterozoic arc system as constrained by {sup 40}Ar/{sup 39}Ar ages of muscovite from brittle faults: the Transamazonan Bacajá Terrane, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Perico, Edimar; Barros, Carlos Eduardo de Mesquita; Mancini, Fernando [Universidade Federal do Paraná – UFPR, Curitiba, PR (Brazil); Rostirolla, Sidnei Pires, E-mail: [Rosneft, Rio de Janeiro, RJ (Brazil)


    In the Paleoproterozoic Transamazonas Province, synkinematic granitogenesis has taken place synchronously with compressive tectonic stress. The synkinematic character of the granites is marked by their WNW elongate shape, and by the presence of pervasive and concordant synmagmatic foliation. Ductile shear zones are concordant to the previous regional WNW structures, and tend to be accommodated along contacts between Rhyacian synkinematic granitoids and both Archean orthogneisses and Siderian metabasites. Locally phyllonitic shear zones and brittle-ductile shear zones with cataclasites are oriented subparallel to the preexisting ductile foliation. Late orogenic brittle faults N30E-trending strike-slip faults are either sinistral or destral. {sup 40}Ar/{sup 39}Ar dating of muscovite developed on fault planes gave ages of 1977 ± 8 Ma and 1968 ± 11 Ma. Structural and geochronological data from rocks of the Transamazonas Province permit to conclude that most mylonites and brittle structures were controlled by preexisting structures such as geological contacts and petrographic facies boundaries. Compressive tectonic stress would have initiated at ca. 2100 Ma, since the former magmatic arc (Bacajaí complex), still present at 2070 Ma when syntectonic granites were emplaced and remained until 1975 Ma after granite plutonism and regional cooling. (author)

  19. Local Stress fields and paleo-fluid distribution within a transtensional duplex: An example from the northern termination of the Liquiñe-Ofqui Fault System. (United States)

    Perez-Flores, P.; Cembrano, J. M.; Sanchez-Alfaro, P.


    The northern termination of Liquiñe-Ofqui Fault System (LOFS) is characterized by major NNE-striking dextral strike-slip faults and several second and third-order NE-to-ENE-striking oblique-slip faults. This geometry forms a transtensional duplex structure. The LOFS has a complex crosscutting relationship with inherited NW-striking structures of the Arc-oblique long-lived Fault System (ALFS). We conducted a structural mapping of fault and vein populations at key structural sites representative of each regional structural system. Field observations were combined with different methods of inversion of fault-slip heterogeneous data and with the use of different open-source computer programs that calculate resolved stress tensors and P-T axes for each structural site in order to unravel the significance of this complex architecture. The results of the inversion of fault-slip analysis show that a transtensional strike-slip regime, with NE-SW-trending subhorizontal σ1, predominate in the first and second order faults in the northern termination of the duplex. A more local tensional regime was calculated for the same area. The inversion solutions are compatible with NE-trending subvertical veins system and dilational jogs and breccia. In contrast, within the central area of the duplex fault slip inversion of fault populations shows both transpressional and compressional regimes. The first tectonic regime is compatible with ENE-striking veins and dikes. In the southern part of the duplex, fault populations are compatible with either a local transtensional stress field with an ESE-trending subhorizontal σ1 or with a tensional regime with a SW-trending, steeply plunging σ1. Our results show the complexity in the nature and spatial distribution of stress fields within strike-slip duplexes and its role in the geometrical distribution of paleo-fluid flow, part of which may account for the reactivation of inherited faults or strain incompatibilities at fault intersections.

  20. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone (United States)

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir


    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  1. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.


    Analytical expressions are derived for the stress field caused by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress, where the hydrostatic stress is positive.

  2. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.


    In this paper, analytical expressions of the stress field given rise by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants are derived. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of the Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at the surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng, (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress where the hydrostatic stress is positive.

  3. Stress transfer to the Denali and other regional faults from the M 9.2 Alaska earthquake of 1964 (United States)

    Bufe, C.G.


    Stress transfer from the great 1964 Prince William Sound earthquake is modeled on the Denali fault, including the Denali-Totschunda fault segments that ruptured in 2002, and on other regional fault systems where M 7.5 and larger earthquakes have occurred since 1900. The results indicate that analysis of Coulomb stress transfer from the dominant earthquake in a region is a potentially powerful tool in assessing time-varying earthquake hazard. Modeled Coulomb stress increases on the northern Denali and Totschunda faults from the great 1964 earthquake coincide with zones that ruptured in the 2002 Denali fault earthquake, although stress on the Susitna Glacier thrust plane, where the 2002 event initiated, was decreased. A southeasterlytrending Coulomb stress transect along the right-lateral Totschunda-Fairweather-Queen Charlotte trend shows stress transfer from the 1964 event advancing slip on the Totschunda, Fairweather, and Queen Charlotte segments, including the southern Fairweather segment that ruptured in 1972. Stress transfer retarding right-lateral strike slip was observed from the southern part of the Totschunda fault to the northern end of the Fairweather fault (1958 rupture). This region encompasses a gap with shallow thrust faulting but with little evidence of strike-slip faulting connecting the segments to the northwest and southeast. Stress transfer toward failure was computed on the north-south trending right-lateral strike-slip faults in the Gulf of Alaska that ruptured in 1987 and 1988, with inhibitory stress changes at the northern end of the northernmost (1987) rupture. The northern Denali and Totschunda faults, including the zones that ruptured in the 2002 earthquakes, follow very closely (within 3%), for about 90??, an arc of a circle of radius 375 km. The center of this circle is within a few kilometers of the intersection at depth of the Patton Bay fault with the Alaskan megathrust. This inferred asperity edge may be the pole of counterclockwise

  4. Active tectonics, fault patterns, and stress field of Deception Island: A response to oblique convergence between the Pacific and Antarctic plates (United States)

    Maestro, A.; Somoza, L.; Rey, J.; Martínez-Frías, J.; López-Martínez, J.


    Palaeostress results derived from brittle mesoscopic structures on Deception Island (Bransfield Trough, Western Antarctica) show a recent stress field characterized by an extensional regime, with local compressional stress states. The maximum horizontal stress ( σy) shows NW-SE and NNE-SSW to NE-SW orientations and horizontal extension ( σ3) in NE-SW and WNW-ESE to NW-SE directions. Alignments of mesofractures show a maximum of NNE-SSW orientation and several relative maxima striking N030-050E, N060-080E, N110-120E, and N160-170E. Subaerial and submarine macrofaults of Deception Island show six main systems controlling the morphology of the island: N-S, NNE-SSW, NE-SW, ENE-WSW to E-W, WNW-ESE, and NNW-SSE. Geochemical patterns related to submarine hydrothermally influenced fault and fissure pathways also share the same trends. The orientation of these fault systems is compared to Riedel shear fractures. Following this model, we propose two evolutionary stages from geometrical relationships between the location and orientation of joints and faults. These stages imply a counter-clockwise rotation of Deception Island, which may be linked to a regional left-lateral strike-slip. In addition, the simple shear zone could be a response to oblique convergence between the Antarctic and Pacific plates. This stress direction is consistent with the present-day movements between the Antarctic, Scotia, and Pacific plates. Nevertheless, present basalt-andesitic volcanism and deep earthquake focal mechanisms may indicate rollback of the former Phoenix subducted slab, which is presently amalgamated with the Pacific plate. We postulate that both mechanisms could occur simultaneously.

  5. Offshore extension of the Great Sumatra Fault revealed by seismic, bathymetric and seafloor imaging (United States)

    Gaedicke, C.; Soh, W.; Djajadihardja, Y.; Saito, S.; Ikeda, Y.; Kudrass, H.; Djamaluddin, R.


    The northwestern Sunda Arc is cut by two giant dextral shear zones, which accommodate the oblique subduction of the Indo-Australian Plate against Eurasia along this portion of the Sunda Arc. These are the Sumatra Fault Zone on Sumatra Island and the Mentawai Fault Zone off west Sumatra. The strike-slip shear zones bear a high earthquake risk potential. Several Indonesian-Japanese-German marine expeditions focused on the tectonics and the evolution of the Sumatra and Java forearc region. Now a dense grid of multi- and single-channel reflection seismic profiles, high resolution bathymetry and seafloor direct observations using submersible SHINKAI 6500 allow tracing the Sumatra and Mentawai Fault Zones south off west Java. The geometry of transtensional basins, transpressional horst structures and elongated ridges and valleys clearly shows the dextral sense of motion and the splay character of the fault zones in the study area. Multi-channel reflection profiles image the deep structure of the major strike slip faults which originate from reactivated thrust planes within the Java accretionary wedge. During SHINKAI 6500 dives one master fault could be followed. Recent offset along the fault is documented on sea floor images by young unweathered fault scarps.

  6. Implications Of Fault Damaged Bedrock To Tectonic and Landscape Evolution In Coastal Alaska (United States)

    Boucher, A.; Koons, P. O.; Roy, S. G.; Birkel, S. D.; Kaluzienski, L. M.; Campbell, S. W.


    Bedrock material strength properties heavily impact erosion rates in temperate glacial environments. We focus on the influence of localized tectonic crustal weakening in southeast Alaska on modern glacial erosion rates, thereby quantifying a primary feedback in tectonic/climatic coupling. Southeast Alaska, with its coincident high strain rates, vigorous glacial erosion and rapid sedimentation rates, provides an excellent setting in which to evaluate this interaction. To characterize the relationship between fault damage and glacial incision, we collected data in transects across the strike-slip Fairweather Fault in Yakutat and Disenchantment Bays, in deglaciated valleys below the Mendenhall, Herbert, Ptarmigan, and Lemon Creek Glaciers on the perimeter of the Juneau Icefield, and on deglaciated nunataks on the Echo and Vaughan Lewis Glaciers in the interior of the Juneau Icefield. The mechanical properties of the bedrock are characterized by estimates of fault spacing and material cohesion. In structurally-controlled bedrock valleys exploited by glaciers, fracture spacing may vary by several orders of magnitude across fault damage zones, from more than 10 m to less than 0.1 m. Analysis of active and quiescent fault zones indicate that this variation approximates a power law relationship and correlates with a gradient in cohesive strength varying from greater than 50 MPa to less than 50 kPa between intact bedrock and the core of fault damage zones. The width and orientation of the damage zones is highly variable and we have chosen our field sites to sample zones of very large total displacement, up to kilometers along the Fairweather Fault, and substantially smaller displacements, down to centimeters for the Juneau Icefield locales. Using a Cordilleran Ice sheet model to extend our modern observations into last glacial maximum conditions, we predict both erosion rates and sediment provenance for a material strength pattern influenced by tectonically induced fault

  7. Rheological weakening of high-grade mylonites during low-temperature retrogression: The exhumed continental Ailao Shan-Red River fault zone, SE Asia (United States)

    Cao, Shuyun; Neubauer, Franz; Liu, Junlai; Bernroider, Manfred; Cheng, Xuemei; Li, Junyu; Yu, Zunpu; Genser, Johann


    We present a detailed case study of an exhumed continental strike-slip fault zone, the Ailao Shan-Red River (ASRR) strike-slip fault zone, to investigate how deformation promotes strain localization, and how the weak second phases and fluids trigger rheological weakening during retrogression near the ductile to brittle transition during exhumation. Along the ASRR strike-slip fault zone, in the Diancang Shan (DCS) metamorphic massif, high-temperature ductile deformation (D1) pervasively occurred during shearing and exhumation since late Oligocene. The high-temperature microstructures and textures are in part or entirely altered by subsequent low-temperature shearing (D2) since late Miocene, which is under the conditions of frictional-viscous transition of K-feldspar (ca. 450 °C) during further exhumation to the upper crustal levels. The formation of D2 microstructures and shear bands overprinted high-temperature intracrystalline plasticity phases (D1) in mylonitic rocks. Depending on the main rock-forming minerals, the results also demonstrate that the brittle-ductile transition involves a combination of different deformation mechanisms and possible rheological paths. In quartz-rich rocks, quartz was deformed in the dislocation creep regime and records transition of microfabrics and slip systems during decreasing temperature, which lasted until retrogression related to exhumation. As a result, grain-size reduction associated with fluids circulating within the ASRR strike-slip fault zone at brittle-ductile transition leads to reaction and texture weakening. Rheological weakening is the consequence of the syntectonic deformation, fluid flow, reaction softening, reaction creep and textural softening. The hydrous fluids resulted in hydration of silicates. Decompression occurred during shearing and as a result of tectonic exhumation. All these results demonstrate that the exhumation through the ductile to ductile-brittle transition involves a combination of different

  8. Four-dimensional transform fault processes: progressive evolution of step-overs and bends (United States)

    Wakabayashi, John; Hengesh, James V.; Sawyer, Thomas L.


    Many bends or step-overs along strike-slip faults may evolve by propagation of the strike-slip fault on one side of the structure and progressive shut-off of the strike-slip fault on the other side. In such a process, new transverse structures form, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike-slip duplex. Consequences of this type of step-over evolution include: (1) the amount of structural relief in the restraining step-over or bend region is less than expected; (2) pull-apart basin deposits are left outside of the active basin; and (3) local tectonic inversion occurs that is not linked to regional plate boundary kinematic changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California; we present evidence at different scales for the evolution of bends and step-overs along this fault system. Examples of pull-apart basin deposits related to migrating releasing (right) bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault, and the Greenville to the Concord fault (ten km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Similar 4D evolution may characterize the evolution of other regions in the world, including the Dead Sea pull-apart, the Gulf

  9. On the use of imaginary faults in palaeostress analysis (United States)

    Shan, Yehua; Liang, Xinquan


    The imaginary fault refers to the counterpart of a certain given fault that has a similar expression about the Wallace-Bott hypothesis. It is included to further reduce the feasible fields for the principal stress directions using the right dihedra method. The given fault and its imaginary fault have a similar dip-slip sense under the extensional or compressional regime but, as proved in this paper, a different dip-slip sense under the strike-slip regime. Their relation in dip-slip sense does no change with the rotation of the coordinate system, thus making possible the general use in the reduction of the imaginary faults under any tectonic regime. A procedure for this use is proposed and applied to a real example to demonstrate the feasibility of this method.

  10. Constraints on the rheology of the lower crust in a strike-slip plate boundary: evidence from the San Quintín xenoliths, Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    T. van der Werf


    Full Text Available The rheology of lower crust and its transient behavior in active strike-slip plate boundaries remain poorly understood. To address this issue, we analyzed a suite of granulite and lherzolite xenoliths from the upper Pleistocene–Holocene San Quintín volcanic field of northern Baja California, Mexico. The San Quintín volcanic field is located 20 km east of the Baja California shear zone, which accommodates the relative movement between the Pacific plate and Baja California microplate. The development of a strong foliation in both the mafic granulites and lherzolites, suggests that a lithospheric-scale shear zone exists beneath the San Quintín volcanic field. Combining microstructural observations, geothermometry, and phase equilibria modeling, we estimated that crystal-plastic deformation took place at temperatures of 750–890 °C and pressures of 400–560 MPa, corresponding to 15–22 km depth. A hot crustal geotherm of 40 ° C km−1 is required to explain the estimated deformation conditions. Infrared spectroscopy shows that plagioclase in the mafic granulites is relatively dry. Microstructures are interpreted to show that deformation in both the uppermost lower crust and upper mantle was accommodated by a combination of dislocation creep and grain-size-sensitive creep. Recrystallized grain size paleopiezometry yields low differential stresses of 12–33 and 17 MPa for plagioclase and olivine, respectively. The lower range of stresses (12–17 MPa in the mafic granulite and lherzolite xenoliths is interpreted to be associated with transient deformation under decreasing stress conditions, following an event of stress increase. Using flow laws for dry plagioclase, we estimated a low viscosity of 1.1–1.3×1020 Pa ⋅ s for the high temperature conditions (890 °C in the lower crust. Significantly lower viscosities in the range of 1016–1019 Pa ⋅ s, were estimated using flow laws for wet plagioclase. The

  11. Past earthquakes, fault slip-rates, and mountain building in Kazakhstan and Mongolia (United States)

    Walker, R. T.; Nissen, E.; Gregory, L. C.; Gantulga, B.; Campbell, G.; Abdrakhmatov, K.


    The India-Eurasia collision is perhaps the most extensively studied region of active continental deformation. But relatively less attention has been paid to the neotectonics in those parts of the collision north of the Tien Shan. Large active mountain ranges within these northern regions, including the Dzungar Alatau of Kazakhstan and the Altai of western Mongolia, show that significant amounts of shortening are accommodated. As well as forming important elements in the deformation of Asia, the active faulting within these regions represents a widespread hazard to local populations and there are abundant records of large magnitude earthquakes, including four 20th Century events of M 7.9+ in Mongolia and its immediate surroundings and three destructive earthquakes ( in 1887, 1889 and 1911) in the vicinity of Almaty city in Kazakhstan. We present an overview of our recent studies on the active deformation within Mongolia and southern Kazakhstan. Our goal in these studies has been to provide constraints on the distribution, rates, and evolution of deformation from the rupture of individual earthquakes, through quantification of fault slip-rates averaged over the ten to hundreds of thousand years represented in the landscape, to the total Cenozoic deformation. Through these approaches we determine how the observed pattern of faulting is able to accommodate the regional tectonic motions as well as providing first-order constraints on the potential for earthquakes on the major structures. In particular, we highlight the widespread occurrence of strike-slip faulting oblique to the overall shortening direction. Many of the strike-slip faults are > 100 km in length and may be capable of producing large-magnitude earthquakes. It is likely that N-S shortening is accommodated by a combination of strike-slip faulting and counter-clockwise vertical axis rotation - such that slip-rates on the individual structures may sum to significantly more than the rate of shortening measured

  12. Finite-fault scaling relations in Mexico (United States)

    Rodríguez-Pérez, Quetzalcoatl; Ottemöller, Lars


    Earthquake source parameters are widely used for computing scaling laws. We estimated source parameters for earthquakes in the Gulf of California, and the Mexican subduction zone through teleseismic fault slip inversion. The scaling relations herein can provide useful information for studies focused on source characteristics and ground motions in Mexico. We derived source scaling relations to estimate fault dimensions, combined asperity area, ratio of combined asperity area to rupture area, maximum displacement, mean displacement, duration and seismic energy of subduction interplate earthquakes based on their moment magnitude. We do not developed scaling relationships for strike-slip events in the Gulf of California due to the reduced number of data, but compare source parameters. We analyzed differences in source parameters between the two types of earthquakes. Scaling relations were fitted with orthogonal regression and we analyzed the difference between our subduction zone relationships and previous ones. We determined 21 finite-fault slip distributions for earthquakes in the magnitude range of 6.5 authors based on different inversion methods to construct scaling relationships in a consistent manner. Within this study, we characterized heterogeneous slip models by determining source parameters on the asperities and on the background area, such as number of asperities, combined asperity area, stress drop on asperities, aspect ratio, strain and average stress drop. We found that the area of the asperities represented about 22 and 24 per cent of the total area for strike-slip, and reverse events respectively with two different criteria based on average slip and maximum displacement. Sensitivity tests were carried out to estimate the variability of slip patterns and source parameters by changing fault dimensions, subfault size and the number of stations. We observed robust slip solutions and reliable source parameter estimations resulting in robust scaling

  13. Central Asia Active Fault Database (United States)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah


    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  14. Reply to discussion by M. C. Alçiçek et al. on ;Neogene-Quaternary evolution of the Tefenni basin on the Fethiye-Burdur fault zone, SW Anatolia-Turkey;, Journal of African Earth Sciences, 118, 137-148, by R. Aksoy and S. Aksarı (United States)

    Aksoy, Rahmi; Aksarı, Süleyman


    In their discussion on the Aksoy and Aksarı (2016) article, Alçiçek et al. (2017) claim that our stratigraphic interpretation, age assignment for the rock units and kinematic analysis depended on incorrect data. They also claim that there is no evidence for a NE-trending fault zone (Fethiye-Burdur Fault Zone) from Fethiye to Burdur with left-lateral strike-slip movement. Our opposing views on the above-mentioned issues are given below.

  15. Study on seismic hazard assessment of large active fault systems. Evolution of fault systems and associated geomorphic structures: fault model test and field survey

    International Nuclear Information System (INIS)

    Ueta, Keichi; Inoue, Daiei; Miyakoshi, Katsuyoshi; Miyagawa, Kimio; Miura, Daisuke


    Sandbox experiments and field surveys were performed to investigate fault system evolution and fault-related deformation of ground surface, the Quaternary deposits and rocks. The summary of the results is shown below. 1) In the case of strike-slip faulting, the basic fault sequence runs from early en echelon faults and pressure ridges through linear trough. The fault systems associated with the 2000 western Tottori earthquake are shown as en echelon pattern that characterize the early stage of wrench tectonics, therefore no thoroughgoing surface faulting was found above the rupture as defined by the main shock and aftershocks. 2) Low-angle and high-angle reverse faults commonly migrate basinward with time, respectively. With increasing normal fault displacement in bedrock, normal fault develops within range after reverse fault has formed along range front. 3) Horizontal distance of surface rupture from the bedrock fault normalized by the height of the Quaternary deposits agrees well with those of model tests. 4) Upward-widening damage zone, where secondary fractures develop, forms in the handing wall side of high-angle reverse fault at the Kamioka mine. (author)

  16. Continuity of the San Andreas Fault at San Gorgonio Pass (United States)

    Carena, S.; Suppe, J.


    The San Andreas fault at San Gorgonio Pass does not have a clear surface trace and is considered aseismic. Our findings suggest in fact that the existence of a through-going vertical or near-vertical San Andreas fault between Yucaipa and North Palm Springs is highly unlikely. We mapped over 70 faults in the San Gorgonio Pass-San Bernardino Mountains region using the catalog of 43,500 relocated 1975-1998 earthquakes of Richards-Dinger and Shearer (2000). A clustering algorithm was applied to the relocated earthquakes in order to obtain tighter earthquake clouds and thus better-defined fault surfaces. The earthquakes were then imported into Gocad, a 3D modeling software that allowed us to separate earthquakes into coplanar clusters associated with different faults and fault strands and to fit optimized surfaces to them. We also used the catalog of 13,000 focal mechanisms of Hauksson (2000) to confirm the nature of the mapped faults. We were able to constrain the 3D geometry of the San Andreas fault near San Gorgonio Pass from the 3D geometry of the fault network surrounding it. None of these faults show any displacement due to an hypothetical sub-vertical San Andreas. The San Andreas fault must therefore rotate to much shallower dips, or lose its continuity at depths between 3 and 15 km The most likely configuration is the one where the San Andreas fault merges into the shallow-dipping San Gorgonio Pass thrust W of North Palm Springs. Strike-slip motion is taken up by both the thrust (the slip vector on the N. Palm Springs segment is reverse/right-lateral strike-slip) and by a series of NW striking faults in the footwall of the thrust. The W termination of the most active part of the San Gorgonio Pass thrust coincides with one of these footwall faults at depth, and with the south bend in the San Andreas fault strand N of Banning. This boundary also marks a change in the stress field, with a dominant strike-slip regime to the E (and localized thrusting between San

  17. Relationship between in-situ stress and fractures and faults in the Monterey Formation, Santa Maria Basin, California

    Energy Technology Data Exchange (ETDEWEB)

    Finkbeiner, T.; Barton, C.A.; Zoback, M.D. (Stanford Univ., CA (United States))


    Borehole televiewer (BHTV) data from four wells within the on- and offshore Santa Maria Basin were utilized to investigate the relationship between fracture distribution, orientation, and variation with depth and in situ stress. Analysis of stress-induced wellbore breakouts in each well shows a uniform NE-SW maximum horizontal stress (S[sub Hmax]) orientation with depth. This is consistent with the regional S[sub Hmax] direction throughout the entire seismogenic part of the crust as determined from other wellbore breakout data, NW-SE trends of active fold axes and results of kinematic stress-inversion of earthquake focal plane mechanisms. In marked contrast to the uniform stress field, analysis of fractures indicates that their orientation, dip, and frequency vary considerably within each well and laterally among them. With depth, fractures can be generally divided into distinct subsets on the basis of fracture frequency and predominant strike and dip directions. These subsets correlate with changes of lithology and physical properties indicating that factors such as tectonic history, diagenesis and structural variations may have strongly influenced the initiation and propagation of fractures. Only in the onshore well do steeply-dipping fractures strike parallel to S[sub Hmax] and are interpreted as Mode I extension fractures. In the three offshore wells, the fracture strike is mainly oblique or orthogonal to S[sub Hmax] suggesting that they may be distributed strike-slip or reverse faults. We believe currently active faults in the NE-SW transpressional deformation regime play a crucial role for fluid migration by providing permeability enhanced flow paths. Drill stem tests conducted in two of the offshore wells indicate that formation permeability is greatly enhanced in sections of the well where fractures strike predominantly perpendicular to S[sub Hmax] and dip at moderate to steep angles.

  18. Relationship between in-situ stress and fractures and faults in the Monterey Formation, Santa Maria Basin, California

    Energy Technology Data Exchange (ETDEWEB)

    Finkbeiner, T.; Barton, C.A.; Zoback, M.D. [Stanford Univ., CA (United States)


    Borehole televiewer (BHTV) data from four wells within the on- and offshore Santa Maria Basin were utilized to investigate the relationship between fracture distribution, orientation, and variation with depth and in situ stress. Analysis of stress-induced wellbore breakouts in each well shows a uniform NE-SW maximum horizontal stress (S{sub Hmax}) orientation with depth. This is consistent with the regional S{sub Hmax} direction throughout the entire seismogenic part of the crust as determined from other wellbore breakout data, NW-SE trends of active fold axes and results of kinematic stress-inversion of earthquake focal plane mechanisms. In marked contrast to the uniform stress field, analysis of fractures indicates that their orientation, dip, and frequency vary considerably within each well and laterally among them. With depth, fractures can be generally divided into distinct subsets on the basis of fracture frequency and predominant strike and dip directions. These subsets correlate with changes of lithology and physical properties indicating that factors such as tectonic history, diagenesis and structural variations may have strongly influenced the initiation and propagation of fractures. Only in the onshore well do steeply-dipping fractures strike parallel to S{sub Hmax} and are interpreted as Mode I extension fractures. In the three offshore wells, the fracture strike is mainly oblique or orthogonal to S{sub Hmax} suggesting that they may be distributed strike-slip or reverse faults. We believe currently active faults in the NE-SW transpressional deformation regime play a crucial role for fluid migration by providing permeability enhanced flow paths. Drill stem tests conducted in two of the offshore wells indicate that formation permeability is greatly enhanced in sections of the well where fractures strike predominantly perpendicular to S{sub Hmax} and dip at moderate to steep angles.


    Directory of Open Access Journals (Sweden)

    K. Zh. Seminsky


    Full Text Available The article is to complete the description of the special mapping method which theoretical basis and principles were published in [Seminsky, 2014]. With reference to data on the Ulirba site located in Priolkhonie (Western Pribaikalie, the content of special mapping is reviewed in detail. The method is based on paragenetical analysis of abundant jointing which specific feature is the lack of any visible displacement indicators. There are three stages in the special mapping method (Fig. 3 as follows:Stage I: Preparation and analysis of previously published data on the regional fault structure (Fig. 1, А–Г, establishment of a networks of stations to conduct structural geological monitoring and mass measurements of joints, re­cord of rock data (Fig. 2, А, general state of the fault network (Fig. 1, Д–З, fracture density (Fig. 2, Б and, if any, structures of the above-jointing level (Fig. 1, Е, З; Fig. 2, А.Stage II is aimed at processing of field data and includes activities in four groups (II.1–II.4 as follows: Group II.1: construction of circle diagrams, specification of characteristics of joint systems and their typical scatters (Fig. 4, А, identification of simple (generally tipple paragenesises, and determination of dynamic settings of their formation (translocal rank (Table 1, evaluation of densities and complexity of the joint networks, analysis of their spacial patterns within the site under mapping, and identification of the most intensively destructed zones in the rock massif (Fig. 2, Б–В. Group II.2: comparison of jointing diagrams with reference ones showing joint poles (Fig. 4, Б–В; Е–З; Л–Н, and, in case of their satisfactory correlation, making a conclusion of potential formation of a specific joint pattern in the local zone of strike-slip, normal faulting or reverse faulting (Fig. 4,  Г–Д, И–К, О–П; Fig. 5; Fig. 7, Б, and determination of relative age relationships between such zones on

  20. Geometry of the Gerede Segment, North Anatolian Fault Zone, Turkey (United States)

    Caglayan, A.; ISIK, V.


    The North Anatolian Fault Zone (NAFZ) is an active dextral strike-slip fault zone in northern Turkey. The NAFZ is approximately 1200 km in length which extends from Karliova in the east and to reach as far as the Gulf of Saros in the west. The NAFZ becomes wider geometry from east to west which are characterized by 9 destructive earthquake of Ms>7 in the 20th century. An earthquake on 1944 February 1 (Ms 7,3) caused 180 km long surface rupture associated with 2-6.5 m of right-lateral slip between Bayramören in the east and Abant Lake in the west along the NAFZ, which is called the Gerede Segment. This study describes internal geometrical characteristics and deformation mechanism of faults with fault surfaces in the Gerede Segment. The faults along the segment variously cut across Mesozoic-Cenozoic basement rocks and Quaternary alluvium deposits. They juxtapose not only different units of basement but also basement rocks and alluvium. We select typical fault surface that have been formed the best exposures in limestone in different locality, which define exhumed main faults along the segment. These faults strike N70°-80°E and dip 50°-85°NW. Slickenlines on these fault surface plunge shallowly to the NE and/or SW. Fault surface include brittle kinematic indicators indicating right-lateral strike-slip displacements. Some typical Riedel shear fractures (R- and P-fractures) around the main faults also show dextral displacements. Along the main faults two main architectural elements including fault core and fault damage zone is typical. The fault damage zones of these faults are characterized by both fault-related fracturing and fluid-assisted deformation processes. Although breccia is common fault rock in fault zones, gouge and cataclasite are seen in variable exposures. We have defined crackle, mosaic and chaotic type breccias using clast-size and clast proportion. Rock fragments within breccias have occurred mm-cm scale from angular to rounded clast. Sub

  1. Deeper penetration of large earthquakes on seismically quiescent faults. (United States)

    Jiang, Junle; Lapusta, Nadia


    Why many major strike-slip faults known to have had large earthquakes are silent in the interseismic period is a long-standing enigma. One would expect small earthquakes to occur at least at the bottom of the seismogenic zone, where deeper aseismic deformation concentrates loading. We suggest that the absence of such concentrated microseismicity indicates deep rupture past the seismogenic zone in previous large earthquakes. We support this conclusion with numerical simulations of fault behavior and observations of recent major events. Our modeling implies that the 1857 Fort Tejon earthquake on the San Andreas Fault in Southern California penetrated below the seismogenic zone by at least 3 to 5 kilometers. Our findings suggest that such deeper ruptures may occur on other major fault segments, potentially increasing the associated seismic hazard. Copyright © 2016, American Association for the Advancement of Science.

  2. GPS measurements of present day crustal deformation within the Lebanese restraining bend along the Dead Sea Fault System (United States)

    Jaafar, R.; Gomez, F.; Abdallah, C.; Karam, G.; Reilinger, R.; Alchalbi, A.; Yassminh, R.; Daoud, M.


    The Lebanese restraining bend is a 200 km long bend with a left lateral sense of slip located along the Dead Sea fault system (DSFS) between 33.2 and 34.6 degrees north latitude. The DSFS is a transform plate boundary fault system accommodating the differential northward movement of Arabian and Sinai plates relative to the Eurasian plate. Within the Lebanese Restraining bend, The DSFS splays into several major left-lateral strike-slip faults, forming a positive flower structure. This study combines GPS measurements from Lebanon where surveys span for about 5.5 years with sites from the Anti Lebanon Mountains in SW Syria for a more complete view of crystal deformation in the Restraining bend. The GPS network includes Continuous GPS sites and 27 campaign sites: 14 sites in Lebanon installed in 2002, 8 sites in Lebanon installed in 2005, and 5 sites in southwestern Syria. Preliminary velocities for older campaign sites have uncertainties less than 1 mm/yr, whereas newer sites have around 1.5 mm/yr uncertainties. The improved spatial coverage and reduced uncertainties allow constructing elastic fault models that explore strain partitioning between two strike slip faults (representing the Yammouneh and Serghaya faults) and a generalized thrust fault to accommodate convergence in the Restraining bend. Preliminary velocities suggest around 4 - 4.5 mm/yr along the Yammouneh fault. This study provides an essential tool for assessing tool for assessing the seismic hazard in the vicinity of the Lebanese restraining bend.

  3. Kinematic Analysis of Fault-Slip Data in the Central Range of Papua, Indonesia

    Directory of Open Access Journals (Sweden)

    Benyamin Sapiie


    Full Text Available DOI:10.17014/ijog.3.1.1-16Most of the Cenozoic tectonic evolution in New Guinea is a result of obliquely convergent motion that ledto an arc-continent collision between the Australian and Pacific Plates. The Gunung Bijih (Ertsberg Mining District(GBMD is located in the Central Range of Papua, in the western half of the island of New Guinea. This study presentsthe results of detailed structural mapping concentrated on analyzing fault-slip data along a 15-km traverse of theHeavy Equipment Access Trail (HEAT and the Grasberg mine access road, providing new information concerning thedeformation in the GBMD and the Cenozoic structural evolution of the Central Range. Structural analysis indicatesthat two distinct stages of deformation have occurred since ~12 Ma. The first stage generated a series of en-echelonNW-trending (π-fold axis = 300° folds and a few reverse faults. The second stage resulted in a significant left-lateralstrike-slip faulting sub-parallel to the regional strike of upturned bedding. Kinematic analysis reveals that the areasbetween the major strike-slip faults form structural domains that are remarkably uniform in character. The changein deformation styles from contractional to a strike-slip offset is explained as a result from a change in the relativeplate motion between the Pacific and Australian Plates at ~4 Ma. From ~4 - 2 Ma, transform motion along an ~ 270°trend caused a left-lateral strike-slip offset, and reactivated portions of pre-existing reverse faults. This action had aprofound effect on magma emplacement and hydrothermal activity.

  4. L band InSAR sudy on the Ganos section of the North Anatolian Fault Zone (NAFZ) (United States)

    de Michele, Marcello


    and eventual interactions between geologic structures, complementarily to GPS measurements and other in-situ observations on the study area. Mid-term monitoring (4 - 10 years) of the crustal deformation in the MARsite area is targeted. The ALOS Palsar archive over the Ganos Section of the NAFZ is not extraordinarily rich concerning the number of SAR scenes acquired with the same viewing and polarisation mode, which is a necessity when willing to perform a standard InSAR study. Thus, we decided to improve the number of potential SAR scenes by performing a processing on multiple polarisation data. We combine Fine Beam Mode Single Polarisation (FBS) and Fine Beam Mode Dual Polarisation (FBD) data, with a look angle of about 38.7°. We actually can process both these data together at the price of a decrease in spatial resolution but improving the data temporal sampling and dataset population. We then have 13 Single Look Complex (SLC) L-band data spanning 4 years, from 2007/07/07 to 2011/01/15. Besides, the satellite path orientation with respect to the fault orientation is optimal to obtain a suitable InSAR LOS sensitivity to strike-slip surface movement parallel to the NAFZ at the Ganos section. The shallow creep signal is expected to range from ~0 to 1.5 cm/yr. From the 66 initial differential interferograms, we select a subset of 41 high-signal-coherence interferograms as input for the stacking procedure. Our results suggest that the tectonic signal within the velocity map retrieved from ALOS Palsar InSAR presented in this study is hidden beneath a number of interferometric phase contributions. The phase contributions are mainly due Radio Frequency Interferences (RFI) that are emitted from the ground and affect L-band data. RFI bias the amplitude and phase of the L-band signal resulting in serious co-registration problems and stripes on the interferometric phase. To compensate this bias, we apply RFI filtering during the SAR focusing. Unfortunately, the RFI filter

  5. A Tensile Origin for Pulverized Fault Zone Rock (United States)

    St Julien, R. C.; Griffith, W. A.; Ghaffari, H. O.


    The origin of highly fragmented, but lightly strained rocks distributed asymmetrically across major strike slip faults has been enigmatic since their first recognition, yet the explanation has major implications for earthquake physics. These so called "pulverized" rocks are found up to 100m away from the principal slip zone of the San Andreas fault and other strike slip faults around the world. Experiments suggest that rock pulverization occurs at strain rates on the order of 102 s-1, pointing to a coseismic origin; however, strain rates during sub-Rayleigh earthquake rupture propagation 100m from faults is expected to be at least two orders of magnitude smaller than this, leading some to suggest that pulverization occurs during supershear earthquake rupture. Numerical solutions suggest that states of isotropic tension occur in more compliant sides of the fault, and at distances as great as 100m from the fault, as a sub-Rayleigh rupture propagates. We develop a novel modification to the Split-Hopkinson Pressure Bar apparatus wherein an axial compressive pulse produces isotropic radial tension in a disk-shaped rock specimen. We show that under isotropic tension, fragmentation of Westerly Granite occurs at strain rates on the order of 100 s-1, and fragment size scales inversely with strain rate in close agreement with energy-based fragmentation models. Similar experiments on thermally pre-treated Westerly granite specimens demonstrate how pre-existing damage can further reduce strain rates and tensile stresses required for intense fragmentation. Our results solve the strain rate-distance scaling problem between laboratory and field observations of pulverized rocks and also explains the asymmetric distribution of fault rocks. Furthermore, this implies long-term preferred earthquake rupture directivity along major faults where pulverized rocks are found.

  6. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham


    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  7. Cretaceous to Cenozoic sequential kinematics in the forearc-arc transition: effects of changing oblique plate convergence and the San Andreas system with implications for the La Paz fault (southern Baja California, Mexico) (United States)

    Mattern, Frank; Pérez Venzor, José Antonio; Pérez Espinoza, Jesus Efraín; Rochin, Joel Hirales


    We studied metasediments and mylonitic arc granitoids from the forearc-arc transition of southern Baja California, Mexico. Thin section analyses and field evidence show that metamorphism of the forearc-arc transition is of the high T/P active margin type. The heat was provided by Cretaceous arc intrusions. Field observations and thin section analyses, including the time/temperature deformation path, demonstrate that the study area was first affected by dextral, ductile shearing followed by ductile, sinistral, possibly transpressive strike-slip parallel to the magmatic arc during the Cretaceous. Both intervals are related to changing oblique plate convergence and, thus, identified as trench-linked strike-slip effects. The geometric relationship between arc-dipping foliation, stretching lineation and shear sense indicates that the arc may have been pressed onto the rocks of the study area during sinistral shearing. The sinistral interval lasted up until regional cooling (Early Cenozoic?). Because the La Paz fault is closely associated with the forearc-arc transition, it must have the same Cretaceous to Early Cenozoic kinematic history. The northern segment of the La Paz fault is a modern, brittle, strike-slip fault interpreted as a dextral synthetic fault of the San Andreas system which opened the Gulf of California (Mar de Cortés/Golfo de California). We found no evidence for Miocene Basin and Range extension.

  8. Metal fluxing in a large-scale intra-arc fault: insights from the Liquiñe-Ofqui Fault System (LOFS) and associated geothermal fields in southern Chile (United States)

    Tardani, D.; Reich, M.; Sano, Y.; Takahata, N.; Wen, H.; Roulleau, E.; Sanchez-Alfaro, P.; González-Jiménez, J. M.; Shinohara, H.; Yang, T. F.; Cembrano, J. M.; Arancibia, G.


    In compressional and extensional settings, high-enthalpy geothermal systems and epithermal vein deposits are genetically linked to shallow magmatic reservoirs, overlying hydrothermal circulation cells, and structural meshes that permit vertical migration of fluids. In the Andean Cordillera of Central-Southern Chile, the nature of the relationship between tectonics and volcanism is the result of interaction between the crustal structures and the regional stress field. Between 37° and 46°S, the volcanic and geothermal activity is controlled by the NNE-trending, 1,200 km long LOFS, an intra-arc dextral strike-slip fault system, associated with second-order intra-arc anisotropies of overall NE-SW and NW-SE orientation. Although there is consensus that volcanism in this segment are controlled by the regional scale tectonic stress field, the structural controls on magma degassing and metal fluxing remains poorly constrained. The goal of the study is to constrain the first-order controls on fluxes of noble metals (Au, Ag, PGEs), base metals (Cu, Zn, Pb) and metalloids (As, Sb, Se) along this segment. For this purpose we collected fumarole and thermal water samples from five selected volcanic-geothermal systems along the northern termination of the LOFS. The selected areas are characterized by the occurrence of surface manifestations and are located along NNE-oriented or NWN-oriented fault systems. In each location, the trace metal budget and isotopic composition of fumaroles and springs were constrained along with cations, anions and dissolved gaseous species. The helium isotopic ratios of fumaroles, defined as R/Ra, range between 3.5 and 7.5 in the studied segment. High R/Ra, mantle-like signatures are associated with geothermal manifestations occurring along NNE-trending faults, whereas lower R/Ra values in NWN-oriented systems most likely represent mixing between mantle and crustal sources. Concentrations of Au, Cu and As are significant in selected geothermal wells

  9. Geophysical study of the Ota–VF Xira–Lisbon–Sesimbra fault zone and the lower Tagus Cenozoic basin

    International Nuclear Information System (INIS)

    Carvalho, João; Rabeh, Taha; Bielik, Miroslav; Szalaiová, Eva; Torres, Luís; Silva, Marisa; Carrilho, Fernando; Matias, Luís; Miranda, Jorge Miguel


    This paper focuses on the interpretation of seismic reflection, gravimetric, topographic, deep seismic refraction and seismicity data to study the recently proposed Ota–Vila Franca de Xira–Lisbon–Sesimbra (OVLS) fault zone and the lower Tagus Cenozoic basin (LTCB). The studied structure is located in the lower Tagus valley (LTV), an area with over 2 million inhabitants that has experienced historical earthquakes which caused significant damage and economical losses (1344, 1531 and 1909 earthquakes) and whose tectonic sources are thought to be local but mostly remain unknown. This study, which is intended as a contribution to improve the seismic hazard of the area and the neotectonics of the region, shows that the above-proposed fault zone is probably a large crustal thrust fault that constitutes the western limit of the LTCB. Gravimetric, deep refraction and seismic reflection data suggest that the LTCB is a foreland basin, as suggested previously by some authors, and that the OVLS northern and central sectors act as the major thrusts. The southern sector fault has been dominated by strike-slip kinematics due to a different orientation to the stress field. Indeed, geological outcrop and seismic reflection data interpretation suggests that, based on fault geometry and type of deformation at depth, the structure is composed of three major segments. These data suggest that these segments have different kinematics in agreement with their orientation to the regional stress field. The OVLS apparently controls the distribution of the seismicity in the area. Geological and geophysical information previously gathered also points that the central segment is active into the Quaternary. The segment lengths vary between 20 and 45 km. Since faults usually rupture only by segments, maximum expectable earthquake magnitudes and other parameters have been calculated for the three sectors of the OVLS fault zone using empirical relationships between earthquake statistics and

  10. Neotectonic development of the El Salvador Fault Zone and implications for deformation in the Central America Volcanic Arc: Insights from 4-D analog modeling experiments (United States)

    Alonso-Henar, Jorge; Schreurs, Guido; Martinez-Díaz, José Jesús; Álvarez-Gómez, José Antonio; Villamor, Pilar


    The El Salvador Fault Zone (ESFZ) is an active, approximately 150 km long and 20 km wide, segmented, dextral strike-slip fault zone within the Central American Volcanic Arc striking N100°E. Although several studies have investigated the surface expression of the ESFZ, little is known about its structure at depth and its kinematic evolution. Structural field data and mapping suggest a phase of extension, at some stage during the evolution of the ESFZ. This phase would explain dip-slip movements on structures that are currently associated with the active, dominantly strike slip and that do not fit with the current tectonic regime. Field observations suggest trenchward migration of the arc. Such an extension and trenchward migration of the volcanic arc could be related to slab rollback of the Cocos plate beneath the Chortis Block during the Miocene/Pliocene. We carried out 4-D analog model experiments to test whether an early phase of extension is required to form the present-day fault pattern in the ESFZ. Our experiments suggest that a two-phase tectonic evolution best explains the ESFZ: an early pure extensional phase linked to a segmented volcanic arc is necessary to form the main structures. This extensional phase is followed by a strike-slip dominated regime, which results in intersegment areas with local transtension and segments with almost pure strike-slip motion. The results of our experiments combined with field data along the Central American Volcanic Arc indicate that the slab rollback intensity beneath the Chortis Block is greater in Nicaragua and decreases westward to Guatemala.

  11. New evidence on the state of stress of the san andreas fault system. (United States)

    Zoback, M D; Zoback, M L; Mount, V S; Suppe, J; Eaton, J P; Healy, J H; Oppenheimer, D; Reasenberg, P; Jones, L; Raleigh, C B; Wong, I G; Scotti, O; Wentworth, C


    Contemporary in situ tectonic stress indicators along the San Andreas fault system in central California show northeast-directed horizontal compression that is nearly perpendicular to the strike of the fault. Such compression explains recent uplift of the Coast Ranges and the numerous active reverse faults and folds that trend nearly parallel to the San Andreas and that are otherwise unexplainable in terms of strike-slip deformation. Fault-normal crustal compression in central California is proposed to result from the extremely low shear strength of the San Andreas and the slightly convergent relative motion between the Pacific and North American plates. Preliminary in situ stress data from the Cajon Pass scientific drill hole (located 3.6 kilometers northeast of the San Andreas in southern California near San Bernardino, California) are also consistent with a weak fault, as they show no right-lateral shear stress at approximately 2-kilometer depth on planes parallel to the San Andreas fault.

  12. Variations in strength and slip rate along the san andreas fault system. (United States)

    Jones, C H; Wesnousky, S G


    Convergence across the San Andreas fault (SAF) system is partitioned between strike-slip motion on the vertical SAF and oblique-slip motion on parallel dip-slip faults, as illustrated by the recent magnitude M(s) = 6.0 Palm Springs, M(s) = 6.7 Coalinga, and M(s) = 7.1 Loma Prieta earthquakes. If the partitioning of slip minimizes the work done against friction, the direction of slip during these recent earthquakes depends primarily on fault dip and indicates that the normal stress coefficient and frictional coefficient (micro) vary among the faults. Additionally, accounting for the active dip-slip faults reduces estimates of fault slip rates along the vertical trace of the SAF by about 50 percent in the Loma Prieta and 100 percent in the North Palm Springs segments.

  13. Weixi-Qiaohou Fault in Southwest China: Recent Active Features and Relationship with Red River Fault (United States)

    Zufeng, C.; JianLin, L.


    The Sichuan-Yunnan block in the eastern margin of the Tibetan plateau is a very active block characterized by lateral extrusion and frequent seismicity. Based on geologic and geomorphic field observations, we present late-Quaternary active features of the Weixi-Qiaohou Fault located in the western margin of the Sichuan-Yunnan block, and discuss the relationship between the Weixi-Qiaohou Fault and the Red River Fault in southwest China. The Weixi-Qiaohou Fault has apparently dominated the development of many late Cenozoic basins, showing dextral strike-slip motion features as expressed by synchronous right-lateral dislocation of mountain ridges and rivers. The Weixi-Qiaohou Fault has displaced late Pleistocene to Holocene accumulations revealed by exploratory trenches at Yushichang, Desheng, and Changyi. There is a fault scarp of 3km long and 2.5m high on the river terraces and the alluvial fans near Yanqu and Shiyan. The fault is estimated to have an average movement rate of 1.8-2.4mm/ /yr. horizontally and 0.3 0.35mm/yr. vertically since late Pleistocene, based on displacement magnitude of the alluvial fans, gullies and river terraces. The Weixi-Qiaohou Fault appears to have significant links with the Red River Fault in the south and the Jinsha River Fault in the north. Since late Cenozoic, the Weixi-Qiaohou Fault has developed kinematics similar to the Red River Fault and the Jinsha River Fault, indicating that the Weixi-Qiaohou Fault could be the northern segment of the Red River Fault, and that the Weixi-Qiaohou, Red River and Jinsha River faults constitute the western boundary of the Sichuan-Yunnan active block.

  14. A bottom-driven mechanism for distributed faulting in the Gulf of California rift (United States)

    Persaud, Patricia; Tan, Eh; Contreras, Juan; Lavier, Luc


    Observations of active faulting in the continent-ocean transition of the Northern Gulf of California show multiple oblique-slip faults distributed in a 200 × 70 km2 area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform Fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with the help of pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear abruptly increases in a step-function manner while oblique-slip on numerous faults dominates when basal shear is distributed. We further explore how the style of faulting varies with obliquity and demonstrate that the style of delocalized faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area.

  15. Focusing of relative plate motion at a continental transform fault: Cenozoic dextral displacement >700 km on New Zealand's Alpine Fault, reversing >225 km of Late Cretaceous sinistral motion (United States)

    Lamb, Simon; Mortimer, Nick; Smith, Euan; Turner, Gillian


    The widely accepted ˜450 km Cenozoic dextral strike-slip displacement on New Zealand's Alpine Fault is large for continental strike-slip faults, but it is still less than 60% of the Cenozoic relative plate motion between the Australian and Pacific plates through Zealandia, with the remaining motion assumed to be taken up by rotation and displacement on other faults in a zone up to 300 km wide. We show here that the 450 km total displacement across the Alpine Fault is an artifact of assumptions about the geometry of New Zealand's basement terranes in the Eocene, and the actual Cenozoic dextral displacement across the active trace is greater than 665 km, with more than 700 km (and 94%) of the relative plate motion in the last 25 Ma at an average rate in excess of 28 mm/yr. It reverses more than 225 km (and Zealandia in the Late Cretaceous, when Zealandia lay on the margin of Gondwana, providing a direct constraint on the kinematics of extension between East and West Antarctica at this time.

  16. Earthquake geology of the Bulnay Fault (Mongolia) (United States)

    Rizza, Magali; Ritz, Jean-Franciois; Prentice, Carol S.; Vassallo, Ricardo; Braucher, Regis; Larroque, Christophe; Arzhannikova, A.; Arzhanikov, S.; Mahan, Shannon; Massault, M.; Michelot, J-L.; Todbileg, M.


    The Bulnay earthquake of July 23, 1905 (Mw 8.3-8.5), in north-central Mongolia, is one of the world's largest recorded intracontinental earthquakes and one of four great earthquakes that occurred in the region during the 20th century. The 375-km-long surface rupture of the left-lateral, strike-slip, N095°E trending Bulnay Fault associated with this earthquake is remarkable for its pronounced expression across the landscape and for the size of features produced by previous earthquakes. Our field observations suggest that in many areas the width and geometry of the rupture zone is the result of repeated earthquakes; however, in those areas where it is possible to determine that the geomorphic features are the result of the 1905 surface rupture alone, the size of the features produced by this single earthquake are singular in comparison to most other historical strike-slip surface ruptures worldwide. Along the 80 km stretch, between 97.18°E and 98.33°E, the fault zone is characterized by several meters width and the mean left-lateral 1905 offset is 8.9 ± 0.6 m with two measured cumulative offsets that are twice the 1905 slip. These observations suggest that the displacement produced during the penultimate event was similar to the 1905 slip. Morphotectonic analyses carried out at three sites along the eastern part of the Bulnay fault, allow us to estimate a mean horizontal slip rate of 3.1 ± 1.7 mm/yr over the Late Pleistocene-Holocene period. In parallel, paleoseismological investigations show evidence for two earthquakes prior to the 1905 event with recurrence intervals of ~2700-4000 years.

  17. The ground motion simulation of Kangding Mw6.0,2014 by the stochastic finite-fault model (United States)

    Zhang, Lifang; Li, Shanyou; Lyu, Yuejun


    The November 22, 2014, Kangding strike-slip earthquake (Mw 6.0) occurred on the Southern Section of the Xianshuihe Fault Zone. Its epicenter was at 101.69°E, 30.26°N, source mechanism strikes N33°E, dips 82°, and slipped at an angle of -9°. In this work, we simulated ground motions by the stochastic finite-fault model(SFFM), including peak ground acceleration, peak velocity, and acceleration time-histories caused by this earthquake.

  18. Active faults and related Late Quaternary deformation along the Northwestern Himalayan Frontal Zone, India

    Directory of Open Access Journals (Sweden)

    T. Nakata


    Full Text Available Numerous newly-identified traces of active faults in the Himalayan foothill zone along the HFF around Chandigarh, in Pinjore Dun, along the piedmont zone of the Lower Siwalik hill front and within the Lower Tertiary hill range reveal the pattern of thrust and strike-slip faulting, striking parallel to the principal structural trend (NNW-SSE of the orogenic belt. The active Chandigarh Fault, Pinjore Garden Fault and Barsar thrust have vertically dislocated, warped and backtilted fluvial and alluvial-fan surfaces made up of Late Pleistocene-Holocene sediments. West- and southwest-facing fault scarplets with heights ranging from 12 to 50 m along these faults suggest continued tectonic movement through Late Pleistocene to recent times. Gentle warping and backtilting of the terraces on the hanging wall sides of the faults indicate fault-bend folding. These active faults are the manifestation of north-dipping imbricated thrust faults branching out from the major fault systems like the Main Boundary Fault (MBF and Himalayan Frontal Fault (HFF, probably merging down northward into a décollement. The Taksal Fault, striking NNW-SSE, shows prominent right-lateral movement marked by lateral offset of streams and younger Quaternary terraces and occupies a narrow deep linear valley along the fault trace. Right stepping along this fault has resulted in formation of a small pull-apart basin. Fault scarplets facing ENE and WSW are the manifestation of dip-slip movement. This fault is an example of slip-partitioning between the strike-slip and thrust faults, suggesting ongoing oblique convergence of the Indian plate and northward migration of a tectonic sliver. Slip rate along the Taksal Fault has been calculated as 2.8 mm/yr. Preliminary trench investigation at the base of the Chandigarh Fault Scarp has revealed total displacement of 3.5 m along a low angle thrust fault with variable dip of 20° to 46° due northeast, possibly the result of one

  19. Fault imprint in clay units: magnetic fabric, structural and mineralogical signature (United States)

    Moreno, Eva; Homberg, Catherine; Schnyder, Johann; Person, Alain; du Peloux1, Arthur; Dick, Pierre


    Fault-induced deformations in clay units can be difficult to decipher because strain markers are not always visible at outcrop scale or using geophysical methods. Previous studies have indicated that the anisotropy of magnetic susceptibility (ASM) provides a powerful and rapid technique to investigate tectonic deformation in clay units even when they appear quite homogenous and undeformed at the outcrop scale (Lee et al. 1990, Mattei et al. 1997). We report here a study based on ASM, structural analysis and magnetic and clay mineralogy from two boreholes (TF1 and ASM1)drilled horizontally in the Experimental Station of Tournemire of the Institute for Radiological Protection and Nuclear Safety (IRSN) in Aveyron (France). The boreholes intersect a N-S trending strike-slip fault from west to east. The ASM study indicates the evolution of the magnetic fabric from the undeformed host rock to the fault core. Also, all the fractures cutting the studied interval of the core have been measured as well as the slip vectors which are generally well preserved. In the two boreholes, the undeformed sediments outside the fault zone are characterized by an oblate fabric, a sub-vertical minimum susceptibility axis (k3) perpendicular to the bedding plane and without magnetic lineation. Within the fault zone, a tilt in the bedding plane has been observed in two boreholes TF1 and ASM1. In addition, in the TF1 core, the fault area presents a tectonic fabric characterized by a triaxial AMS ellipsoid. Moreover, the magnetic lineation increases and k3 switches from a vertical to a sub-horizontal plane. This kind of fabric has not been observed in borehole ASM1. The structural analysis of the individual fractures making the fault zone indicates a complex tectonic history with different imprint in the two fault segments cut by the two boreholes. The large majority of fractures correspond to dextral strike-slip faults but normal and reverse movements were observed and are more or less

  20. Fault segmentation and fluid flow in the Geneva Basin (France & Switzerland) (United States)

    Cardello, Giovanni Luca; Lupi, Matteo; Makhloufi, Yasin; Do Couto, Damien; Clerc, Nicolas; Sartori, Mario; Samankassou, Elias; Moscariello, Andrea; Gorin, Georges; Meyer, Michel


    The Geneva Basin (GB) is an Oligo-Miocene siliciclastic basin tightened between the Alps and the southern Jura fold-and-thrust belt, whose carbonate reservoir is crossed by faults of uncertain continuity. In the frame of the geothermal exploration of the GB, the associated side risks, i.e., maximum expected earthquake magnitude, and the best suitable geothermal structures need to be determined. The outcropping relieves represent good field analogues of buried structures identified after seismo-stratigraphic analysis. In this frame, we review the regional tectonics to define the i) present-day setting, ii) fault properties and; iii) preferential paths for fluid flow. Field and geophysical data confirmed that during the late Oligocene-early Miocene the Molasse siliciclastic deposits progressively sealed the growing anticlines consisting of Mesozoic carbonates. Those are shaped by a series of fore- and back-thrusts, which we have identified also within the Molasse. As shortening is accommodated by bed-to-bed flexural-slip within shale-rich interlayers, usually having scarce hydraulic inter-connectivity, syn-kinematic mineralization massively concentrates instead within two strike-slip sets. The "wet" faults can be distinguished on the base of: orientation, amount of displacement and fabric. The first set (1) is constituted by left-lateral NNW-striking faults. The most remarkable of those, the Vuache Fault, is about 20 km long, determining a pop-up structure plunging to the SE. Minor structures, up to 5 km long, are the tear-faults dissecting the Salève antiform. In places, those are associated with brittle-ductile transition textures and crack-and-seal mineralization. Set (1) later evolved into discrete and still segmented faulting as it is traced by earthquakes nucleated at less than 5 km of depth (ML 5.3, Epagny 1996). The second set (2) is constituted by W/NW-striking right-lateral faults, up to 10 km long, associated in places with thick polyphase breccia

  1. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal


    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are

  2. Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions (United States)

    Kastrup, U.; Zoback, M.L.; Deichmann, N.; Evans, Kenneth F.; Giardini, D.; Michael, A.J.


    This study is devoted to a systematic analysis of the state of stress of the central European Alps and northern Alpine foreland in Switzerland based on focal mechanisms of 138 earthquakes with magnitudes between 1 and 5. The most robust feature of the results is that the azimuth of the minimum compressive stress, S3, is generally well constrained for all data subsets and always lies in the NE quadrant. However, within this quadrant, the orientation of S3 changes systematically both along the structural strike of the Alpine chain and across it. The variation in stress along the mountain belt from NE to SW involves a progressive, counterclockwise rotation of S3 and is most clear in the foreland, where it amounts to 45??-50??. This pattern of rotation is compatible with the disturbance to the stress field expected from the indentation of the Adriatic Block into the central European Plate, possibly together with buoyancy forces arising from the strongly arcuate structure of the Moho to the immediate west of our study area. Across the Alps, the variation in azimuth of S3 is defined by a progressive, counterclockwise rotation of about 45?? from the foreland in the north across the Helvetic domain to the Penninic nappes in the south and is accompanied by a change from a slight predominance of strike-slip mechanisms in the foreland to a strong predominance of normal faulting in the high parts of the Alps. The observed rotation can be explained by the perturbation of the large-scale regional stress by a local uniaxial deviatoric tension with a magnitude similar to that of the regional differential stress and with an orientation perpendicular to the strike of the Alpine belt. The tensile nature and orientation of this stress is consistent with the "spreading" stress expected from lateral density changes due to a crustal root beneath the Alps. Copyright 2004 by the American Geophysical Union.

  3. Recent Earthquake Breaks At The Sea of Marmara Pull-apart (North Anatolian Fault) (United States)

    Ucarkus, G.; Armijo, R.; Cakir, Z.; Schmidt, S.; Meyer, B.


    The North Anatolian Fault (NAF) makes a major transtensional step-over in the west which forms the lithospheric scale Sea of Marmara pull-apart, between the strike-slip Ganos and Izmit faults. Smaller strike- slip segments and pull-apart basins alternate within the main step-over, combining strike-slip and normal faulting. During the MARMARASCARPS cruise clear morphologic evidence of recent faulting activity was found along several segments of the NAF in the Sea of Marmara. Sets of well-preserved earthquake scarps extend offshore from the Ganos and Izmit faults on land. Our observations from visual exploration and ultra- high resolution bathymetry data (microbathymetry) suggest that those scarps correspond to the submarine ruptures of the purely strike-slip 1999 Izmit (Mw 7.4) and the 1912 Ganos (Ms 7.4) earthquakes. One break extends offshore eastward of the Ganos fault and cuts continuously the Tekirdag basin and Western High up to the Central basin over 60 km. Scarps, here, are very well preserved and show fine-scale morphology typical of strike-slip faulting. The age of the last earthquake break is difficult to assess directly with dating approaches. However, recent sedimentation rates can provide information on the age of the sediment covering the scarps. With that purpose, ROV (remote operated vehicle) sampled interface cores (up to 35 cm) into the disturbed sediment in the immediate vicinity of those scarps. Our first geochronological analysis with 210Pb seems to confirm the connection of fresh fault scarps to the 1912 Ganos earthquake rupture. Sedimentation rates determined from 210Pb profiles (excluding disturbed layers) on cores show a narrow range between 0.1-0.2 cm/yr. Another very fresh break is seen where the Izmit fault enters westward into the Cinarcik Basin. It crosses the bottom of a submarine canyon at 180 m depth, 10 km west of the Hersek peninsula. Microbathymetry suggests the 1999 fault scarp is there 0.5 m high. The flat floor of the canyon

  4. (U-Th)/He thermochronometry reveals Pleistocene punctuated deformation and synkinematic hematite mineralization in the Mecca Hills, southernmost San Andreas Fault zone (United States)

    Moser, Amy C.; Evans, James P.; Ault, Alexis K.; Janecke, Susanne U.; Bradbury, Kelly K.


    The timing, tempo, and processes of punctuated deformation in strike-slip fault systems are challenging to resolve in the rock record. Faults in the Mecca Hills, adjacent to the southernmost San Andreas Fault, California, accommodate active deformation and exhumation in the Plio-Pleistocene sedimentary rocks and underlying crystalline basement. We document the spatiotemporal patterns of San Andreas Fault-related deformation as recorded in crystalline basement rocks of the Mecca Hills using fault microstructural observations, geochemical data, and hematite (n = 24) and apatite (n = 44) (U-Th)/He (hematite He, apatite He) thermochronometry data. Reproducible mean hematite He dates from minor hematite-coated fault surfaces in the Painted Canyon Fault damage zone range from ∼0.7-0.4 Ma and are younger than ∼1.2 Ma apatite He dates from adjacent crystalline basement host rock. These data reveal concomitant Pleistocene pulses of fault slip, fluid flow, and synkinematic hematite mineralization. Hematite textures, crystal morphology, and hematite He data patterns imply some damage zone deformation occurred via cyclic crack-seal and creep processes. Apatite He data from crystalline basement define distinct date-eU patterns and indicate cooling across discrete fault blocks in the Mecca Hills. Uniform ∼1.2 Ma apatite He dates regardless of eU are located exclusively between the Painted Canyon and Platform faults. Outside of this fault block, samples yield individual apatite He dates from ∼30-1 Ma that define a positive apatite He date-eU correlation. These patterns reveal focused exhumation away from the main trace of the San Andreas Fault at ∼1.2 Ma. Low-temperature thermochronometry of fault-related rocks provides an unprecedented window into the 105-106-yr record of San Andreas Fault-related deformation in the Mecca Hills and documents hematite deformation mechanisms that may be operative in other strike-slip faults world-wide.

  5. Explaining the current geodetic field with geological models: A case study of the Haiyuan fault system (United States)

    Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M. P.; Barbot, S.; Peltzer, G.; Tapponnier, P.


    Oblique convergence across Tibet leads to slip partitioning with the co-existence of strike-slip, normal and thrust motion in major fault systems. While such complexity has been shown at the surface, the question is to understand how faults interact and accumulate strain at depth. Here, we process InSAR data across the central Haiyuan restraining bend, at the north-eastern boundary of the Tibetan plateau and show that the surface complexity can be explained by partitioning of a uniform deep-seated convergence rate. We construct a time series of ground deformation, from Envisat radar data spanning from 2001-2011 period, across a challenging area because of the high jump in topography between the desert environment and the plateau. To improve the signal-to-noise ratio, we used the latest Synthetic Aperture Radar interferometry methodology, such as Global Atmospheric Models (ERA Interim) and Digital Elevation Model errors corrections before unwrapping. We then developed a new Bayesian approach, jointly inverting our InSAR time series together with published GPS displacements. We explore fault system geometry at depth and associated slip rates and determine a uniform N86±7E° convergence rate of 8.45±1.4 mm/yr across the whole fault system with a variable partitioning west and east of a major extensional fault-jog. Our 2D model gives a quantitative understanding of how crustal deformation is accumulated by the various branches of this thrust/strike-slip fault system and demonstrate the importance of the geometry of the Haiyuan Fault, controlling the partitioning or the extrusion of the block motion. The approach we have developed would allow constraining the low strain accumulation along deep faults, like for example for the blind thrust faults or possible detachment in the San Andreas "big bend", which are often associated to a poorly understood seismic hazard.

  6. Microseismicity at the North Anatolian Fault in the Sea of Marmara offshore Istanbul, NW Turkey (United States)

    Bulut, Fatih; Bohnhoff, Marco; Ellsworth, William L.; Aktar, Mustafa; Dresen, Georg


    The North Anatolian Fault Zone (NAFZ) below the Sea of Marmara forms a “seismic gap” where a major earthquake is expected to occur in the near future. This segment of the fault lies between the 1912 Ganos and 1999 İzmit ruptures and is the only NAFZ segment that has not ruptured since 1766. To monitor the microseismic activity at the main fault branch offshore of Istanbul below the Çınarcık Basin, a permanent seismic array (PIRES) was installed on the two outermost Prince Islands, Yassiada and Sivriada, at a few kilometers distance to the fault. In addition, a temporary network of ocean bottom seismometers was deployed throughout the Çınarcık Basin. Slowness vectors are determined combining waveform cross correlation and P wave polarization. We jointly invert azimuth and traveltime observations for hypocenter determination and apply a bootstrap resampling technique to quantify the location precision. We observe seismicity rates of 20 events per month for M < 2.5 along the basin. The spatial distribution of hypocenters suggests that the two major fault branches bounding the depocenter below the Çınarcık Basin merge to one single master fault below ∼17 km depth. On the basis of a cross-correlation technique we group closely spaced earthquakes and determine composite focal mechanisms implementing recordings of surrounding permanent land stations. Fault plane solutions have a predominant right-lateral strike-slip mechanism, indicating that normal faulting along this part of the NAFZ plays a minor role. Toward the west we observe increasing components of thrust faulting. This supports the model of NW trending, dextral strike-slip motion along the northern and main branch of the NAFZ below the eastern Sea of Marmara.

  7. Fault geometry of 2015, Mw7.2 Murghab, Tajikistan earthquake controls rupture propagation: Insights from InSAR and seismological data (United States)

    Sangha, Simran; Peltzer, Gilles; Zhang, Ailin; Meng, Lingsen; Liang, Cunren; Lundgren, Paul; Fielding, Eric


    Combining space-based geodetic and array seismology observations can provide detailed information about earthquake ruptures in remote regions. Here we use Landsat-8 imagery and ALOS-2 and Sentinel-1 radar interferometry data combined with data from the European seismology network to describe the source of the December 7, 2015, Mw7.2 Murghab (Tajikistan) earthquake. The earthquake reactivated a ∼79 km-long section of the Sarez-Karakul Fault, a NE oriented sinistral, trans-tensional fault in northern Pamir. Pixel offset data delineate the geometry of the surface break and line of sight ground shifts from two descending and three ascending interferograms constrain the fault dip and slip solution. Two right-stepping, NE-striking segments connected by a more easterly oriented segment, sub-vertical or steeply dipping to the west were involved. The solution shows two main patches of slip with up to 3.5 m of left lateral slip on the southern and central fault segments. The northern segment has a left-lateral and normal oblique slip of up to a meter. Back-projection of high-frequency seismic waves recorded by the European network, processed using the Multitaper-MUSIC approach, focuses sharply along the surface break. The time progression of the high-frequency radiators shows that, after a 10 second initiation phase at slow speed, the rupture progresses in 2 phases at super-shear velocity (∼4.3-5 km/s) separated by a 3 second interval of slower propagation corresponding to the passage through the restraining bend. The intensity of the high-frequency radiation reaches maxima during the initial and middle phases of slow propagation and is reduced by ∼50% during the super-shear phases of the propagation. These findings are consistent with studies of other strike-slip earthquakes in continental domain, showing the importance of fault geometric complexities in controlling the speed of fault propagation and related spatiotemporal pattern of the high-frequency radiation.

  8. Arshan palaeoseismic feature of the Tunka fault (Baikal rift zone, Russia) (United States)

    Smekalin, Oleg P.; Shchetnikov, Alexander A.; White, Dustin


    The traditional concept of the rift development of flank depressions in the Baikal rift zone is now doubted in view of some indicators for compression deformations identified by the seismogeological and geodetic methods. Besides, the paleoseismological investigations revealed seismogenic strike-slips and reverse faults in the Tunka fault zone that is a major structure-controlling element of the Tunka rift depression. However, a detailed study of the upslope-facing scarp in the Arshan paleoseismogenic structure zone has shown that its formation might be due to rift mechanism of basin formation. Age estimation has been made for the previously unknown pre-historic earthquake whose epicentral area coincides with the western flank of the Arshan paleoseismogenic structure. Judging from previously determined ages of paleoearthquakes, the mean recurrence period for faulting events on the central Tunka fault is 2780-3440 years.

  9. FOP 2012 stop, Honey Lake fault, Doyle, CA (United States)

    Gold, Ryan; Briggs, Richard W.; Crone, Anthony; Angster, Steve; Seitz, Gordon G.


    The Honey Lake fault system (HLFS) strikes north-northwestward across Long Valley near Doyle, CA and is part of a network of active, dextral strike-slip faults in the northern Walker Lane (Figure 1). Geologic investigations of a right-laterally offset terrace riser along the north bank of Long Valley Creek, which we refer to as site 1 (Figure 2), indicate a latest Quaternary slip rate of 1.1-2. 6 mm/yr [Wills and Borchardt, 1993] and 1.7 ± 0.6 mm/yr [Turner and others, 2008] (Table 1). These studies also document evidence of at least four post-6.8 ka surface-rupturing earthquakes at this site.

  10. A Three-Dimensional Numerical Investigation of San Andreas Fault Configuration Through the San Gorgonio Pass (United States)

    Dair, L.; Cooke, M.


    The partitioning of deformation among strands of the San Andreas Fault through the San Gorgonio pass depends on fault geometry. We investigate three alternative three-dimensional configurations of the San Andreas Fault to explore the influence of fault geometry on uplift patterns and slip rates. One model has the commonly used vertical geometry for the system. Another uses the Southern California Earthquake Center Community Fault Model to include two north-dipping, discontinuous, alternative stands. We developed a third model that smoothly connects the north-dipping faults to adjacent segments. Regional transform loading is applied as slip at the distal edges of a deep detachment as well as along the distal portions of the primary fault segments. The model with vertical faults fails to produce uplift in the San Bernardino Mountains. Both of the north-dipping models produce significant uplift that may correspond to observations of recent uplift in the San Bernardino Mountains (Spotila et al, 1998). The vertical model has faster strike-slip rates while the north-dipping, discontinuous system has the slowest strike-slip rates. While the vertical model has the greatest net slip and more efficiently transmits deformation through the pass, the north-dipping fault configurations better match uplift patterns. We altered the continuous and north-dipping model to explore the effects of slip partitioning among the San Andreas and San Jacinto faults and secondary faults to the model. Debate continues about the slip partitioning between the Coachella Valley segment of the SAF and the San Jacinto fault. Our study suggests that slip portioning between the two faults has less of an effect on the slip rates and off fault deformation than fault geometry. The addition of secondary faults to the model significantly increases uplift in the northern San Bernardino Mountains. The senses of slip along secondary faults in the model are consistent with geologic observations. Continuing

  11. Comparison of different digital elevation models and satellite imagery for lineament analysis: Implications for identification and spatial arrangement of fault zones in crystalline basement rocks of the southern Black Forest (Germany) (United States)

    Meixner, J.; Grimmer, J. C.; Becker, A.; Schill, E.; Kohl, T.


    GIS-based remote sensing techniques and lineament mapping provide additional information on the spatial arrangement of faults and fractures in large areas with variable outcrop conditions. Due to inherent censoring and truncation bias mapping of lineaments is still a challenging task. In this study we show how statistical evaluations help to improve the reliability of lineament mappings by comparing two digital elevation models (ASTER, LIDAR) and satellite imagery data sets in the seismically active southern Black Forest. A statistical assessment of the orientation, average length, and the total length of mapped lineaments reveals an impact of the different resolutions of the data sets that allow to define maximum (censoring bias) and minimum (truncation bias) observable lineament length for each data set. The increase of the spatial resolution of the digital elevation model from 30 m × 30 m to 5 m × 5 m results in a decrease of total lineament length by about 40% whereby the average lineament lengths decrease by about 60%. Lineament length distributions of both data sets follow a power law distribution as documented elsewhere for fault and fracture systems. Predominant NE-, N-, NNW-, and NW-directions of the lineaments are observed in all data sets and correlate with well-known, mappable large-scale structures in the southern Black Forest. Therefore, mapped lineaments can be correlated with faults and hence display geological significance. Lineament density in the granite-dominated areas is apparently higher than in the gneiss-dominated areas. Application of a slip- and dilation tendency analysis on the fault pattern reveals largest reactivation potentials for WNW-ESE and N-S striking faults as strike-slip faults whereas normal faulting may occur along NW-striking faults within the ambient stress field. Remote sensing techniques in combination with highly resolved digital elevation models and a slip- and dilation tendency analysis thus can be used to quickly get

  12. Structural analysis of cataclastic rock of active fault damage zones: An example from Nojima and Arima-Takatsuki fault zones (SW Japan) (United States)

    Satsukawa, T.; Lin, A.


    Most of the large intraplate earthquakes which occur as slip on mature active faults induce serious damages, in spite of their relatively small magnitudes comparing to subduction-zone earthquakes. After 1995 Kobe Mw7.2 earthquake, a number of studies have been done to understand the structure, physical properties and dynamic phenomenon of active faults. However, the deformation mechanics and related earthquake generating mechanism in the intraplate active fault zone are still poorly understood. The detailed, multi-scalar structural analysis of faults and of fault rocks has to be the starting point for reconstructing the complex framework of brittle deformation. Here, we present two examples of active fault damage zones: Nojima fault and Arima-Takatsuki active fault zone in the southwest Japan. We perform field investigations, combined with meso-and micro-structural analyses of fault-related rocks, which provide the important information in reconstructing the long-term seismic faulting behavior and tectonic environment. Our study shows that in both sites, damage zone is observed in over 10m, which is composed by the host rocks, foliated and non-foliated cataclasites, fault gouge and fault breccia. The slickenside striations in Asano fault, the splay fault of Nojima fault, indicate a dextral movement sense with some normal components. Whereas, those of Arima-Takatsuki active fault shows a dextral strike-slip fault with minor vertical component. Fault gouges consist of brown-gray matrix of fine grains and composed by several layers from few millimeters to a few decimeters. It implies that slip is repeated during millions of years, as the high concentration and physical interconnectivity of fine-grained minerals in brittle fault rocks produce the fault's intrinsic weakness in the crust. Therefore, faults rarely express only on single, discrete deformation episode, but are the cumulative result of several superimposed slip events.

  13. New Geologic Data on the Seismic Risks of the Most Dangerous Fault on Shore in Central Japan, the Itoigawa-Shizuoka Tectonic Line Active Fault System (United States)

    Okumura, K.; Kondo, H.; Toda, S.; Takada, K.; Kinoshita, H.


    Ten years have past since the first official assessment of the long-term seismic risks of the Itoigawa-Shizuoka tectonic line active fault system (ISTL) in 1996. The disaster caused by the1995 Kobe (Hyogo-ken-Nanbu) earthquake urged the Japanese government to initiated a national project to assess the long-term seismic risks of on-shore active faults using geologic information. ISTL was the first target of the 98 significant faults and the probability of a M7 to M8 event turned out to be the highest among them. After the 10 years of continued efforts to understand the ISTL, now it is getting ready to revise the assessment. Fault mapping and segmentation: The most active segment of the Gofukuji fault (~1 cm/yr left-lateral strike slip, R=500~800 yrs.) had been maped only for less than 10 km. Adjacent segments were much less active. This large slip on such a short segment was contradictory. However, detailed topographic study including Lidar survey revealed the length of the Gofukuji fault to be 25 km or more. High slip rate with frequent earthquakes may be restricted to the Gofukuji fault while the 1996 assessment modeled frequent >100 km rupture scenario. The geometry of the fault is controversial especially on the left-lateral strike-slip section of the ISTL. There are two models of high-angle Middel ISTL and low-angle Middle ISTL with slip partitioning. However, all geomorphic and shallow geologic data supports high-angle almost pure strike slip on the faults in the Middle ISTL. CRIEPI's 3- dimensional trenching in several sites as well as the previous results clearly demonstrated repeated pure strike-slip offset during past a few events. In Middle ISTL, there is no evidence of recent activity of pre-existing low-angle thrust faults that are inferred to be active from shallow seismic survey. Separation of high (~3000 m) mountain ranges and low (earthquakes. In order to solve this problem, we have carried out intensive geoslicer and boring survey of buried faults

  14. Fault on-off versus strain rate and earthquakes energy

    Directory of Open Access Journals (Sweden)

    C. Doglioni


    Full Text Available We propose that the brittle-ductile transition (BDT controls the seismic cycle. In particular, the movements detected by space geodesy record the steady state deformation in the ductile lower crust, whereas the stick-slip behavior of the brittle upper crust is constrained by its larger friction. GPS data allow analyzing the strain rate along active plate boundaries. In all tectonic settings, we propose that earthquakes primarily occur along active fault segments characterized by relative minima of strain rate, segments which are locked or slowly creeping. We discuss regional examples where large earthquakes happened in areas of relative low strain rate. Regardless the tectonic style, the interseismic stress and strain pattern inverts during the coseismic stage. Where a dilated band formed during the interseismic stage, this will be shortened at the coseismic stage, and vice-versa what was previously shortened, it will be dilated. The interseismic energy accumulation and the coseismic expenditure rather depend on the tectonic setting (extensional, contractional, or strike-slip. The gravitational potential energy dominates along normal faults, whereas the elastic energy prevails for thrust earthquakes and performs work against the gravity force. The energy budget in strike-slip tectonic setting is also primarily due elastic energy. Therefore, precursors may be different as a function of the tectonic setting. In this model, with a given displacement, the magnitude of an earthquake results from the coseismic slip of the deformed volume above the BDT rather than only on the fault length, and it also depends on the fault kinematics.

  15. Active faults paragenesis and the state of crustal stresses in the Late Cenozoic in Central Mongolia

    Directory of Open Access Journals (Sweden)

    V. A. Sankov


    Full Text Available Active faults of the Hangay-Hentiy tectonic saddle region in Central Mongolia are studied by space images interpretation, relief analysis, structural methods and tectonic stress reconstruction. The study results show that faults activation during the Late Cenozoic stage was selective, and a cluster pattern of active faults is typical for the study region. Morphological and genetic types and the kinematics of faults in the Hangay-Hentiy saddle region are related the direction of the ancient inherited structural heterogeneities. Latitudinal and WNW trending faults are left lateral strike-slips with reverse or thrust component (Dzhargalantgol and North Burd faults. NW trending faults are reverse faults or thrusts with left lateral horizontal component. NNW trending faults have right lateral horizontal component. The horizontal component of the displacements, as a rule, exceeds the vertical one. Brittle deformations in fault zones do not conform with the Pliocene and, for the most part, Pleistocene topography. With some caution it may be concluded that the last phase of revitalization of strike slip and reverse movements along the faults commenced in the Late Pleistocene. NE trending disjunctives are normal faults distributed mainly within the Hangay uplift. Their features are more early activation within the Late Cenozoic and the lack of relation to large linear structures of the previous tectonic stages. According to the stress tensor reconstructions of the last phase of deformation in zones of active faults of the Hangay-Hentiy saddle using data on tectonic fractures and fault displacements, it is revealed that conditions of compression and strike-slip with NNE direction of the axis of maximum compression were dominant. Stress tensors of extensional type with NNW direction of minimum compression are reconstructed for the Orkhon graben. It is concluded that the activation of faults in Central Mongolia in the Pleistocene-Holocene, as well as

  16. Historic Surface Rupture Informing Probabilistic Fault Displacement Analysis: New Zealand Case Studies (United States)

    Villamor, P.; Litchfield, N. J.; Van Dissen, R. J.; Langridge, R.; Berryman, K. R.; Baize, S.


    Surface rupture associated with the 2010 Mw7.1 Darfield Earthquake (South Island, New Zealand) was extremely well documented, thanks to an immediate field mapping response and the acquisition of LiDAR data within days of the event. With respect to informing Probabilistic Fault Displacement Analysis (PFDHA) the main insights and outcomes from this rupture through Quaternary gravel are: 1) significant distributed deformation either side of the main trace (30 to 300 m wide deformation zone) and how the deformation is distributed away from the main trace; 2) a thorough analysis of uncertainty of the displacement measures obtained using the LIDAR data and repeated measurements from several scientists; and 3) the short surface rupture length for the reported magnitude, resulting from complex fault rupture with 5-6 reverse and strike-slip strands, most of which had no surface rupture. While the 2010 event is extremely well documented and will be an excellent case to add to the Surface Rupture during Earthquakes database (SURE), other NZ historical earthquakes that are not so well documented, but can provide important information for PFDHA. New Zealand has experienced about 10 historical surface fault ruptures since 1848, comprising ruptures on strike-slip, reverse and normal faults. Mw associated with these ruptures ranges between 6.3 and 8.1. From these ruptures we observed that the surface expression of deformation can be influenced by: fault maturity; the type of Quaternary sedimentary cover; fault history (e.g., influence of inversion tectonics, flexural slip); fault complexity; and primary versus secondary rupture. Other recent >Mw 6.6 earthquakes post-2010 that did not rupture the ground surface have been documented with InSAR and can inform Mw thresholds for surface fault rupture. It will be important to capture all this information and that of similar events worldwide to inform the SURE database and ultimately PFDHA.

  17. Using an Unmanned Aerial Vehicle (UAV) to capture ancient seismic offsets along the Altyn Tagh fault (United States)

    Gao, M.; Xu, X.; Tapponnier, P.; van der Woerd, J.; Klinger, Y.; Derrien, A.; Bradley, K. E.


    High resolution topographic data is a key ingredient to assess the amplitude of seismic displacements along strike-slip fault. For faults that slip during earthquakes with centennial to millennial recurrence time, erosion smoothes out the sharpness of both geomorphic markers and surface breaks. Co-registred, high resolution digital elevation models and ground images are thus necessary to reconstruct past displacements and deformations along faults. The recent explosion in centimeter resolution topographic data obtained by unmanned aerial vehicle (UAV) raises the possibility of mapping geomorphic offsets of active faults with unprecedented accuracy. Here we tested the technique to obtain high-resolution images and generate topographic data along the Altyn Tagh fault, main active strike-slip fault along the northern edge of Tibet. The existence of spectacular scarps, combined with the low level of instrumental seismicity and lack of well documented historical events requires especialy detailed studies of surface faulting. At several sites along the Altun segment of the fault we reconstruct well preserved offsets based on both 2D-orthophotos and 3D-views of the landscape. The results show that the UAV data provides centimeter resolution, allowing accurate mapping of past ruptures. We determine a co-seismic offset of 5.6 m for the last event south of Annanba. We also reconstruct cumulative offsets of 11±0.5 m, 22±1 m and 32±2 m. The horizontal offsets obtained suggest that last and penultimate events had similar slip amounts locally. The larger slip values deduced from the other offsets may also result from repeated 5-5.5 m co-seismic slip but more data is needed to confirm such a characteristic slip behavior. Clearly, UAV-based imagery shows great potential for high-resolution seismotectonic research and seismic hazard assessment.

  18. The October 28, 2012 Mw 7.8 Haida Gwaii underthrusting earthquake and tsunami: Slip partitioning along the Queen Charlotte Fault transpressional plate boundary (United States)

    Lay, Thorne; Ye, Lingling; Kanamori, Hiroo; Yamazaki, Yoshiki; Cheung, Kwok Fai; Kwong, Kevin; Koper, Keith D.


    The Pacific/North American plate boundary is undergoing predominantly right-lateral strike-slip motion along the Queen Charlotte and Fairweather transform faults. The Queen Charlotte Fault (QCF) hosted the largest historical earthquake in Canada, the 1949 MS 8.1 strike-slip earthquake, which ruptured from offshore northern Haida Gwaii several hundred kilometers northwestward. On January 5, 2013 an Mw 7.5 strike-slip faulting event occurred near the northern end of the 1949 rupture zone. Along central and southern Haida Gwaii the relative plate motion has ∼20% oblique convergence across the left-stepping plate boundary. There had been uncertainty in how the compressional component of plate motion is accommodated. The October 28, 2012 Mw 7.8 Haida Gwaii earthquake involved slightly (∼20°) oblique thrust faulting on a shallow (∼18.5°) northeast-dipping fault plane with strike (∼320°) parallel to the QCF, consistent with prior inferences of Pacific Plate underthrusting beneath Haida Gwaii. The rupture extended to shallow depth offshore of Moresby Island beneath a 25-30 km wide terrace of sediments that has accumulated in a wedge seaward of the QCF. The shallow thrusting caused seafloor uplift that generated substantial localized tsunami run-up and a modest far-field tsunami that spread across the northern Pacific, prompting a tsunami warning, beach closure, and coastal evacuation in Hawaii, although ultimately tide gauges showed less than 0.8 m of water level increase. The mainshock rupture appears to have spread with a ∼2.3 km/s rupture velocity over a length of ∼150 km, with slip averaging 3.3 m concentrated beneath the sedimentary wedge. The event was followed by a substantial aftershock sequence, in which almost all of the larger events involve distributed intraplate normal faulting extending ∼50 km oceanward from the QCF. The highly oblique slip partitioning in southern Haida Gwaii is distinctive in that the local plate boundary-parallel motion on

  19. Miocene Tectonics at the Pannonian - Carpathian Transition: The Bogdan Voda - Dragos Voda fault system, northern Romania (United States)

    Tischler, M.; Gröger, H.; Marin, M.; Schmid, S. M.; Fügenschuh, B.


    Tertiary tectonics in the Pannonian-Carpathian transition zone was dominated by opposed rotations of Alcapa and Tisza-Dacia, separated by the Mid-Hungarian lineament (MHL). While in the Pannonian basin the MHL is well known from geophysical and borehole data, its northeastern continuation remains a matter of discussion. Our field based study, located in the Maramures mountains of northern Romania, provides new kinematic data from the Bogdan Voda fault, a first order candidate for the prolongation of the MHL to the northeast. In the Burdigalian, the Pienides (unmetamorphic flysch nappes) were emplaced onto the autochthonous Paleogene flysch units. Kinematic data consistently indicate top to the SE-directed thrusting of the Pienides and selected imbrications in the autochthonous units. Between Langhian and Tortonian these thrust contacts were offset by the E-W trending Bogdan Voda fault and its eastern continuation, the Dragos-Voda fault. These two faults share a common polyphase history, at least since the Burdigalian. Kinematic data derived from mesoscale faults indicate sinistral strike-slip displacement, in good agreement with kinematics inferred from map view. The NE-SW trending Greben fault, another fault of regional importance, was coevally active as a normal fault. From stratigraphic arguments major activity of this fault system is constrained to the time interval between 16.4-10 Ma. While deformation is strongly concentrated in the sedimentary units, the easterly located basement units are affected by abundant minor faults of similar kinematics covering a wide area. These SW-NE trending strike slip faults feature a normal component and resemble an imbricate fan geometry. Since Burdigalian thrusting is consistently SE-directed on either side of the Bogdan-Dragos Voda fault, major post-Burdigalian differential rotations can be excluded for the northern and southern block respectively. Hydrothermal veins within Pannonian volcanic units are aligned along the

  20. Lateral Offset Quality Rating along Low Slip Rate Faults: Application to the Alhama de Murcia Fault (SE Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Marta Ferrater


    Full Text Available Seismic hazard assessment of strike-slip faults is based partly on the identification and mapping of landforms laterally offset due to fault activity. The characterization of these features affected by slow-moving faults is challenging relative to studies emphasizing rapidly slipping faults. We propose a methodology for scoring fault offsets based on subjective and objective qualities. We apply this methodology to the Alhama de Murcia fault (SE Iberian Peninsula where we identify 138 offset features that we mapped on a high-resolution (0.5 × 0.5 m pixel size Digital Elevation Model (DEM. The amount of offset, the uncertainty of the measurement, the subjective and objective qualities, and the parameters that affect objective quality are independent variables, suggesting that our methodological scoring approach is good. Based on the offset measurements and qualifications we calculate the Cumulative Offset Probability Density (COPD for the entire fault and for each fault segment. The COPD for the segments differ from each other. Tentative interpretation of the COPDs implies that the slip rate varies from one segment to the other (we assume that channels with the same amount of offset were incised synchronously. We compare the COPD with climate proxy curves (aligning using the very limited age control to test if entrenchment events are coincident with climatic changes. Channel incision along one of the traces in Lorca-Totana segment may be related to transitions from glacial to interglacial periods.

  1. Characterization of Fluid Transfer Properties in a Transpressive Fault System: Chaîne des Matheux Fold-and-Thrust Belt and Enriquillo-Plantain Garden Fault Zone - Haiti (United States)

    Wessels, R.; Ellouz-Zimmermann, N.; Rosenberg, C.; Hamon, Y.; Battani, A.; Bellahsen, N.; Deschamps, R.; Leroy, S. D.; Momplaisir, R.


    The NW - SE trending Chaîne des Matheux (CdM) comprises the onshore frontal thrust sheet of the SW-verging Haitian fold-and-thrust belt (HFTB). The HFTB's active deformation front is covered by sediments of the Cul-de-Sac plain and is bounded on the south by the E - W trending left-lateral Enriquillo-Plantain Garden fault zone (EPGFZ). Seismicity down to the junction between the two systems has been recorded during the 12 January 2010 Mw 7.0 Léogâne earthquake. Stratigraphic, structural and kinematic field data on a transect from the CdM to the EPGFZ indicate (N)NE - (S)SW oriented shortening, which is partitioned over 1) (N)NE-dipping oblique thrusts rooted in Cretaceous basement, 2) decollement levels in both latest Cretaceous and Paleogene limestones, and 3) by strike-slip and positive flower structures along the EPGFZ. We investigated the geometry and kinematics of both fault and fracture systems, which was coupled with sampling and analysis of fluid-derived mineralizations to constrain the timing and geological evolution. C & O isotope and whole-rock analyses have been performed to characterize the geochemistry of the source of these fluids. Raman spectroscopy and fluid-inclusion analyses has been applied to selected samples to comprehend the local burial history. Fluid and gas seepages along fault planes are qualitative indicators for transfer properties between different fault segments and their connectivity with deeper crustal or mantle reservoirs. Relative timing of structures in the CdM coupled with cathodoluminescence (CL) microscopy reveals three deformation phases, characterized by associated calcite veins that precipitated from oxidizing meteoric fluids. The deeply rooted frontal CdM thrust lacks mineralization, but fluids expelled from along-strike natural springs registered He and Ne isotope ratios suggesting a strong mantle-derived component. CL microscopy results on calcite veins from the EPGFZ's fault core imply fluid circulation in an

  2. Influence of mineralogy and microstructures on strain localization and fault zone architecture of the Alpine Fault, New Zealand (United States)

    Ichiba, T.; Kaneki, S.; Hirono, T.; Oohashi, K.; Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.


    The Alpine Fault on New Zealand's South Island is an oblique, dextral strike-slip fault that accommodated the majority of displacement between the Pacific and the Australian Plates and presents the biggest seismic hazard in the region. Along its central segment, the hanging wall comprises greenschist and amphibolite facies Alpine Schists. Exhumation from 35 km depth, along a SE-dipping detachment, lead to mylonitization which was subsequently overprinted by brittle deformation and finally resulted in the fault's 1 km wide damage zone. The geomechanical behavior of a fault is affected by the internal structure of its fault zone. Consequently, studying processes controlling fault zone architecture allows assessing the seismic hazard of a fault. Here we present the results of a combined microstructural (SEM and TEM), mineralogical (XRD) and geochemical (XRF) investigation of outcrop samples originating from several locations along the Alpine Fault, the aim of which is to evaluate the influence of mineralogical composition, alteration and pre-existing fabric on strain localization and to identify the controls on the fault zone architecture, particularly the locus of brittle deformation in P, T and t space. Field observations reveal that the fault's principal slip zone (PSZ) is either a thin (govern strain localization. However, our preliminary results suggest that qualitative mineralogical composition has only minor impact on fault zone architecture. Quantities of individual mineral phases differ markedly between fault damage zone and fault core at specific sites, but the quantitative composition of identical structural units such as the fault core, is similar in all samples. This indicates that the degree of strain localization at the Alpine Fault might be controlled by small initial heterogeneities in texture and fabric or a combination of these, rather than in mineralogy. Further microstructural investigations are needed to test this hypothesis.

  3. Constraining recent fault offsets with statistical and geometrical methods: Example from the Jasneuf Fault (Western Alps, France) (United States)

    Billant, Jérémy; Bellier, Olivier; Godard, Vincent; Hippolyte, Jean-Claude


    We propose two new approaches regarding recent fault offset measurements by studying the seismogenic potential of the Jasneuf Fault. The NE trending right-lateral strike-slip Jasneuf Fault is the southwestern extension of the Belledonne fault system in the Vercors Massif. This fault, which is located in an intraplate domain, does not show strongly associated seismicity but displays morphological anomalies that are related to recent faulting (right-lateral offset of Late Cenozoic cliffs, recent talwegs, and post Günz scarps). The two methods that we use to quantify fault slip are as follows. 1 - Recursive measurements of stream offsets are conducted. This analysis reveals that a stream network can display characteristic distances between streams that can be mistakenly interpreted as long-term cumulative fault offsets. A comparison of the apparent stream offset values and stream spacing values is necessary to identify the true offsets. 2 - We propose a new method that enables us to determine the fault offset and kinematics by using recursive measurements of topographic apparent offsets to counter the lack of morphologic features that are used to determine piercing points or lines. This method enables us to define each possible slip vector for numerous artificial piercing points along a fault. The slip vector that is shared by these piercing points is the true slip vector. By applying these methodologies, we determine that the Jasneuf Fault has accumulated slip since the Messinian, which corresponds to an average slip rate of 0.13 ± 0.03 mm year-1. The extension of the fault is poorly constrained. Nevertheless, if we do not consider the potential aseismic (creep slip) component of the faulting, we calculate that this fault could generate Mw 5.7 earthquakes every 500 years according to Wells and Coppersmith's scaling laws and by assuming that the faulting is limited to the sedimentary cover and the Vercors Plateau.

  4. Effects of active fault types on earthquake-induced deep-seated landslides: A study of historical cases in Japan (United States)

    Chen, Chi-Wen; Iida, Tomoyuki; Yamada, Ryuji


    We investigated the relationship between the distribution of deep-seated landslides (DSLs; landslide volume > 105 m3) induced by inland earthquakes as well as the distribution of corresponding active faults by compiling preexisting documents on historical DSL occurrence records. The following points are found: (1) The DSLs induced by reverse fault earthquakes tend to occur equally within a wide range of about 20 km from the faults, whilst > 80% of DSLs induced by strike-slip fault earthquakes are concentrated within a small range of about 5 km from the faults. (2) Most of the DSLs are distributed on the hanging wall side of the active faults. (3) The distribution of some historical DSLs may reflect the directivity of the seismic waves of the historical earthquakes. The minimum peak ground velocity (PGV) and peak ground acceleration (PGA) during earthquakes that can induce DSLs are estimated to be 15-20 cm s- 1 and 300-400 cm s- 2, although most of the DSLs examined were induced by strike-slip fault earthquakes with PGV > 60 cm s- 1 and PGA > 900 cm s- 2. This discrepancy may be attributed to a possible limitation of the proposed equation, which was established mainly for cases of reverse fault earthquakes. It is implied that the type of fault, the side of the epicenter location (hanging wall/footwall side), and the directivity of seismic waves should be considered for assessing the distribution of ground motion in terms of DSL occurrence, and that these factors may reflect the level of risk for earthquake-induced landslides around active faults.

  5. Crustal Anisotropy Beneath the Western Segment of North Anatolian Fault Zone from Local Shear-Wave Splitting (United States)

    Altuncu Poyraz, S.; Teoman, U.; Kahraman, M.; Turkelli, N.; Rost, S.; Thompson, D. A.; Houseman, G.


    Shear-wave splitting from local earthquakes provides valuable knowledge on anisotropy of the upper crust. Upper-crustal anisotropy is widely interpreted as due to aligned fluid-filled cracks or pores. Differential stress is thought to close cracks aligned perpendicular to the maximum principal stress and leaves cracks open that are aligned perpendicular to the minimum horizontal compressional stress. In other cases local shear-wave splitting has been found to be aligned with regional faulting. Temporal variations in local splitting patterns might provide hints of changes in stress orientation related to earthquakes or volcanoes. North Anatolian Fault Zone (NAFZ) is a large-scale continental strike slip fault system originating at the Karlıova Junction in the east where it intersects the East Anatolian Fault (EAF) and extends west cutting across the entire Northern Turkey towards the Aegean Sea and the mainland Greece. Our primary focus is to provide constraints on the crustal anisotropy beneath the western segment of the North Anatolian Fault Zone with the use of a data set collected from a dense temporary seismic network consisting of 70 stations that was deployed in early May 2012 and operated for 18 months in the Sakarya region and the surroundings during the Faultlab experiment. For the local shear wave splitting analysis, out of 1344 events, we extracted 90 well located earthquakes with magnitudes greater than 2.0. Local shear-wave splitting makes use of earthquakes close to and nearly directly below the recording station. Incidence angles of less than 45 degrees were used to avoid the free-surface effect and resulting non-linear particle motion. Basically, two essential parameters for each station-event pair is needed for shear wave splitting calculations. One of them is fast polarization direction (ɸ) and the other is delay time (δt) between the fast and slow components of the shear wave. In this study, delay times vary between 0,02 and 0,25 seconds

  6. Structural Evolution of the India-Arabia Plate Boundary from Miocene to Present-Day (NW Indian Ocean) and Comparison with the Dead Sea Fault (Eastern Mediterranean Sea). (United States)

    Rodriguez, M.; Huchon, P.; Chamot Rooke, N.; Fournier, M.; Delescluse, M.; Ben Avraham, Z.; Ten Brink, U. S.


    Arabia is bounded by the Dead Sea Transform (DST) to the west and by the Owen Fracture Zone (OFZ) to the east. These present-day major strike-slip fault systems activated during the Plio-Pleistocene, which contrasts with the age of inception of strike-slip motion, assumed to begin around 13-18 Ma for the DST and around 20 Ma at the edge of the Owen-Murray Ridge (OMR) for the India-Arabia plate boundary. This discrepancy between the age of the active strike-slip systems and the age of inception of strike-slip motion raises the question of the kinematic driver for the transition between successive generations of strike-slip faults. Using a recent mutibeam and seismic dataset crossing the OFZ and the OMR, we provide a new geodynamic framework for the Miocene to present-day structural evolution of the India-Arabia plate boundary, and highlight some similarities with the structural evolution of the DST. We first document a Late Miocene episode of uplift of the OMR uplift along the Miocene India-Arabia plate boundary. The onset of this uplift is coeval with a plate reorganization event marked by the onset of intra-plate deformation in the Central Indian Ocean. The OFZ emplaced around 3 Ma, with major pull-apart basins opening (20°N Basin, Dalrymple Trough) dated at 2.4 Ma by far-field correlation with ODP Sites. The opening of pull-apart basins is coeval with the last structural reorganization of the Makran accretionnary wedge, marked by the regional M-unconformity, and with a major intensification of the Indian monsoon. A Late Miocene episode of folding is also recognized at the Lebanon ranges prior to the onset of the present-day DST, which occurred in the Late Pliocene-Early Pleistocene. The similarities between the geological history of the India-Arabia plate boundary and the DST in the Late Miocene and the Late Pliocene-Early Pleistocene suggest that both plate boundaries recorded the same kinematic changes. Late Miocene (i.e. Tortonian) deformation is widely

  7. A Wideband Magnetoresistive Sensor for Monitoring Dynamic Fault Slip in Laboratory Fault Friction Experiments. (United States)

    Kilgore, Brian D


    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  8. Paleoseismology of the Xorxol Segment of the Central Altyn Tagh Fault, Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Z. Y. Qiao


    Full Text Available Although the Altyn Tagh Fault (ATF is thought to play a key role in accommodating India-Eurasian convergence, little is known about its earthquake history. Studies of this strike-slip fault are important for interpretation of the role of faulting versus distributed deformation in the accommodation of the India- Eurasia collision. In addition, the > 1200 km long fault represents one of the most important and exemplary intracontinental strike-slip faults in the world. We mapped fault trace geometry and interpreted paleoseismic trench exposures to characterize the seismogenic behavior of the ATF. We identified 2 geometric segment boundaries in a 270 km long reach of the central ATF. These boundaries define the westernmost Wuzhunxiao, the Central Pingding, and the easternmost Xorxol (also written as Suekuli or Suo erkuli segments. In this paper, we present the results from the Camel paleoseismic site along the Xorxol Segment at 91.759°E, 38.919°N. There evidence for the last two earthquakes is clear and 14C dates from layers exposed in the excavation bracket their ages. The most recent earthquake occurred between 1456 and 1775 cal A.D. and the penultimate event was between 60 and 980 cal A.D. Combining the Camel interpretations with our published results for the central ATF, we conclude that multiple earthquakes with shorter rupture lengths (?? 50 km rather than complete rupture of the Xorxol Segment better explain the paleoseismic data. We found 2-3 earthquakes in the last 2-3 kyr. When coupled with typical amounts of slip per event (5-10 m, the recurrence times are tentatively consistent with 1-2 cm/yr slip rates. This result favors models that consider the broader distribution of collisional deformation, rather than those with northward motion of India into Asia absorbed along a few faults bounding rigid blocks.

  9. Development of Characterization Technology for Fault Zone Hydrology

    International Nuclear Information System (INIS)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; Miyakawa, Kimio


    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ∼ 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to 'up-scale,' which is extremely tenuous.

  10. Development of Characterization Technology for Fault Zone Hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio


    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  11. Perspective view, Landsat overlay San Andreas Fault, Palmdale, California (United States)


    The prominent linear feature straight down the center of this perspective view is the San Andreas Fault. This segment of the fault lies near the city of Palmdale, California (the flat area in the right half of the image) about 60 kilometers (37 miles) north of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. The Lake Palmdale Reservoir, approximately 1.5 kilometers (0.9 miles) across, sits in the topographic depression created by past movement along the fault. Highway 14 is the prominent linear feature starting at the lower left edge of the image and continuing along the far side of the reservoir. The patterns of residential and agricultural development around Palmdale are seen in the Landsat imagery in the right half of the image. SRTM topographic data will be used by geologists studying fault dynamics and landforms resulting from active tectonics.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR

  12. The Geomorphological Developments Along the East Anatolian Fault Zone, Turkey (United States)

    Saber, R.; Caglayan, A.; Isik, V.; Seyitoglu, G.


    The collision of Eurasia with Arabia has given rise to intracontinental shortening in SE Turkey and development of large scale fault zones. The East Anatolian Fault Zone (EAFZ), a major active fault zone over 700 km in length with NE-striking, defines the boundary zone between Eurasia plate and Anatolian micro-plate. Although the northeastern continuation of the zone merges into the North Anatolian Fault Zone at Karliova region, the southwestern continuation has been the subject of some debate. The zone is characterized by numerous, complex faults and segmented surface ruptures. It cuts and offsets several distinctive units in east and southeast Turkey. The portion of the EAFZ examined in this study extends from Celikhan to Turkoglu. Active fault strands in this portion of the EAFZ is termed the Erkenek and Golbasi segments. The zone is made of several NE-SW closely spaced strands cut across Mesozoic-to-Tertiary variable rock units and structures, indicating inception of strike-slip motion in Quaternary and characterized by a series of basins. Fault-related several morphological features have been mapped are within the study area, suggesting the left-lateral motion of fault strands along this part of the EAFZ. Offset streams, beheaded channels, pressure and shutter ridges, linear valleys and ridges and sag ponds are prominent morpho-tectonic features. Offset streams have been measured as few meters to hundreds of meters and show sinistral displacement along the fault zone. Fault scarps, several tens of metres high, are developed in fan deposits along the length of the fault strands. Forming the set of linear sag ponds in Golbasi reveals extentional activity of the EAFZ in this area. Motion of fault strands formed linear valleys and ridges parallel to the faults which is most remarkable features. Our geomorphic studies demonstrated the ongoing activity of the the EAFZ between Celikhan to Turkoglu regions.

  13. The Svalbard Caledonides - a collage of Laurentian, Timanian and exotic terranes assembled by Silurian - Late (?) Devonian transcurrent faulting. (United States)

    Andresen, Arild; Gasser, Deta


    New field and geochronological data from NE Greenland and Svalbard indicate that most of the sub-terranes making up the Svalbard Caledonides (Eastern, Northwestern and Southwestern Terranes) are derived from Laurentias eastern margin. The Neoproterozoic deposits of the Eastern Terrane (Nordaustlandet) show an almost one to one correlation with the Late Neoproterozoic Eleonore Bay Supergroup in NE Greenland. Great similarities also exist between the substratum to the Neoproterozoic deposits in the two areas. The "Barentsian plate/continent" is interpreted to be derived from Laurentias eastern margin Lithologic similarities also exist between parts of the Northwestern Terrane and NE Greenland. The geologic evolution of Svalbard`s Southwestern Terrane, with subduction complexes and Late Neoproterozoic intrusives (Timanian ?) is poorly understood. It will, however, be argued that there is no need to invoke considerable right lateral strike-slip movement of the Motalefjellet subduction complex and related rocks from a position in Arctic Canada to their present position within the Southwestern Terrane, as proposed by some authors. The structural grain of the Svalbard Caledonides, oblique to East Greenland and Scandinavian Caledonides, as well as the Ellesmerian Orogen, is interpreted to be due to counter-clockwise rotation (c. 45o) of the Caledonian trend. A counter-clockwise rotation is to be expected when the northward moving terranes reached the E-W trending Franklinian Basin north of Greenland/Laurentia, which in Early Devonian time had not yet started to close. The model predicts that there should be a dramatic change in the Caledonian structural grain somewhere south of Bjørnøya. It is furthermore speculated that the fan-shaped orientation of Late Paleozoic rift basins in the Western Barents Sea is controlled by reactivation of the rotated structural trend (e.g. Billefjorden Fault Zone and Billefjorden Trough).

  14. Paleoseismic record obtained by coring a sag-pond along the North Anatolian Fault (Turkey

    Directory of Open Access Journals (Sweden)

    Aurelia Hubert-Ferrari


    Full Text Available Shallow lakes along minor structural bends or discontinuities of strike-slip faults are not usually paleoseismological target sites. In the present study, we show that a 2-m-deep, 700-m-long lake that is cross-cut by the North Anatolian Fault contains a reliable paleoseimological record that can be obtained through coring. The North Anatolian Fault is a major strike-slip fault in Turkey, and it last ruptured across the Aşağıtepecik Lake in 1939, with a slip of about 6 m. Seismic lines still show remains of the fault rupture in the form of minor scarps across the lake. Collected short cores show a set of sedimentary sequences. Each sequence is composed of similar organic-rich sedimentary units. The lower unit is dark and fibrous, and is similar to the present sedimentation at the top of the core. The upper unit is disturbed and has anomalous organic matter content, grain size and mineralogy. It is interpreted as an earthquake-induced sedimentary event. The 2.5-m-long AT2007LG core comprises four sequences, and four sedimentary events. Radiogenic 210Pb and 137Cs data obtained previously imply that the shallowest event 1 was triggered by the 1939 M = 7.9 Erzincan earthquake. Radiocarbon dating and correlation to a reference varved record suggest that events 2 and 4 were initiated by the 1668 and 1254 historical earthquakes. Event 3 does not correspond to a large historical earthquake on the North Anatolian Fault.


    Directory of Open Access Journals (Sweden)

    M. Ulukavak


    Full Text Available Earthquakes are natural phenomena that shake the earth and cause many damage. Since the time of arrival of the earthquakes cannot be determined directly, some signs before the earthquake should be examined and interpreted by examining the environmental changes. One of the methods used for this is monitoring the ionospheric total electron content (TEC changes in total electron content unit (TECU. GPS satellites have begun to be used as a means of monitoring ionospheric TEC anomalies before earthquakes since they began to be used as sensors around the world. In this study, three fault type (normal, thrust and strike-slip faulting of 28 earthquakes with a magnitude greater than 7 (Mw and the percentage changes of TEC anomalies before the earthquakes were investigated. The ionospheric TEC anomalies before the earthquake were calculated according to the 15-day running median statistical analysis method. Different solar and geomagnetic indices have been investigated to determine the active space weather conditions and quiet days before and after the earthquake. The TEC anomalies were determined during the quiet days before the earthquake by comparing the ionospheric anomalies that occurred before the earthquake after the determination of quiet days with the indices of the space weather conditions. The results show that there is a relationship between fault type and the earthquake precursor percentage changes and were determined as 47.6 % TECU for regions where normal faulting, 50.4 % TECU for regions where thrust faulting, and 44.2 % TECU for regions where strike-slip faulting occurred, respectively.

  16. Investigation of the Relationship Between Ionospheric TEC Anomaly Variations and Fault Types Before the Earthquakes (United States)

    Ulukavak, M.; Yalçınkaya, M.


    Earthquakes are natural phenomena that shake the earth and cause many damage. Since the time of arrival of the earthquakes cannot be determined directly, some signs before the earthquake should be examined and interpreted by examining the environmental changes. One of the methods used for this is monitoring the ionospheric total electron content (TEC) changes in total electron content unit (TECU). GPS satellites have begun to be used as a means of monitoring ionospheric TEC anomalies before earthquakes since they began to be used as sensors around the world. In this study, three fault type (normal, thrust and strike-slip faulting) of 28 earthquakes with a magnitude greater than 7 (Mw) and the percentage changes of TEC anomalies before the earthquakes were investigated. The ionospheric TEC anomalies before the earthquake were calculated according to the 15-day running median statistical analysis method. Different solar and geomagnetic indices have been investigated to determine the active space weather conditions and quiet days before and after the earthquake. The TEC anomalies were determined during the quiet days before the earthquake by comparing the ionospheric anomalies that occurred before the earthquake after the determination of quiet days with the indices of the space weather conditions. The results show that there is a relationship between fault type and the earthquake precursor percentage changes and were determined as 47.6 % TECU for regions where normal faulting, 50.4 % TECU for regions where thrust faulting, and 44.2 % TECU for regions where strike-slip faulting occurred, respectively.

  17. Microseismicity Studies in Northern Baja California: The Sierra Juárez Fault System (United States)

    Frez, J.; Gonzallez, J.; Nava, F.; Acosta, J.; Carlos, J.; Garcia-Arthur, R.


    The Sierra Juarez is one of the major, well defined, and active fault systems of northern Baja California. During two months of 2002, we installed 30 seismological stations (digital, three-components, Reftek instruments) between latitudes 31.6º N and 32.2º N, surrounding the most active part of this system as well as the SE segment of the San Miguel fault and the region in between. Almost half of the stations were installed in the Laguna Salada basin, located East of Sierra Juarez ranges and 1500 m below them. Observations resulted in 4200 high-quality hypocenter and ~500 focal mechanism determinations; magnitudes and rupture planes are still to be determined. For locating we use the Nava and Brune (1982) seismic structure, complemented with station residuals which are small and negative for stations located in the Sierra ranges. For stations installed in the Laguna Salada basin, residuals vary between 0.30s and -0.15s, with the exception of three sites where mean residuals reach -.50s. Seismic activity occurs either aligned (SE segment of the San Miguel fault) or in small clusters with radii ~1.5 km (elsewhere). Predominant depths are around 10 km with a secondary maximum at 5 km. Focal mechanism solutions show a consistent pattern which is common for all northern Baja California, with predominant strike-slip (a nodal plane striking in a NW-SE direction) and normal (T-axes mostly in EW direction) solutions. This pattern is interpreted as a transtensive regime consisting of strike-slip faults intercalated with extension zones; this pattern seems to be repeated at various scales. Also discussed are other details, like the interpretation of normal faulting in the scarp separating the Sierra Juarez ranges from the Laguna Salada basin, the dip of the fault planes, and interpretation of travel time residuals

  18. Slip partitioning on the Enriquillo and Lamentin faults during the 2010 Haiti earthquake (United States)

    Saint Fleur, Newdeskarl; Feuillet, Nathalie; Grandin, Raphaël; Jacques, Éric; Weil-Accardo, Jennifer; Klinger, Yann


    A general consensus has emerged from the study of the 12 January 2010, Mw 7.0 Haiti earthquake: the coseismic rupture was complex, portraying both reverse and strike-slip motion, but lacking unambiguous surface break. Based on seismological, geodetic and geologic data, numerous slip models have been proposed for that event. However, using an incomplete fault map, the latter models were preliminary, proposing a rupture on unmapped buried faults. Here, using bathymetric data offshore Port-au-Prince along with a digital elevation model derived from LiDAR on-land, we identified the south-dipping Lamentin thrust in the Bay of Port-au-Prince. The fault prolongs on-land where it deforms active alluvial fans in the city of Carrefour. The geometry and distribution of the aftershocks of the 2010 earthquake and the analysis of the regional geology allow us to place constraints on the connection at depth between the Lamentin thrust and the sinistral strike-slip Enriquillo -Plantain Garden Fault (EPGF). Inversion of geodetic data suggests that both faults may have broken in 2010, consistently with the regional geodynamical setting. The rupture initiated along the Lamentin thrust and further propagated along the EPGF due to instantaneous unclamping at depth. The corals uplifted around the Léogâne Delta Fan, contributing to the build-up of long-term topography between the Lamentin thrust and the EPGF. The 2010 earthquake increased the stress toward failure on unruptured EPGF segments as well as on the thrust fault sitting in the middle of the city of Carrefour, in the direct vicinity of Port-au-Prince, thereby increasing the seismic hazard in these areas.

  19. Anisotropic Magnetic Susceptibility of Fault Rocks From Death Valley, CA: Comparison With Shape Preferred Orientation, and Implications for Kinematic Models of Brittle Foliation Development. (United States)

    Hayman, N. W.; Housen, B.; Cladouhos, T.


    Anisotropic Magnetic Susceptibility (AMS) was measured for 11 samples of gouge and breccia from detachment faults that bound the Black Mts, Death Valley, CA. We reason that the AMS ellipsoid roughly describes the bulk deformational fabric within the 1.4 freely rotated (e.g. Jeffrey's-model behavior) within a general flow and upon reaching a critical orientation became insensitive to continuing strain. The inclination of the minimum principal susceptibility of the AMS ellipsoids is, for more than half of the samples, normal to the SPO and thus the fabric that is tracked by the SPO is also present in the matrix. This scale independence is described by the March model wherein the inclination of the foliation is proportional to the finite shear strain. In this model, the inclined foliation in the fault rocks developed with shear strains ca 4, and much of the >3.5 km of slip on the detachment accrued in gouges with a shear-zone parallel foliation or on localized slip surfaces. However, the AMS ellipsoids are not simply tracking one foliation within the X-Z plane and there is other evidence that the fault rocks developed through a protracted history of distributed deformation. A kinematic model involving more complex general flow thus may be more appropriate for describing the kinematic evolution of the fault zone.

  20. Highly Variable Latest Pleistocene-Holocene Incremental Slip Rates on the Awatere Fault at Saxton River, South Island, New Zealand, Revealed by Lidar Mapping and Luminescence Dating (United States)

    Zinke, Robert; Dolan, James F.; Rhodes, Edward J.; Van Dissen, Russ; McGuire, Christopher P.


    Geomorphic mapping using high-resolution lidar imagery and luminescence dating reveal highly variable incremental Holocene-latest Pleistocene slip rates at the well-known Saxton River site along the Awatere fault, a dextral strike-slip fault in the Marlborough Fault System, South Island, New Zealand. Using lidar and field observations, we measured seven fault offsets recorded by fluvial terraces and bedrock markers. Improved dating of the offsets is provided by post-IR-IRSL225 luminescence ages. Incremental slip rates varied from 15 mm/yr over intervals of thousands of years and tens of meters of slip, demonstrating order-of-magnitude temporal variations in rate at a single site. These observations have basic implications for earthquake fault behavior, lithospheric mechanics, discrepancies between geodetic and geologic slip rates, and probabilistic seismic hazard assessment.

  1. Pulsed strain release on the Altyn Tagh fault, northwest China (United States)

    Gold, Ryan D.; Cowgill, Eric; Arrowsmith, J. Ramón; Friedrich, Anke M.


    Earthquake recurrence models assume that major surface-rupturing earthquakes are followed by periods of reduced rupture probability as stress rebuilds. Although purely periodic, time- or slip-predictable rupture models are known to be oversimplifications, a paucity of long records of fault slip clouds understanding of fault behavior and earthquake recurrence over multiple ruptures. Here, we report a 16 kyr history of fault slip—including a pulse of accelerated slip from 6.4 to 6.0 ka—determined using a Monte Carlo analysis of well-dated offset landforms along the central Altyn Tagh strike-slip fault (ATF) in northwest China. This pulse punctuates a median rate of 8.1+1.2/−0.9 mm/a and likely resulted from either a flurry of temporally clustered ∼Mw 7.5 ground-rupturing earthquakes or a single large >Mw 8.2 earthquake. The clustered earthquake scenario implies rapid re-rupture of a fault reach >195 km long and indicates decoupled rates of elastic strain energy accumulation versus dissipation, conceptualized as a crustal stress battery. If the pulse reflects a single event, slip-magnitude scaling implies that it ruptured much of the ATF with slip similar to, or exceeding, the largest documented historical ruptures. Both scenarios indicate fault rupture behavior that deviates from classic time- or slip-predictable models.

  2. Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada (United States)

    Bender, Adrian M.; Haeussler, Peter J.


    We map the 385-kilometer (km) long surface trace of the right-lateral, strike-slip Denali Fault between the Totschunda-Denali Fault intersection in Alaska, United States and the village of Haines Junction, Yukon, Canada. In Alaska, digital elevation models based on light detection and ranging and interferometric synthetic aperture radar data enabled our fault mapping at scales of 1:2,000 and 1:10,000, respectively. Lacking such resources in Yukon, we developed new structure-from-motion digital photogrammetry products from legacy aerial photos to map the fault surface trace at a scale of 1:10,000 east of the international border. The section of the fault that we map, referred to as the Eastern Denali Fault, did not rupture during the 2002 Denali Fault earthquake (moment magnitude 7.9). Seismologic, geodetic, and geomorphic evidence, along with a paleoseismic record of past ground-rupturing earthquakes, demonstrate Holocene and contemporary activity on the fault, however. This map of the Eastern Denali Fault surface trace complements other data sets by providing an openly accessible digital interpretation of the location, length, and continuity of the fault’s surface trace based on the accompanying digital topography dataset. Additionally, the digitized fault trace may provide geometric constraints useful for modeling earthquake scenarios and related seismic hazard.

  3. How Fault Geometry Affects Dynamic Rupture Models of Earthquakes in San Gorgonio Pass, CA (United States)

    Tarnowski, J. M.; Oglesby, D. D.; Cooke, M. L.; Kyriakopoulos, C.


    We use 3D dynamic finite element models to investigate potential rupture paths of earthquakes propagating along faults in the western San Gorgonio Pass (SGP) region of California. The SGP is a structurally complex area along the southern California portion of the San Andreas fault system (SAF). It has long been suspected that this structural knot, which consists of the intersection of various non-planar strike-slip and thrust fault segments, may inhibit earthquake rupture propagation between the San Bernardino and Banning strands of the SAF. The above condition may limit the size of potential earthquakes in the region. Our focus is on the San Bernardino strand of the SAF and the San Gorgonio Pass Fault zone, where the fault connectivity is not well constrained. We use the finite element code FaultMod (Barall, 2009) to investigate how fault connectivity, nucleation location, and initial stresses influence rupture propagation and ground motion, including the likelihood of through-going rupture in this region. Preliminary models indicate that earthquakes that nucleate on the San Bernardino strand and propagate southward do not easily transfer rupture to the thrust faults of the San Gorgonio Pass fault zone. However, under certain assumptions, earthquakes that nucleate along the San Gorgonio Pass fault zone can transfer rupture to the San Bernardino strand.

  4. Activity of the Mill Creek and Mission Creek fault strands of the San Andreas fault through the San Gorgonio Pass (United States)

    Morelan, A. E., III; Oskin, M. E.; Valentine, M.


    We present new observations that constrain the recent slip history of the Mill Creek and Mission Creek strands of the San Andreas fault. These faults are the northern strands of a complex series of strike-slip and thrust faults through the San Gorgonio Pass stepover, an important structural barrier that affects seismic hazard in southern California. Understanding the activity on each of the faults in this complex region will reveal the potential for large, throughgoing San Andreas fault ruptures. The Mill Creek fault strand cuts the base of the upper Raywood Flat fill, a 50 m thick package of debris-flow deposits. However, the upper section of these deposits overlap, and are not cut by the fault. On the surface of this deposit, a 15 m-wide channel, flanked by bouldery debris-flow levees, crosses the projection of the Mill Creek fault without evidence of offset. We collected boulder-top samples for cosmogenic exposure age-dating of these levees and present preliminary results. Additionally, we mapped inset terraces along the incised channel of the East Fork Whitewater River drainage that also do not show evidence of fault offset, and we collected a depth profile through the uppermost Raywood Flat fill in order to further assess its age. Along the Mission Creek strand, newly devegetated B4 airborne lidar data reveals fault scarps cutting across hillslopes and alluvial fans between the San Bernardino strand and lower Raywood Flat for a distance of 4 km. We identify a lateral offset of 4-6 m in an alluvial fan deposit within a tributary of Banning canyon, and sampled a suite of boulders to estimate the age of this deposit. This site shows that the Mission Creek fault is active and could rupture through the San Gorgonio Pass, bypassing the structural complexity of the San Gorgonio Pass thrust to the south. Conversely, the Mill Creek fault appears to be inactive through the pass since the latest Pleistocene.

  5. Seismostratigraphy and tectonic architecture of the Carboneras Fault offshore based on multiscale seismic imaging: Implications for the Neogene evolution of the NE Alboran Sea (United States)

    Moreno, Ximena; Gràcia, Eulàlia; Bartolomé, Rafael; Martínez-Loriente, Sara; Perea, Héctor; de la Peña, Laura Gómez; Iacono, Claudio Lo; Piñero, Elena; Pallàs, Raimon; Masana, Eulàlia; Dañobeitia, Juan José


    In the SE Iberian Margin, which hosts the convergent boundary between the European and African Plates, Quaternary faulting activity is dominated by a large left-lateral strike-slip system referred to as the Eastern Betic Shear Zone. This active fault system runs along more than 450 km and it is characterised by low to moderate magnitude shallow earthquakes, although large historical events have also occurred. The Carboneras Fault is the longest structure of the Eastern Betic Shear Zone, and its southern termination extends further into the Alboran Sea. Previously acquired high-resolution data (i.e. swath-bathymetry, TOBI sidescan sonar and sub-bottom profiler) show that the offshore Carboneras Fault is a NE-SW-trending upwarped zone of deformation with a length of 90 km long and a width of 0.5 to 2 km, which shows geomorphic features typically found in subaerial strike-slip faults, such as deflected drainage, pressure ridges and "en echelon" folds. However, the neotectonic, depth architecture, and Neogene evolution of Carboneras Fault offshore are still poorly known. In this work we present a multiscale seismic imaging of the Carboneras Fault (i.e. TOPAS, high-resolution multichannel-seismic reflection, and deep penetration multichannel-seismic reflection) carried out during three successive marine cruises, from 2006 to 2010. The new dataset allowed us to define a total of seven seismostratigraphic units (from Tortonian to Late Quaternary) above the basement, to characterise the tectonic architecture and structural segmentation of the Carboneras Fault, and to estimate its maximum seismic potential. We finally discuss the role of the basement in the present-day tectonic evolution of the Carboneras Fault, and explore the northern and southern terminations of the fault and how the strain is transferred to nearby structures.

  6. Late Quaternary Surface Rupture and Associated Transpressive Uplift on a Section of the State Line Fault in the south-central Amargosa Desert Basin, Southwestern Nevada (United States)

    Menges, C. M.; Fridrich, C.; Blakely, R. J.; Thompson, R. A.


    New geomorphic, geophysical, and structural data indicate that a section of the Pahrump-Stewart Valley (State Line) fault on the northern piedmont of the Resting Spring Range is associated with late Quaternary surface rupture and related transpressive domal uplift. Detailed aeromagnetic and gravity data clearly image this northwest-trending strike-slip fault in the subsurface as a continuous multi-strand fault system that continues >35 km further northwest into the south-central Amargosa Desert basin than previously established. This continuation of the fault consists of a sigmoidal bend characterized by a constraining bend on the north flank of the Resting Spring Range, paired with a releasing bend on the north flank of the southeastern Funeral Mountains. Bedrock mapping in the Amargosa Desert indicates a cumulative late Cenozoic right-lateral displacement of ˜15 km across the entire fault zone. In the Resting Spring area, the major central strand of the State Line fault zone is inactive but offsets playa facies of the Artists Drive Formation (equivalent), internally folded into a giant southeast-plunging chevron syncline, against fluvial and playa margin facies of the same formation that are folded into a broad northwest-plunging anticline. These deformed Tertiary strata are exposed in the core of a large (10 x 18 km) domal Quaternary uplift, centered on the northern piedmont of the range, that coincides with a major transpressive left-step in the adjoining active trace of the fault zone. The domal uplift is indicated by persistent incision into Tertiary bedrock (1-5+ m deep) beneath stepped sequences of straths capped by thin and locally warped mid-Pleistocene to Holocene alluvial-gravel veneers. Quaternary activity on the fault zone in this area is now focused on a strand along the northern and eastern border of the uplifted area marked by a discontinuous, 8-10 km long series of aligned, en-echelon, or anastomosing fault scarps that commonly bound linear

  7. From tomographic images to fault heterogeneities

    Directory of Open Access Journals (Sweden)

    A. Amato


    Full Text Available Local Earthquake Tomography (LET is a useful tool for imaging lateral heterogeneities in the upper crust. The pattern of P- and S-wave velocity anomalies, in relation to the seismicity distribution along active fault zones. can shed light on the existence of discrete seismogenic patches. Recent tomographic studies in well monitored seismic areas have shown that the regions with large seismic moment release generally correspond to high velocity zones (HVZ's. In this paper, we discuss the relationship between the seismogenic behavior of faults and the velocity structure of fault zones as inferred from seismic tomography. First, we review some recent tomographic studies in active strike-slip faults. We show examples from different segments of the San Andreas fault system (Parkfield, Loma Prieta, where detailed studies have been carried out in recent years. We also show two applications of LET to thrust faults (Coalinga, Friuli. Then, we focus on the Irpinia normal fault zone (South-Central Italy, where a Ms = 6.9 earthquake occurred in 1980 and many thousands of attershock travel time data are available. We find that earthquake hypocenters concentrate in HVZ's, whereas low velocity zones (LVZ’ s appear to be relatively aseismic. The main HVZ's along which the mainshock rupture bas propagated may correspond to velocity weakening fault regions, whereas the LVZ's are probably related to weak materials undergoing stable slip (velocity strengthening. A correlation exists between this HVZ and the area with larger coseismic slip along the fault, according to both surface evidence (a fault scarp as high as 1 m and strong ground motion waveform modeling. Smaller wave-length, low-velocity anomalies detected along the fault may be the expression of velocity strengthening sections, where aseismic slip occurs. According to our results, the rupture at the nucleation depth (~ 10-12 km is continuous for the whole fault lenoth (~ 30 km, whereas at shallow depth

  8. Segmentation along the Queen Charlotte Fault: The long-lived influence of plate-motion rotation and Explorer Ridge fracture zones (United States)

    Miller, N. C.; Walton, M. A. L.; Brothers, D. S.; Haeussler, P. J.; Ten Brink, U. S.; Conrad, J. E.; Kluesner, J.; Andrews, B. D.


    The Queen Charlotte Fault (QCF) generally tracks the flow line for Pacific/North America (Pa/NA) relative motion since 20 Ma, indicating that the plate boundary localized along an optimally oriented small circle geometry. Rotation in Pa/NA motion at 10—12 Ma caused the QCF south of 53 N to be oblique to plate motion by 10—20. This oblique convergence appears to be accommodated in part by underthrusting of the Pacific Plate beneath Haida Gwaii and in part by slip on faults west of the QCF. On the west side of the QCF, a series of ridges and small basins oriented subparallel to either the QCF or relative plate motion form a 40-km-wide terrace. New high-resolution seismic reflection data image the seaward edge of the ridges as a vertical contact between horizontal or sometimes downwarped deep-sea sediments and west-vergent anticlinal structures within the ridges, supporting earlier interpretations that these ridges have accommodated some component of oblique motion. We argue that the ridges originated as step overs from fracture zones on Explorer Ridge, analogous to the current fault geometry at the southernmost end of the QCF. There, the Revere-Dellwood Fracture Zone (RDFZ) overlaps the QCF for 120 km and connects to the QCF via a more-optimally oriented extensional right step. 3.9—6.4 Mw strike-slip earthquakes along the RDFZ and a lack of contractional seafloor morphologies along the QCF south of the RDFZ-QCF right step suggest that the step over and reactivation along the RDFZ accommodates a majority of plate motion in this region. Kinematic reconstruction of ridges from 54—56 N indicates that they also originated in a similar location, potentially as right steps from either the RDFZ or Sovanco Fracture Zone. Similarly, the RDFZ flow path is coincident with a truncation of seafloor magnetic anomalies and the outer edge of the ridge-bounded terrace, which both parallel the QCF since at least the onset of Explorer Ridge spreading at 8 Ma. The RDFZ-QCF right

  9. 2001 Bhuj-Kachchh earthquake: surface faulting and its relation with neotectonics and regional structures, Gujarat, Western India

    Directory of Open Access Journals (Sweden)

    M. G. Thakkar


    Full Text Available Primary and secondary surface deformation related to the 2001 Bhuj-Kachchh earthquake suggests that thrusting movement took place along an E-W fault near the western extension of the South Wagad Fault, a synthetic fault of the Kachchh Mainland Fault (KMF. Despite early reconnaissance reports that concluded there was no primary surface faulting, we describe an 830 m long, 15-35 cm high, east-west-trending thrust fault scarp near where the seismogenic fault plane would project to the surface, near Bharodiya village (between 23°34.912'N, 70°23.942'E and 23°34.304'N, 70°24.884'E. Along most of the scarp Jurassic bedrock is thrust over Quaternary deposits, but the fault scarp also displaces Holocene alluvium and an earth dam, with dips of 13° to 36° south. Secondary co-seismic features, mainly liquefaction and lateral spreading, dominate the area south of the thrust. Transverse right-lateral movement along the «Manfara Fault» and a parallel fault near Bharodiya suggests segmentation of the E-W master faults. Primary (thrust surface rupture had a length of 0.8 km, maximum displacement of about 35 cm, and average displacement of about 15 cm. Secondary (strike-slip faulting was more extensive, with a total end-to-end length of 15 km, maximum displacement of 35 cm, and average displacement of about 20 cm.

  10. Paleoseismology of the 1966 Varto Earthquake (Ms 6.8) and Structure of the Varto Fault Zone, Eastern Turkey (United States)

    Isik, V.; Caglayan, A.; Saber, R.; Yesilyurt, N.


    Turkey is a region of active faulting and contains several strike-slip fault zones, which have generated both historical and recent large earthquakes. Two active fault zones in Turkey, the North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ), divide the area into the Anatolian micro-plate accommodating WSW-directed movement. The southeastern continuation of the NAFZ is often referred to the Varto Fault Zone (VFZ). The VFZ cuts mainly Pliocene volcano-sedimentary units and/or Quaternary deposits and is characterized by multiple fault strands and multiple, closely spaced, active seismogenic zones. Fault motions in the zone are primarily right-lateral, with a subordinate component of NNW-SSE shortening. Study area is Varto region in which indications of active faulting are very well preserved. We recognized three coseismic ruptures from five trench exposures. It is referred to these as events 1 (youngest) through 3 (oldest). The best evidence of event 3 comes from fault traces and its upward terminations. The major components of this fault are fault core and damage zone. The fault is not just one plane of discontinuity and bifurcates and creates additional slip surfaces, which propagate out of the plane of the original fault. Event 2 and event 1, referring to 1946 and 1966 earthquakes, are characterized primarily by discrete, regularly spaced normal faults with and 55-80 cm and 105-270 cm throws, respectively and geometry of growth strata. The VFZ in the study area include typical structures of strike-slip fault zone. It forms a number of parallel and slightly sub-parallel strands striking N50°-72°W including contractional and extensional brittle structures. Several meters to tens of meters wavelength active folds with ENE-WSW and WNW-ESE trending fold axis. These folds deform the Plio-Quaternary units and show classic asymmetry associated with both a south- and north-vergent fault propagation fold. Meso-scale normal faults are also well

  11. Constraints on 3D fault and fracture distribution in layered volcanic- volcaniclastic sequences from terrestrial LIDAR datasets: Faroe Islands (United States)

    Raithatha, Bansri; McCaffrey, Kenneth; Walker, Richard; Brown, Richard; Pickering, Giles


    Hydrocarbon reservoirs commonly contain an array of fine-scale structures that control fluid flow in the subsurface, such as polyphase fracture networks and small-scale fault zones. These structures are unresolvable using seismic imaging and therefore outcrop-based studies have been used as analogues to characterize fault and fracture networks and assess their impact on fluid flow in the subsurface. To maximize recovery and enhance production, it is essential to understand the geometry, physical properties, and distribution of these structures in 3D. Here we present field data and terrestrial LIDAR-derived 3D, photo-realistic virtual outcrops of fault zones at a range of displacement scales (0.001- 4.5 m) within a volcaniclastic sand- and basaltic lava unit sequence in the Faroe Islands. Detailed field observations were used to constrain the virtual outcrop dataset, and a workflow has been developed to build a discrete fracture network (DFN) models in GOCAD® from these datasets. Model construction involves three main stages: (1) Georeferencing and processing of LIDAR datasets; (2) Structural interpretation to discriminate between faults, fractures, veins, and joint planes using CAD software and RiSCAN Pro; and (3) Building a 3D DFN in GOCAD®. To test the validity of this workflow, we focus here on a 4.5 m displacement strike-slip fault zone that displays a complex polymodal fracture network in the inter-layered basalt-volcaniclastic sequence, which is well-constrained by field study. The DFN models support our initial field-based hypothesis that fault zone geometry varies with increasing displacement through volcaniclastic units. Fracture concentration appears to be greatest in the upper lava unit, decreases into the volcaniclastic sediments, and decreases further into the lower lava unit. This distribution of fractures appears to be related to the width of the fault zone and the amount of fault damage on the outcrop. For instance, the fault zone is thicker in

  12. A Pyrenean Cretaceous extensional fault system in the Briançonnais Domain of the Alps: implications for the eastern termination of the segmented Bay of Biscay-Pyrenean rift system. (United States)

    Tavani, Stefano; Bertok, Carlo; D'Atri, Anna; Piana, Fabrizio; Barale, Luca; Corradetti, Amerigo; Granado, Pablo; Martire, Luca; Vigna, Bartolomeo


    Recent studies in the foreland fold and thrust belt of the SW Alps reported that, in spite of the obliterating effect by the Alpine deformation, Mesozoic structures can still be recognised. These structures, occurring at the southern portion of the Western Alps arc, include a well-exposed crustal-scale Cretaceous extensional fault system. Field data (geological maps) and subsurface data (karst network) have been integrated to produce a detailed 3D reconstruction of this extensional fault system. Cretaceous faults affect the Paleozoic and Mesozoic successions and consist of a tens of km long E-W striking master fault, having in its northern block a set of E-dipping transverse extensional faults, having displacements in the order of hundreds of meters. The 3D reconstruction indicates that E-W extension, accommodated by transverse faults, is between 20% and 40%, and it reduces toward the E-W striking master fault. N-S extension is instead negligible and the E-W fault is interpreted as a Cretaceous right-lateral strike-slip fault. Removing the about 120° counter-clockwise vertical axis rotation, which is associated with the post-Cretaceous Alpine orogeny, the strike-slip fault becomes parallel to a suite of NNE-SSW to NE-SW striking faults occurring in the SW Alps foreland (present Provence region). We propose that, during the Cretaceous separation of Iberia from Eurasia, the NNE-SSW striking faults of Provence and Western Alps were delimiting to the east the Bay of Biscay - Pyrenean rift system. In detail, they formed a NNE-SSW striking transfer zone bounding to the east the Pyrenean arm of the rift, and likely ensured the connection of the Bay of Biscay - Pyrenean rift system with a further eastern, intra-plate, arm.

  13. Lack of continuity of the San Andreas Fault in southern California: Three-dimensional fault models and earthquake scenarios (United States)

    Carena, Sara; Suppe, John; Kao, Honn


    The 1200-km-long San Andreas Fault loses its apparent continuity in southern California near San Gorgonio Pass [, 1957], which raises significant questions given the dominant role of this fault in active California tectonics. What is the fundamental three-dimensional (3-D) geometry and kinematic behavior of the San Andreas fault system in this complex region? Is a throughgoing, if complex, San Andreas rupture from the Mojave Desert to the Coachella Valley possible? We have explored the issue of 3-D continuity by mapping over 60 faults in this region to depths of 15-20 km from hypocenter locations and focal mechanisms. We were able to constrain the 3-D geometry of the San Andreas fault zone (SAF) near San Gorgonio Pass from the 3-D geometry of the fault network surrounding it. The most likely configuration is for the San Andreas Fault to merge into the shallow-dipping San Gorgonio Pass thrust northwest of Indio. We concluded that there is no direct continuity at present but rather a network of faults, and the only kind of rupture possible for the SAF in this region is a complex rupture, involving both strike-slip and reverse faulting. GPS measurements also suggest that despite the fact that large motions must have occurred in the past based on offset geologic markers, only minor motion is occurring today in this area. Applying our findings about the fault geometry, we explored several simple earthquake scenarios to determine the most favorable conditions for a throughgoing rupture of the San Andreas fault system from the Mojave Desert to the Coachella Valley.

  14. Structure of the Newport-Inglewood/Rose Canyon and Palos Verdes Fault Zones and Implications for Current Fault Models (United States)

    Sahakian, V. J.; Bormann, J. M.; Klotsko, S.; Holmes, J. J.; Driscoll, N. W.; Harding, A. J.; Kent, G.; Wesnousky, S. G.


    Faulting in the Inner California Borderlands is complex. In the past, this region has undergone various deformational events such as extensional and rotational deformation to variable strike-slip deformation; this has imparted the geomorphology and fault structures observed offshore Southern California. Several hypotheses have been proposed to explain the current fault structures and the hazards they pose to populated coastal regions. The geometry and architecture of these structures can have significant implications for ground motions in the event of a rupture, and therefore impact working models of hazard assessment. Here, focusing on the Newport-Inglewood/Rose Canyon (NI/RC) and Palos Verdes (PV) fault zones, we use new and existing multibeam, CHIRP and Multi-Channel Seismic (MCS) data to describe the geometry of the fault system. We interpret reprocessed (prestack time migration) MCS data collected in 1979, 1986, and 2006 as well as newly acquired high-res MCS datasets collected offshore San Diego County. Combining these high and intermediate resolution datasets with very high resolution CHIRP data, we define structures that show distinct changes in the style of deformation through time, and place constraints on the segmentation of faults in this system. The timing of the most recent deformation on the NI/RC appears to vary along-strike. Likewise, the NI/RC fault's dip direction and angle appears to vary along-strike, and these changes in dip seem to mark the boundaries of restraining and releasing bends. Additionally, the NI/RC fault appears to die away to the north, possibly partitioning its strain on to the PV fault. We will present interpretations of the faults' current deformational activity as well as likelihood of rupture propagating across releasing/restraining bends, and discuss how this impacts current fault models that are employed for hazard assessment for Los Angeles and San Diego counties.

  15. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California (United States)

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria


    The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras

  16. Spatio-temporal evolution of fault networks: implications for deep radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Hardacre, K.; Scotti, O.


    The objective of this work is to provide estimates of both vertical and lateral propagation rates, on time scales of 100 000 years, for the faults systems known to be present today in the region of Bure, the site of an underground rock laboratory. The project is divided into three parts: 1) literature review (fault growth processes and data), 2) benchmarking against data a numerical code that allows for spontaneous development and growth of faults and 3) application to the Bure site. A brief overview of fault growth processes and observed fault propagation rates shows that non-negligible values (20-50 mm/yrs or roughly 5 km in 100 000 years) can be reached. Preliminary results obtained from two numerical simulations 1) fault growth of a pre-existing weaknesses and 2) fault growth of a spontaneously generated fault system, provide encouraging results with values that are comparable with those observed in nature for the growth of normal fault systems. The application to strike-slip system that characterizes the Bure site is still underway. (authors)

  17. Multiphase Deformational History, Kinematics, and Segmentation of the Palos Verdes Fault, Offshore Southern California (United States)

    Brankman, C. M.; Shaw, J. H.


    The Palos Verdes Fault (PVF) forms the western boundary of the Los Angeles basin, California, and has one of the highest slip rates in the region, indicating that it may be a source of future large earthquakes. Using a dense grid of petroleum industry seismic reflection data and exploration well logs, we have mapped a series of stratigraphic horizons in San Pedro Bay south of the peninsula that we use to invert for permissible underlying fault geometries and displacements. The PVF is composed of several discrete but related segments which together reflect a complex and multiphase evolution of the fault system. Directly south of the Palos Verdes Peninsula, imaged hanging wall and footwall fault cut-offs indicate that at depths below about 5km the fault dips moderately to the southwest. Furthermore, a thick sequence of eastward-thickening Miocene strata west of the fault suggests that the PVF originally formed as a normal fault during Miocene extension/transtension. Contractional folding of younger strata, as well as structural duplication of the crystalline basement surface, indicates that the normal fault was subsequently inverted during Plio-Pleistocene transpression. In the upper 3-4 km, the fault is nearly vertical, presumably accommodating right-lateral strike-slip displacement. Approximately 20 km southeast of the Peninsula, the PVF changes character across a major geometric segment boundary as a second fault segment emerges and continues trending southeast. The second segment dips northeast and shows increasing reverse displacement along strike to the southeast. Growth strata in the hanging wall and emergent sea-floor folds indicate that contractional deformation began in Pliocene time and continues to the present. The varying geometry and structural character of the PVF along strike reflect the earlier structural elements which have been reactivated to form the present fault geometry. Furthermore, the segmentation of the PVF may impact hazard estimates in

  18. Three dimensional modelling of earthquake rupture cycles on frictional faults (United States)

    Simpson, Guy; May, Dave


    We are developing an efficient MPI-parallel numerical method to simulate earthquake sequences on preexisting faults embedding within a three dimensional viscoelastic half-space. We solve the velocity form of the elasto(visco)dynamic equations using a continuous Galerkin Finite Element Method on an unstructured pentahedral mesh, which thus permits local spatial refinement in the vicinity of the fault. Friction sliding is coupled to the viscoelastic solid via rate- and state-dependent friction laws using the split-node technique. Our coupled formulation employs a picard-type non-linear solver with a fully implicit, first order accurate time integrator that utilises an adaptive time step that efficiently evolves the system through multiple seismic cycles. The implementation leverages advanced parallel solvers, preconditioners and linear algebra from the Portable Extensible Toolkit for Scientific Computing (PETSc) library. The model can treat heterogeneous frictional properties and stress states on the fault and surrounding solid as well as non-planar fault geometries. Preliminary tests show that the model successfully reproduces dynamic rupture on a vertical strike-slip fault in a half-space governed by rate-state friction with the ageing law.

  19. Refining fault slip rates using multiple displaced terrace risers-An example from the Honey Lake fault, NE California, USA (United States)

    Gold, Ryan D.; Briggs, Richard W.; Crone, Anthony J.; DuRoss, Christopher B.


    Faulted terrace risers are semi-planar features commonly used to constrain Quaternary slip rates along strike-slip faults. These landforms are difficult to date directly and therefore their ages are commonly bracketed by age estimates of the adjacent upper and lower terrace surfaces. However, substantial differences in the ages of the upper and lower terrace surfaces (a factor of 2.4 difference observed globally) produce large uncertainties in the slip-rate estimate. In this investigation, we explore how the full range of displacements and bounding ages from multiple faulted terrace risers can be combined to yield a more accurate fault slip rate. We use 0.25-m cell size digital terrain models derived from airborne lidar data to analyze three sites where terrace risers are offset right-laterally by the Honey Lake fault in NE California, USA. We use ages for locally extensive subhorizontal surfaces to bracket the time of riser formation: an upper surface is the bed of abandoned Lake Lahontan having an age of 15.8 ± 0.6 ka and a lower surface is a fluvial terrace abandoned at 4.7 ± 0.1 ka. We estimate lateral offsets of the risers ranging between 6.6 and 28.3 m (median values), a greater than fourfold difference in values. The amount of offset corresponds to the riser's position relative to modern stream meanders: the smallest offset is in a meander cutbank position, whereas the larger offsets are in straight channel or meander point-bar positions. Taken in isolation, the individual terrace-riser offsets yield slip rates ranging from 0.3 to 7.1 mm/a. However, when the offset values are collectively assessed in a probabilistic framework, we find that a uniform (linear) slip rate of 1.6 mm/a (1.4-1.9 mm/a at 95% confidence) can satisfy the data, within their respective uncertainties. This investigation demonstrates that integrating observations of multiple offset elements (crest, midpoint, and base) from numerous faulted and dated terrace risers at closely spaced

  20. Refining fault slip rates using multiple displaced terrace risers—An example from the Honey Lake fault, NE California, USA (United States)

    Gold, Ryan D.; Briggs, Richard; Crone, Anthony J.; Duross, Christopher


    Faulted terrace risers are semi-planar features commonly used to constrain Quaternary slip rates along strike-slip faults. These landforms are difficult to date directly and therefore their ages are commonly bracketed by age estimates of the adjacent upper and lower terrace surfaces. However, substantial differences in the ages of the upper and lower terrace surfaces (a factor of 2.4 difference observed globally) produce large uncertainties in the slip-rate estimate. In this investigation, we explore how the full range of displacements and bounding ages from multiple faulted terrace risers can be combined to yield a more accurate fault slip rate. We use 0.25-m cell size digital terrain models derived from airborne lidar data to analyze three sites where terrace risers are offset right-laterally by the Honey Lake fault in NE California, USA. We use ages for locally extensive subhorizontal surfaces to bracket the time of riser formation: an upper surface is the bed of abandoned Lake Lahontan having an age of 15.8 ± 0.6 ka and a lower surface is a fluvial terrace abandoned at 4.7 ± 0.1 ka. We estimate lateral offsets of the risers ranging between 6.6 and 28.3 m (median values), a greater than fourfold difference in values. The amount of offset corresponds to the riser's position relative to modern stream meanders: the smallest offset is in a meander cutbank position, whereas the larger offsets are in straight channel or meander point-bar positions. Taken in isolation, the individual terrace-riser offsets yield slip rates ranging from 0.3 to 7.1 mm/a. However, when the offset values are collectively assessed in a probabilistic framework, we find that a uniform (linear) slip rate of 1.6 mm/a (1.4–1.9 mm/a at 95% confidence) can satisfy the data, within their respective uncertainties. This investigation demonstrates that integrating observations of multiple offset elements (crest, midpoint, and base) from numerous faulted and dated terrace risers at closely spaced

  1. Neotectonic study of the Santa Marta Fault System, Western foothills of the Sierra Nevada de Santa Marta, Colombia (United States)

    Idárraga-García, J.; Romero, J.


    These structures are consistent with a model of a left-lateral shear zone striking NNW. An unlithified ruditic deposit of probable Quaternary age exhibiting tectonic deformation crops out at the Riofrío site. It consists of a series of debris slope layers that make up a colluvial cone. The documented deformation in this outcrop is characterized by a backtilting of the sequence to the NE and by the presence of apparent dip-slip faulting. This is thought to be the side view expression of predominantly strike-slip movement. A minimum magnitude (Mw) of 6.4 was estimated for an identified faulting event based on outcrop measurements of fault displacement.

  2. Imaging fault structure using cross-correlation and relative earthquake location from the IRIS Wavefields community dataset in Oklahoma (United States)

    Sawi, T.; DeShon, H. R.; Ogwari, P.; Quinones, L.


    Since 2009, Oklahoma has experienced a dramatic increase in seismicity that previous studies have associated with high-volume wastewater injection into a 2 km deep, underpressured sedimentary formation known as the Arbuckle Group. Regional and statewide seismic networks are too sparse to fully resolve the complexity of many active faults in Oklahoma, especially those associated with small (Mright lateral strike-slip faults with a strike, dip and rake of 80o, 85o and -160o, respectively. Double difference relocation using cross-correlated differential times generates earthquake depths of 3-7.5 km, consistent with fault slip within in the Precambrian basement rather than the Arbuckle injection unit. Results support the inference that seismicity is the result of deep injection of wastewater, and the high resolution earthquake locations presented here help elucidate the physical processes linking injection to basement seismicity.

  3. Controls on timing and amount of right-lateral offset on the East Bay fault system, San Francisco Bay region, California (United States)

    Graymer, R.W.; Sarna-Wojcicki, A. M.; Walker, J.P.; McLaughlin, R.J.; Fleck, R.J.


    The distribution of offset, correlated rock units, relative position of northward- younging volcanic rocks, and distribution of units not offset together reveal the history of strike-slip deformation along the East Bay fault system. The system accumulated 175 km of right-lateral offset since 12 Ma, but of this amount, only ???25 km was accumulated between 12 and 10 Ma and only ???75 km between 12 and 6 Ma. The westernmost Hayward fault zone is responsible for more than half (100 km) of the total, and it, too, has undergone more offset (60 km) after 6 Ma than before. The activity on any single fault zone in the system has been sporadic, and alternating periods of activity and inactivity have been recorded on at least some of the fault zones.

  4. Seismicity associated with magmatism, faulting and hydrothermal circulation at Aluto Volcano, Main Ethiopian Rift (United States)

    Wilks, Matthew; Kendall, J.-Michael; Nowacki, Andy; Biggs, Juliet; Wookey, James; Birhanu, Yelebe; Ayele, Atalay; Bedada, Tulu


    The silicic volcanic centres of the Main Ethiopian Rift (MER) play a central role in facilitating continental rifting. Many of these volcanoes host geothermal resources and are located in heavily populated regions. InSAR studies have shown several are deforming, but regional seismic networks have detected little seismicity. A local network of 12 seismometers was deployed at Aluto Volcano from 2012 to 2014, and detected 2142 earthquakes within a 24-month period. We locate the events using a 1D velocity model that exploits a regional model and information from geothermal boreholes and calculate local magnitudes, b-values and focal mechanisms. Event depths generally range from the near surface to 15 km with most of the seismicity clustering in the upper 2 km. A significant amount of seismicity follows the Artu Jawa Fault Zone, which trends in alignment with the Wonji Fault Belt, NNE-SSW and is consistent with previous studies of strain localisation in the MER. Focal mechanisms are mostly normal in style, with the mean T-axes congruent to the orientation of extension in the rift at this latitude. Some show relatively small left-lateral strike-slip components and are likely associated with the reactivation of NE-ENE structures at the southern tip of the Aluto-Gedemsa segment. Events range from - 0.40 to 2.98 in magnitude and we calculate an overall b-value of 1.40 ± 0.14. This relatively elevated value suggests fluid-induced seismicity that is particularly evident in the shallow hydrothermal reservoir and above it. Subdividing our observations according to depth identifies distinct regions beneath the volcanic edifice: a shallow zone (- 2-0 km) of high seismicity and high b-values that corresponds to the hydrothermal system and is influenced by a high fluid saturation and circulation; a relatively aseismic zone (0-2 km) with low b-values that is impermeable to ascending volatiles; a region of increased fluid-induced seismicity (2-9 km) that is driven by magmatic

  5. High tsunami risk at northern tip of Sumatra as a result of the activity of the Sumatra Fault Zone (SFZ) combined with coastal landslides (United States)

    Haridhi, H. A.; Huang, B. S.; Wen, K. L.; Mirza, A.; Rizal, S.; Purnawan, S.; Fajri, I.; Klingelhoefer, F.; Liu, C. S.; Lee, C. S.; Wilson, C. R.


    The lesson learned from the 12 January 2010, Mw 7.0 Haiti earthquake has shown that an earthquake with strike-slip faulting can produce a significant tsunami. This occasion is rare since in the fact of the fault consist predominantly of lateral motion, which is rarely associated with significant uplift or tsunami generation. Yet, another hint from this event, that this earthquake was accompanied by a coastal landslide. Again, there were only few records of a submarine slides as a primary source that generate a tsunami. Hence, the Haiti Mw 7.0 earthquake was generated by these combined mechanisms, i.e. strike-slip faulting earthquake and coastal landslide. In reflecting this event, the Sumatra region exhibit almost identical situation, where the right lateral strike-slip faulting of Sumatra Fault Zone (SFZ) is located. In this study, we are focusing at the northern tip of SFZ at Aceh Province. The reason we focused our study at its northern tip is that, since the Sumatra-Andaman mega earthquake and tsunami on 26 December 2004, which occurred at the subduction zone, there were no records of significant earthquake along the SFZ, where at this location the SFZ is divided into two faults, i.e. Aceh and Seulimeum faults. This study aimed as a mitigation effort, if an earthquake happened at these faults, do we observe a similar result as that happened at Haiti or not. To do so, we access the high-resolution shallow bathymetry data that acquired through a Community-Based Bathymetric Survey (CBBS), examines five scanned Single Channel Seismic (SCS) reflections data, perform the slope stability analysis and that simulate the tsunami using Cornell Multi-grid Coupled Tsunami Model (COMCOT) model with a combined source of fault activity and submarine landslide. The result shows that, by these combined mechanisms, if the earthquake as large as 7 Mw or larger, it could produce a tsunami as high as 6 meters along the coast. The detailed shallow bathymetric and the slope stability

  6. A bottom-driven mechanism for distributed faulting: Insights from the Gulf of California Rift (United States)

    Persaud, P.; Tan, E.; Choi, E.; Contreras, J.; Lavier, L. L.


    The Gulf of California is a young oblique rift that displays a variation in rifting style along strike. Despite the rapid localization of strain in the Gulf at 6 Ma, the northern rift segment has the characteristics of a wide rift, with broadly distributed extensional strain and small gradients in topography and crustal thinning. Observations of active faulting in the continent-ocean transition of the Northern Gulf show multiple oblique-slip faults distributed in a 200 x 70 km2area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear is a step-function while oblique-slip on numerous faults dominates when basal shear is distributed. We further investigate how the style of faulting varies with obliquity and demonstrate that the style of faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area. Our

  7. Active faults, paleoseismology, and historical fault rupture in northern Wairarapa, North Island, New Zealand

    International Nuclear Information System (INIS)

    Schermer, E.R.; Van Dissen, R.; Berryman, K.R.; Kelsey, H.M.; Cashman, S.M.


    Active faulting in the upper plate of the Hikurangi subduction zone, North Island, New Zealand, represents a significant seismic hazard that is not yet well understood. In northern Wairarapa, the geometry and kinematics of active faults, and the Quaternary and historical surface-rupture record, have not previously been studied in detail. We present the results of mapping and paleoseismicity studies on faults in the northern Wairarapa region to document the characteristics of active faults and the timing of earthquakes. We focus on evidence for surface rupture in the 1855 Wairarapa (M w 8.2) and 1934 Pahiatua (M w 7.4) earthquakes, two of New Zealand's largest historical earthquakes. The Dreyers Rock, Alfredton, Saunders Road, Waitawhiti, and Waipukaka faults form a northeast-trending, east-stepping array of faults. Detailed mapping of offset geomorphic features shows the rupture lengths vary from c. 7 to 20 km and single-event displacements range from 3 to 7 m, suggesting the faults are capable of generating M >7 earthquakes. Trenching results show that two earthquakes have occurred on the Alfredton Fault since c. 2900 cal. BP. The most recent event probably occurred during the 1855 Wairarapa earthquake as slip propagated northward from the Wairarapa Fault and across a 6 km wide step. Waipukaka Fault trenches show that at least three surface-rupturing earthquakes have occurred since 8290-7880 cal. BP. Analysis of stratigraphic and historical evidence suggests the most recent rupture occurred during the 1934 Pahiatua earthquake. Estimates of slip rates provided by these data suggest that a larger component of strike slip than previously suspected is occurring within the upper plate and that the faults accommodate a significant proportion of the dextral component of oblique subduction. Assessment of seismic hazard is difficult because the known fault scarp lengths appear too short to have accommodated the estimated single-event displacements. Faults in the region are

  8. Neotectonic fault structures in the Lake Thun area (Switzerland) (United States)

    Fabbri, Stefano C.; Herwegh, Marco; Schlunegger, Fritz; Hübscher, Christian; Weiss, Benedikt J.; Schmelzbach, Cédric; Horstmeyer, Heinrich; Merz, Kaspar; Anselmetti, Flavio S.


    Strong historic earthquakes (i.e. intensities I0 ≥ V) in Switzerland are well documented by the earthquake catalogue of Switzerland ECOS-09 (e.g. Frutigen, 1729 AD, Mw=5.2, I0=VI). Many of these strong events can be recognized paleoseismically by large subaquatic, earthquake-triggered mass movements that occur frequently in Swiss Lakes. Some of these represent the occasional occurrence of even stronger earthquakes (i.e. Mw ˜6.5) in the Alpine region (Strasser et al., 2013), which are expected to produce noticeable surface ruptures. However, convincing evidence for Quaternary displacements with offset surface expressions have scarcely been found (e.g., Wiemer et al., 2009). Applying a multi-disciplinary approach, this study presents potential candidates for such faults in the larger Lake Thun area at the edge of the Alps. The overdeepened basin of Lake Thun is situated at the northern Alpine front, which extends orthogonally to the general strike direction of the Alpine nappe front. The northern shoreline is predominantly shaped by the front of the Subalpine Molasse, which is in strong contrast to the south western shore built by the structurally higher units of the Middle and Lower Penninic nappes. This pattern with obvious differences of both lake sides suggests a major fault along the lake axis and high tectonic activity during nappe emplacement, i.e. from Eocene times throughout the Late Miocene. The area is dominated today by a strike-slip stress regime with a slight normal faulting component (Kastrup et al., 2004). As part of a multi-disciplinary study, attempting to find potential neotectonically active fault structures in the Lake Thun area, a 2D ground penetrating radar (GPR) survey was conducted. The aim of the GPR survey was to link observations from a multichannel reflection seismic survey and a multibeam bathymetric survey carried out in Lake Thun with findings in a nearby gravel quarry revealing suspicious deformation features such as rotated gravel

  9. Kinematics of Post-obduction Deformation of the Tertiary Ridge at Al-Khod Village (Muscat, Oman

    Directory of Open Access Journals (Sweden)

    Andreas Scharf


    Full Text Available Structural investigations in post-obductional Paleocene to Eocene limestones of the Tertiary Ridge reveal a ~1 km long WNW-ESE striking strike-slip fault system within the ridge, consisting of two main sub-parallel, strike-slip faults. Considering the geometry of the Harding Strain Ellipse, the orientation of structures between the two strike-slip faults (e.g., Riedel shears, folds, reverse faults point to left-lateral motion. The abundance of large-scale folds (up to 100 m in wave length and amplitude between the two strike-slip faults led us to the interpretation of transpressive conditions in a first approximation. Moreover, the Tertiary Ridge of the study area consists of three distinct structural domains. The faults of Domain A and C are oriented WNW-ESE, but the trend of the faults in the central Domain B differs by ~10°. The left-lateral strike-slip fault system exists only in Domain B. We propose that the direction of greatest stress during Miocene plate convergence (sigma 1 was oriented 032°/212°. Considering the trend of the strike-slip zone and the orientation of sigma 1, the left-lateral motion must have been transpressive. Sigma 1 is perpendicularly oriented to the domains A and C. Prior to the Miocene D2 compressional event the study area was affected by a D1 extensional event, related to the opening of the Red Sea and the Gulf of Aden or to gravity-driven normal faulting. The D2 compressional/transpressional structures of the Miocene are reactivating the D1 structures of the Oligocene.

  10. Geodetic constraints on frictional properties of the Imperial fault, Southern California (United States)

    Lindsey, E. O.; Fialko, Y. A.


    We analyze a suite of geodetic observations across the Imperial fault in Southern California that span the complete earthquake cycle. We record interseismic deformation using four separate ENVISAT InSAR viewing geometries and continuous and survey-mode GPS, resulting in a dense set of observations of both shallow creep and regional strain accumulation due to secular loading. These data are combined with observations of coseismic and postseismic surface slip due to the 1979 Mw 6.6 Imperial Valley earthquake. We compare the geodetic data to two-dimensional models of the earthquake cycle on a strike-slip fault obeying rate- and state-dependent friction. We find that data from all parts of the earthquake cycle are required to constrain key fault properties such as the rate-dependence parameter (a-b) as a function of depth; the extent of shallow creep; and the recurrence interval of large events. The data are inconsistent with a high (>30 mm/yr) slip rate on the Imperial fault, and we propose that an extension of the San Jacinto - Superstition Hills fault system through the town of El Centro may accommodate a significant portion of the slip previously attributed to the Imperial fault. Models including this additional sub-parallel fault are in better agreement with the available observations, implying that the long-term slip rate of the Imperial fault is lower than previously suggested, and that there may be a significant unmapped hazard in the western Imperial Valley.

  11. Active faulting in the Inner California Borderlands: new constraints from high-resolution multichannel seismic and multibeam bathymetric data. (United States)

    Bormann, J. M.; Holmes, J. J.; Sahakian, V. J.; Klotsko, S.; Kent, G.; Driscoll, N. W.; Harding, A. J.; Wesnousky, S. G.


    Geodetic data indicate that faults offshore of Southern California accommodate 6-8 mm/yr of dextral Pacific-North American relative plate motion. In the Inner California Borderlands (ICB), modern strike-slip deformation is overprinted on topography formed during plate boundary reorganization 30-15 Ma. Despite its proximity to urban Southern California, the hazard posed by active faults in the ICB remains poorly understood. We acquired a 4000-line-km regional grid of high-resolution, 2D multichannel seismic (MCS) reflection data and multibeam bathymetry to examine the fault architecture and tectonic evolution of the ICB. We interpret the MCS data using a sequence stratigraphic approach to establish a chronostratigraphy and identify discrete episodes of deformation. We present our results in a regional fault model that distinguishes active deformation from older structures. Significant differences exist between our model of ICB deformation and existing models. Mounting evidence suggests a westward temporal migration of slip between faults in the ICB. In the eastern ICB, slip on the Newport-Inglewood/Rose Canyon fault and the neighboring Coronado Bank fault (CBF) diminishes to the north and appears to decrease over time. Undeformed Late Pliocene sediments overlie the northern extent of the CBF and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, CBF slip rate estimates based on linkage with the Palos Verdes fault to the north are unwarranted. Deformation along the San Mateo, San Onofre, and Carlsbad trends is best explained as localized deformation resulting from geometrical complexities in a dextral strike-slip fault system. In the western ICB, the San Diego Trough fault (SDTF) offsets young sediments between the US/Mexico border and the eastern margin of Avalon Knoll, where the fault is spatially coincident with the San Pedro Basin fault (SPBF). Farther west, the San Clemente fault (SCF) has a strong linear bathymetric expression. The length

  12. Relationship between displacement and gravity change of Uemachi faults and surrounding faults of Osaka basin, Southwest Japan (United States)

    Inoue, N.; Kitada, N.; Kusumoto, S.; Itoh, Y.; Takemura, K.


    The Osaka basin surrounded by the Rokko and Ikoma Ranges is one of the typical Quaternary sedimentary basins in Japan. The Osaka basin has been filled by the Pleistocene Osaka group and the later sediments. Several large cities and metropolitan areas, such as Osaka and Kobe are located in the Osaka basin. The basin is surrounded by E-W trending strike slip faults and N-S trending reverse faults. The N-S trending 42-km-long Uemachi faults traverse in the central part of the Osaka city. The Uemachi faults have been investigated for countermeasures against earthquake disaster. It is important to reveal the detailed fault parameters, such as length, dip and recurrence interval, so on for strong ground motion simulation and disaster prevention. For strong ground motion simulation, the fault model of the Uemachi faults consist of the two parts, the north and south parts, because of the no basement displacement in the central part of the faults. The Ministry of Education, Culture, Sports, Science and Technology started the project to survey of the Uemachi faults. The Disaster Prevention Institute of Kyoto University is carried out various surveys from 2009 to 2012 for 3 years. The result of the last year revealed the higher fault activity of the branch fault than main faults in the central part (see poster of "Subsurface Flexure of Uemachi Fault, Japan" by Kitada et al., in this meeting). Kusumoto et al. (2001) reported that surrounding faults enable to form the similar basement relief without the Uemachi faults model based on a dislocation model. We performed various parameter studies for dislocation model and gravity changes based on simplified faults model, which were designed based on the distribution of the real faults. The model was consisted 7 faults including the Uemachi faults. The dislocation and gravity change were calculated based on the Okada et al. (1985) and Okubo et al. (1993) respectively. The results show the similar basement displacement pattern to the

  13. K-Ar dates from the Altiplano and Cordillera Oriental of Bolivia: implications for Cenozoic stratigraphy and tectonics (United States)

    Kennan, L.; Lamb, S.; Rundle, C.


    New K-Ar dates from tuffs, lavas and granites, collected in the Bolivian Altiplano and Cordillera Oriental, constrain the evolution of the Bolivian Andes. A phlogopite megacryst from a post-cleavage kimberlite dike near Independencia gave an age of ca. 98 Ma. In the central Altiplano, a widespread suite of basaltic to andesitic lavas, sills and rhyolitic tuffs has yielded dates of 25-22 Ma, coeval with the first major influx of conglomerates in the central Altiplano basin. Rapid early Miocene erosion of the Cordillera Oriental is suggested by biotites from the Quimsa Cruz Granite in the Cordillera Oriental, which vary in age between 32-22 Ma, and also by zircon fission track data. Gentle folding in the Cordillera Oriental near Potosi pre-dates the early Miocene Mondragon Formation which contains a ca. 19 Ma ignimbrite near its base. Further folding here occurred prior to the eruption of the flat-lying ca. 7 Ma ignimbrites of the Condor Nasa Meseta and ca. 12 Ma ignimbrites from the central Los Frailes Meseta. Intense folding in the central Altiplano also occurred between 9 Ma and 5 Ma, and younger tuffs are only slightly tilted. In the Cochabamba region, sedimentary infill of the Parotani Basin contains a ca. 20 Ma tuff horizon, and folded tuffs from the nearby Sacaba Basin have been dated at ca. 2.2 Ma. These ages suggest a protracted history for associated basin-margin ESE sinistral strike-slip and normal faults. However, regional folding pre-dates the San Juan del Oro Surface, which formed an extensive flatlying peneplain, preserved at ca. 3000 m in the central and eastern Cordillera Oriental. The age of valley-fill tuffs suggest that dissection of this surface had commenced in the Cochabamba region by 6.5 Ma. However, near Sucre, flat-lying tuffs, dated between 3.5 and 1.4 Ma, mantle the surface and predate the deep Pleistocene dissection of the central Cordillera Oriental. Deformation has been concentrated in the Subandean foreland thrust belt since the

  14. Synthesis of Near-fault Ground Motion Using a Hybrid Method of Stochastic and Theoretical Green’s Functions

    Directory of Open Access Journals (Sweden)

    Wu Shuanglan


    Full Text Available The effect of near-fault ground displacement is a significant factor when structures straddle a fault, because the fault produces both static step-like deformations and dynamic pulse-like ground motions. It has been observed that the static displacements measured up to 10 m and strong ground motion velocity pulses exceed 100 cm/s. As there is no concrete method for the seismic design of near-fault structures based on earthquake-induced fault displacement, the numerical simulation of near-fault ground motions is of great significance. In this paper, we describe a hybrid method combining stochastic and theoretical Green’s functions for synthesizing near-fault ground motions. Our approach considers the complete waveforms (far-, intermediate-, and near-field terms of both the dynamic and static terms. To demonstrate the hybrid method, two simple examples of strike-slip and dip-slip fault models are simulated. The results exhibited dynamic displacement with the fling-step of near-fault movement. Furthermore, the 1999 Chi-Chi earthquake in Taiwan is also simulated, and the results showed good agreement with the observed recordings. Thus, the proposed method is a useful tool for evaluating near-fault ground motions for designing bridges and other structures.

  15. Off-fault seismicity suggests creep below 10 km on the northern San Jacinto Fault (United States)

    Cooke, M. L.; Beyer, J. L.


    Within the San Bernardino basin, CA, south of the juncture of the San Jacinto (SJF) and San Andreas faults (SAF), focal mechanisms show normal slip events that are inconsistent with the interseismic strike-slip loading of the region. High-quality (nodal plane uncertainty faults [Anderson et al., 2004]. However, the loading of these normal slip events remains enigmatic because the region is expected to have dextral loading between large earthquake events. These enigmatic normal slip events may be loaded by deep (> 10 km depth) spatially creep along the northern SJF. Steady state models show that over many earthquake cycles, the dextral slip rate on the northern SJF increases southward, placing the San Bernardino basin in extension. In the absence of recent large seismic events that could produce off-fault normal focal mechanisms in the San Bernardino basin, non-uniform deep aseismic slip on the SJF could account for this seismicity. We develop interseismic models that incorporate spatially non-uniform creep below 10 km on the SJF based on steady-state slip distribution. These model results match the pattern of deep normal slip events within the San Bernardino basin. Such deep creep on the SJF may not be detectable from the geodetic signal due to the close proximity of the SAF, whose lack of seismicity suggests that it is locked to 20 km. Interseismic models with 15 km locking depth on both faults are indistinguishable from models with 10 km locking depth on the SJF and 20 km locking depth on the SAF. This analysis suggests that the microseismicity in our multi-decadal catalog may record both the interseismic dextral loading of the region as well as off-fault deformation associated with deep aseismic creep on the northern SJF. If the enigmatic normal slip events of the San Bernardino basin are included in stress inversions from the seismic catalog used to assess seismic hazard, the results may provide inaccurate information about fault loading in this region.

  16. On fault evidence for a large earthquake in the late fifteenth century, Eastern Kunlun fault, China (United States)

    Junlong, Zhang


    The EW-trending Kunlun Fault System (KFS) is one of the major left-lateral strike-slip faults on the Tibetan Plateau. It forms the northern boundary of the Bayan Har block. Heretofore, no evidence has been provided for the most recent event (MRE) of the 70-km-long eastern section of the KFS. The studied area is located in the north of the Zoige Basin (northwest Sichuan province) and was recognized by field mapping. Several trenches were excavated and revealed evidence of repeated events in late Holocene. The fault zone is characterized by a distinct 30-60-cm-thick clay fault gouge layer juxtaposing the hanging wall bedrock over unconsolidated late Holocene footwall colluvium and alluvium. The fault zone, hanging wall, and footwall were conformably overlain by undeformed post-MRE deposits. Samples of charred organic material were obtained from the top of the faulted sediments and the base of the unfaulted sediments. Modeling of the age of samples, earthquake yielded a calibrated 2σ radiocarbon age of A.D. 1489 ± 82. Combined with the historical earthquake record, the MRE is dated at A.D. 1488. Based on the over 50 km-long surface rupture, the magnitude of this event is nearly M w 7.0. Our data suggests that a 200-km-long seismic gap could be further divided into the Luocha and Maqu sections. For the last 1000 years, the Maqu section has been inactive, and hence, it is likely that the end of its seismic cycle is approaching, and that there is a potentially significant seismic hazard in eastern Tibet.

  17. One Basin, One Stress Regime, One Orientation of Seismogenic Basement Faults, Variable Spatio-Temporal Slip Histories: Lessons from Fort Worth Basin Induced Earthquake Sequences (United States)

    DeShon, H. R.; Brudzinski, M.; Frohlich, C.; Hayward, C.; Jeong, S.; Hornbach, M. J.; Magnani, M. B.; Ogwari, P.; Quinones, L.; Scales, M. M.; Stump, B. W.; Sufri, O.; Walter, J. I.


    Since October 2008, the Fort Worth basin in north Texas has experienced over 30 magnitude (M) 3.0+ earthquakes, including one M4.0. Five named earthquake sequences have been recorded by local seismic networks: DFW Airport, Cleburne-Johnson County, Azle, Irving-Dallas, and Venus-Johnson County. Earthquakes have occurred on northeast (NE)-southwest (SW) trending Precambrian basement faults and within the overlying Ellenburger limestone unit used for wastewater disposal. Focal mechanisms indicate primarily normal faulting, and stress inversions indicate maximum regional horizontal stress strikes 20-30° NE. The seismogenic sections of the faults in either the basement or within the Ellenburger appear optimally oriented for failure within the modern stress regime. Stress drop estimates range from 10 to 75 bars, with little variability between and within the named sequences, and the values are consistent with intraplate earthquake stress drops in natural tectonic settings. However, the spatio-temporal history of each sequence relative to wastewater injection data varies. The May 2015 M4.0 Venus earthquake, for example, is only the largest of what is nearly 10 years of earthquake activity on a single fault structure. Here, maximum earthquake size has increased with time and exhibits a log-linear relationship to cumulative injected volume from 5 nearby wells. At the DFW airport, where the causative well was shut-in within a few months of the initial earthquakes and soon after the well began operation, we document migration away from the injector on the same fault for nearly 6 km sporadically over 5 years. The Irving-Dallas and Azle sequences, like DFW airport, appear to have started rather abruptly with just a few small magnitude earthquakes in the weeks or months preceding the significant set of magnitude 3.5+ earthquakes associated with each sequence. There are no nearby (<10 km) injection operations to the Irving-Dallas sequence and the Azle linked wells operated for

  18. Fault Zone Architecture and Mineralogy: Implications in Fluid Flow and Permeability in Crustal Scale Fault Zones in the Southern Andes. (United States)

    Roquer, T.; Terrón, E.; Perez-Flores, P.; Arancibia, G.; Cembrano, J. M.


    Fluid flow in the upper crust is controlled by the permeability and interconnection of fractures in the fault zones. The permeability within the fault zone is determined by its activity, architecture and, in particular, by the mineralogy of the core and the damage zone. Whereas the permeability structure of a fault zone can be defined by the volume proportion of the core with respect to the damage zone, the relationship between the mineralogy and permeability along fault zones still remains obscure. This work examines structural and mineralogical data to show the relationship between the mineral composition of the fault zone with its permeability in the Liquiñe-Ofqui Fault System (LOFS) and the Arc-oblique Long-lived Fault Systems (ALFS), Southern Chile. The LOFS is an active ca. 1200 km long strike-slip Cenozoic intra-arc structure that strikes NNE in its master traces and NE in its subsidiary traces, with dextral and dextral-normal movement mostly developed in the last 6 My. Although the LOFS and the ALFS cross-cut each other, the ALFS is an apparently older basement fault system where seismic and field evidences record sinistral, sinistral-normal and sinistral-reverse movements. One 22-m-long NE transect was mapped orthogonal to a segment of the ALFS, where host rocks are Miocene andesitic rocks. Structural and XRD sampling were conducted in the core and damage zone. Structural mapping shows a multiple core, NW-striking fault zone with foliated gouge and an asymmetric damage zone, where the hanging wall has significantly higher mesoscopic fracture density than the footwall. The hanging wall is characterized by NW-striking, steeply dipping veins. Preliminary XRD results indicate the presence of homogenously distributed Ca-rich zeolite (mainly laumontite) in the core and the veins of the damage zone, which could indicate that the core acted as a conduit for low-temperature (ca. 220°C) fluids.

  19. Kinematics of long lived faults in intraplate settings: case study of the Río Grío Fault (Iberian Range). (United States)

    Marcén, Marcos; Román-Berdiel, Teresa; Casas, Antonio; Calvín-Ballester, Pablo; Oliva-Urcia, Belen; García-Lasanta, Cristina


    This study is based on the comparison of structural analysis and AMS data of Río Grío Fault, associated with the Datos Fault System, in the Iberian Chain (Northeastern Iberian Plate, Spain). The Río Grío Fault, with NW-SE strike, has a tectonic evolution of probably Mesozoic extension and Tertiary transpressive dextral movement, and it is characterized by the presence of a well-developed cataclastic zone 200m width. The structure of the core is characterized by elongated along strike and narrow lenses separated by subvertical fault planes with well-developed fault breccias and gouges. The lenses usually conserve intact stratification, and it may be recognized several lithologies, including Ordovician quartzites, slates and clay, and red-colored Permo-triassic clay and sandstones. The internal structure of these lenses shows folds, brechified zones, and localized foliation in clay lenses. Cinematic indicators (striations, S/C structures…) show strong reverse dip-slip and dextral strike-slip components, indicating strain partitioning between the different lenses, and it is interpreted as the result of the reactivation of previous normal faults, like a strike-slip shear, during the NNE-SSW to NE-SW Cenozoic compression of the NE Iberian Plate. Samples of AMS study were collected from two areas (SG and RG) of the fault zone, separated by 4.5km along strike. Samples provide a magnetic susceptibility highly dependent on lithology, between ±5*10-5 [SI] in the white fault gouge and ±20*10-5 [SI] in red-colored clay. The low susceptibility in several sites results in high imprecise AMS measurements. AMS results for the first area (SG), obtained in red and black colored clays, show the same magnetic fabric in all sites. K-min axis of the magnetic ellipsoid corresponds to the pole of the fault planes measured in the outcrop, and the magnetic lineation is nearly horizontal, probably related to strike-slip movements. In the second area (RG), the AMS shows a grater

  20. Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, Daniel [Univ. of Texas, Austin, TX (United States)


    Geothermal plays in extensional and transtensional tectonic environments have long been a major target in the exploration of geothermal resources and the Dixie Valley area has served as a classic natural laboratory for this type of geothermal plays. In recent years, the interactions between normal faults and strike-slip faults, acting either as strain relay zones have attracted significant interest in geothermal exploration as they commonly result in fault-controlled dilational corners with enhanced fracture permeability and thus have the potential to host blind geothermal prospects. Structural ambiguity, complications in fault linkage, etc. often make the selection for geothermal exploration drilling targets complicated and risky. Though simplistic, the three main ingredients of a viable utility-grade geothermal resource are heat, fluids, and permeability. Our new geological mapping and fault kinematic analysis derived a structural model suggest a two-stage structural evolution with (a) middle Miocene N -S trending normal faults (faults cutting across the modern range), - and tiling Olio-Miocene volcanic and sedimentary sequences (similar in style to East Range and S Stillwater Range). NE-trending range-front normal faulting initiated during the Pliocene and are both truncating N-S trending normal faults and reactivating some former normal faults in a right-lateral fashion. Thus the two main fundamental differences to previous structural models are (1) N-S trending faults are pre-existing middle Miocene normal faults and (2) these faults are reactivated in a right-later fashion (NOT left-lateral) and kinematically linked to the younger NE-trending range-bounding normal faults (Pliocene in age). More importantly, this study provides the first constraints on transient fluid flow through the novel application of apatite (U-Th)/He (AHe) and 4He/3He thermochronometry in the geothermally active Dixie Valley area in Nevada.

  1. Fault complexity associated with the 14 August 2003 Mw6.2 Lefkada, Greece, aftershock sequence (United States)

    Karakostas, Vassilios; Papadimitriou, Eleftheria


    The M w6.2 Lefkada earthquake occurred on 14 August 2003 beneath the western coastline of Lefkada Island. The main shock was followed by an intense aftershock activity, which formed a narrow band extending over the western coast of the Island and the submarine area between Lefkada and Kefalonia Islands, whereas additional off fault aftershocks formed spatial clusters on the central and northwestern part of the Island. The aftershock spatial distribution revealed the activation of along-strike adjacent fault segment as well as of secondary faults close to the main rupture. The properties of the activated segments were illuminated by the precisely located aftershocks, fault plane solutions determination and the cross sections performed parallel and normal to their strike. The aftershock focal mechanisms exhibited mainly strike slip faulting throughout the activated area, although deviation of the dominant stress pattern is also observed. The results help to emphasize the importance of the identification of activated nearby fault segments possibly triggered by the main rupture. Because such segments are capable to produce moderate events causing appreciable damage, they should be viewed with caution in seismic hazard assessment in addition to the major regional faults.

  2. Relationships between moment magnitude and fault parameters: theoretical and semi-empirical relationships (United States)

    Wang, Haiyun; Tao, Xiaxin


    Fault parameters are important in earthquake hazard analysis. In this paper, theoretical relationships between moment magnitude and fault parameters including subsurface rupture length, downdip rupture width, rupture area, and average slip over the fault surface are deduced based on seismological theory. These theoretical relationships are further simplified by applying similarity conditions and an unique form is established. Then, combining the simplified theoretical relationships between moment magnitude and fault parameters with seismic source data selected in this study, a practical semi-empirical relationship is established. The seismic source data selected is also to used to derive empirical relationships between moment magnitude and fault parameters by the ordinary least square regression method. Comparisons between semi-empirical relationships and empirical relationships show that the former depict distribution trends of data better than the latter. It is also observed that downdip rupture widths of strike slip faults are saturated when moment magnitude is more than 7.0, but downdip rupture widths of dip slip faults are not saturated in the moment magnitude ranges of this study.

  3. Seismic hazard of the Enriquillog-Plantain Garden fault in Haiti inferred from palaeoseismology (United States)

    Prentice, C.S.; Mann, P.; Crone, A.J.; Gold, R.D.; Hudnut, K.W.; Briggs, R.W.; Koehler, R.D.; Jean, P.


    The Enriquillog-Plantain Garden fault zone is recognized as one of the primary plate-bounding fault systems in Haiti. The strike-slip fault runs adjacent to the city of Port-au-Prince and was initially thought to be the source of the 12 January 2010, M w 7.0 earthquake. Haiti experienced significant earthquakes in 1751 and 1770 (refsA, 3, 4, 5), but the role of the Enriquillog-Plantain Garden fault zone in these earthquakes is poorly known. We use satellite imagery, aerial photography, light detection and ranging (LIDAR) and field investigations to document Quaternary activity on the Enriquillog-Plantain Garden fault. We report late Quaternary, left-lateral offsets of up to 160m, and a set of small offsets ranging from 1.3 to 3.3m that we associate with one of the eighteenth century earthquakes. The size of the small offsets implies that the historical earthquake was larger than M w 7.0, but probably smaller than M w 7.6. We found no significant surface rupture associated with the 2010 earthquake. The lack of surface rupture, coupled with other seismologic, geologic and geodetic observations, suggests that little, if any, accumulated strain was released on the Enriquillog-Plantain Garden fault in the 2010 earthquake. These results confirm that the Enriquillog-Plantain Garden fault remains a significant seismic hazard. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  4. Tectonic reversal of the western Doruneh Fault System: Implications for Central Asian tectonics (United States)

    Javadi, Hamid Reza; Esterabi Ashtiani, Marzieh; Guest, Bernard; Yassaghi, Ali; Ghassemi, Mohammad Reza; Shahpasandzadeh, Majid; Naeimi, Amir


    The left-lateral Doruneh Fault System (DFS) bounds the north margin of the Central Iranian microplate and has played an important role in the structural evolution of the Turkish-Iranian plateau. The western termination of the DFS is a sinistral synthetic branch fault array that shows clear kinematic evidence of having undergone recent slip sense inversion from a dextral array to a sinistral array in the latest Neogene or earliest Quaternary. Similarly, kinematic evidence from the Anarak Metamorphic complex suggests that this complex initially developed at a transpressive left-stepping termination of the DFS and that it was inverted in the latest Neogene to a transtensional fault termination. The recognition that the DFS and other faults in NE Iran were inverted from dextral to sinistral strike slip in the latest Neogene and the likely connection between the DFS and the Herat Fault of Afghanistan suggests that prior to the latest Miocene, all of the north Iranian and northern Afghan ranges were part of a distributed dextral fault network that extended from the west Himalayan syntaxes to the western Alborz. Also, the recognition that regional slip sense inversion occurred across northern and northeastern Iran after the latest Miocene invalidates tectonic models that extrapolate Pleistocene to recent fault slip kinematics and rates back beyond this time.

  5. Static stress transfer within the Cephalonia Transfer Fault Zone (CTFZ) during the 2014 seismic sequence in Cephalonia and the 2015 earthquake in Lefkada (United States)

    Sboras, Sotiris; Chatzipetros, Alexandros; Pavlides, Spyros; Karastathis, Vassilis; Papadopoulos, Gerassimos


    The 2014 seismic sequence in Cephalonia and the following 2015 earthquake in Lefkada Islands, Greece, showed that the Cephalonia Transfer Fault Zone (CTFZ), which runs along the western coasts of both islands, comprises a wide fault zone of parallel to sub-parallel fault segments. The January-February 2014 sequence of Cephalonia consisted of three moderate to strong events. According to published focal mechanisms, the first strongest shock (January 26, Mw 6.1) was produced by a W-dipping, oblique (right-lateral reverse) fault, the second (January 26, Mw 5.3) by a ENE-dipping, pure reverse fault and the third by a ESE-dipping, almost pure right-lateral strike slip fault. The November 17 2015 (Mw 6.4) Lefkada earthquake was produced by a WNW-dipping, roughly vertical, almost pure right-lateral strike-slip fault. None of the shocks above produced any direct coseismic ground rupture, while published relocated hypocentral locations for the Cephalonia sequence revealed various depths indicating a complex fault pattern. Based on published seismological, geological and satellite data (i.e. InSAR), the respective seismic sources were modelled in order to calculate the static stress changes i) during the Cephalonia and Lefkada sequences, and ii) after the sequences for the surrounding faults from the Greek Database of Seismogenic Sources (GreDaSS). Results showed that the February 3 2014 Cephalonia fault was variously affected by the rupture of the two January 26 faults. Stress change distribution on the fault plane showed that both stress drop and rise occurred. The November 17 2015 Lefkada fault was slightly loaded after the rupture of the whole Cephalonia fault system due to the great distance. The post-sequence stress changes variously affect the surrounding faults: the southern segment of the CTFZ is relieved from stresses, while the central ones show a mixed situation. The large northern segment, offshore from Lefkada Island, is mainly under stress drop. Stress drop is

  6. A new Triassic shortening-extrusion tectonic model for Central-EasternAsia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China) (United States)

    Zhao, Pan; Faure, Michel; Chen, Yan; Xu, Bei


    At the northern margin of the North China Block (NCB), the Xilamulun Fault (XMF) is a key belt to decipher the tectonic evolution of Central-Eastern Asia, as it records the Paleozoic final closure of the Paleo-Asian Ocean, and localizes a Late Triassic intracontinental deformation. In this study, structural analysis, 40Ar-39Ar dating, and paleomagnetic studies were performed to investigate the kinematics of the XMF and to further discuss its Triassic geodynamic significance in the Central-Eastern Asia framework after the Paleozoic Central Asian Orogenic evolution. The structural analyses reveal two phases of ductile deformation. The first one (D1), which displays N-verging and E-W trending folds, is related to the Early Paleozoic collisional event between the NCB and the Songliao-Hunshandake Block (SHB). The second phase (D2) displays a high-angle foliation and a pervasive sub-horizontalE-W stretching lineation with kinematic criteria indicative of dextral strike-slip shearing. The 40Ar-39Ar dating on mylonitic granite places the main shearing event around 227-209 Ma. This D2 shearing is coeval with that of the dextral strike-slip Bayan Obo-Chifeng Fault (BCF) and the Chicheng-Fengning-Longhua Fault to the south, which together constitute a dextral shearing fault system on the northern margin of the NCB during the Late Triassic. The paleomagnetic study performed on the Middle Permian Guangxingyuan pluton, located between the XMF and BCF, documents a local clockwise rotation of this pluton with respect to the NCB and SHB. Our multidisciplinary study suggests anNNW-SSE shortening and strike-slip shearing dominated tectonic setting on the northern margin of the NCB during the Late Triassic. Combining the contemporaneous dextral strike-slip movements of the XMF and BCF in northern China and the sinistral strike-slip movement of East Gobi Fault (EGF) in southeastern Mongolia with the large-scale tectonic framework, a Late Triassic NNW-SSE shortening-eastward extrusion

  7. A multiple fault rupture model of the November 13 2016, M 7.8 Kaikoura earthquake, New Zealand (United States)

    Benites, R. A.; Francois-Holden, C.; Langridge, R. M.; Kaneko, Y.; Fry, B.; Kaiser, A. E.; Caldwell, T. G.


    The rupture-history of the November 13 2016 MW7.8 Kaikoura earthquake recorded by near- and intermediate-field strong-motion seismometers and 2 high-rate GPS stations reveals a complex cascade of multiple crustal fault rupture. In spite of such complexity, we show that the rupture history of each fault is well approximated by simple kinematic model with uniform slip and rupture velocity. Using 9 faults embedded in a crustal layer 19 km thick, each with a prescribed slip vector and rupture velocity, this model accurately reproduces the displacement waveforms recorded at the near-field strong-motion and GPS stations. This model includes the `Papatea Fault' with a mixed thrust and strike-slip mechanism based on in-situ geological observations with up to 8 m of uplift observed. Although the kinematic model fits the ground-motion at the nearest strong station, it doesn not reproduce the one sided nature of the static deformation field observed geodetically. This suggests a dislocation based approach does not completely capture the mechanical response of the Papatea Fault. The fault system as a whole extends for approximately 150 km along the eastern side of the Marlborough fault system in the South Island of New Zealand. The total duration of the rupture was 74 seconds. The timing and location of each fault's rupture suggests fault interaction and triggering resulting in a northward cascade crustal ruptures. Our model does not require rupture of the underlying subduction interface to explain the data.

  8. The Queen Charlotte-Fairweather Fault Zone - Geomorphology of a submarine transform fault, offshore British Columbia and southeastern Alaska (United States)

    Walton, M. A. L.; Barrie, V.; Greene, H. G.; Brothers, D. S.; Conway, K.; Conrad, J. E.


    The Queen Charlotte-Fairweather (QC-FW) Fault Zone is the Pacific - North America transform plate boundary and is clearly seen for over 900 km on the seabed as a linear and continuous feature from offshore central Haida Gwaii, British Columbia to Icy Point, Alaska. Recently (July - September 2017) collected multibeam bathymetry, seismic-reflection profiles and sediment cores provide evidence for the continuous strike-slip morphology along the continental shelfbreak and upper slope, including a linear fault valley, offset submarine canyons and gullies, and right-step offsets (pull apart basins). South of central Haida Gwaii, the QC-FW is represented by several NW-SE to N-S trending faults to the southern end of the islands. Adjacent to the fault at the southern extreme and offshore Dixon Entrance (Canada/US boundary) are 400 to 600 m high mud volcanos in 1000 to 1600 m water depth that have plumes extending up 700 m into the water column and contain extensive carbonate crusts and chemosynthetic communities within the craters. In addition, gas plumes have been identified that appear to be directly associated with the fault zone. Surficial Quaternary sediments within and adjacent to the central and southern fault date either to the deglaciation of this region of the Pacific north coast (16,000 years BP) or to the last interstadial period ( 40,000 years BP). Sediment accumulation is minimal and the sediments cored are primarily hard-packed dense sands that appear to have been transported along the fault valley. The majority of the right-lateral slip along the entire QC-FW appears to be accommodated by the single fault north of the convergence at its southern most extent.

  9. Frictional strengths of fault gouge from a creeping segment of the Bartlett Springs Fault, northern California (United States)

    Swiatlowski, J. L.; Moore, D. E.; Lockner, D. A.


    The Bartlett Springs Fault (BSF) is a right-lateral strike-slip fault that is part of the San Andreas Fault System in Northern California with an estimated slip rate of 7 mm/yr. An exposure of the BSF near Lake Pillsbury, which creeps at a rate of 3.4 mm/yr, reveals a 1.5 m-wide zone of serpentinite-bearing gouge that has risen buoyantly to the surface in a manner similar to that documented for the San Andreas creeping section at SAFOD. The gouge is a heterogeneous mixture of the high-temperature serpentine mineral antigorite and the greenschist facies alteration assemblage talc + chlorite + tremolite, all of which are stable at temperatures >250°C, indicating that the gouge was tectonically entrained in the fault from depths near the base of the seismogenic zone. Antigorite has been shown to promote fault creep when sheared between crustal rocks at hydrothermal conditions. However, the effect of thorough metasomatism of antigorite on sliding stability are unknown. We conducted velocity-stepping strength experiments to explore the effect on frictional behavior if the serpentinite is completely replaced by the talc-chlorite-tremolite assemblage. The experiments were conducted at 290°C, 140 MPa effective normal stress, and 90 MPa fluid pressure to simulate conditions at 9 km depth. We tested mixtures of the three minerals in varying proportions (ternary mixing-law). The end-member samples show a four-fold variation in frictional strength: talc is the weakest (µ 0.12), tremolite the strongest (µ 0.55), and chlorite intermediate (µ 0.30). Talc and chlorite are velocity strengthening (a-b > 0) and tremolite velocity weakening (a-b 50% talc have coefficients of friction <0.2 with (a-b) ≥ 0. Talc would thus need to be concentrated in the sheared gouge matrix to promote creep in thoroughly altered serpentinite at depth.

  10. Spatial distribution correlation of soil-gas radon (222Rn) and mercury with leveling deformation in northern margin fault zone of West Qinling, China. (United States)

    Li, Chenhua; Zhang, Hui; Su, Hejun; Zhou, Huiling; Wang, Yanhong


    This study concerns measurement of 222 Rn and mercury concentrations in soil-gas in the northern margin fault zone of West Qinling, Tibet (China). Based on profiles crossing perpendicularly the different segments of the fault at six different locations, the relations between the gas measurements, fault deformation, and seismic activity in each segment of the studied fault were analyzed, determining seismic risks in the fault zone. Soil-gas data are heterogeneous, but appear relatively organized along the three segments of the fault. The detailed multidisciplinary analysis reveals complex interactions between the structural setting, uprising fluids, leveling and seismic activity in different fault segments. The results for both fault soil gas and deformation indicated relatively stronger fault activity in the Wushan segment in the middle-eastern segment of the northern margin fault zone of West Qinling and lower activity in the Zhangxian segment, whereas the fault in the Tianshui segment was relatively locked. Additionally, in the Wushan strike-slip pull-apart area, the active influence of fluid activities facilitated the occurrence of small to medium-sized seismic events, which prevented the occurrence of larger events; in contrast, in the Tianshui segment, the west Zhangxian segment, the weak fluid activities and the corresponding strain rate will probably lead to strong earthquake buildup. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hydromechanical heterogeneities of a mature fault zone: impacts on fluid flow. (United States)

    Jeanne, Pierre; Guglielmi, Yves; Cappa, Frédéric


    In this paper, fluid flow is examined for a mature strike-slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc ) and rock-quality measurements (Q-value) performed along a 50-m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water-injection test. The resulting fluid pressures and flow rates through the different fault-zone compartments were then analyzed with a two-phase fluid-flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q-value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro- and macrofractures that lower the fault-zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties. © 2013, The Author(s). Ground Water © 2013, National Ground Water Association.

  12. Active faults in Lebanon : kinematics and interseismic behavior measured from radar interferometry (InSAR) (United States)

    Lasserre, C.; Pinel-Puysségur, B.; Vergnolle, M.; Klinger, Y.; Pathier, E.


    The Levant fault system, more than 1000 km-long, marks the limit between the Arabian and Sinaï tectonic plates, extending from the Aqaba gulf in the Red Sea to Turkey. Mostly left-lateral, it forms a transpression zone in Lebanon, associating strike-slip faults such as the Yammouneh fault and thrust faults such as the Mount Lebanon thrust. This fault system in Lebanon is at the origin of large historical earthquakes during the past two thousand years (551 AD on the thrust offshore and 1837 along the Roum fault inland, 1759 along the Rashaia and Sergaya faults). We aim at characterizing the present-day behavior of active faults in Lebanon, in particular the Yammouneh fault which did not break since 1202, to contribute to a better assessment of the seismic hazard in this region. Space geodesy techniques (GPS, InSAR) allow to quantify the present-day displacements across faults (a few mm/yr during the interseismic period), and to model stress loading and relaxation processes during the seismic cycle, at the fault scale and at the regional scale. GPS campaign measurements have been made along profiles perpendicular to the Yammouneh fault. In addition, an important archive of radar images covering Lebanon (acquired by the ERS and Envisat satellites, along descending and ascending orbits) is also available. We process ERS and Envisat radar data to obtain the average interseismic velocity field across faults over the past 15-20 years. Techniques of interferograms networks processing (MuLSAR), atmospheric phase delays correction from global atmospherical models, DEM correction and time series inversion (NSBAS) are used to overcome the main remaining limitations in the measurements accuracy (low coherence, strong atmospheric delays, long wavelength deformation signal). The final goal is to propose a modelling of the surface displacement field to quantify the present-day kinematics of active fauts in Lebanon, taking into account GPS data as well as tectonic and

  13. Exploring the structural controls on helium, nitrogen and carbon isotope signatures in hydrothermal fluids along an intra-arc fault system (United States)

    Tardani, Daniele; Reich, Martin; Roulleau, Emilie; Takahata, Naoto; Sano, Yuji; Pérez-Flores, Pamela; Sánchez-Alfaro, Pablo; Cembrano, José; Arancibia, Gloria


    There is a general agreement that fault-fracture meshes exert a primary control on fluid flow in both volcanic/magmatic and geothermal/hydrothermal systems. For example, in geothermal systems and epithermal gold deposits, optimally oriented faults and fractures play a key role in promoting fluid flow through high vertical permeability pathways. In the Southern Volcanic Zone (SVZ) of the Chilean Andes, both volcanism and hydrothermal activity are strongly controlled by the Liquiñe-Ofqui Fault System (LOFS), an intra-arc, strike-slip fault, and by the Arc-oblique Long-lived Basement Fault System (ALFS), a set of transpressive NW-striking faults. However, the role that principal and subsidiary fault systems exert on magma degassing, hydrothermal fluid flow and fluid compositions remains poorly constrained. In this study we report new helium, carbon and nitrogen isotope data (3He/4He, δ13C-CO2 and δ15N) of a suite of fumarole and hot spring gas samples from 23 volcanic/geothermal localities that are spatially associated with either the LOFS or the ALFS in the central part of the SVZ. The dataset is characterized by a wide range of 3He/4He ratios (3.39 Ra to 7.53 Ra, where Ra = (3He/4He)air), δ13C-CO2 values (-7.44‰ to -49.41‰) and δ15N values (0.02‰ to 4.93‰). The regional variations in 3He/4He, δ13C-CO2 and δ15N values are remarkably consistent with those reported for 87Sr/86Sr in lavas along the studied segment, which are strongly controlled by the regional spatial distribution of faults. Two fumaroles gas samples associated with the northern ;horsetail; transtensional termination of the LOFS are the only datapoints showing uncontaminated MORB-like 3He/4He signatures. In contrast, the dominant mechanism controlling helium isotope ratios of hydrothermal systems towards the south appears to be the mixing between mantle-derived helium and a radiogenic component derived from, e.g., magmatic assimilation of 4He-rich country rocks or contamination during the

  14. Short-and-long-term Slip Rates Along the Carboneras Fault in the Betic Cordillera, Spain (United States)

    Khazaradze, G.; López, R.; Pallàs, R.; Ortuño, M.; Bordonau, J.; Masana, E.


    We present the new results from our long-standing studies to understand the geodynamic behavior of the Carboneras fault, located in the SE Betic Cordilleras of Spain. Specifically, we quantify the geodetic and geologic slip rates for the onland section of the fault. As a result of our previous GPS observations, we have been able to confirm the continuing tectonic activity of the Carboneras fault: we were able to quantify that the geodetic slip rate of the fault equals 1.3±0.2 mm/yr, expressed mainly as a left-lateral strike slip motion (Echeverria et al., 2015). In autumn 2017, with the purpose of revealing a detailed nature of the crustal deformation and its partitioning between different structures, 3 new continuous GPS stations will be established along the fault-perpendicular profile. In addition, since summer 2016, we have conducted surveys of the nearby CuaTeNeo and IGN Regente campaign points. We have also established and measured several new geodetic points in the vicinity of the fault, with the aim of increasing the spatial coverage around it. The GPS measured, short-term slip rates are in surprising agreement with the estimates of the long-term, geologic slip rates based on paleoseismic studies, which indicate a minimum strike-slip rate of 1.31 mm/yr and dip-slip rate of 0.05 mm/yr since 110.3 ka (Moreno et al. 2015). In order to increase the paleoseismic event database, several new sites have been identified along the fault, where further paleoseismic trenching surveys will be performed within the coming year or two. At the site of Tostana, located at the central part of the fault, in winter 2017 seven trenches have been opened and clear evidence of past earthquakes has been encountered. These new data, combined with the findings of the recent geomorphological study of river offsets (Ferrater, 2016) and new GPS observations, should improve the reliability of the existent deformation data and therefore, will help to better understand the seismic hazard

  15. Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100, 000 quadrangle, Nevada and California, and the Darwin Hills 1:100, 000 quadrangle, California

    International Nuclear Information System (INIS)

    Reheis, M.C.


    Faults and fault-related lineaments in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous compared to those in most other areas of the Great Basin. Two maps at a scale of 1:100,000 summarize information about lineaments and faults in the area around and southwest of the Death Valley-Furnace Creek fault system based on extensive aerial-photo interpretation, limited field interpretation, limited field investigations, and published geologic maps. There are three major fault zones and two principal faults in the Saline Valley and Darwin Hills 1:100,000 quadrangles. (1) The Death Valley-Furnace Creek fault system and (2) the Hunter Mountain fault zone are northwest-trending right-lateral strike-slip fault zones. (3) The Panamint Valley fault zone and associated Towne Pass and Emigrant faults are north-trending normal faults. The intersection of the Hunter Mountain and Panamint Valley fault zones is marked by a large complex of faults and lineaments on the floor of Panamint Valley. Additional major faults include (4) the north-northwest-trending Ash Hill fault on the west side of Panamint Valley, and (5) the north-trending range-front Tin Mountain fault on the west side of the northern Cottonwood Mountains. The most active faults at present include those along the Death Valley-Furnace Creek fault system, the Tin Mountain fault, the northwest and southeast ends of the Hunter Mountain fault zone, the Ash Hill fault, and the fault bounding the west side of the Panamint Range south of Hall Canyon. Several large Quaternary landslides on the west sides of the Cottonwood Mountains and the Panamint Range apparently reflect slope instability due chiefly to rapid uplift of these ranges. 16 refs

  16. Release fault: A variety of cross fault in linked extensional fault systems, in the Sergipe-Alagoas Basin, NE Brazil (United States)

    Destro, Nivaldo


    Two types of cross faults are herein recognized: transfer faults and the newly termed release faults. Transfer faults form where cross faults connect distinct normal faults and horizontal displacements predominate over vertical ones. In contrast, release faults form where cross faults associated with individual normal faults die out within the hangingwall before connecting to other normal faults, and have predominantly vertical displacements. Release faults are geometrically required to accommodate variable displacements along the strike of a normal fault. Thus, they form to release the bending stresses in the hangingwall, and do not cut normal fault planes nor detachment surfaces at depth. Release faults have maximum throws adjacent to normal faults, and may be nearly perpendicular or obliquely oriented to the strike of the latter. Such geometry appears not to depend upon pre-existing weaknesses, but such variable orientation to normal faults is an inherent property of release faults. Release faults commonly appear as simple normal faults in seismic sections, without implying extension along the strike of rift and basins. Three-dimensional strain deformation occurs in the hangingwall only between the terminations of an individual normal fault, but regionally, release faulting is associated with plane strain deformation in linked extensional fault systems.

  17. Fault on–off versus coseismic fluids reaction

    Directory of Open Access Journals (Sweden)

    C. Doglioni


    Full Text Available The fault activation (fault on interrupts the enduring fault locking (fault off and marks the end of a seismic cycle in which the brittle-ductile transition (BDT acts as a sort of switch. We suggest that the fluid flow rates differ during the different periods of the seismic cycle (interseismic, pre-seismic, coseismic and post-seismic and in particular as a function of the tectonic style. Regional examples indicate that tectonic-related fluids anomalies depend on the stage of the tectonic cycle and the tectonic style. Although it is difficult to model an increasing permeability with depth and several BDT transitions plus independent acquicludes may occur in the crust, we devised the simplest numerical model of a fault constantly shearing in the ductile deeper crust while being locked in the brittle shallow layer, with variable homogeneous permeabilities. The results indicate different behaviors in the three main tectonic settings. In tensional tectonics, a stretched band antithetic to the normal fault forms above the BDT during the interseismic period. Fractures close and fluids are expelled during the coseismic stage. The mechanism reverses in compressional tectonics. During the interseismic stage, an over-compressed band forms above the BDT. The band dilates while rebounding in the coseismic stage and attracts fluids locally. At the tip lines along strike-slip faults, two couples of subvertical bands show different behavior, one in dilation/compression and one in compression/dilation. This deformation pattern inverts during the coseismic stage. Sometimes a pre-seismic stage in which fluids start moving may be observed and could potentially become a precursor.

  18. Evidence of a tectonic transient within the Idrija fault system in Western Slovenia (United States)

    Vičič, Blaž; Costa, Giovanni; Aoudia, Abdelkrim


    Western Slovenia and North-eastern Italy are areas of medium rate seismicity with rare historic earthquakes of higher magnitudes. From mainly reverse component faulting in north-western part of the region where 1976 Friuli earthquakes took place, tectonic regime changes to mostly strike-slip faulting in the Dinaric region, continuing towards southeast. In the northern part of the Idrija fault system, which represent the broader Dinaric strike-slip system there were two strong earthquakes in the recent times - Mw=5.6 1998 and Mw=5.2 2004 earthquakes. Further to the south, along the Idrija fault system, Idrija fault is the causative fault of 1511 Mw=6.8 earthquake. The southeastern most part of the Idrija fault system produced a Mw=5.2 earthquake in 1926 and few historic Mw>4 earthquakes. Since 2004 Mw=5.2 earthquake, no stronger earthquakes were recorded in the region covered by dense seismic network. Seismicity is mostly concentrated in Friuli region and north-western part of Idrija fault system - mostly on the Ravne fault which is the causative fault for the 1998 and 2004 earthquakes. In the central part of the fault system no strong or moderate earthquakes were recorded, except of an earthquake along the Idrija fault in 2014 of magnitude 3.4. Low magnitude background seismicity is burst like with no apparent temporal or spatial distribution. Seismicity of the southern part of Idrija fault system is again a bit higher than in the central part of the fault system with earthquakes up to Mw=4.4 that happened in 2014. In this study, detailed analysis of the seismicity is performed with manual relocation of the seismicity in the period between 2006 and 2016. With manual inspection of the waveform data, slight temporal clustering of seismicity is observed. We use a template algorithm method to increase the detection rate of the seismicity. Templates of seismicity in the north-western and south-eastern part of Idrija fault system are created. The continuous waveform data

  19. Architecture of buried reverse fault zone in the sedimentary basin: A case study from the Hong-Che Fault Zone of the Junggar Basin (United States)

    Liu, Yin; Wu, Kongyou; Wang, Xi; Liu, Bo; Guo, Jianxun; Du, Yannan


    It is widely accepted that the faults can act as the conduits or the barrier for oil and gas migration. Years of studies suggested that the internal architecture of a fault zone is complicated and composed of distinct components with different physical features, which can highly influence the migration of oil and gas along the fault. The field observation is the most useful methods of observing the fault zone architecture, however, in the petroleum exploration, what should be concerned is the buried faults in the sedimentary basin. Meanwhile, most of the studies put more attention on the strike-slip or normal faults, but the architecture of the reverse faults attracts less attention. In order to solve these questions, the Hong-Che Fault Zone in the northwest margin of the Junggar Basin, Xinjiang Province, is chosen for an example. Combining with the seismic data, well logs and drill core data, we put forward a comprehensive method to recognize the internal architectures of buried faults. High-precision seismic data reflect that the fault zone shows up as a disturbed seismic reflection belt. Four types of well logs, which are sensitive to the fractures, and a comprehensive discriminated parameter, named fault zone index are used in identifying the fault zone architecture. Drill core provides a direct way to identify different components of the fault zone, the fault core is composed of breccia, gouge, and serpentinized or foliated fault rocks and the damage zone develops multiphase of fractures, which are usually cemented. Based on the recognition results, we found that there is an obvious positive relationship between the width of the fault zone and the displacement, and the power-law relationship also exists between the width of the fault core and damage zone. The width of the damage zone in the hanging wall is not apparently larger than that in the footwall in the reverse fault, showing different characteristics with the normal fault. This study provides a

  20. A major E-W directed fault zone in the Gibraltar Strait? An approach through onshore-offshore correlations (United States)

    Crespo-Blanc, Ana; Comas, Menchu; Balanyá, Juan Carlos; Luján, María.


    -floor sampling data, the highs correspond to Flysch type rocks and the lows to recent sediments. Moreover, it is frequent to observe how N-S directed crests are segmented and displaced by small E-W to ENE-WSW directed lineaments. We compare the submarine topography of the Camarinal Sill with the structural features observed on land. As a whole, the Camarinal Sill represents a NNW-SSE directed high (between isobaths 90 and 300m), whose direction is similar to the structural trend of the Gibraltar Arc system on both shores in the Gibraltar area. Accordingly, it probably reflects a tectonic heritage and its primary origin could be related with the shortening structures associated with the mountain front development in the Flysch Trough Units. Onshore, on both margins and near the coastline, conjugated strike-slip fault systems and/or high angle-normal faults that cut the previous fold-and-thrust system were mapped. In particular, in the Spanish branch of the Gibraltar Strait, the kinematic indicators along one of these faults, the Tarifa fault, shows an oblique movement, with both dextral and normal components. To conclude, we suggest that the linear features observed offshore and that cross the Camarinal Sill, together with the faults recognized onshore, can be interpreted as a major fault zone, broadly E-W directed. This fault zone seems to control the position of the relative basement highs and depressions and can be responsible for, or contribute to, the opening of the Gibraltar Strait after the Messinian Salinity Crisis. It is also a good candidate as a zone of channelling and strong erosion during the water-infill of the Mediterranean Sea. Acknowledgments: This study was supported by projects RNM-3713, RNM- 215, CTM2009-07715, CGL2009-11384, CGL2008-03474-E/BTE and CSD2006-00041.

  1. Paleoseismic evidence of characteristic slip on the Western segment of the North Anatolian fault, Turkey (United States)

    Klinger, Yann; Sieh, K.; Altunel, E.; Akoglu, A.; Barka, A.; Dawson, Tim; Gonzalez, Tania; Meltzner, A.; Rockwell, Thomas


    We have conducted a paleoseismic investigation of serial fault rupture at one site along the 110-km rupture of the North Anatolian fault that produced the Mw 7.4 earthquake of 17 August 1999. The benefit of using a recent rupture to compare serial ruptures lies in the fact that the location, magnitude, and slip vector of the most recent event are all very well documented. We wished to determine whether or not the previous few ruptures of the fault were similar to the recent one. We chose a site at a step-over between two major strike-slip traces, where the principal fault is a normal fault. Our two excavations across the 1999 rupture reveal fluvial sands and gravels with two colluvial wedges related to previous earthquakes. Each wedge is about 0.8 m thick. Considering the processes of collapse and subsequent diffusion that are responsible for the formation of a colluvial wedge, we suggest that the two paleoscarps were similar in height to the 1999 scarp. This similarity supports the concept of characteristic slip, at least for this location along the fault. Accelerator mass spectrometry (AMS) radiocarbon dates of 16 charcoal samples are consistent with the interpretation that these two paleoscarps formed during large historical events in 1509 and 1719. If this is correct, the most recent three ruptures at the site have occurred at 210- and 280-year intervals.

  2. Enriquillo–Plantain Garden fault zone in Jamaica: paleoseismology and seismic hazard (United States)

    Koehler, R.D.; Mann, P.; Prentice, Carol S.; Brown, L.; Benford, B.; Grandison-Wiggins, M.


    The countries of Jamaica, Haiti, and the Dominican Republic all straddle the Enriquillo–Plantain Garden fault zone ( EPGFZ), a major left-lateral, strike-slip fault system bounding the Caribbean and North American plates. Past large earthquakes that destroyed the capital cities of Kingston, Jamaica (1692, 1907), and Port-au-Prince, Haiti (1751, 1770), as well as the 2010 Haiti earthquake that killed more than 50,000 people, have heightened awareness of seismic hazards in the northern Caribbean. We present here new geomorphic and paleoseismic information bearing on the location and relative activity of the EPGFZ, which marks the plate boundary in Jamaica. Documentation of a river bank exposure and several trenches indicate that this fault is active and has the potential to cause major destructive earthquakes in Jamaica. The results suggest that the fault has not ruptured the surface in at least 500 yr and possibly as long as 28 ka. The long period of quiescence and subdued geomorphic expression of the EPGFZ indicates that it may only accommodate part of the ∼7–9 mm=yr plate deformation rate measured geodetically and that slip may be partitioned on other undocumented faults. Large uncertainties related to the neotectonic framework of Jamaica remain and more detailed fault characterization studies are necessary to accurately assess seismic hazards.

  3. Proximity of the Seismogenic Dog Valley Fault to Stampede and Prosser Creek Dams Near Truckee, California (United States)

    Cronin, V. S.; Strasser, M. P.


    The M 6.0 Truckee earthquake of 12 September 1966 caused a variety of surface effects observed over a large area, but the rupture plane of the causative fault did not displace the ground surface. The fault that generated the earthquake was named the Dog Valley fault [DVF], and its ground trace was assumed to be within a zone of subparallel drainage lineaments. The plunge and trend of the dip vector for the best fault-plane solution is 80° 134° with 0° rake, corresponding to a steep NE striking left-lateral strike-slip fault (Tsai and Aki, 1970). The Stampede Dam was completed along the trend of the Dog Valley fault in 1970, just four years after the Truckee earthquake, and impounds almost a quarter-million acre-feet of water. Failure of Stampede Dam would compromise Boca Dam downstream and pose a catastrophic threat to people along the Truckee River floodplain to Reno and beyond. Two 30 m long trenches excavated across a suspected DVF trend by the US Bureau of Reclamation in the 1980s did not find evidence of faulting (Hawkins et al., 1986). The surface trace of the DVF has remained unknown. We used the Seismo-Lineament Analysis Method [SLAM] augmented with a total least squares analysis of the focal locations of known or suspected aftershocks, along with focal mechanism data from well located events since 1966, to constrain the search for the DVF ground trace. Geomorphic analysis of recently collected aerial lidar data along this composite seismo-lineament has lead to a preliminary interpretation that the DVF might extend from the Prosser Creek Reservoir near 39.396°N 120.168°W through or immediately adjacent to the Stampede Dam structure. A second compound geomorphic lineament is sub-parallel to this line 1.6 km to the northwest, and might represent another strand of the DVF. As noted by Hawkins et al. (1986), human modification of the land surface complicates structural-geomorphic analysis. Fieldwork in 2016 took advantage of drought conditions to examine

  4. Pliocene Quaternary faulting in the Lycian Taurides - new insights into the neotectonic evolution of SW Turkey (United States)

    Ten Veen, J.; Huibregtse, J.; Zwart, L.


    The submarine Anaximander Mountains connect the Hellenic and Cyprus Arcs and form a zone that accommodates the different tectonic regimes along these arcs. The Lycian Tauride Mountains in southwestern Turkey are situated just north of the Anaximander Mts. and likely have a comparable neotectonic evolution. The Lycian Taurides comprise the Bey Daglari positioned between the Lycian Nappes in the west and the Antalya Nappe Complex in the east. Here we focus on two tectonic basins, the Kasaba and Esen Çay basins, that are located in the Bey Daglari and Lycian Nappes respectively. Until the Langhian, NW-SW compression associated with the emplacement of the Lycian Nappes, caused (ductile) folding of the Bey Daglari autochthon and syntectonic sedimentation in a NE-SW trending foreland-type basin. After foreland deposition of Upper Miocene (Langhian-Serravallian) conglomerates, a phase of S-vergent thrusting and reverse faulting started, probably related to the late Miocene - Early Pliocene Aksu phase. Fault data from the Kasaba basin show that the Pliocene-Recent tectonic evolution is characterized by extension, although no sedimentary basins formed. From slickensides, striae and other kinematic indicators, in combination with stratigraphical and geomorphological information, 3 extensional fault phases are inferred: (1) ?Pliocene (post Miocene) WNW-ESE extension, forming approximately N-S trending asymmetrical grabens. (2) More recent (?Pleistocene) NE-SW extension that resulted in large 135^o tilt-block basins that are cut by less pronounced 070^o left lateral strike-slip faults. The Pleistocene - Recent period is dominated by N-S extension that resulted in formation of 90^o -100^o normal faults and reactivation of older (normal) faults. Although extension prevails, exhumation and lowering of base level, evident from crosscutting scree, point at relative uplift. From the structural data of the Esen Çay Basin, 2 extensional phases are inferred: (1) Pliocene E

  5. Source parameters of the Bay of Bengal earthquake of 21 May 2014 and related seismotectonics of 85°E and 90°E ridges (United States)

    Prakash, Rajesh; Prajapati, Sanjay Kumar; Srivastava, Hari Narain


    Source parameters of the Bay of Bengal earthquake of 21 May 2014 have been studied using full waveform inversion. Its source mechanism thus determined the orientation of the strike slip faulting as NW-SE/NE-SW. The occurrence of past earthquakes along the NE-SW nodal plane suggested its preference as the main fault which could result from the transmission of stresses from the Indian plate boundary. High stress drop of this earthquake (216 bar) is attributed to its location in the intraplate region, strike slip faulting and focus in the colder upper mantle. Comparison of the stress drop of deeper focus Hindukush earthquakes with that of the Bay of Bengal earthquake showed a smaller felt radius due to fractured lithosphere in the Himalayas vis-a-vis more efficient propagation of seismic waves in the peninsular region from the source region of this recent earthquake. The seismological evidence presented for the 85°E and 90°E ridges shows the predominance of strike slip faulting with thrusting on both the ridges. Integrating their source mechanism with that of the May 2014 earthquake, it could be inferred that the Bay of Bengal region (excluding Andaman Sumatra subduction zone) is characterised predominantly by strike slip faulting in the region north of latitude 20°N and strike slip with thrusting in the remaining portion.

  6. Development of Hydrologic Characterization Technology of Fault Zones

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu


    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  7. Development of Hydrologic Characterization Technology of Fault Zones

    International Nuclear Information System (INIS)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu


    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone is the one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  8. Active fault characterization throughout the Caribbean and Central America for seismic hazard modeling (United States)

    Styron, Richard; Pagani, Marco; Garcia, Julio


    The region encompassing Central America and the Caribbean is tectonically complex, defined by the Caribbean plate's interactions with the North American, South American and Cocos plates. Though active deformation over much of the region has received at least cursory investigation the past 50 years, the area is chronically understudied and lacks a modern, synoptic characterization. Regardless, the level of risk in the region - as dramatically demonstrated by the 2010 Haiti earthquake - remains high because of high-vulnerability buildings and dense urban areas home to over 100 million people, who are concentrated near plate boundaries and other major structures. As part of a broader program to study seismic hazard worldwide, the Global Earthquake Model Foundation is currently working to quantify seismic hazard in the region. To this end, we are compiling a database of active faults throughout the region that will be integrated into similar models as recently done in South America. Our initial compilation hosts about 180 fault traces in the region. The faults show a wide range of characteristics, reflecting the diverse styles of plate boundary and plate-margin deformation observed. Regional deformation ranges from highly localized faulting along well-defined strike-slip faults to broad zones of distributed normal or thrust faulting, and from readily-observable yet slowly-slipping structures to inferred faults with geodetically-measured slip rates >10 mm/yr but essentially no geomorphic expression. Furthermore, primary structures such as the Motagua-Polochic Fault Zone (the strike-slip plate boundary between the North American and Caribbean plates in Guatemala) display strong along-strike slip rate gradients, and many other structures are undersea for most or all of their length. A thorough assessment of seismic hazard in the region will require the integration of a range of datasets and techniques and a comprehensive characterization of epistemic uncertainties driving

  9. Identification of the meta-instability stage via synergy of fault displacement: An experimental study based on the digital image correlation method (United States)

    Zhuo, Yan-Qun; Ma, Jin; Guo, Yan-Shuang; Ji, Yun-Tao

    In stick-slip experiments modeling the occurrence of earthquakes, the meta-instability stage (MIS) is the process that occurs between the peak differential stress and the onset of sudden stress drop. The MIS is the final stage before a fault becomes unstable. Thus, identification of the MIS can help to assess the proximity of the fault to the earthquake critical time. A series of stick-slip experiments on a simulated strike-slip fault were conducted using a biaxial servo-controlled press machine. Digital images of the sample surface were obtained via a high speed camera and processed using a digital image correlation method for analysis of the fault displacement field. Two parameters, A and S, are defined based on fault displacement. A, the normalized length of local pre-slip areas identified by the strike-slip component of fault displacement, is the ratio of the total length of the local pre-slip areas to the length of the fault within the observed areas and quantifies the growth of local unstable areas along the fault. S, the normalized entropy of fault displacement directions, is derived from Shannon entropy and quantifies the disorder of fault displacement directions along the fault. Based on the fault displacement field of three stick-slip events under different loading rates, the experimental results show the following: (1) Both A and S can be expressed as power functions of the normalized time during the non-linearity stage and the MIS. The peak curvatures of A and S represent the onsets of the distinct increase of A and the distinct reduction of S, respectively. (2) During each stick-slip event, the fault evolves into the MIS soon after the curvatures of both A and S reach their peak values, which indicates that the MIS is a synergetic process from independent to cooperative behavior among various parts of a fault and can be approximately identified via the peak curvatures of A and S. A possible application of these experimental results to field conditions

  10. Temporal evolution of fault systems in the Upper Jurassic of the Central German Molasse Basin: case study Unterhaching (United States)

    Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus


    The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.

  11. Temporal evolution of fault systems in the Upper Jurassic of the Central German Molasse Basin: case study Unterhaching (United States)

    Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus


    The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.

  12. Three-dimensional characterization of microporosity and permeability in fault zones hosted in heterolithic succession (United States)

    Riegel, H. B.; Zambrano, M.; Jablonska, D.; Emanuele, T.; Agosta, F.; Mattioni, L.; Rustichelli, A.


    The hydraulic properties of fault zones depend upon the individual contributions of the damage zone and the fault core. In the case of the damage zone, it is generally characterized by means of fracture analysis and modelling implementing multiple approaches, for instance the discrete fracture network model, the continuum model, and the channel network model. Conversely, the fault core is more difficult to characterize because it is normally composed of fine grain material generated by friction and wear. If the dimensions of the fault core allows it, the porosity and permeability are normally studied by means of laboratory analysis or in the other case by two dimensional microporosity analysis and in situ measurements of permeability (e.g. micro-permeameter). In this study, a combined approach consisting of fracture modeling, three-dimensional microporosity analysis, and computational fluid dynamics was applied to characterize the hydraulic properties of fault zones. The studied fault zones crosscut a well-cemented heterolithic succession (sandstone and mudstones) and may vary in terms of fault core thickness and composition, fracture properties, kinematics (normal or strike-slip), and displacement. These characteristics produce various splay and fault core behavior. The alternation of sandstone and mudstone layers is responsible for the concurrent occurrence of brittle (fractures) and ductile (clay smearing) deformation. When these alternating layers are faulted, they produce corresponding fault cores which act as conduits or barriers for fluid migration. When analyzing damage zones, accurate field and data acquisition and stochastic modeling was used to determine the hydraulic properties of the rock volume, in relation to the surrounding, undamaged host rock. In the fault cores, the three-dimensional pore network quantitative analysis based on X-ray microtomography images includes porosity, pore connectivity, and specific surface area. In addition, images were

  13. InSAR velocity field across the North Anatolian Fault (eastern Turkey): Implications for the loading and release of interseismic strain accumulation

    KAUST Repository

    Cakir, Ziyadin


    We use the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique with the European Space Agency\\'s Envisat and ERS SAR data acquired on three neighboring descending tracks (T350, T078, and T307) to map the interseismic strain accumulation along a ~225 km long, NW-SE trending section of the North Anatolian Fault that ruptured during the 1939, 1942, and 1943 earthquakes in eastern Turkey. We derive a line-of-sight velocity map of the region with a high spatial resolution and accuracy which, together with the maps of earthquake surface ruptures, shed light on the style of continental deformation and the relationships between the loading and release of interseismic strain along segmented continental strike-slip faults. In contrast with the geometric complexities at the ground surface that appear to control rupture propagation of the 1939 event, modeling of the high-resolution PS-InSAR velocity field reveals a fairly linear and narrow throughgoing shear zone with an overall 20 ± 3 mm/yr slip rate above an unexpectedly shallow 7 ± 2 km locking depth. Such a shallow locking depth may result from the postseismic effects following recent earthquakes or from a simplified model that assumes a uniform degree of locking with depth on the fault. A narrow throughgoing shear zone supports the thick lithosphere model in which continental strike-slip faults are thought to extend as discrete shear zones through the entire crust. Fault segmentation previously reported from coseismic surface ruptures is thus likely inherited from heterogeneities in the upper crust that either preexist and/or develop during coseismic rupture propagation. The geometrical complexities that apparently persist for long periods may guide the dynamic rupture propagation surviving thousands of earthquake cycles.

  14. Numerical modelling of the mechanical and fluid flow properties of fault zones - Implications for fault seal analysis

    NARCIS (Netherlands)

    Heege, J.H. ter; Wassing, B.B.T.; Giger, S.B.; Clennell, M.B.


    Existing fault seal algorithms are based on fault zone composition and fault slip (e.g., shale gouge ratio), or on fault orientations within the contemporary stress field (e.g., slip tendency). In this study, we aim to develop improved fault seal algorithms that account for differences in fault zone

  15. Re-orientation of the extension direction and pure extensional faulting at oblique rift margins: Comparison between the Main Ethiopian Rift and laboratory experiments

    NARCIS (Netherlands)

    Corti, G.; Philippon, M.|info:eu-repo/dai/nl/370818636; Sani, F.; Keir, D.; Kidane, T.


    In this study, we draw on a unique combination of well-resolved fault-slip data and earthquake focal mechanisms to constrain spatial variations in style of faulting in the obliquely extending Main Ethiopian Rift, East Africa. These data show that both boundary and internal faults - oblique and

  16. Seasonal water storage modulating seismicity on California faults (United States)

    Johnson, C. W.; Fu, Y.; Burgmann, R.


    In California the accumulation of winter snowpack in the Sierra Nevada, surface water in lakes and reservoirs, and groundwater in sedimentary basins follow the annual cycle of wet winters and dry summers. The surface loads resulting from the seasonal changes in water storage produce elastic deformation of the Earth's crust. Micro-earthquakes in California appear to follow a subtle annual cycle, possibly in response to the water load. Previous studies posit that temperature, atmospheric pressure, or hydrologic changes may strain the lithosphere and promote additional earthquakes above background levels. Here we use GPS vertical time series (2006 - 2015) to constrain models of monthly hydrospheric loading and compute annual peak-to-peak stresses on faults throughout northern California, which can exceed 1kPa. Depending on fault geometry the addition or removal of water increases the Coulomb failure stress. The largest stress amplitudes are occurring on dipping reverse faults in the Coast Ranges and along the eastern Sierra Nevada range front. We analyze M≥2.0 earthquakes with known focal mechanisms in northern and central California to resolve fault normal and shear stresses for the focal geometry. Our results reveal more earthquakes occurring during slip-encouraging stress conditions and suggest that earthquake populations are modulated at periods of natural loading cycles, which promote failure by subtle stress changes. The most notable shear-stress change occurs on more shallowly dipping structures. However, vertically dipping strike-slip faults are common throughout California and experience smaller amplitude stress change but still exhibit positive correlation with seasonal loading cycles. Our seismicity analysis suggests the annual hydrologic cycle is a viable mechanism to promote earthquakes and provides new insight to fault mechanical properties.

  17. Seismic investigation of the Kunlun Fault: Analysis of the INDEPTH IV 2-D active-source seismic dataset (United States)

    Seelig, William George

    The Tibetan Plateau has experienced significant crustal thickening and deformation since the continental subduction and collision of the Asian and Indian plates in the Eocene. Deformation of the northern Tibetan Plateau is largely accommodated by strike-slip faulting. The Kunlun Fault is a 1000-km long strike-slip fault near the northern boundary of the Plateau that has experienced five magnitude 7.0 or greater earthquakes in the past 100 years and represents a major rheological boundary. Active-source,