WorldWideScience

Sample records for strict metabolic control

  1. Effect of strict metabolic control on regulation of subcutaneous blood flow in insulin-dependent diabetic patients

    DEFF Research Database (Denmark)

    Kastrup, J; Mathiesen, E R; Saurbrey, Nina

    1987-01-01

    washout technique. Mean arterial blood pressure was reduced by a maximum of 23 mmHg by elevating the limb above heart level and elevated to a maximum of 65 mmHg by head-up tilt; in the latter position venous pressure was kept constantly low by activation of the leg muscle vein pump (heel raising......The effect of 10 weeks of improved metabolic control on the impaired autoregulation of the subcutaneous blood flow was studied at the level of the lateral malleolus in eight long-term insulin-dependent diabetic patients with clinical microangiopathy. Blood flow was measured by the local 133-Xenon......). Improved metabolic control was achieved using either continuous subcutaneous insulin infusion or multiple insulin injections. The blood glucose concentration declined from (median) 12.7 to 6.8 mmol/l and the HbA1C level from 10.1 to 7.5% during strict metabolic control (p less than 0.01 and p less than 0...

  2. Kidney function during 12 months of strict metabolic control in insulin-dependent diabetic patients with incipient nephropathy

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Mathiesen, E R; Hegedüs, L

    1986-01-01

    Thirty-six patients with insulin-dependent diabetes mellitus who had Albustix-negative urine but elevated urinary albumin excretion (30 to 300 mg per 24 hours) were matched in pairs according to their urinary albumin level, blood glycosylated hemoglobin level, and sex and assigned randomly...... in all patients during insulin infusion, but no consistent change was observed in the control group. No significant change was observed in the glomerular filtration rate. Our data suggest that the pathologic processes causing microalbuminuria in early renal disease are not reversed during 12 months...

  3. Strategy and Aspects of Monitoring / Control Strictly in Coordinated Subsystems

    Directory of Open Access Journals (Sweden)

    William José Borges

    2012-06-01

    Full Text Available This paper aims to discuss the approach structures of the strictly coordinated theoretical framework developed by Zylbersztajn and Farina (1999 as an expanded perspective of the firm, taking into account the food supply chains as an extension of the nexus of contracts proposed by Coase (1937 and taken up by Williamson (1985. The structures stand out as strictly coordinated. Zylbersztajn and Farina (1999 turn to identifying points of common interests that encourage firms to promote contracts between themselves in a strictly coordinated way, considering the degree of asset specificity involved in the transaction and the competitive forces that determine the search for strategic positioning organizations to achieve sustainable superior results.

  4. Synchronization control of cross-strict feedback hyperchaotic system based on cross active backstepping design

    International Nuclear Information System (INIS)

    Wang Jing; Gao Jinfeng; Ma Xikui

    2007-01-01

    This Letter presents a novel cross active backstepping design method for synchronization control of cross-strict feedback hyperchaotic system, in which the ordinary backstepping design is unavailable. The proposed control method, combining backstepping design and active control approach, extends the application of backstepping technique in chaos control. Based on this method, different combinations of controllers can be designed to meet the needs of different applications. The proposed method is applied to achieve chaos synchronization of two identical cross-strict feedback hyperchaotic systems. Also it is used to implement synchronization between cross-strict feedback hyperchaotic system and Roessler hyperchaotic system. Numerical examples illustrate the validity of the control method

  5. Rate Control Efficacy in Permanent Atrial Fibrillation : Successful and Failed Strict Rate Control Against a Background of Lenient Rate Control

    NARCIS (Netherlands)

    Groenveld, Hessel F.; Tijssen, Jan G. P.; Crijns, Harry J. G. M.; Van den Berg, Maarten P.; Hillege, Hans L.; Alings, Marco; Van Veldhuisen, Dirk J.; Van Gelder, Isabelle C.

    2013-01-01

    Objectives This study sought to investigate differences in outcome between patients treated with successful strict, failed strict, and lenient rate control. Background The RACE II (Rate Control Efficacy in Permanent Atrial Fibrillation) study showed no difference in outcome between lenient and

  6. The Preventive Effect of Strict Gun Control Laws on Suicide and Homicide.

    Science.gov (United States)

    Lester, David; Murrell, Mary E.

    1982-01-01

    Examined state gun control laws and used a multidimensional scaling technique to study the relationship of strictness and death rates. Results showed states with stricter laws had lower suicide rates by firearms but higher rates by other means. No effect on homicide was found. (JAC)

  7. Frequency effect on p-nitrophenol degradation under conditions of strict acoustic and electric control

    Directory of Open Access Journals (Sweden)

    Chang-ping Zhu

    2011-03-01

    Full Text Available The process of decomposing p-nitrophenol (PNP with power ultrasound requires strict control of acoustic and electric conditions. In this study, the conditions, including acoustic power and acoustic intensity, but not ultrasonic frequency, were controlled strictly at constant levels. The absorbency and the COD concentrations of the samples were measured in order to show the variation of the sample concentration. The results show significant differences in the trend of the solution degradation rate as acoustic power increases after the PNP solution (with a concentration of 114 mg/L and a pH value of 5.4 is irradiated for 60 min with ultrasonic frequencies of 530.8 kHz, 610.6 kHz, 855.0 kHz, and 1 130.0 kHz. The degradation rate of the solution increases with time and acoustic power (acoustic intensity. On the other hand, the degradation rate of the solution is distinctly dependent on frequency when the acoustic power and intensity are strictly controlled and maintained at constant levels. The degradation rate of the PNP solution declines with ultrasonic frequencies of 530.8 kHz, 610.6 kHz, 855.0 kHz, and 1 130.0 kHz; the COD concentration, on the contrary, increase.

  8. Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.

    Science.gov (United States)

    Sun, Kangkang; Sui, Shuai; Tong, Shaocheng

    2018-04-01

    This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.

  9. Model-Based Adaptive Event-Triggered Control of Strict-Feedback Nonlinear Systems.

    Science.gov (United States)

    Li, Yuan-Xin; Yang, Guang-Hong

    2018-04-01

    This paper is concerned with the adaptive event-triggered control problem of nonlinear continuous-time systems in strict-feedback form. By using the event-sampled neural network (NN) to approximate the unknown nonlinear function, an adaptive model and an associated event-triggered controller are designed by exploiting the backstepping method. In the proposed method, the feedback signals and the NN weights are aperiodically updated only when the event-triggered condition is violated. A positive lower bound on the minimum intersample time is guaranteed to avoid accumulation point. The closed-loop stability of the resulting nonlinear impulsive dynamical system is rigorously proved via Lyapunov analysis under an adaptive event sampling condition. In comparing with the traditional adaptive backstepping design with a fixed sample period, the event-triggered method samples the state and updates the NN weights only when it is necessary. Therefore, the number of transmissions can be significantly reduced. Finally, two simulation examples are presented to show the effectiveness of the proposed control method.

  10. Immediate effect of instrumentation on the subgingival microflora in deep inflamed pockets under strict plaque control.

    Science.gov (United States)

    Rhemrev, G E; Timmerman, M F; Veldkamp, I; Van Winkelhoff, A J; Van der Velden, U

    2006-01-01

    To investigate (1) reduction in the number of microorganisms obtained directly after subgingival instrumentation, (2) rate of bacterial re-colonization during 2 weeks, under supragingival plaque-free conditions. Effects of subgingival instrumentation were measured at one deep pocket in 22 patients (11 smokers and 11 non-smokers). Immediately after initial therapy, experimental sites, under strict plaque control, were instrumented subgingivally. Microbiological evaluation was performed at pre-instrumentation, immediate post-instrumentation and 1 and 2 weeks post-instrumentation. Mean total anaerobic colony forming units (CFUs) dropped from 3.9 x 10(6) before to 0.09 x 10(6) immediately following instrumentation. Significant reductions were found for Tannerella forsythia, Micromonas micros, Fusobacterium nucleatum and spirochetes. Significant reductions were not observed for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia and Campylobacter rectus. Except for spirochetes, no reduction in prevalence of specific periodontal bacteria was found immediately after instrumentation. During follow-up, mean total CFU tended to increase. Prevalence of periodontal bacteria further reduced. No effect of smoking was found. Results indicate that subgingival mechanical cleaning in itself, has a limited effect, in actually removing bacteria. The subsequent reduction in prevalence of specific periodontal bacteria shows that it is apparently difficult for these species to survive in treated pockets.

  11. Effect of nonsurgical periodontal therapy and strict plaque control on preterm/low birth weight: a randomized controlled clinical trial.

    Science.gov (United States)

    Weidlich, Patricia; Moreira, Carlos Heitor C; Fiorini, Tiago; Musskopf, Marta L; da Rocha, José M; Oppermann, Maria Lucia R; Aass, Anne M; Gjermo, Per; Susin, Cristiano; Rösing, Cassiano K; Oppermann, Rui V

    2013-01-01

    This randomized controlled clinical trial was carried out to assess the effect of comprehensive nonsurgical periodontal treatment and strict plaque control performed during pregnancy on the reduction of preterm and/or low birth weight rates (PTLBW). Three hundred and three women were randomly allocated to receive periodontal treatment either during pregnancy (n = 147, test group) or after delivery (n = 156, control group). During pregnancy, the control group received only one session of supragingival scaling and oral hygiene instruction. In contrast, the test group received comprehensive periodontal treatment including multiple sessions of scaling and root planing, oral hygiene instructions, and frequent maintenance visits. At baseline, periodontal inflammation was observed in approximately 50% of sites and attachment loss affected controls, women in the test group had significant reductions in the percentage of sites with plaque (48.5% vs. 10.3%, p control significantly improved periodontal health; however, no reduction of PTLBW rates was observed. Thus, remaining periodontal inflammation posttreatment cannot explain the lack of effect of periodontal treatment on PTLBW. Clinical relevance This study demonstrated that periodontal diseases may be successfully treated during pregnancy. Our results do not support a potential beneficial effect of periodontal treatment on PTLBW.

  12. Strict versus liberal target range for perioperative glucose in patients undergoing coronary artery bypass grafting: a prospective randomized controlled trial.

    Science.gov (United States)

    Desai, Shalin P; Henry, Linda L; Holmes, Sari D; Hunt, Sharon L; Martin, Chidima T; Hebsur, Shrinivas; Ad, Niv

    2012-02-01

    The purpose of this study was to test the hypothesis that a liberal blood glucose strategy (121-180 mg/dL) is not inferior to a strict blood glucose strategy (90-120 mg/dL) for outcomes in patients after first-time isolated coronary artery bypass grafting and is superior for glucose control and target blood glucose management. A total of 189 patients undergoing coronary artery bypass grafting were investigated in this prospective randomized study to compare 2 glucose control strategies on patient perioperative outcomes. Three methods of analyses (intention to treat, completer, and per protocol) were conducted. Observed power was robust (>80%) for significant results. The groups were similar on preoperative hemoglobin A(1c) and number of diabetic patients. The liberal group was found to be noninferior to the strict group for perioperative complications and superior on glucose control and target range management. The liberal group had significantly fewer patients with hypoglycemic events (liberal range after coronary artery bypass grafting led to similar outcomes compared with a strict target range and was superior in glucose control and target range management. On the basis of the results of this study, a target blood glucose range of 121 to 180 mg/dL is recommended for patients after coronary artery bypass grafting as advocated by the Society of Thoracic Surgeons. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  13. Event-Sampled Direct Adaptive NN Output- and State-Feedback Control of Uncertain Strict-Feedback System.

    Science.gov (United States)

    Szanto, Nathan; Narayanan, Vignesh; Jagannathan, Sarangapani

    2017-04-12

    In this paper, a novel event-triggered implementation of a tracking controller for an uncertain strict-feedback system is presented. Neural networks (NNs) are utilized in the backstepping approach to design a control input by approximating unknown dynamics of the strict-feedback nonlinear system with event-sampled inputs. The system state vector is assumed to be unknown and an NN observer is used to estimate the state vector. By using the estimated state vector and backstepping design approach, an event-sampled controller is introduced. As part of the controller design, first, input-to-state-like stability for a continuously sampled controller that has been injected with bounded measurement errors is demonstrated, and subsequently, an event-execution control law is derived, such that the measurement errors are guaranteed to remain bounded. Lyapunov theory is used to demonstrate that the tracking errors, the observer estimation errors, and the NN weight estimation errors for each NN are locally uniformly ultimately bounded in the presence bounded disturbances, NN reconstruction errors, as well as errors introduced by event sampling. Simulation results are provided to illustrate the effectiveness of the proposed controllers.

  14. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle.

    Science.gov (United States)

    Xu, Bin; Yang, Chenguang; Pan, Yongping

    2015-10-01

    This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approximation domain, together with the robust controller that pulls the transient states back into the neural approximation domain from the outside. In comparison with the conventional control techniques, which could only achieve semiglobally uniformly ultimately bounded stability, the proposed control scheme guarantees all the signals in the closed-loop system are globally uniformly ultimately bounded, such that the conventional constraints on initial conditions of the neural control system can be relaxed. The simulation studies of hypersonic flight vehicle (HFV) are performed to demonstrate the effectiveness of the proposed global neural DSC design.

  15. Probing the redox metabolism in the strictly anaerobic, extremely thermophilic, hydrogen-producing Caldicellulosiruptor saccharolyticus using amperometry

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Willquist, Karin; Emnéus, Jenny

    2011-01-01

    Changes in the redox metabolism in the anaerobic, extremely thermophilic, hydrogen-forming bacterium Caldicellulosiruptor saccharolyticus were probed for the first time in vivo using mediated amperometry with ferricyanide as a thermotolerant external mediator. Clear differences in the intracellul...

  16. Adaptive terminal sliding mode control for hypersonic flight vehicles with strictly lower convex function based nonlinear disturbance observer.

    Science.gov (United States)

    Wu, Yun-Jie; Zuo, Jing-Xing; Sun, Liang-Hua

    2017-11-01

    In this paper, the altitude and velocity tracking control of a generic hypersonic flight vehicle (HFV) is considered. A novel adaptive terminal sliding mode controller (ATSMC) with strictly lower convex function based nonlinear disturbance observer (SDOB) is proposed for the longitudinal dynamics of HFV in presence of both parametric uncertainties and external disturbances. First, for the sake of enhancing the anti-interference capability, SDOB is presented to estimate and compensate the equivalent disturbances by introducing a strictly lower convex function. Next, the SDOB based ATSMC (SDOB-ATSMC) is proposed to guarantee the system outputs track the reference trajectory. Then, stability of the proposed control scheme is analyzed by the Lyapunov function method. Compared with other HFV control approaches, key novelties of SDOB-ATSMC are that a novel SDOB is proposed and drawn into the (virtual) control laws to compensate the disturbances and that several adaptive laws are used to deal with the differential explosion problem. Finally, it is illustrated by the simulation results that the new method exhibits an excellent robustness and a better disturbance rejection performance than the convention approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Online Recorded Data-Based Composite Neural Control of Strict-Feedback Systems With Application to Hypersonic Flight Dynamics.

    Science.gov (United States)

    Xu, Bin; Yang, Daipeng; Shi, Zhongke; Pan, Yongping; Chen, Badong; Sun, Fuchun

    2017-09-25

    This paper investigates the online recorded data-based composite neural control of uncertain strict-feedback systems using the backstepping framework. In each step of the virtual control design, neural network (NN) is employed for uncertainty approximation. In previous works, most designs are directly toward system stability ignoring the fact how the NN is working as an approximator. In this paper, to enhance the learning ability, a novel prediction error signal is constructed to provide additional correction information for NN weight update using online recorded data. In this way, the neural approximation precision is highly improved, and the convergence speed can be faster. Furthermore, the sliding mode differentiator is employed to approximate the derivative of the virtual control signal, and thus, the complex analysis of the backstepping design can be avoided. The closed-loop stability is rigorously established, and the boundedness of the tracking error can be guaranteed. Through simulation of hypersonic flight dynamics, the proposed approach exhibits better tracking performance.

  18. Composite Intelligent Learning Control of Strict-Feedback Systems With Disturbance.

    Science.gov (United States)

    Xu, Bin; Sun, Fuchun

    2018-02-01

    This paper addresses the dynamic surface control of uncertain nonlinear systems on the basis of composite intelligent learning and disturbance observer in presence of unknown system nonlinearity and time-varying disturbance. The serial-parallel estimation model with intelligent approximation and disturbance estimation is built to obtain the prediction error and in this way the composite law for weights updating is constructed. The nonlinear disturbance observer is developed using intelligent approximation information while the disturbance estimation is guaranteed to converge to a bounded compact set. The highlight is that different from previous work directly toward asymptotic stability, the transparency of the intelligent approximation and disturbance estimation is included in the control scheme. The uniformly ultimate boundedness stability is analyzed via Lyapunov method. Through simulation verification, the composite intelligent learning with disturbance observer can efficiently estimate the effect caused by system nonlinearity and disturbance while the proposed approach obtains better performance with higher accuracy.

  19. Peculiarities of one-carbon metabolism in the strict carnivorous cat and the role in feline hepatic lipidosis.

    Science.gov (United States)

    Verbrugghe, Adronie; Bakovic, Marica

    2013-07-19

    Research in various species has indicated that diets deficient in labile methyl groups (methionine, choline, betaine, folate) produce fatty liver and links to steatosis and metabolic syndrome, but also provides evidence of the importance of labile methyl group balance to maintain normal liver function. Cats, being obligate carnivores, rely on nutrients in animal tissues and have, due to evolutionary pressure, developed several physiological and metabolic adaptations, including a number of peculiarities in protein and fat metabolism. This has led to specific and unique nutritional requirements. Adult cats require more dietary protein than omnivorous species, maintain a consistently high rate of protein oxidation and gluconeogenesis and are unable to adapt to reduced protein intake. Furthermore, cats have a higher requirement for essential amino acids and essential fatty acids. Hastened use coupled with an inability to conserve certain amino acids, including methionine, cysteine, taurine and arginine, necessitates a higher dietary intake for cats compared to most other species. Cats also seemingly require higher amounts of several B-vitamins compared to other species and are predisposed to depletion during prolonged inappetance. This carnivorous uniqueness makes cats more susceptible to hepatic lipidosis.

  20. Peculiarities of One-Carbon Metabolism in the Strict Carnivorous Cat and the Role in Feline Hepatic Lipidosis

    Directory of Open Access Journals (Sweden)

    Marica Bakovic

    2013-07-01

    Full Text Available Research in various species has indicated that diets deficient in labile methyl groups (methionine, choline, betaine, folate produce fatty liver and links to steatosis and metabolic syndrome, but also provides evidence of the importance of labile methyl group balance to maintain normal liver function. Cats, being obligate carnivores, rely on nutrients in animal tissues and have, due to evolutionary pressure, developed several physiological and metabolic adaptations, including a number of peculiarities in protein and fat metabolism. This has led to specific and unique nutritional requirements. Adult cats require more dietary protein than omnivorous species, maintain a consistently high rate of protein oxidation and gluconeogenesis and are unable to adapt to reduced protein intake. Furthermore, cats have a higher requirement for essential amino acids and essential fatty acids. Hastened use coupled with an inability to conserve certain amino acids, including methionine, cysteine, taurine and arginine, necessitates a higher dietary intake for cats compared to most other species. Cats also seemingly require higher amounts of several B-vitamins compared to other species and are predisposed to depletion during prolonged inappetance. This carnivorous uniqueness makes cats more susceptible to hepatic lipidosis.

  1. Strict blood glucose control by an artificial endocrine pancreas during hepatectomy may prevent postoperative acute kidney injury.

    Science.gov (United States)

    Mita, Naoji; Kawahito, Shinji; Soga, Tomohiro; Takaishi, Kazumi; Kitahata, Hiroshi; Matsuhisa, Munehide; Shimada, Mitsuo; Kinoshita, Hiroyuki; Tsutsumi, Yasuo M; Tanaka, Katsuya

    2017-03-01

    The aim of the present study was to evaluate the usefulness of a closed-loop system (STG-55; Nikkiso, Tokyo, Japan), a type of artificial endocrine pancreas for the continuous monitoring and control of intraoperative blood glucose, for preventing postoperative acute kidney injury (AKI) in patients undergoing hepatectomy. Thirty-eight patients were enrolled in this study. Glucose concentrations were controlled with either a manual injection of insulin based on a commonly used sliding scale (manual insulin group, n = 19) or the programmed infusion of insulin determined by the control algorithm of the artificial endocrine pancreas (programmed insulin group, n = 19). After the induction of anesthesia, a 20-G intravenous catheter was inserted into the peripheral forearm vein of patients in the programmed insulin group and connected to an artificial endocrine pancreas (STG-55). The target range for glucose concentrations was set to 100-150 mg/dL. The mean serum creatinine concentrations of preoperative, postoperative 24 and 48 h were 0.72, 0.78, and 0.79 mg/dL in the programmed insulin group, and 0.81, 0.95, and 1.03 mg/dL in the manual insulin group, respectively. Elevations in serum creatinine concentrations postoperative 48 h were significantly suppressed in the programmed insulin group. The STG-55 closed-loop system was effective for maintaining strict blood glucose control during hepatectomy with minimal variability in blood glucose concentrations and for suppressing elevations in serum creatinine concentrations. Strict blood glucose control by an artificial endocrine pancreas during hepatectomy may prevent postoperative AKI.

  2. Response of molars and non-molars to a strict supragingival control in periodontal patients

    Directory of Open Access Journals (Sweden)

    Patrícia Daniela Melchiors Angst

    2013-02-01

    Full Text Available The posterior position in the arches is one of the factors that underlies the poor prognosis of molar teeth (M. It is speculated that M do not benefit from the oral hygiene routine as well as non-molars (NM do. This study evaluated the response of M and NM to supragingival control during a 6-month period in 25 smokers (S and 25 never-smokers (NS with moderate-to-severe periodontitis. One calibrated examiner assessed visible plaque (VPI and gingival bleeding (GBI indexes, periodontal probing depth (PPD, bleeding on probing (BOP, and clinical attachment loss (CAL at days 0 (baseline, 30 and 180. At baseline, M showed significantly higher mean values of VPI (p = 0.017 and PPD (p < 0.001 compared with NM; CAL was also greater in M (p < 0.001 and was affected by smoking (p = 0.007. The reductions obtained for periodontal indicators at day 180 showed similar responses between M and NM. For CAL, M (NS 0.57 ± 0.50; S 0.67 ± 0.64 and NM (NS 0.38 ± 0.23; S 0.50 ± 0.33 reached an almost significant difference (p = 0.05. Smoking did not influence the response to treatment. Multilevel analysis revealed that, only for PDD reductions, the interaction between sites, teeth and patient was significant (p < 0.001. It was concluded that M benefit from an adequate regimen of supragingival biofilm control; therefore, supragingival condition should be considered in the prognosis of molar teeth.

  3. Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit

    Science.gov (United States)

    Liebel, M.; Kukura, P.

    2017-01-01

    The concept of shaping electric fields to steer light-induced processes coherently has fascinated scientists for decades. Despite early theoretical considerations that ruled out one-photon coherent control (CC), several experimental studies reported that molecular responses are sensitive to the shape of the excitation field in the weak-field limit. These observations were largely attributed to the presence of rapid-decay channels, but experimental verification is lacking. Here, we test this hypothesis by investigating the degree of achievable control over the photoisomerization of the retinal protonated Schiff-base in bacteriorhodopsin, isorhodopsin and rhodopsin, all of which exhibit similar chromophores but different isomerization yields and excited-state lifetimes. Irrespective of the system studied, we find no evidence for dissipation-dependent behaviour, nor for any CC in the strict one-photon limit. Our results question the extent to which a photochemical process at ambient conditions can be controlled at the amplitude level, and how the underlying molecular potential-energy surfaces and dynamics may influence this controllability.

  4. Hypoglycemia in pregnant women with type 1 diabetes: predictors and role of metabolic control

    DEFF Research Database (Denmark)

    Nielsen, Lene Ringholm; Pedersen-Bjergaard, Ulrik; Thorsteinsson, Birger

    2008-01-01

    In pregnancy with type 1 diabetes, we evaluated occurrence of mild and severe hypoglycemia and analyzed the influence of strict metabolic control, nausea, vomiting, and other potential predictors of occurrence of severe hypoglycemia....

  5. Lenient vs. strict rate control in patients with atrial fibrillation and heart failure: a post-hoc analysis of the RACE II study

    NARCIS (Netherlands)

    Mulder, Bart A.; van Veldhuisen, Dirk J.; Crijns, Harry J. G. M.; Tijssen, Jan G. P.; Hillege, Hans L.; Alings, Marco; Rienstra, Michiel; Groenveld, Hessel F.; van den Berg, Maarten P.; van Gelder, Isabelle C.

    2013-01-01

    It is unknown whether lenient rate control is an acceptable strategy in patients with AF and heart failure. We evaluated differences in outcome in patients with AF and heart failure treated with lenient or strict rate control. This post-hoc analysis of the RACE II trial included patients with an

  6. Changes in Frequency Intake of Foods in Patients Undergoing Sleeve Gastrectomy and Following a Strict Dietary Control.

    Science.gov (United States)

    Ruiz-Tovar, Jaime; Bozhychko, Maryana; Del-Campo, Jone Miren; Boix, Evangelina; Zubiaga, Lorea; Muñoz, Jose Luis; Llavero, Carolina

    2017-12-17

    Dietary intake and food preferences change after bariatric surgery, secondary to gastrointestinal symptoms and dietitian counseling. The aim of this study was to evaluate the changes in the frequency intake of different foods in patients undergoing sleeve gastrectomy and following a strict dietary control. A prospective observational study of all the morbidly obese patients undergoing laparoscopic sleeve gastrectomy as bariatric procedure between 2007 and 2012 was performed. Dietary assessment was performed using the Alimentary Frequency Questionnaire 1991-2002, developed and validated by the Department of Epidemiology of Miguel Hernandez University (Elche, Alicante Spain). Ninety-three patients were included for analysis, 73 females and 20 males, with a mean preoperative BMI of 46.4 ± 7.9 kg/m 2 . One year after surgery, excess weight loss was 81.1 ± 8.3% and 5 years after surgery, 79.9 ± 6.4%. Total weight loss at 1 year was 38.8 ± 5.3% and at 5 years, 35.4 ± 4.9%. Postoperatively, a reduction in the intake of dairy products, red meat, deli meat products, shellfish, fried potatoes, sweets, rice, pasta, beer, and processed foods was observed. Vegetables, fruits, and legumes intake increased after surgery. In the first postoperative year, there was a slight intolerance to red meat, fruits, vegetables and legumes, dairy products, pasta, and rice that mostly disappeared 5 years after surgery. One year after sleeve gastrectomy, calibrated with a 50-French bougie, there are not important problems in the intake of foods a priori difficult to digest. These problems mostly disappeared 5 years after surgery. The decrease intake of other unhealthy foods is mostly based on the dietary counseling.

  7. Strict confluent drawing

    Directory of Open Access Journals (Sweden)

    David Eppstein

    2016-01-01

    Full Text Available We define strict confluent drawing, a form of confluent drawing in which the existence of an edge is indicated by the presence of a smooth path through a system of arcs and junctions (without crossings, and in which such a path, if it exists, must be unique. We prove that it is NP-complete to determine whether a given graph has a strict confluent drawing but polynomial to determine whether it has an outerplanar strict confluent drawing with a fixed vertex ordering (a drawing within a disk, with the vertices placed in a given order on the boundary.

  8. Serotonergic Control of Metabolic Homeostasis

    Directory of Open Access Journals (Sweden)

    Steven C. Wyler

    2017-09-01

    Full Text Available New treatments are urgently needed to address the current epidemic of obesity and diabetes. Recent studies have highlighted multiple pathways whereby serotonin (5-HT modulates energy homeostasis, leading to a renewed interest in the identification of 5-HT-based therapies for metabolic disease. This review aims to synthesize pharmacological and genetic studies that have found diverse functions of both central and peripheral 5-HT in the control of food intake, thermogenesis, and glucose and lipid metabolism. We also discuss the potential benefits of targeting the 5-HT system to combat metabolic disease.

  9. Strictly convex renormings

    Czech Academy of Sciences Publication Activity Database

    Moltó, A.; Orihuela, J.; Troyanski, S.; Zizler, Václav

    2007-01-01

    Roč. 75, č. 3 (2007), s. 647-658 ISSN 0024-6107 R&D Projects: GA AV ČR IAA100190502 Institutional research plan: CEZ:AV0Z10190503 Keywords : strictly convex norms * lattice norm * quasi-diagonal sets Subject RIV: BA - General Mathematics Impact factor: 0.733, year: 2007

  10. Quine's "Strictly Vegetarian" Analyticity

    NARCIS (Netherlands)

    Decock, L.B.

    2017-01-01

    I analyze Quine’s later writings on analyticity from a linguistic point of view. In Word and Object Quine made room for a “strictly vegetarian” notion of analyticity. In later years, he developed this notion into two more precise notions, which I have coined “stimulus analyticity” and “behaviorist

  11. Glycaemic Control, Dyslipidaemia and Metabolic Syndrome among ...

    African Journals Online (AJOL)

    BACKGROUND: Poor glycaemic control, dyslipidaemia and metabolic syndrome are all risk factors for cardiovascular disease. OBJECTIVE: To determine the association between glycaemic control, dyslipidaemia and metabolic syndrome and their relative incidence among recently diagnosed diabetic patients in Tamale ...

  12. Glycaemic Control, Dyslipidaemia and Metabolic Syndrome among ...

    African Journals Online (AJOL)

    Glycaemic Control, Dyslipidaemia and Metabolic Syndrome among Recently Diagnosed Diabetes Mellitus Patients in Tamale Teaching Hospital, Ghana. ... West African Journal of Medicine ... BACKGROUND: Poor glycaemic control, dyslipidaemia and metabolic syndrome are all risk factors for cardiovascular disease.

  13. [How an outbreak of MRSA in Gothenburg was eliminated: by strict hygienic routines and massive control-culture program].

    Science.gov (United States)

    Seeberg, Staffan; Larsson, Leif; Welinder-Olsson, Christina; Sandberg, Torsten; Skyman, Eva; Bresky, Bo; Lindqvist, Anna; van Raalte, Margaretha

    2002-08-08

    The largest single-strain outbreak of methicillin resistant Staphylococcus aureus (MRSA) in Scandinavia so far occurred at Sahlgrenska University Hospital in Western Sweden 1997-2000. The strain identified was identical to the UK EMRSA-16 strain. 147 patients at 36 different wards became colonised or infected. Established routines for infection control had to be revised. The endemic situation necessitated an MRSA screening programme in October 1999 for all former hospital patients on re-admission. Since May 2000 no patient has been found with the outbreak strain at Sahlgrenska University Hospital.

  14. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jingkun; Chen, D-R; Biswas, Pratim [Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, Campus Box 1180, St Louis, MO 63130 (United States)

    2007-07-18

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO{sub 2} nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO{sub 2} nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.

  15. Outcome of strict implementation of infection prevention control measures during an outbreak of Middle East respiratory syndrome.

    Science.gov (United States)

    El Bushra, Hassan E; Al Arbash, Hussain A; Mohammed, Mutaz; Abdalla, Osman; Abdallah, Mohamed N; Al-Mayahi, Zayid K; Assiri, Abdallah M; BinSaeed, Abdulaziz A

    2017-05-01

    The objective of this retrospective cohort study was to assess the impact of implementation of different levels of infection prevention and control (IPC) measures during an outbreak of Middle East respiratory syndrome (MERS) in a large tertiary hospital in Saudi Arabia. The setting was an emergency room (ER) in a large tertiary hospital and included primary and secondary MERS patients. Rapid response teams conducted repeated assessments of IPC and monitored implementation of corrective measures using a detailed structured checklist. We ascertained the epidemiologic link between patients and calculated the secondary attack rate per 10,000 patients visiting the ER (SAR/10,000) in 3 phases of the outbreak. In phase I, 6 primary cases gave rise to 48 secondary cases over 4 generations, including a case that resulted in 9 cases in the first generation of secondary cases and 21 cases over a chain of 4 generations. During the second and third phases, the number of secondary cases sharply dropped to 18 cases and 1 case, respectively, from a comparable number of primary cases. The SAR/10,000 dropped from 75 (95% confidence interval [CI], 55-99) in phase I to 29 (95% CI, 17-46) and 3 (95% CI, 0-17) in phases II and III, respectively. The study demonstrated salient evidence that proper institution of IPC measures during management of an outbreak of MERS could remarkably change the course of the outbreak. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Health benefit from decreasing exposure to heavy metals and metalloid after strict pollution control measures near a typical river basin area in China.

    Science.gov (United States)

    Cao, Suzhen; Duan, Xiaoli; Ma, Yingqun; Zhao, Xiuge; Qin, Yanwen; Liu, Yan; Li, Sai; Zheng, Binghui; Wei, Fusheng

    2017-10-01

    The metal(loid) pollution still is a great concern due to the effects from urbanization and industrialization. While, the health risks from the toxic metal(loid)s could decrease if strict pollution control measures were adopted. However, few studies to date investigate the health risks of heavy metal(loid)s in a systematic river basin for the dependent residents, after taking pollution control measures. Thus, the contents of metal(loid)s (Cu, Pb, Zn, Cd, Mn, As) in surface water along a typical river basin were investigated in this study, and the potential non-carcinogenic and carcinogenic health risks posed to the residents were assessed. Although the soluble contents of Cu, Pb, Zn and Cd exceeded the respective thresholds in two sites located downstream the mine area, they were greatly decreased in comparison with previous contamination levels, and the soluble concentrations of all the metal(loid)s were within the relevant thresholds in the sites far away from the mining area. Moreover, the closer to the mining area, the higher the pollution levels of metal(loid)s. The total hazard index for non-carcinogenic risks of metal(loid)s were basically lower than the threshold (1) for the local population. Whereas, although the content of metal(loid)s were low (such as As), they could pose relative higher non-carcinogenic health risks. The result illustrated that pollution levels, toxicity of the contaminants and exposure behavior patterns all could contribute to the potential detrimental health risks. Additionally, the non-carcinogenic and carcinogenic risks from ingestion exposure were ∼2-∼4 orders of magnitude higher than those from dermal contact. The total carcinogenic risks were basically lower than the maximum tolerable levels (1.0 × 10 -4 ), indicating carcinogenic risks from most areas of the river could also be accepted. Among different population groups, heavy metal(loid)s posed relative higher non-carcinogenic and carcinogenic risks to the children in

  17. Enrichment of HLA Types and Single-Nucleotide Polymorphism Associated With Non-progression in a Strictly Defined Cohort of HIV-1 Controllers

    Directory of Open Access Journals (Sweden)

    Samantha J. Westrop

    2017-06-01

    Full Text Available HIV-1 controllers (HIC are extremely rare patients with the ability to control viral replication, maintain unchanging CD4 T-cell count, and evade disease progression for extensive periods of time, in the absence of antiretroviral therapy. In order to establish the representation of key genetic correlates of atypical disease progression within a cohort of HIV-1+ individuals who control viral replication, we examine four-digit resolution HLA type and single-nucleotide polymorphisms (SNP previously identified to be correlated to non-progressive infection, in strictly defined HIC. Clinical histories were examined to identify patients exhibiting HIC status. Genomic DNA was extracted, and high definition HLA typing and genome-wide SNP analysis was performed. Data were compared with frequencies of SNP in European long-term non-progressors (LTNP and primary infection cohorts. HLA-B alleles associated with atypical disease progression were at very high frequencies in the group of five HIC studied. All four HIC of European ancestry were HLA-B*57+ and half were also HLA-B*27+. All HIC, including one of self-reported African ethnicity, had the HLA-Cw*0602 allele, and the HLA-DQ9 allele was present only in HIC of European ancestry. A median 95% of the top 19 SNP known to be associated with LTNP status was observed in European HIC (range 78–100%; 17/19 of the SNP considered mapped to chromosome 6 in the HLA region, whereas 2/19 mapped to chromosome 8. The HIC investigated here demonstrated high enrichment of HLA types and SNP previously associated with long-term non-progression. These findings suggest that the extreme non-progressive phenotype considered here is associated with a genetic signature characterized by a single-genetic unit centered around the HLA-B*57 haplotype and the possible additive effect of HLA-B*27.

  18. Efficient Strictness Analysis of Haskell

    DEFF Research Database (Denmark)

    Jensen, Kristian Damm; Hjæresen, Peter; Rosendahl, Mads

    1994-01-01

    Strictness analysis has been a living field of investigation since Mycroft's original work in 1980, and is getting increasingly significant with the still wider use of lazy functional programming languages. This paper focuses on an actual implementation of a strictness analyser for Haskell...

  19. Effect of two years of strict metabolic control on progression of incipient nephropathy in insulin-dependent diabetes

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Mathiesen, E R; Deckert, T

    1986-01-01

    36 patients with insulin-dependent diabetes mellitus who had 'Albustix'-negative urine but raised urinary albumin excretion (30 to 300 mg/24 h) were randomly assigned to either remaining on conventional insulin treatment or continuous subcutaneous insulin infusion and followed up for 2 years...... albumin excretion rate above 300 mg/24 h in at least two of three 24 h urine collections) developed in 5 patients in the conventional-treatment group, but not in the insulin-infusion group (p less than 0.05, two-tailed). Fractional albumin clearance (mean and range X 10(7] increased in the conventional...

  20. Controlling fluxes for microbial metabolic engineering

    OpenAIRE

    Sachdeva, Gairik

    2014-01-01

    This thesis presents novel synthetic biology tools and design principles usable for microbial metabolic engineering. Controlling metabolic fluxes is essential for biological manufacturing of fuels, materials, and high value chemicals. Insulating the flow of metabolites is a successful natural strategy for metabolic flux regulation. Recently, approaches using scaffolds, both in vitro and in vivo, to spatially co-localize enzymes have reported significant gains in product yields. RNA is suitabl...

  1. Thermodynamics of the control of metabolism

    NARCIS (Netherlands)

    Westerhoff, H. V.; Plomp, P. J.; Groen, A. K.; Wanders, R. J.

    1987-01-01

    A theory is presented, describing the control analysis of metabolic systems in terms of Gibbs free energies, extending earlier work of Kacser and Burns (25), and Heinrich and Rapoport (29). It is shown that relationships exist between flux control coefficients (the degree to which enzymes control

  2. Species Protection in the European Union : How Strict is Strict?

    NARCIS (Netherlands)

    Schoukens, Hendrik; Bastmeijer, Kees; Born et al., Charles-Hubert

    2015-01-01

    European Union law to protect wild species of plants and animals is generally considered as ‘strict’. Opponents of nature conservation law often pick the species protection components of the EU Bird Directive and Habitat Directive as a prime example of an unnecessary strict regulatory scheme that

  3. Temporal Control of Metabolic Amplitude by Nocturnin

    Directory of Open Access Journals (Sweden)

    Jeremy J. Stubblefield

    2018-01-01

    Full Text Available The timing of food intake and nutrient utilization is critical to health and regulated partly by the circadian clock. Increased amplitude of circadian oscillations and metabolic output has been found to improve health in diabetic and obesity mouse models. Here, we report a function for the circadian deadenylase Nocturnin as a regulator of metabolic amplitude across the day/night cycle and in response to nutrient challenge. We show that mice lacking Nocturnin (Noct−/− display significantly increased amplitudes of mRNA expression of hepatic genes encoding key metabolic enzymes regulating lipid and cholesterol synthesis, both over the daily circadian cycle and in response to fasting and refeeding. Noct−/− mice have increased plasma triglyceride throughout the night and increased amplitude of hepatic cholesterol levels. Therefore, posttranscriptional control by Nocturnin regulates the amplitude of these critical metabolic pathways, and loss of this activity results in increased metabolic flux and reduced obesity.

  4. Strictness Analysis for Attribute Grammars

    DEFF Research Database (Denmark)

    Rosendahl, Mads

    1992-01-01

    interpretation of attribute grammars. The framework is used to construct a strictness analysis for attribute grammars. Results of the analysis enable us to transform an attribute grammar such that attributes are evaluated during parsing, if possible. The analysis is proved correct by relating it to a fixpoint...... semantics for attribute grammars. An implementation of the analysis is discussed and some extensions to the analysis are mentioned....

  5. Metabolic gene polymorphism frequencies in control populations

    DEFF Research Database (Denmark)

    Garte, Seymour; Gaspari, Laura; Alexandrie, Anna-Karin

    2001-01-01

    Using the International Project on Genetic Susceptibility to Environmental Carcinogens (GSEC) database containing information on over 15,000 control (noncancer) subjects, the allele and genotype frequencies for many of the more commonly studied metabolic genes (CYP1A1, CYP2E1, CYP2D6, GSTM1, GSTT1...

  6. Metabolic gene polymorphism frequencies in control populations.

    NARCIS (Netherlands)

    Garte, S.; Gaspari, L.; Alexandrie, A.K.; Ambrosone, C.; Autrup, H.; Autrup, J.L.; Baranova, H.; Bathum, L.; Benhamou, S.; Boffetta, P.; Bouchardy, C.; Breskvar, K.; Brockmoller, J.; Cascorbi, I.; Clapper, M.L.; Coutelle, C.; Daly, A.; Dell'Omo, M.; Dolzan, V.; Dresler, C.M.; Fryer, A.; Haugen, A.; Hein, D.W.; Hildesheim, A.; Hirvonen, A.; Hsieh, L.L.; Ingelman-Sundberg, M.; Kalina, I.; Kang, D.; Kihara, M.; Kiyohara, C.; Kremers, P.; Lazarus, P.; Marchand, L. le; Lechner, M.C.; Lieshout, E.M.M. van; London, S.; Manni, J.J.; Maugard, C.M.; Morita, S.; Nazar-Stewart, V.; Noda, K.; Oda, Y.; Parl, F.F.; Pastorelli, R.; Persson, I.; Peters, W.H.M.; Rannug, A.; Rebbeck, T.R.; Risch, A.; Roelandt, L.; Romkes, M.; Ryberg, D.; Salagovic, J.; Schoket, B.; Seidegard, J.; Shields, P.G.; Sim, E.; Sinnet, D.; Strange, R.C.; Stucker, I.; Sugimura, H.; To-Figueras, J.; Vineis, P.; Yu, M.C.; Taioli, E.

    2001-01-01

    Using the International Project on Genetic Susceptibility to Environmental Carcinogens (GSEC) database containing information on over 15,000 control (noncancer) subjects, the allele and genotype frequencies for many of the more commonly studied metabolic genes (CYP1A1, CYP2E1, CYP2D6, GSTM1, GSTT1,

  7. Flexible or Strict Taxonomic Organization?

    DEFF Research Database (Denmark)

    Glückstad, Fumiko Kano; Mørup, Morten

    2012-01-01

    This work compares methods for constructing feature-based ontologies that are supposed to be used for culturally-specific knowledge transfer. The methods to be compared are the Terminological Ontology (TO) [1], a method of constructing ontology based on strict principles and rules, and the Infinite...... Relational Model (IRM) [2], a novel unsupervised machine learning method that learns multi-dimensional relations among concepts and features from loosely structured datasets. These methods are combined with a novel cognitive model, the Bayesian Model of Generalization (BMG) [3] that maps culturally...

  8. Investigation of Color Constancy in 4.5-Month-Old Infants under a Strict Control of Luminance Contrast for Individual Participants

    Science.gov (United States)

    Yang, Jiale; Kanazawa, So; Yamaguchi, Masami K.; Kuriki, Ichiro

    2013-01-01

    The current study examined color constancy in infants using a familiarization paradigm. We first obtained isoluminance in each infant as defined by the minimum motion paradigm and used these data to control the luminance of stimuli in the main experiments. In the familiarization phase of the main experiment, two identical smiling face patterns…

  9. Hypoglycemia in pregnant women with type 1 diabetes - Predictors and role of metabolic control

    DEFF Research Database (Denmark)

    Nielsen, L.R.; Johansen, M.; Pedersen-Bjergaard, U.

    2008-01-01

    observational study of 108 consecutive pregnant women with type 1 diabetes was conducted. At 8, 14, 21, 27, and 33 weeks of gestation, patients performed self-monitored plasma glucose (SMPG) (eight/day) for 3 days and completed a questionnaire on nausea, vomiting, hypoglycemia awareness, and history of mild...... awareness or unawareness (3.2 [1.2-8.2]) as independent predictors for severe hypoglycemia. CONCLUSIONS - In pregnancy with type 1 diabetes, the incidence of mild and severe hypoglycemia was highest in early pregnancy, although metabolic control was tighter in the last part of pregnancy. Predictors......OBJECTIVE- In pregnancy with type 1 diabetes, we evaluated occurrence of mild and severe hypoglycemia and analyzed the influence of strict metabolic control, nausea, Vomiting, and other potential predictors of occurrence of severe hypoglycemia. RESEARCH DESIGN AND METHODS- A prospective...

  10. Bilateral Diabetic Papillopathy and Metabolic Control

    DEFF Research Database (Denmark)

    Ostri, Christoffer; Lund-Andersen, Henrik; Sander, Birgit

    2010-01-01

    -six patients with type 1 diabetes. METHODS: Review of clinical, photographic, and clinical chemistry records from a large diabetology and ophthalmology unit between 2001 and 2008. MAIN OUTCOME MEASURES: Simultaneous, bilateral diabetic papillopathy. RESULTS: The mean follow-up was 4.9 years. During 10 020...... patient-years of observation, bilateral diabetic papillopathy developed in 5 patients. During the year preceding this incident, all 5 patients had experienced a decrease in glycosylated hemoglobin A(1c) (HbA(1C)) at a maximum rate of -2.5 (mean) percentage points per quarter year, which was significantly......OBJECTIVE: The pathogenesis of diabetic papillopathy largely is unknown, but case reports suggest that it may follow rapidly improved metabolic control. The present study was designed to investigate this hypothesis. DESIGN: Retrospective case-control study. PARTICIPANTS: Two thousand sixty...

  11. Calcium signalling in the ciliated protozoan model, Paramecium: strict signal localisation by epigenetically controlled positioning of different Ca²⁺-channels.

    Science.gov (United States)

    Plattner, Helmut

    2015-03-01

    The Paramecium tetraurelia cell is highly organised, with regularly spaced elements pertinent to Ca(2+) signalling under epigenetic control. Vesicles serving as stationary Ca(2+) stores or undergoing trafficking contain Ca(2+)-release channels (PtCRCs) which, according to sequence and domain comparison, are related either to inositol 1,4,5-trisphosphate (InsP3) receptors (IP3R) or to ryanodine receptor-like proteins (RyR-LP) or to both, with intermediate characteristics or deviation from conventional domain structure. Six groups of such PtCRCs have been found. The ryanodine-InsP3-receptor homology (RIH) domain is not always recognisable, in contrast to the channel domain with six trans-membrane domains and the pore between transmembrane domain 5 and 6. Two CRC subtypes tested more closely, PtCRC-II and PtCRC-IV, with and without an InsP3-binding domain, reacted to InsP3 and to caffeine, respectively, and hence represent IP3Rs and RyR-LPs. IP3Rs occur in the contractile vacuole complex where they allow for stochastic constitutive Ca(2+) reflux into the cytosol. RyR-LPs are localised to cortical Ca(2+) stores; they are engaged in dense core-secretory vesicle exocytosis by Ca(2+) release, superimposed by Ca(2+)-influx via non-ciliary Ca(2+)-channels. One or two different types of PtCRCs also occur in other vesicles undergoing trafficking. Since the PtCRCs described combine different features they are considered derivatives of primitive precursors. The highly regular, epigenetically controlled design of a Paramecium cell allows it to make Ca(2+) available very locally, in a most efficient way, along predetermined trafficking pathways, including regulation of exocytosis, endocytosis, phagocytosis and recycling phenomena. The activity of cilia is also regulated by Ca(2+), yet independently from any CRCs, by de- and hyperpolarisation of the cell membrane potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. It must be my metabolism: Metabolic control of mind

    Directory of Open Access Journals (Sweden)

    Dana M Small

    2014-07-01

    relationship between the reinforcing potency of sugared solutions and the metabolic effects that follow their consumption (16, also see the abstract of I. de Araujo. We therefore hypothesized that metabolic response provides the critical signal necessary to condition preference. To test this prediction in humans we designed a flavor nutrient conditioning study in which participants first rated their liking for novel flavored beverages and then, over a three week-long conditioning protocol, alternately ingested one of the flavored beverages with 112.5 kcal from maltodextrin, a tasteless and odorless polysaccharide that breaks down into glucose, and another flavored beverage with no calories added. Plasma glucose was measured before and after each of the drinks’ consumption as a proxy measure of metabolic response, assuming that glucose oxidation depends upon the level of circulating glucose. For each participant flavor-calorie pairings were held constant but the identity of the conditioned flavors were counterbalanced across participants. Following the exposure phase, participants’ liking of, and brain responses to, non-caloric versions of the flavors were assessed. We predicted that change in plasma glucose produced by beverage consumption during the exposure sessions would be associated with neural responses in dopamine source and target regions to the calorie predictive flavor. As predicted, response in the ventral striatum and hypothalamus to the calorie-predictive flavor (CS+ vs. non the noncaloric-predictive flavor (CS- was strongly associated with the changes in plasma glucose levels produced by ingestion of these same beverages when consumed previously either with (CS+ or without (CS- calories (17. Specifically, the greater the increase in circulating glucose occurring post ingestion of the beverage containing 112.5 kcal from maltodextrin versus the noncaloric drink, the stronger was the brain response to the CS+ compared to the CS- flavor. Importantly, because each

  13. Extremely strict ideals in Banach spaces

    Indian Academy of Sciences (India)

    Motivated by the notion of an ideal introduced by Godefroy {\\it et al.} ({\\it Studia Math.} {\\bf 104} (1993) 13–59), in this article, we introduce and study the notion of an extremely strict ideal. For a Poulsen simplex K , we show that the space of affine continuous functions on K is an extremely strict ideal in the space of continuous ...

  14. Hyperbolic spaces are of strictly negative type

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Kokkendorff, Simon L.; Markvorsen, Steen

    2002-01-01

    We study finite metric spaces with elements picked from, and distances consistent with, ambient Riemannian manifolds. The concepts of negative type and strictly negative type are reviewed, and the conjecture that hyperbolic spaces are of strictly negative type is settled, in the affirmative...

  15. Extremely strict ideals in Banach spaces

    Indian Academy of Sciences (India)

    Abstract. Motivated by the notion of an ideal introduced by Godefroy et al. (Stu- dia Math. 104 (1993) 13–59), in this article, we introduce and study the notion of an extremely strict ideal. For a Poulsen simplex K, we show that the space of affine contin- uous functions on K is an extremely strict ideal in the space of continuous ...

  16. Central nervous system control of triglyceride metabolism

    NARCIS (Netherlands)

    Geerling, Johanna Janetta (Janine)

    2013-01-01

    This thesis describes the role of the brain in the regulation of peripheral triglyceride metabolism, in the context of the metabolic syndrome. Based on various pharmacological studies we described the role of two hormones, insulin and glucagon-like peptide-1, in the production and clearance of

  17. Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems.

    Science.gov (United States)

    McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P

    2015-09-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Finite Metric Spaces of Strictly negative Type

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    If a finite metric space is of strictly negative type then its transfinite diameter is uniquely realized by an infinite extent (“load vector''). Finite metric spaces that have this property include all trees, and all finite subspaces of Euclidean and Hyperbolic spaces. We prove that if the distance...... matrix of a finite metric space is both hypermetric and regular, then it is of strictly negative type. We show that the strictly negative type finite subspaces of spheres are precisely those which do not contain two pairs of antipodal points....

  19. (Im) Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    NARCIS (Netherlands)

    He, F.; Fromion, V.; Westerhoff, H.V.

    2013-01-01

    Background: Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a

  20. Hyperbolic spaces are of strictly negative type

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Kokkendorff, Simon L.; Markvorsen, Steen

    2002-01-01

    We study finite metric spaces with elements picked from, and distances consistent with, ambient Riemannian manifolds. The concepts of negative type and strictly negative type are reviewed, and the conjecture that hyperbolic spaces are of strictly negative type is settled, in the affirmative....... The technique of the proof is subsequently applied to show that every compact manifold of negative type must have trivial fundamental group, and to obtain a necessary criterion for product manifolds to be of negative type....

  1. Sleep Control, GPCRs, and Glucose Metabolism.

    Science.gov (United States)

    Tsuneki, Hiroshi; Sasaoka, Toshiyasu; Sakurai, Takeshi

    2016-09-01

    Modern lifestyles prolong daily activities into the nighttime, disrupting circadian rhythms, which may cause sleep disturbances. Sleep disturbances have been implicated in the dysregulation of blood glucose levels and reported to increase the risk of type 2 diabetes (T2D) and diabetic complications. Sleep disorders are treated using anti-insomnia drugs that target ionotropic and G protein-coupled receptors (GPCRs), including γ-aminobutyric acid (GABA) agonists, melatonin agonists, and orexin receptor antagonists. A deeper understanding of the effects of these medications on glucose metabolism and their underlying mechanisms of action is crucial for the treatment of diabetic patients with sleep disorders. In this review we focus on the beneficial impact of sleep on glucose metabolism and suggest a possible strategy for therapeutic intervention against sleep-related metabolic disorders. Copyright © 2016. Published by Elsevier Ltd.

  2. Association of metabolic gene polymorphisms with alcohol consumption in controls.

    NARCIS (Netherlands)

    Raimondi, S.C.; Benhamou, S.; Coutelle, C.; Garte, S.; Hayes, R.; Kiemeney, L.A.L.M.; Lazarus, P.; Marchand, L.L.; Morita, S.; Povey, A.; Romkes, M.; Zijno, A.; Taioli, E.

    2004-01-01

    The objectives were to study the association between metabolic genes involved in alcohol metabolism (CYP2E1 RsaI, CYP2E1 DraI, ADH1C, NQO1) and alcohol consumption in a large sample of healthy controls. Healthy subjects were selected from the International Collaborative Study on Genetic

  3. Bile salts in control of lipid metabolism

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Groen, Albert K.

    Purpose of review The view on bile salts has evolved over the years from being regarded as simple detergents that aid intestinal absorption of fat-soluble nutrients to being important hormone-like integrators of metabolism. This review provides an update on the rapidly developing field of

  4. Bile salts in control of lipid metabolism

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Groen, Albert K.

    2016-01-01

    The view on bile salts has evolved over the years from being regarded as simple detergents that aid intestinal absorption of fat-soluble nutrients to being important hormone-like integrators of metabolism. This review provides an update on the rapidly developing field of interactions between bile

  5. Bone metabolism in healthy ambulatory control premonopausal ...

    African Journals Online (AJOL)

    Long-term anti-epileptic drug use significantly affects biochemical parameters of bone metabolism. These effects on bone biochemistry markers were not reflected in lumbar spine BMD in this study. The mean duration of treatment for epilepsy was eight years (±6.3). Majority of the patients were on enzyme inducing drugs ...

  6. Metabolic Control of Glia-Mediated Neuroinflammation.

    Science.gov (United States)

    Jha, Mithilesh Kumar; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Lee, Won-Ha; Suk, Kyoungho

    2016-01-01

    The central nervous system (CNS) shows dynamic immune and inflammatory responses to a variety of insults having crucial implications for reactive gliosis. Glial cells in the CNS serve not only as the source, but also as targets of proinflammatory mediators. Undoubtedly, these cells efficiently work towards the disposal of tissue debris and promotion of wound healing as well as tissue repair. However, these non-neuronal glial cells synthesize and release numerous inflammatory mediators, which can be detrimental to neurons, axons, myelin, and the glia themselves. While an acute insult is typically transient and unlikely to be detrimental to neuronal survival, chronic neuroinflammation is a long-standing and often self-perpetuating response, which persists even long after the initial injury or insult. It can serve as a point of origin for diverse neurological disorders including Alzheimer's disease. Accumulating evidence demonstrates the contribution of metabolic dysfunction and mitochondrial failure to the pathogenesis of neuroinflammatory and neurodegenerative diseases. Neurodegenerative conditions are also characterized by increased oxidative and endoplasmic reticulum stresses and autophagy defects. Furthermore, neuroinflammatory conditions are accompanied by an alteration in glial energy metabolism. Here, we comprehensively review the metabolic hallmarks of glia-mediated neuroinflammation and how the glial metabolic shift orchestrates the neuroinflammatory response and pathophysiology of diverse neurological disorders.

  7. Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp.

    Science.gov (United States)

    Arakawa, Kenji

    2018-02-23

    Streptomyces is well characterized by an ability to produce a wide variety of secondary metabolites including antibiotics, whose expression is strictly controlled by small diffusible signaling molecules at nano-molar concentrations. The signaling molecules identified to date are classified into three skeletons; γ-butyrolactones, furans, and γ-butenolides. Accumulated data suggest the structural diversity of the signaling molecules in Streptomyces species and their potential in activating cryptic secondary metabolite biosynthetic pathways. Several genome mining approaches to activate silent biosynthetic gene clusters have been reported for natural product discovery. This review updates recent examples on genetic manipulation including blockage of metabolic pathways together with inactivation of transcriptional repressor genes.

  8. Mitochondrial quality control pathways as determinants of metabolic health

    NARCIS (Netherlands)

    Held, Ntsiki M.; Houtkooper, Riekelt H.

    2015-01-01

    Mitochondrial function is key for maintaining cellular health, while mitochondrial failure is associated with various pathologies, including inherited metabolic disorders and age-related diseases. In order to maintain mitochondrial quality, several pathways of mitochondrial quality control have

  9. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Meera Shah

    2016-08-01

    Full Text Available The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer.

  10. Strictly convex functions on complete Finsler manifolds

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 126; Issue 4. Strictly convex functions on complete Finsler manifolds. YOE ITOKAWA KATSUHIRO SHIOHAMA BANKTESHWAR TIWARI. Research Article Volume 126 Issue 4 October 2016 pp 623-627 ...

  11. Finite Metric Spaces of Strictly Negative Type

    DEFF Research Database (Denmark)

    Hjorth, Poul; Lisonek, P.; Markvorsen, Steen

    1998-01-01

    We prove that, if a finite metric space is of strictly negative type, then its transfinite diameter is uniquely realized by the infinite extender (load vector). Finite metric spaces that have this property include all spaces on two, three, or four points, all trees, and all finite subspaces of Eu...

  12. Metabolic control by S6 kinases depends on dietary lipids.

    Directory of Open Access Journals (Sweden)

    Tamara R Castañeda

    Full Text Available Targeted deletion of S6 kinase (S6K 1 in mice leads to higher energy expenditure and improved glucose metabolism. However, the molecular mechanisms controlling these effects remain to be fully elucidated. Here, we analyze the potential role of dietary lipids in regulating the mTORC1/S6K system. Analysis of S6K phosphorylation in vivo and in vitro showed that dietary lipids activate S6K, and this effect is not dependent upon amino acids. Comparison of male mice lacking S6K1 and 2 (S6K-dko with wt controls showed that S6K-dko mice are protected against obesity and glucose intolerance induced by a high-fat diet. S6K-dko mice fed a high-fat diet had increased energy expenditure, improved glucose tolerance, lower fat mass gain, and changes in markers of lipid metabolism. Importantly, however, these metabolic phenotypes were dependent upon dietary lipids, with no such effects observed in S6K-dko mice fed a fat-free diet. These changes appear to be mediated via modulation of cellular metabolism in skeletal muscle, as shown by the expression of genes involved in energy metabolism. Taken together, our results suggest that the metabolic functions of S6K in vivo play a key role as a molecular interface connecting dietary lipids to the endogenous control of energy metabolism.

  13. Slave nodes and the controllability of metabolic networks

    International Nuclear Information System (INIS)

    Kim, Dong-Hee; Motter, Adilson E

    2009-01-01

    Recent work on synthetic rescues has shown that the targeted deletion of specific metabolic genes can often be used to rescue otherwise non-viable mutants. This raises a fundamental biophysical question: to what extent can the whole-cell behavior of a large metabolic network be controlled by constraining the flux of one or more reactions in the network? This touches upon the issue of the number of degrees of freedom contained by one such network. Using the metabolic network of Escherichia coli as a model system, here we address this question theoretically by exploring not only reaction deletions, but also a continuum of all possible reaction expression levels. We show that the behavior of the metabolic network can be largely manipulated by the pinned expression of a single reaction. In particular, a relevant fraction of the metabolic reactions exhibits canalizing interactions, in that the specification of one reaction flux determines cellular growth as well as the fluxes of most other reactions in optimal steady states. The activity of individual reactions can thus be used as surrogates to monitor and possibly control cellular growth and other whole-cell behaviors. In addition to its implications for the study of control processes, our methodology provides a new approach to study how the integrated dynamics of the entire metabolic network emerges from the coordinated behavior of its component parts.

  14. Hypothalamic control of energy metabolism via the autonomic nervous system

    NARCIS (Netherlands)

    Kalsbeek, A.; Bruinstroop, E.; Yi, C. X.; Klieverik, L. P.; La Fleur, S. E.; Fliers, E.

    2010-01-01

    The hypothalamic control of hepatic glucose production is an evident aspect of energy homeostasis. In addition to the control of glucose metabolism by the circadian timing system, the hypothalamus also serves as a key relay center for (humoral) feedback information from the periphery, with the

  15. Extremely strict ideals in Banach spaces

    Indian Academy of Sciences (India)

    the space of regular Borel measures, it is easy to see that with respect to the projection μ → μ|(0, 1), M is an extremely strict ideal in C([0, 1]) but as the Lebesgue measure is non-atomic, M. ∗. 1 is not the norm closed ..... (Grenoble) 28 (1978) 35–65. [10] Rao T S S R K, On ideals in Banach spaces, Rocky Mountain J. Math.

  16. Strictness Analysis and Denotational Abstract Interpretation

    DEFF Research Database (Denmark)

    Nielson, Flemming

    1988-01-01

    there and this sufices to make the framework applicable to strictness analysis for the lambda-calculus. This shows the possibility of a general theory for the analysis of functional programs and it gives more insight into the relative precision of the various analyses. In particular it is shown that a collecting (static......A theory of abstract interpretation () is developed for a typed lambda-calculus. The typed lambda-calculus may be viewed as the ''static'' part of a two-level denotational metalanguage for which abstract interpretation was developed by ). The present development relaxes a condition imposed...

  17. Control of Lipid Metabolism by Tachykinin in Drosophila

    Directory of Open Access Journals (Sweden)

    Wei Song

    2014-10-01

    Full Text Available The intestine is a key organ for lipid uptake and distribution, and abnormal intestinal lipid metabolism is associated with obesity and hyperlipidemia. Although multiple regulatory gut hormones secreted from enteroendocrine cells (EEs regulate systemic lipid homeostasis, such as appetite control and energy balance in adipose tissue, their respective roles regarding lipid metabolism in the intestine are not well understood. We demonstrate that tachykinins (TKs, one of the most abundant secreted peptides expressed in midgut EEs, regulate intestinal lipid production and subsequently control systemic lipid homeostasis in Drosophila and that TKs repress lipogenesis in enterocytes (ECs associated with TKR99D receptor and protein kinase A (PKA signaling. Interestingly, nutrient deprivation enhances the production of TKs in the midgut. Finally, unlike the physiological roles of TKs produced from the brain, gut-derived TKs do not affect behavior, thus demonstrating that gut TK hormones specifically regulate intestinal lipid metabolism without affecting neuronal functions.

  18. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] ...

  19. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is between Strict Middling Color and Strict Middling Spotted Color. ...

  20. Physiology and genetics of metabolic flux control in Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Conway, T.

    1992-01-01

    This work seeks to understand the role of gene expression in regulating glycolytic enzyme synthesis in a balance that allows proper glycoltic flux control. The seven genes targeted for study in this laboratory have been cloned and sequenced, and molecular details of regulation have been investigated. Clear that glycolytic enzyme synthesis is coordinated to prevent the build up of toxic metabolic intermediates. The genetic mechanisms responsible for regulating balanced expression of the EntnerDoudoroff and glycolytic genes in Z. mobilis are beginning to be understood. Several layers of genetic control, perhaps in a hierarchal arrangement act in concert to determine the relative abundance of the glycolytic enzymes. These genetic controls involve differential translational efficiency, highly conserved promoter sequences, transcription factors, differential mRNA stabilities, and nucleolytic mRNA processing. The serendipitous cloning of the glucose facilitator, glf, as a result of linkage to several other genes of interest will have a significant impact on the study of Z. mobilis metabolism. The glucose facilitator is being characterized in a genetically reconstituted system in E. coli. Molecular genetic studies indicate that the ratio of glf expression to that of glk, zmf, and edd is carefully regulated, and suggests a critical role in metabolic control. Regulation of glycolytic gene expression is now sufficiently well understood to allow use of the glycolytic genes as tools to manipulate specified enzyme levels for the purpose of analyzing metabolic flux control. The critical genes have been subcloned for stable expression in Z. mobilis and placed under control of a regulated promoter system involving the tac promoter, the lacI repressor, and gene induction in by IPTG. HPLC methods have been developed that allow quantitation of virtually all of the metabolic intermediates in the cell pool.

  1. Adherence to two methods of education and metabolic control in ...

    African Journals Online (AJOL)

    . VRG Herrera, HM Zerón, MRM Alcántara. Abstract. BACKGROUND: Education in diabetes optimizes metabolic control, prevents acute and chronic complications, and improves quality of life. Our main objective was to evaluate if a better ...

  2. metabolic control of type 2 diabetic patients commonly treated

    African Journals Online (AJOL)

    Kateee

    2003-04-01

    Apr 1, 2003 ... Objective: To assess metabolic control in type 2 diabetic patients predominantly treated with sulphonylurea drugs at ... method. Results: Of the 179 patients studied, 87% of male and 92% of female patients were treated ... patients of East Indian ethnic group had significantly higher prevalence rates of insulin.

  3. Metabolic control analysis of xylose catabolism in Aspergillus

    NARCIS (Netherlands)

    Prathumpai, W.; Gabelgaard, J.B.; Wanchanthuek, P.; Vondervoort, van de P.J.I.; Groot, de M.J.L.; McIntyre, M.; Nielsen, J.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out,

  4. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    Science.gov (United States)

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems

  5. Controlling cell-free metabolism through physiochemical perturbations.

    Science.gov (United States)

    Karim, Ashty S; Heggestad, Jacob T; Crowe, Samantha A; Jewett, Michael C

    2018-01-01

    Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of biosynthetic systems, we recently reported a new cell-free framework for pathway construction and testing. In this framework, multiple crude-cell extracts are selectively enriched with individual pathway enzymes, which are then mixed to construct full biosynthetic pathways on the time scale of a day. This rapid approach to building pathways aids in the study of metabolic pathway performance by providing a unique freedom of design to modify and control biological systems for both fundamental and applied biotechnology. The goal of this work was to demonstrate the ability to probe biosynthetic pathway performance in our cell-free framework by perturbing physiochemical conditions, using n-butanol synthesis as a model. We carried out three unique case studies. First, we demonstrated the power of our cell-free approach to maximize biosynthesis yields by mapping physiochemical landscapes using a robotic liquid-handler. This allowed us to determine that NAD and CoA are the most important factors that govern cell-free n-butanol metabolism. Second, we compared metabolic profile differences between two different approaches for building pathways from enriched lysates, heterologous expression and cell-free protein synthesis. We discover that phosphate from PEP utilization, along with other physiochemical reagents, during cell-free protein synthesis-coupled, crude-lysate metabolic system operation inhibits optimal cell-free n-butanol metabolism. Third, we show that non-phosphorylated secondary energy substrates can be used to fuel cell-free protein synthesis and n-butanol biosynthesis. Taken together, our work highlights the ease of using cell-free systems to explore

  6. Noise propagation in synthetic gene circuits for metabolic control.

    Science.gov (United States)

    Oyarzún, Diego A; Lugagne, Jean-Baptiste; Stan, Guy-Bart V

    2015-02-20

    Dynamic control of enzyme expression can be an effective strategy to engineer robust metabolic pathways. It allows a synthetic pathway to self-regulate in response to changes in bioreactor conditions or the metabolic state of the host. The implementation of this regulatory strategy requires gene circuits that couple metabolic signals with the genetic machinery, which is known to be noisy and one of the main sources of cell-to-cell variability. One of the unexplored design aspects of these circuits is the propagation of biochemical noise between enzyme expression and pathway activity. In this article, we quantify the impact of a synthetic feedback circuit on the noise in a metabolic product in order to propose design criteria to reduce cell-to-cell variability. We consider a stochastic model of a catalytic reaction under negative feedback from the product to enzyme expression. On the basis of stochastic simulations and analysis, we show that, depending on the repression strength and promoter strength, transcriptional repression of enzyme expression can amplify or attenuate the noise in the number of product molecules. We obtain analytic estimates for the metabolic noise as a function of the model parameters and show that noise amplification/attenuation is a structural property of the model. We derive an analytic condition on the parameters that lead to attenuation of metabolic noise, suggesting that a higher promoter sensitivity enlarges the parameter design space. In the theoretical case of a switch-like promoter, our analysis reveals that the ability of the circuit to attenuate noise is subject to a trade-off between the repression strength and promoter strength.

  7. Application of a controllable degron strategy for metabolic engineering

    DEFF Research Database (Denmark)

    Knuf, Christoph; Maury, Jerome; Jacobsen, Simo Abdessamad

    2014-01-01

    In numerous cases of metabolic engineering, metabolite pools have to be increased in order to obtain flux into heterologous pathways. A simple tool for this would be the deletion of genes that would practically lead to a block of the natural pathway, so that the carbon can flow into the heterolog......In numerous cases of metabolic engineering, metabolite pools have to be increased in order to obtain flux into heterologous pathways. A simple tool for this would be the deletion of genes that would practically lead to a block of the natural pathway, so that the carbon can flow......, as the existing enzyme will still be active. We present a strategy for down-regulation that acts on the protein level and which can therefore be controlled in a more precise manner than the hitherto reported strategies. As a case study we show the action of the degron strategy for controlling the pools...

  8. Geometrical optimization for strictly localized structures

    Science.gov (United States)

    Mo, Yirong

    2003-07-01

    Recently we proposed the block localized wavefunction (BLW) approach which takes the advantages of valence bond theory and molecular orbital theory and defines the wavefunctions for resonance structures based on the assumption that all electrons and orbitals are partitioned into a few subgroups. In this work, we implement the geometrical optimization of the BLW method based on the algorithm proposed by Gianinetti and coworkers. Thus, we can study the conjugation effect on not only the molecular stability, but also the molecular geometry. With this capability, the π conjugation effect in trans-polyenes C2nH2n+2 (n=2-5) as well as in formamide and its analogs are studied by optimizing their delocalized and strictly localized forms with the 6-31G(d) and 6-311+G(d,p) basis sets. Although it has been well presumed that the π resonance shortens the single bonds and lengthens the double bonds with the delocalization of π electrons across the whole line in polyenes, our optimization of the strictly localized structures quantitatively shows that when the conjugation effect is "turned off," the double bond lengths will be identical to the CC bond length in ethylene and the single Csp2-Csp2 bond length will be about 1.513-1.517 Å. In agreement with the classical Hückel theory, the resonance energies in polyenes are approximately in proportion to the number of double bonds. Similarly, resonance is responsible not only for the planarity of formamide, thioformamide, and selenoformamide, but also for the lengthening of the CX (X=O,S,Se) double bond and the shortening of the CN bonds. Although it is assumed that the CX bond polarization decreases in the order of O>S>Se, the π electronic delocalization increases in the opposite order, i.e., formamide

  9. SELF-PERCEIVED HEALTH AND METABOLIC CONTROL IN ...

    African Journals Online (AJOL)

    hi-tech

    2000-12-12

    Dec 12, 2000 ... their self-perceived health in social and emotional functioning and they had an improved metabolic control over the ... mean age at diagnosis was 40.3±12.5 years and mean diabetes duration was 5.3±6.0 years .... When calculating the self- perceived health over the two-year period the effect size was used.

  10. From Regular to Strictly Locally Testable Languages

    Directory of Open Access Journals (Sweden)

    Stefano Crespi Reghizzi

    2011-08-01

    Full Text Available A classical result (often credited to Y. Medvedev states that every language recognized by a finite automaton is the homomorphic image of a local language, over a much larger so-called local alphabet, namely the alphabet of the edges of the transition graph. Local languages are characterized by the value k=2 of the sliding window width in the McNaughton and Papert's infinite hierarchy of strictly locally testable languages (k-slt. We generalize Medvedev's result in a new direction, studying the relationship between the width and the alphabetic ratio telling how much larger the local alphabet is. We prove that every regular language is the image of a k-slt language on an alphabet of doubled size, where the width logarithmically depends on the automaton size, and we exhibit regular languages for which any smaller alphabetic ratio is insufficient. More generally, we express the trade-off between alphabetic ratio and width as a mathematical relation derived from a careful encoding of the states. At last we mention some directions for theoretical development and application.

  11. 7 CFR 28.404 - Strict Low Middling Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Low Middling Color. 28.404 Section 28.404... for the Color Grade of American Upland Cotton § 28.404 Strict Low Middling Color. Strict Low Middling Color is color which is within the range represented by a set of samples in the custody of the United...

  12. 7 CFR 28.406 - Strict Good Ordinary Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Good Ordinary Color. 28.406 Section 28.406... for the Color Grade of American Upland Cotton § 28.406 Strict Good Ordinary Color. Strict Good Ordinary Color is color which is within the range represented by a set of samples in the custody of the...

  13. 7 CFR 28.402 - Strict Middling Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Color. 28.402 Section 28.402... for the Color Grade of American Upland Cotton § 28.402 Strict Middling Color. Strict Middling Color is color which is within the range represented by a set of samples in the custody of the United States...

  14. [Review on periodontal disease and metabolic control of diabetes mellitus].

    Science.gov (United States)

    Steffens, João Paulo; Glaci Reinke, Stella Maria; Angel Muñoz, Miguel; Santos, Fábio André dos; Luiz Pilatti, Gibson

    2010-09-01

    There may be an interaction between periodontal disease and some systemic diseases such as diabetes mellitus. The objective of this review was to verify, by means of a review of clinical trials, if there is a positive association between periodontal disease and the glycemic control of type 2 diabetes mellitus (DM-2) patients. Eleven articles that fi t the study criteria were revised. It was concluded that periodontal disease may influence the metabolic control of DM-2. Additional studies with larger sample sizes and longer follow up are necessary for a better clarification of this issue.

  15. Sense and Nonsense in Metabolic Control of Reproduction

    Directory of Open Access Journals (Sweden)

    Jill eSchneider

    2012-03-01

    Full Text Available An exciting synergistic interaction occurs among researchers working at the interface of reproductive biology and energy homeostasis. Reproductive biologists benefit from the theories, experimental designs, and methodologies used by experts on energy homeostasis, and bring context and meaning to the study of energy homeostasis. There is a growing recognition that identification of candidate genes for obesity is little more than meaningless reductionism unless those genes and their expression are placed in a developmental, environmental, and evolutionary context. Reproductive biology provides this context because 1 metabolic energy is the most important factor that controls reproductive success, 2 gonadal hormones affect energy intake, storage and expenditure, 3 reproductive hormone secretion changes during development, and 4 reproductive success is key to evolutionary adaptation, the process that most likely molded the mechanisms that control energy balance. It is likely that by viewing energy intake, storage, and expenditure in the context of reproductive success, we will gain insight into human obesity, eating disorders, diabetes, and other pathologies related to fuel homeostasis.This review emphasizes the metabolic hypothesis: A sensory system monitors the availability of oxidizable metabolic fuels and orchestrates behavioral motivation to optimize reproductive success in environments where energy availability fluctuates or is unpredictable.

  16. Control of lipid metabolism by tachykinin in Drosophila.

    Science.gov (United States)

    Song, Wei; Veenstra, Jan A; Perrimon, Norbert

    2014-10-09

    The intestine is a key organ for lipid uptake and distribution, and abnormal intestinal lipid metabolism is associated with obesity and hyperlipidemia. Although multiple regulatory gut hormones secreted from enteroendocrine cells (EEs) regulate systemic lipid homeostasis, such as appetite control and energy balance in adipose tissue, their respective roles regarding lipid metabolism in the intestine are not well understood. We demonstrate that tachykinins (TKs), one of the most abundant secreted peptides expressed in midgut EEs, regulate intestinal lipid production and subsequently control systemic lipid homeostasis in Drosophila and that TKs repress lipogenesis in enterocytes (ECs) associated with TKR99D receptor and protein kinase A (PKA) signaling. Interestingly, nutrient deprivation enhances the production of TKs in the midgut. Finally, unlike the physiological roles of TKs produced from the brain, gut-derived TKs do not affect behavior, thus demonstrating that gut TK hormones specifically regulate intestinal lipid metabolism without affecting neuronal functions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Autonomous mathematical models: constructing theories of metabolic control.

    Science.gov (United States)

    Donaghy, Josephine

    2013-01-01

    This paper considers how the relationship between mathematical models and theories in biology may change over time, on the basis of a historical analysis of the development of a mathematical model of metabolism, metabolic control analysis, and its relationship to theories of metabolic control. I argue that one can distinguish two ways of characterising the relationship between models and theories, depending on the stage of model and/or theory development that one is considering: partial independence and autonomy. Partial independence describes a model's relationship with existing theory, thus referring to relationships that have already been established between model and theory during model construction. By contrast, autonomy is a feature of relationships which may become established between model and theory in the future, and is expressed by a model's open ended role in constructing emerging theory. These characteristics have often been conflated by existing philosophical accounts, partly because they can only be identified and analysed when adopting a historical perspective on scientific research. Adopting a clear distinction between partial independence and autonomy improves philosophical insight into the changing relationship between models and theories.

  18. Mammalian evolution may not be strictly bifurcating.

    Science.gov (United States)

    Hallström, Björn M; Janke, Axel

    2010-12-01

    The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1-4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100-80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation.

  19. Metabolic control analysis of xylose catabolism in Aspergillus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Gabelgaard, J.B.; Wanchanthuek, P.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out......, and flux control was shown to be dependent on the metabolite levels. Due to thermodynamic constraints, flux control may reside at the first step in the pathway, i.e., at the xylose reductase, even when the intracellular xylitol concentration is high. On the basis of the kinetic analysis, the general dogma...... specifying that flux control often resides at the step following an intermediate present at high concentrations was, therefore, shown not to hold. The intracellular xylitol concentration was measured in batch cultivations of two different strains of Aspergillus niger and two different strains of Aspergillus...

  20. Metabolic control analysis of xylose catabolism in Aspergillus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Gabelgaard, J.B.; Wanchanthuek, P.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out...... specifying that flux control often resides at the step following an intermediate present at high concentrations was, therefore, shown not to hold. The intracellular xylitol concentration was measured in batch cultivations of two different strains of Aspergillus niger and two different strains of Aspergillus...... nidulans grown on media containing xylose, and a concentration up to 30 mM was found. Applying MCA showed that the first polyol dehydrogenase (XDH) in the catabolic pathway of xylose exerted the main flux control in the two strains of A. nidulans and A. niger NW324, but the flux control was exerted mainly...

  1. A computer program for the algebraic determination of control coefficients in Metabolic Control Analysis.

    OpenAIRE

    Thomas, S; Fell, D A

    1993-01-01

    A computer program (MetaCon) is described for the evaluation of flux control, concentration control and branch-point distribution control coefficients of a metabolic pathway. Requiring only the reaction scheme as input, the program produces algebraic expressions for the control coefficients in terms of elasticity coefficients, metabolite concentrations and pathway fluxes. Any of these variables can be substituted by numeric or simple algebraic expressions; the expressions will then be automat...

  2. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    that combined blockade of NOS and PGI2, and NOS and cytochrome P450, both attenuate exercise-induced hyperemia in humans. Combined vasodilator blockade studies offer the potential to uncover important interactions and compensatory vasodilator responses. The signaling pathways that link metabolic events evoked...... to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...... by muscle contraction to vasodilatory signals in the local vascular bed remains an important area of study....

  3. First-year metabolic control guidelines and their impact on future metabolic control and neurocognitive functioning in children with PKU.

    Science.gov (United States)

    de la Parra, Alicia; García, María Ignacia; Hamilton, Valerie; Arias, Carolina; Cabello, Juan Francisco; Cornejo, Verónica

    2017-12-01

    There is a consensus on the importance of early and life-long treatment for PKU patients. Still, differences exist on target blood phenylalanine (Phe) concentrations for children with PKU in different countries and treatment centers. For the first time, long-term metabolic control and child development and cognitive functioning is compared between children with mean phenylalanine concentrations under 240 μmol/L (group A), between 240 and 360 μmol/L (group B) or over 360 μmol/L (group C) during their first year of life. 70 patients diagnosed with PKU through neonatal screening with Phe > 900 μmol/L, were divided into 3 groups: A, B and C, according to mean Phe concentrations and standard deviation (SD). Metabolic control during childhood, psychomotor development and IQ were compared. In group A, Phe was maintained within the recommended range until 6 years of age, in Group B, until 3 years of age, and in group C, Phe was always over the recommended range. No significant differences were found between the three groups in mental development index (MDI) and motor development index (PDI) scores at 12, 24, and 30 months of age, but group C had the lowest scores on MDI at all age periods. At preschool and school age, IQ was higher in group A compared to group C. Results show that mean blood Phe concentrations between 120 and 240 μmol/L during first year of life have a positive impact in metabolic control and cognitive functioning during childhood.

  4. Pyruvate Kinase Triggers a Metabolic Feedback Loop that Controls Redox Metabolism in Respiring Cells

    NARCIS (Netherlands)

    Grüning, N.M.; Rinnerthaler, M.; Bluemlein, K.; Mulleder, M.; Wamelink, M.M.C.; Lehrach, H.; Jakobs, C.A.J.M.; Breitenbach, M.; Ralser, M.

    2011-01-01

    In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in yeast, we discovered that central metabolism is self-adapting to synchronize redox metabolism

  5. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    DEFF Research Database (Denmark)

    de Groot, M.J.L.; Prathumpai, Wai; Visser, J.

    2005-01-01

    A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography, and thei......A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography......-arabinose, a level that resulted in realistic intermediate concentrations in the model, flux control coefficients for L-arabinose reductase, L-arabitol dehydrogenase and L-xylulose reductase were 0.68, 0.17 and 0.14, respectively. The analysis can be used as a guide to identify targets for metabolic engineering...

  6. Modal Inclusion Logic: Being Lax is Simpler than Being Strict

    DEFF Research Database (Denmark)

    Hella, Lauri; Kuusisto, Antti Johannes; Meier, Arne

    2015-01-01

    We investigate the computational complexity of the satisfiability problem of modal inclusion logic. We distinguish two variants of the problem: one for strict and another one for lax semantics. The complexity of the lax version turns out to be complete for EXPTIME, whereas with strict semantics...

  7. 7 CFR 28.431 - Strict Middling Tinged Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Tinged Color. 28.431 Section 28.431 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Tinged Color is color which is better than Middling Tinged Color. ...

  8. 7 CFR 28.433 - Strict Low Middling Tinged Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Low Middling Tinged Color. 28.433 Section 28.433 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Tinged Color. Strict Low Middling Tinged Color is color which is within the range represented by a set of...

  9. 7 CFR 28.424 - Strict Low Middling Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Low Middling Spotted Color. 28.424 Section 28.424 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Low Middling Spotted Color is color which is within the range represented by a set...

  10. 7 CFR 28.426 - Strict Good Ordinary Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Good Ordinary Spotted Color. 28.426 Section 28.426 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Good Ordinary Spotted Color is color which is within the range represented by a set...

  11. 7 CFR 28.422 - Strict Middling Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Spotted Color. 28.422 Section 28.422 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Spotted Color is color which is within the range represented by a set of samples...

  12. Strictly-regular number system and data structures

    DEFF Research Database (Denmark)

    Elmasry, Amr Ahmed Abd Elmoneim; Jensen, Claus; Katajainen, Jyrki

    2010-01-01

    We introduce a new number system that we call the strictly-regular system, which efficiently supports the operations: digit-increment, digit-decrement, cut, concatenate, and add. Compared to other number systems, the strictly-regular system has distinguishable properties. It is superior to the re...

  13. Eat, breathe, ROS: controlling stem cell fate through metabolism.

    Science.gov (United States)

    Kubli, Dieter A; Sussman, Mark A

    2017-05-01

    Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered: Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary: The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes.

  14. A computer program for the algebraic determination of control coefficients in Metabolic Control Analysis.

    Science.gov (United States)

    Thomas, S; Fell, D A

    1993-06-01

    A computer program (MetaCon) is described for the evaluation of flux control, concentration control and branch-point distribution control coefficients of a metabolic pathway. Requiring only the reaction scheme as input, the program produces algebraic expressions for the control coefficients in terms of elasticity coefficients, metabolite concentrations and pathway fluxes. Any of these variables can be substituted by numeric or simple algebraic expressions; the expressions will then be automatically rearranged in terms of the remaining unknown variables. When all variables have been substituted, numeric values will be obtained for the control coefficients. The program is a computerized implementation of the matrix method for the determination of control coefficients. The features of MetaCon are compared with those of other programs available to workers in Metabolic Control Analysis. Potential benefits of, and methods of using, MetaCon are discussed. The mathematical background and validity of the matrix method rules are discussed, and the algorithm used by MetaCon is described. The matrix method is shown to be a specific case of a previously described general formalism for calculating control coefficients.

  15. Strict finitism and the logic of mathematical applications

    CERN Document Server

    Ye, Feng

    2011-01-01

    Exploring the logic behind applied mathematics to the physical world, this volume illustrates how radical naturalism, nominalism and strict finitism can account for the applications of classical mathematics in current theories about natural phenomena.

  16. Strict monotonicity and unique continuation of the biharmonic operator

    Directory of Open Access Journals (Sweden)

    Najib Tsouli

    2012-01-01

    Full Text Available In this paper, we will show that the strict monotonicity of the eigenvalues of the biharmonic operator holds if and only if some unique continuation property is satisfied by the corresponding eigenfunctions.

  17. Infection homeostasis: implications for therapeutic and immune programming of metabolism in controlling infection.

    Science.gov (United States)

    Kotzamanis, Konstantinos; Angulo, Ana; Ghazal, Peter

    2015-06-01

    Homeostasis underpins at a systems level the regulatory control of immunity and metabolism. While physiologically these systems are often viewed as independent, there is increasing evidence showing a tight coupling between immune and metabolic functions. Critically upon infection, the homeostatic regulation for both immune and metabolic pathways is altered yet these changes are often investigated in isolation. Here, we summarise our current understanding of these processes in the context of a clinically relevant pathogen, cytomegalovirus. We synthesise from the literature an integrative view of a coupled immune-metabolic infection process, centred on sugar and lipid metabolism. We put forward the notion that understanding immune control of key metabolic enzymatic steps in infection will promote the future development of novel therapeutic modalities based on metabolic modifiers that either enhance protection or inhibit infection.

  18. Two examples of non strictly convex large deviations

    OpenAIRE

    De Marco, Stefano; Jacquier, Antoine; Roome, Patrick

    2016-01-01

    We present two examples of a large deviations principle where the rate function is not strictly convex. This is motivated by a model used in mathematical finance (the Heston model), and adds a new item to the zoology of non strictly convex large deviations. For one of these examples, we show that the rate function of the Cramer-type of large deviations coincides with that of the Freidlin-Wentzell when contraction principles are applied.

  19. Strictly contractive quantum channels and physically realizable quantum computers

    International Nuclear Information System (INIS)

    Raginsky, Maxim

    2002-01-01

    We study the robustness of quantum computers under the influence of errors modeled by strictly contractive channels. A channel T is defined to be strictly contractive if, for any pair of density operators ρ, σ in its domain, parallel Tρ-Tσ parallel 1 ≤k parallel ρ-σ parallel 1 for some 0≤k 1 denotes the trace norm). In other words, strictly contractive channels render the states of the computer less distinguishable in the sense of quantum detection theory. Starting from the premise that all experimental procedures can be carried out with finite precision, we argue that there exists a physically meaningful connection between strictly contractive channels and errors in physically realizable quantum computers. We show that, in the absence of error correction, sensitivity of quantum memories and computers to strictly contractive errors grows exponentially with storage time and computation time, respectively, and depends only on the constant k and the measurement precision. We prove that strict contractivity rules out the possibility of perfect error correction, and give an argument that approximate error correction, which covers previous work on fault-tolerant quantum computation as a special case, is possible

  20. Metabolism

    Science.gov (United States)

    ... functions: Anabolism (uh-NAB-uh-liz-um), or constructive metabolism, is all about building and storing. It ... in infants and young children. Hypothyroidism slows body processes and causes fatigue (tiredness), slow heart rate, excessive ...

  1. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  2. Strict versus liberal insulin therapy in the cardiac surgery patient: An evidence-based practice development, implementation and evaluation project.

    Science.gov (United States)

    Gordon, Jacqueline M; Lauver, Lori S; Buck, Harleah G

    2018-02-01

    Hyperglycemia post-cardiac surgery is associated with poor clinical outcomes. Recent studies suggest maintaining liberal glycemic control (liberal CII protocol. Retrospective review of 144 strict CII patient records and 147 liberal CII patient records. Mean blood glucose was 159.8mg/dL (liberal CII) compared to 143.3mg/dL (strict CII) (p≤0.001). No surgical site infections occurred in either group. Mean ICU length of stay was 4.5days (liberal) versus 4.4days (strict) (p=0.74). Two 30-day mortalities occurred for the liberal cohort compared to no deaths in the strict group (p=0.49). Hypoglycemia incidence within 24h after surgery was 0.1% (liberal) compared to 0.3% (strict) compared to (p=0.16). Use of a nurse managed liberal CII resulted in similar outcomes with fewer incidents of hypoglycemia. Copyright © 2017. Published by Elsevier Inc.

  3. The effect of 8 days of strict bed rest on the incretin effect in healthy volunteers

    DEFF Research Database (Denmark)

    Nielsen, Signe Tellerup; Harder-Lauridsen, Nina Majlund; Benatti, Fabiana Braga

    2016-01-01

    in the levels of GLP-1 and Glucagon. Bed rest led to a mean loss of 2.4 kg of fat-free mass, and induced insulin resistance evaluated by the Matsuda index, but did not affect the incretin effect (P = 0.6). In conclusion, 8 days of bed rest induces insulin resistance, but we did not see evidence of an associated......Bed rest and physical inactivity are the consequences of hospital admission for many patients. Physical inactivity induces changes in glucose metabolism, but its effect on the incretin effect, which is reduced in, e.g., Type 2 diabetes, is unknown. To investigate how 8 days of strict bed rest...... affects the incretin effect, 10 healthy nonobese male volunteers underwent 8 days of strict bed rest. Before and after the intervention, all volunteers underwent an oral glucose tolerance test (OGTT) followed by an intravenous glucose infusion (IVGI) on the following day to mimic the blood glucose profile...

  4. Detection of low numbers of microplastics in North Sea fish using strict quality assurance criteria

    NARCIS (Netherlands)

    Hermsen, E.; Pompe, R.; Besseling, E.; Koelmans, A.A.

    2017-01-01

    We investigated 400 individual fish of four North Sea species: Atlantic Herring, Sprat, Common Dab, and Whiting on ingestion of > 20 μm microplastic. Strict quality assurance criteria were followed in order to control contamination during the study. Two plastic particles were found in only 1 (a

  5. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells

    LENUS (Irish Health Repository)

    Burleigh, Susan C

    2011-10-18

    Abstract Background The glycosylation of recombinant proteins can be altered by a range of parameters including cellular metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that allows determination of these key processes associated with the control of N-linked glycosylation of recombinant proteins. Results Chinese hamster ovary cells (CHO) were cultivated in shake flasks at 0 mM glutamine and displayed a reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG) was also altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The intracellular content of UDP-GlcNAc was also reduced, which correlated with a decrease in sialylation and antennarity of the N-linked glycans attached to HCG. Conclusions The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and will be of benefit to the bioprocessing industry.

  6. Significance of family and peer support for metabolic control of type 1 diabetes in adolescents

    Directory of Open Access Journals (Sweden)

    Đurović Dušanka

    2009-01-01

    Full Text Available The aim of the paper was to explore the significance of family and peer support for metabolic control of Type 1 diabetes in adolescents. Metabolic control refers to maintenance of acceptable blood glucose level thus diminishing risk for chronic complications. It involves regular insulin shots, measuring blood glucose and keeping diary, as the daily based self-control. Regular visits to endocrinologist and screening for chronic complications are compulsory. The sample comprised 79 adolescents age 10-17 years with diagnose of Type 1 diabetes and properly treated at the institute. The sample was divided in two groups - with good (N=40 and poor (N=39 metabolic control. A criterium for good metabolic control was glycosilated hemoglobin less than 7,6%. Social support was measured by Social Support Scale consisting of two parts - the first for estimation of registered family support (based upon modified Perceived Social Support Family Scale and the second for estimation of registered friends' support (modified Perceived Social Support Friend Scale. Adolescents with good metabolic control referred statistically more significant social support in the family, unlike the group with poor metabolic control. Considering peer social support, there was no statistically significant difference. Positive family history for diabetes also appeared to be directly linked to good metabolic control.

  7. Convergence theorems for strictly hemi-contractive maps

    International Nuclear Information System (INIS)

    Chidume, C.E.; Osilike, M.O.

    1992-04-01

    It is proved that each of two well-known fixed point iteration methods (the Mann and the Ishikawa iteration methods) converges strongly to the fixed point of strictly hemi-contractive map in real Banach spaces with property (U, λ, m+1,m), λ is an element of R, m is an element of IN. The class of strictly hemi-contractive maps includes all strictly pseudo-contractive maps with nonempty fixed point sets; and Banach spaces with property (U, λ, m+1, m), λ is an element of R, m is an element of IN include the L p (or l p ) spaces, p≥2. Our theorems generalize important known results. (author). 22 refs

  8. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including...... the interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods...... for manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  9. High precision isotope measurements reveal poor control of copper metabolism in parkinsonism.

    Science.gov (United States)

    Larner, F; Sampson, B; Rehkämper, M; Weiss, D J; Dainty, J R; O'Riordan, S; Panetta, T; Bain, P G

    2013-02-01

    Disordered copper metabolism may be important in the aetiology of Parkinsonism, as caeruloplasmin is a key enzyme in handling oxidative stress and is involved in the synthesis pathway of dopamine. The human Cu metabolism of ten Parkinsonism patients was compared to ten healthy controls with the aid of a stable (65)Cu isotope tracer. The analyses of blood serum (65)Cu/(63)Cu ratios yielded individual isotopic profiles, which indicate that the Cu metabolism is less controlled in patients with Parkinsonism. Modelling based on both isotope tracer and total Cu concentrations suggests that 30% of the subjects affected by Parkinsonism have abnormally large Cu stores in tissues. To detect the small differences in Cu metabolism between Parkinsonism and controls, the analysis of stable isotope composition must be performed using multiple-collector inductively coupled plasma mass spectrometry and the associated sample preparation techniques. This pilot investigation supports full-scale medical studies into the Cu metabolism of those with Parkinsonism.

  10. Cerebral vascular control and metabolism in heat stress

    DEFF Research Database (Denmark)

    Bain, Anthony R; Nybo, Lars; Ainslie, Philip N

    2015-01-01

    This review provides an in-depth update on the impact of heat stress on cerebrovascular functioning. The regulation of cerebral temperature, blood flow, and metabolism are discussed. We further provide an overview of vascular permeability, the neurocognitive changes, and the key clinical implicat......This review provides an in-depth update on the impact of heat stress on cerebrovascular functioning. The regulation of cerebral temperature, blood flow, and metabolism are discussed. We further provide an overview of vascular permeability, the neurocognitive changes, and the key clinical...

  11. Metabolic Engineering of Chemical Defence Pathways in Plant Disease Control

    DEFF Research Database (Denmark)

    Rook, Frederik

    2016-01-01

    with antimicrobial properties for use in crop protection. It presents an overview of the metabolic engineering efforts made in the area of plant chemical defence. For in-depth information on the characteristics of a specific class of chemical defence compounds, the reader is referred to the specialized reviews......Plants produce a wide variety of specialized (or secondary) metabolites that function as chemical defence compounds and provide protection against microbial pathogens or herbivores. This chapter focuses on the metabolic engineering of biosynthetic pathways for plant chemical defence compounds...

  12. Feedback control of polyketide metabolism during tylosin production.

    Science.gov (United States)

    Butler, A R; Flint, S A; Cundliffe, E

    2001-04-01

    Tylosin is produced by Streptomyces fradiae via a combination of polyketide metabolism and synthesis of three deoxyhexose sugars, of which mycaminose is the first to be added to the polyketide aglycone, tylactone (protylonolide). Previously, disruption of the gene (tylMII) encoding attachment of mycaminose to the aglycone unexpectedly abolished accumulation of the latter, raising the possibility of a link between polyketide metabolism and deoxyhexose biosynthesis in S. fradiae. However, at that time, it was not possible to eliminate an alternative explanation, namely, that downstream effects on the expression of other genes, not involved in mycaminose metabolism, might have contributed to this phenomenon. Here, it is shown that disruption of any of the four genes (tylMI--III and tylB) specifically involved in mycaminose biosynthesis elicits a similar response, confirming that production of mycaminosyl-tylactone directly influences polyketide metabolism in S. fradiae. Under similar conditions, when mycaminose biosynthesis was specifically blocked by gene disruption, accumulation of tylactone could be restored by exogenous addition of glycosylated tylosin precursors. Moreover, certain other macrolides, not of the tylosin pathway, were also found to elicit qualitatively similar effects. Comparison of the structures of stimulatory macrolides will facilitate studies of the stimulatory mechanism.

  13. Self-Efficacy, Self-Care, and Metabolic Control in Persons with Type 2, Diet and Exercised Controlled Diabetes

    National Research Council Canada - National Science Library

    Randall, Lisa

    1998-01-01

    .... psychological determinants of self-care and metabolic control must be explored. Self-efficacy (Bandura, 1977) has demonstrated its importance in behavioral modification but has been minimally investigated in diabetes...

  14. Control of alanine metabolism in rat liver by transport processes or cellular metabolism.

    OpenAIRE

    Fafournoux, P; Rémésy, C; Demigné, C

    1983-01-01

    1. Factors governing hepatic utilization of alanine were studied in vivo and in vitro in rats adapted to increasing dietary protein. 2. Hepatic alanine utilization was enhanced 5-fold with a 90%-casein diet, compared with a 13%-casein diet. The increased uptake resulted from enhanced fractional extraction in the presence of high concentrations of alanine in the portal vein. 3. The increase in alanine metabolism on high-protein diets was associated with an increase in alanine aminotransferase ...

  15. Mann iteration with errors for strictly pseudo-contractive mappings ...

    African Journals Online (AJOL)

    It is well known that any fixed point of a Lipschitzian strictly pseudo-contractive self mapping of a nonempty closed convex and bounded subset K of a Banach space X is unique [6] and may be norm approximated by an iterative procedure. In this paper, we show that Mann iteration with errors can be used to approximate the ...

  16. Dominated operators, absolutely summing operators and the strict ...

    African Journals Online (AJOL)

    b(X;E) be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study dominated and absolutely summing operators T : Cb(X;E) → F. We derive that if X is a locally compact Hausdorff space and E ...

  17. Convergence of GAOR Iterative Method with Strictly Diagonally Dominant Matrices

    Directory of Open Access Journals (Sweden)

    Guangbin Wang

    2011-01-01

    Full Text Available We discuss the convergence of GAOR method for linear systems with strictly diagonally dominant matrices. Moreover, we show that our results are better than ones of Darvishi and Hessari (2006, Tian et al. (2008 by using three numerical examples.

  18. Runaway selection for cooperation and strict-and-severe punishment.

    Science.gov (United States)

    Nakamaru, Mayuko; Dieckmann, Ulf

    2009-03-07

    Punishing defectors is an important means of stabilizing cooperation. When levels of cooperation and punishment are continuous, individuals must employ suitable social standards for defining defectors and for determining punishment levels. Here we investigate the evolution of a social reaction norm, or psychological response function, for determining the punishment level meted out by individuals in dependence on the cooperation level exhibited by their neighbors in a lattice-structured population. We find that (1) cooperation and punishment can undergo runaway selection, with evolution towards enhanced cooperation and an ever more demanding punishment reaction norm mutually reinforcing each other; (2) this mechanism works best when punishment is strict, so that ambiguities in defining defectors are small; (3) when the strictness of punishment can adapt jointly with the threshold and severity of punishment, evolution favors the strict-and-severe punishment of individuals who offer slightly less than average cooperation levels; (4) strict-and-severe punishment naturally evolves and leads to much enhanced cooperation when cooperation without punishment would be weak and neither cooperation nor punishment are too costly; and (5) such evolutionary dynamics enable the bootstrapping of cooperation and punishment, through which defectors who never punish gradually and steadily evolve into cooperators who punish those they define as defectors.

  19. Dominance on Strict Triangular Norms and Mulholland Inequality

    Czech Academy of Sciences Publication Activity Database

    Petrík, Milan

    2018-01-01

    Roč. 335, 15 March (2018), s. 3-17 ISSN 0165-0114 R&D Projects: GA ČR GJ15-07724Y Institutional support: RVO:67985807 Keywords : dominance relation * Mulholland inequality * strict triangular norm * transitivity Subject RIV: BA - General Mathematics Impact factor: 2.718, year: 2016

  20. Control of Hepatic Glucose Metabolism by the Oral Hypoglycemic Sulfonylureas

    Science.gov (United States)

    1984-05-11

    observed were specific for the hypo- glycemic sulfonylureas and could not be extended to Include other para-substltuted sulfonamides. The inhibition...tolbutamide in glucose-free medium (Kaldor and Pogasta, 1960). In vivo measurements in dogs (Shambye and Tarding, 1957) and man (Recant and Fischer, 1957) of...accepted as the most appropriate model for the study of hepatic carbohydrate metabolism. 2) The evaluation of ̂ vitro potencies of the sulfonylureas in

  1. Strict follow-up programme including CT and (18) F-FDG-PET after curative surgery for colorectal cancer

    DEFF Research Database (Denmark)

    Sørensen, N F; Jensen, A B; Wille-Jørgensen, P

    2010-01-01

    Aim  The risk of local recurrence following curative surgery for colorectal cancer (CRC) is up to 50%. A rigorous follow-up program may increase survival. Guidelines on suitable methods for scheduled follow up examinations are needed. This study evaluates a strict follow-up program including...... supported a strict follow-up program following curative surgery for colorectal cancer. FDG-PET combined with CT should be included in control programs....

  2. Metabolic syndrome and atypical antipsychotics: Possibility of prediction and control.

    Science.gov (United States)

    Franch Pato, Clara M; Molina Rodríguez, Vicente; Franch Valverde, Juan I

    Schizophrenia and other psychotic disorders are associated with high morbidity and mortality, due to inherent health factors, genetic factors, and factors related to psychopharmacological treatment. Antipsychotics, like other drugs, have side-effects that can substantially affect the physical health of patients, with substantive differences in the side-effect profile and in the patients in which these side-effects occur. To understand and identify these risk groups could help to prevent the occurrence of the undesired effects. A prospective study, with 24 months follow-up, was conducted in order to analyse the physical health of severe mental patients under maintenance treatment with atypical antipsychotics, as well as to determine any predictive parameters at anthropometric and/or analytical level for good/bad outcome of metabolic syndrome in these patients. There were no significant changes in the physical and biochemical parameters individually analysed throughout the different visits. The baseline abdominal circumference (lambda Wilks P=.013) and baseline HDL-cholesterol levels (lambda Wilks P=.000) were the parameters that seem to be more relevant above the rest of the metabolic syndrome constituents diagnosis criteria as predictors in the long-term. In the search for predictive factors of metabolic syndrome, HDL-cholesterol and abdominal circumference at the time of inclusion were selected, as such that the worst the baseline results were, the higher probability of long-term improvement. Copyright © 2016 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Metabolic control of circulation. Effects of iodoacetate and fluoroacetate.

    Science.gov (United States)

    Liang, C S

    1977-01-01

    The circulatory effects of selective metabolic inhibition of glycolysis and of the tricarboxylic acid cycle by iodoacetate and fluoroacetate were studied in intact chloralose-anesthetized dogs. Pulmonary arterial blood pressure and vascular resistance increased after administration of both inhibitors, but neither systemic hemodynamics nor myocardial contractility changed significantly. Coronary blood flow did not change after iodoacetate administration but increased four- to five-fold after fluoroacetate. Administration of normal saline had no effect on any of the parameters. The changes in pulmonary arterial blood pressure and coronary blood flow after fluoroacetate were not mediated via the autonomic nerves or adrenergic neurohumors because they still occurred after autonomic nervous system inhibition. Neither myocardial oxygen consumption nor left ventricular work changed. A selective increase in myocardial blood flow also occurred in conscious dogs after fluoroacetate administration; hepatic artery flow was reduced, but other organ flows did not change significantly. These results indicate that pulmonary pressor and coronary dilator effects may be produced in intact dogs by selective metabolic blockade, in the absence of reduced oxygen supply or impairment in the electron transport system. These results also suggest that the increases in pulmonary arterial blood pressure, coronary blood flow, and cardiac output that occur during hypoxia probably are related to separate metabolic events in the tissue. PMID:874090

  4. Metabolic Control and Academic Achievement over Time among Adolescents with Type 1 Diabetes

    Science.gov (United States)

    Winnick, Joel B.; Berg, Cynthia A.; Wiebe, Deborah J.; Schaefer, Barbara A.; Lei, Pui-Wa; Butner, Jonathan E.

    2017-01-01

    The relation between metabolic control (HbA1c) and achievement (grade point average [GPA]) was examined over a period of 2.5 years (every 6 months) employing a dynamical systems approach that allowed for the examination of whether HbA1c was associated with change in subsequent GPA and vice versa. Metabolic control tends to deteriorate (i.e., with…

  5. "Slave" metabolites and enzymes. A rapid way of delineating metabolic control.

    NARCIS (Netherlands)

    Teusink, B.; Westerhoff, H.V.

    2000-01-01

    Although control of fluxes and concentrations tends to be distributed rather than confined to a single rate-limiting enzyme, the extent of control can differ widely between enzymes in a metabolic network. In some cases, there are enzymes that lack control completely. This paper identifies one

  6. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control

    Science.gov (United States)

    Xu, Peng; Li, Lingyun; Zhang, Fuming; Stephanopoulos, Gregory; Koffas, Mattheos

    2014-01-01

    Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA–derived compounds. PMID:25049420

  7. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    Science.gov (United States)

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  8. Controllability in cancer metabolic networks according to drug targets as driver nodes.

    Science.gov (United States)

    Asgari, Yazdan; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2013-01-01

    Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and relationships between the structure and function of biological networks have been widely studied in the past few decades. However dynamic and control features of complex networks have not been widely researched, in comparison to topological network features. In this study, we explore the relationship between network controllability, topological parameters, and network medicine (metabolic drug targets). Considering the assumption that targets of approved anticancer metabolic drugs are driver nodes (which control cancer metabolic networks), we have applied topological analysis to genome-scale metabolic models of 15 normal and corresponding cancer cell types. The results show that besides primary network parameters, more complex network metrics such as motifs and clusters may also be appropriate for controlling the systems providing the controllability relationship between topological parameters and drug targets. Consequently, this study reveals the possibilities of following a set of driver nodes in network clusters instead of considering them individually according to their centralities. This outcome suggests considering distributed control systems instead of nodal control for cancer metabolic networks, leading to a new strategy in the field of network medicine.

  9. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration.

    Science.gov (United States)

    Mauro, Claudio; Leow, Shi Chi; Anso, Elena; Rocha, Sonia; Thotakura, Anil K; Tornatore, Laura; Moretti, Marta; De Smaele, Enrico; Beg, Amer A; Tergaonkar, Vinay; Chandel, Navdeep S; Franzoso, Guido

    2011-08-28

    Cell proliferation is a metabolically demanding process. It requires active reprogramming of cellular bioenergetic pathways towards glucose metabolism to support anabolic growth. NF-κB/Rel transcription factors coordinate many of the signals that drive proliferation during immunity, inflammation and oncogenesis, but whether NF-κB regulates the metabolic reprogramming required for cell division during these processes is unknown. Here, we report that NF-κB organizes energy metabolism networks by controlling the balance between the utilization of glycolysis and mitochondrial respiration. NF-κB inhibition causes cellular reprogramming to aerobic glycolysis under basal conditions and induces necrosis on glucose starvation. The metabolic reorganization that results from NF-κB inhibition overcomes the requirement for tumour suppressor mutation in oncogenic transformation and impairs metabolic adaptation in cancer in vivo. This NF-κB-dependent metabolic pathway involves stimulation of oxidative phosphorylation through upregulation of mitochondrial synthesis of cytochrome c oxidase 2 (SCO2; ref. ). Our findings identify NF-κB as a physiological regulator of mitochondrial respiration and establish a role for NF-κB in metabolic adaptation in normal cells and cancer.

  10. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox

    DEFF Research Database (Denmark)

    Snoep, Jacky L.; Jensen, Peter Ruhdal; Groeneveld, Philip

    1994-01-01

    how, paradoxically, one can determine control of growth rate, of growth yield and of other fluxes in a chemostat. We develop metabolic control analysis for the chemostat. this analysis does not depend on the particular way in which specific growth rate varies with the concentration of the growth...

  11. Mammalian iron metabolism and its control by iron regulatory proteins☆

    Science.gov (United States)

    Anderson, Cole P.; Shen, Lacy; Eisenstein, Richard S.; Leibold, Elizabeth A.

    2013-01-01

    Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP–IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22610083

  12. Metabolic Control of Tobacco Pollination by Sugars and Invertases1

    Science.gov (United States)

    Goetz, Marc; Hirsche, Jörg; Bauerfeind, Martin Andreas; González, María-Cruz; Hyun, Tae Kyung; Eom, Seung Hee; Chriqui, Dominique; Engelke, Thomas; Großkinsky, Dominik K.; Roitsch, Thomas

    2017-01-01

    Pollination in flowering plants is initiated by germination of pollen grains on stigmas followed by fast growth of pollen tubes representing highly energy-consuming processes. The symplastic isolation of pollen grains and tubes requires import of Suc available in the apoplast. We show that the functional coupling of Suc cleavage by invertases and uptake of the released hexoses by monosaccharide transporters are critical for pollination in tobacco (Nicotiana tabacum). Transcript profiling, in situ hybridization, and immunolocalization of extracellular invertases and two monosaccharide transporters in vitro and in vivo support the functional coupling in supplying carbohydrates for pollen germination and tube growth evidenced by spatiotemporally coordinated expression. Detection of vacuolar invertases in maternal tissues by these approaches revealed metabolic cross talk between male and female tissues and supported the requirement for carbohydrate supply in transmitting tissue during pollination. Tissue-specific expression of an invertase inhibitor and addition of the chemical invertase inhibitor miglitol strongly reduced extracellular invertase activity and impaired pollen germination. Measurements of (competitive) uptake of labeled sugars identified two import pathways for exogenously available Suc into the germinating pollen operating in parallel: direct Suc uptake and via the hexoses after cleavage by extracellular invertase. Reduction of extracellular invertase activity in pollen decreases Suc uptake and severely compromises pollen germination. We further demonstrate that Glc as sole carbon source is sufficient for pollen germination, whereas Suc is supporting tube growth, revealing an important regulatory role of both the invertase substrate and products contributing to a potential metabolic and signaling-based multilayer regulation of pollination by carbohydrates. PMID:27923989

  13. Metabolic Control of Tobacco Pollination by Sugars and Invertases.

    Science.gov (United States)

    Goetz, Marc; Guivarćh, Anne; Hirsche, Jörg; Bauerfeind, Martin Andreas; González, María-Cruz; Hyun, Tae Kyung; Eom, Seung Hee; Chriqui, Dominique; Engelke, Thomas; Großkinsky, Dominik K; Roitsch, Thomas

    2017-02-01

    Pollination in flowering plants is initiated by germination of pollen grains on stigmas followed by fast growth of pollen tubes representing highly energy-consuming processes. The symplastic isolation of pollen grains and tubes requires import of Suc available in the apoplast. We show that the functional coupling of Suc cleavage by invertases and uptake of the released hexoses by monosaccharide transporters are critical for pollination in tobacco (Nicotiana tabacum). Transcript profiling, in situ hybridization, and immunolocalization of extracellular invertases and two monosaccharide transporters in vitro and in vivo support the functional coupling in supplying carbohydrates for pollen germination and tube growth evidenced by spatiotemporally coordinated expression. Detection of vacuolar invertases in maternal tissues by these approaches revealed metabolic cross talk between male and female tissues and supported the requirement for carbohydrate supply in transmitting tissue during pollination. Tissue-specific expression of an invertase inhibitor and addition of the chemical invertase inhibitor miglitol strongly reduced extracellular invertase activity and impaired pollen germination. Measurements of (competitive) uptake of labeled sugars identified two import pathways for exogenously available Suc into the germinating pollen operating in parallel: direct Suc uptake and via the hexoses after cleavage by extracellular invertase. Reduction of extracellular invertase activity in pollen decreases Suc uptake and severely compromises pollen germination. We further demonstrate that Glc as sole carbon source is sufficient for pollen germination, whereas Suc is supporting tube growth, revealing an important regulatory role of both the invertase substrate and products contributing to a potential metabolic and signaling-based multilayer regulation of pollination by carbohydrates. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Serum uric acid level as a determinant of the metabolic syndrome: A case control study.

    Science.gov (United States)

    Khichar, Satyendra; Choudhary, Shyama; Singh, Veer Bahadur; Tater, Priyanka; Arvinda, R V; Ujjawal, Vivek

    To determine whether elevations of uric acid levels are associated with the cluster of disorders described in metabolic syndrome and to evaluate whether hyperuricemia may be considered a component of this syndrome. One year case-control study was conducted in Bikaner, Rajasthan, India from January to December 2013. The study population consisted of 200 subjects, 100 with metabolic syndrome (case) and 100 without metabolic syndrome (control) aged between 18 and 80 years, attending OPD at PBM Hospital were studied. Controls were age and sex matched to the cases. Blood tests and all physical variables were examined using standard methods. Subjects were divided into 6 groups according to their possession of 0, 1, 2, 3, 4 or 5 components of the metabolic syndrome. Statistical analysis was done using ANOVA, linear regression analysis and multivariate linear regression model. Mean serum UA level was significantly associated with all components of metabolic syndrome (pmetabolic factors increased showing a highly significant trend (pmetabolic syndrome. The current multivariate regression analysis clearly infers that uric acid can be considered as a marker and potential modifier of metabolic syndrome. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  15. Detection of low numbers of microplastics in North Sea fish using strict quality assurance criteria.

    Science.gov (United States)

    Hermsen, Enya; Pompe, Renske; Besseling, Ellen; Koelmans, Albert A

    2017-09-15

    We investigated 400 individual fish of four North Sea species: Atlantic Herring, Sprat, Common Dab, and Whiting on ingestion of >20μm microplastic. Strict quality assurance criteria were followed in order to control contamination during the study. Two plastic particles were found in only 1 (a Sprat) out of 400 individuals (0.25%, with a 95% confidence interval of 0.09-1.1%). The particles were identified to consist of polymethylmethacrylate (PMMA) through FTIR spectroscopy. No contamination occurred during the study, showing the method applied to be suitable for microplastic ingestion studies in biota. We discuss the low particle count for North Sea fish with those in other studies and suggest a relation between reported particle count and degree of quality assurance applied. Microplastic ingestion by fish may be less common than thought initially, with low incidence shown in this study, and other studies adhering to strict quality assurance criteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Metabolic effects of testosterone replacement therapy on hypogonadal men with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Xiang Cai

    2014-02-01

    Full Text Available This systematic review was aimed at assessing the metabolic effects of testosterone replacement therapy (TRT on hypogonadal men with type 2 diabetes mellitus (T2DM. A literature search was performed using the Cochrane Library, EMBASE and PubMed. Only randomized controlled trials (RCTs were included in the meta-analysis. Two reviewers retrieved articles and evaluated the study quality using an appropriate scoring method. Outcomes including glucose metabolism, lipid parameters, body fat and blood pressure were pooled using a random effects model and tested for heterogeneity. We used the Cochrane Collaboration's Review Manager 5.2 software for statistical analysis. Five RCTs including 351 participants with a mean follow-up time of 6.5-months were identified that strictly met our eligibility criteria. A meta-analysis of the extractable data showed that testosterone reduced fasting plasma glucose levels (mean difference (MD: −1.10; 95% confidence interval (CI (−1.88, −0.31, fasting serum insulin levels (MD: −2.73; 95% CI (−3.62, −1.84, HbA1c % (MD: −0.87; 95% CI (−1.32, −0.42 and triglyceride levels (MD: −0.35; 95% CI (−0.62, −0.07. The testosterone and control groups demonstrated no significant difference for other outcomes. In conclusion, we found that TRT can improve glycemic control and decrease triglyceride levels of hypogonadal men with T2DM. Considering the limited number of participants and the confounding factors in our systematic review; additional large, well-designed RCTs are needed to address the metabolic effects of TRT and its long-term influence on hypogonadal men with T2DM.

  17. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Relaxation Methods for Strictly Convex Regularizations of Piecewise Linear Programs

    International Nuclear Information System (INIS)

    Kiwiel, K. C.

    1998-01-01

    We give an algorithm for minimizing the sum of a strictly convex function and a convex piecewise linear function. It extends several dual coordinate ascent methods for large-scale linearly constrained problems that occur in entropy maximization, quadratic programming, and network flows. In particular, it may solve exact penalty versions of such (possibly inconsistent) problems, and subproblems of bundle methods for nondifferentiable optimization. It is simple, can exploit sparsity, and in certain cases is highly parallelizable. Its global convergence is established in the recent framework of B -functions (generalized Bregman functions)

  19. Diabetes in children and adolescents from ethnic minorities: barriers to education, treatment and good metabolic control

    DEFF Research Database (Denmark)

    Povlsen, Lene; Olsen, Birthe; Ladelund, Steen

    2005-01-01

    AIM: This paper reports an investigation to establish whether metabolic control is different in children and adolescents from ethnic minorities with type 1 diabetes compared with young Danish patients, and to learn about factors affecting their opportunities to achieve good metabolic control....... BACKGROUND: The prevalence of diabetes in children and adolescents from ethnic minorities in Denmark is increasing. Having a different ethnic background has frequently been described as a risk factor for poor metabolic control, but whether the risk is represented by the ethnicity and immigration itself...... or in combination with other factors is unclear. METHODS: The study included data (gender, age, diabetes duration HbA(1c), number of incidents of severe hypoglycaemia and ketoacidosis) from a national register including 919 Danish and 58 children and adolescents from ethnic minorities, questionnaires to all 20...

  20. Metabolic Control and Illness Perceptions in Adolescents with Type 1 Diabetes.

    Science.gov (United States)

    Wisting, Line; Bang, Lasse; Natvig, Henrik; Skrivarhaug, Torild; Dahl-Jørgensen, Knut; Lask, Bryan; Rø, Øyvind

    2016-01-01

    Disturbed eating behavior and psychosocial variables have been found to influence metabolic control, but little is known about how these variables interact or how they influence metabolic control, separately and combined. To explore associations between metabolic control (measured by HbA1c) and eating disorder psychopathology, coping strategies, illness perceptions, and insulin beliefs in adolescents with type 1 diabetes. A total of 105 patients (41.9% males) with type 1 diabetes (12-20 years) were interviewed with the Child Eating Disorder Examination. In addition, self-report psychosocial questionnaires were completed. Clinical data, including HbA1c, was obtained from the Norwegian Childhood Diabetes Registry. Significant gender differences were demonstrated. Among females, HbA1c correlated significantly with eating restriction (.29, p diabetes.

  1. Depression, disturbed eating behavior, and metabolic control in teenage girls with type 1 diabetes.

    Science.gov (United States)

    Colton, Patricia A; Olmsted, Marion P; Daneman, Denis; Rodin, Gary M

    2013-08-01

    Depression and disturbed eating behavior (DEB) are more common in girls with type 1 diabetes (T1D) than in the general population, and may negatively affect metabolic control. To examine the relationship among depression, DEB, and metabolic control in teenage girls with T1D. Metabolic control, body mass index and interview-ascertained symptoms of depression, and DEB were assessed twice in 98 girls with T1D, 9-14 y at baseline and 5 yr later at 14-18 yr. At year 5, 12.2% of girls reported current depressive symptoms, 49.0% reported current DEB, and 13.3% had a full or subthreshold eating disorder (ED). Eating Disorder Examination score was higher in girls with depression (1.4 ± 1.3 vs. 0.5 ± 0.7; p = 0.03), and 75.0% of girls with depression also endorsed DEB vs. 45.3% of girls without depression (p = 0.05). Girls with an ED were at high risk for depressive symptoms; 69.2% reported depressive symptoms vs. 22.0% of girls with no DEB (p = 0.004). Metabolic control was not significantly associated with either depression or DEB in this cohort. A regression model using baseline and year 5 depression and DEB to predict year 5 hemoglobin A1c was not significant overall. Depression and DEB were common and frequently concurrent in this cohort. It was encouraging that poor metabolic control was not yet strongly associated with either depression or DEB. Early detection and treatment may help to prevent the development of entrenched difficulties in this triad of mood, eating behavior, and metabolic control in a vulnerable population. © 2013 John Wiley & Sons A/S.

  2. Emerging roles of the intestine in control of cholesterol metabolism

    NARCIS (Netherlands)

    Kruit, Janine-K.; Groen, Albert K.; van Berkel, Theo J.; Kuipers, Folkert

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis, clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor

  3. Metabolic Control with Insulin Pump Therapy: Preliminary Experience

    Directory of Open Access Journals (Sweden)

    Shang-Ren Hsu

    2008-07-01

    Conclusion: Our preliminary experience demonstrated the effectiveness of insulin pump therapy for both type 1 and type 2 diabetic patients. The reduction in their HbA1C values was both statistically and clinically significant. This treatment should be considered for patients poorly controlled by subcutaneous insulin injection therapy.

  4. Non-strictly black body spectrum from the tunnelling mechanism

    International Nuclear Information System (INIS)

    Corda, Christian

    2013-01-01

    The tunnelling mechanism is widely used to explain Hawking radiation. However, in many cases the analysis used to obtain the Hawking temperature only involves comparing the emission probability for an outgoing particle with the Boltzmann factor. Banerjee and Majhi improved this approach by explicitly finding a black body spectrum associated with black holes. Their result, obtained using a reformulation of the tunnelling mechanism, is in contrast to that of Parikh and Wilczek, who found an emission probability that is compatible with a non-strictly thermal spectrum. Using the recently identified effective state for a black hole, we solve this contradiction via a slight modification of the analysis by Banerjee and Majhi. The final result is a non-strictly black body spectrum from the tunnelling mechanism. We also show that for an effective temperature, we can express the corresponding effective metric using Hawking’s periodicity arguments. Potential important implications for the black hole information puzzle are discussed. -- Highlights: •We review an important result by Banerjee and Majhi on the tunnelling mechanism in the framework of Hawking radiation. •This result is in contrast to another result reported by Parikh and Wilczek. •We introduce the effective state of a black hole. •We explain the contrast via a slight modification of the analysis by Banerjee and Majhi. •We discuss potential important implications for the black hole information puzzle

  5. Metabolic Control and Illness Perceptions in Adolescents with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Line Wisting

    2016-01-01

    Full Text Available Background. Disturbed eating behavior and psychosocial variables have been found to influence metabolic control, but little is known about how these variables interact or how they influence metabolic control, separately and combined. Objective. To explore associations between metabolic control (measured by HbA1c and eating disorder psychopathology, coping strategies, illness perceptions, and insulin beliefs in adolescents with type 1 diabetes. Methods. A total of 105 patients (41.9% males with type 1 diabetes (12–20 years were interviewed with the Child Eating Disorder Examination. In addition, self-report psychosocial questionnaires were completed. Clinical data, including HbA1c, was obtained from the Norwegian Childhood Diabetes Registry. Results. Significant gender differences were demonstrated. Among females, HbA1c correlated significantly with eating restriction (.29, p < .05, the illness perception dimensions consequences, personal control, coherence, and concern (ranging from .33 to .48, and the coping strategy ventilating negative feelings (−.26, p < .05. Illness perception personal control contributed significantly to HbA1c in a regression model, explaining 23% of the variance among females (β .48, p < .001. None of the variables were significantly associated with HbA1c among males. Conclusions. Illness perceptions appear to be important contributors to metabolic control in females, but not males, with type 1 diabetes.

  6. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism.

    Science.gov (United States)

    Goforth, Paulette B; Myers, Martin G

    The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.

  7. Periodontitis deteriorates metabolic control in type 2 diabetic Goto-Kakizaki rats

    DEFF Research Database (Denmark)

    Pontes Andersen, Carla C; Buschard, Karsten; Flyvbjerg, Allan

    2006-01-01

    BACKGROUND: Epidemiologic and clinical studies have indicated that periodontal disease (PD) may cause disturbances in general health and even affect diabetes. The aim of this study was to gain knowledge on the effect of PD on diabetes metabolic control in a new model for type 2 diabetes-associate......BACKGROUND: Epidemiologic and clinical studies have indicated that periodontal disease (PD) may cause disturbances in general health and even affect diabetes. The aim of this study was to gain knowledge on the effect of PD on diabetes metabolic control in a new model for type 2 diabetes...

  8. Diabetes in children and adolescents from ethnic minorities: barriers to education, treatment and good metabolic control

    DEFF Research Database (Denmark)

    Povlsen, Lene; Olsen, Birthe; Ladelund, Steen

    2005-01-01

    AIM: This paper reports an investigation to establish whether metabolic control is different in children and adolescents from ethnic minorities with type 1 diabetes compared with young Danish patients, and to learn about factors affecting their opportunities to achieve good metabolic control. BAC...... to improve methods, quality and knowledge should be encouraged in order to provide tailored support to members of individual ethnic groups. We recommend that the use of professional interpreters should become the gold standard in health care provision to all immigrant families....

  9. Prevention of complications in glycogen storage disease type Ia with optimization of metabolic control.

    Science.gov (United States)

    Dambska, M; Labrador, E B; Kuo, C L; Weinstein, D A

    2017-08-01

    Prior to 1971, type Ia glycogen storage disease was marked by life-threatening hypoglycemia, lactic acidosis, severe failure to thrive, and developmental delay. With the introduction of continuous feeds in the 1970s and cornstarch in the 1980s, the prognosis improved, but complications almost universally developed. Changes in the management of type Ia glycogen storage disease have resulted in improved metabolic control, and this manuscript reviews the increasing evidence that complications can be delayed or prevented with optimal metabolic control as previously was seen in diabetes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Role of Parenting Style in Achieving Metabolic Control in Adolescents With Type 1 Diabetes

    OpenAIRE

    Shorer, Maayan; David, Ravit; Schoenberg-Taz, Michal; Levavi-Lavi, Ifat; Phillip, Moshe; Meyerovitch, Joseph

    2011-01-01

    OBJECTIVE To examine the role of parenting style in achieving metabolic control and treatment adherence in adolescents with type 1 diabetes. RESEARCH DESIGN AND METHODS Parents of 100 adolescents with type 1 diabetes completed assessments of their parenting style and sense of helplessness. Parents and patients rated patient adherence to the treatment regimen. Glycemic control was evaluated by HbA1c values. RESULTS An authoritative paternal parenting style predicted better glycemic control and...

  11. Control of Hepatic Glucose Metabolism by Islet and Brain

    Science.gov (United States)

    Rojas, Jennifer M.; Schwartz, Michael W.

    2014-01-01

    Dysregulation of hepatic glucose uptake (HGU) and inability of insulin to suppress hepatic glucose production (HGP), both contribute to hyperglycemia in patients with type 2 diabetes (T2D). Growing evidence suggests that insulin can inhibit HGP not only through a direct effect on the liver, but also via a mechanism involving the brain. Yet the notion that insulin action in the brain plays a physiological role in the control of HGP continues to be controversial. Although studies in dogs suggest that the direct hepatic effect of insulin is sufficient to explain day-to-day control of HGP, a surprising outcome has been revealed by recent studies in mice investigating whether the direct hepatic action of insulin is necessary for normal HGP: when hepatic insulin signaling pathway was genetically disrupted, HGP was maintained normally even in the absence of direct input from insulin. Here we present evidence that points to a potentially important role of the brain in the physiological control of both HGU and HGP in response to input from insulin as well as other hormones and nutrients. PMID:25200294

  12. Role of glycolytic intermediate in regulation: Improving lycopene production in Escherichia coli by engineering metabolic control

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, W.R.; Liao, J.C.

    2001-06-01

    Metabolic engineering in the postgenomic era is expected to benefit from a full understanding of the biosynthetic capability of microorganisms as a result of the progress being made in bioinformatics and functional genomics. The immediate advantage of such information is to allow the rational design of novel pathways and the elimination of native reactions that are detrimental or unnecessary for the desired purpose. However, with the ability to manipulate metabolic pathways becoming more effective, metabolic engineering will need to face a new challenge: the reengineering of the regulatory hierarchy that controls gene expression in those pathways. In addition to constructing the genetic composition of a metabolic pathway, they propose that it will become just as important to consider the dynamics of pathways gene expression. It has been widely observed that high-level induction of a recombinant protein or pathway leads to growth retardation and reduced metabolic activity. These phenotypic characteristics result from the fact that the constant demands of production placed upon the cell interfere with its changing requirements for growth. They believe that this common situation in metabolic engineering can be alleviated by designing a dynamic controller that is able to sense the metabolic state of the cell and regulate the expression of the recombinant pathway accordingly. This approach, which is termed metabolic control engineering, involves redesigning the native regulatory circuits and applying them to the recombinant pathway. The general goal of such an effort will be to control the flux to the recombinant pathway adaptively according to the cell's metabolic state. The dynamically controlled recombinant pathway can potentially lead to enhanced production, minimized growth retardation, and reduced toxic by-product formation. The regulation of gene expression in response to the physiological state is also essential to the success of gene therapy. Here they

  13. Synthetic control of a fitness tradeoff in yeast nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    Lee Jack J

    2009-01-01

    Full Text Available Abstract Background Microbial communities are involved in many processes relevant to industrial and medical biotechnology, such as the formation of biofilms, lignocellulosic degradation, and hydrogen production. The manipulation of synthetic and natural microbial communities and their underlying ecological parameters, such as fitness, evolvability, and variation, is an increasingly important area of research for synthetic biology. Results Here, we explored how synthetic control of an endogenous circuit can be used to regulate a tradeoff between fitness in resource abundant and resource limited environments in a population of Saccharomyces cerevisiae. We found that noise in the expression of a key enzyme in ammonia assimilation, Gdh1p, mediated a tradeoff between growth in low nitrogen environments and stress resistance in high ammonia environments. We implemented synthetic control of an endogenous Gdh1p regulatory network to construct an engineered strain in which the fitness of the population was tunable in response to an exogenously-added small molecule across a range of ammonia environments. Conclusion The ability to tune fitness and biological tradeoffs will be important components of future efforts to engineer microbial communities.

  14. [Metabolic control in the critically ill patient an update: hyperglycemia, glucose variability hypoglycemia and relative hypoglycemia].

    Science.gov (United States)

    Pérez-Calatayud, Ángel Augusto; Guillén-Vidaña, Ariadna; Fraire-Félix, Irving Santiago; Anica-Malagón, Eduardo Daniel; Briones Garduño, Jesús Carlos; Carrillo-Esper, Raúl

    Metabolic changes of glucose in critically ill patients increase morbidity and mortality. The appropriate level of blood glucose has not been established so far and should be adjusted for different populations. However concepts such as glucose variability and relative hypoglycemia of critically ill patients are concepts that are changing management methods and achieving closer monitoring. The purpose of this review is to present new data about the management and metabolic control of patients in critical areas. Currently glucose can no longer be regarded as an innocent element in critical patients; both hyperglycemia and hypoglycemia increase morbidity and mortality of patients. Protocols and better instruments for continuous measurement are necessary to achieve the metabolic control of our patients. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  15. A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis

    Science.gov (United States)

    Pedrolli, Danielle Biscaro; Kühm, Christian; Sévin, Daniel C.; Vockenhuber, Michael P.; Sauer, Uwe; Suess, Beatrix; Mack, Matthias

    2015-01-01

    Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for biosynthesis and/or transport of riboflavin (rib genes). Cytoplasmic riboflavin is rapidly and almost completely converted to FMN by flavokinases. When cytoplasmic levels of FMN are sufficient (“high levels”), FMN binding to FMN riboswitches leads to a reduction of rib gene expression. We report here that the protein RibR counteracts the FMN-induced “turn-off” activities of both FMN riboswitches in Bacillus subtilis, allowing rib gene expression even in the presence of high levels of FMN. The reason for this secondary metabolic control by RibR is to couple sulfur metabolism with riboflavin metabolism. PMID:26494285

  16. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion

    Science.gov (United States)

    Mitch, William E.; Sands, Jeff M.

    2015-01-01

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. PMID:25078422

  17. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    DEFF Research Database (Denmark)

    de Groot, M.J.L.; Prathumpai, Wai; Visser, J.

    2005-01-01

    A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography, and thei......A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography...... at the enzyme following the intermediate with the highest concentration, L-arabitol, but is distributed over the first three steps in the pathway, preceding and following L-arabitol. Flux control appeared to be strongly dependent on the intracellular L-arabinose concentration. At 5 mM intracellular L...

  18. Effects of a strict cutoff on Quantum Field Theory

    International Nuclear Information System (INIS)

    Sturnfield, J.F.

    1987-01-01

    Standard Quantum Field Theory has a number of integrals which are infinite. Although these are eliminated for some cases by renormalization, this aspect of the theory is not fully satisfactory. A number of theories with fundamental lengths have been introduced as alternatives and it would be useful to be able to distinguish between them. In particular, the effects that a strict cutoff would have on Quantum Field Theory is studied. It is noted that care must be taken in the method used to apply a strict cutoff. This lead to considering a theory where the cutoffs are defined by restricting each internal line. This theory is only piece-wise analytic. The resulting scattering matrix is frame dependent, yet the theory still satisfies the special relativity view that all frames are subjectively identical. The renormalization of this theory is finite. The change in mass from the electron self-energy will be a spinor operator. The main distinctions of this theory from standard theory will occur at super high energies. New poles and resonances which arise from new endpoint singularities will be found. The locations of these singularities will be frame dependent. Some of these singularities will correspond to creations or interactions of the normal particles with tachyons. It will be shown that for the one loop diagram, the form of the cutoff singularities are closely related to the standard singularities. When there is more than one loop, there can appear some new type of behavior. In particular, a cube root type of behavior in the two loop self-energy diagram will be found. Also the asymptotic behavior of the ladder diagram is studied

  19. Physiology and genetics of metabolic flux control in Zymomonas mobilis. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, T.

    1992-08-01

    This work seeks to understand the role of gene expression in regulating glycolytic enzyme synthesis in a balance that allows proper glycoltic flux control. The seven genes targeted for study in this laboratory have been cloned and sequenced, and molecular details of regulation have been investigated. Clear that glycolytic enzyme synthesis is coordinated to prevent the build up of toxic metabolic intermediates. The genetic mechanisms responsible for regulating balanced expression of the EntnerDoudoroff and glycolytic genes in Z. mobilis are beginning to be understood. Several layers of genetic control, perhaps in a hierarchal arrangement act in concert to determine the relative abundance of the glycolytic enzymes. These genetic controls involve differential translational efficiency, highly conserved promoter sequences, transcription factors, differential mRNA stabilities, and nucleolytic mRNA processing. The serendipitous cloning of the glucose facilitator, glf, as a result of linkage to several other genes of interest will have a significant impact on the study of Z. mobilis metabolism. The glucose facilitator is being characterized in a genetically reconstituted system in E. coli. Molecular genetic studies indicate that the ratio of glf expression to that of glk, zmf, and edd is carefully regulated, and suggests a critical role in metabolic control. Regulation of glycolytic gene expression is now sufficiently well understood to allow use of the glycolytic genes as tools to manipulate specified enzyme levels for the purpose of analyzing metabolic flux control. The critical genes have been subcloned for stable expression in Z. mobilis and placed under control of a regulated promoter system involving the tac promoter, the lacI repressor, and gene induction in by IPTG. HPLC methods have been developed that allow quantitation of virtually all of the metabolic intermediates in the cell pool.

  20. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.

    Science.gov (United States)

    Guo, Cathy A; Guo, Shaodong

    2017-06-01

    The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function. © 2017 Society for Endocrinology.

  1. Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli.

    Science.gov (United States)

    Wu, Hui; Tuli, Leepika; Bennett, George N; San, Ka-Yiu

    2015-03-01

    A novel strategy to finely control a large metabolic flux by using a "metabolic transistor" approach was established. In this approach a small change in the level or availability of an essential component for the process is controlled by adding a competitive reaction that affects a precursor or an intermediate in its biosynthetic pathway. The change of the basal level of the essential component, considered as a base current in a transistor, has a large effect on the flux through the major pathway. In this way, the fine-tuning of a large flux can be accomplished. The "metabolic transistor" strategy was applied to control electron transfer chain function by manipulation of the quinone synthesis pathway in Escherichia coli. The achievement of a theoretical yield of lactate production under aerobic conditions via this strategy upon manipulation of the biosynthetic pathway of the key participant, ubiquinone-8 (Q8), in an E. coli strain provides an in vivo, genetically tunable means to control the activity of the electron transfer chain and manipulate the production of reduced products while limiting consumption of oxygen to a defined amount. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Dietary intake and metabolic control of children aged six to ten with ...

    African Journals Online (AJOL)

    Objectives: The objective of this study was to assess the dietary intake and metabolic control of children with type 1 diabetes. Design: A cross-sectional observational study was carried out. Subjects: A total of 30 subjects whose ages ranged from six to ten years were included in the study. Setting: The study was conducted at ...

  3. Dietary intake and metabolic control of children aged six to ten with ...

    African Journals Online (AJOL)

    six to ten with type 1 diabetes mellitus in KwaZulu-Natal. Introduction. In South Africa the leading ... the ages of six and ten years. Abstract. Objectives: The objective of this study was to assess the dietary intake and metabolic control of children with type 1 diabetes. ... three snacks in between. Dietary intake. Dietary data were ...

  4. The effect of metabolic control on hemodynamics in short-term insulin-dependent diabetic patients

    DEFF Research Database (Denmark)

    Mathiesen, E R; Hilsted, J; Feldt-Rasmussen, B

    1985-01-01

    Hemodynamics variables (heart rate, arterial blood pressure, cardiac output, hepato-splanchnic blood flow, forearm blood flow, and plasma catecholamines) were measured during good (median blood glucose 4.7 mmol/L) and poor (median blood glucose 16.3 mmol/L) metabolic control in eight young, short...

  5. Cognitive Maturity, Stressful Events and Metabolic Control in Adolescents with Diabetes.

    Science.gov (United States)

    Ingersoll, Gary M.; And Others

    Management of insulin dependent diabetes mellitus (IDDM) is a complex task that requires the adolescent with IDDM recognize the interaction between diet, exercise, stress, emotions, and insulin dosage. With regularity, however, adolescents with IDDM are shown to be in less good metabolic control than younger children or young adults. The study…

  6. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock

    DEFF Research Database (Denmark)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.

    2014-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-s...

  7. SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion

    DEFF Research Database (Denmark)

    Anderson, Kristin A; Huynh, Frank K; Fisher-Wellman, Kelsey

    2017-01-01

    in leucine oxidation, and we show a primary role for SIRT4 in controlling this pathway in mice. Furthermore, we find that dysregulated leucine metabolism in SIRT4KO mice leads to elevated basal and stimulated insulin secretion, which progressively develops into glucose intolerance and insulin resistance...

  8. Subclinical peripheral neuropathy in type 1 diabetic adolescents and its relationship with metabolic control

    Directory of Open Access Journals (Sweden)

    Sajić Silvija

    2005-01-01

    Full Text Available Professional management of paediatric diabetology, according to consensus guidelines, involves the screening of micro-vascular complications at puberty. The subclinical form of peripheral neural dysfunction in diabetic teenagers is reported with a frequency of 50-88%, by different authors. The purpose of this study was to evaluate the frequency of subclinical distal neuropathy (DSMN in type 1 diabetic pediatric patients during the second decade of life, and its relationship with metabolic control. The Endocrinology Department and the Neurology-Physiology Laboratory of the Pediatric Clinic in Belgrade carried out a longitudinal follow-up study (lasting 18 months, beginning in November 2000 on a selection of patients with poor metabolic control. During routine clinical treatment, patients were evaluated using the electrophysiological diagnostic method on peripheral neural dysfunction, a subclinical form of neuropathy. Metabolic control was manifested through HbA1c levels, measured every 3 months, using ion-exchange chromatography. Finally, here is the data collected from the clinical follow-up investigation of 60 children, aged 13-19 (median 1S.S±2.2, with duration of diabetes from 2-16 years (median b.3±3.b, and on the following therapies: 43 CT-conventional and 17 IIT-intensive, and insulin dose/day, median 1.02 (0.6-2.1 U/kg. Detected DSMN parameters at the beginning and at the end of the study were also noted. DSMN frequency was positive, at 64% for HbA1c of 9.44; DSMN dysfunction was reversed in 5% of the patients, for HbA1c of 10.17; the worst result was the progression of DSMN at 6.7% for HbA1c of 10.52; 6.7% had negative DSMN, with improved metabolic control, for HbA1c of 8.4; 15% of the examinations were unfinished (+/*. ANOVA statistical analysis showed a significant statistical relationship between metabolic control (HbA1c levels and DSMN neuropathy (sig. 0.043, p<0.05. There was no significant relationship between the reversion of

  9. Combined Effects of Ezetimibe and Phytosterols on Cholesterol Metabolism: A Randomized, Controlled Feeding Study in Humans

    Science.gov (United States)

    Lin, Xiaobo; Racette, Susan B.; Lefevre, Michael; Ma, Lina; Spearie, Catherine Anderson; Steger-May, Karen; Ostlund, Richard E.

    2011-01-01

    Background Both ezetimibe and phytosterols inhibit cholesterol absorption. We tested the hypothesis that ezetimibe combined with phytosterols is more effective than ezetimibe alone in altering cholesterol metabolism. Methods and Results Twenty-one mildly hypercholesterolemic subjects completed a randomized, double-blind, placebo-controlled, triple crossover study. Each subject received a phytosterol-controlled diet plus (1) ezetimibe placebo + phytosterol placebo, (2) 10 mg ezetimibe/day + phytosterol placebo, and (3) 10 mg ezetimibe/day + 2.5 g phytosterols/day, for 3 weeks each. All meals were prepared in a metabolic kitchen. Primary outcomes were intestinal cholesterol absorption, fecal cholesterol excretion, and LDL cholesterol levels. The combined treatment resulted in significantly lower intestinal cholesterol absorption (598 mg/day, 95% CI 368 to 828) relative to control (2161 mg/day, 1112 to 3209) and ezetimibe alone (1054 mg/day, 546 to 1561, both P phytosterols averaged 129 (95% CI: 116 to 142), 108 (97 to 119), and 101 (90 to 112) mg/dL (P phytosterols to ezetimibe significantly enhanced the effects of ezetimibe on whole-body cholesterol metabolism and plasma LDL cholesterol. The large cumulative action of combined dietary and pharmacologic treatment on cholesterol metabolism emphasizes the potential importance of dietary phytosterols as adjunctive therapy for the treatment of hypercholesterolemia. PMID:21768544

  10. Equal metabolic control but superior caregiver treatment satisfaction with insulin aspart in preschool children.

    Science.gov (United States)

    Pańkowska, Ewa; Nazim, Joanna; Szalecki, Mieczysław; Urban, Miroslawa

    2010-05-01

    The aim of this study was to compare the metabolic outcomes, safety, and caregiver treatment satisfaction of basal-bolus multiple daily injection (MDI) therapy with mealtime insulin aspart (IAsp) or human insulin (HI) (both with basal NPH insulin), or of continuous subcutaneous infusion (CSII) with IAsp in preschool-age children with type 1 diabetes mellitus. After a 3-week HI MDI run-in, 61 children IAsp MDI or HI MDI or allocated to IAsp CSII for 26 weeks. Efficacy measures were glycated hemoglobin (A1C) and overall metabolic control at study end point. Safety evaluation included hypoglycemia and adverse events. Caregiver treatment satisfaction was evaluated using a World Health Organization questionnaire with 7-point scale answers. A1C level and overall metabolic control remained unchanged in all groups. Minor hypoglycemic episodes were equivalent between groups; few major hypoglycemic events occurred. Caregivers of children receiving IAsp CSII documented a greater increase in treatment satisfaction total scores (P = 0.04 vs. HI MDI and IAsp MDI group) and expressed satisfaction with the frequency of hypoglycemic events. After 26 weeks of treatment with IAsp CSII, IAsp MDI, or HI MDI, all metabolic control parameters remained unchanged and equivalent. Caregiver treatment satisfaction was higher in parents who chose IAsp CSII pump therapy for their children.

  11. Lifestyle Intervention on Metabolic Syndrome and its Impact on Quality of Life: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Patrícia Pozas Saboya

    Full Text Available Abstract Background: Lifestyle intervention programs can reduce the prevalence of metabolic syndrome (MetS and, therefore, reduce the risk for cardiac disease, one of the main public health problems nowadays. Objective: The aim of this study was to compare the effects of three types of approach for lifestyle change programs in the reduction of metabolic parameters, and to identify its impact on the quality of life (QOL of individuals with MetS. Methods: A randomized controlled trial included 72 individuals with MetS aged 30-59 years. Individuals were randomized into three groups of multidisciplinary intervention [Standard Intervention (SI - control group; Group Intervention (GI; and Individual Intervention (II] during 12 weeks. The primary outcome was change in the metabolic parameters, and secondarily, the improvement in QOL measures at three moments: baseline, 3 and 9 months. Results: Group and individual interventions resulted in a significant reduction in body mass index, waist circumference, systolic blood pressure at 3 months and the improvement of QOL, although it was significantly associated with the physical functioning domain. However, these changes did not remain 6 months after the end of intervention. Depression and anxiety were significantly associated with worse QOL, although they showed no effect on the response to intervention. Conclusion: Multidisciplinary intervention, especially in a group, might be an effective and economically feasible strategy in the control of metabolic parameters of MetS and improvement of QOL compared to SI, even in a dose-effect relationship.

  12. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

    Science.gov (United States)

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria; Di Cagno, Raffaella

    2014-12-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Metabolism of 90Sr and of other elements in man, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Trace element studies have been carried out under strictly controlled dietary conditions in adult males during different calcium intakes. Complete metabolic balances of cadmium, copper, zinc, lead, manganese, and nickel were determined in each 6-day metabolic period by analyzing the constant diet and the urinary and fecal excretions of these naturally occurring elements. In addition to the trace element studies, 85 Sr studies were carried out in man in order to complete previously initiated investigations

  14. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    International Nuclear Information System (INIS)

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; Kojori, Eshan Shokri; Benveniste, Helene; Tomasi, Dardo

    2015-01-01

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET- 18 FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared to placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal

  15. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases.

    Science.gov (United States)

    Volkow, Nora D; Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-(18)FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. Copyright © 2015 the authors 0270-6474/15/353248-08$15.00/0.

  16. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    Science.gov (United States)

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Thyroid peroxidase antibodies in pregnant women with type 1 diabetes: impact on thyroid function, metabolic control and pregnancy outcome

    DEFF Research Database (Denmark)

    Vestgaard, Marianne; Nielsen, Lene Ringholm; Rasmussen, Åse Krogh

    2008-01-01

    In pregnant women with type 1 diabetes, we evaluated whether the presence of thyroid peroxidase autoantibodies (anti-TPO) was associated with changes in thyroid function, metabolic control and pregnancy outcome.......In pregnant women with type 1 diabetes, we evaluated whether the presence of thyroid peroxidase autoantibodies (anti-TPO) was associated with changes in thyroid function, metabolic control and pregnancy outcome....

  18. Impact of hypothalamic reactive oxygen species in the control of energy metabolism and food intake

    Directory of Open Access Journals (Sweden)

    Anne eDrougard

    2015-02-01

    Full Text Available Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC and agouti-related protein (AgRP/neuropeptide Y (NPY neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,..., neurotransmitters and nutrients (glucose, lipids,.... The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes.In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  19. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal

    Science.gov (United States)

    Ito, Kyoko; Ito, Keisuke

    2016-01-01

    Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical. PMID:27482603

  20. Metabolic Control of Dendritic Cell Activation and Function: Recent Advances and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Bart eEverts

    2014-05-01

    Full Text Available Dendritic cells (DCs are key regulators of both immunity and tolerance by controlling activation and polarization of effector T helper cell and regulatory T cell responses. Therefore, there is a major focus on developing approaches to manipulate DC function for immunotherapy. It is well known that changes in cellular activation are coupled to profound changes in cellular metabolism. Over the past decade there is a growing appreciation that these metabolic changes also underlie the capacity of immune cells to perform particular functions. This has led to the concept that the manipulation of cellular metabolism can be used to shape innate and adaptive immune responses. While most of our understanding in this area has been gained from studies with T cells and macrophages, evidence is emerging that the activation and function of DCs are also dictated by the type of metabolism these cells commit to. We here discuss these new insights and explore whether targeting of metabolic pathways in DCs could hold promise as a novel approach to manipulate the functional properties of DCs for clinical purposes.

  1. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Directory of Open Access Journals (Sweden)

    Vande Wouwer, A.

    2010-01-01

    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  2. 7 CFR 28.414 - Strict Low Middling Light Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.414 Strict Low Middling Light Spotted Color. Strict Low Middling Light Spotted Color is color which in spot or...

  3. The impact of cognitive distortions, stress, and adherence on metabolic control in youths with type 1 diabetes.

    Science.gov (United States)

    Farrell, Stephanie P; Hains, Anthony A; Davies, W Hobart; Smith, Philip; Parton, Elaine

    2004-06-01

    To investigate the role of cognitive distortions in the relationship between adherence behavior, diabetes-specific stress, general stress, and metabolic control. Obtained questionnaire data, glucometer readings, and glycosylated hemoglobin (HbgA(1c)) assays from 143 youths (11-18 years old) with type 1 diabetes. Examined path model of relationships between cognitive distortions, stress, adherence behavior, and metabolic control. Data were analyzed using path analysis. Higher levels of negative cognitive distortions were associated with more stress (both diabetes-specific and general). Higher levels of general stress then led to less adherent behavior and subsequently poorer metabolic control (higher HbgA(1c)). More diabetes-specific stress also led to poorer metabolic control, as well as general stress. The findings indicate an indirect role of negative cognitive distortions in metabolic control. The current findings suggest that instead of the proposed direct link between cognitive distortions and adherence behavior, an indirect relationship may exist through stress.

  4. On N. Chomsky’s strict subcategorization of verbs

    Directory of Open Access Journals (Sweden)

    Janez Orešnik

    1966-12-01

    Full Text Available This paper studies the so-called strict subcategorization rules, and the theory associated with them, in the transformational grammar of. Erigl·ish as proposed by Noarn Chomsky in his Aspects. The syntactic component of English transformational grammar consists of two mutually ordered parts, viz., the base and the transformational subcomponents. The initial part of the base are the so-called categorial rules, which are of almost exclusive interest to us here. Their primary task is to generate what are usually called basic sentence patterns, and will here, with Chomsky (Aspects, p.ll3, be designated with the expression, frames of category symbols.- The rules of the transformational subcomponent modify, in various ways, the frames generated by the base. For several reasons - one of them being that the correct work of the transformational subcomponent quite often depends on the kind of lexical items with which the syntactic positions in the frames of category symbols have been filled, the lexical items must be introduced from the lexicon into the empty positions in the frames before the rules of the transformational subcomponent can be allowed to modify the frames.

  5. Managing Hanford Site solid waste through strict acceptance criteria

    International Nuclear Information System (INIS)

    Jasen, W.G.; Pierce, R.D.; Willis, N.P.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) and the Resource Conservation and Recovery Act of 1976 (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, strict management programs have been implemented for the management of these wastes. Solid waste management is accomplished through a systems performance approach to waste management that used best-demonstrated available technology (BDAT) and best management practices. The solid waste program at the Hanford Site strives to integrate all aspects of management relative to the treatment, storage and disposal (TSD) of solid waste. Often there are many competing and important needs. It is a difficult task to balance these needs in a manner that is both equitable and productive. Management science is used to help the process of making decisions. Tools used to support the decision making process include five-year planning, cost estimating, resource allocation, performance assessment, waste volume forecasts, input/output models, and waste acceptance criteria. The purpose of this document is to describe how one of these tools, waste acceptance criteria, has helped the Hanford Site manage solid wastes

  6. Effects of strict prolonged bed rest on cardiorespiratory fitness

    DEFF Research Database (Denmark)

    Ried-Larsen, Mathias; Aarts, Hugo M; Joyner, Michael J

    2017-01-01

    with larger declines in V̇o2max). Furthermore, the systematic review revealed a gap in the knowledge about the cardiovascular response to extreme physical inactivity, particularly in older subjects and women of any age group. In addition to its relevance to spaceflight, this lack of data has significant....... Since 1949, 80 studies with a total of 949 participants (>90% men) have been published with data on strict bed rest and V̇o2max The studies were conducted mainly in young participants [median age (interquartile range) 24.5 (22.4-34.0) yr]. The duration of bed rest ranged from 1 to 90 days. V̇o2max...... declined linearly across bed rest duration. No statistical difference in the decline among studies reporting V̇o2max as l/min (-0.3% per day) compared with studies reporting V̇o2max normalized to body weight (ml·kg-1·min-1; -0.43% per day) was observed. Although both total body weight and lean body mass...

  7. Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.; Osilike, M.O.

    1993-05-01

    It is proved that the Mann iteration process converges strongly to the fixed point of a strictly hemi-contractive map in real uniformly smooth Banach spaces. The class of strictly hemi-contractive maps includes all strictly pseudo-contractive maps with nonempty fixed point sets. A related result deals with the Ishikawa iteration scheme when the mapping is Lipschitzian and strictly hemi-contractive. Our theorems generalize important known results. (author). 29 refs

  8. The Role of Monoaminergic Neurotransmission for Metabolic Control in the Fruit Fly Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Yong Li

    2017-08-01

    Full Text Available Hormones control various metabolic traits comprising fat deposition or starvation resistance. Here we show that two invertebrate neurohormones, octopamine (OA and tyramine (TA as well as their associated receptors, had a major impact on these metabolic traits. Animals devoid of the monoamine OA develop a severe obesity phenotype. Using flies defective in the expression of receptors for OA and TA, we aimed to decipher the contributions of single receptors for these metabolic phenotypes. Whereas those animals impaired in octß1r, octß2r and tar1 share the obesity phenotype of OA-deficient (tβh-deficient animals, the octß1r, octß2r deficient flies showed reduced insulin release, which is opposed to the situation found in tβh-deficient animals. On the other hand, OAMB deficient flies were leaner than controls, implying that the regulation of this phenotype is more complex than anticipated. Other phenotypes seen in tβh-deficient animals, such as the reduced ability to perform complex movements tasks can mainly be attributed to the octß2r. Tissue-specific RNAi experiments revealed a very complex interorgan communication leading to the different metabolic phenotypes observed in OA or OA and TA-deficient flies.

  9. Metabolic Pathway Signatures Associated with Urinary Metabolite Biomarkers Differentiate Bladder Cancer Patients from Healthy Controls.

    Science.gov (United States)

    Kim, Won Tae; Yun, Seok Joong; Yan, Chunri; Jeong, Pildu; Kim, Ye Hwan; Lee, Il Seok; Kang, Ho Won; Park, Sunghyouk; Moon, Sung Kwon; Choi, Yung Hyun; Choi, Young Deuk; Kim, Isaac Yi; Kim, Jayoung; Kim, Wun Jae

    2016-07-01

    Our previous high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry study identified bladder cancer (BCA)-specific urine metabolites, including carnitine, acylcarnitines, and melatonin. The objective of the current study was to determine which metabolic pathways are perturbed in BCA, based on our previously identified urinary metabolome. A total of 135 primary BCA samples and 26 control tissue samples from healthy volunteers were analyzed. The association between specific urinary metabolites and their related encoding genes was analyzed. Significant alterations in the carnitine-acylcarnitine and tryptophan metabolic pathways were detected in urine specimens from BCA patients compared to those of healthy controls. The expression of eight genes involved in the carnitine-acylcarnitine metabolic pathway (CPT1A, CPT1B, CPT1C, CPT2, SLC25A20, and CRAT) or tryptophan metabolism (TPH1 and IDO1) was assessed by RT-PCR in our BCA cohort (n=135). CPT1B, CPT1C, SLC25A20, CRAT, TPH1, and IOD1 were significantly downregulated in tumor tissues compared to normal bladder tissues (pmetabolic pathways, which were the most perturbed pathways in BCA, were determined.

  10. Metabolic control analysis of L-lactate synthesis pathway in Rhizopus oryzae As 3.2686.

    Science.gov (United States)

    Ke, Wei; Chang, Shu; Chen, Xiaoju; Luo, Shuizhong; Jiang, Shaotong; Yang, Peizhou; Wu, Xuefeng; Zheng, Zhi

    2015-11-01

    The relationship between the metabolic flux and the activities of the pyruvate branching enzymes of Rhizopus oryzae As 3.2686 during L-lactate fermentation was investigated using the perturbation method of aeration. The control coefficients for five enzymes, pyruvate dehydrogenase (PDH), pyruvate carboxylase (PC), pyruvate decarboxylase (PDC), lactate dehydrogenase (LDH), and alcohol dehydrogenase (ADH), were calculated. Our results indicated significant correlations between PDH and PC, PDC and LDH, PDC and ADH, LDH and ADH, and PDC and PC. It also appeared that PDH, PC, and LDH strongly controlled the L-lactate flux; PDH and ADH strongly controlled the ethanol flux; while PDH and PC strongly controlled the acetyl coenzyme A flux and the oxaloacetate flux. Further, the flux control coefficient curves indicated that the control of the system gradually transferred from PDC to PC during the steady state. Therefore, PC was the key rate-limiting enzyme that controls the flux distribution.

  11. Identification of microRNAs controlling hepatic mRNA levels for metabolic genes during the metabolic transition from embryonic to posthatch development in the chicken.

    Science.gov (United States)

    Hicks, Julie A; Porter, Tom E; Liu, Hsiao-Ching

    2017-09-05

    The transition from embryonic to posthatch development in the chicken represents a massive metabolic switch from primarily lipolytic to primarily lipogenic metabolism. This metabolic switch is essential for the chick to successfully transition from the metabolism of stored egg yolk to the utilization of carbohydrate-based feed. However, regulation of this metabolic switch is not well understood. We hypothesized that microRNAs (miRNAs) play an important role in the metabolic switch that is essential to efficient growth of chickens. We used high-throughput RNA sequencing to characterize expression profiles of mRNA and miRNA in liver during late embryonic and early posthatch development of the chicken. This extensive data set was used to define the contributions of microRNAs to the metabolic switch during development that is critical to growth and nutrient utilization in chickens. We found that expression of over 800 mRNAs and 30 miRNAs was altered in the embryonic liver between embryonic day 18 and posthatch day 3, and many of these differentially expressed mRNAs and miRNAs are associated with metabolic processes. We confirmed the regulation of some of these mRNAs by miRNAs expressed in a reciprocal pattern using luciferase reporter assays. Finally, through the use of yeast one-hybrid screens, we identified several proteins that likely regulate expression of one of these important miRNAs. Integration of the upstream regulatory mechanisms governing miRNA expression along with monitoring the downstream effects of this expression will ultimately allow for the construction of complete miRNA regulatory networks associated with the hepatic metabolic switch in chickens. Our findings support a key role for miRNAs in controlling the metabolic switch that occurs between embryonic and posthatch development in the chicken.

  12. Lansoprazole Is Associated with Worsening Asthma Control in Children with the CYP2C19 Poor Metabolizer Phenotype.

    Science.gov (United States)

    Lang, Jason E; Holbrook, Janet T; Mougey, Edward B; Wei, Christine Y; Wise, Robert A; Teague, W Gerald; Lima, John J

    2015-06-01

    Gastric acid blockade in children with asymptomatic acid reflux has not improved asthma control in published studies. There is substantial population variability regarding metabolism of and response to proton pump inhibitors based on metabolizer phenotype. How metabolizer phenotype affects asthma responses to acid blockage is not known. To determine how metabolizer phenotype based on genetic analysis of CYP2C19 affects asthma control among children treated with a proton pump inhibitor. Asthma control as measured by the Asthma Control Questionnaire (ACQ) and other questionnaires from a 6-month clinical trial of lansoprazole in children with asthma was analyzed for associations with surrogates of lansoprazole exposure (based on treatment assignment and metabolizer phenotype). Groups included placebo-treated children; lansoprazole-treated extensive metabolizers (EMs); and lansoprazole-treated poor metabolizers (PMs). Metabolizer phenotypes were based on CYP2C19 haplotypes. Carriers of the CYP2C19*2, *3, *8, *9, or *10 allele were PMs; carriers of two wild-type alleles were extensive metabolizers (EMs). Asthma control through most of the treatment period was unaffected by lansoprazole exposure or metabolizer phenotype. At 6 months, PMs displayed significantly worsened asthma control compared with EMs (+0.16 vs. -0.13; P = 0.02) and placebo-treated children (+0.16 vs. -0.23; P lansoprazole-treated PMs. Children with the PM phenotype developed worse asthma control after 6 months of lansoprazole treatment for poorly controlled asthma. Increased exposure to proton pump inhibitor may worsen asthma control by altering responses to respiratory infections. Clinical trial registered with www.clinicaltrials.gov (NCT00604851).

  13. Effects of growth temperature and strictly anaerobic recovery on the survival of Listeria monocytogenes during pasteurization.

    Science.gov (United States)

    Knabel, S J; Walker, H W; Hartman, P A; Mendonca, A F

    1990-02-01

    Listeria monocytogenes F5069 was suspended in either Trypticase soy broth-0.6% yeast extract (TSBYE) or sterile, whole milk and heated at 62.8 degrees C in sealed thermal death time tubes. Severely heat-injured cells were recovered in TSBYE within sealed thermal death time tubes because of the formation of reduced conditions in the depths of the TSBYE. Also, the use of strictly anaerobic Hungate techniques significantly increased recovery in TSBYE containing 1.5% agar compared with aerobically incubated controls. The exogenous addition of catalase, but not superoxide dismutase, slightly increased the recovery of heat-injured cells in TSBYE containing 1.5% agar incubated aerobically. Growth of cells at 43 degrees C caused a greater increase in heat resistance as compared with cells heat shocked at 43 degrees C or cells grown at lower temperatures. Growth of L. monocytogenes at 43 degrees C and enumeration by the use of strictly anaerobic Hungate techniques resulted in D62.8 degrees C values that were at least sixfold greater than those previously obtained by using cells grown at 37 degrees C and aerobic plating. Results indicate that, under the conditions of the present study, high levels of L. monocytogenes would survive the minimum low-temperature, long-time treatment required by the U.S. Food and Drug Administration for pasteurizing milk. The possible survival of low levels of L. monocytogenes during high-temperature, short-time pasteurization and enumeration of injured cells by recovery on selective media under strictly anaerobic conditions are discussed.

  14. Changes in the isozymic pattern of phosphoenolpyruvate : An early step in photoperiodic control of crassulacean acid metabolism level.

    Science.gov (United States)

    Brulfert, J; Arrabaça, M C; Guerrier, D; Queiroz, O

    1979-01-01

    Two major isofunctional forms of phosphoenolpyruvate carboxylase (EC 4.1.1.31) have been separated from the leaves of Kalanchoe blossfeldiana Poelln. Tom Thumb by acrylamide gel electrophoresis and diethylaminoethyl cellulose techniques: one of the forms prevails under long-day treatment (low crassulacean acid metabolism level), the other develops under short-day treatment (high Crassulacean acid metabolism level). Molecular weights are significantly different: 175·10(3) and 186·10(3), respectively. These results indicate that two populations of phosphoenolyruvate carboxylase are present in the plant, one of which is responsible for Crassulacean acid metabolism activity under the control of photoperiod.The Crassulacean acid metabolism appears to depend on the same endogenous clock that governs other photoperiodically controlled events (e.g. flowering). The metabolic and energetic significance of this feature is discussed. It is suggested that modification in isozymic composition could be an early step in the response to photoperiodism at the metabolic level.

  15. Photoperiodism and enzyme activity: towards a model for the control of circadian metabolic rhythms in the crassulacean Acid metabolism.

    Science.gov (United States)

    Queiroz, O; Morel, C

    1974-04-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system.

  16. Role of parenting style in achieving metabolic control in adolescents with type 1 diabetes.

    Science.gov (United States)

    Shorer, Maayan; David, Ravit; Schoenberg-Taz, Michal; Levavi-Lavi, Ifat; Phillip, Moshe; Meyerovitch, Joseph

    2011-08-01

    To examine the role of parenting style in achieving metabolic control and treatment adherence in adolescents with type 1 diabetes. Parents of 100 adolescents with type 1 diabetes completed assessments of their parenting style and sense of helplessness. Parents and patients rated patient adherence to the treatment regimen. Glycemic control was evaluated by HbA(1c) values. An authoritative paternal parenting style predicted better glycemic control and adherence in the child; a permissive maternal parenting style predicted poor adherence. A higher sense of helplessness in both parents predicted worse glycemic control and lesser adherence to treatment. Parental sense of helplessness was a significant predictor of diabetes control after correcting for other confounders (patient age, sex, and treatment method). An authoritative nonhelpless parenting style is associated with better diabetes control in adolescents. Paternal involvement is important in adolescent diabetes management. These results have implications for psychological interventions.

  17. Strict or graduated punishment? Effect of punishment strictness on the evolution of cooperation in continuous public goods games.

    Directory of Open Access Journals (Sweden)

    Hajime Shimao

    Full Text Available Whether costly punishment encourages cooperation is one of the principal questions in studies on the evolution of cooperation and social sciences. In society, punishment helps deter people from flouting rules in institutions. Specifically, graduated punishment is a design principle for long-enduring common-pool resource institutions. In this study, we investigate whether graduated punishment can promote a higher cooperation level when each individual plays the public goods game and has the opportunity to punish others whose cooperation levels fall below the punisher's threshold. We then examine how spatial structure affects evolutionary dynamics when each individual dies inversely proportional to the game score resulting from the social interaction and another player is randomly chosen from the population to produce offspring to fill the empty site created after a player's death. Our evolutionary simulation outcomes demonstrate that stricter punishment promotes increased cooperation more than graduated punishment in a spatially structured population, whereas graduated punishment increases cooperation more than strict punishment when players interact with randomly chosen opponents from the population. The mathematical analysis also supports the results.

  18. Strict or Graduated Punishment? Effect of Punishment Strictness on the Evolution of Cooperation in Continuous Public Goods Games

    Science.gov (United States)

    Shimao, Hajime; Nakamaru, Mayuko

    2013-01-01

    Whether costly punishment encourages cooperation is one of the principal questions in studies on the evolution of cooperation and social sciences. In society, punishment helps deter people from flouting rules in institutions. Specifically, graduated punishment is a design principle for long-enduring common-pool resource institutions. In this study, we investigate whether graduated punishment can promote a higher cooperation level when each individual plays the public goods game and has the opportunity to punish others whose cooperation levels fall below the punisher’s threshold. We then examine how spatial structure affects evolutionary dynamics when each individual dies inversely proportional to the game score resulting from the social interaction and another player is randomly chosen from the population to produce offspring to fill the empty site created after a player’s death. Our evolutionary simulation outcomes demonstrate that stricter punishment promotes increased cooperation more than graduated punishment in a spatially structured population, whereas graduated punishment increases cooperation more than strict punishment when players interact with randomly chosen opponents from the population. The mathematical analysis also supports the results. PMID:23555826

  19. Cardiovascular and metabolic syndrome risk among men with and without erectile dysfunction: case-control study

    OpenAIRE

    Zambon, João Paulo; Mendonça, Rafaela Rosalba de; Wroclawski, Marcelo Langer; Karam Junior, Amir; Santos, Raul D.; Carvalho, José Antonio Maluf de; Wroclawski, Eric Roger

    2010-01-01

    CONTEXT AND OBJECTIVE: Erectile dysfunction has been associated with cardiovascular diseases. The aim here was to evaluate cardiovascular risk through the Framingham Risk Score (FRS) criteria, C-reactive protein (CRP) assays and presence of metabolic syndrome (MS) in men with and without erectile dysfunction diagnosed within a healthcare program. DESIGN AND SETTING: A retrospective case-control study was conducted. The patients were selected from a healthcare program at the Hospital Israelita...

  20. Effects of Korean Red Ginseng on Cardiovascular Risks in Subjects with Metabolic Syndrome: a Double-blind Randomized Controlled Study

    OpenAIRE

    Park, Byoung-Jin; Lee, Yong-Jae; Lee, Hye-Ree; Jung, Dong-Hyuk; Na, Ha-Young; Kim, Hong-Bae; Shim, Jae-Yong

    2012-01-01

    Background This study investigated the effects of Korean red ginseng (KRG) supplementation on metabolic parameters, inflammatory markers, and arterial stiffness in subjects with metabolic syndrome. Methods We performed a randomized, double-blind, placebo-controlled, single-center study in 60 subjects who were not taking drugs that could affect metabolic and vascular functions. Subjects were randomized into either a KRG (4.5 g/d) group or a placebo group for a 12-week study. We collected anthr...

  1. A CMI (cell metabolic indicator)-based controller for achieving high growth rate Escherichia coli cultures.

    Science.gov (United States)

    Pepper, Matthew E; Wang, Li; Padmakumar, Ajay; Burg, Timothy C; Harcum, Sarah W; Groff, Richard E

    2014-01-01

    A large fraction of biopharmaceuticals are produced in Escherichia coli, where each new product and strain currently requires a high degree of growth characterization in benchtop and industrial bioreactors to achieve economical production protocols. The capability to use a standard set of sensors to characterize a system quickly without the need to conduct numerous experiments to determine stable growth rate for the strain would significantly decrease development time. This paper presents a cell metabolic indicator (CMI) which provides better insight into the E. coli metabolism than a growth rate value. The CMI is the ratio of the oxygen uptake rate (OUR) of the culture and the base addition rate (BAR) required to keep pH at a desired setpoint. The OUR and BAR are measured using a off-gas sensor and pH probe, respectively, and thus the CMI can be computed online. Experimental results demonstrate the relationship between CMI and the different cell metabolic states. A previously published model is augmented with acid production dynamics, allowing for comparison of the CMI-based controller with an open-loop controller in simulation. The CMI-based controller required little a priori knowledge about the E. coli strain in order to achieve a high growth rate. Since many different types of cells exhibit similar behaviors, the CMI concept can be extended to mammalian and stem cells.

  2. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  3. Control of sugar transport and metabolism in Zymomonas mobilis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, T. [Ohio State Univ., Columbus, OH (United States)

    1995-09-01

    This research deals with the physiology and genetics of sugar transport and metabolic control in Zymomonas mobilis. The specific objectives of the grant as as follows: First, the complex interactions of transcriptional, post-transcriptional and translational control mechanisms on regulation of the glf operon will be investigated. Second, the structure and function of the unique glucose facilitator will be examined by a combination of in vitro and in vivo approaches, making use of the genetically reconstituted system in E. coli. Third, the possibility that physical association or indirect interactions between the glucose facilitator and glucokinase are involved in metabolic control will be analyzed. Fourth, the Z. mobilis glucose transport and phosphorylation system will be utilized to metabolically engineer recombinant E. coli with altered cell pool metabolite profiles. Work on the third and fourth objectives is complete, work on the first and second objectives is progressing nicely. Publication of this work has been admittedly slow, due primarily to a change n location of the research program from the University of Nebraska to The Ohio State University. However, it should be noted that much of the unpublished data outlined below represented completed studies, and are contained in graduate student theses which are being prepared for submission this summer. Since a full year remains in the current funding period, and the new laboratory is now up and running, we fully expect to make reasonable progress on the remaining objectives and to publish the results in a timely fashion.

  4. Interaction of Pubertal Development and Metabolic Control in Adolescents with Type 1 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    M. Plamper

    2017-01-01

    Full Text Available Background. In T1DM, delayed pubertal development and reduced final height are associated with inadequate metabolic control. Objective. To assess whether T1DM affects pubertal growth spurt and whether metabolic control during puberty is gender-related. Methods. Using a large multicentre database, longitudinal data from 1294 patients were analysed. Inclusion criteria: complete records of height and HbA1c from the age of seven to 16 years. Exclusion criteria: other significant chronic diseases and medications, T1DM duration less than three months, and initial BMI 97th percentile. Results. Growth velocity (GV was impaired with a significant reduction of peak GV by 1.2 cm in boys. HbA1c increase during male puberty was lower except for a period of 1.5 years. The highest HbA1c increase in boys coincided with maximum growth spurt. In girls, the highest HbA1c increase was observed during late puberty. Even though there is impaired GV, both sexes reach a height at 16 years of age which corresponds to the background population height. Conclusion. Worsening of metabolic control is sex-discordant and associated with gender-specific alterations of GV. However, the vast majority of boys and girls with T1DM seems to reach normal height at the age of 16 years.

  5. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    Science.gov (United States)

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  6. Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study.

    Science.gov (United States)

    Racette, Susan B; Lin, Xiaobo; Lefevre, Michael; Spearie, Catherine Anderson; Most, Marlene M; Ma, Lina; Ostlund, Richard E

    2010-01-01

    Phytosterol supplementation of 2 g/d is recommended by the National Cholesterol Education Program to reduce LDL cholesterol. However, the effects of different intakes of phytosterol on cholesterol metabolism are uncertain. We evaluated the effects of 3 phytosterol intakes on whole-body cholesterol metabolism. In this placebo-controlled, crossover feeding trial, 18 adults received a phytosterol-deficient diet (50 mg phytosterols/2000 kcal) plus beverages supplemented with 0, 400, or 2000 mg phytosterols/d for 4 wk each, in random order. All meals were prepared in a metabolic kitchen; breakfast and dinner on weekdays were eaten on site. Primary outcomes were fecal cholesterol excretion and intestinal cholesterol absorption measured with stable-isotope tracers and serum lipoprotein concentrations. Phytosterol intakes (diet plus supplements) averaged 59, 459, and 2059 mg/d during the 3 diet periods. Relative to the 59-mg diet, the 459- and 2059-mg phytosterol intakes significantly (P phytosterol dose (-8.9 +/- 2.3%); a trend was observed with the 459-mg/d dose (-5.0 +/- 2.1%; P = 0.077). Dietary phytosterols in moderate and high doses favorably alter whole-body cholesterol metabolism in a dose-dependent manner. A moderate phytosterol intake (459 mg/d) can be obtained in a healthy diet without supplementation. This trial was registered at clinicaltrials.gov as NCT00860054.

  7. Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study123

    Science.gov (United States)

    Lin, Xiaobo; Lefevre, Michael; Spearie, Catherine Anderson; Most, Marlene M; Ma, Lina; Ostlund, Richard E

    2010-01-01

    Background: Phytosterol supplementation of 2 g/d is recommended by the National Cholesterol Education Program to reduce LDL cholesterol. However, the effects of different intakes of phytosterol on cholesterol metabolism are uncertain. Objective: We evaluated the effects of 3 phytosterol intakes on whole-body cholesterol metabolism. Design: In this placebo-controlled, crossover feeding trial, 18 adults received a phytosterol-deficient diet (50 mg phytosterols/2000 kcal) plus beverages supplemented with 0, 400, or 2000 mg phytosterols/d for 4 wk each, in random order. All meals were prepared in a metabolic kitchen; breakfast and dinner on weekdays were eaten on site. Primary outcomes were fecal cholesterol excretion and intestinal cholesterol absorption measured with stable-isotope tracers and serum lipoprotein concentrations. Results: Phytosterol intakes (diet plus supplements) averaged 59, 459, and 2059 mg/d during the 3 diet periods. Relative to the 59-mg diet, the 459- and 2059-mg phytosterol intakes significantly (P phytosterol dose (−8.9 ± 2.3%); a trend was observed with the 459-mg/d dose (−5.0 ± 2.1%; P = 0.077). Conclusions: Dietary phytosterols in moderate and high doses favorably alter whole-body cholesterol metabolism in a dose-dependent manner. A moderate phytosterol intake (459 mg/d) can be obtained in a healthy diet without supplementation. This trial was registered at clinicaltrials.gov as NCT00860054. PMID:19889819

  8. Geniposide regulates glucose-stimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Jianhui Liu

    Full Text Available Glucose-stimulated insulin secretion (GSIS is essential to the control of metabolic fuel homeostasis. The impairment of GSIS is a key element of β-cell failure and one of causes of type 2 diabetes mellitus (T2DM. Although the KATP channel-dependent mechanism of GSIS has been broadly accepted for several decades, it does not fully describe the effects of glucose on insulin secretion. Emerging evidence has suggested that other mechanisms are involved. The present study demonstrated that geniposide enhanced GSIS in response to the stimulation of low or moderately high concentrations of glucose, and promoted glucose uptake and intracellular ATP levels in INS-1 cells. However, in the presence of a high concentration of glucose, geniposide exerted a contrary role on both GSIS and glucose uptake and metabolism. Furthermore, geniposide improved the impairment of GSIS in INS-1 cells challenged with a high concentration of glucose. Further experiments showed that geniposide modulated pyruvate carboxylase expression and the production of intermediates of glucose metabolism. The data collectively suggest that geniposide has potential to prevent or improve the impairment of insulin secretion in β-cells challenged with high concentrations of glucose, likely through pyruvate carboxylase mediated glucose metabolism in β-cells.

  9. Is Palmitoleic Acid a Plausible Nonpharmacological Strategy to Prevent or Control Chronic Metabolic and Inflammatory Disorders?

    Science.gov (United States)

    de Souza, Camila O; Vannice, Gretchen K; Rosa Neto, José C; Calder, Philip C

    2018-01-01

    Although dietary fatty acids can modulate metabolic and immune responses, the effects of palmitoleic acid (16:1n-7) remain unclear. Since this monounsaturated fatty acid is described as a lipokine, studies with cell culture and rodent models have suggested it enhances whole body insulin sensitivity, stimulates insulin secretion by β cells, increases hepatic fatty acid oxidation, improves the blood lipid profile, and alters macrophage differentiation. However, human studies report elevated blood levels of palmitoleic acid in people with obesity and metabolic syndrome. These findings might be reflection of the level or activity of stearoyl-CoA desaturase-1, which synthesizes palmitoleate and is enhanced in liver and adipose tissue of obese patients. The aim of this review is to describe the immune-metabolic effects of palmitoleic acid observed in cell culture, animal models, and humans to answer the question of whether palmitoleic acid is a plausible nonpharmacological strategy to prevent, control, or ameliorate chronic metabolic and inflammatory disorders. Despite the beneficial effects observed in cell culture and in animal studies, there are insufficient human intervention studies to fully understand the physiological effects of palmitoleic acid. Therefore, more human-based research is needed to identify whether palmitoleic acid meets the promising therapeutic potential suggested by the preclinical research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Metabolic responses of upper-body accelerometer-controlled video games in adults.

    Science.gov (United States)

    Stroud, Leah C; Amonette, William E; Dupler, Terry L

    2010-10-01

    Historically, video games required little physical exertion, but new systems utilize handheld accelerometers that require upper-body movement. It is not fully understood if the metabolic workload while playing these games is sufficient to replace routine physical activity. The purpose of this study was to quantify metabolic workloads and estimate caloric expenditure while playing upper-body accelerometer-controlled and classic seated video games. Nineteen adults completed a peak oxygen consumption treadmill test followed by an experimental session where exercising metabolism and ventilation were measured while playing 3 video games: control (CON), low activity (LOW) and high activity (HI). Resting metabolic measures (REST) were also acquired. Caloric expenditure was estimated using the Weir equation. Mean oxygen consumption normalized to body weight for HI condition was greater than LOW, CON, and REST. Mean oxygen consumption normalized to body weight for LOW condition was also greater than CON and REST. Mean exercise intensities of oxygen consumption reserve for HI, LOW, and CON were 25.8% ± 5.1%, 6.4% ± 4.8%, and 0.8% ± 2.4%, respectively. Estimated caloric expenditure during the HI was significantly related to aerobic fitness, but not during other conditions. An active video game significantly elevated oxygen consumption and heart rate, but the increase was dependent on the type of game. The mean oxygen consumption reserve during the HI video game was below recommended international standards for moderate and vigorous activity. Although upper-body accelerometer-controlled video games provided a greater exercising stimulus than classic seated video games, these data suggest they should not replace routine moderate or vigorous exercise.

  11. Basal metabolic rate in women with PCOS compared to eumenorrheic controls.

    Science.gov (United States)

    Churchill, Sara J; Wang, Erica T; Bhasin, Gaisu; Alexander, Carolyn; Bresee, Catherine; Pall, Marita; Azziz, Ricardo; Mathur, Ruchi; Pisarska, Margareta D

    2015-09-01

    PCOS is associated with obesity and insulin resistance. Efforts have focused on whether an abnormal energy homeostasis contributes to the development of obesity in these patients. There are conflicting results in the literature regarding whether women with PCOS have an altered basal metabolic rate (BMR), thereby leading to difficulties in weight loss. The objective of this study is to compare basal metabolic rate (BMR) in women with PCOS and controls. Cross-sectional study. One hundred and twenty-eight PCOS patients diagnosed by original NIH consensus criteria and 72 eumenorrheic, non-hirsute controls were recruited from an academic medical centre. Assessment of BMR using the InBody portable bioelectrical impedance analysis (BIA) device and insulin resistance by HOMA-IR indices. PCOS women were younger than controls. As expected, PCOS subjects had higher body mass index (BMI), serum androgens and estimated insulin resistance. After adjusting for age and BMI, there was no significant difference in BMR between PCOS subjects (adjusted mean 5807 kJ/day, 95% CI 5715-5899) and controls (adjusted mean 5916 kJ/day, 95% CI 5786-6046) (P = 0·193). BMR was also comparable in a secondary analysis comparing PCOS women with and without insulin resistance. After adjusting for age and BMI, there was no difference in BMR between PCOS women and controls. © 2015 John Wiley & Sons Ltd.

  12. Risk of metabolic syndrome among children living in metropolitan Kuala Lumpur: A case control study

    Directory of Open Access Journals (Sweden)

    Ismail Mohd N

    2011-05-01

    Full Text Available Abstract Background With the increasing prevalence of childhood obesity, the metabolic syndrome has been studied among children in many countries but not in Malaysia. Hence, this study aimed to compare metabolic risk factors between overweight/obese and normal weight children and to determine the influence of gender and ethnicity on the metabolic syndrome among school children aged 9-12 years in Kuala Lumpur and its metropolitan suburbs. Methods A case control study was conducted among 402 children, comprising 193 normal-weight and 209 overweight/obese. Weight, height, waist circumference (WC and body composition were measured, and WHO (2007 growth reference was used to categorise children into the two weight groups. Blood pressure (BP was taken, and blood was drawn after an overnight fast to determine fasting blood glucose (FBG and full lipid profile, including triglycerides (TG, high-density lipoprotein cholesterol (HDL-C, low-density lipoprotein cholesterol (LDL-C and total cholesterol (TC. International Diabetes Federation (2007 criteria for children were used to identify metabolic syndrome. Results Participants comprised 60.9% (n = 245 Malay, 30.9% (n = 124 Chinese and 8.2% (n = 33 Indian. Overweight/obese children showed significantly poorer biochemical profile, higher body fat percentage and anthropometric characteristics compared to the normal-weight group. Among the metabolic risk factors, WC ≥90th percentile was found to have the highest odds (OR = 189.0; 95%CI 70.8, 504.8, followed by HDL-C≤1.03 mmol/L (OR = 5.0; 95%CI 2.4, 11.1 and high BP (OR = 4.2; 95%CI 1.3, 18.7. Metabolic syndrome was found in 5.3% of the overweight/obese children but none of the normal-weight children (p Conclusions We conclude that being overweight or obese poses a greater risk of developing the metabolic syndrome among children. Indian ethnicity is at higher risk compared to their counterparts of the same age. Hence, primary intervention strategies are

  13. Effect of metabolic control on parathyroid hormone secretion in diabetic patients

    Directory of Open Access Journals (Sweden)

    Paula F.J.A.

    2001-01-01

    Full Text Available The metabolic derangement caused by diabetes mellitus may potentially affect bone mineral metabolism. In the present study we evaluated the effect of diabetes metabolic control on parathyroid hormone (PTH secretion during stimulation with EDTA infusion. The study was conducted on 24 individuals, 8 of them normal subjects (group N: glycated hemoglobin - HbA1C = 4.2 ± 0.2%; range = 3.5-5.0%, 8 patients with good and regular metabolic control (group G-R: HbA1C = 7.3 ± 0.4%; range = 6.0-8.5%, and 8 patients with poor metabolic control (group P: HbA1C = 12.5 ± 1.0%; range: 10.0-18.8%. Blood samples were collected at 10-min intervals throughout the study (a basal period of 30 min and a 2-h period of EDTA infusion, 30 mg/kg body weight and used for the determination of ionized calcium, magnesium, glucose and intact PTH. Basal ionized calcium levels were slightly lower in group P (1.19 ± 0.01 mmol/l than in group N (1.21 ± 0.01 mmol/l and group G-R (1.22 ± 0.01 mmol/l. After EDTA infusion, the three groups presented a significant fall in calcium, but with no significant difference among them at any time. Basal magnesium levels and levels determined during EDTA infusion were significantly lower (P<0.01 in group P than in group N. The induction of hypocalcemia caused an elevation in PTH which was similar in groups N and G-R but significantly higher than in group P throughout the infusion period (+110 min, N = 11.9 ± 2.1 vs G-R = 13.7 ± 1.6 vs P = 7.5 ± 0.7 pmol/l; P<0.05 for P vs N and G-R. The present results show that PTH secretion is impaired in patients with poorly controlled diabetes.

  14. [Controlling arachidonic acid metabolic network: from single- to multi-target inhibitors of key enzymes].

    Science.gov (United States)

    Liu, Ying; Chen, Zheng; Shang, Er-chang; Yang, Kun; Wei, Deng-guo; Zhou, Lu; Jiang, Xiao-lu; He, Chong; Lai, Lu-hua

    2009-03-01

    Inflammatory diseases are common medical conditions seen in disorders of human immune system. There is a great demand for anti-inflammatory drugs. There are major inflammatory mediators in arachidonic acid metabolic network. Several enzymes in this network have been used as key targets for the development of anti-inflammatory drugs. However, specific single-target inhibitors can not sufficiently control the network balance and may cause side effects at the same time. Most inflammation induced diseases come from the complicated coupling of inflammatory cascades involving multiple targets. In order to treat these complicated diseases, drugs that can intervene multi-targets at the same time attracted much attention. The goal of this review is mainly focused on the key enzymes in arachidonic acid metabolic network, such as phospholipase A2, cyclooxygenase, 5-lipoxygenase and eukotriene A4 hydrolase. Advance in single target and multi-targe inhibitors is summarized.

  15. Effect of oral cinnamon intervention on metabolic profile and body composition of Asian Indians with metabolic syndrome: a randomized double -blind control trial.

    Science.gov (United States)

    Gupta Jain, Sonal; Puri, Seema; Misra, Anoop; Gulati, Seema; Mani, Kalaivani

    2017-06-12

    Nutritional modulation remains central to the management of metabolic syndrome. Intervention with cinnamon in individuals with metabolic syndrome remains sparsely researched. We investigated the effect of oral cinnamon consumption on body composition and metabolic parameters of Asian Indians with metabolic syndrome. In this 16-week double blind randomized control trial, 116 individuals with metabolic syndrome were randomized to two dietary intervention groups, cinnamon [6 capsules (3 g) daily] or wheat flour [6 capsules (2.5 g) daily]. Body composition, blood pressure and metabolic parameters were assessed. Significantly greater decrease [difference between means, (95% CI)] in fasting blood glucose (mmol/L) [0.3 (0.2, 0.5) p = 0.001], glycosylated haemoglobin (mmol/mol) [2.6 (0.4, 4.9) p = 0.023], waist circumference (cm) [4.8 (1.9, 7.7) p = 0.002] and body mass index (kg/m2 ) [1.3 (0.9, 1.5) p = 0.001] was observed in the cinnamon group compared to placebo group. Other parameters which showed significantly greater improvement were: waist-hip ratio, blood pressure, serum total cholesterol, low-density lipoprotein cholesterol, serum triglycerides, and high-density lipoprotein cholesterol. Prevalence of defined metabolic syndrome was significantly reduced in the intervention group (34.5%) vs. the placebo group (5.2%). A single supplement intervention with 3 g cinnamon for 16 weeks resulted in significant improvements in all components of metabolic syndrome in a sample of Asian Indians in north India. The clinical trial was retrospectively registered (after the recruitment of the participants) in ClinicalTrial.gov under the identification number: NCT02455778 on 25th May 2015.

  16. Social Competence and Parental Support as Mediators of the Link between Stress and Metabolic Control in Adolescents with Insulin-Dependent Diabetes Mellitus.

    Science.gov (United States)

    Hanson, Cindy L.; And Others

    1987-01-01

    Measured metabolic control, adherence, life stress, social competence, and parental support in adolescents (N=104) with insulin-dependent diabetes mellitus. Found that stress was directly associated with metabolic control, independent of the link between adherence and metabolic control. Social competence buffered negative association between…

  17. Tetrahydrobiopterin (BH4) in PKU: effect on dietary treatment, metabolic control, and quality of life.

    Science.gov (United States)

    Ziesch, B; Weigel, J; Thiele, A; Mütze, U; Rohde, C; Ceglarek, U; Thiery, J; Kiess, W; Beblo, S

    2012-11-01

    Tetrahydrobiopterin (BH(4))-sensitive phenylketonuria (PKU) can be treated with sapropterin dihydrochloride. We studied metabolic control and health-related quality of life (HRQoL) in PKU patients treated with BH(4). Based on the review of neonatal BH(4) test results and mutation analysis in 41 PKU patients, 19 were identified as potentially BH(4)-sensitive (9 females, 10 males, age 4-18 years). We analyzed phenylalanine (phe) concentrations in dried blood samples, nutrition protocols, and HRQoL questionnaires (KINDL(®)) beginning from 1 year before, during the first 42 days, and after 3 months of BH(4) therapy. Eight BH(4)-sensitive patients increased their phe tolerance (629 ± 476 vs. 2131 ± 1084 mg, p = 0.006) while maintaining good metabolic control (phe concentration in dried blood 283 ± 145 vs. 304 ± 136 μM, p = 1.0). Six of them were able to stop dietary protein restriction entirely. BH(4)-sensitive patients had average HRQoL scores that were comparable to age-matched healthy children. There was no improvement in HRQoL scores after replacing classic dietary treatment with BH(4) supply, although personal reports given by the patients and their parents suggest that available questionnaires are inappropriate to detect aspects relevant to inborn metabolic disorders. BH(4) can allow PKU patients to increase their phe consumption significantly or even stop dietary protein restrictions. Unexpectedly, this does not improve HRQoL as assessed with KINDL(®), partly due to high scores even before BH(4) therapy. Specific questionnaires should be developed for inborn metabolic disorders.

  18. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R; Shachar-Hill, Yair; Hicks, Leslie M; Gang, David R

    2015-08-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials.

    Science.gov (United States)

    Kellow, Nicole J; Coughlan, Melinda T; Reid, Christopher M

    2014-04-14

    Complex relationships exist between the gut microflora and their human hosts. Emerging evidence suggests that bacterial dysbiosis within the colon may be involved in the pathogenesis of the metabolic syndrome, type 2 diabetes and CVD. The use of dietary prebiotic supplements to restore an optimal balance of intestinal flora may positively affect host metabolism, representing a potential treatment strategy for individuals with cardiometabolic disorders. The present review aimed to examine the current evidence supporting that dietary prebiotic supplementation in adults has beneficial effects on biochemical parameters associated with the development of metabolic abnormalities including obesity, glucose intolerance, dyslipidaemia, hepatic steatosis and low-grade chronic inflammation. Between January 2000 and September 2013, eight computer databases were searched for randomised controlled trials published in English. Human trials were included if at least one group received a dietary prebiotic intervention. In the present review, twenty-six randomised controlled trials involving 831 participants were included. Evidence indicated that dietary prebiotic supplementation increased self-reported feelings of satiety in healthy adults (standardised mean difference -0.57, 95% CI -1.13, -0.01). Prebiotic supplementation also significantly reduced postprandial glucose (-0.76, 95% CI -1.41, -0.12) and insulin (-0.77, 95% CI -1.50, -0.04) concentrations. The effects of dietary prebiotics on total energy intake, body weight, peptide YY and glucagon-like peptide-1 concentrations, gastric emptying times, insulin sensitivity, lipids, inflammatory markers and immune function were contradictory. Dietary prebiotic consumption was found to be associated with subjective improvements in satiety and reductions in postprandial glucose and insulin concentrations. Additional evidence is required before recommending prebiotic supplements to individuals with metabolic abnormalities. Large

  20. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential

    Science.gov (United States)

    Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.; Smith, Kristina M.; Galagan, James E.; Bell-Pedersen, Deborah; Freitag, Michael; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. PMID:25362047

  1. A structured approach to the study of metabolic control principles in intact and impaired mitochondria.

    Science.gov (United States)

    Huber, Heinrich J; Connolly, Niamh M C; Dussmann, Heiko; Prehn, Jochen H M

    2012-03-01

    We devised an approach to extract control principles of cellular bioenergetics for intact and impaired mitochondria from ODE-based models and applied it to a recently established bioenergetic model of cancer cells. The approach used two methods for varying ODE model parameters to determine those model components that, either alone or in combination with other components, most decisively regulated bioenergetic state variables. We found that, while polarisation of the mitochondrial membrane potential (ΔΨ(m)) and, therefore, the protomotive force were critically determined by respiratory complex I activity in healthy mitochondria, complex III activity was dominant for ΔΨ(m) during conditions of cytochrome-c deficiency. As a further important result, cellular bioenergetics in healthy, ATP-producing mitochondria was regulated by three parameter clusters that describe (1) mitochondrial respiration, (2) ATP production and consumption and (3) coupling of ATP-production and respiration. These parameter clusters resembled metabolic blocks and their intermediaries from top-down control analyses. However, parameter clusters changed significantly when cells changed from low to high ATP levels or when mitochondria were considered to be impaired by loss of cytochrome-c. This change suggests that the assumption of static metabolic blocks by conventional top-down control analyses is not valid under these conditions. Our approach is complementary to both ODE and top-down control analysis approaches and allows a better insight into cellular bioenergetics and its pathological alterations.

  2. Thyroid peroxidase antibodies in pregnant women with type 1 diabetes: impact on thyroid function, metabolic control and pregnancy outcome

    DEFF Research Database (Denmark)

    Vestgaard, Marianne; Nielsen, Lene Ringholm; Rasmussen, Åse Krogh

    2008-01-01

    In pregnant women with type 1 diabetes, we evaluated whether the presence of thyroid peroxidase autoantibodies (anti-TPO) was associated with changes in thyroid function, metabolic control and pregnancy outcome....

  3. A randomized placebo-controlled study on the effects of pioglitazone on cortisol metabolism in polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Hermann, Anne Pernille; Hagen, Claus

    2009-01-01

    OBJECTIVE: To investigate possible effects of insulin-sensitizing treatment on cortisol metabolism in insulin-resistant patients with polycystic ovary syndrome (PCOS). DESIGN: Randomized placebo-controlled study. SETTING: Academic tertiary care medical center. PATIENT(S): Thirty insulin...

  4. Comparing metabolic control and complications in type 2 diabetes in two Pacific Islands at baseline and following diabetes care intervention

    Directory of Open Access Journals (Sweden)

    Si Thu Win Tin

    2016-06-01

    Conclusions: This study indicates improved metabolic control but little change in diabetes complications 15 months after intervention. Efforts to improve and evaluate the ongoing quality and accessibility of diabetes care in Pacific Island settings need to be further strengthened.

  5. The Success Rate of Initial {sup 131I} Ablation in Differentiated Thyroid Cancer: Comparison Between Less strict and Very Strict Low Iodine Diets

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ik Dong; Kim, Sung Hoon; Seo, Ye Young; Oh, Jin Kyoung; O, Joo Hyun; Chung, Soo Kyo [The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2012-03-15

    To decrease the risk of recurrence or metastasis in differentiated thyroid cancer (DTC), selected patients receive radioactive iodine ablation of remnant thyroid tissue or tumor. A low iodine diet can enhance uptake of radioactive iodine. We compared the success rates of radioactive iodine ablation therapy in patients who followed two different low iodine diets (LIDs). The success rates of postsurgical radioactive iodine ablation in DTC patients receiving empiric doses of 150 mCi were retrospectively reviewed. First-time radioactive iodine ablation therapy was done in 71 patients following less strict LID. Less strict LID restricted seafood, iodized salt, egg yolk, dairy products, processed meat, instant prepared meals, and multivitamins. Very strict LID additionally restricted rice, freshwater fish, spinach, and soybean products. Radioactive iodine ablation therapy was considered successful when follow up {sup 123I} whole body scan was negative and stimulated serum thyroglobulin level was less than 2.0 ng/mL. The success rate of patients following less strict LID was 80.3% and for very strict LID 75.6%. There was no statistically significant difference in the success rates between the two LID groups (P=0.48). Very strict LID may not contribute to improving the success rate of initial radioactive iodine ablation therapy at the cost of great inconvenience to the patient.

  6. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually

  7. α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility

    Directory of Open Access Journals (Sweden)

    Alexandre Fisette

    2016-10-01

    Full Text Available α/β-Hydrolase domain 6 (ABHD6 is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG. Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMHKO have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMHKO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet. Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility.

  8. Effect of fruit and vegetable concentrates on endothelial function in metabolic syndrome: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ma Yingying

    2011-06-01

    Full Text Available Abstract Background and Objective Dehydrated fruit and vegetable concentrates provide an accessible form of phytonutrient supplementation that may offer cardioprotective effects. This study assessed the effects of two blends of encapsulated juice powder concentrates (with and without added berry powders on endothelial function in persons with metabolic syndrome, a risk factor for type 2 diabetes and cardiovascular disease. Methods Randomized, double blind, placebo controlled crossover clinical trial with three treatment arms. 64 adults with metabolic syndrome were enrolled and received 8-week sequences of each blend of the concentrates and placebo. The primary outcome measure was change in endothelial function (assessed as flow-mediated dilatation of the brachial artery 2 hr after consuming a 75 g glucose load, after 8-weeks of daily consumption (sustained or 2 hr after consumption of a single dose (acute. Secondary outcome measures included plasma glucose, serum insulin, serum lipids, and body weight. Results No significant between-group differences in endothelial function with daily treatment for 8 weeks were seen. No other significant treatment effects were discerned in glucose, insulin, lipids, and weight. Conclusion Encapsulated fruit and vegetable juice powder concentrates did not alter insulin or glucose measures in this sample of adults with metabolic syndrome. Trial Registration clinicaltrials.gov NCT01224743

  9. The Relationship between Metabolic Control and Growth in Children with Type I Diabetes Mellitus in Southwest of Iran

    Directory of Open Access Journals (Sweden)

    Shide Assar

    2015-01-01

    Full Text Available Background. Metabolic control is an important factor in growth of children with type I diabetes. This study assessed the relationship between growth and metabolic control in such children. Materials and Methods. 83 children with diabetes were studied. They were examined for weight and height gain and HbA1C was quantified every 3 months for one year. The growth process was studied in patients who were divided into 3 groups according to their HbA1C amounts, consisting of good, intermediate, and poor metabolic control. Results. Mean age of cases was 7.6 ± 2. The presenting sign at the onset of disease was diabetic ketoacidosis in 44.6%. The average HbA1C amount was 8.89%. The average weight SDS at diagnosis was −0.18 and at the end of the study was 0.45 (P<0.001. The average height SDS at diagnosis was −0.04 and at the end of the study was −0.07 (P=0.64. A significant difference in weight SDS changes was only seen between patients with good and poor metabolic control (P=0.04. Conclusion. Poor metabolic control can decrease height growth but has minimal influence on weight. Metabolic control was not the only predictive factor of physical growth in children with diabetes.

  10. Proton NMR metabolic profiling of CSF reveals distinct differentiation of meningitis from negative controls.

    Science.gov (United States)

    Chatterji, Tanushri; Singh, Suruchi; Sen, Manodeep; Singh, Ajai Kumar; Agarwal, Gaurav Raj; Singh, Deepak Kumar; Srivastava, Janmejai Kumar; Singh, Alka; Srivastava, Rajeshwar Nath; Roy, Raja

    2017-06-01

    Cerebrospinal fluid (CSF) is an essential bio-fluid of the central nervous system (CNS), playing a vital role in the protection of CNS and performing neuronal function regulation. The chemical composition of CSF varies during onset of meningitis, neurodegenerative disorders (positive controls) and in traumatic cases (negative controls). The study design was broadly categorized into meningitis cases, negative controls and positive controls. Further differentiation among the three groups was carried out using Principal Component Analysis (PCA) followed by supervised Partial Least Square Discriminant Analysis (PLS-DA). The statistical analysis of meningitis vs. negative controls using PLS-DA model resulted in R 2 of 0.97 and Q 2 of 0.85. There was elevation in the levels of ketone bodies, total free amino acids, glutamine, creatine, citrate and choline containing compounds (choline and GPC) in meningitis cases. Similarly, meningitis vs. positive controls resulted in R 2 of 0.80 and Q 2 of 0.60 and showed elevation in the levels of total free amino acids, glutamine, creatine/creatinine and citrate in the meningitis group. Four cases of HIV were identified by PLS-DA model as well as by clinical investigations. On the basis of metabolic profile it was found that negative control CSF samples are more appropriate for differentiation of meningitis than positive control CSF samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [DiabeTIC website: a pilot study of satisfaction and impact on metabolic control].

    Science.gov (United States)

    Carral San Laureano, Florentino; Ayala Ortega, María del Carmen; Jiménez Millán, Ana Isabel; Piñero Zaldivar, Antonia; García Calzado, Concepción; Prieto Ferrón, Matilde; Silva Rodríguez, Juan José

    2013-10-01

    To evaluate satisfaction and short-term impact on metabolic control of diabetes monitoring through the DiabeTIC website. A prospective, uncontrolled intervention study was conducted in 32 patients aged 29.7±9.7 years (65% female) incorporated to the telemedicine platform DiabeTIC between March and September 2012. All patients completed a satisfaction questionnaire in the first month, and impact on metabolic control was evaluated at three and six months. In the satisfaction survey conducted in the first month of follow-up, the following mean scores (0-10) were obtained: overall impression with the platform: 8.6±1.8; ease of use: 8.1±1.5; intuitive navigation: 6.7±3.0; value of measurements: 9.1±1.1; importance of the platform in diabetes management: 9.5±0.9; sense of security: 9.5±0.8; value of the library: 9.4±1.1; value of messages: 9.1±1.4, and recommendation to use the platform: 9.4±0.9. Glycosilated hemoglobin concentrations significantly improved at six months as compared to study start (7.0±0.8 versus 8.1±1.9; p=0.007). Nine patients were discharged from DiabeTIC before completing six months of follow-up. Patients with diabetes monitored through the DiabeTIC website report a high degree of satisfaction, showing improved metabolic control at short-term follow-up. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  12. Presumptive binge eating disorder in type 2 diabetes mellitus patients and its effect in metabolic control

    Directory of Open Access Journals (Sweden)

    Sandra Soares Melo

    2009-09-01

    Full Text Available Objective: This study sought to determine the presence of diagnosis suggestive of binge eating disorder in individuals with type 2 diabetes mellitus, and to evaluate the influence of such disorder on the metabolic control. Methods: sixty-three patients with type 2 diabetes mellitus and registered  at the Diabetes and Hypertension Program of a Health Unit in the town of Balneário Camboriú, Santa Catarina, Brazil, were evaluated. The diagnosis of binge eating disorder was made by analysis of the Questionnaire on Eating and Weight Patterms – Revised. For the evaluation of metabolic control, 10 ml of blood was collected, and the serum glucose, glycated hemoglobin, tryglicerides, cholestrol and fractions were determined. Weight and height were determined for evaluation of national nutritional state, according to the body mass index. Rresults: Among the evaluated individuals, 29% presented a diagnosis suggestive of binge eating disorder, with higher prevalence among females. The individuals with diagnosis suggestive of binge eating disorder presented a higher average body mass index value than the group without diagnosis. The serum concentrations of glycated hemoglobin (p = 0.02 and triglicerides (p = 0.03 were statistically higher in the group with diagnosis suggestive of binge eating disorder. Cconclusions: Based on the results of this study, it is possible to conclude that the presence of binge eating disorder in individuals with type 2 diabetes mellitus favors an increase in body weight and has a negative influence on metabolic control, contributing to the early emergence of complications related to the disease.

  13. Lyme Neuroborreliosis: Preliminary Results from an Urban Referral Center Employing Strict CDC Criteria for Case Selection

    Directory of Open Access Journals (Sweden)

    David S. Younger

    2010-01-01

    Full Text Available Lyme neuroborreliosis or “neurological Lyme disease” was evidenced in 2 of 23 patients submitted to strict criteria for case selection of the Centers for Disease Control and Prevention employing a two-tier test to detect antibodies to Borrelia burgdorferi at a single institution. One patient had symptomatic polyradiculoneuritis, dysautonomia, and serological evidence of early infection; and another had symptomatic small fiber sensory neuropathy, distal polyneuropathy, dysautonomia, and serological evidence of late infection. In the remaining patients symptoms initially ascribed to Lyme disease were probably unrelated to B. burgdorferi infection. Our findings suggest early susceptibility and protracted involvement of the nervous system most likely due to the immunological effects of B. burgdorferi infection, although the exact mechanisms remain uncertain.

  14. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1997-01-01

    of the thermokinetic description of reaction rates to include the influence of effecters. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919-927] can......Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown...... that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction...

  15. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1997-01-01

    Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown...... that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction...... of the thermokinetic description of reaction rates to include the influence of effecters. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919-927] can...

  16. Effect of growth regulators on 'Brookfield' apple gas diffusion and metabolism under controlled atmosphere storage

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2014-05-01

    Full Text Available The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control, aminoethoxyvinylglycine (AVG, AVG + ethephon, AVG + naphthaleneacetic acid (NAA, ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS, AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.

  17. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation

    Directory of Open Access Journals (Sweden)

    Mario eChiong

    2014-12-01

    Full Text Available Differentiation and dedifferentiation of vascular smooth muscle cells (VSMCs are essential processes of vascular development. VSMCs have biosynthetic, proliferative and contractile roles in the vessel wall. Alterations in the differentiated state of the VSMCs play a critical role in the pathogenesis of a variety of cardiovascular diseases, including atherosclerosis, hypertension and vascular stenosis. This review provides an overview of the current state of knowledge of molecular mechanisms involved in the control of VSMC proliferation, with particular focus on mitochondrial metabolism. Mitochondrial activity can be controlled by regulating mitochondrial dynamics, i.e. mitochondrial fusion and fission, and by regulating mitochondrial calcium handling through the interaction with the endoplasmic reticulum (ER. Alterations in both VSMC proliferation and mitochondrial function can be triggered by dysregulation of mitofusin-2, a small GTPase associated with mitochondrial fusion and mitochondrial-ER interaction. Several lines of evidence highlight the relevance of mitochondrial metabolism in the control of VSMC proliferation, indicating a new area to be explored in the treatment of vascular diseases.

  18. Metabolic control and bone health in adolescents with type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Mohan Subburaman

    2011-10-01

    Full Text Available Abstract Background Adults with type 1 diabetes (T1D have decreased bone mineral density (BMD and increased fracture risk, yet the etiologies remain elusive. Early detection of derangements in bone biomarkers during adolescence could lead to timely recognition. In adolescents with T1D, we evaluated the relationships between metabolic control, BMD, and bone anabolic and turnover markers. Methods Cross-sectional study of 57 adolescent subjects with T1D who had HbA1c consistently ≥ 9% (Poor Control, PC n = 27 or Results There were no differences between HbA1c groups in BMD, components of the IGF system, or 25-hydroxyvitamin D status. The prevalence of 25-hydroxyvitamin D abnormalities was similar to that seen in the general adolescent population. Few patients met the recommended dietary allowance (RDA for vitamin D or calcium. Conclusions These data provide no evidence of association between degree of metabolic control and BMD in adolescents with T1D. Adolescents with T1D have a high prevalence of serum 25-hydroxyvitamin D abnormalities. Longitudinal studies are needed to evaluate the predictive value of vitamin D abnormalities on fracture risk.

  19. The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis.

    Directory of Open Access Journals (Sweden)

    Rhianna C Laker

    Full Text Available The mitochondrial permeability transition pore (mPTP is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively and fed them either a chow diet or 45% high-fat diet (HFD for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT, whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD.

  20. [Risk factors for metabolic syndrome in a case control study in Temuco, Chile].

    Science.gov (United States)

    Philco L, Patricia; Serón S, Pamela; Muñoz N, Sergio; Navia B, Pilar; Lanas Z, Fernando

    2012-03-01

    Metabolic syndrome is becoming an important public health problem in affluent societies. To identify factors associated to metabolic syndrome in a Southern Chilean city. Using a case control design, 200 participants, aged 35 to 70 years with at least three criteria for metabolic syndrome according to the National Cholesterol Education Program (NCEP_ATPIII) and 200 subjects with less than three criteria, were studied. Both groups were compared in terms of ethnic background, educational level, family history of diabetes and coronary artery disease, menopausal status, smoking, stress and depression, physical activity, changes in body mass index in the last five years and diet. Among subjects aged more than 54 years, among males and among overweight individuals, having a Mapuche origin was a risk factor with odds ratios (OR) of 7.2; 88 and 3.9 respectively. Among subjects aged more than 54 years, among women and among overweight individuals, a family history of diabetes was a risk factor with OR of 17.7; 3.2 and 3.9 respectively. Among subjects aged more than 54 years and among women a change in body mass index of more than three points was a risk factor with OR of 12.5 and 7.4, respectively. Depression also was a risk factor among subjects aged more than 54 years (OR 3.3). Regular consumption of wine was a protective factor among participants of more than 54 years, with an OR of 0.17. The risk factors for metabolic syndrome detected in this group of participants, were having a Mapuche origin, a family history of diabetes mellitus and depression. Wine consumption was associated with a lower risk.

  1. Adipocyte Metabolic Pathways Regulated by Diet Control the Female Germline Stem Cell Lineage inDrosophila melanogaster.

    Science.gov (United States)

    Matsuoka, Shinya; Armstrong, Alissa R; Sampson, Leesa L; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2017-06-01

    Nutrients affect adult stem cells through complex mechanisms involving multiple organs. Adipocytes are highly sensitive to diet and have key metabolic roles, and obesity increases the risk for many cancers. How diet-regulated adipocyte metabolic pathways influence normal stem cell lineages, however, remains unclear. Drosophila melanogaster has highly conserved adipocyte metabolism and a well-characterized female germline stem cell (GSC) lineage response to diet. Here, we conducted an isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to identify diet-regulated adipocyte metabolic pathways that control the female GSC lineage. On a rich (relative to poor) diet, adipocyte Hexokinase-C and metabolic enzymes involved in pyruvate/acetyl-CoA production are upregulated, promoting a shift of glucose metabolism toward macromolecule biosynthesis. Adipocyte-specific knockdown shows that these enzymes support early GSC progeny survival. Further, enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in adipocytes promote GSC maintenance, whereas lipid and iron transport from adipocytes controls vitellogenesis and GSC number, respectively. These results show a functional relationship between specific metabolic pathways in adipocytes and distinct processes in the GSC lineage, suggesting the adipocyte metabolism-stem cell link as an important area of investigation in other stem cell systems. Copyright © 2017 by the Genetics Society of America.

  2. Presumptive binge eating disorder in type 2 diabetes mellitus patients and its effect in metabolic control

    OpenAIRE

    Sandra Soares Melo; Cíntia Milene Comelli Odorizzi

    2009-01-01

    Objective: This study sought to determine the presence of diagnosis suggestive of binge eating disorder in individuals with type 2 diabetes mellitus, and to evaluate the influence of such disorder on the metabolic control. Methods: sixty-three patients with type 2 diabetes mellitus and registered  at the Diabetes and Hypertension Program of a Health Unit in the town of Balneário Camboriú, Santa Catarina, Brazil, were evaluated. The diagnosis of binge eating disorder was made by analysis of th...

  3. Effects of low-fat milk consumption on metabolic and atherogenic biomarkers in Korean adults with the metabolic syndrome: a randomised controlled trial.

    Science.gov (United States)

    Lee, Y J; Seo, J A; Yoon, T; Seo, I; Lee, J H; Im, D; Lee, J H; Bahn, K-N; Ham, H S; Jeong, S A; Kang, T S; Ahn, J H; Kim, D H; Nam, G E; Kim, N H

    2016-08-01

    Previous studies of the health effects of low-fat milk or dairy consumption on the metabolic syndrome have yielded inconsistent results. The present study aimed to investigate the effects of low-fat milk consumption on traits associated with the metabolic syndrome, as well as inflammatory and atherogenic biomarkers, in Korean adults with the metabolic syndrome. Overweight Koreans with the metabolic syndrome (n = 58) were recruited and randomly assigned to either the low-fat milk or control group. The low-fat milk group was instructed to consume two packs of low-fat milk per day (200 mL twice daily) for 6 weeks, and the control group was instructed to maintain their habitual diet. Clinical investigations were conducted during the screening visit, on study day 0, and after 6 weeks. No significant differences in changes in body mass index, blood pressure, lipid profile and adiponectin levels, as well as levels of inflammatory markers, oxidative stress markers and atherogenic markers, were found between the low-fat milk and control groups. However, compared to the controls, significant favourable decreases in serum soluble vascular adhesion molecule-1 and endothelin-1 levels were found in the 12 subjects with high blood pressure and in the 18 subjects with hypertriglyceridaemia in the low-fat milk group. The present study did not demonstrate an overall beneficial effect of low-fat milk consumption in subjects with the metabolic syndrome. However, low-fat milk consumption may have a favourable effect on atherogenic markers in subjects with high blood pressure or hypertriglyceridaemia. © 2016 The British Dietetic Association Ltd.

  4. Thermodynamic and Probabilistic Metabolic Control Analysis of Riboflavin (Vitamin B₂) Biosynthesis in Bacteria.

    Science.gov (United States)

    Birkenmeier, Markus; Mack, Matthias; Röder, Thorsten

    2015-10-01

    In this study, we applied a coupled in silico thermodynamic and probabilistic metabolic control analysis methodology to investigate the control mechanisms of the commercially relevant riboflavin biosynthetic pathway in bacteria. Under the investigated steady-state conditions, we found that several enzyme reactions of the pathway operate far from thermodynamic equilibrium (transformed Gibbs energies of reaction below about -17 kJ mol(-1)). Using the obtained thermodynamic information and applying enzyme elasticity sampling, we calculated the distributions of the scaled concentration control coefficients (CCCs) and scaled flux control coefficients (FCCs). From the statistical analysis of the calculated distributions, we inferred that the control over the riboflavin producing flux is shared among several enzyme activities and mostly resides in the initial reactions of the pathway. More precisely, the guanosine triphosphate (GTP) cyclohydrolase II activity, and therefore the bifunctional RibA protein of Bacillus subtilis because it catalyzes this activity, appears to mainly control the riboflavin producing flux (mean FCCs = 0.45 and 0.55, respectively). The GTP cyclohydrolase II activity and RibA also exert a high positive control over the riboflavin concentration (mean CCCs = 2.43 and 2.91, respectively). This prediction is consistent with previous findings for microbial riboflavin overproducing strains.

  5. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Directory of Open Access Journals (Sweden)

    Kovaleva Galina

    2011-06-01

    Full Text Available Abstract Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR, numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp. Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S

  6. Control of (pre-analytical aspects in immunoassay measurements of metabolic hormones in rodents

    Directory of Open Access Journals (Sweden)

    Maximilian Bielohuby

    2018-04-01

    Full Text Available The measurement of circulating hormones by immunoassay remains a cornerstone in preclinical endocrine research. For scientists conducting and interpreting immunoassay measurements of rodent samples, the paramount aim usually is to obtain reliable and meaningful measurement data in order to draw conclusions on biological processes. However, the biological variability between samples is not the only variable affecting the readout of an immunoassay measurement and a considerable amount of unwanted or unintended variability can be quickly introduced during the pre-analytical and analytical phase. This review aims to increase the awareness for the factors ‘pre-analytical’ and ‘analytical’ variability particularly in the context of immunoassay measurement of circulating metabolic hormones in rodent samples. In addition, guidance is provided how to gain control over these variables and how to avoid common pitfalls associated with sample collection, processing, storage and measurement. Furthermore, recommendations are given on how to perform a basic validation of novel single and multiplex immunoassays for the measurement of metabolic hormones in rodents. Finally, practical examples from immunoassay measurements of plasma insulin in mice address the factors ‘sampling site and inhalation anesthesia’ as frequent sources of introducing an unwanted variability during the pre-analytical phase. The knowledge about the influence of both types of variability on the immunoassay measurement of circulating hormones as well as strategies to control these variables are crucial, on the one hand, for planning and realization of metabolic rodent studies and, on the other hand, for the generation and interpretation of meaningful immunoassay data from rodent samples.

  7. Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation.

    Science.gov (United States)

    Blundell, John E; Caudwell, Phillipa; Gibbons, Catherine; Hopkins, Mark; Naslund, Erik; King, Neil; Finlayson, Graham

    2012-09-01

    A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that "the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy". However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM), fat mass (FM)], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate), but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.

  8. Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation

    Directory of Open Access Journals (Sweden)

    John E. Blundell

    2012-09-01

    Full Text Available A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that “the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy”. However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM, fat mass (FM], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate, but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.

  9. Zinc Status Biomarkers and Cardiometabolic Risk Factors in Metabolic Syndrome: A Case Control Study

    Science.gov (United States)

    Freitas, Erika P. S.; Cunha, Aline T. O.; Aquino, Sephora L. S.; Pedrosa, Lucia F. C.; Lima, Severina C. V. C.; Lima, Josivan G.; Almeida, Maria G.; Sena-Evangelista, Karine C. M.

    2017-01-01

    Metabolic syndrome (MS) involves pathophysiological alterations that might compromise zinc status. The aim of this study was to evaluate zinc status biomarkers and their associations with cardiometabolic factors in patients with MS. Our case control study included 88 patients with MS and 37 controls. We performed clinical and anthropometric assessments and obtained lipid, glycemic, and inflammatory profiles. We also evaluated zinc intake, plasma zinc, erythrocyte zinc, and 24-h urinary zinc excretion. The average zinc intake was significantly lower in the MS group (p 0.05) between the two groups. We found significantly higher erythrocyte zinc concentration in the MS group (p < 0.001) independent from co-variable adjustments. Twenty-four hour urinary zinc excretion was significantly higher in the MS group (p = 0.008), and adjustments for age and sex explained 21% of the difference (R2 = 0.21, p < 0.001). There were significant associations between zincuria and fasting blood glucose concentration (r = 0.479), waist circumference (r = 0.253), triglyceride concentration (r = 0.360), glycated hemoglobin concentration (r = 0.250), homeostatic model assessment—insulin resistance (r = 0.223), and high-sensitivity C-reactive protein concentration (r = 0.427) (all p < 0.05) in the MS group. Patients with MS had alterations in zinc metabolism mainly characterized by an increase in erythrocyte zinc and higher zincuria. PMID:28241426

  10. Zinc Status Biomarkers and Cardiometabolic Risk Factors in Metabolic Syndrome: A Case Control Study

    Directory of Open Access Journals (Sweden)

    Erika P. S. Freitas

    2017-02-01

    Full Text Available Metabolic syndrome (MS involves pathophysiological alterations that might compromise zinc status. The aim of this study was to evaluate zinc status biomarkers and their associations with cardiometabolic factors in patients with MS. Our case control study included 88 patients with MS and 37 controls. We performed clinical and anthropometric assessments and obtained lipid, glycemic, and inflammatory profiles. We also evaluated zinc intake, plasma zinc, erythrocyte zinc, and 24-h urinary zinc excretion. The average zinc intake was significantly lower in the MS group (p < 0.001. Regression models indicated no significant differences in plasma zinc concentration (all p > 0.05 between the two groups. We found significantly higher erythrocyte zinc concentration in the MS group (p < 0.001 independent from co-variable adjustments. Twenty-four hour urinary zinc excretion was significantly higher in the MS group (p = 0.008, and adjustments for age and sex explained 21% of the difference (R2 = 0.21, p < 0.001. There were significant associations between zincuria and fasting blood glucose concentration (r = 0.479, waist circumference (r = 0.253, triglyceride concentration (r = 0.360, glycated hemoglobin concentration (r = 0.250, homeostatic model assessment—insulin resistance (r = 0.223, and high-sensitivity C-reactive protein concentration (r = 0.427 (all p < 0.05 in the MS group. Patients with MS had alterations in zinc metabolism mainly characterized by an increase in erythrocyte zinc and higher zincuria.

  11. Hypothalamic leucine metabolism regulates liver glucose production.

    Science.gov (United States)

    Su, Ya; Lam, Tony K T; He, Wu; Pocai, Alessandro; Bryan, Joseph; Aguilar-Bryan, Lydia; Gutiérrez-Juárez, Roger

    2012-01-01

    Amino acids profoundly affect insulin action and glucose metabolism in mammals. Here, we investigated the role of the mediobasal hypothalamus (MBH), a key center involved in nutrient-dependent metabolic regulation. Specifically, we tested the novel hypothesis that the metabolism of leucine within the MBH couples the central sensing of leucine with the control of glucose production by the liver. We performed either central (MBH) or systemic infusions of leucine in Sprague-Dawley male rats during basal pancreatic insulin clamps in combination with various pharmacological and molecular interventions designed to modulate leucine metabolism in the MBH. We also examined the role of hypothalamic ATP-sensitive K(+) channels (K(ATP) channels) in the effects of leucine. Enhancing the metabolism of leucine acutely in the MBH lowered blood glucose through a biochemical network that was insensitive to rapamycin but strictly dependent on the hypothalamic metabolism of leucine to α-ketoisocaproic acid and, further, insensitive to acetyl- and malonyl-CoA. Functional K(ATP) channels were also required. Importantly, molecular attenuation of this central sensing mechanism in rats conferred susceptibility to developing hyperglycemia. We postulate that the metabolic sensing of leucine in the MBH is a previously unrecognized mechanism for the regulation of hepatic glucose production required to maintain glucose homeostasis.

  12. Strict Liability Versus Policy and Regulation for Environmental Protection and Agricultural Waste Management in Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Bakri Ishak

    2010-01-01

    Full Text Available Basically, strict liability is part of the mechanism for expressing judgment or sentence by using direct evidence. This principle is very useful in order to obtain remedies from any damage either directly or indirectly. The principle in Rylands v Fletcher is responsible on imposing strict liability where if something brought onto land or collected there escapes liability under this rule can include not only the owner of land but also those who control or occupation on it. However, as a matter of fact, policy and regulation are also important in taking any action against any party who are responsible for environmental pollution or damage, which may include mismanagement of waste or industrial waste or agricultural waste. There are certain policies and regulations on environmental protection such as the National Environmental Policy, certain Acts and several regulations under the Environmental Quality Act 1974 (Act 127, which are very useful for agricultural waste management inter alia: Waters Act 1920 (Act 418, Environmental Quality (Prescribed Premises (Crude Palm Oil Regulations 1977, Environmental Quality (Prescribed Premises (Raw Natural Rubber Regulations 1978, Environmental Quality (Sewage and Industrial Effluents Regulations 1979, and Environmental Quality (Compounding of Offences Rules 1978. As a matter of fact, we should realize that time is of an essence for any parties which are involved in court cases and especially in avoiding the element of externality, which is commonly suffered by the government. In making this paper, therefore, some element of comparison with certain developed jurisdiction such as in the United Kingdom and Japan could not be avoided in order to obtain better outcome and to be more practical for the purpose of environmental protection and agricultural waste management.

  13. Validation of an automatic diagnosis of strict left bundle branch block criteria using 12-lead electrocardiograms

    DEFF Research Database (Denmark)

    Xia, Xiaojuan; Ruwald, Anne-Christine; Ruwald, Martin H

    2017-01-01

    AIMS: Strict left bundle branch block (LBBB) criteria were recently proposed to identify LBBB patients to benefit most from cardiac resynchronization therapy (CRT). The aim of our study was to automate identification of strict LBBB in order to facilitate its broader application. METHODS: We devel...

  14. 7 CFR 28.416 - Strict Good Ordinary Light Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.416 Strict Good Ordinary Light Spotted Color. Strict Good Ordinary Light Spotted Color is color which in spot or... Cotton Source: 57 FR 34498, Aug. 5, 1992, unless otherwise noted. ...

  15. Metabolic Markers or Conditions Preceding Parkinson’s Disease: A Case-Control Study

    Science.gov (United States)

    Savica, Rodolfo; Grossardt, Brandon R.; Ahlskog, J. Eric; Rocca, Walter A.

    2013-01-01

    Background Several metabolic markers or conditions have been explored as possible risk or protective factors for Parkinson’s disease (PD); however, results remain conflicting. We further investigated these associations using a case-control study design. Methods We used the medical records-linkage system of the Rochester Epidemiology Project to identify 196 subjects who developed PD in Olmsted County, MN, from 1976 through 1995. Each incident case was matched by age (± 1 year) and sex to a general population control. We reviewed the complete medical records of cases and controls in the medical records-linkage system to abstract information about body mass index (BMI), cholesterol levels, hypertension, and diabetes mellitus preceding the onset of PD (or the index year). Results There were no significant differences between cases and controls for the metabolic markers or conditions investigated. No significant associations were found using 2 cut-offs for BMI levels (BMI ≥ 25 or BMI ≥ 30 kg/m2) and 3 cut-offs for cholesterol levels (> 200, > 250, or > 300 mg/dl). A diagnosis of hypertension or the documented use of anti-hypertensive medications were not significantly associated with the subsequent risk of PD (odds ratio [OR], 1.00; 95% confidence interval [CI], 0.65–1.54; P = .99), nor was a diagnosis of diabetes mellitus or the use of glucose-lowering medications (OR, 0.77; 95% CI, 0.37–1.57; P =.47). Conclusions Our study, based on historical information from a records-linkage system, does not support an association between BMI, cholesterol levels, hypertension, or diabetes mellitus and later development of PD. PMID:22674432

  16. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial.

    Science.gov (United States)

    Dehghan, Parvin; Gargari, Bahram Pourghassem; Jafar-Abadi, Mohammad Asghari; Aliasgharzadeh, Akbar

    2014-02-01

    There is limited evidence on the effects of prebiotics on inflammation. Therefore, the aim of this study was to evaluate the effects of inulin supplementation on inflammatory indices and metabolic endotoxemia in patients with type 2 diabetes mellitus. The participants included diabetic females (n = 49). They were divided into an intervention group (n = 24) as well as a control group (n = 25) and received 10 g/d inulin or maltodextrin for 8 weeks, respectively. Fasting blood sugar (FBS), HbA1c, insulin, high-sensitive C-reactive protein (hs-CRP), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and plasma lipopolysaccharide (LPS) were measured pre and post intervention. Inulin-supplemented patients exhibited a significant decrease in FBS (8.5%), HbA1c (10.4%), fasting insulin (34.3%), homeostasis model assessment of insulin resistance (HOMA-IR) (39.5%), hs-CRP (35.6%), TNF-α (23.1%), and LPS (27.9%) compared with the maltodextrin group (p metabolic endotoxemia in women with type 2 diabetes.

  17. General aspects concerning strictly meat and fish transmitted parasitic infections

    Directory of Open Access Journals (Sweden)

    Daniele Crotti

    2012-03-01

    Full Text Available All helminths parasitosis transmitted to humans trough ingestion of infested fleshes, where man is definitive host too, are represented by four groups of helminths: the cestodes Dyphyllobothrium spp and Spirometra spp. (Sparganum proliferum is the name of the immature plerocercoid larva, the trematodes Opisthorchis Clonorchis “group” (many could be the genera and species involved, and the nematode Capillaria philippinensis. So, for fishes humans foods (fresh or salted water the control and prevention in veterinary health must be directed to investigation regarding intermediate stages of these parasites in fishes for human alimentation; if present, they must be eliminated. The helminths parasitosis transmitted to humans trough ingestion of infected mammals meats, are represented by taeniasis (Taenia saginata, T. solium and T. saginata asiatica, where man id definitive host and the infection is caused by ingestion of bovine or swine meat, containing larvae of these cestodes, and by trichinellosis, where humans represent a intermediate stage, and the eventual pathology is caused as by adult (acute infection as by larvae (chronic infection of this nematode: usually the meats responsible are infected pork, wild pork or horse (Trichinella spp. Is inside the meats of these animals. So the veterinary control and prophylaxis are necessary to avoid this disease and preventing the infection that could be severe.

  18. Prenatal Programming by Testosterone of Hypothalamic Metabolic Control Neurones in the Ewe

    Science.gov (United States)

    Sheppard, Kayla M.; Padmanabhan, Vasantha; Coolen, Lique M.; Lehman, Michael N.

    2013-01-01

    Ewes treated prenatally with testosterone (T) develop metabolic deficits, including insulin resistance, in addition to reproductive dysfunctions that collectively mimic polycystic ovarian syndrome (PCOS), a common endocrine disease in women. We hypothesised that metabolic deficits associated with prenatal T excess involve alterations in arcuate nucleus (ARC) neurones that contain either agouti-related peptide (AgRP) or proopiomelanocortin (POMC). Characterization of these neurones in the ewe showed that immunoreactive AgRP and POMC neurones were present in separate populations in the ARC, that AgRP and POMC neurones co-expressed either neuropeptide Y or cocaine- and amphetamine-regulated transcript, respectively, and that each population had a high degree of colocalization with androgen receptors. Examination of the effect of prenatal T exposure on the number of AgRP and POMC neurones in adult ewes showed that prenatal T excess significantly increased the number of AgRP but, not POMC neurones compared to controls; this increase was restricted to the middle division of the ARC, was mimicked by prenatal treatment with dihydrotestosterone, a non-aromatizable androgen, and was blocked by co-treatment of prenatal T with the anti-androgen, flutamide. The density of AgRP fibre immunoreactivity in the preoptic area, paraventricular nucleus, lateral hypothalamus and dorsomedial hypothalamic nucleus was also increased by prenatal T exposure. Thus, ewes that were exposed to androgens during foetal life showed alterations in the number of AgRP-immunoreactive neurones and the density of fibre immunoreactivity in their projection areas, suggestive of permanent prenatal programming of metabolic circuitry that may, in turn, contribute to insulin resistance and increased risk of obesity in this model of PCOS. PMID:21418339

  19. APOE-by-sex interactions on brain structure and metabolism in healthy elderly controls.

    Science.gov (United States)

    Sampedro, Frederic; Vilaplana, Eduard; de Leon, Mony J; Alcolea, Daniel; Pegueroles, Jordi; Montal, Victor; Carmona-Iragui, María; Sala, Isabel; Sánchez-Saudinos, María-Belén; Antón-Aguirre, Sofía; Morenas-Rodríguez, Estrella; Camacho, Valle; Falcón, Carles; Pavía, Javier; Ros, Domènec; Clarimón, Jordi; Blesa, Rafael; Lleó, Alberto; Fortea, Juan

    2015-09-29

    The APOE effect on Alzheimer Disease (AD) risk is stronger in women than in men but its mechanisms have not been established. We assessed the APOE-by-sex interaction on core CSF biomarkers, brain metabolism and structure in healthy elderly control individuals (HC). Cross-sectional study. HC from the Alzheimer's Disease Neuroimaging Initiative with available CSF (n = 274) and/or 3T-MRI (n = 168) and/or a FDG-PET analyses (n = 328) were selected. CSF amyloid-β1-42 (Aβ1-42), total-tau (t-tau) and phospho-tau (p-tau181p) levels were measured by Luminex assays. We analyzed the APOE-by-sex interaction on the CSF biomarkers in an analysis of covariance (ANCOVA). FDG uptake was analyzed by SPM8 and cortical thickness (CTh) was measured by FreeSurfer. FDG and CTh difference maps were derived from interaction and group analyses. APOE4 carriers had lower CSF Aβ1-42 and higher CSF p-tau181p values than non-carriers, but there was no APOE-by-sex interaction on CSF biomarkers. The APOE-by-sex interaction on brain metabolism and brain structure was significant. Sex stratification showed that female APOE4 carriers presented widespread brain hypometabolism and cortical thinning compared to female non-carriers whereas male APOE4 carriers showed only a small cluster of hypometabolism and regions of cortical thickening compared to male non-carriers. The impact of APOE4 on brain metabolism and structure is modified by sex. Female APOE4 carriers show greater hypometabolism and atrophy than male carriers. This APOE-by-sex interaction should be considered in clinical trials in preclinical AD where APOE4 status is a selection criterion.

  20. Reduced Metabolism in Brain 'Control Networks' Following Cocaine-Cues Exposure in Female Cocaine Abusers

    International Nuclear Information System (INIS)

    Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Telang, F.; Goldstein, R.Z.; Alia-Klein, N.; Wong, C.T.

    2011-01-01

    Gender differences in vulnerability for cocaine addiction have been reported. Though the mechanisms are not understood, here we hypothesize that gender differences in reactivity to conditioned-cues, which contributes to relapse, are involved. To test this we compared brain metabolism (using PET and 18 FDG) between female (n = 10) and male (n = 16) active cocaine abusers when they watched a neutral video (nature scenes) versus a cocaine-cues video. Self-reports of craving increased with the cocaine-cue video but responses did not differ between genders. In contrast, changes in whole brain metabolism with cocaine-cues differed by gender (p<0.05); females significantly decreased metabolism (-8.6% ± 10) whereas males tended to increase it (+5.5% ± 18). SPM analysis (Cocaine-cues vs Neutral) in females revealed decreases in frontal, cingulate and parietal cortices, thalamus and midbrain (p<0.001) whereas males showed increases in right inferior frontal gyrus (BA 44/45) (only at p<0.005). The gender-cue interaction showed greater decrements with Cocaine-cues in females than males (p<0.001) in frontal (BA 8, 9, 10), anterior cingulate (BA 24, 32), posterior cingulate (BA 23, 31), inferior parietal (BA 40) and thalamus (dorsomedial nucleus). Females showed greater brain reactivity to cocaine-cues than males but no differences in craving, suggesting that there may be gender differences in response to cues that are not linked with craving but could affect subsequent drug use. Specifically deactivation of brain regions from 'control networks' (prefrontal, cingulate, inferior parietal, thalamus) in females could increase their vulnerability to relapse since it would interfere with executive function (cognitive inhibition). This highlights the importance of gender tailored interventions for cocaine addiction.

  1. Reduced metabolism in brain "control networks" following cocaine-cues exposure in female cocaine abusers.

    Directory of Open Access Journals (Sweden)

    Nora D Volkow

    2011-02-01

    Full Text Available Gender differences in vulnerability for cocaine addiction have been reported. Though the mechanisms are not understood, here we hypothesize that gender differences in reactivity to conditioned-cues, which contributes to relapse, are involved.To test this we compared brain metabolism (using PET and ¹⁸FDG between female (n = 10 and male (n = 16 active cocaine abusers when they watched a neutral video (nature scenes versus a cocaine-cues video.Self-reports of craving increased with the cocaine-cue video but responses did not differ between genders. In contrast, changes in whole brain metabolism with cocaine-cues differed by gender (p<0.05; females significantly decreased metabolism (-8.6%±10 whereas males tended to increase it (+5.5%±18. SPM analysis (Cocaine-cues vs Neutral in females revealed decreases in frontal, cingulate and parietal cortices, thalamus and midbrain (p<0.001 whereas males showed increases in right inferior frontal gyrus (BA 44/45 (only at p<0.005. The gender-cue interaction showed greater decrements with Cocaine-cues in females than males (p<0.001 in frontal (BA 8, 9, 10, anterior cingulate (BA 24, 32, posterior cingulate (BA 23, 31, inferior parietal (BA 40 and thalamus (dorsomedial nucleus.Females showed greater brain reactivity to cocaine-cues than males but no differences in craving, suggesting that there may be gender differences in response to cues that are not linked with craving but could affect subsequent drug use. Specifically deactivation of brain regions from "control networks" (prefrontal, cingulate, inferior parietal, thalamus in females could increase their vulnerability to relapse since it would interfere with executive function (cognitive inhibition. This highlights the importance of gender tailored interventions for cocaine addiction.

  2. Delicate Metabolic Control and Coordinated Stress Response Critically Determine Antifungal Tolerance of Candida albicans Biofilm Persisters.

    Science.gov (United States)

    Li, Peng; Seneviratne, Chaminda J; Alpi, Emanuele; Vizcaino, Juan A; Jin, Lijian

    2015-10-01

    Candida infection has emerged as a critical health care burden worldwide, owing to the formation of robust biofilms against common antifungals. Recent evidence shows that multidrug-tolerant persisters critically account for biofilm recalcitrance, but their underlying biological mechanisms are poorly understood. Here, we first investigated the phenotypic characteristics of Candida biofilm persisters under consecutive harsh treatments of amphotericin B. The prolonged treatments effectively killed the majority of the cells of biofilms derived from representative strains of Candida albicans, Candida glabrata, and Candida tropicalis but failed to eradicate a small fraction of persisters. Next, we explored the tolerance mechanisms of the persisters through an investigation of the proteomic profiles of C. albicans biofilm persister fractions by liquid chromatography-tandem mass spectrometry. The C. albicans biofilm persisters displayed a specific proteomic signature, with an array of 205 differentially expressed proteins. The crucial enzymes involved in glycolysis, the tricarboxylic acid cycle, and protein synthesis were markedly downregulated, indicating that major metabolic activities are subdued in the persisters. It is noteworthy that certain metabolic pathways, such as the glyoxylate cycle, were able to be activated with significantly increased levels of isocitrate lyase and malate synthase. Moreover, a number of important proteins responsible for Candida growth, virulence, and the stress response were greatly upregulated. Interestingly, the persisters were tolerant to oxidative stress, despite highly induced intracellular superoxide. The current findings suggest that delicate metabolic control and a coordinated stress response may play a crucial role in mediating the survival and antifungal tolerance of Candida biofilm persisters. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Effects of short- and long-term Mediterranean-based dietary treatment on plasma LC-QTOF/MS metabolic profiling of subjects with metabolic syndrome features: The Metabolic Syndrome Reduction in Navarra (RESMENA) randomized controlled trial.

    Science.gov (United States)

    Bondia-Pons, Isabel; Martinez, José Alfredo; de la Iglesia, Rocio; Lopez-Legarrea, Patricia; Poutanen, Kaisa; Hanhineva, Kati; Zulet, Maria de los Ángeles

    2015-04-01

    Adherence to the Mediterranean diet has been associated with a reduced risk of metabolic syndrome (MetS). Metabolomics approach may contribute to identify beneficial associations of metabolic changes affected by Mediterranean diet-based interventions with inflammatory and oxidative-stress markers related to the etiology and development of the MetS. Liquid chromatography coupled to quadrupole-time of flight-MS metabolic profiling was applied to plasma from a 6-month randomized intervention with two sequential periods, a 2-month nutritional-learning intervention period, and a 4-month self-control period, with two energy-restricted diets; the RESMENA diet (based on the Mediterranean dietary pattern) and the Control diet (based on the American Heart Association guidelines), in 72 subjects with a high BMI and at least two features of MetS. The major contributing biomarkers of each sequential period were lipids, mainly phospholipids and lysophospholipids. Dependency network analysis showed a different pattern of associations between metabolic changes and clinical variables after 2 and 6 month of intervention, with a highly interconnected network during the nutritional-learning intervention period of the study. The 2-month RESMENA diet produced significant changes in the plasma metabolic profile of subjects with MetS features. However, at the end of the 6-month study, most of the associations between metabolic and clinical variables disappeared; suggesting that adherence to healthy dietary habits had declined during the self-control period. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Impact of probiotics in women with gestational diabetes mellitus on metabolic health: a randomized controlled trial.

    Science.gov (United States)

    Lindsay, Karen L; Brennan, Lorraine; Kennelly, Maria A; Maguire, Orla C; Smith, Thomas; Curran, Sinead; Coffey, Mary; Foley, Michael E; Hatunic, Mensud; Shanahan, Fergus; McAuliffe, Fionnuala M

    2015-04-01

    Probiotics are live microorganisms that may confer health benefits on the host. Recent trials of probiotic use among healthy pregnant women demonstrate potential for improved glycemic control. The aim of this study was to investigate the effects of a probiotic capsule intervention on maternal metabolic parameters and pregnancy outcome among women with gestational diabetes. This double-blind placebo-controlled randomized trial recruited pregnant women with a new diagnosis of gestational diabetes or impaired glucose tolerance following a 3-hour 100-g glucose tolerance test. Women were randomized to a daily probiotic (Lactobacillus salivarius UCC118) or placebo capsule from diagnosis until delivery. Fasting blood samples were collected at baseline and 4-6 weeks after capsule commencement for analysis of glucose, insulin, c-peptide, and lipids. The primary outcome was difference in fasting glucose postintervention, first analyzed on an intention-to-treat basis and followed by per-protocol analysis that excluded women commenced on pharmacological therapy (insulin or metformin). Secondary outcomes were changes in insulin, c-peptide, homeostasis model assessment and lipids, requirement for pharmacological therapy, and neonatal anthropometry. Of 149 women recruited and randomized, there were no differences between the probiotic and placebo groups in postintervention fasting glucose (4.65 ± 0.49 vs 4.65 ± 0.53 mmol/L; P = 373), requirement for pharmacological therapy (17% vs 14%; P = .643), or birthweight (3.57 ± 0.64 vs 3.60 ± 0.57 kg; P = .845). Among 100 women managed with diet and exercise alone, fasting plasma glucose decreased significantly within both the probiotic (4.76 ± 0.45 to 4.57 ± 0.42 mmol/L; P probiotic vs the placebo group (+0.27 ± 0.48 vs +0.50 ± 0.52 mmol/L total cholesterol, P = .031; +0.08 ± 0.51 vs +0.31 ± 0.45 mmol/L LDL cholesterol, P = .011). No differences were noted between groups in other metabolic parameters or pregnancy

  5. BEYOND GLYCEMIC CONTROL IN DIABETES MELLITUS: EFFECTS OF INCRETIN-BASED THERAPY ON BONE METABOLISM

    Directory of Open Access Journals (Sweden)

    ELENA eCECCARELLI

    2013-06-01

    Full Text Available Diabetes mellitus (DM and osteoporosis (OP are common disorders with a significant health burden, and an increase in fracture risk has been described both in type 1 (T1DM and in type 2 (T2DM diabetes. The pathogenic mechanisms of impaired skeletal strength in diabetes remain to be clarified in details and they are only in part reflected by a variation in bone mineral density (BMD. In T2DM, the occurrence of low bone turnover together with a decreased osteoblast activity and compromised bone quality has been shown. Of note, some antidiabetic drugs (e.g. tiazolidinediones, insulin may deeply affect bone metabolism. In addition, the recently introduced class of incretin-based drugs (i.e. GLP-1 receptor agonists and DPP-4 inhibitors is expected to exert potentially beneficial effects on bone health, possibly due to a bone anabolic activity of GLP-1, that can be either direct or indirect through the involvement of thyroid C cells.Here we will review the established as well as the putative effects of incretin hormones and of incretin-based drugs on bone metabolism, both in preclinical models and in man, taking into account that such therapeutic strategy may be effective not only to achieve a good glycemic control, but also to improve bone health in diabetic patients.

  6. Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging

    Science.gov (United States)

    Crane, Justin D; MacNeil, Lauren G; Lally, James S; Ford, Rebecca J; Bujak, Adam L; Brar, Ikdip K; Kemp, Bruce E; Raha, Sandeep; Steinberg, Gregory R; Tarnopolsky, Mark A

    2015-01-01

    Aging is commonly associated with a structural deterioration of skin that compromises its barrier function, healing, and susceptibility to disease. Several lines of evidence show that these changes are driven largely by impaired tissue mitochondrial metabolism. While exercise is associated with numerous health benefits, there is no evidence that it affects skin tissue or that endocrine muscle-to-skin signaling occurs. We demonstrate that endurance exercise attenuates age-associated changes to skin in humans and mice and identify exercise-induced IL-15 as a novel regulator of mitochondrial function in aging skin. We show that exercise controls IL-15 expression in part through skeletal muscle AMP-activated protein kinase (AMPK), a central regulator of metabolism, and that the elimination of muscle AMPK causes a deterioration of skin structure. Finally, we establish that daily IL-15 therapy mimics some of the anti-aging effects of exercise on muscle and skin in mice. Thus, we elucidate a mechanism by which exercise confers health benefits to skin and suggest that low-dose IL-15 therapy may prove to be a beneficial strategy to attenuate skin aging. PMID:25902870

  7. Basal metabolic rate in children with chronic kidney disease and healthy control children.

    Science.gov (United States)

    Anderson, Caroline E; Gilbert, Rodney D; Elia, Marinos

    2015-11-01

    Meeting energy requirements of children with chronic kidney disease (CKD) is paramount to optimising growth and clinical outcome, but little information on this subject has been published. In this study, we examined basal metabolic rate (BMR; a component of energy expenditure) with the aim to determine whether it is related to kidney function independently of weight, height and lean body mass (LBM). Twenty children with CKD and 20 healthy age- and gender-matched control children were studied on one occasion. BMR was measured by indirect open circuit calorimetry and predicted by the Schofield equation. Estimated glomerular filtration rate (eGFR) was related to BMR and adjusted for weight, height, age and LBM measured by skinfold thickness. The adjusted BMR of children with CKD did not differ significantly from that of healthy subjects (1296 ± 318 vs.1325 ± 178 kcal/day; p = 0.720). Percentage of predicted BMR also did not differ between the two groups (102 ± 12% vs. 99 ± 14%; p = 0.570). Within the CKD group, eGFR (mean 33.7 ± 20.5 mL/min/m(2)) was significantly related to BMR (β 0.3, r = 0.517, p = 0.019) independently of nutritional status and LBM. It seems reasonable to use estimated average requirement as the basis of energy prescriptions for children with CKD (mean CKD stage 3 disease). However, those who were sicker had significantly lower metabolic rates.

  8. The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity.

    Science.gov (United States)

    Heimbucher, Thomas; Liu, Zheng; Bossard, Carine; McCloskey, Richard; Carrano, Andrea C; Riedel, Christian G; Tanasa, Bogdan; Klammt, Christian; Fonslow, Bryan R; Riera, Celine E; Lillemeier, Bjorn F; Kemphues, Kenneth; Yates, John R; O'Shea, Clodagh; Hunter, Tony; Dillin, Andrew

    2015-07-07

    FOXO family transcription factors are downstream effectors of Insulin/IGF-1 signaling (IIS) and major determinants of aging in organisms ranging from worms to man. The molecular mechanisms that actively promote DAF16/FOXO stability and function are unknown. Here we identify the deubiquitylating enzyme MATH-33 as an essential DAF-16 regulator in IIS, which stabilizes active DAF-16 protein levels and, as a consequence, influences DAF-16 functions, such as metabolism, stress response, and longevity in C. elegans. MATH-33 associates with DAF-16 in cellulo and in vitro. MATH-33 functions as a deubiquitylase by actively removing ubiquitin moieties from DAF-16, thus counteracting the action of the RLE-1 E3-ubiquitin ligase. Our findings support a model in which MATH-33 promotes DAF-16 stability in response to decreased IIS by directly modulating its ubiquitylation state, suggesting that regulated oscillations in the stability of DAF-16 protein play an integral role in controlling processes such as metabolism and longevity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Postnatal β Cell Proliferation.

    Science.gov (United States)

    Zeng, Chun; Mulas, Francesca; Sui, Yinghui; Guan, Tiffany; Miller, Nathanael; Tan, Yuliang; Liu, Fenfen; Jin, Wen; Carrano, Andrea C; Huising, Mark O; Shirihai, Orian S; Yeo, Gene W; Sander, Maike

    2017-05-02

    Pancreatic β cell mass for appropriate blood glucose control is established during early postnatal life. β cell proliferative capacity declines postnatally, but the extrinsic cues and intracellular signals that cause this decline remain unknown. To obtain a high-resolution map of β cell transcriptome dynamics after birth, we generated single-cell RNA-seq data of β cells from multiple postnatal time points and ordered cells based on transcriptional similarity using a new analytical tool. This analysis captured signatures of immature, proliferative β cells and established high expression of amino acid metabolic, mitochondrial, and Srf/Jun/Fos transcription factor genes as their hallmark feature. Experimental validation revealed high metabolic activity in immature β cells and a role for reactive oxygen species and Srf/Jun/Fos transcription factors in driving postnatal β cell proliferation and mass expansion. Our work provides the first high-resolution molecular characterization of state changes in postnatal β cells and paves the way for the identification of novel therapeutic targets to stimulate β cell regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. CD47 Receptor Globally Regulates Metabolic Pathways That Control Resistance to Ionizing Radiation.

    Science.gov (United States)

    Miller, Thomas W; Soto-Pantoja, David R; Schwartz, Anthony L; Sipes, John M; DeGraff, William G; Ridnour, Lisa A; Wink, David A; Roberts, David D

    2015-10-09

    Modulating tissue responses to stress is an important therapeutic objective. Oxidative and genotoxic stresses caused by ionizing radiation are detrimental to healthy tissues but beneficial for treatment of cancer. CD47 is a signaling receptor for thrombospondin-1 and an attractive therapeutic target because blocking CD47 signaling protects normal tissues while sensitizing tumors to ionizing radiation. Here we utilized a metabolomic approach to define molecular mechanisms underlying this radioprotective activity. CD47-deficient cells and cd47-null mice exhibited global advantages in preserving metabolite levels after irradiation. Metabolic pathways required for controlling oxidative stress and mediating DNA repair were enhanced. Some cellular energetics pathways differed basally in CD47-deficient cells, and the global declines in the glycolytic and tricarboxylic acid cycle metabolites characteristic of normal cell and tissue responses to irradiation were prevented in the absence of CD47. Thus, CD47 mediates signaling from the extracellular matrix that coordinately regulates basal metabolism and cytoprotective responses to radiation injury. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. CD47 Receptor Globally Regulates Metabolic Pathways That Control Resistance to Ionizing Radiation*

    Science.gov (United States)

    Miller, Thomas W.; Soto-Pantoja, David R.; Schwartz, Anthony L.; Sipes, John M.; DeGraff, William G.; Ridnour, Lisa A.; Wink, David A.; Roberts, David D.

    2015-01-01

    Modulating tissue responses to stress is an important therapeutic objective. Oxidative and genotoxic stresses caused by ionizing radiation are detrimental to healthy tissues but beneficial for treatment of cancer. CD47 is a signaling receptor for thrombospondin-1 and an attractive therapeutic target because blocking CD47 signaling protects normal tissues while sensitizing tumors to ionizing radiation. Here we utilized a metabolomic approach to define molecular mechanisms underlying this radioprotective activity. CD47-deficient cells and cd47-null mice exhibited global advantages in preserving metabolite levels after irradiation. Metabolic pathways required for controlling oxidative stress and mediating DNA repair were enhanced. Some cellular energetics pathways differed basally in CD47-deficient cells, and the global declines in the glycolytic and tricarboxylic acid cycle metabolites characteristic of normal cell and tissue responses to irradiation were prevented in the absence of CD47. Thus, CD47 mediates signaling from the extracellular matrix that coordinately regulates basal metabolism and cytoprotective responses to radiation injury. PMID:26311851

  12. Multidisciplinary Treatment of the Metabolic Syndrome Lowers Blood Pressure Variability Independent of Blood Pressure Control.

    Science.gov (United States)

    Marcus, Yonit; Segev, Elad; Shefer, Gabi; Sack, Jessica; Tal, Brurya; Yaron, Marianna; Carmeli, Eli; Shefer, Lili; Margaliot, Miri; Limor, Rona; Gilad, Suzan; Sofer, Yael; Stern, Naftali

    2016-01-01

    Blood pressure (BP) variability (BPV) contributes to target organ damage independent of BP. The authors examined the effect of a 1-year multidisciplinary intervention on BPV in patients with the metabolic syndrome (MetS) as defined by criteria from the Third Report of the Adult Treatment Panel. Forty-four nondiabetic patients underwent clinical and biochemical profiling, 24-hour ambulatory BP monitoring (ABPM), body composition, carotid intima-media thickness, and carotid-femoral pulse wave velocity (PWV). The intervention targeted all MetS components. BPV was assessed by the standard deviation of daytime systolic BP derived from ABPM. Patients with low and high BPV (lower or higher than the median daytime standard deviation of 11.6 mm Hg) did not differ in regards to systolic and diastolic BP, age, fasting glucose, glycated hemoglobin, and body mass index, but the high-variability group had higher values of low-density lipoprotein and leg fat. The 1-year intervention resulted in weight reduction but not BP-lowering. BPV declined in the high-variability group in association with lowering of PWV, C-reactive protein, glycated hemoglobin, alanine aminotransferase, asymmetric dimethylarginine, and increased high-density lipoprotein cholesterol. A multidisciplinary intervention independent of BP-lowering normalized BPV, lowered PWV, and enhanced metabolic control. © 2015 Wiley Periodicals, Inc.

  13. Protocol for quality control in metabolic profiling of biological fluids by U(H)PLC-MS.

    Science.gov (United States)

    Gika, Helen G; Zisi, Chrysostomi; Theodoridis, Georgios; Wilson, Ian D

    2016-01-01

    The process of untargeted metabolic profiling/phenotyping of complex biological matrices, i.e., biological fluids such as blood plasma/serum, saliva, bile, and tissue extracts, provides the analyst with a wide range of challenges. Not the least of these challenges is demonstrating that the acquired data are of "good" quality and provide the basis for more detailed multivariate, and other, statistical analysis necessary to detect, and identify, potential biomarkers that might provide insight into the process under study. Here straightforward and pragmatic "quality control (QC)" procedures are described that allow investigators to monitor the analytical processes employed for global, untargeted, metabolic profiling. The use of this methodology is illustrated with an example from the analysis of human urine where an excel spreadsheet of the preprocessed LC-MS output is provided with embedded macros, calculations and visualization plots that can be used to explore the data. Whilst the use of these procedures is exemplified on human urine samples, this protocol is generally applicable to metabonomic/metabolomic profiling of biofluids, tissue and cell extracts from many sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Pregnancy and lactation alter biomarkers of biotin metabolism in women consuming a controlled diet.

    Science.gov (United States)

    Perry, Cydne A; West, Allyson A; Gayle, Antoinette; Lucas, Lauren K; Yan, Jian; Jiang, Xinyin; Malysheva, Olga; Caudill, Marie A

    2014-12-01

    Biotin functions as a cofactor for several carboxylase enzymes with key roles in metabolism. At present, the dietary requirement for biotin is unknown and intake recommendations are provided as Adequate Intakes (AIs). The biotin AI for adults and pregnant women is 30 μg/d, whereas 35 μg/d is recommended for lactating women. However, pregnant and lactating women may require more biotin to meet the demands of these reproductive states. The current study sought to quantify the impact of reproductive state on biotin status response to a known dietary intake of biotin. To achieve this aim, we measured a panel of biotin biomarkers among pregnant (gestational week 27 at study entry; n = 26), lactating (postnatal week 5 at study entry; n = 28), and control (n = 21) women who participated in a 10- to 12-wk feeding study providing 57 μg of dietary biotin/d as part of a mixed diet. Over the course of the study, pregnant women excreted 69% more (vs. control; P biotin-dependent methylcrotonyl-coenzyme A carboxylase is impaired. Interestingly, urinary excretion of 3-hydroxyisovaleryl-carnitine (3-HIA-carnitine), a downstream metabolite of 3-HIA, was 27% lower (P = 0.05) among pregnant (vs. control) women, a finding that may arise from carnitine inadequacy during gestation. No differences (P > 0.05) were detected in plasma biotin, urinary biotin, or urinary bisnorbiotin between pregnant and control women. Lactating women excreted 76% more (vs. control; P = 0.001) of the biotin catabolite bisnorbiotin, indicating that lactation accelerates biotin turnover and loss. Notably, with respect to control women, lactating women excreted 23% less (P = 0.04) urinary 3-HIA and 26% less (P = 0.05) urinary 3-HIA-carnitine, suggesting that lactation reduces leucine catabolism and that these metabolites may not be useful indicators of biotin status during lactation. Overall, these data demonstrate significant alterations in markers of biotin metabolism during pregnancy and lactation and

  15. Pregnancy and Lactation Alter Biomarkers of Biotin Metabolism in Women Consuming a Controlled Diet123

    Science.gov (United States)

    Perry, Cydne A; West, Allyson A; Gayle, Antoinette; Lucas, Lauren K; Yan, Jian; Jiang, Xinyin; Malysheva, Olga; Caudill, Marie A

    2014-01-01

    Background: Biotin functions as a cofactor for several carboxylase enzymes with key roles in metabolism. At present, the dietary requirement for biotin is unknown and intake recommendations are provided as Adequate Intakes (AIs). The biotin AI for adults and pregnant women is 30 μg/d, whereas 35 μg/d is recommended for lactating women. However, pregnant and lactating women may require more biotin to meet the demands of these reproductive states. Objective: The current study sought to quantify the impact of reproductive state on biotin status response to a known dietary intake of biotin. Methods: To achieve this aim, we measured a panel of biotin biomarkers among pregnant (gestational week 27 at study entry; n = 26), lactating (postnatal week 5 at study entry; n = 28), and control (n = 21) women who participated in a 10- to 12-wk feeding study providing 57 μg of dietary biotin/d as part of a mixed diet. Results: Over the course of the study, pregnant women excreted 69% more (vs. control; P biotin-dependent methylcrotonyl–coenzyme A carboxylase is impaired. Interestingly, urinary excretion of 3-hydroxyisovaleryl-carnitine (3-HIA-carnitine), a downstream metabolite of 3-HIA, was 27% lower (P = 0.05) among pregnant (vs. control) women, a finding that may arise from carnitine inadequacy during gestation. No differences (P > 0.05) were detected in plasma biotin, urinary biotin, or urinary bisnorbiotin between pregnant and control women. Lactating women excreted 76% more (vs. control; P = 0.001) of the biotin catabolite bisnorbiotin, indicating that lactation accelerates biotin turnover and loss. Notably, with respect to control women, lactating women excreted 23% less (P = 0.04) urinary 3-HIA and 26% less (P = 0.05) urinary 3-HIA-carnitine, suggesting that lactation reduces leucine catabolism and that these metabolites may not be useful indicators of biotin status during lactation. Conclusions: Overall, these data demonstrate significant alterations in markers of

  16. Prevalence of chronic complications, metabolic control and nutritional intake in type 1 diabetes

    DEFF Research Database (Denmark)

    Toeller, M; Buyken, A E; Heitkamp, G

    1999-01-01

    for gender, age and diabetes duration. All examinations were performed using standardised, validated methods. HBA1c, LDL-cholesterol and fasting triglycerides were higher in the eastern European centres than in the southern or north-western European centres. Acute (severe ketoacidosis, severe hypoglycaemia......This study compares the prevalence of chronic complications, the quality of metabolic control and the nutritional intake in people with type 1 diabetes in different European regions. The EURODIAB Complications Study included a sample of 3250 European patients with type 1 diabetes stratified......) and chronic diabetes complications (retinopathy, nephropathy, neuropathy, cardiovascular disease) were all considerably more frequent in the eastern European centres. HbA1c was lower in the German centres than in the total EURODIAB cohort or in the north-western European centres, but severe hypoglycaemia...

  17. [Impact of physical activity on metabolic control and the development of chronic complications in patients with type 1 diabetes mellitus].

    Science.gov (United States)

    Carral San Laureano, Florentino; Gutiérrez Manzanedo, José Vicente; Ayala Ortega, Carmen; García Calzado, Concepción; Silva Rodríguez, Juan José; Aguilar Diosdado, Manuel

    2010-01-01

    Together with a balanced diet, regular physical activity is one of the pillars of diabetes mellitus (DM) management. Physical activity theoretically provides the same advantages in people with DM as in the general population and also has some beneficial effects in controlling metabolic factors, such as improving blood glucose levels and insulin sensitivity. In this article, we analyze the main clinical studies published to date that evaluate the impact of physical activity on metabolic control or the development of chronic complications in patients with type 1 diabetes mellitus. In conclusion, most of the evaluated studies show that regular physical activity favorably affects metabolic control in DM (or at least does not have adverse effects). However, there is insufficient information about the impact of physical activity on the development and progression of chronic complications. 2010 SEEN. Published by Elsevier Espana. All rights reserved.

  18. Metabolic Control of Type 1 Diabetes in Children Treated with Insulin Pump Therapy

    Directory of Open Access Journals (Sweden)

    Sniježana Hasanbegović

    2009-05-01

    Full Text Available In this paper we present study of metabolic control in children suffering from TYPE 1 Diabetes Mellitus (T1DM who use insulin pump (IP therapy, and who were treated at Paediatric Clinic in Sarajevo.In retrospective study we followed all T1DM patients with IP therapy introduced in the period from 1st March 2005 to 1st September 2008.We analyzed their age and sex structure, therapy before IP use, and the metabolic control of T1DM represented with glycosylated haemoglobin (HbA1c value just before and 6 months after IP therapy introducing.The total number of observed patients was 39. There were 24 boys (61,5 % and 15 girls (38,5 % with the age range between 12,3 ± 3,2 years. Most patients were from age group 8-14 years. In the same number of patients 17 (43,6 % diabetes duration was less than 5 years and 5-10 years. Before IP introduction most patient 61,5 % use therapy with insulin analogues. Mean value of HbA1c before IP therapy introduction was 8,57±1,65 % and 6 months after IP therapy introduction HbA1c 7,53 ± 0,81 % (p = 0,0009. There was significant reduction HbA1c values even 6 month after IP therapy introduced.Therapy with IP in children with diabetes was very efficient in achieving therapeutic goal of T1DM treatment (HbA1c<7,0 % what will protect patients from appearance and progression of chronic micro vascular complications on eyes, kidneys and peripheral nerves.

  19. Adherence to Two Methods of Education and Metabolic Control in Type 2 Diabetics.

    Science.gov (United States)

    Gutiérrez Herrera, Verónica R; Zerón, Hugo Mendieta; Mendieta Alcántara, Martha R

    2015-04-01

    Education in diabetes optimizes metabolic control, prevents acute and chronic complications, and improves quality of life. Our main objective was to evaluate if a better metabolic control is achieved in diabetic patients undergoing a program of intensive interactive care than in those with traditional care and written information. Patients with type 2 diabetes mellitus (T2DM), aged 20-60 years, education level at least of primary school, serum creatinine ≤ 2.5 mg/dl, self-sufficient and HbA1c ≥ 7.1% were allocated in two groups of education, 1) minimal education (MEG) and 2) full education (FEG). The MEG patients followed predefined diet; FEG patients chose the diet by selecting foods from each group in a list of matches, teaching them to count nutrients, kilocalories (kcal) and percentage of nutrients. A follow-up of 31 patients in each group was obtained. The proportion of patients who had initial adherence was 13.33% in the MEG group and 9.67% in the FEG group while, at the end of the study, these percentages were of 73.3% and 58.38% respectively. The final HbA1c decreased in both groups, with or without good adherence. The FEG group had a higher decline in the values of cholesterol (p = 0.036) and LDL (p = 0.002) than the MEG group. Education programs in T2DM contribute to a decrease in HbA1c within six months, but an intensive program is more effective in reducing cholesterol and LDL.

  20. Prospective associations between persistent organic pollutants and metabolic syndrome: a nested case-control study.

    Science.gov (United States)

    Lee, Yu-Mi; Kim, Ki-Su; Kim, Se-A; Hong, Nam-Soo; Lee, Su-Jin; Lee, Duk-Hee

    2014-10-15

    Exposure to persistent organic pollutants (POPs) has recently been linked to metabolic syndrome (MetS) and some MetS components. However, prospective evidence in humans is scarce, and the nature of the dose-response relationship is unclear. We evaluated the association between POPs and MetS using a nested-case control study within a community-based Korean cohort. The study subjects were 64 patients newly diagnosed with MetS during a 4-year follow-up, and the controls were 182 subjects without MetS. Concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were measured in stored serum collected at baseline. The concentrations of most PCBs and some OCPs such as β-hexachlorocyclohexane, hexachlorobenzene, oxychlordane, and heptachlor epoxide predicted the risk for MetS. The POP exposure and MetS showed an inverted U-shaped or a linear association with plateau rather than a linear dose-response association. When the summary measure of the PCBs and OCPs was used, the adjusted odds ratios (ORs) across the quartiles of the summary measure were 1.0, 1.3, 3.8 (95% confidence interval, 1.3-10.7), and 2.1 (Pquadratic=0.013) after adjusting for potential confounders. In the analyses of each of the five MetS components, POP exposure was mainly associated with an increased risk for glucose and lipid metabolism disturbances. This study demonstrated that chronic exposure to a mixture of PCBs and OCPs can increase the risk for MetS within the low-dose background exposure range of POPs. As the findings of this study suggest a nonmonotonic dose-response relationship, in vitro and in vivo experimental studies are needed to understand the underlying mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Microbiological changes after periodontal therapy in diabetic patients with inadequate metabolic control

    Directory of Open Access Journals (Sweden)

    Carina Maciel Silva-Boghossian

    2014-05-01

    Full Text Available The present study investigated the effect of non-surgical periodontal treatment (SRP on the composition of the subgingival microbiota of chronic periodontitis (CP in individuals with type 2 diabetes (DM2 with inadequate metabolic control and in systemically healthy (SH individuals. Forty individuals (20 DM2 and 20 SH with CP underwent full-mouth periodontal examination. Subgingival plaque was sampled from 4 deep sites of each individual and tested for mean prevalence and counts of 45 bacterial taxa by the checkerboard method. Clinical and microbiological assessments were performed before and 3 months after SRP. At baseline, those in the DM2 group presented a significantly higher percentage of sites with visible plaque and bleeding on probing compared with those in the SH group (p < 0.01. Those in the DM2 group presented significantly higher levels of C. rectus and P. gingivalis, and lower prevalence of P. micra and S. anginosus, compared with those in the SH group (p ≤ 0.001. At the 3-month visit, both groups showed a significant improvement in all clinical parameters (p < 0.01. Those in the DM2 group showed significantly higher prevalence and/or levels of A. gerencseriae, A. naeslundii I, A. oris, A. odontolyticus, C. sputigena, F. periodonticum, and G. morbillorum compared with those in the SH group (p ≤ 0.001. However, those in the DM2 group showed a significant reduction in the levels of P. intermedia, P. gingivalis, T. forsythia, and T. denticola (p ≤ 0.001 over time. Those in the SRP group showed improved periodontal status and reduced levels of putative periodontal pathogens at 3 months’ evaluation compared with those in the DM2 group with inadequate metabolic control.

  2. Divergent changes in serum sterols during a strict uncooked vegan diet in patients with rheumatoid arthritis.

    Science.gov (United States)

    Agren, J J; Tvrzicka, E; Nenonen, M T; Helve, T; Hänninen, O

    2001-02-01

    The effects of a strict uncooked vegan diet on serum lipid and sterol concentrations were studied in patients with rheumatoid arthritis. The subjects were randomized into a vegan diet group (n 16), who consumed a vegan diet for 2-3 months, or into a control group (n 13), who continued their usual omnivorous diets. Serum total and LDL-cholesterol and -phospholipid concentrations were significantly decreased by the vegan diet. The levels of serum cholestanol and lathosterol also decreased, but serum cholestanol:total cholesterol and lathosterol:total cholesterol did not change. The effect of a vegan diet on serum plant sterols was divergent as the concentration of campesterol decreased while that of sitosterol increased. This effect resulted in a significantly greater sitosterol:campesterol value in the vegan diet group than in the control group (1.48 (SD 0.39) v. 0.72 (SD 0.14); P vegan diet changes the relative absorption rates of these sterols and/or their biliary clearance.

  3. Generalized mechanical pain sensitivity over nerve tissues in patients with strictly unilateral migraine.

    Science.gov (United States)

    Fernández-de-las-Peñas, César; Arendt-Nielsen, Lars; Cuadrado, María Luz; Pareja, Juan A

    2009-06-01

    No study has previously analyzed pressure pain sensitivity of nerve trunks in migraine. This study aimed to examine the differences in mechanical pain sensitivity over specific nerves between patients with unilateral migraine and healthy controls. Blinded investigators assessed pressure pain thresholds (PPT) over the supra-orbital nerves (V1) and peripheral nerve trunks of both upper extremities (median, radial, and ulnar nerves) in 20 patients with strictly unilateral migraine and 20 healthy matched controls. Pain intensity after palpation over both supra-orbital nerves was also assessed. A pressure algometer was used to quantify PPT, whereas a 10-point numerical pain rate scale was used to evaluate pain to palpation over the supra-orbital nerve. The analysis of covariance revealed that pain to palpation over the supra-orbital nerve was significantly higher (P0.6). In patients with unilateral migraine, we found increased mechano-sensitivity of the supra-orbital nerve on the symptomatic side of the head. Outside the head, the same patients showed increased mechano-sensitivity of the main peripheral nerves of both upper limbs, without asymmetries. Such diffuse hypersensitivity of the peripheral nerves lends further evidence to the presence of a state of hyperexcitability of the central nervous system in patients with unilateral migraine.

  4. An intragastric balloon in the treatment of obese individuals with metabolic syndrome: a randomized controlled study.

    Science.gov (United States)

    Fuller, Nicholas R; Pearson, Suzanne; Lau, Namson S; Wlodarczyk, John; Halstead, Michael B; Tee, Hoi-Poh; Chettiar, Raman; Kaffes, Arthur J

    2013-08-01

    There are limited controlled data for intragastric balloons (IGB) in obesity treatment. This randomized, controlled study evaluated the efficacy and safety of an IGB in obese individuals with metabolic syndrome (MS). Sixty-six adults (BMI: 30-40 kg/m(2)) were randomized to IGB for 6 months, with a 12 month behavioral modification (IGB Group; "IGBG"), or 12 month behavioral modification alone (Control Group; "CG"). The primary outcome was percentage change in body weight. Thirty-one subjects (female: 68%; mean age: 43; mean BMI: 36.0) were randomized to IGBG and 35 (66%; 48; 36.7) to CG. At 6 months, there was a significantly greater weight loss in the IGBG: -14.2 vs. -4.8; P < 0.0001. This was associated with a significantly greater reduction in waist circumference, and an improvement in quality of life, with a trend for a larger %MS remission (50% vs. 30%; n.s.). At month 12, the differences in weight loss were enduring: -9.2 vs. -5.2; P = 0.007. Gastrointestinal-related adverse events were common in the IGBG, resolving predominantly within two weeks. The IGB was removed prematurely in three subjects (one for refractory gastrointestinal symptoms). Statistically significant and clinically relevant improvements in weight loss and health outcomes were observed with the IGBG at 6 months versus behavioral modification alone. The differential weight loss was still evident 6 months after IGB removal. Copyright © 2013 The Obesity Society.

  5. [The effect of initial periodontal therapy on metabolic control in type 2 diabetes mellitus].

    Science.gov (United States)

    Shen, Chi-Jing; Yin, Yuan-Zheng; Shu, Rong

    2008-02-01

    To investigate the effect of periodontal initial therapy on metabolic control in type 2 diabetes mellitus patients with chronic periodontitis. Thirty type 2 diabetic patients with chronic periodontitis were selected as experimental group, 30 patients with chronic periodontitis were selected as control group. Their gingival index(GI), probing depth(PD), clinical attachment level(CAL), fasting plasma glucose(FPG), glycated hemoglobin A1c(HbA1c), total cholesterol(TC) and triglyceride(TG) were evaluated using SAS 6.12 software package for multiple linear regression analysis before treatment(as base) and 1, 3 month(s) after periodontal initial therapy. In both two groups, a significant improvement of periodontal index was found after periodontal initial therapy (P0.05), and FPG, HbA1c in fairly-controlled diabetic patients were reduced significantly(P0.05). The result of periodontal initial therapy in the type 2 diabetic patients with chronic periodontitis is significant in short time. It can reduce the level of FPG and HbA1c. Supported by National Key Science and Technology Project from "Tenth Five Year Plan" (Grant No.2004BA720A26).

  6. The effects of Pilates on metabolic control and physical performance in adolescents with type 1 diabetes mellitus.

    Science.gov (United States)

    Tunar, Mert; Ozen, Samim; Goksen, Damla; Asar, Gulgun; Bediz, Cem Seref; Darcan, Sukran

    2012-01-01

    Physical activity is a substantial method in the management of children and adolescents with Type 1 diabetes mellitus but it is not considered as a treatment for diabetes. The aim of this study was to investigate the effects of Pilates exercises on metabolic control and physical performance in patients with type 1 diabetes mellitus. Thirty one sedentary patients with type 1 diabetes mellitus, ranging in age from 12 to 17 (experimental group, n=17 and control group, n=14) were submitted to 12 weeks of Pilates training. Participants underwent tests to determine the physical performance and metabolic control before and after 12 weeks of Pilates session. At the end of study, there were significant alterations in physical performance of the study group. Peak power, mean power, vertical jump and flexibility of study group increased. There were no alterations for this parameters in the control group. There was no significant difference for glycated hemoglobin (HbA1c) in both groups. Physical performance increased via Pilates exercises in the patients with type 1 DM. However there were no changes in metabolic control. In the present study, the positive effects of exercise on metabolic control could not be shown in patients with Type 1 DM. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Autonomous exercise game use improves metabolic control and quality of life in type 2 diabetes patients - a randomized controlled trial.

    Science.gov (United States)

    Kempf, Kerstin; Martin, Stephan

    2013-12-10

    Lifestyle intervention in type 2 diabetes mellitus (T2DM) is effective but needs a special local setting and is costly. Therefore, in a randomized-controlled trial we tested the hypothesis that the autonomous use of the interactive exercise game Wii Fit Plus over a period of 12 weeks improves metabolic control, with HbA1c reduction as the primary outcome, and weight loss, reduction of cardiometabolic risk factors, physical activity and quality of life (secondary outcomes) in T2DM patients. Participants (n = 220) were randomized into an intervention and a control group. The intervention group was provided with a Wii console, a balance board and the exercise game Wii Fit Plus for 12 weeks. The control group remained under routine care and received the items 12 weeks later. At baseline and after 12 weeks (and for the control group additionally after 12 weeks of intervention) the participants' health parameters, medication, physical activity and validated questionnaires for quality of life (PAID, SF12, WHO-5, CES-D) were requested and compared in a complete case analysis using the Mann-Whitney test and the Wilcoxon signed rank test. 80% of participants completed the 12-week study. Patients in the intervention group significantly improved HbA1c (from 7.1 ± 1.3% to 6.8 ± 0.9%; -0.3 ± 1.1%; p = 0.0002) in comparison to the control group (from 6.8 ± 0.9% to 6.7 ± 0.7%; -0.1 ± 0.5%) and also significantly reduced fasting blood glucose (from 135.8 ± 38.9 mg/dl to 126.6 ± 36.6 mg/dl; p = 0.04), weight (from 97.6 ± 19.2 kg to 96.3 ± 18.7 kg; p game intervention. In this trial a low-threshold intervention with the interactive exercise game Wii Fit Plus was able to motivate T2DM patients to improve physical activity, glucometabolic control and quality of life. ClinicalTrials.gov NCT01735643.

  8. The Effect of Strict Segregation on Pseudomonas aeruginosa in Cystic Fibrosis Patients

    NARCIS (Netherlands)

    van Mansfeld, Rosa; de Vrankrijker, Angelica; Brimicombe, Roland; Heijerman, Harry; Teding van Berkhout, Ferdinand; Spitoni, Cristian|info:eu-repo/dai/nl/304625957; Grave, Sanne; van der Ent, Cornelis; Wolfs, Tom; Willems, Rob; Bonten, Marc

    2016-01-01

    INTRODUCTION: Segregation of patients with cystic fibrosis (CF) was implemented to prevent chronic infection with epidemic Pseudomonas aeruginosa strains with presumed detrimental clinical effects, but its effectiveness has not been carefully evaluated. METHODS: The effect of strict segregation on

  9. Strict deformation quantization for actions of a class of symplectic lie groups

    International Nuclear Information System (INIS)

    Bieliavsky, Pierre; Massar, Marc

    2002-01-01

    We present explicit universal strict deformation quantization formulae for actions of Iwasawa subgroups AN of SN(1, n). This answers a question raised by Rieffel in [Contemp. Math. 228 (1998), 315]. (author)

  10. Strict optical orthogonal codes for purely asynchronous code-division multiple-access applications

    Science.gov (United States)

    Zhang, Jian-Guo

    1996-12-01

    Strict optical orthogonal codes are presented for purely asynchronous optical code-division multiple-access (CDMA) applications. The proposed code can strictly guarantee the peaks of its cross-correlation functions and the sidelobes of any of its autocorrelation functions to have a value of 1 in purely asynchronous data communications. The basic theory of the proposed codes is given. An experiment on optical CDMA systems is also demonstrated to verify the characteristics of the proposed code.

  11. Metabolic syndrome and atherosclerotic risk factors as determinants of blood sugar control in diabetic patients: a retrospective cohort study.

    Science.gov (United States)

    Chuengsamarn, Somlak; Rattanamongkoulgul, Suthee

    2010-02-01

    To examine the effects of metabolic syndrome and atherosclerotic risk factors on blood sugar control in diabetic patients. This present retrospective cohort study of two hundreds of medical records of diabetes patients treated at the outpatient internal medicine department during the year 2006-2007. Data were collected using a case record form containing biochemical profile characteristics of patients and metabolic components by the World Health Organization (WHO) criteria. The affecting factors to optimal treatment were analyzed to give descriptive (percent = %, mean, SD, median, range) and inferential statistics (odds ratio = OR). There were 200 diabetic patients included in the present study with males of 30.5% and females of 69.5%. Patients who have a higher number of components of criteria of metabolic syndrome tend to have difficulties in controlling their blood sugar (OR for 4 vs. control their blood sugar with OR of 3.87 (95% CI = 1.53-9.76). Diabetic patients who have higher components of metabolic syndrome and younger age tend to have difficulties in controlling their blood sugar. However, the association between having atherosclerotic risk factors and outcome of blood sugar control is inconclusive and needs further studies with a larger sample size.

  12. Effects of Community Exercise Therapy on Metabolic, Brain, Physical, and Cognitive Function Following Stroke: A Randomized Controlled Pilot Trial.

    Science.gov (United States)

    Moore, Sarah A; Hallsworth, Kate; Jakovljevic, Djordje G; Blamire, Andrew M; He, Jiabao; Ford, Gary A; Rochester, Lynn; Trenell, Michael I

    2015-08-01

    Exercise therapy could potentially modify metabolic risk factors and brain physiology alongside improving function post stroke. To explore the short-term metabolic, brain, cognitive, and functional effects of exercise following stroke. A total of 40 participants (>50 years, >6 months post stroke, independently mobile) were recruited to a single-blind, parallel, randomized controlled trial of community-based exercise (19 weeks, 3 times/wk, "exercise" group) or stretching ("control" group). Primary outcome measures were glucose control and cerebral blood flow. Secondary outcome measures were cardiorespiratory fitness, blood pressure, lipid profile, body composition, cerebral tissue atrophy and regional brain metabolism, and physical and cognitive function. Exercise did not change glucose control (homeostasis model assessment 1·5 ± 0·8 to 1·5 ± 0·7 vs 1·6 ± 0·8 to 1·7 ± 0·7, P = .97; CI = -0·5 to 0·49). Medial temporal lobe tissue blood flow increased with exercise (38 ± 8 to 42 ± 10 mL/100 g/min; P function, and cognition also improved with exercise. Exercise therapy improves short-term metabolic, brain, physical, and cognitive function, without changes in glucose control following stroke. The long-term impact of exercise on stroke recurrence, cardiovascular health, and disability should now be explored. © The Author(s) 2014.

  13. Antinociceptive effects, metabolism and disposition of ketamine in ponies under target-controlled drug infusion

    International Nuclear Information System (INIS)

    Knobloch, M.; Portier, C.J.; Levionnois, O.L.; Theurillat, R.; Thormann, W.; Spadavecchia, C.; Mevissen, M.

    2006-01-01

    Ketamine is widely used as an anesthetic in a variety of drug combinations in human and veterinary medicine. Recently, it gained new interest for use in long-term pain therapy administered in sub-anesthetic doses in humans and animals. The purpose of this study was to develop a physiologically based pharmacokinetic (PBPk) model for ketamine in ponies and to investigate the effect of low-dose ketamine infusion on the amplitude and the duration of the nociceptive withdrawal reflex (NWR). A target-controlled infusion (TCI) of ketamine with a target plasma level of 1 μg/ml S-ketamine over 120 min under isoflurane anesthesia was performed in Shetland ponies. A quantitative electromyographic assessment of the NWR was done before, during and after the TCI. Plasma levels of R-/S-ketamine and R-/S-norketamine were determined by enantioselective capillary electrophoresis. These data and two additional data sets from bolus studies were used to build a PBPk model for ketamine in ponies. The peak-to-peak amplitude and the duration of the NWR decreased significantly during TCI and returned slowly toward baseline values after the end of TCI. The PBPk model provides reliable prediction of plasma and tissue levels of R- and S-ketamine and R- and S-norketamine. Furthermore, biotransformation of ketamine takes place in the liver and in the lung via first-pass metabolism. Plasma concentrations of S-norketamine were higher compared to R-norketamine during TCI at all time points. Analysis of the data suggested identical biotransformation rates from the parent compounds to the principle metabolites (R- and S-norketamine) but different downstream metabolism to further metabolites. The PBPk model can provide predictions of R- and S-ketamine and norketamine concentrations in other clinical settings (e.g. horses)

  14. Impact of Voglibose on of Metabolic Control Indicators in Patients with Diabetes Mellitus Type 1

    Directory of Open Access Journals (Sweden)

    V.I. Pankiv

    2015-02-01

    Full Text Available New therapeutic options to control diabetes mellitus (DM emerged with the discovery of alpha-glucosidase inhibitors which slow the absorption of carbohydrates in the small intestine. The objective of the study — to investigate the effect of voglibose administration on parameters of glycemic control, lipid metabolism and tolerability in patients with DM type 1. Materials and Methods. Criteria for inclusion in the study: DM type 1, age from 26 to 48 years, the level of glycated hemoglobin (HbA1c from 8 to 9 %. 19 patients were examined (7 men and 12 women, mean age 37.2 ± ± 3.9 years, DM duration 8.5 ± 1.4 years. Results. During the follow-up period (12 weeks, the level of HbA1c significantly decreased from 9.4 ± 0.6 % to 7.8 ± 0.4 % (p < 0.05. On the background of additional administration of voglibose, we observed a significant reduction in fasting glucose level from 10.37 ± 0.36 mmol/l to 7.39 ± 0.28 mmol/l (p < 0.01 and postprandial — from 12.29 ± 1.42 mmol/l to 8.46 ± 0.64 mmol/l (p < 0.01. At that, we have noted a significant reduction of total cholesterol (from 5.83 ± 0.11 mmol/l to 5.38 ± 0.08 mmol/l, p < 0.05, triglycerides (from 1.82 ± 0.03 mmol/l to 1.46 ± 0.03 mmol/l, p < 0.05 and low-density lipoprotein cholesterol (from 3.41 ± 0.05 mmol/l to 3.37 ± ± 0.04 mmol/l, p < 0.05. There were no significant changes in high-density lipoprotein cholesterol parameters. In two surveyed persons, we have detected adverse effects (bloating, which did not require discontinuation of therapy. Conclusion. Additional administration of voglibose at a dose of 0.9 mg/day on a background of insulin therapy helps to improve glycemic control and lipid metabolism, to reduce the daily dose of exogenous insulin and hypoglycemic reactions incidence in patients with DM type 1.

  15. Plant use in the medicinal practices known as "strict diets" in Chazuta valley (Peruvian Amazon).

    Science.gov (United States)

    Sanz-Biset, Jaume; Cañigueral, Salvador

    2011-09-01

    Strict diets are traditional medicinal practices where plant remedies are consumed with nearly fasting and with some sort of social seclusion. The aim of this work was to describe these practices of Chazuta and the use of plants within, as well as to analyse the possible functions of the last. The information was obtained through interviews to the 6.3% of the district rural adult population (140 individuals, 75% of which was considered Quechua). In total, 122 strict diets were recorded and 106 different plant species were reported to be used. Strict diets present a characteristic structure and plant use. The main effects reported in strict diets were antinflammatory, antiinfective, brain function alteration and depuration. Strict diets are well structured traditional medicinal practices, also with a symbolic significance in the life cycle of chazutian men. Plants used in strict diets can contribute to the main effects through antinflammation, antiinfective actions, psychoactivity and depurative related activities. The correlation between literature evidence of activity of most used plants and effects reported for the correspondent diet (i.e. in which the plant was used) are 36% for antinflammatory activity, 29% for antimicrobial activity, 18% for psychoactivity and 5% for depurative related activities. The percentages go to 77%, 64%, 73% and 32%, respectively, when literature evidences on related taxa are also considered. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Effect of Acarbose on Control of Metabolic Parameters in Patients with Diabetes Type 1

    Directory of Open Access Journals (Sweden)

    A. Ziaee

    2012-07-01

    Full Text Available Introduction & Objective: Acarbose is an intestinal alpha-glucosidase inhibitor that delays absorption of carbohydrates. Findings of some studies show that it has been effective in better control of blood glucose in patients with diabetes type 1. The goal of this study is to investigate the effect of administration of acarbose on glycemic & lipid parameters and daily insulin requirements and tolerability in type 1 diabetic patient.Materials & Methods: This was a clinical trial randomized double blind placebo controlled study. Performed on patients with history of at least 1 year diabetes type 1 and had HbA1c≥7.5%. Patients with Cr≥2, partial GI obstruction or IBD were excluded from the study. 45 patients were randomized to be administered acarbose or placebo for 12 weeks. Initial dose of acarbose was 25 mg T.D.S for 2 weeks, and then it was increased to 50 mg T.D.S for 10 weeks. BMI, FBS, 2hpp, HbA1c, Total cholesterol, HDL, LDL, TG and Insulin dosage were investigated monthly.Results: The values of BMI, FBS, 2hpp, HbA1c, Total cholesterol, and TG & Insulin requirements decreased significantly in the case group compared to the controls (P=0.003, P=0.005, P<0.001, P=0.001, P=0.003, P<0.001, P<0.001, respectively; but no significant changes were observed in HDL &LDL levels. Conclusion: Administration of acarbose together with insulin to type 1 diabetic patient can be valuable in improving metabolic control (BMI, FBS, 2hpp, HbA1c, Total cholesterol and TG.(Sci J Hamadan Univ Med Sci 2012;19(2:5-10

  17. Metabolic control targets in Sudanese adults with type 1 diabetes: A population-based study

    Directory of Open Access Journals (Sweden)

    Ahmed O Almobarak

    2017-01-01

    Full Text Available Background: Type 1 diabetes is a challenging metabolic disorder for health authorities in Sudan. The objective of this study was to assess the level of glycemic control and to determine the prevalence of dyslipidemia and complications among individuals with type 1 diabetes in Sudan. Materials and Methods: Individuals with type 1 diabetes, who were having the disease for at least 1 year, were invited to participate in this study. Data were collected from two diabetes centers, in the Capital Khartoum and Atbara City, North of Sudan. Participants were interviewed using standardized pretested questionnaire to record medical history, sociodemographic data, and life style characteristics. Blood pressure, body mass index, and waist circumference were measured. Blood samples were taken for measurement of lipid profile and glycosylated hemoglobin. Results: A total of eighty individuals with type 1 diabetes volunteered to participate in this study, 37.5% of males and 62.5% of females. Majority of the patients were aged between 40 and 70 years old. There was poor glycemic control (glycosylated hemoglobin> 7%, in 83.8%. Age and sex were significant factors associated with poor glycemic control in this cohort. High cholesterol, triglyceride, and low density lipoprotein were seen in 76.2%, 27.5%, and 48.8% of participants, respectively. Low high density lipoprotein was seen in 33.8%. Hypertension was determined in 21.3%. Peripheral neuropathy, visual impairment, diabetic foot, and myocardial infarction were seen in 50%, 48.8%, 18.8%, and 2.5% of patients, respectively. Conclusion: Sudanese adults with type 1 diabetes have poor glycemic control, high prevalence of dyslipidemia, and long-term complications.

  18. Purine-Metabolizing Ectoenzymes Control IL-8 Production in Human Colon HT-29 Cells

    Directory of Open Access Journals (Sweden)

    Fariborz Bahrami

    2014-01-01

    Full Text Available Interleukin-8 (IL-8 plays key roles in both chronic inflammatory diseases and tumor modulation. We previously observed that IL-8 secretion and function can be modulated by nucleotide (P2 receptors. Here we investigated whether IL-8 release by intestinal epithelial HT-29 cells, a cancer cell line, is modulated by extracellular nucleotide metabolism. We first identified that HT-29 cells regulated adenosine and adenine nucleotide concentration at their surface by the expression of the ectoenzymes NTPDase2, ecto-5′-nucleotidase, and adenylate kinase. The expression of the ectoenzymes was evaluated by RT-PCR, qPCR, and immunoblotting, and their activity was analyzed by RP-HPLC of the products and by detection of Pi produced from the hydrolysis of ATP, ADP, and AMP. In response to poly (I:C, with or without ATP and/or ADP, HT-29 cells released IL-8 and this secretion was modulated by the presence of NTPDase2 and adenylate kinase. Taken together, these results demonstrate the presence of 3 ectoenzymes at the surface of HT-29 cells that control nucleotide levels and adenosine production (NTPDase2, ecto-5′-nucleotidase and adenylate kinase and that P2 receptor-mediated signaling controls IL-8 release in HT-29 cells which is modulated by the presence of NTPDase2 and adenylate kinase.

  19. Exploring polyamine metabolism of Alternaria alternata to target new substances to control the fungal infection.

    Science.gov (United States)

    Estiarte, N; Crespo-Sempere, A; Marín, S; Sanchis, V; Ramos, A J

    2017-08-01

    Polyamines are essential for all living organisms as they are involved in several vital cell functions. The biosynthetic pathway of polyamines and its regulation is well established and, in this sense, the ornithine descarboxylase (ODC) enzyme acts as one of the controlling factors of the entire pathway. In this work we assessed the inhibition of the ODC with D, l-α-difluoromethylornithine (DFMO) on Alternaria alternata and we observed that fungal growth and mycotoxin production were reduced. This inhibition was not completely restored by the addition of exogenous putrescine. Actually, increasing concentrations of putrescine on the growth media negatively affected mycotoxin production, which was corroborated by the downregulation of pksJ and altR, both genes involved in mycotoxin biosynthesis. We also studied the polyamine metabolism of A. alternata with the goal of finding new targets that compromise its growth and its mycotoxin production capacity. In this sense, we tested two different polyamine analogs, AMXT-2455 and AMXT-3016, and we observed that they partially controlled A. alternata's viability in vitro and in vivo using tomato plants. Finding strategies to design new fungicide substances is becoming a matter of interest as resistance problems are emerging. Copyright © 2017. Published by Elsevier Ltd.

  20. DeSUMOylation Controls Insulin Exocytosis in Response to Metabolic Signals

    Directory of Open Access Journals (Sweden)

    Patrick E. MacDonald

    2012-05-01

    Full Text Available The secretion of insulin by pancreatic islet β-cells plays a pivotal role in glucose homeostasis and diabetes. Recent work suggests an important role for SUMOylation in the control of insulin secretion from β-cells. In this paper we discuss mechanisms whereby (deSUMOylation may control insulin release by modulating β-cell function at one or more key points; and particularly through the acute and reversible regulation of the exocytotic machinery. Furthermore, we postulate that the SUMO-specific protease SENP1 is an important mediator of insulin exocytosis in response to NADPH, a metabolic secretory signal and major determinant of β-cell redox state. Dialysis of mouse β-cells with NADPH efficiently amplifies β-cell exocytosis even when extracellular glucose is low; an effect that is lost upon knockdown of SENP1. Conversely, over-expression of SENP1 itself augments β-cell exocytosis in a redox-dependent manner. Taken together, we suggest that (deSUMOylation represents an important mechanism that acutely regulates insulin secretion and that SENP1 can act as an amplifier of insulin exocytosis.

  1. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics

    DEFF Research Database (Denmark)

    Gunnarsson, Nina; Eliasson Lantz, Anna; Nielsen, Jacob

    2004-01-01

    Yield improvements in antibiotic-producing strains have classically been obtained through random mutagenesis and screening. An attractive alternative to this strategy is the rational design of producer strains via metabolic engineering, an approach that offers the possibility to increase yields...... in the metabolic network. Here we describe and discuss available methods for identification of these steps, both in antibiotic biosynthesis pathways and in the primary metabolism, which serves as the supplier of precursors and cofactors for the secondary metabolism. Finally, the importance of precursor...... and cofactor supply from primary metabolism in the biosynthesis of different types of antibiotics is discussed and recent developments in metabolic engineering towards increased product yields in antibiotic producing strains are reviewed....

  2. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics

    DEFF Research Database (Denmark)

    Gunnarsson, Nina; Eliasson Lantz, Anna; Nielsen, Jacob

    2004-01-01

    in the metabolic network. Here we describe and discuss available methods for identification of these steps, both in antibiotic biosynthesis pathways and in the primary metabolism, which serves as the supplier of precursors and cofactors for the secondary metabolism. Finally, the importance of precursor...... and cofactor supply from primary metabolism in the biosynthesis of different types of antibiotics is discussed and recent developments in metabolic engineering towards increased product yields in antibiotic producing strains are reviewed.......Yield improvements in antibiotic-producing strains have classically been obtained through random mutagenesis and screening. An attractive alternative to this strategy is the rational design of producer strains via metabolic engineering, an approach that offers the possibility to increase yields...

  3. Metabolic control, self-care behaviors, and parenting in adolescents with type 1 diabetes: a correlational study.

    Science.gov (United States)

    Greene, Maia Stoker; Mandleco, Barbara; Roper, Susanne Olsen; Marshall, Elaine S; Dyches, Tina

    2010-01-01

    The purpose of this pilot study was to explore relationships among metabolic control, self-care behaviors, and parenting in adolescents with type 1 diabetes. Twenty-nine adolescents (mean age, 14.1 years) and their parents participated. Metabolic control was determined by an average of 4 A1C values taken prior to study enrollment; self-care behaviors were measured with a 12-item self-report questionnaire; parenting style was evaluated using the Parenting Practices Report. The mean for A1C values was 8.5%; the mean for overall self-care behaviors was 4.93 (5 = usually). Participants rated themselves highest on the self-care behaviors of giving insulin shots when indicated and adjusting insulin when eating a lot. They ranked themselves lowest on eating a low-fat diet and testing urine for ketones. Parents tended to be more authoritative in their approaches to parenting than either authoritarian or permissive. A significant relationship was found between authoritative mothering and adolescent self-care behaviors and metabolic control. Regression analyses controlling for age and length of time with diabetes confirmed the significance of these relationships. Authoritative fathering positively correlated with the self-care behaviors of monitoring blood glucose, taking insulin, and not skipping meals. A relationship was also noted between permissive parenting by mothers/fathers and poorer metabolic outcomes. However, the permissive parenting correlations did not remain significant when controlling for age and length of time with diabetes. Clinicians may help prevent declining participation in self-care behaviors and metabolic control in adolescents with type 1 diabetes by working with parents, particularly mothers, and encouraging authoritative parenting.

  4. Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens.

    Science.gov (United States)

    Takeuchi, Kasumi; Kiefer, Patrick; Reimmann, Cornelia; Keel, Christoph; Dubuis, Christophe; Rolli, Joëlle; Vorholt, Julia A; Haas, Dieter

    2009-12-11

    Pseudomonas fluorescens CHA0, an antagonist of phytopathogenic fungi in the rhizosphere of crop plants, elaborates and excretes several secondary metabolites with antibiotic properties. Their synthesis depends on three small RNAs (RsmX, RsmY, and RsmZ), whose expression is positively controlled by the GacS-GacA two-component system at high cell population densities. To find regulatory links between primary and secondary metabolism in P. fluorescens and in the related species Pseudomonas aeruginosa, we searched for null mutations that affected central carbon metabolism as well as the expression of rsmY-gfp and rsmZ-gfp reporter constructs but without slowing down the growth rate in rich media. Mutation in the pycAB genes (for pyruvate carboxylase) led to down-regulation of rsmXYZ and secondary metabolism, whereas mutation in fumA (for a fumarase isoenzyme) resulted in up-regulation of the three small RNAs and secondary metabolism in the absence of detectable nutrient limitation. These effects required the GacS sensor kinase but not the accessory sensors RetS and LadS. An analysis of intracellular metabolites in P. fluorescens revealed a strong positive correlation between small RNA expression and the pools of 2-oxoglutarate, succinate, and fumarate. We conclude that Krebs cycle intermediates (already known to control GacA-dependent virulence factors in P. aeruginosa) exert a critical trigger function in secondary metabolism via the expression of GacA-dependent small RNAs.

  5. Metabolic Syndrome Increases the Risk of Sudden Sensorineural Hearing Loss in Taiwan: A Case-Control Study.

    Science.gov (United States)

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wu, Ming-Tsang; Ho, Kuen-Yao

    2015-07-01

    Sudden sensorineural hearing loss has been reported to be associated with diabetes mellitus, hypertension, and hyperlipidemia in previous studies. The aim of this study was to examine whether metabolic syndrome increases the risk of sudden sensorineural hearing loss in Taiwan. A case-control study. Tertiary university hospital. We retrospectively investigated 181 cases of sudden sensorineural hearing loss and 181 controls from the Department of Otorhinolaryngology, Kaohsiung Medical University Hospital, in southern Taiwan from 2010 to 2012, comparing their clinical variables. We analyzed the relationship between metabolic syndrome and sudden sensorineural hearing loss. Metabolic syndrome was defined according to the National Cholesterol Education Program Adult Treatment Panel III with Asian modifications. The demographic and clinical characteristics, audiometry results, and outcome were reviewed. Subjects with metabolic syndrome had a 3.54-fold increased risk (95% confidence interval [CI] = 2.00-6.43, P diabetes mellitus, hypertension, and hyperlipidemia. With increases in the number of metabolic syndrome components, the risk of sudden sensorineural hearing loss increased (P for trend Vertigo was associated with a poor outcome (P = .02; 95% CI = 1.13~5.13, adjusted odds ratio = 2.39). The hearing loss pattern may influence the outcome of sudden sensorineural hearing loss (P Vertigo and total hearing loss were indicators of a poor outcome in sudden sensorineural hearing loss. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  6. The Role of Health Beliefs in the Regimen Adherence and Metabolic Control of Adolescents and Adults with Diabetes Mellitus.

    Science.gov (United States)

    Brownlee-Duffeck, Martha; And Others

    1987-01-01

    Examined the role of health beliefs in diabetic regimen adherence and metabolic control. Health beliefs accounted for a statistically significant portion of the variance in both. For older patients perceived benefits of adhering to the diabetic regimen was most significant. For younger patients costs figured prominently in adherence and perceived…

  7. Teenage girls with type 1 diabetes have poorer metabolic control than boys and face more complications in early adulthood

    DEFF Research Database (Denmark)

    Samuelsson, Ulf; Anderzén, Johan; Gudbjörnsdottir, Soffia

    2016-01-01

    AIMS: To compare metabolic control between males and females with type 1 diabetes during adolescence and as young adults, and relate it to microvascular complications. METHODS: Data concerning 4000 adolescents with type 1 diabetes registered in the Swedish paediatric diabetes quality registry, an...

  8. Metabolic syndrome in patients with bipolar disorder: Comparison with major depressive disorder and non-psychiatric controls

    NARCIS (Netherlands)

    Silarova, B.; Giltay, E.J.; van Reedt Dortland, A.K.B.; van Rossum, E.F.; Hoencamp, E.; Penninx, B.W.; Spijker, A.T.

    2015-01-01

    Objective: We aimed to investigate the prevalence of the metabolic syndrome (MetS) and its individual components in subjects with bipolar disorder (BD) compared to those with major depressive disorder (MDD) and non-psychiatric controls. Methods: We examined 2431 participants (mean age 44.3. ±. 13.0,

  9. Metabolic syndrome in patients with bipolar disorder : Comparison with major depressive disorder and non-psychiatric controls

    NARCIS (Netherlands)

    Silarova, Barbora; Giltay, Erik J.; Dortland, Arianne Van Reedt; Van Rossum, Elisabeth F. C.; Hoencamp, Erik; Penninx, Brenda W. J. H.; Spijker, Annet T.

    Objective: We aimed to investigate the prevalence of the metabolic syndrome (MetS) and its individual components in subjects with bipolar disorder (BD) compared to those with major depressive disorder (MDD) and non-psychiatric controls. Methods: We examined 2431 participants (mean age 443 +/-

  10. Synergism between inositol polyphosphates and TOR kinase signaling in nutrient sensing, growth control, and lipid metabolism in Chlamydomonas

    Science.gov (United States)

    The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling ...

  11. Eating patterns in adolescents with type 1 diabetes: Associations with metabolic control, insulin omission, and eating disorder pathology.

    Science.gov (United States)

    Wisting, Line; Reas, Deborah Lynn; Bang, Lasse; Skrivarhaug, Torild; Dahl-Jørgensen, Knut; Rø, Øyvind

    2017-07-01

    The purpose of this study was to investigate eating patterns among male and female adolescents with type 1 diabetes (T1D), and the associations with age, zBMI, eating disorder (ED) pathology, intentional insulin omission, and metabolic control. The sample consisted of 104 adolescents (58.6% females) with child-onset T1D, mean age of 15.7 years (SD 1.8) and mean zBMI of 0.4 (SD 0.8). The Child Eating Disorder Examination (ChEDE) assessed meal/snack frequency and ED pathology. T1D clinical data was obtained from the Norwegian Childhood Diabetes Registry. A significantly lower proportion of females than males (73.8% vs 97.7%) consumed breakfast on a daily basis. Approximately 50% of both genders ate lunch and 90% ate dinner daily. Among females, skipping breakfast was significantly associated with higher global ED psychopathology, shape concerns, self-induced vomiting, binge eating, insulin omission due to shape/weight concerns, and poorer metabolic control. Less frequent lunch consumption was significantly associated with poorer metabolic control. Skipping dinner was significantly associated with older age, higher dietary restraint, eating concerns, self-induced vomiting, and insulin omission. Among males, less frequent consumption of lunch and evening snacks was associated with attitudinal features of ED, including shape/weight concerns and dietary restraint. Among adolescents with T1D, irregular or infrequent meal consumption appears to signal potential ED pathology, as well as being associated with poorer metabolic control. These findings suggest the importance of routinely assessing eating patterns in adolescents with T1D to improve detection of ED pathology and to facilitate improved metabolic control and the associated risk of somatic complications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Combining mechanistic and data-driven approaches to gain process knowledge on the control of the metabolic shift to lactate uptake in a fed-batch CHO process.

    Science.gov (United States)

    Zalai, Dénes; Koczka, Krisztina; Párta, László; Wechselberger, Patrick; Klein, Tobias; Herwig, Christoph

    2015-01-01

    A growing body of knowledge is available on the cellular regulation of overflow metabolism in mammalian hosts of recombinant protein production. However, to develop strategies to control the regulation of overflow metabolism in cell culture processes, the effect of process parameters on metabolism has to be well understood. In this study, we investigated the effect of pH and temperature shift timing on lactate metabolism in a fed-batch Chinese hamster ovary (CHO) process by using a Design of Experiments (DoE) approach. The metabolic switch to lactate consumption was controlled in a broad range by the proper timing of pH and temperature shifts. To extract process knowledge from the large experimental dataset, we proposed a novel methodological concept and demonstrated its usefulness with the analysis of lactate metabolism. Time-resolved metabolic flux analysis and PLS-R VIP were combined to assess the correlation of lactate metabolism and the activity of the major intracellular pathways. Whereas the switch to lactate uptake was mainly triggered by the decrease in the glycolytic flux, lactate uptake was correlated to TCA activity in the last days of the cultivation. These metabolic interactions were visualized on simple mechanistic plots to facilitate the interpretation of the results. Taken together, the combination of knowledge-based mechanistic modeling and data-driven multivariate analysis delivered valuable insights into the metabolic control of lactate production and has proven to be a powerful tool for the analysis of large metabolic datasets. © 2015 American Institute of Chemical Engineers.

  13. Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging

    NARCIS (Netherlands)

    Sapir, Amir; Tsur, Assaf; Koorman, Thijs; Ching, Kaitlin; Mishra, Prashant; Bardenheier, Annabelle; Podolsky, Lisa; Bening-Abu-Shach, Ulrike; Boxem, Mike; Chou, Tsui-Fen; Broday, Limor; Sternberg, Paul W

    2014-01-01

    Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as

  14. Overview on sugar metabolism and its control in Lactococcus lactis - The input from in vivo NMR

    NARCIS (Netherlands)

    Neves, AR; Pool, WA; Kok, J; Kuipers, OP; Santos, H; Neves, Ana Rute; Pool, Wietske A.

    The wide application of lactic acid bacteria in the production of fermented foods depends to a great extent on the unique features of sugar metabolism in these organisms. The relative metabolic simplicity and the availability of genetic tools made Lactococcus lactis the organism of choice to gain

  15. Association of metabolic gene polymorphisms with tobacco consumption in healthy controls.

    NARCIS (Netherlands)

    Smits, K.M.; Benhamou, S.; Garte, S.; Weijenberg, M.P.; Alamanos, Y.; Ambrosone, C.; Autrup, H.; Autrup, J.L.; Baranova, H.; Bathum, L.; Boffetta, P.; Bouchardy, C.; Brockmoller, J.; Butkiewicz, D.; Cascorbi, I.; Clapper, M.L.; Coutelle, C.; Daly, A.; Muzi, G.; Dolzan, V.; Duzhak, T.G.; Farker, K.; Golka, K.; Haugen, A.; Hein, D.W.; Hildesheim, A.; Hirvonen, A.; Hsieh, L.L.; Ingelman-Sundberg, M.; Kalina, I.; Kang, D.; Katoh, T.; Kihara, M.; Ono-Kihara, M.; Kim, H.L.; Kiyohara, C.; Kremers, P.; Lazarus, P.; Marchand, L. le; Lechner, M.C.; London, S.; Manni, J.J.; Maugard, C.M.; Morgan, G.J.; Morita, S.; Nazar-Stewart, V.; Kristensen, V.N.; Oda, Y.; Parl, F.F.; Peters, W.H.M.; Rannug, A.; Rebbeck, T.; Pinto, L.F.; Risch, A.; Romkes, M.; Salagovic, J.; Schoket, B.; Seidegard, J.; Shields, P.G.; Sim, E.; Sinnett, D.; Strange, R.C.; Stucker, I.; Sugimura, H.; To-Figueras, J.; Vineis, P.; Yu, M.C.; Zheng, W.; Pedotti, P.; Taioli, E.

    2004-01-01

    Polymorphisms in genes that encode for metabolic enzymes have been associated with variations in enzyme activity between individuals. Such variations could be associated with differences in individual exposure to carcinogens that are metabolized by these genes. In this study, we examine the

  16. Preliminary study on metabolic regulation and control of L-valine ...

    African Journals Online (AJOL)

    USER

    2010-05-31

    May 31, 2010 ... processes, an effective redirection of metabolic fluxes towards the desired product is essential (Sahm et al.,. 2000; Lee et al., 2005). The substrate, in many cases glucose, should be converted to the product of interest very effectively. In order to strengthen the metabolic path of L-valine production by XQ-6, ...

  17. Controlled atmosphere storage, temperature conditioning, and antioxidant treatment alter postharvest 'Honeycrisp' metabolism

    Science.gov (United States)

    The physiology and metabolism characterizing postharvest chilling and CO2 injury in apple has important implications for postharvest management of soft scald and soggy breakdown. This research assessed differences of primary metabolism related to soggy breakdown (cortex chilling injury) and CO2 cor...

  18. Impact of Metabolic Syndrome Components on Asthma Control and Life Quality of Patients

    Directory of Open Access Journals (Sweden)

    Andrey V. Budnevsky

    2018-03-01

    Full Text Available The purpose of this study was to assess the characteristics of the clinical course of asthma in patients with metabolic syndrome (MetS and to analyze the influence of the MetS components on the course of asthma, control of asthma symptoms, and the the quality of life (QL of patients with asthma. Materials and Methods: We examined 95 asthma patients aged from 18 to 60 years. The patients were divided into 2 groups. Group 1 included 35 patients without MetS (24/68.6% women and 11/31.4% men; mean age, 49.81±0.77 years, and Group 2 included 60 patients with MetS(45/75.0% women and 15/25.0% men; mean age, 49.82±0.77 years. Results: The patients with asthma and MetS have a more severe clinical course of asthma, with frequent exacerbations and uncontrolled asthma symptoms, low spirometry results and a low level of QL.

  19. Metabolic manipulation in chronic heart failure: study protocol for a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Leon Francisco

    2011-06-01

    Full Text Available Abstract Background Heart failure is a major cause of morbidity and mortality in society. Current medical therapy centres on neurohormonal modulation with angiotensin converting enzyme inhibitors and β-blockers. There is growing evidence for the use of metabolic manipulating agents as adjunctive therapy in patients with heart failure. We aim to determine the effect of perhexiline on cardiac energetics and alterations in substrate utilisation in patients with non-ischaemic dilated cardiomyopathy. Methods A multi-centre, prospective, randomised double-blind, placebo-controlled trial of 50 subjects with non-ischaemic dilated cardiomyopathy recruited from University Hospital Birmingham NHS Foundation Trust and Cardiff and Vale NHS Trust. Baseline investigations include magnetic resonance spectroscopy to assess cardiac energetic status, echocardiography to assess left ventricular function and assessment of symptomatic status. Subjects are then randomised to receive 200 mg perhexiline maleate or placebo daily for 4 weeks with serum drug level monitoring. All baseline investigations will be repeated at the end of the treatment period. A subgroup of patients will undergo invasive investigations with right and left heart catheterisation to calculate respiratory quotient, and mechanical efficiency. The primary endpoint is an improvement in the phosphocreatine to adenosine triphosphate ratio at 4 weeks. Secondary end points are: i respiratory quotient; ii mechanical efficiency; iii change in left ventricular (LV function. Trial Registration ClinicalTrials.gov: NCT00841139 ISRCTN: ISRCTN2887836

  20. Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation.

    Science.gov (United States)

    Xu, Jingyang; Liu, Nian; Qiao, Kangjian; Vogg, Sebastian; Stephanopoulos, Gregory

    2017-07-03

    Acetic acid can be generated through syngas fermentation, lignocellulosic biomass degradation, and organic waste anaerobic digestion. Microbial conversion of acetate into triacylglycerols for biofuel production has many advantages, including low-cost or even negative-cost feedstock and environmental benefits. The main issue stems from the dilute nature of acetate produced in such systems, which is costly to be processed on an industrial scale. To tackle this problem, we established an efficient bioprocess for converting dilute acetate into lipids, using the oleaginous yeast Yarrowia lipolytica in a semicontinuous system. The implemented design used low-strength acetic acid in both salt and acid forms as carbon substrate and a cross-filtration module for cell recycling. Feed controls for acetic acid and nitrogen based on metabolic models and online measurement of the respiratory quotient were used. The optimized process was able to sustain high-density cell culture using acetic acid of only 3% and achieved a lipid titer, yield, and productivity of 115 g/L, 0.16 g/g, and 0.8 g⋅L -1 ⋅h -1 , respectively. No carbon substrate was detected in the effluent stream, indicating complete utilization of acetate. These results represent a more than twofold increase in lipid production metrics compared with the current best-performing results using concentrated acetic acid as carbon feed.

  1. Parental involvement buffers associations between pump duration and metabolic control among adolescents with type 1 diabetes.

    Science.gov (United States)

    Wiebe, Deborah J; Croom, Andrea; Fortenberry, Katherine T; Butner, Jonathan; Butler, Jorie; Swinyard, Michael T; Lindsay, Rob; Donaldson, David; Foster, Carol; Murray, Mary; Berg, Cynthia A

    2010-11-01

    To examine pump duration associations with adolescents' metabolic control and whether parental involvement moderated this association. This study used a cross-sectional sample of 10- to 14-year-olds with diabetes (N = 252, 53.6% female) and parents' reported parental involvement; HbA1c was obtained from medical records. Half (50.8%) were on an insulin pump (continuous subcutaneous insulin infusion, CSII), with the remainder prescribed multiple daily injections (MDI). Adolescents on CSII displayed better HbA1c than those on MDI. A curvilinear association revealed that participants on CSII for Parental involvement interacted with pump duration to predict HbA1c. Pump duration was associated with poorer HbA1c only when parents were relatively uninvolved. Within the limitations of a cross-sectional design, data suggest that adolescents on CSII have better HbA1c than those on MDI, but may experience a period of deterioration that can be offset by parental involvement.

  2. Effects of supportive telephone counseling in the metabolic control of elderly people with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Tânia Alves Canata Becker

    Full Text Available ABSTRACT Objective: the purpose of this study was to evaluate the efficacy of telephone-based support for the metabolic control of elderly patients with diabetes mellitus. Method: a pragmatic study was conducted in two groups, called G1 (n=36 and G2 (n=27, at a health unit from the countryside of São Paulo state. Patients in G1 group received telephone support over four months, through 16 telephone contacts with educational material; for the G2 group the educational material was mailed. Results: significant differences were found. The G1 group showed a reduction of the parameters of fasting glucose, as well as systolic and diastolic blood pressure. In G2 group a modest reduction was noted in some parameters, with no significant difference. Conclusion: telephone support was effective to deliver patient education to the diabetic elderly, leading to the reduction of fasting blood glucose. This, combined with other strategies, can contribute to reduce glycated hemoglobin (NCT 01972412.

  3. Psyllium fibre and the metabolic control of obese children and adolescents.

    Science.gov (United States)

    Moreno, L A; Tresaco, B; Bueno, G; Fleta, J; Rodríguez, G; Garagorri, J M; Bueno, M

    2003-09-01

    In children and adolescents from developed countries, obesity prevalence has strongly increased in the last decades and insulin resistance and impaired glucose tolerance are frequently observed. Some dietary components such as low glycemic index foods and dietary fibre could be used in order to improve glucose homeostasis in these children. Psyllium or ispaghula husk (the husk of the seeds of Plantago ovata) is a mixture of neutral and acid polysaccharides containing galacturonic acid with a ratio of soluble/insoluble fibre of 70/30. Some foods could potentially be enriched with psyllium, like breads, breakfast cereals, pasta and snack foods. The aim of this review was to assess the usefulness of psyllium in the management of obese children and adolescents with abnormalities of carbohydrate and lipid metabolism. After psyllium supplementation, the percentage change in postprandial glucose in type 2 diabetes patients, ranged from -12.2 to -20.2%. In hypercholesterolemic children, the effect of psyllium in LDL-cholesterol serum concentrations ranged from 2.78 to -22.8%; the effect in HDL-cholesterol from -4.16 to 3.05%; and the effect on triglycerides from 8.49 to -19.54%. The reviewed evidence seems to show that psyllium improves glucose homeostasis and the lipid and lipoprotein profile; however, more well controlled trials and further studies are needed to clarify it's effects and the mechanisms involved.

  4. Sense of coherence, self-esteem, and health locus of control in subjects with type 1 diabetes mellitus with/without satisfactory metabolic control.

    Science.gov (United States)

    Nuccitelli, C; Valentini, A; Caletti, M T; Caselli, C; Mazzella, N; Forlani, G; Marchesini, G

    2018-03-01

    Despite intensive training, a few individuals with Type 1 diabetes mellitus (T1DM) fail to reach the desired metabolic targets. To evaluate the association between disease-related emotional and cognitive aspects and metabolic control in subjects with T1DM. Health locus of control (HLOC), sense of coherence (SOC), and self-esteem were assessed in T1DM subjects using validated questionnaires. Sixty-seven consecutive subjects who did not attain the desired HbA1c target (mean HbA1c, 8.3% [67 mmol/mol]) were compared with 30 cases in satisfactory metabolic control (HbA1c levels age, sex, educational level, and comorbidities. Patients who fail to reach a satisfactory metabolic control tend to rely on significant others, trusting in the physicians' skills or on the efficiency of the health-care system. Strategies aimed at increasing self-efficacy and SOC, based on personal ability, are eagerly awaited to help patients improve diabetes care.

  5. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  6. Treatment patterns and risk factor control in patients with and without metabolic syndrome in cardiac rehabilitation

    Directory of Open Access Journals (Sweden)

    Gitt A

    2012-04-01

    Full Text Available Anselm Gitt1, Christina Jannowitz2, Marthin Karoff3, Barbara Karmann2, Martin Horack1, Heinz Völler4,51Institut für Herzinfarktforschung an der Universität Heidelberg, Ludwigshafen,2Medical Affairs, MSD Sharp and Dohme GmbH, Haar, 3Klinik Königsfeld der Deutschen Rentenversicherung Westfalen in Ennepetal (NRW, Klinik der Universität Witten-Herdecke, 4Kardiologie, Klinik am See, Rüdersdorf, 5Center of Rehabilitation Research, University Potsdam, GermanyAim: Metabolic syndrome (MetS is a clustering of factors that are associated with increased cardiovascular risk. We aimed to investigate the proportion of patients with MetS in patients undergoing cardiac rehabilitation (CR, and to describe differences between patients with MetS compared to those without MetS with regard to (1 patient characteristics including demographics, risk factors, and comorbidities, (2 risk factor management including drug treatment, and (3 control status of risk factors at entry to CR and discharge from CR.Methods: Post-hoc analysis of data from 27,904 inpatients (Transparency Registry to Objectify Guideline-Oriented Risk Factor Management registry that underwent a CR period of about 3 weeks were analyzed descriptively in total and compared by their MetS status.Results: In the total cohort, mean age was 64.3 years, (71.7% male, with no major differences between groups. Patients had been referred after a ST elevation of myocardial infarction event in 41.1% of cases, non-ST elevation of myocardial infarction in 21.8%, or angina pectoris in 16.7%. They had received a percutaneous coronary intervention in 55.1% and bypass surgery (coronary artery bypass graft in 39.5%. Patients with MetS (n = 15,819 compared to those without MetS (n = 12,085 were less frequently males, and in terms of cardiac interventions, more often received coronary artery bypass surgery. Overall, statin use increased from 79.9% at entry to 95.0% at discharge (MetS: 79.7% to 95.2%. Patients with Met

  7. A controlled study of Dextran 40: effect on cerebral blood flow and metabolic rates in acute head trauma.

    Science.gov (United States)

    Artru, F; Philippon, B; Flachaire, E; Peyrieux, J C; Boissel, J P; Ferry, S; Deleuze, R

    1989-01-01

    A controlled double-blind evaluation of the effects of Dextran 40 at different concentrations on cerebral blood flow (CBF), cerebral oxygen consumption (CMRO2) and cerebral lactate production (CMRLact) was carried out. We studied 40 patients in coma due to recent head injury. Concentrations of Dextran solution were not significantly related to variations in CBF and metabolic rate over the period of infusion. The lack of effect of the Dextran infusion may be explained by the absence of global brain ischemia in these patients at the time of the study. The very low initial CBF values were a consequence of brain metabolic depression and not a sign of global ischaemia. The rheological benefits of treatment with Dextran 40 in head injured patients should preferably be investigated using techniques which permit detection of local changes in CBF and metabolism.

  8. Improved metabolic control does not alter the charge-dependent glomerular filtration of albumin in uncomplicated type 1 (insulin-dependent) diabetes

    DEFF Research Database (Denmark)

    Kverneland, A; Welinder, B; Feldt-Rasmussen, B

    1988-01-01

    . It was, however, unaffected by 12 weeks of improved metabolic control with a mean decline in HbA1c of 1.9% in seven patients. We conclude that the increased electronegative charge of the glomerular filtration barrier observed in uncomplicated diabetes is related to long term metabolic control...

  9. Impaired bone metabolism in glycogen storage disease type 1 is associated with poor metabolic control in type 1a and with granulocyte colony-stimulating factor therapy in type 1b.

    Science.gov (United States)

    Melis, D; Pivonello, R; Cozzolino, M; Della Casa, R; Balivo, F; Del Puente, A; Dionisi-Vici, C; Cotugno, G; Zuppaldi, C; Rigoldi, M; Parini, R; Colao, A; Andria, G; Parenti, G

    2014-01-01

    Glycogen storage disease type 1 (GSD1) is a rare and genetically heterogeneous metabolic defect of gluconeogenesis due to mutations of either the G6PC gene (GSD1a) or the SLC37A4 gene (GSD1b). Osteopenia is a known complication of GSD1. The aim of this study was to investigate the effects of poor metabolic control and/or use of GSD1-specific treatments on bone mineral density (BMD) and metabolism in GSD1 patients. In a multicenter, cross-sectional case-control study, we studied 38 GSD1 (29 GSD1a and 9 GSD1b) patients. Clinical, biochemical and instrumental parameters indicative of bone metabolism were analyzed; BMD was evaluated by dual-emission X-ray absorptiometry and quantitative ultrasound. Both GSD1a and GSD1b patients showed reduced BMD compared with age-matched controls. In GSD1a patients, these abnormalities correlated with compliance to diet and biochemical indicators of metabolic control. In GSD1b patients, BMD correlated with the age at first administration and the duration of granulocyte colony-stimulating factor (G-CSF) therapy. Our data indicate that good metabolic control and compliance with diet are highly recommended to improve bone metabolism in GSD1a patients. GSD1b patients on G-CSF treatment should be carefully monitored for the risk of osteopenia/osteoporosis.

  10. Prevalence of metabolic syndrome in south Indian patients with psoriasis vulgaris and the relation between disease severity and metabolic syndrome: A hospital-based case-control study

    Directory of Open Access Journals (Sweden)

    Shraddha Madanagobalane

    2012-01-01

    Full Text Available Background: Psoriasis is a chronic inflammatory disease of the skin and joints with an increased cardiovascular risk. Previous studies have shown a higher prevalence of metabolic syndrome (MS in psoriatic patients. Objective: To investigate the prevalence of MS in patients with psoriasis and healthy controls, and to determine the relation between disease severity and the presence of MS. Materials and Methods: We performed a hospital-based case-control study on 118 adult patients with psoriasis vulgaris and 120 controls matched for age, sex and body mass index. MS was diagnosed by the presence of three or more of the South Asian Modified National Cholesterol Education Program′s Adult Panel III criteria. Results: MS was significantly more common in psoriatic patients than in controls (44.1% vs. 30%, P value = 0.025. Psoriatic patients also had a higher prevalence of triglyceridemia (33.9% vs. 20.8%, P value = 0.011, abdominal obesity (34.7% vs. 32.5%, P value = 0.035 and elevated blood sugar. There was no difference in the high density lipoprotein (HDL levels and presence of hypertension among patients with psoriasis and normal controls. There was no correlation between the severity and duration of psoriasis with MS. Conclusion: MS is frequent in patients with psoriasis. We have found no relationship between disease severity and presence of MS. Hence, we suggest that all patients must be evaluated for the MS, irrespective of the disease severity.

  11. Determining the Control Circuitry of Redox Metabolism at the Genome-Scale

    DEFF Research Database (Denmark)

    Federowicz, Stephen; Kim, Donghyuk; Ebrahim, Ali

    2014-01-01

    that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic......-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes...

  12. Actions of a separately strict cpo-monoid on pointed directed complete posets

    Directory of Open Access Journals (Sweden)

    Halimeh Moghbeli Damaneh

    2015-07-01

    Full Text Available ‎ In the present article‎, ‎we study some categorical properties of the category {$bf‎ Cpo_{Sep}$-$S$} of all {separately strict $S$-cpo's}; cpo's equipped with‎ a compatible right action of a separately strict cpo-monoid $S$ which is‎ strict continuous in each component‎. ‎In particular‎, we show that this category is reflective and coreflective in the‎ category of $S$-cpo's‎, ‎find the free and cofree functors‎, characterize products and coproducts‎. ‎Furthermore‎, ‎epimorphisms and‎  monomorphisms in {$bf Cpo_{Sep}$-$S$} are studied‎, ‎and show that‎ {$bf Cpo_{Sep}$-$S$} is not cartesian closed‎.

  13. Chlamydia pneumoniae acute liver infection affects hepatic cholesterol and triglyceride metabolism in mice.

    Science.gov (United States)

    Marangoni, Antonella; Fiorino, Erika; Gilardi, Federica; Aldini, Rita; Scotti, Elena; Nardini, Paola; Foschi, Claudio; Donati, Manuela; Montagnani, Marco; Cevenini, Monica; Franco, Placido; Roda, Aldo; Crestani, Maurizio; Cevenini, Roberto

    2015-08-01

    Chlamydia pneumoniae has been linked to atherosclerosis, strictly associated with hyperlipidemia. The liver plays a central role in the regulation of lipid metabolism. Since in animal models C. pneumoniae can be found at hepatic level, this study aims to elucidate whether C. pneumoniae infection accelerates atherosclerosis by affecting lipid metabolism. Thirty Balb/c mice were challenged intra-peritoneally with C. pneumoniae elementary bodies and thirty with Chlamydia trachomatis, serovar D. Thirty mice were injected with sucrose-phosphate-glutamate buffer, as negative controls. Seven days after infection, liver samples were examined both for presence of chlamydia and expression of genes involved in inflammation and lipid metabolism. C. pneumoniae was isolated from 26 liver homogenates, whereas C. trachomatis was never re-cultivated (P triglycerides levels compared both with negative controls (P metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Nutritional Ketosis Affects Metabolism and Behavior in Sprague-Dawley Rats in Both Control and Chronic Stress Environments

    Directory of Open Access Journals (Sweden)

    Milene L. Brownlow

    2017-05-01

    Full Text Available Nutritional ketosis may enhance cerebral energy metabolism and has received increased interest as a way to improve or preserve performance and resilience. Most studies to date have focused on metabolic or neurological disorders while anecdotal evidence suggests that ketosis may enhance performance in the absence of underlying dysfunction. Moreover, decreased availability of glucose in the brain following stressful events is associated with impaired cognition, suggesting the need for more efficient energy sources. We tested the hypotheses that ketosis induced by endogenous or exogenous ketones could: (a augment cognitive outcomes in healthy subjects; and (b prevent stress-induced detriments in cognitive parameters. Adult, male, Sprague Dawley rats were used to investigate metabolic and behavioral outcomes in 3 dietary conditions: ketogenic (KD, ketone supplemented (KS, or NIH-31 control diet in both control or chronic stress conditions. Acute administration of exogenous ketones resulted in reduction in blood glucose and sustained ketosis. Chronic experiments showed that in control conditions, only KD resulted in pronounced metabolic alterations and improved performance in the novel object recognition test. The hypothalamic-pituitary-adrenal (HPA axis response revealed that KD-fed rats maintained peripheral ketosis despite increases in glucose whereas no diet effects were observed in ACTH or CORT levels. Both KD and KS-fed rats decreased escape latencies on the third day of water maze, whereas only KD prevented stress-induced deficits on the last testing day and improved probe test performance. Stress-induced decrease in hippocampal levels of β-hydroxybutyrate was attenuated in KD group while both KD and KS prevented stress effects on BDNF levels. Mitochondrial enzymes associated with ketogenesis were increased in both KD and KS hippocampal samples and both endothelial and neuronal glucose transporters were affected by stress but only in the

  15. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods.

    Directory of Open Access Journals (Sweden)

    Andrew Nelson

    Full Text Available Protected areas (PAs cover a quarter of the tropical forest estate. Yet there is debate over the effectiveness of PAs in reducing deforestation, especially when local people have rights to use the forest. A key analytic problem is the likely placement of PAs on marginal lands with low pressure for deforestation, biasing comparisons between protected and unprotected areas. Using matching techniques to control for this bias, this paper analyzes the global tropical forest biome using forest fires as a high resolution proxy for deforestation; disaggregates impacts by remoteness, a proxy for deforestation pressure; and compares strictly protected vs. multiple use PAs vs indigenous areas. Fire activity was overlaid on a 1 km map of tropical forest extent in 2000; land use change was inferred for any point experiencing one or more fires. Sampled points in pre-2000 PAs were matched with randomly selected never-protected points in the same country. Matching criteria included distance to road network, distance to major cities, elevation and slope, and rainfall. In Latin America and Asia, strict PAs substantially reduced fire incidence, but multi-use PAs were even more effective. In Latin America, where there is data on indigenous areas, these areas reduce forest fire incidence by 16 percentage points, over two and a half times as much as naïve (unmatched comparison with unprotected areas would suggest. In Africa, more recently established strict PAs appear to be effective, but multi-use tropical forest protected areas yield few sample points, and their impacts are not robustly estimated. These results suggest that forest protection can contribute both to biodiversity conservation and CO2 mitigation goals, with particular relevance to the REDD agenda. Encouragingly, indigenous areas and multi-use protected areas can help to accomplish these goals, suggesting some compatibility between global environmental goals and support for local livelihoods.

  16. Metabolic control after years of completing a clinical trial on sensor-augmented pump therapy.

    Science.gov (United States)

    Quirós, Carmen; Giménez, Marga; Orois, Aida; Conget, Ignacio

    2015-11-01

    Sensor-augmented pump (SAP) therapy has been shown to be effective and safe for improving metabolic control in patients with type 1 diabetes mellitus (T1DM) in a number of trials. Our objective was to assess glycemic control in a group of T1DM patients on insulin pump or SAP therapy after years of participating in the SWITCH (Sensing With Insulin pump Therapy To Control HbA1c) trial and their return to routine medical monitoring. A retrospective, observational study of 20 patients who participated in the SWITCH trial at our hospital from 2008 to 2010. HbA1c values were compared at the start, during (at the end of the periods with/without SAP use - Sensor On/Sensor Off period respectively - of the cross-over design), and 3 years after study completion. HbA1c values of patients who continued SAP therapy (n=6) or only used insulin pump (n=14) were also compared. Twenty patients with T1DM (44.4±9.3 years, 60% women, baseline HbA1c level 8.43±0.55%) were enrolled into the SWITCH study). Three years after study completion, HbA1c level was 7.79±0.77 in patients on pump alone, with no significant change from the value at the end of the Off period of the study (7.85±0.57%; p=0.961). As compared to the end of the On period, HbA1c worsened less in patients who remained on SAP than in those on pump alone (0.18±0.42 vs. 0.55±0.71%; p=0.171), despite the fact that levels were similar at study start (8.41±0.60 vs. 8.47±0.45; p=0.831) and at the end of the On period (7.24±0.48 vs. 7.38±0.61; p=0.566). Frequency of CGM use in patients who continued SAP therapy was high (61.2% of the time in the last 3 months). Our study suggests that the additional benefit of SAP therapy achieved in a clinical trial may persist in the long term in routine clinical care of patients with T1DM. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  17. The photon is no strict particle and nonlocality is far from being proven

    Energy Technology Data Exchange (ETDEWEB)

    Greulich, Karl Otto [Fritz Lipmann Institut, Jena (Germany)

    2010-07-01

    Two aspects of philosophical discussions on physics are the wave particle dualism and non locality including entanglement. However the strict particle aspect of the photon, in the common sense view, has never been proven. The accumulation time argument, the only experimental verification of a strictly particle like photon, has so far not yet been satisfied. Also, experiments thought to prove nonlocality have loophole which have so far not yet been safely closed, and now an even more serious loophole emerges. Thus, also nonlocality cannot be seen as proven. This demands some fine tuning of philosophical discussions on critical experiments in physics.

  18. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is proposed for a Portable Life Support System to remove and reject heat and carbon dioxide...

  19. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is proposed for a Portable Life Support System to remove and reject heat and carbon dioxide...

  20. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    NARCIS (Netherlands)

    He, F.; Murabito, E.; Westerhoff, H.V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental

  1. Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies

    NARCIS (Netherlands)

    Geerling, Janine J.; Boon, Mariëtte R.; Kooijman, Sander; Parlevliet, Edwin T.; Havekes, Louis M.; Romijn, Johannes A.; Meurs, Illiana M.; Rensen, Patrick C. N.

    2014-01-01

    Important players in triglyceride (TG) metabolism include the liver (production), white adipose tissue (WAT) (storage), heart and skeletal muscle (combustion to generate ATP), and brown adipose tissue (BAT) (combustion toward heat), the collective action of which determine plasma TG levels.

  2. The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli.

    Science.gov (United States)

    Morin, Manon; Ropers, Delphine; Letisse, Fabien; Laguerre, Sandrine; Portais, Jean-Charles; Cocaign-Bousquet, Muriel; Enjalbert, Brice

    2016-05-01

    Metabolic control in Escherichia coli is a complex process involving multilevel regulatory systems but the involvement of post-transcriptional regulation is uncertain. The post-transcriptional factor CsrA is stated as being the only regulator essential for the use of glycolytic substrates. A dozen enzymes in the central carbon metabolism (CCM) have been reported as potentially controlled by CsrA, but its impact on the CCM functioning has not been demonstrated. Here, a multiscale analysis was performed in a wild-type strain and its isogenic mutant attenuated for CsrA (including growth parameters, gene expression levels, metabolite pools, abundance of enzymes and fluxes). Data integration and regulation analysis showed a coordinated control of the expression of glycolytic enzymes. This also revealed the imbalance of metabolite pools in the csrA mutant upper glycolysis, before the phosphofructokinase PfkA step. This imbalance is associated with a glucose-phosphate stress. Restoring PfkA activity in the csrA mutant strain suppressed this stress and increased the mutant growth rate on glucose. Thus, the carbon storage regulator system is essential for the effective functioning of the upper glycolysis mainly through its control of PfkA. This work demonstrates the pivotal role of post-transcriptional regulation to shape the carbon metabolism. © 2016 John Wiley & Sons Ltd.

  3. In diabetic Charcot neuroarthropathy impaired microvascular function is related to long lasting metabolic control and low grade inflammatory process.

    Science.gov (United States)

    Araszkiewicz, Aleksandra; Soska, Jacek; Borucka, Katarzyna; Olszewska, Marta; Niedzwiecki, Pawel; Wierusz-Wysocka, Bogna; Zozulinska-Ziolkiewicz, Dorota

    2015-09-01

    The aim of this study was to assess microvascular function associated with the occurrence of Charcot neuroarthropathy (CN) in patients with diabetes. We evaluated 70 diabetic patients (54 men) with Charcot neuroarthropathy (CN-DM), median age 59 (IQR: 51-62), mean disease duration 16±8years. The control group were 70 subjects with diabetes and without Charcot neuroarthropathy (DM), 54 men, median age 60 (54-62), mean diabetes duration 15±7years. We assessed metabolic control of diabetes, serum C-reactive protein concentration (CRP) and cardiovascular autonomic neuropathy (CAN). We used AGE-Reader to measure skin autofluorescence (AF) associated with accumulation of advanced glycation end products that reflects long lasting metabolic control. Microvascular function was examined by laser Doppler flowmetry (PERIFLUX 5000) with thermal hyperemia (TH) and postocclusive reactive hyperemia (PORH). CN-DM patients as compared to DM subjects had lower HbA1c level [7.6 (6.6-8.4) vs 8.4 (7.3-9.7)%, plevel (Rs=0.42, plevel (Rs=-0.23, p=0.04). Deterioration of microvascular function and autonomic system dysfunction are present in Charcot neuroarthropathy. Impaired microvascular reactivity is associated with worse long lasting metabolic control of diabetes and low grade inflammatory process. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction.

    Science.gov (United States)

    Webster, Simon George; Keller, Rainer; Dircksen, Heinrich

    2012-01-15

    Apart from providing an up-to-date review of the literature, considerable emphasis was placed in this article on the historical development of the field of "crustacean eyestalk hormones". A role of the neurosecretory eyestalk structures of crustaceans in endocrine regulation was recognized about 80 years ago, but it took another half a century until the first peptide hormones were identified. Following the identification of crustacean hyperglycaemic hormone (CHH) and moult-inhibiting hormone (MIH), a large number of homologous peptides have been identified to this date. They comprise a family of multifunctional peptides which can be divided, according to sequences and precursor structure, into two subfamilies, type-I and -II. Recent results on peptide sequences, structure of genes and precursors are described here. The best studied biological activities include metabolic control, moulting, gonad maturation, ionic and osmotic regulation and methyl farnesoate synthesis in mandibular glands. Accordingly, the names CHH, MIH, and GIH/VIH (gonad/vitellogenesis-inhibiting hormone), MOIH (mandibular organ-inhibiting hormone) were coined. The identification of ITP (ion transport peptide) in insects showed, for the first time, that CHH-family peptides are not restricted to crustaceans, and data mining has recently inferred their occurrence in other ecdysozoan clades as well. The long-held tenet of exclusive association with the eyestalk X-organ-sinus gland tract has been challenged by the finding of several extra nervous system sites of expression of CHH-family peptides. Concerning mode of action and the question of target tissues, second messenger mechanisms are discussed, as well as binding sites and receptors. Future challenges are highlighted. Copyright © 2011. Published by Elsevier Inc.

  5. Metabolic syndrome and the risk of urothelial carcinoma of the bladder: a case-control study

    International Nuclear Information System (INIS)

    Montella, Maurizio; Di Maso, Matteo; Crispo, Anna; Grimaldi, Maria; Bosetti, Cristina; Turati, Federica; Giudice, Aldo; Libra, Massimo; Serraino, Diego; La Vecchia, Carlo; Tambaro, Rosa; Cavalcanti, Ernesta; Ciliberto, Gennaro; Polesel, Jerry

    2015-01-01

    The Metabolic syndrome (MetS) is an emerging condition worldwide, consistently associated with an increased risk of several cancers. Some information exists on urothelial carcinoma of the bladder (UCB) and MetS. This study aims at further evaluating the association between the MetS and UCB. Between 2003 and 2014 in Italy, we conducted a hospital-based case-control study, enrolling 690 incident UCB patients and 665 cancer-free matched patients. The MetS was defined as the presence of at least three of the four selected indicators: abdominal obesity, hypercholesterolemia, hypertension, and diabetes. Odds ratios (ORs) and corresponding 95 % confidence intervals (CIs) for MetS and its components were estimated through multiple logistic regression models, adjusting for potential confounders. Patients with MetS were at a 2-fold higher risk of UCB (95 % CI:1.38–3.19), compared to those without the MetS. In particular, ORs for bladder cancer were 2.20 (95 % CI:1.42–3.38) for diabetes, 0.88 (95 % CI: 0.66-1.17) for hypertension, 1.16 (95 % CI: 0.80-1.67) for hypercholesterolemia, and 1.63 (95 % CI:1.22–2.19) for abdominal obesity. No heterogeneity in risks emerged across strata of sex, age, education, geographical area, and smoking habits. Overall, 8.1 % (95 % CI: 3.9-12.4 %) of UCB cases were attributable to the MetS. This study supports a positive association between the MetS and bladder cancer risk

  6. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer.

    Science.gov (United States)

    Seyfried, T N; Sanderson, T M; El-Abbadi, M M; McGowan, R; Mukherjee, P

    2003-10-06

    Brain tumours lack metabolic versatility and are dependent largely on glucose for energy. This contrasts with normal brain tissue that can derive energy from both glucose and ketone bodies. We examined for the first time the potential efficacy of dietary therapies that reduce plasma glucose and elevate ketone bodies in the CT-2A syngeneic malignant mouse astrocytoma. C57BL/6J mice were fed either a standard diet unrestricted (SD-UR), a ketogenic diet unrestricted (KD-UR), the SD restricted to 40% (SD-R), or the KD restricted to 40% of the control standard diet (KD-R). Body weights, tumour weights, plasma glucose, beta-hydroxybutyrate (beta-OHB), and insulin-like growth factor 1 (IGF-1) were measured 13 days after tumour implantation. CT-2A growth was rapid in both the SD-UR and KD-UR groups, but was significantly reduced in both the SD-R and KD-R groups by about 80%. The results indicate that plasma glucose predicts CT-2A growth and that growth is dependent more on the amount than on the origin of dietary calories. Also, restriction of either diet significantly reduced the plasma levels of IGF-1, a biomarker for angiogenesis and tumour progression. Owing to a dependence on plasma glucose, IGF-1 was also predictive of CT-2A growth. Ketone bodies are proposed to reduce stromal inflammatory activities, while providing normal brain cells with a nonglycolytic high-energy substrate. Our results in a mouse astrocytoma suggest that malignant brain tumours are potentially manageable with dietary therapies that reduce glucose and elevate ketone bodies.

  7. Interactions of glucagon and free fatty acids with insulin in control of glucose metabolism

    International Nuclear Information System (INIS)

    Chambrier, C.; Picard, S.; Vidal, H.; Cohen, R.; Riou, J.P.; Beylot, M.

    1990-01-01

    To study the interactions of physiological glucagon and free fatty acids (FFA) concentrations with insulin in the control of glucose metabolism, we determined in normal subjects the response of endogenous glucose production (EGP) and glucose utilization (Rd) to a progressive and moderate increase of insulinemia in the presence of glucagon and FFA levels either decreased (somatostatin [SRIF] and insulin infusion, C test) or maintained to normal postabsorptive values isolated (SRIF + insulin + glucagon infusion, G test; SRIF + insulin + Intralipid infusion, IL test) or in association (SRIF + insulin + glucagon + Intralipid infusion, IL + G test). Compared with the C test, maintenance of glucagon level had only small and inconsistent effects on glucose Rd, but induced a shift to the right of the dose-response curve to insulin of EGP (apparent ED50: C test, 10.9 mU.L-1; G test, 15.2 mU.L-1). Intralipid infusion resulted, whether glucagon was substituted or not, in a near total suppression of the insulin-induced increase of glucose Rd (Rd at the end of the tests: C test, 6.13 +/- 0.85 mg.kg-1.min-1; G test, 7.29 +/- 0.87 mg.kg-1.min-1; IL test, 3.30 +/- 0.65 mg.kg-1.min-1; IL + G test, 3.57 +/- 0.42 mg.kg-1.min-1). In the absence of glucagon, substitution Intralipid infusion also antagonized the action of insulin on EGP. However, this effect was no longer apparent when glucagon was replaced (dose-response curve to insulin of EGP during the G and the IL + G test were comparable)

  8. Is particle pollution in outdoor air associated with metabolic control in type 2 diabetes?

    Directory of Open Access Journals (Sweden)

    Teresa Tamayo

    Full Text Available BACKGROUND: There is growing evidence that air pollutants are associated with the risk of type 2 diabetes. Subclinical inflammation may be a mechanism linking air pollution with diabetes. Information is lacking whether air pollution also contributes to worse metabolic control in newly diagnosed type 2 diabetes. We examined the hypothesis that residential particulate matter (PM10 is associated with HbA1c concentration in newly diagnosed type 2 diabetes. METHODS: Nationwide regional levels of particulate matter with a diameter of ≤ 10 µm (PM10 were obtained in 2009 from background monitoring stations in Germany (Federal Environmental Agency and assigned to place of residency of 9,102 newly diagnosed diabetes patients registered in the DPV database throughout Germany (age 65.5 ± 13.5 yrs; males: 52.1%. Mean HbA1c (% levels stratified for air pollution quartiles (PM10 in µg/m(3 were estimated using linear regression models adjusting for age, sex, BMI, diabetes duration, geographic region, year of ascertainment, and social indicators. FINDINGS: In both men and women, adjusted HbA1c was significantly lower in the lowest quartile of PM10 exposure in comparison to quartiles Q2-Q4. Largest differences in adjusted HbA1c (95% CI were seen comparing lowest quartiles of exposure with highest quartiles (men %: -0.42 (-0.62; -0.23/mmol/mol: -28.11 (-30.30; -26.04, women, %: -0.28 (-0.47; -0.09/mmol/mol: -0.28 (-0.47; -0.09. INTERPRETATION: Air pollution may be associated with higher HbA1c levels in newly diagnosed type 2 diabetes patients. Further studies are warranted to examine this association.

  9. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape.

    Directory of Open Access Journals (Sweden)

    Mirjam Ochsner

    2010-03-01

    Full Text Available Various physical parameters, including substrate rigidity, size of adhesive islands and micro-and nano-topographies, have been shown to differentially regulate cell fate in two-dimensional (2-D cell cultures. Cells anchored in a three-dimensional (3-D microenvironment show significantly altered phenotypes, from altered cell adhesions, to cell migration and differentiation. Yet, no systematic analysis has been performed that studied how the integrated cellular responses to the physical characteristics of the environment are regulated by dimensionality (2-D versus 3-D.Arrays of 5 or 10 microm deep microwells were fabricated in polydimethylsiloxane (PDMS. The actin cytoskeleton was compared for single primary fibroblasts adhering either to microfabricated adhesive islands (2-D or trapped in microwells (3-D of controlled size, shape, and wall rigidity. On rigid substrates (Young's Modulus = 1 MPa, cytoskeleton assembly within single fibroblast cells occurred in 3-D microwells of circular, rectangular, square, and triangular shapes with 2-D projected surface areas (microwell bottom surface area and total surface areas of adhesion (microwell bottom plus wall surface area that inhibited stress fiber assembly in 2-D. In contrast, cells did not assemble a detectable actin cytoskeleton in soft 3-D microwells (20 kPa, regardless of their shapes, but did so on flat, 2-D substrates. The dependency on environmental dimensionality was also reflected by cell viability and metabolism as probed by mitochondrial activities. Both were upregulated in 3-D cultured cells versus cells on 2-D patterns when surface area of adhesion and rigidity were held constant.These data indicate that cell shape and rigidity are not orthogonal parameters directing cell fate. The sensory toolbox of cells integrates mechanical (rigidity and topographical (shape and dimensionality information differently when cell adhesions are confined to 2-D or occur in a 3-D space.

  10. Oxidized LDL Is Strictly Limited to Hyperthyroidism Irrespective of Fat Feeding in Female Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Sieglinde Zelzer

    2015-05-01

    Full Text Available Metabolic dysfunctions might play a crucial role in the pathophysiology of thyroid dysfunctions. This study aimed to investigate the impact of a controlled diet (normal versus high fat feeding on hypothyroid and hyperthyroid Sprague Dawley rats. Female Sprague Dawley rats (n = 66 were grouped into normal diet (n = 30 and high-fat diet (n = 36 groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3 treatment, respectively. After 12 weeks of treatment metabolic parameters, such as oxidized LDL (oxLDL, malondialdehyde (MDA, 4-hydroxynonenal (HNE, the lipid profile, body weight and food intake parameters were analyzed. Successfully induced thyroid dysfunctions were shown by T3 levels, both under normal and high fat diet. Thyroid dysfunctions were accompanied by changes in calorie intake and body weight as well as in the lipid profile. In detail, hypothyroid rats showed significantly decreased oxLDL levels, whereas hyperthyroid rats showed significantly increased oxLDL levels. These effects were seen under high fat diet and were less pronounced with normal feeding. Taken together, we showed for the first time in female SD rats that only hyper-, but not hypothyroidism, is associated with high atherogenic oxidized LDL irrespective of normal or high-fat diet in Sprague Dawley rats.

  11. More strictly protected areas are not necessarily more protective: evidence from Bolivia, Costa Rica, Indonesia, and Thailand

    International Nuclear Information System (INIS)

    Ferraro, Paul J; Hanauer, Merlin M; Miteva, Daniela A; Pattanayak, Subhrendu K; Canavire-Bacarreza, Gustavo Javier; Sims, Katharine R E

    2013-01-01

    National parks and other protected areas are at the forefront of global efforts to protect biodiversity and ecosystem services. However, not all protection is equal. Some areas are assigned strict legal protection that permits few extractive human uses. Other protected area designations permit a wider range of uses. Whether strictly protected areas are more effective in achieving environmental objectives is an empirical question: although strictly protected areas legally permit less anthropogenic disturbance, the social conflicts associated with assigning strict protection may lead politicians to assign strict protection to less-threatened areas and may lead citizens or enforcement agents to ignore the strict legal restrictions. We contrast the impacts of strictly and less strictly protected areas in four countries using IUCN designations to measure de jure strictness, data on deforestation to measure outcomes, and a quasi-experimental design to estimate impacts. On average, stricter protection reduced deforestation rates more than less strict protection, but the additional impact was not always large and sometimes arose because of where stricter protection was assigned rather than regulatory strictness per se. We also show that, in protected area studies contrasting y management regimes, there are y 2 policy-relevant impacts, rather than only y, as earlier studies have implied. (letter)

  12. Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: the Sysdimet study.

    Directory of Open Access Journals (Sweden)

    Maria Lankinen

    Full Text Available Due to the growing prevalence of type 2 diabetes, new dietary solutions are needed to help improve glucose and lipid metabolism in persons at high risk of developing the disease. Herein we investigated the effects of low-insulin-response grain products, fatty fish, and berries on glucose metabolism and plasma lipidomic profiles in persons with impaired glucose metabolism.Altogether 106 men and women with impaired glucose metabolism and with at least two other features of the metabolic syndrome were included in a 12-week parallel dietary intervention. The participants were randomized into three diet intervention groups: (1 whole grain and low postprandial insulin response grain products, fatty fish three times a week, and bilberries three portions per day (HealthyDiet group, (2 Whole grain enriched diet (WGED group, which includes principally the same grain products as group (1, but with no change in fish or berry consumption, and (3 refined wheat breads (Control. Oral glucose tolerance, plasma fatty acids and lipidomic profiles were measured before and after the intervention. Self-reported compliance with the diets was good and the body weight remained constant. Within the HealthyDiet group two hour glucose concentration and area-under-the-curve for glucose decreased and plasma proportion of (n-3 long-chain PUFAs increased (False Discovery Rate p-values <0.05. Increases in eicosapentaenoic acid and docosahexaenoic acid associated curvilinearly with the improved insulin secretion and glucose disposal. Among the 364 characterized lipids, 25 changed significantly in the HealthyDiet group, including multiple triglycerides incorporating the long chain (n-3 PUFA.The results suggest that the diet rich in whole grain and low insulin response grain products, bilberries, and fatty fish improve glucose metabolism and alter the lipidomic profile. Therefore, such a diet may have a beneficial effect in the efforts to prevent type 2 diabetes in high risk

  13. LA Sprouts Randomized Controlled Nutrition, Cooking and Gardening Program Reduces Obesity and Metabolic Risk in Latino Youth

    Science.gov (United States)

    Gatto, Nicole M.; Martinez, Lauren C.; Spruijt-Metz, Donna; Davis, Jaimie N.

    2015-01-01

    Objective To assess the effects of a 12-week gardening, nutrition, and cooking intervention (“LA Sprouts”) on dietary intake, obesity parameters and metabolic disease risk among low-income, primarily Hispanic/Latino youth in Los Angeles. Methods Randomized control trial involving four elementary schools [2 schools randomized to intervention (172, 3rd–5th grade students); 2 schools randomized to control (147, 3rd–5th grade students)]. Classes were taught in 90-minute sessions once a week to each grade level for 12 weeks. Data collected at pre- and post-intervention included dietary intake via food frequency questionnaire (FFQ), anthropometric measures [BMI, waist circumference (WC)], body fat, and fasting blood samples. Results LA Sprouts participants had significantly greater reductions in BMI z-scores (0.1 versus 0.04 point decrease, respectively; p=0.01) and WC (−1.2 cm vs. no change; pobesity and metabolic risk. PMID:25960146

  14. Effects of supportive telephone counseling in the metabolic control of elderly people with diabetes mellitus.

    Science.gov (United States)

    Becker, Tânia Alves Canata; Teixeira, Carla Regina de Souza; Zanetti, Maria Lúcia; Pace, Ana Emília; Almeida, Fábio Araújo; Torquato, Maria Teresa da Costa Gonçalves

    2017-01-01

    the purpose of this study was to evaluate the efficacy of telephone-based support for the metabolic control of elderly patients with diabetes mellitus. a pragmatic study was conducted in two groups, called G1 (n=36) and G2 (n=27), at a health unit from the countryside of São Paulo state. Patients in G1 group received telephone support over four months, through 16 telephone contacts with educational material; for the G2 group the educational material was mailed. significant differences were found. The G1 group showed a reduction of the parameters of fasting glucose, as well as systolic and diastolic blood pressure. In G2 group a modest reduction was noted in some parameters, with no significant difference. telephone support was effective to deliver patient education to the diabetic elderly, leading to the reduction of fasting blood glucose. This, combined with other strategies, can contribute to reduce glycated hemoglobin (NCT 01972412). avaliar a efetividade do suporte telefônico no controle metabólico de idosos com diabetes mellitus. estudo pragmático com 63 participantes, alocados em dois grupos, denominados G1(n=36) e G2(n=27), em uma unidade de saúde do interior paulista. O suporte telefônico foi oferecido, durante quatro meses, para o G1, por meio de 16 ligações telefônicas com conteúdo educativo, e, para o G2, foram enviadas correspondências por via postal. no G1 houve significância estatística na redução dos parâmetros das variáveis glicemia de jejum, pressão arterial sistólica e diastólica. No G2, houve redução discreta de algumas variáveis, mas sem significância estatística. o suporte telefônico foi considerado uma estratégia educativa efetiva para idosos com diabetes mellitus e favoreceu a redução da glicemia de jejum e, em conjunto com outras estratégias, pode agregar valor na redução da hemoglobina glicada (NCT 01972412).

  15. Effects of concurrent training on muscle strength in older adults with metabolic syndrome: A randomized controlled clinical trial.

    Science.gov (United States)

    Agner, Vania Fernanda Clemente; Garcia, Marcia Carvalho; Taffarel, Andre Andriolli; Mourão, Camila Baudini; da Silva, Isabel Paulo; da Silva, Sara Pereira; Peccin, Maria Stella; Lombardi, Império

    Metabolic syndrome is highly prevalent among older adults. Concurrent training comprises muscle strengthening and aerobic exercise. Determine the effects of a concurrent training program on muscle strength, walking function, metabolic profile, cardiovascular risk, use of medications and quality of life among older adults with metabolic syndrome. A randomised, controlled, blind, clinical trial was conducted in the city of Santos, state of São Paulo, Brazil, involving 41 male and female older adults. The participants were randomly allocated to a control group (n = 18) and intervention group (n = 23) and were submitted to the following evaluations: strength - 1 maximum repetition (1MR) for 12 muscle groups; the Six-Minute Walk Test (6MWT); blood concentrations of cholesterol and glucose; the use of medications; and the administration of the SF-36 questionnaire. The intervention was conducted twice a week over a total of 24 sessions of concurrent training: 50 min of strength exercises (40-70% 1MR) and 40 min of walking exercises (70-85% maximum heart rate). Increases in muscle strength were found in the upper and lower limbs in the inter-group analysis and a greater distance travelled on the 6MWT was found in the intervention group (p = 0.001). The intervention group demonstrated a reduction in the consumption of biguanides (p = 0.002). No changes were found regarding metabolic profile, cardiovascular risk or self-perceived quality of life. The findings of this clinical trial can be used for the prescription of concurrent training for older adults with metabolic syndrome for gains in muscle strength and walking distance as well as a reduction in the use of biguanides. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Physical activity and nutrition behaviour outcomes of a cluster-randomized controlled trial for adults with metabolic syndrome in Vietnam.

    Science.gov (United States)

    Tran, Van Dinh; Lee, Andy H; Jancey, Jonine; James, Anthony P; Howat, Peter; Mai, Le Thi Phuong

    2017-01-13

    Metabolic syndrome is prevalent among Vietnamese adults, especially those aged 50-65 years. This study evaluated the effectiveness of a 6 month community-based lifestyle intervention to increase physical activity levels and improve dietary behaviours for adults with metabolic syndrome in Vietnam. Ten communes, involving participants aged 50-65 years with metabolic syndrome, were recruited from Hanam province in northern Vietnam. The communes were randomly allocated to either the intervention (five communes, n = 214) or the control group (five communes, n = 203). Intervention group participants received a health promotion package, consisting of an information booklet, education sessions, a walking group, and a resistance band. Control group participants received one session of standard advice during the 6 month period. Data were collected at baseline and after the intervention to evaluate programme effectiveness. The International Physical Activity Questionnaire - Short Form and a modified STEPS questionnaire were used to assess physical activity and dietary behaviours, respectively, in both groups. Pedometers were worn by the intervention participants only for 7 consecutive days at baseline and post-intervention testing. To accommodate the repeated measures and the clustering of individuals within communes, multilevel mixed regression models with random effects were fitted to determine the impacts of intervention on changes in outcome variables over time and between groups. With a retention rate of 80.8%, the final sample comprised 175 intervention and 162 control participants. After controlling for demographic and other confounding factors, the intervention participants showed significant increases in moderate intensity activity (P = 0.018), walking (P nutrition intervention programme successfully improved physical activity and dietary behaviours for adults with metabolic syndrome in Vietnam. Australian New Zealand Clinical Trials Registry, ACTRN

  17. Immediate effect of instrumentation on the subgingival microflora in deep inflamed pockets under strict plaque control

    NARCIS (Netherlands)

    Rhemrev, GE; Timmerman, MF; Veldkamp, A; Van Winkelhoff, AJ; Van der Velden, U

    Objective: To investigate (1) reduction in the number of microorganisms obtained directly after subgingival instrumentation, (2) rate of bacterial re-colonization during 2 weeks, under supragingival plaque-free conditions. Materials and Method: Effects of subgingival instrumentation were measured at

  18. Strict Monotonicity and Unique Continuation for the Third-Order Spectrum of Biharmonic Operator

    Directory of Open Access Journals (Sweden)

    Khalil Ben Haddouch

    2012-01-01

    Full Text Available We will study the spectrum for the biharmonic operator involving the laplacian and the gradient of the laplacian with weight, which we call third-order spectrum. We will show that the strict monotonicity of the eigenvalues of the operator , where , holds if some unique continuation property is satisfied by the corresponding eigenfunctions.

  19. "Let the Master Respond": Should Schools Be Strictly Liable When Employees Sexually Abuse Children?

    Science.gov (United States)

    Fossey, Richard; DeMitchell, Todd

    Although sexual abuse against children is a problem in the public schools, school officials have generally not acted aggressively to stop it. This paper argues for a strict liability standard--the assessment of liability without fault--against a school district in cases of student sexual abuse by a school employee. Part 1 explores the principle of…

  20. History, administration, goals, values, and long-term data of Russia's strictly protected scientific nature reserves

    Science.gov (United States)

    Martin A. Spetich; Anna E. Kvashnina; Y.D. Nukhimovskya; Olin E. Jr. Rhodes

    2009-01-01

    One of the most comprehensive attempts at biodiversity conservation in Russia and the former Soviet Union has been the establishment of an extensive network of protected natural areas. Among all types of protected areas in Russia, zapovedniks (strictly protected scientific preserve) have been the most effective in protecting biodiversity at the ecosystem scale. Russia...

  1. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia

    NARCIS (Netherlands)

    Häussinger, D.; Lamers, W. H.; Moorman, A. F.

    1992-01-01

    With respect to hepatocyte heterogeneity in ammonia and amino acid metabolism, two different patterns of sublobular gene expression are distinguished: 'gradient-type' and 'strict- or compartment-type' zonation. An example for strict-type zonation is the reciprocal distribution of carbamoylphosphate

  2. The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida.

    Science.gov (United States)

    Escapa, I F; García, J L; Bühler, B; Blank, L M; Prieto, M A

    2012-04-01

    The synthesis and degradation of polyhydroxyalkanoates (PHAs), the storage polymer of many bacteria, is linked to the operation of central carbon metabolism. To rationalize the impact of PHA accumulation on central carbon metabolism of the prototype bacterium Pseudomonas putida, we have revisited PHA production in quantitative physiology experiments in the wild-type strain vs. a PHA negative mutant growing under low nitrogen conditions. When octanoic acid was used as PHA precursor and as carbon and energy source, we have detected higher intracellular flux via acetyl-CoA in the mutant strain than in the wild type, which correlates with the stimulation of the TCA cycle and glyoxylate shunt observed on the transcriptional level. The mutant defective in carbon and energy storage spills the additional resources, releasing CO(2) instead of generating biomass. Hence, P. putida operates the metabolic network to optimally exploit available resources and channels excess carbon and energy to storage via PHA, without compromising growth. These findings demonstrate that the PHA metabolism plays a critical role in synchronizing global metabolism to availability of resources in PHA-producing microorganisms. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Effects of Korean Red Ginseng on Cardiovascular Risks in Subjects with Metabolic Syndrome: a Double-blind Randomized Controlled Study.

    Science.gov (United States)

    Park, Byoung-Jin; Lee, Yong-Jae; Lee, Hye-Ree; Jung, Dong-Hyuk; Na, Ha-Young; Kim, Hong-Bae; Shim, Jae-Yong

    2012-07-01

    This study investigated the effects of Korean red ginseng (KRG) supplementation on metabolic parameters, inflammatory markers, and arterial stiffness in subjects with metabolic syndrome. We performed a randomized, double-blind, placebo-controlled, single-center study in 60 subjects who were not taking drugs that could affect metabolic and vascular functions. Subjects were randomized into either a KRG (4.5 g/d) group or a placebo group for a 12-week study. We collected anthropometric measurements, blood for laboratory testing, and brachial-ankle pulse wave velocity (baPWV) at the initial (week 0) and final (week 12) visits. A total of 48 subjects successfully completed the study protocol. Oral administration of KRG did not significantly affect blood pressure, oxidative or inflammatory markers, or baPWV. We found no evidence that KRG had an effect on blood pressure, lipid profile, oxidized low density lipoprotein, fasting blood glucose, or arterial stiffness in subjects with metabolic syndrome. These findings warrant subsequent longer-term prospective clinical investigations with a larger population. ClinicalTrials.gov Identifier: NCT00976274.

  4. FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Lassiter, David G; Nylén, Carolina; Sjögren, Rasmus J O

    2018-01-01

    and the direct role of FAK on glucose and lipid metabolism. We hypothesised that insulin treatment and AMPK activation would have opposing effects on FAK phosphorylation and that gene silencing of FAK would alter metabolism. METHODS: Human muscle was treated with insulin or the AMPK-activating compound 5......-aminoimadazole-4-carboxamide ribonucleotide (AICAR) to determine FAK phosphorylation and glucose transport. Primary human skeletal muscle cells were used to study the effects of insulin or AICAR treatment on FAK signalling during serum starvation, as well as to determine the metabolic consequences of silencing...... in various non-muscle cell types and plays a regulatory role during skeletal muscle differentiation. The role of FAK in skeletal muscle in relation to insulin stimulation or AMPK activation is unknown. We examined the effects of insulin or AMPK activation on FAK phosphorylation in human skeletal muscle...

  5. Regression of microalbuminuria in type 1 diabetic patients: results of a sequential intervention with improved metabolic control and ACE inhibitors.

    Science.gov (United States)

    Vilarrasa, N; Soler, J; Montanya, E

    2005-06-01

    The objective was to evaluate the effect of improved metabolic control and ACE inhibition used sequentially in the treatment of type 1 diabetic patients with microalbuminuria. We studied 44 consecutive type 1 diabetic patients with microalbuminuria not previously treated with ACE inhibitors. Improved metabolic control (optimisation period) was attempted for 6-12 months and patients with persistent microalbuminuria were subsequently treated with ACE inhibitors. Stepwise logistic regression analysis included the variables age, age at diabetes onset, duration of diabetes, HbA1c, initial albumin excretion rate (AER) and mean blood pressure as predictors of final AER. Thirty per cent of patients regressed to normoalbuminuria after the optimisation period, and 58% of them maintained normal AER 4.5+/-1.3 years later (3-7 years). Patients achieving normoalbuminuria had lower baseline AER (53+/-22 vs. 94+/-63 mg/24 h, p=0.012). The initial AER level was the only factor associated with final AER (r=0.58, p=0.021). Thirty patients with persistent microalbuminuria were treated with ACE inhibitors for two years, 35.5% of whom regressed to normal AER. Patients achieving normoalbuminuria after ACE inhibitor treatment had lower baseline AER (55+/-24 vs. 132+/-75 mg/24 h, p=0.03). The initial AER was the sole predictor of final AER (r=0.51, ptherapy resulted in long-term normalisation of AER in 47.4% of patients. The sequential implementation of improved metabolic control and ACE inhibitor therapy had a long-term beneficial effect in type 1 diabetic patients with microalbuminuria. We propose that type 1 diabetic patients with microalbuminuria could benefit from a period of metabolic improvement before the initiation of ACE inhibitor therapy.

  6. Functional Beta Cell Mass from Device-Encapsulated hESC-Derived Pancreatic Endoderm Achieving Metabolic Control

    Directory of Open Access Journals (Sweden)

    Thomas Robert

    2018-03-01

    Full Text Available Summary: Human stem cells represent a potential source for implants that replace the depleted functional beta cell mass (FBM in diabetes patients. Human embryonic stem cell-derived pancreatic endoderm (hES-PE can generate implants with glucose-responsive beta cells capable of reducing hyperglycemia in mice. This study with device-encapsulated hES-PE (4 × 106 cells/mouse determines the biologic characteristics at which implants establish metabolic control during a 50-week follow-up. A metabolically adequate FBM was achieved by (1 formation of a sufficient beta cell number (>0.3 × 106/mouse at >50% endocrine purity and (2 their maturation to a functional state comparable with human pancreatic beta cells, as judged by their secretory responses during perifusion, their content in typical secretory vesicles, and their nuclear NKX6.1-PDX1-MAFA co-expression. Assessment of FBM in implants and its correlation with in vivo metabolic markers will guide clinical translation of stem cell-derived grafts in diabetes. : In this article, Pipeleers and colleagues demonstrate that subcutaneous implants of device-encapsulated human stem cell-derived pancreatic endoderm can generate a functional beta cell mass that establishes sustained glucose control in mice. They identified their biologic characteristics and correlation with in vivo outcome. Data and methods are expected to guide clinical translation to beta cell replacement therapy in diabetes. Keywords: stem cell-derived pancreatic endoderm, stem cell therapy, diabetes, encapsulation, differentiation, functional maturation, functional beta cell mass, metabolic control

  7. Hormone regulation of rhizome development in tall fescue (Festuca arundinacea) associated with proteomic changes controlling respiratory and amino acid metabolism.

    Science.gov (United States)

    Ma, Xiqing; Xu, Qian; Meyer, William A; Huang, Bingru

    2016-09-01

    Rhizomes are underground stems with meristematic tissues capable of generating shoots and roots. However, mechanisms controlling rhizome formation and growth are yet to be completely understood. The objectives of this study were to investigate whether rhizome development could be regulated by cytokinins (CKs) and gibberellic acids (GAs), and determine underlying mechanisms of regulation of rhizome formation and growth of tall fescue (Festuca arundinacea) by a CK or GA through proteomic and transcript analysis. A rhizomatous genotype of tall fescue ('BR') plants were treated with 6-benzylaminopurine (BAP, a synthetic cytokinin) or GA3 in hydroponic culture in growth chambers. Furthermore, comparative proteomic analysis of two-dimensional electrophoresis and mass spectrometry were performed to investigate proteins and associated metabolic pathways imparting increased rhizome number by BAP and rhizome elongation by GA3 KEY RESULTS: BAP stimulated rhizome formation while GA3 promoted rhizome elongation. Proteomic analysis identified 76 differentially expressed proteins (DEPs) due to BAP treatment and 37 DEPs due to GA3 treatment. Cytokinin-related genes and cell division-related genes were upregulated in the rhizome node by BAP and gibberellin-related and cell growth-related genes in the rhizome by GA3 CONCLUSIONS: Most of the BAP- or GA-responsive DEPs were involved in respiratory metabolism and amino acid metabolism. Transcription analysis demonstrated that genes involved in hormone metabolism, signalling pathways, cell division and cell-wall loosening were upregulated by BAP or GA3 The CK and GA promoted rhizome formation and growth, respectively, by activating metabolic pathways that supply energy and amino acids to support cell division and expansion during rhizome initiation and elongation in tall fescue. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Fatty liver associated with metabolic derangement in patients with chronic kidney disease: A controlled attenuation parameter study

    Directory of Open Access Journals (Sweden)

    Chang-Yun Yoon

    2017-03-01

    Full Text Available Background: Hepatic steatosis measured with controlled attenuation parameter (CAP using transient elastography predicts metabolic syndrome in the general population. We investigated whether CAP predicted metabolic syndrome in chronic kidney disease patients. Methods: CAP was measured with transient elastography in 465 predialysis chronic kidney disease patients (mean age, 57.5 years. Results: The median CAP value was 239 (202–274 dB/m. In 195 (41.9% patients with metabolic syndrome, diabetes mellitus was more prevalent (105 [53.8%] vs. 71 [26.3%], P < 0.001, with significantly increased urine albumin-to-creatinine ratio (184 [38–706] vs. 56 [16–408] mg/g Cr, P = 0.003, high sensitivity C-reactive protein levels (5.4 [1.4–28.2] vs. 1.7 [0.6–9.9] mg/L, P < 0.001, and CAP (248 [210–302] vs. 226 [196–259] dB/m, P < 0.001. In multiple linear regression analysis, CAP was independently related to body mass index (β = 0.742, P < 0.001, triglyceride levels (β = 2.034, P < 0.001, estimated glomerular filtration rate (β = 0.316, P = 0.001, serum albumin (β = 1.386, P < 0.001, alanine aminotransferase (β = 0.064, P = 0.029, and total bilirubin (β = −0.881, P = 0.009. In multiple logistic regression analysis, increased CAP was independently associated with increased metabolic syndrome risk (per 10 dB/m increase; odds ratio, 1.093; 95% confidence interval, 1.009–1.183; P = 0.029 even after adjusting for multiple confounding factors. Conclusion: Increased CAP measured with transient elastography significantly correlated with and could predict increased metabolic syndrome risk in chronic kidney disease patients.

  9. Carbon catabolite repression and global control of the carbohydrate metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Luesink, E.J.

    1998-01-01

    In view of the economic importance of fermented dairy products considerable scientific attention has been given to various steps of fermentation processes, including the L-lactate formation of lactic acid bacteria (de Vos, 1996). In particular, the carbohydrate metabolism of L. lactis has

  10. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Pomraning, Kyle R.; Baker, Scott E.

    2016-01-01

    accumulation in Y. lipolytica does not involve transcriptional regulation of lipid metabolism but is associated with regulation of amino-acid biosynthesis, resulting in redirection of carbon flux during nitrogen limitation from amino acids to lipids. Lipid accumulation in Y. lipolytica at nitrogen limitation...

  11. Role of gut microbiota in the control of energy and carbohydrate metabolism

    NARCIS (Netherlands)

    Venema, K.

    2010-01-01

    Purpose of review: To describe the recent developments and insights gained in the role played by the colonic microbiota in energy and carbohydrate metabolism related to obesity in humans. Recent findings: Previous findings that the ratio of Firmicutes and Bacteriodetes is important in energy

  12. The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels

    NARCIS (Netherlands)

    Müller, Ingrid B; Bergmann, Bärbel; Groves, Matthew R; Couto, Isabel; Amaral, Leonard; Begley, Tadhg P; Walter, Rolf D; Wrenger, Carsten

    2009-01-01

    Vitamin B1 is in its active form thiamine pyrophosphate (TPP), an essential cofactor for several key enzymes in the carbohydrate metabolism. Mammals must salvage this crucial nutrient from their diet in order to complement the deficiency of de novo synthesis. In the human pathogenic bacterium

  13. Defining a novel leptin–melanocortin–kisspeptin pathway involved in the metabolic control of puberty

    Directory of Open Access Journals (Sweden)

    Maria Manfredi-Lozano

    2016-10-01

    Conclusions: Our physiological, virogenetic, and functional genomic studies document a novel α-MSH→kisspeptin→GnRH neuronal signaling pathway involved in transmitting the permissive effects of leptin on pubertal maturation, which is relevant for the metabolic (and, eventually, pharmacological regulation of puberty onset.

  14. Artificial neural network analysis of factors controlling ecosystem metabolism in coastal systems

    NARCIS (Netherlands)

    Rochelle-Newall, E.J.; Winter, C.; Barrón, C.; Borges, A.V.; Duarte, C.M.; Elliott, M.; Frankignoulle, M.; Gazeau, F.P.H.; Middelburg, J.J.; Pizay, M-D.; Thioulouse, J.; Gattuso, J.P.

    2007-01-01

    Knowing the metabolic balance of an ecosystem is of utmost importance in determining whether the system is a net source or net sink of carbon dioxide to the atmosphere. However, obtaining these estimates often demands significant amounts of time and manpower. Here we present a simplified way to

  15. A Major Role for Perifornical Orexin Neurons in the Control of Glucose Metabolism in Rats

    NARCIS (Netherlands)

    Yi, Chun-Xia; Serlie, Mireille J.; Ackermans, Mariette T.; Foppen, Ewout; Buijs, Ruud M.; Sauerwein, Hans P.; Fliers, Eric; Kalsbeek, Andries

    2009-01-01

    OBJECTIVE-The hypothalamic neuropeptide orexin influences (feeding) behavior as well as energy metabolism. Administration of exogenous orexin-A into the brain has been shown to increase both food intake and blood glucose levels. In the present study, we investigated the role of endogenous

  16. A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of Petunia hybrida.

    Science.gov (United States)

    Colón, Amy Marshall; Sengupta, Neelanjan; Rhodes, David; Dudareva, Natalia; Morgan, John

    2010-04-01

    In recent years there has been much interest in the genetic enhancement of plant metabolism; however, attempts at genetic modification are often unsuccessful due to an incomplete understanding of network dynamics and their regulatory properties. Kinetic modeling of plant metabolic networks can provide predictive information on network control and response to genetic perturbations, which allow estimation of flux at any concentration of intermediate or enzyme in the system. In this research, a kinetic model of the benzenoid network was developed to simulate whole network responses to different concentrations of supplied phenylalanine (Phe) in petunia flowers and capture flux redistributions caused by genetic manipulations. Kinetic parameters were obtained by network decomposition and non-linear least squares optimization of data from petunia flowers supplied with either 75 or 150 mm(2)H(5)-Phe. A single set of kinetic parameters simultaneously accommodated labeling and pool size data obtained for all endogenous and emitted volatiles at the two concentrations of supplied (2)H(5)-Phe. The generated kinetic model was validated using flowers from transgenic petunia plants in which benzyl CoA:benzyl alcohol/phenylethanol benzoyltransferase (BPBT) was down-regulated via RNAi. The determined in vivo kinetic parameters were used for metabolic control analysis, in which flux control coefficients were calculated for fluxes around the key branch point at Phe and revealed that phenylacetaldehyde synthase activity is the primary controlling factor for the phenylacetaldehyde branch of the benzenoid network. In contrast, control of flux through the beta-oxidative and non-beta-oxidative pathways is highly distributed.

  17. Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis.

    Science.gov (United States)

    Banerjee, Avik; Maiti, Subodh K; Guria, Chandan; Banerjee, Chiranjib

    2017-01-01

    Microalgae are currently being considered as a clean, sustainable and renewable energy source. Enzymes that catalyse the metabolic pathways for biofuel production are specific and require strict regulation and co-ordination. Thorough knowledge of these key enzymes along with their regulatory molecules is essential to enable rational metabolic engineering, to drive the metabolic flux towards the desired metabolites of importance. This paper reviews two key enzymes that play their role in production of bio-oil: DGAT (acyl-CoA:diacylglycerol acyltransferase) and PDAT (phospholipid:diacylglycerol acyltransferase). It also deals with the transcription factors that control the enzymes while cell undergoes a metabolic shift under stress. The paper also discusses the association of other enzymes and pathways that provide substrates and precursors for oil accumulation. Finally a futuristic solution has been proposed about a synthetic algal cell platform that would be committed towards biofuel synthesis.

  18. Physical Activity and Sedentary Time Associations with Metabolic Health Across Weight Statuses in Children and Adolescents

    DEFF Research Database (Denmark)

    Kuzik, Nicholas; Carson, Valerie; Andersen, Lars Bo

    2017-01-01

    's Accelerometry Database were used. Sedentary time, light physical activity, and moderate to vigorous physical activity (MVPA) were accelerometer derived. Individuals were classified with normal weight (NW), overweight, or obesity. Strict and lenient composite definitions of metabolic health were created......OBJECTIVE: The aim of this study was to examine the prevalence of metabolic health across weight statuses and the associations of physical activity and sedentary time within and across metabolic health-weight status groups. METHODS: Six studies (n = 4,581) from the International Children....... Binomial and multinomial logistic regressions controlling for age, sex, study, and accelerometer wear time were conducted. RESULTS: The metabolically unhealthy (MU) prevalence was 26.4% and 45.6% based on two definitions. Across definitions, more sedentary time was associated with higher odds of MU...

  19. The Antioxidant Cofactor Alpha-Lipoic Acid May Control Endogenous Formaldehyde Metabolism in Mammals

    Directory of Open Access Journals (Sweden)

    Anastasia V. Shindyapina

    2017-12-01

    Full Text Available The healthy human body contains small amounts of metabolic formaldehyde (FA that mainly results from methanol oxidation by pectin methylesterase, which is active in a vegetable diet and in the gastrointestinal microbiome. With age, the ability to maintain a low level of FA decreases, which increases the risk of Alzheimer's disease and dementia. It has been shown that 1,2-dithiolane-3-pentanoic acid or alpha lipoic acid (ALA, a naturally occurring dithiol and antioxidant cofactor of mitochondrial α-ketoacid dehydrogenases, increases glutathione (GSH content and FA metabolism by mitochondrial aldehyde dehydrogenase 2 (ALDH2 thus manifests a therapeutic potential beyond its antioxidant property. We suggested that ALA can contribute to a decrease in the FA content of mammals by acting on ALDH2 expression. To test this assumption, we administered ALA in mice in order to examine the effect on FA metabolism and collected blood samples for the measurement of FA. Our data revealed that ALA efficiently eliminated FA in mice. Without affecting the specific activity of FA-metabolizing enzymes (ADH1, ALDH2, and ADH5, ALA increased the GSH content in the brain and up-regulated the expression of the FA-metabolizing ALDH2 gene in the brain, particularly in the hippocampus, but did not impact its expression in the liver in vivo or in rat liver isolated from the rest of the body. After ALA administration in mice and in accordance with the increased content of brain ALDH2 mRNA, we detected increased ALDH2 activity in brain homogenates. We hypothesized that the beneficial effects of ALA on patients with Alzheimer's disease may be associated with accelerated ALDH2-mediated FA detoxification and clearance.

  20. Euglena in time: Evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry

    Directory of Open Access Journals (Sweden)

    Ellis C. O’Neill

    2015-12-01

    Full Text Available Euglena gracilis is a eukaryotic microalgae that has been the subject of scientific study for hundreds of years. It has a complex evolutionary history, with traces of at least four endosymbiotic genomes and extensive horizontal gene transfer. Given the importance of Euglena in terms of evolutionary cell biology and its unique taxonomic position, we initiated a de novo transcriptome sequencing project in order to understand this intriguing organism. By analysing the proteins encoded in this transcriptome, we can identify an extremely complex metabolic capacity, rivalling that of multicellular organisms. Many genes have been acquired from what are now very distantly related species. Herein we consider the biology of Euglena in different time frames, from evolution through control of cell biology to metabolic processes associated with carbohydrate and natural products biochemistry.

  1. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness.

    Science.gov (United States)

    Konakovsky, Viktor; Clemens, Christoph; Müller, Markus Michael; Bechmann, Jan; Berger, Martina; Schlatter, Stefan; Herwig, Christoph

    2016-01-11

    Biomass and cell-specific metabolic rates usually change dynamically over time, making the "feed according to need" strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i) inline pH and online glucose concentration measurement or (ii) inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA) has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8) is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G) around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With this contribution

  2. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness

    Directory of Open Access Journals (Sweden)

    Viktor Konakovsky

    2016-01-01

    Full Text Available Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i inline pH and online glucose concentration measurement or (ii inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8 is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With

  3. In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism.

    Science.gov (United States)

    Min, Cheol Woo; Lee, Seo Hyun; Cheon, Ye Eun; Han, Won Young; Ko, Jong Min; Kang, Hang Won; Kim, Yong Chul; Agrawal, Ganesh Kumar; Rakwal, Randeep; Gupta, Ravi; Kim, Sun Tae

    2017-10-03

    Seed aging is one of the major events, affecting the overall quality of agricultural seeds. To analyze the effect of seed aging, soybean seeds were exposed to controlled deterioration treatment (CDT) for 3 and 7days, followed by their physiological, biochemical, and proteomic analyses. Seed proteins were subjected to protamine sulfate precipitation for the enrichment of low-abundance proteins and utilized for proteome analysis. A total of 14 differential proteins were identified on 2-DE, whereas label-free quantification resulted in the identification of 1626 non-redundant proteins. Of these identified proteins, 146 showed significant changes in protein abundance, where 5 and 141 had increased and decreased abundances, respectively while 352 proteins were completely degraded during CDT. Gene ontology and KEGG analyses suggested the association of differential proteins with primary metabolism, ROS detoxification, translation elongation and initiation, protein folding, and proteolysis, where most, if not all, had decreased abundance during CDT. Western blotting confirmed reduced level of antioxidant enzymes (DHAR, APx1, MDAR, and SOD) upon CDT. This in-depth integrated study reveals a major downshift in seed metabolism upon CDT. Reported data here serve as a resource for its exploitation to metabolic engineering of seeds for multiple purposes, including increased seed viability, vigor, and quality. Controlled deterioration treatment (CDT) is one of the major events that negatively affects the quality and nutrient composition of agricultural seeds. However, the molecular mechanism of CDT is largely unknown. A combination of gel-based and gel-free proteomic approach was utilized to investigate the effects of CDT in soybean seeds. Moreover, we utilized protamine sulfate precipitation method for enrichment of low-abundance proteins, which are generally masked due to the presence of high-abundance seed storage proteins. Reported data here serve as resource for its

  4. A Criterium for the Strict Positivity of the Density of the Law of a Poisson Process

    Directory of Open Access Journals (Sweden)

    Léandre Rémi

    2011-01-01

    Full Text Available We translate in semigroup theory our result (Léandre, 1990 giving a necessary condition so that the law of a Markov process with jumps could have a strictly positive density. This result express, that we have to jump in a finite number of jumps in a "submersive" way from the starting point to the end point if the density of the jump process is strictly positive in . We use the Malliavin Calculus of Bismut type of (Léandre, (2008;2010 translated in semi-group theory as a tool, and the interpretation in semi-group theory of some classical results of the stochastic analysis for Poisson process as, for instance, the formula giving the law of a compound Poisson process.

  5. A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Kotay, Shireen Meher; Trably, Eric

    2009-01-01

    sources. Growth on glucose produced acetate, H-2 and carbon dioxide. Maximal H-2 production rate on glucose was 1.1 mmol l(-1) h(-1) with a maximum H-2 yield of 1.9 mole H-2 per mole glucose. 16S ribosomal DNA clone library analyses showed that the culture members were phylogenetically affiliated......The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H-2) producers from digested household solid wastes. A strict anaerobic extreme thermophilic H-2 producing bacterial culture was enriched from a lab-scale digester treating household...... wastes at 70 degrees C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80 degrees C and an optimal pH 8.1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon...

  6. A Hybrid P2P Overlay Network for Non-strictly Hierarchically Categorized Content

    Science.gov (United States)

    Wan, Yi; Asaka, Takuya; Takahashi, Tatsuro

    In P2P content distribution systems, there are many cases in which the content can be classified into hierarchically organized categories. In this paper, we propose a hybrid overlay network design suitable for such content called Pastry/NSHCC (Pastry for Non-Strictly Hierarchically Categorized Content). The semantic information of classification hierarchies of the content can be utilized regardless of whether they are in a strict tree structure or not. By doing so, the search scope can be restrained to any granularity, and the number of query messages also decreases while maintaining keyword searching availability. Through simulation, we showed that the proposed method provides better performance and lower overhead than unstructured overlays exploiting the same semantic information.

  7. Iterative algorithms for the input and state recovery from the approximate inverse of strictly proper multivariable systems

    Science.gov (United States)

    Chen, Liwen; Xu, Qiang

    2018-02-01

    This paper proposes new iterative algorithms for the unknown input and state recovery from the system outputs using an approximate inverse of the strictly proper linear time-invariant (LTI) multivariable system. One of the unique advantages from previous system inverse algorithms is that the output differentiation is not required. The approximate system inverse is stable due to the systematic optimal design of a dummy feedthrough D matrix in the state-space model via the feedback stabilization. The optimal design procedure avoids trial and error to identify such a D matrix which saves tremendous amount of efforts. From the derived and proved convergence criteria, such an optimal D matrix also guarantees the convergence of algorithms. Illustrative examples show significant improvement of the reference input signal tracking by the algorithms and optimal D design over non-iterative counterparts on controllable or stabilizable LTI systems, respectively. Case studies of two Boeing-767 aircraft aerodynamic models further demonstrate the capability of the proposed methods.

  8. Weak asymptotic solution for a non-strictly hyperbolic system of conservation laws-II

    Directory of Open Access Journals (Sweden)

    Manas Ranjan Sahoo

    2016-04-01

    Full Text Available In this article we introduce a concept of entropy weak asymptotic solution for a system of conservation laws and construct the same for a prolonged system of conservation laws which is highly non-strictly hyperbolic. This is first done for Riemann type initial data by introducing $\\delta,\\delta',\\delta''$ waves along a discontinuity curve and then for general initial data by piecing together the Riemann solutions.

  9. Multiple-Set Split Feasibility Problems for κ-Strictly Pseudononspreading Mapping in Hilbert Spaces

    Directory of Open Access Journals (Sweden)

    Jing Quan

    2013-01-01

    Full Text Available The purpose of this paper is to prove some weak and strong convergence theorems for solving the multiple-set split feasibility problems for κ-strictly pseudononspreading mapping in infinite-dimensional Hilbert spaces by using the proposed iterative method. The main results presented in this paper extend and improve the corresponding results of Xu et al. (2006, of Osilike et al. (2011, and of many other authors.

  10. Multiobjective Optimization for the Forecasting Models on the Base of the Strictly Binary Trees

    OpenAIRE

    Nadezhda Astakhova; Liliya Demidova; Evgeny Nikulchev

    2016-01-01

    The optimization problem dealing with the development of the forecasting models on the base of strictly binary trees has been considered. The aim of paper is the comparative analysis of two optimization variants which are applied for the development of the forecasting models. Herewith the first optimization variant assumes the application of one quality indicator of the forecasting model named as the affinity indicator and the second variant realizes the application of two quality indicators ...

  11. Cannabis legalization with strict regulation, the overall superior policy option for public health.

    Science.gov (United States)

    Rehm, J; Fischer, B

    2015-06-01

    Cannabis is the most prevalently used drug globally, with many jurisdictions considering varying reform options to current policies to deal with this substance and associated harm. Three policy options are available: prohibition, decriminalization, and legalization, with prohibition currently the dominant model globally. This contribution gives reasons why legalization with strict regulation should be considered superior to other options with respect to public health in high income countries in North America. © 2015 ASCPT.

  12. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus: A meta-analysis of randomized, controlled trials.

    Science.gov (United States)

    Li, Caifeng; Li, Xin; Han, Hongqiu; Cui, Hailong; Peng, Min; Wang, Guolin; Wang, Zhiqiang

    2016-06-01

    Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease which is imposing heavy burden on global health and economy. Recent studies indicate gut microbiota play important role on the pathogenesis and metabolic disturbance of T2DM. As an effective mean of regulating gut microbiota, probiotics are live micro-organisms that are believed to provide a specific health benefit on the host. Whether probiotic supplementation could improve metabolic profiles by modifying gut microbiota in T2DM or not is still in controversy.The aim of the study is to assess the effect of probiotic supplementation on metabolic profiles in T2DM.We searched PubMed, EMBASE, and Cochrane Library up to 12 April 2016. Two review authors independently assessed study eligibility, extracted data, and evaluated risk of bias of included studies. Data were pooled by using the random-effect model and expressed as standardized mean difference (SMD) with 95% confidence interval (CI). Heterogeneity was assessed and quantified (I).A total of 12 randomized controlled trials (RCTs) were included. Lipid profiles (n = 508) and fasting blood glucose (FBG) (n = 520) were reported in 9 trials; the homeostasis model of assessment for insulin resistance index (HOMA-IR) (n = 368) and glycosylated hemoglobin (HbA1c) (n = 380) were reported in 6 trials. Probiotics could alleviate FBG (SMD -0.61 mmol/L, 95% CI [-0.92, -0.30], P = 0.0001). Probiotics could increase high-density lipoprotein-cholesterol (HDL-C) (SMD 0.42 mmol/L, 95% CI [0.08, 0.76], P = 0.01). There were no significant differences in low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), HbA1c and HOMA-IR between the treatment group and the control group.Probiotics may improve glycemic control and lipid metabolism in T2DM. Application of probiotic agents might become a new method for glucose management in T2DM.

  13. A Multifunctional Bread Rich in Beta Glucans and Low in Starch Improves Metabolic Control in Type 2 Diabetes: A Controlled Trial.

    Science.gov (United States)

    Tessari, Paolo; Lante, Anna

    2017-03-17

    Functional foods may be useful for people with diabetes. The soluble fibers beta glucans can modify starch digestion and improve postprandial glucose response. We analyzed the metabolic effects of a specifically designed 'functional' bread, low in starch, rich in fibers (7 g/100 g), with a beta glucan/starch ratio of (7.6:100, g/g), in people with type 2 diabetes mellitus. Methods : Clinical and metabolic data from two groups of age-, sex- and glycated hemoglobin-matched diabetic subjects, taking either the functional bread or regular white bread, over a roughly six-month observation period, were retrieved. Bread intake did not change during the trial. The functional bread reduced glycated hemoglobin by ~0.5% (absolute units) vs. pre-treatment values ( p = 0.028), and by ~0.6% vs. the control group ( p = 0.027). Post-prandial and mean plasma glucose was decreased in the treatment group too. Body weight, blood pressure and plasma lipids did not change. The acceptance of the functional bread was good in the majority of subjects, except for taste. A starch-restricted, fiber-rich functional bread, with an increased beta glucan/starch ratio, improved long term metabolic control, and may be indicated in the dietary treatment of type 2 diabetes.

  14. A Multifunctional Bread Rich in Beta Glucans and Low in Starch Improves Metabolic Control in Type 2 Diabetes: A Controlled Trial

    Science.gov (United States)

    Tessari, Paolo; Lante, Anna

    2017-01-01

    Design: Functional foods may be useful for people with diabetes. The soluble fibers beta glucans can modify starch digestion and improve postprandial glucose response. We analyzed the metabolic effects of a specifically designed ‘functional’ bread, low in starch, rich in fibers (7 g/100 g), with a beta glucan/starch ratio of (7.6:100, g/g), in people with type 2 diabetes mellitus. Methods: Clinical and metabolic data from two groups of age-, sex- and glycated hemoglobin-matched diabetic subjects, taking either the functional bread or regular white bread, over a roughly six-month observation period, were retrieved. Results: Bread intake did not change during the trial. The functional bread reduced glycated hemoglobin by ~0.5% (absolute units) vs. pre-treatment values (p = 0.028), and by ~0.6% vs. the control group (p = 0.027). Post-prandial and mean plasma glucose was decreased in the treatment group too. Body weight, blood pressure and plasma lipids did not change. The acceptance of the functional bread was good in the majority of subjects, except for taste. Conclusions: A starch-restricted, fiber-rich functional bread, with an increased beta glucan/starch ratio, improved long term metabolic control, and may be indicated in the dietary treatment of type 2 diabetes. PMID:28304350

  15. A Multifunctional Bread Rich in Beta Glucans and Low in Starch Improves Metabolic Control in Type 2 Diabetes: A Controlled Trial

    Directory of Open Access Journals (Sweden)

    Paolo Tessari

    2017-03-01

    Full Text Available Design: Functional foods may be useful for people with diabetes. The soluble fibers beta glucans can modify starch digestion and improve postprandial glucose response. We analyzed the metabolic effects of a specifically designed ‘functional’ bread, low in starch, rich in fibers (7 g/100 g, with a beta glucan/starch ratio of (7.6:100, g/g, in people with type 2 diabetes mellitus. Methods: Clinical and metabolic data from two groups of age-, sex- and glycated hemoglobin-matched diabetic subjects, taking either the functional bread or regular white bread, over a roughly six-month observation period, were retrieved. Results: Bread intake did not change during the trial. The functional bread reduced glycated hemoglobin by ~0.5% (absolute units vs. pre-treatment values (p = 0.028, and by ~0.6% vs. the control group (p = 0.027. Post-prandial and mean plasma glucose was decreased in the treatment group too. Body weight, blood pressure and plasma lipids did not change. The acceptance of the functional bread was good in the majority of subjects, except for taste. Conclusions: A starch-restricted, fiber-rich functional bread, with an increased beta glucan/starch ratio, improved long term metabolic control, and may be indicated in the dietary treatment of type 2 diabetes.

  16. Examination of the PCICE method in the nearly incompressible, as well as strictly incompressible, limits

    International Nuclear Information System (INIS)

    Berry, Ray A.; Martineau, Richard C.

    2007-01-01

    The conservative-form, pressure-based PCICE numerical method (Martineau and Berry, 2004) (Berry, 2006), recently developed for computing transient fluid flows of all speeds from very low to very high (with strong shocks), is simplified and generalized. Though the method automatically treats a continuous transition of compressibility, three distinct, limiting compressibility regimes are formally defined for purposes of discussion and comparison with traditional methods - the strictly incompressible limit, the nearly incompressible limit, and the fully compressible limit. The PCICE method's behavior is examined in each limiting regime. In the strictly incompressible limit the PCICE algorithm reduces to the traditional MAC-type method with velocity divergence driving the pressure Poisson equation. In the nearly incompressible limit the PCICE algorithm is found to reduce to a generalization of traditional incompressible methods, i.e. to one in which not only the velocity divergence effect, but also the density gradient effect is included as a driving function in the pressure Poisson equation. This nearly incompressible regime has received little attention, and it appears that in the past, strictly incompressible methods may have been conveniently applied to flows in this regime at the expense of ignoring a potentially important coupling mechanism. This could be significant in many important flows; for example, in natural convection flows resulting from high heat flux. In the fully compressible limit or regime, the algorithm is found to reduce to an expression equivalent to density-based methods for high-speed flow. (author)

  17. TESTING STRICT HYDROSTATIC EQUILIBRIUM IN SIMULATED CLUSTERS OF GALAXIES: IMPLICATIONS FOR A1689

    International Nuclear Information System (INIS)

    Molnar, S. M.; Umetsu, K.; Chiu, I.-N.; Chen, P.; Hearn, N.; Broadhurst, T.; Bryan, G.; Shang, C.

    2010-01-01

    Accurate mass determination of clusters of galaxies is crucial if they are to be used as cosmological probes. However, there are some discrepancies between cluster masses determined based on gravitational lensing and X-ray observations assuming strict hydrostatic equilibrium (i.e., the equilibrium gas pressure is provided entirely by thermal pressure). Cosmological simulations suggest that turbulent gas motions remaining from hierarchical structure formation may provide a significant contribution to the equilibrium pressure in clusters. We analyze a sample of massive clusters of galaxies drawn from high-resolution cosmological simulations and find a significant contribution (20%-45%) from non-thermal pressure near the center of relaxed clusters, and, in accord with previous studies, a minimum contribution at about 0.1 R vir , growing to about 30%-45% at the virial radius, R vir . Our results strongly suggest that relaxed clusters should have significant non-thermal support in their core region. As an example, we test the validity of strict hydrostatic equilibrium in the well-studied massive galaxy cluster A1689 using the latest high-resolution gravitational lensing and X-ray observations. We find a contribution of about 40% from non-thermal pressure within the core region of A1689, suggesting an alternate explanation for the mass discrepancy: the strict hydrostatic equilibrium is not valid in this region.

  18. Temporary Strict Maternal Avoidance of Cow’s Milk and Infantile Colic

    Directory of Open Access Journals (Sweden)

    Firoozeh Sajedi

    2009-12-01

    Full Text Available Infant colic is a common problem characterized by excessive crying and fussing. We examined whether colic symptoms of exclusively breast-milk-fed infants would be improved by temporary strict maternal avoidance of cows milk. This study is analytic and experimental. Sixty-six subjects were recruited during winter of 2006 from a clinic in Isfahan, Iran. Breast-milk-fed in-fants with "colic", age 3-6 months and to be in otherwise good health were referred by pediatri-cians. The intervention was 1 week period of strict maternal avoidance of cows milk while they continued exclusive breast-milk-feeding. All infants showed improvement in distressed behavior (crying and fussing during intervention. The total recorded crying and fussing time was reduced by an average of 31%. A significant difference was found in cry and fuss time between first and last 2 days of intervention (P = 0.000. Cows milk proteins may play an etiologic role in colic. We propose that a brief intervention with strict maternal avoidance of cows milk may be an effective treatment for colic in some breast-milk-fed infants.

  19. Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders.

    Science.gov (United States)

    Su, Kuo-Hui; Dai, Chengkai

    2016-11-01

    Proteome homeostasis, or proteostasis, is essential to maintain cellular fitness and its disturbance is associated with a broad range of human health conditions and diseases. Cells are constantly challenged by various extrinsic and intrinsic insults, which perturb cellular proteostasis and provoke proteotoxic stress. To counter proteomic perturbations and preserve proteostasis, cells mobilize the proteotoxic stress response (PSR), an evolutionarily conserved transcriptional program mediated by heat shock factor 1 (HSF1). The HSF1-mediated PSR guards the proteome against misfolding and aggregation. In addition to proteotoxic stress, emerging studies reveal that this proteostatic mechanism also responds to cellular energy state. This regulation is mediated by the key cellular metabolic sensor AMP-activated protein kinase (AMPK). In this review, we present an overview of the maintenance of proteostasis by HSF1, the metabolic regulation of the PSR, particularly focusing on AMPK, and their implications in the two major age-related diseases-diabetes mellitus and neurodegenerative disorders.

  20. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism

    DEFF Research Database (Denmark)

    Feng, Dan; Liu, Tao; Sun, Zheng

    2011-01-01

    HDAC3 is absent. Although amounts of HDAC3 are constant, its genomic recruitment in liver corresponds to the expression pattern of the circadian nuclear receptor Rev-erbα. Rev-erbα colocalizes with HDAC3 near genes regulating lipid metabolism, and deletion of HDAC3 or Rev-erbα in mouse liver causes......Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost when...... hepatic steatosis. Thus, genomic recruitment of HDAC3 by Rev-erbα directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis....

  1. Timing of food intake during simulated night shift impacts glucose metabolism: A controlled study.

    Science.gov (United States)

    Grant, Crystal L; Coates, Alison M; Dorrian, Jillian; Kennaway, David J; Wittert, Gary A; Heilbronn, Leonie K; Pajcin, Maja; Della Vedova, Chris; Gupta, Charlotte C; Banks, Siobhan

    2017-01-01

    Eating during the night may increase the risk for obesity and type 2 diabetes in shift workers. This study examined the impact of either eating or not eating a meal at night on glucose metabolism. Participants underwent four nights of simulated night work (SW1-4, 16:00-10:00 h, food intake to the biological clock could reduce the burden of type 2 diabetes in shift workers.

  2. Determining the control circuitry of redox metabolism at the genome-scale.

    Directory of Open Access Journals (Sweden)

    Stephen Federowicz

    2014-04-01

    Full Text Available Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs, ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r(2 (p<1e-6 correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network.

  3. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells.

    Science.gov (United States)

    Ratajczak, Joanna; Joffraud, Magali; Trammell, Samuel A J; Ras, Rosa; Canela, Núria; Boutant, Marie; Kulkarni, Sameer S; Rodrigues, Marcelo; Redpath, Philip; Migaud, Marie E; Auwerx, Johan; Yanes, Oscar; Brenner, Charles; Cantó, Carles

    2016-10-11

    NAD + is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD + precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN for NAD + synthesis. Using genetic gain- and loss-of-function models, we further demonstrate that the role of NRK1 in driving NAD + synthesis from other NAD + precursors, such as nicotinamide or nicotinic acid, is dispensable. Using stable isotope-labelled compounds, we confirm NMN is metabolized extracellularly to NR that is then taken up by the cell and converted into NAD + . Our results indicate that mammalian cells require conversion of extracellular NMN to NR for cellular uptake and NAD + synthesis, explaining the overlapping metabolic effects observed with the two compounds.

  4. The Aging Clock and Circadian Control of Metabolism and Genome Stability

    Directory of Open Access Journals (Sweden)

    Victoria P. Belancio

    2015-01-01

    Full Text Available It is widely accepted that aging is characterized by a gradual decline in the efficiency and accuracy of biological processes, leading to deterioration of physiological functions and development of age-associated diseases. Age-dependent accumulation of genomic instability and development of metabolic syndrome are well-recognized components of the aging phenotype, both of which have been extensively studied. Existing findings strongly support the view that the integrity of the cellular genome and metabolic function can be influenced by light at night (LAN and associated suppression of circadian melatonin production. While LAN is reported to accelerate aging by promoting age-associated carcinogenesis in several animal models, the specific molecular mechanism(s of its action are not fully understood. Here, we review literature supporting a connection between LAN-induced central circadian disruption of peripheral circadian rhythms and clock function, LINE-1 retrotransposon-associated genomic instability, metabolic deregulation, and aging. We propose that aging is a progressive decline in the stability, continuity and synchronization of multi-frequency oscillations in biological processes to a temporally disorganized state. By extension, healthy aging is the ability to maintain the most consistent, stable and entrainable rhythmicity and coordination of these oscillations, at the molecular, cellular, and systemic levels.

  5. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch

    Directory of Open Access Journals (Sweden)

    Steven Zhao

    2016-10-01

    Full Text Available Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY, cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency.

  6. Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood.

    Science.gov (United States)

    Roach, Melissa; Arrivault, Stéphanie; Mahboubi, Amir; Krohn, Nicole; Sulpice, Ronan; Stitt, Mark; Niittylä, Totte

    2017-06-15

    The contribution of transcriptional and post-transcriptional regulation to modifying carbon allocation to developing wood of trees is not well defined. To clarify the role of transcriptional regulation, the enzyme activity patterns of eight central primary metabolism enzymes across phloem, cambium, and developing wood of aspen (Populus tremula L.) were compared with transcript levels obtained by RNA sequencing of sequential stem sections from the same trees. Enzymes were selected on the basis of their importance in sugar metabolism and in linking primary metabolism to lignin biosynthesis. Existing enzyme assays were adapted to allow measurements from ~1 mm3 sections of dissected stem tissue. These experiments provided high spatial resolution of enzyme activity changes across different stages of wood development, and identified the gene transcripts probably responsible for these changes. In most cases, there was a clear positive relationship between transcripts and enzyme activity. During secondary cell wall formation, the increases in transcript levels and enzyme activities also matched with increased levels of glucose, fructose, hexose phosphates, and UDP-glucose, emphasizing an important role for transcriptional regulation in carbon allocation to developing aspen wood. These observations corroborate the efforts to increase carbon allocation to wood by engineering gene regulatory networks. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. The Apolipoprotein M/S1P Axis Controls Triglyceride Metabolism and Brown Fat Activity

    Directory of Open Access Journals (Sweden)

    Christina Christoffersen

    2018-01-01

    Full Text Available Summary: Apolipoprotein M (apoM is the carrier of sphingosine-1-phosphate (S1P in plasma high-density lipoproteins. S1P is a bioactive lipid interacting with five receptors (S1P1–5. We show that lack of apoM in mice increases the amount of brown adipose tissue (BAT, accelerates the clearance of postprandial triglycerides, and protects against diet-induced obesity (i.e., a phenotype similar to that induced by cold exposure or β3-adrenergic stimulation. Moreover, the data suggest that the phenotype of apoM-deficient mice is S1P dependent and reflects diminished S1P1 stimulation. The results reveal a link between the apoM/S1P axis and energy metabolism. : Apolipoprotein M (apoM is the carrier of sphingosine-1-phosphate (S1P in lipoproteins. Christoffersen et al. show that lack of apoM in mice increases the amount of brown adipose tissue, accelerates the turnover of fat, and protects against obesity. The results reveal a link between the apoM/S1P axis and energy metabolism. Keywords: apolipoproteins, sphingolipids, sphingosine-1-phosphate, lipoproteins, lipid metabolism, triglyceride, brown adipose tissue, apoM

  8. Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal.

    Science.gov (United States)

    Lazar, Nathaniel; Fay, Allison; Nandakumar, Madhumitha; Boyle, Kerry E; Xavier, Joao; Rhee, Kyu; Glickman, Michael S

    2017-12-01

    Biotin is an essential cofactor utilized by all domains of life, but only synthesized by bacteria, fungi and plants, making biotin biosynthesis a target for antimicrobial development. To understand biotin biosynthesis in mycobacteria, we executed a genetic screen in Mycobacterium smegmatis for biotin auxotrophs and identified pyruvate carboxylase (Pyc) as required for biotin biosynthesis. The biotin auxotrophy of the pyc::tn strain is due to failure to transcriptionally induce late stage biotin biosynthetic genes in low biotin conditions. Loss of bioQ, the repressor of biotin biosynthesis, in the pyc::tn strain reverted biotin auxotrophy, as did reconstituting the last step of the pathway through heterologous expression of BioB and provision of its substrate DTB. The role of Pyc in biotin regulation required its catalytic activities and could be supported by M. tuberculosis Pyc. Quantitation of the kinetics of depletion of biotinylated proteins after biotin withdrawal revealed that Pyc is the most rapidly depleted biotinylated protein and metabolomics revealed a broad metabolic shift in wild type cells upon biotin withdrawal which was blunted in cell lacking Pyc. Our data indicate that mycobacterial cells monitor biotin sufficiency through a metabolic signal generated by dysfunction of a biotinylated protein of central metabolism. © 2017 John Wiley & Sons Ltd.

  9. KDM4C and ATF4 Cooperate in Transcriptional Control of Amino Acid Metabolism

    Directory of Open Access Journals (Sweden)

    Erhu Zhao

    2016-01-01

    Full Text Available The histone lysine demethylase KDM4C is often overexpressed in cancers primarily through gene amplification. The molecular mechanisms of KDM4C action in tumorigenesis are not well defined. Here, we report that KDM4C transcriptionally activates amino acid biosynthesis and transport, leading to a significant increase in intracellular amino acid levels. Examination of the serine-glycine synthesis pathway reveals that KDM4C epigenetically activates the pathway genes under steady-state and serine deprivation conditions by removing the repressive histone modification H3 lysine 9 (H3K9 trimethylation. This action of KDM4C requires ATF4, a transcriptional master regulator of amino acid metabolism and stress responses. KDM4C activates ATF4 transcription and interacts with ATF4 to target serine pathway genes for transcriptional activation. We further present evidence for KDM4C in transcriptional coordination of amino acid metabolism and cell proliferation. These findings suggest a molecular mechanism linking KDM4C-mediated H3K9 demethylation and ATF4-mediated transactivation in reprogramming amino acid metabolism for cancer cell proliferation.

  10. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis

    DEFF Research Database (Denmark)

    Bisicchia, Paola; Noone, David; Lioliou, Efthimia

    2007-01-01

    Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show...... that YycFG is a regulator of cell wall metabolism. We have identified five new members of the YycFG regulon: YycF activates expression of yvcE, lytE and ydjM and represses expression of yoeB and yjeA. YvcE(CwlO) and LytE encode endopeptidase-type autolysins that participate in peptidoglycan synthesis...... to lysozyme digestion and YdjM is also predicted to have a role in cell wall metabolism. A genetic analysis shows that YycFG essentiality is polygenic in nature, being a manifestation of disrupted cell wall metabolism caused by aberrant expression of a number of YycFG regulon genes....

  11. Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity

    International Nuclear Information System (INIS)

    Summermatter, Serge; Troxler, Heinz; Santos, Gesa; Handschin, Christoph

    2011-01-01

    Highlights: → PGC-1α enhances muscle oxidative capacity. → PGC-1α promotes concomitantly positive and negative regulators of lipid oxidation. → Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. → Balanced oxidation prevents detrimental acylcarnitine and ROS generation. → Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1α on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1α in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1α induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1α enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1α boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1α coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1α does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1α mimic the beneficial effects of endurance training on muscle metabolism in this context.

  12. Coordinated balancing of muscle oxidative metabolism through PGC-1{alpha} increases metabolic flexibility and preserves insulin sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Summermatter, Serge [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Troxler, Heinz [Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University Children' s Hospital, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich (Switzerland); Santos, Gesa [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Handschin, Christoph, E-mail: christoph.handschin@unibas.ch [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland)

    2011-04-29

    Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training

  13. Melatonin for Atypical Antipsychotic-Induced Metabolic Adverse Effects: A Meta-Analysis of Randomized Controlled Trials

    Directory of Open Access Journals (Sweden)

    Ashwin Kamath

    2018-01-01

    Full Text Available The objective of our study was to determine the effect of melatonin administration on atypical antipsychotic-induced metabolic adverse effects in patients with psychiatric disorders. A systematic search was performed in PUBMED, Cochrane Library, Scopus, Web of Science, and EBSCOhost electronic databases. Randomized controlled trials studying the effect of melatonin on antipsychotic-induced metabolic adverse effects were identified and subjected to meta-analysis. Four studies were included in the meta-analysis, including 57 patients on melatonin and 61 patients on placebo. Melatonin produced a significant decrease in the diastolic blood pressure compared with placebo (mean difference = −4.44 [95% CI, −7.00 to −1.88]; p=0.0007; I2 = 13%, but not the systolic blood pressure (mean difference = −4.23 [95% CI, −8.11 to −0.36]; p=0.03; I2 = 0%. Although a decrease in the body mass index was seen in the melatonin group, the difference was not significant in the random-effects analysis model. To conclude, in patients on atypical antipsychotics, melatonin at a dose of up to 5 mg/day for a treatment duration of up to 12 weeks attenuated the rise in diastolic blood pressure compared with placebo but had no significant effects on other metabolic parameters.

  14. Melatonin for Atypical Antipsychotic-Induced Metabolic Adverse Effects: A Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Kamath, Ashwin; Rather, Zahoor Ahmad

    2018-01-01

    The objective of our study was to determine the effect of melatonin administration on atypical antipsychotic-induced metabolic adverse effects in patients with psychiatric disorders. A systematic search was performed in PUBMED, Cochrane Library, Scopus, Web of Science, and EBSCOhost electronic databases. Randomized controlled trials studying the effect of melatonin on antipsychotic-induced metabolic adverse effects were identified and subjected to meta-analysis. Four studies were included in the meta-analysis, including 57 patients on melatonin and 61 patients on placebo. Melatonin produced a significant decrease in the diastolic blood pressure compared with placebo (mean difference = -4.44 [95% CI, -7.00 to -1.88]; p = 0.0007; I 2 = 13%), but not the systolic blood pressure (mean difference = -4.23 [95% CI, -8.11 to -0.36]; p = 0.03; I 2 = 0%). Although a decrease in the body mass index was seen in the melatonin group, the difference was not significant in the random-effects analysis model. To conclude, in patients on atypical antipsychotics, melatonin at a dose of up to 5 mg/day for a treatment duration of up to 12 weeks attenuated the rise in diastolic blood pressure compared with placebo but had no significant effects on other metabolic parameters.

  15. Interaction Between the Central and Peripheral Effects of Insulin in Controlling Hepatic Glucose Metabolism in the Conscious Dog

    Science.gov (United States)

    Ramnanan, Christopher J.; Kraft, Guillaume; Smith, Marta S.; Farmer, Ben; Neal, Doss; Williams, Phillip E.; Lautz, Margaret; Farmer, Tiffany; Donahue, E. Patrick; Cherrington, Alan D.; Edgerton, Dale S.

    2013-01-01

    The importance of hypothalamic insulin action to the regulation of hepatic glucose metabolism in the presence of a normal liver/brain insulin ratio (3:1) is unknown. Thus, we assessed the role of central insulin action in the response of the liver to normal physiologic hyperinsulinemia over 4 h. Using a pancreatic clamp, hepatic portal vein insulin delivery was increased three- or eightfold in the conscious dog. Insulin action was studied in the presence or absence of intracerebroventricularly mediated blockade of hypothalamic insulin action. Euglycemia was maintained, and glucagon was clamped at basal. Both the molecular and metabolic aspects of insulin action were assessed. Blockade of hypothalamic insulin signaling did not alter the insulin-mediated suppression of hepatic gluconeogenic gene transcription but blunted the induction of glucokinase gene transcription and completely blocked the inhibition of glycogen synthase kinase-3β gene transcription. Thus, central and peripheral insulin action combined to control some, but not other, hepatic enzyme programs. Nevertheless, inhibition of hypothalamic insulin action did not alter the effects of the hormone on hepatic glucose flux (production or uptake). These data indicate that brain insulin action is not a determinant of the rapid (<4 h) inhibition of hepatic glucose metabolism caused by normal physiologic hyperinsulinemia in this large animal model. PMID:23011594

  16. Clinical and biochemical heterogeneity between patients with glycogen storage disease type IA: the added value of CUSUM for metabolic control.

    Science.gov (United States)

    Peeks, Fabian; Steunenberg, Thomas A H; de Boer, Foekje; Rubio-Gozalbo, M Estela; Williams, Monique; Burghard, Rob; Rajas, Fabienne; Oosterveer, Maaike H; Weinstein, David A; Derks, Terry G J

    2017-09-01

    To study heterogeneity between patients with glycogen storage disease type Ia (GSD Ia), a rare inherited disorder of carbohydrate metabolism caused by the deficiency of glucose-6-phosphatase (G6Pase). Descriptive retrospective study of longitudinal clinical and biochemical data and long-term complications in 20 GSD Ia patients. We included 11 patients with homozygous G6PC mutations and siblings from four families carrying identical G6PC genotypes. To display subtle variations for repeated triglyceride measurements with respect to time for individual patients, CUSUM-analysis graphs were constructed. Patients with different homozygous G6PC mutations showed important differences in height, BMI, and biochemical parameters (i.e., lactate, uric acid, triglyceride, and cholesterol concentrations). Furthermore, CUSUM-analysis predicts and displays subtle changes in longitudinal blood triglyceride concentrations. Siblings in families also displayed important differences in biochemical parameters (i.e., lactate, uric acid, triglycerides, and cholesterol concentrations) and long-term complications (i.e., liver adenomas, nephropathy, and osteopenia/osteoporosis). Differences between GSD Ia patients reflect large clinical and biochemical heterogeneity. Heterogeneity between GSD Ia patients with homozygous G6PC mutations indicate an important role of the G6PC genotype/mutations. Differences between affected siblings suggest an additional role (genetic and/or environmental) of modifying factors defining the GSD Ia phenotype. CUSUM-analysis can facilitate single-patient monitoring of metabolic control and future application of this method may improve precision medicine for patients both with GSD and remaining inherited metabolic diseases.

  17. Cognitive and cerebral metabolic effects of celecoxib versus placebo in people with age-related memory loss: randomized controlled study.

    Science.gov (United States)

    Small, Gary W; Siddarth, Prabha; Silverman, Daniel H S; Ercoli, Linda M; Miller, Karen J; Lavretsky, Helen; Bookheimer, Susan Y; Huang, S-C; Barrio, Jorge R; Phelps, Michael E

    2008-12-01

    Because anti-inflammatory drugs may delay cognitive decline and influence brain metabolism in normal aging, the authors determined the effects of the cyclooxygenase-2 inhibitor, celecoxib, on cognitive performance and regional cerebral glucose metabolism in nondemented volunteers with mild age-related memory decline. Randomized, double-blind, placebo-controlled, parallel group trial with 18-months of exposure to study medication. University research institute. Eighty-eight subjects, aged 40-81 years (mean: 58.7, SD: 8.9 years) with mild self-reported memory complaints but normal memory performance scores were recruited from community physician referrals, media coverage, and advertising. Forty subjects completed the study. Daily celecoxib dose of 200 or 400 mg, or placebo. Standardized neuropsychological test battery and statistical parametric mapping (SPM) of FDG-PET scans performed during mental rest. Measures of cognition showed significant between-group differences in executive functioning (F [1, 30] = 5.06, p = 0.03) and language/semantic memory (F [1, 31] = 6.19, p = 0.02), favoring the celecoxib group compared with the placebo group. Concomitantly, FDG-PET scans demonstrated bilateral metabolic increases in prefrontal cortex in the celecoxib group in the vicinity of Brodmann's areas 9 and 10, but not in the placebo group. SPM analyses of the PET data pooled by treatment arm corresponded to a 6% increase in activity over pretreatment levels (p memory decline.

  18. Effect of grape seed extract on postprandial oxidative status and metabolic responses in men and women with the metabolic syndrome - randomized, cross-over, placebo-controlled study

    Directory of Open Access Journals (Sweden)

    Indika Edirisinghe

    2012-12-01

    Full Text Available Objective: This investigation was undertaken to determine whether a grape seed extract (GSE that is rich in mono-, oligo- and poly- meric polyphenols would modify postprandial oxidative stress and inflammation in individuals with the metabolic syndrome (MetS.Background: MetS is known to be associated with impaired glucose tolerance and poor glycemic control. Consumption of a meal high in readily available carbohydrates and fat causes postprandial increases in glycemia and lipidemia and markers of oxidative stress, inflammation and insulin resistance. Materials/methods: After an overnight fast, twelve subjects with MetS (5 men and 7 women consumed a breakfast meal high in fat and carbohydrate in a cross-over design. A GSE (300 mg or placebo capsule was administrated 1 hr before the meal (-1 hr. Changes in plasma insulin, glucose, oxidative stress and inflammatory markers were measured hourly for 6 hr. Results: Plasma hydrophilic oxygen radical absorbance capacity (ORAC measured as the positive incremental area under the curve (-1 to 5 hr was significantly increased when the meal was preceded by GSE compared with placebo (P0.05. No changes in inflammatory markers were evident. Conclusion: These data suggest that GSE enhances postprandial plasma antioxidant status and reduces the glycemic response to a meal, high in fat and carbohydrate in subjects with the MetS.

  19. Colorectal cancer and its association with the metabolic syndrome: a Malaysian multi-centric case-control study.

    Science.gov (United States)

    Ulaganathan, V; Kandiah, M; Zalilah, M S; Faizal, J A; Fijeraid, H; Normayah, K; Gooi, B H; Othman, R

    2012-01-01

    Colorectal cancer (CRC) and the metabolic syndrome (MetS) are both on the rise in Malaysia. A multi-centric case-control study was conducted from December 2009 to January 2011 to determine any relationship between the two. Patients with confirmed CRC based on colonoscopy findings and cancer free controls from five local hospitals were assessed for MetS according to the International Diabetes Federation (IDF) definition. Each index case was matched for age, gender and ethnicity with two controls (140: 280). MetS among cases was highly prevalent (70.7%), especially among women (68.7%). MetS as an entity increased CRC risk by almost three fold independently (OR=2.61, 95%CI=1.53-4.47). In men MetS increased the risk of CRC by two fold (OR=2.01, 95%CI, 1.43-4.56), demonstrating an increasing trend in risk with the number of Mets components observed. This study provides evidence for a positive association between the metabolic syndrome and colorectal cancer. A prospective study on the Malaysian population is a high priority to confirm these findings.

  20. Metabolic control in type 1 diabetes patients practicing combat sports: at least two-year follow-up study.

    Science.gov (United States)

    Benbenek-Klupa, Teresa; Matejko, Bartlomiej; Klupa, Tomasz

    2015-01-01

    It is well recognized that physical activity should be an integral part of the management of diabetes. It remains controversial, however, whether combat sports, often preferred by young individuals type 1 diabetes mellitus (T1DM), may be performed without high risk of metabolic decompensation. The aim of this observational study was to summarize a two-year follow-up period of five young male patients with T1DM practicing combat sports under the care of a physical-activity oriented specialist diabetes outpatient clinic. Of the five patients, three mixed martial arts and two kick-boxing competitors were included in the study. To control glucose in each patient, an individual approach was used that took into consideration the type of training, the sequence of the exercises, and the relative proportion of different forms of exercise. During the follow-up, glycemic control was improved and maintained in all individuals. Neither an episode of hospitalization-requiring diabetic ketoacidosis nor severe hypoglycemia occurred in these patients during the follow-up. In conclusion, an individual approach for T1DM patients practicing combat sports may result in achieving and maintaining satisfactory glycemic control without increased risk of metabolic decompensation.

  1. LA Sprouts Randomized Controlled Nutrition, Cooking and Gardening Program Reduces Obesity and Metabolic Risk in Hispanic/Latino Youth

    Science.gov (United States)

    Gatto, Nicole M.; Martinez, Lauren C.; Spruijt-Metz, Donna; Davis, Jaimie N.

    2017-01-01

    Objectives Explore the effects of a novel 12-week gardening, nutrition, and cooking intervention (“LA Sprouts”) on dietary intake, obesity parameters and metabolic disease risk among low-income, primarily Hispanic/Latino youth in Los Angeles. Methods Randomized control trial involving four elementary schools [2 randomized to intervention (172, 3rd–5th grade students); 2 randomized to control (147, 3rd–5th grade students)]. Classes were taught in 90-minute sessions once/week for 12 weeks. Data collected at pre- and post-intervention included dietary intake via food frequency questionnaire (FFQ), anthropometric measures [BMI, waist circumference (WC)], body fat, and fasting blood samples. Results LA Sprouts participants compared to controls had significantly greater reductions in BMI z-scores (−0.1 vs. −0.04, respectively; p=0.01) and WC (−1.2 vs. 0.1cm; pobesity and metabolic risk, however, additional larger and longer term studies are warranted. PMID:26909882

  2. LA sprouts randomized controlled nutrition, cooking and gardening programme reduces obesity and metabolic risk in Hispanic/Latino youth.

    Science.gov (United States)

    Gatto, N M; Martinez, L C; Spruijt-Metz, D; Davis, J N

    2017-02-01

    Many programmes for children that involve gardening and nutrition components exist; however, none include experimental designs allowing more rigorous evaluation of their impact on obesity. The objective of this study is to explore the effects of a novel 12-week gardening, nutrition and cooking intervention {'LA Sprouts'} on dietary intake, obesity parameters and metabolic disease risk among low-income, primarily Hispanic/Latino youth in Los Angeles.. This study used a randomized control trial involving four elementary schools [two randomized to intervention {172, 3rd-5th grade students}; two randomized to control {147, 3rd-5th grade students}]. Classes were taught in 90-min sessions once per week for 12 weeks. Data collected at pre-intervention and post-intervention included dietary intake via food frequency questionnaire, anthropometric measures {body mass index, waist circumference}, body fat, and fasting blood samples. LA Sprouts participants compared with controls had significantly greater reductions in body mass index z-scores {-0.1 vs. -0.04, respectively; p = 0.01} and waist circumference {-1.2 vs. 0.1 cm; p obesity and metabolic risk; however, additional larger and longer-term studies are warranted. © 2016 World Obesity Federation.

  3. Effect of Volume of Fluid Resuscitation on Metabolic Normalization in Children Presenting in Diabetic Ketoacidosis: A Randomized Controlled Trial.

    Science.gov (United States)

    Bakes, Katherine; Haukoos, Jason S; Deakyne, Sara J; Hopkins, Emily; Easter, Josh; McFann, Kim; Brent, Alison; Rewers, Arleta

    2016-04-01

    The optimal rate of fluid administration in pediatric diabetic ketoacidosis (DKA) is unknown. Our aim was to determine whether the volume of fluid administration in children with DKA influences the rate of metabolic normalization. We performed a randomized controlled trial conducted in a tertiary pediatric emergency department from December 2007 until June 2010. The primary outcome was time to metabolic normalization; secondary outcomes were time to bicarbonate normalization, pH normalization, overall length of hospital treatment, and adverse outcomes. Children between 0 and 18 years of age were eligible if they had type 1 diabetes mellitus and DKA. Patients were randomized to receive intravenous (IV) fluid at low volume (10 mL/kg bolus + 1.25 × maintenance rate) or high volume (20 mL/kg bolus + 1.5 × maintenance rate) (n = 25 in each). After adjusting for initial differences in bicarbonate levels, time to metabolic normalization was significantly faster in the higher-volume infusion group compared to the low-volume infusion group (hazard ratio [HR] = 2.0; 95% confidence interval [CI] 1.0-3.9; p = 0.04). Higher-volume IV fluid infusion appeared to hasten, to a greater extent, normalization of pH (HR = 2.5; 95% CI 1.2-5.0; p = 0.01) than normalization of serum bicarbonate (HR = 1.2; 95% CI 0.6-2.3; p = 0.6). The length of hospital treatment HR (0.8; 95% CI 0.4-1.5; p = 0.5) and time to discharge HR (0.8; 95% CI 0.4-1.5; p = 0.5) did not differ between treatment groups. Higher-volume fluid infusion in the treatment of pediatric DKA patients significantly shortened metabolic normalization time, but did not change overall length of hospital treatment. ClinicalTrials.gov ID NCT01701557. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effects of nutritional education on weight change and metabolic abnormalities among patients with schizophrenia in Japan: A randomized controlled trial.

    Science.gov (United States)

    Sugawara, Norio; Sagae, Toyoaki; Yasui-Furukori, Norio; Yamazaki, Manabu; Shimoda, Kazutaka; Mori, Takao; Sugai, Takuro; Matsuda, Hiroshi; Suzuki, Yutaro; Ozeki, Yuji; Okamoto, Kurefu; Someya, Toshiyuki

    2018-02-01

    Patients with schizophrenia have a higher prevalence of metabolic syndrome (MetS) than the general population. Minimizing weight gain and metabolic abnormalities in a population with an already high prevalence of obesity is of clinical and social importance. This randomized controlled trial investigated the effect of monthly nutritional education on weight change and metabolic abnormalities among patients with schizophrenia in Japan. From July 2014 to December 2014, we recruited 265 obese patients who had a DSM-IV diagnosis of schizophrenia or schizoaffective disorder. Participants were randomly assigned to a standard care (A), doctor's weight loss advice (B), or an individual nutritional education group (C) for 12 months. The prevalence of MetS and body weight were measured at baseline and 12 months. After the 12-month treatment, 189 patients were evaluated, and the prevalence of MetS based on the ATP III-A definition in groups A, B, and C was 68.9%, 67.2%, and 47.5%, respectively. Group C showed increased weight loss (3.2 ± 4.5 kg) over the 12-month study period, and the change in weight differed significantly from that of group A; additionally, 26.2% of the participants in group C lost 7% or more of their initial weight, compared with 8.2% of those in group A. Individual nutrition education provided by a dietitian was highly successful in reducing obesity in patients with schizophrenia and could be the first choice to address both weight gain and metabolic abnormalities induced by antipsychotic medications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Structural and functional study of YER067W, a new protein involved in yeast metabolism control and drug resistance.

    Directory of Open Access Journals (Sweden)

    Tatiana Domitrovic

    2010-06-01

    Full Text Available The genome of Saccharomyces cerevisiae is arguably the best studied eukaryotic genome, and yet, it contains approximately 1000 genes that are still relatively uncharacterized. As the majority of these ORFs have no homologs with characterized sequence or protein structure, traditional sequence-based approaches cannot be applied to deduce their biological function. Here, we characterize YER067W, a conserved gene of unknown function that is strongly induced in response to many stress conditions and repressed in drug resistant yeast strains. Gene expression patterns of YER067W and its paralog YIL057C suggest an involvement in energy metabolism. We show that yeast lacking YER067W display altered levels of reserve carbohydrates and a growth deficiency in media that requires aerobic metabolism. Impaired mitochondrial function and overall reduction of ergosterol content in the YER067W deleted strain explained the observed 2- and 4-fold increase in resistance to the drugs fluconazole and amphotericin B, respectively. Cell fractionation and immunofluorescence microscopy revealed that Yer067w is associated with cellular membranes despite the absence of a transmembrane domain in the protein. Finally, the 1.7 A resolution crystal structure of Yer067w shows an alpha-beta fold with low similarity to known structures and a putative functional site.YER067W's involvement with aerobic energetic metabolism suggests the assignment of the gene name RGI1, standing for respiratory growth induced 1. Altogether, the results shed light on a previously uncharacterized protein family and provide basis for further studies of its apparent role in energy metabolism control and drug resistance.

  6. Demographic and personal factors associated with metabolic control and self-care in youth with type 1 diabetes

    DEFF Research Database (Denmark)

    Neylon, Orla M.; O'Connell, Michele A.; Skinner, Timothy C.

    2013-01-01

    to examine the literature for demographic, interpersonal and intrapersonal correlates of self-care and/or metabolic control. Studies for this systematic review were obtained via an electronic search of Medline, Embase, Cumulative Index to Nursing and Allied Health Literature and PsycINFO databases. Seventy...... of their interactions and effect on diabetes outcomes. There is currently no consensus regarding patient selection for insulin pump therapy. In this era of scarce healthcare resources, it may be prudent to identify youth requiring increased psychosocial support prior to regimen intensification. The importance...

  7. Effect of improved metabolic control on loss of kidney function in type 1 (insulin-dependent) diabetic patients

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Mathiesen, E R; Jensen, T

    1991-01-01

    We re-examined 69 of the 70 patients entering the two independent Steno Studies of effects of improved metabolic control on progression of late diabetic complications. They were analysed according to an intent to treat after follow-up for 8 years (Steno Study 1) and 5 years (Steno Study 2...... episodes of ketoacidosis. These were not caused by malfunction of the insulin infusion pumps. In the conventional treatment groups, three patients suffered five cardiovascular events causing two deaths. From the sixth month of Steno Study 1 the annual change of the glomerular filtration rate was -3.7 (-5...

  8. Effects of telephone-based motivational interviewing in lifestyle modification program on reducing metabolic risks in middle-aged and older women with metabolic syndrome: A randomized controlled trial.

    Science.gov (United States)

    Lin, Chia-Huei; Chiang, Shang-Lin; Heitkemper, Margaret McLean; Hung, Yi-Jen; Lee, Meei-Shyuan; Tzeng, Wen-Chii; Chiang, Li-Chi

    2016-08-01

    Lifestyle modification is often difficult for middle-aged and older women living in the community who are at high risk of physical inactivity and metabolic syndrome. To examine the effects of telephone-based motivational interviewing in a 12-week lifestyle modification program on physical activity, MetS, metabolic risks (fasting plasma glucose, blood pressure, triglyceride, high-density lipoprotein, and central obesity), and the number of metabolic risks in community-living middle-aged and older women diagnosed with metabolic syndrome. A randomized controlled trial was conducted. Recruited were 328 middle-aged and older women from a community health center in Taiwan. Eligible women medically diagnosed with metabolic syndrome (n=115) were randomly assigned to one of three groups: The experimental group received an individualized telephone delivered lifestyle modification program that included motivational interviewing delivered by an experienced nurse. The brief group received a single brief lifestyle modification counseling session with a brochure. The usual care group received standard care. Physical activity was assessed with the International Physical Activity Questionnaire and metabolic risks were determined by serum markers and anthropometric measures at pre- and post-intervention. One hundred women completed the study and an intention-to-treat analysis was performed. Generalized estimating equations were used to examine the intervention effects. Women in the experimental group increased physical activity from 1609 to 1892 MET-min/week (β=846, p=.01), reduced the percentage of diagnosed with metabolic syndrome to 81.6% (β=-0.17, p=.003), and decreased the number of metabolic risks from 4.0 to 3.6 (β=-0.50, pMotivational interviewing as a component of an individualized physical activity and lifestyle modification program has positive benefit in reducing metabolic risks in middle-aged and older women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Metabolism of 90Sr and other elements in man, April 1, 1976--March 31, 1977 (extended without additional funding to March 31, 1978) and renewal proposal, April 1, 1978--March 31, 1979

    International Nuclear Information System (INIS)

    Spencer, H.

    1977-01-01

    Trace element studies of cadmium, copper, zinc, lead, manganese, and nickel were carried out under strictly controlled dietary conditions in adult males during different calcium intakes. Complete metabolic balances of the trace elements listed above were determined in each 6-day metabolic period for several weeks by analyzing the constant diet and the urinary and fecal excretions of these naturally occurring elements, using atomic absorption spectroscopy. Strontium-90 metabolism studies in man were carried out in order to complete previously initiated investigations. Publications and presentations of papers derived from studies carried out during the current contract period are listed

  10. Metabolism of /sup 90/Sr and other elements in man, April 1, 1976--March 31, 1977 (extended without additional funding to March 31, 1978) and renewal proposal, April 1, 1978--March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, H.

    1977-01-01

    Trace element studies of cadmium, copper, zinc, lead, manganese, and nickel were carried out under strictly controlled dietary conditions in adult males during different calcium intakes. Complete metabolic balances of the trace elements listed above were determined in each 6-day metabolic period for several weeks by analyzing the constant diet and the urinary and fecal excretions of these naturally occurring elements, using atomic absorption spectroscopy. Strontium-90 metabolism studies in man were carried out in order to complete previously initiated investigations. Publications and presentations of papers derived from studies carried out during the current contract period are listed.

  11. A Nested Case-Control Study of Metabolically Defined Body Size Phenotypes and Risk of Colorectal Cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC.

    Directory of Open Access Journals (Sweden)

    Neil Murphy

    2016-04-01

    Full Text Available Obesity is positively associated with colorectal cancer. Recently, body size subtypes categorised by the prevalence of hyperinsulinaemia have been defined, and metabolically healthy overweight/obese individuals (without hyperinsulinaemia have been suggested to be at lower risk of cardiovascular disease than their metabolically unhealthy (hyperinsulinaemic overweight/obese counterparts. Whether similarly variable relationships exist for metabolically defined body size phenotypes and colorectal cancer risk is unknown.The association of metabolically defined body size phenotypes with colorectal cancer was investigated in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC study. Metabolic health/body size phenotypes were defined according to hyperinsulinaemia status using serum concentrations of C-peptide, a marker of insulin secretion. A total of 737 incident colorectal cancer cases and 737 matched controls were divided into tertiles based on the distribution of C-peptide concentration amongst the control population, and participants were classified as metabolically healthy if below the first tertile of C-peptide and metabolically unhealthy if above the first tertile. These metabolic health definitions were then combined with body mass index (BMI measurements to create four metabolic health/body size phenotype categories: (1 metabolically healthy/normal weight (BMI < 25 kg/m2, (2 metabolically healthy/overweight (BMI ≥ 25 kg/m2, (3 metabolically unhealthy/normal weight (BMI < 25 kg/m2, and (4 metabolically unhealthy/overweight (BMI ≥ 25 kg/m2. Additionally, in separate models, waist circumference measurements (using the International Diabetes Federation cut-points [≥80 cm for women and ≥94 cm for men] were used (instead of BMI to create the four metabolic health/body size phenotype categories. Statistical tests used in the analysis were all two-sided, and a p-value of <0.05 was

  12. 13C MRS Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Corin O. Miller

    2017-06-01

    Full Text Available Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well-known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs using 13C MRS.Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal, along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion half way through the study on the second study session.Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e., monotonic increases in the 13C-glycogen NMR signal was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen

  13. Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease.

    Science.gov (United States)

    Gangoiti, Patricia; Camacho, Luz; Arana, Lide; Ouro, Alberto; Granado, Maria H; Brizuela, Leyre; Casas, Josefina; Fabriás, Gemma; Abad, José Luis; Delgado, Antonio; Gómez-Muñoz, Antonio

    2010-10-01

    Simple bioactive sphingolipids include ceramide, sphingosine and their phosphorylated forms sphingosine 1-phosphate and ceramide 1-phosphate. These molecules are crucial regulators of cell functions. In particular, they play important roles in the regulation of angiogenesis, apoptosis, cell proliferation, differentiation, migration, and inflammation. Decoding the mechanisms by which these cellular functions are regulated requires detailed understanding of the signaling pathways that are implicated in these processes. Most importantly, the development of inhibitors of the enzymes involved in their metabolism may be crucial for establishing new therapeutic strategies for treatment of disease. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Prevalence of metabolic syndrome among patients with depressive disorder admitted to a psychiatric inpatient unit: A comparison with healthy controls.

    Science.gov (United States)

    Grover, Sandeep; Nebhinani, Naresh; Chakrabarti, Subho; Avasthi, Ajit

    2017-06-01

    This study aimed to compare the prevalence of metabolic syndrome (MS) among inpatients with depressive disorders and matched healthy controls. One hundred fifty eight patients with depressive disorders and 52 age and gender matched healthy controls were assessed for the prevalence of MS using Common Criteria for MS. Prevalence of Metabolic syndrome among inpatients with depressive disorders was 44.3%, which was significantly higher than the healthy control group (17.3%). Increased waist circumference was the most common abnormality in both the groups. Prevalence of MS among patients with recurrent depression disorder (60.3%) was almost double that seen among those with first episode depression (32.6%). Compared to healthy controls, significantly greater proportion of patients with depressive disorders had increased blood pressure, abnormal fasting blood sugar, and HDL levels. Besides the prevalence of MS in 44.3% of patients with depressive disorders, another 46% of patients fulfilled one or two criteria of MS. Significant predictors of MS were being married, obese, greater age, higher weight, higher body mass index, and multiple episodes of depression. Nearly two-fifth of depressed patients have MS and another two-fifth of patients had one or two abnormalities in the MS criteria. The prevalence of MS among patients with depressive disorders is significantly higher than the healthy controls. Hence, patients with depressive disorders should be regularly evaluated for the presence of MS and other cardiovascular risk factors and appropriate management strategies must be instituted at the earliest. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Data from Controlled Metabolic Ward Studies Provide Guidance for the Determination of Status Indicators and Dietary Requirements for Magnesium.

    Science.gov (United States)

    Nielsen, Forrest H; Johnson, Lu Ann K

    2017-05-01

    Determination of whether magnesium (Mg) is a nutrient of public health concern has been hindered by questionable Dietary Recommended Intakes (DRIs) and problematic status indicators that make Mg deficiency assessment formidable. Balance data obtained since 1997 indicate that the EAR and RDA for 70-kg healthy individuals are about 175 and 250 mg/day, respectively, and these DRIs decrease or increase based on body weight. These DRIs are less than those established for the USA and Canada. Urinary excretion data from tightly controlled metabolic unit balance studies indicate that urinary Mg excretion is 40 to 80 mg (1.65 to 3.29 mmol)/day when Mg intakes are 250 mg (10.28 mmol)/day. However, changing from low to high urinary excretion with an increase in dietary intake occurs within a few days and vice versa. Thus, urinary Mg as a stand-alone status indicator would be most useful for population studies and not useful for individual status assessment. Tightly controlled metabolic unit depletion/repletion experiments indicate that serum Mg concentrations decrease only after a prolonged depletion if an individual has good Mg reserves. These experiments also found that, although individuals had serum Mg concentrations approaching 0.85 mmol/L (2.06 mg/dL), they had physiological changes that respond to Mg supplementation. Thus, metabolic unit findings suggest that individuals with serum Mg concentrations >0.75 mmol/L (1.82 mg/L), or as high as 0.85 mmol/L (2.06 mg/dL), could have a deficit in Mg such that they respond to Mg supplementation, especially if they have a dietary intake history showing <250 mg (10.28 mmol)/day and a urinary excretion of <80 mg (3.29 mmol)/day.

  16. Effects of Tight Versus Non Tight Control of Metabolic Acidosis on Early Renal Function After Kidney Transplantation

    Directory of Open Access Journals (Sweden)

    Farhad Etezadi

    2012-09-01

    Full Text Available Background Recently, several studies have been conducted to determine the optimal strategy for intraoperative fluid replacement therapy in renal transplantation surgery. Since infusion of sodium bicarbonate as a buffer seems to be safer than other buffer compounds (lactate, gluconate, acetatethat indirectly convert into it within the liver, We hypothesized tight control of metabolic acidosis by infusion of sodium bicarbonate may improve early post-operative renal function in renal transplant recipients. Methods:120 patients were randomly divided into two equal groups. In group A, bicarbonate was infused intra-operatively according to Base Excess (BE measurements to achieve the normal values of BE (5 to +5 mEq/L. In group B, infusion of bicarbonate was allowed only in case of severe metabolic acidosis (BE [less than or equal to] 15 mEq/L or bicarbonate [less than or equal to] 10 mEq/L or PH [less than or equal to] 7.15. Minute ventilation was adjusted to keep PaCO2 within the normal range. Primary end-point was sampling of serum creatinine level in first, second, third and seventh post-operative days for statistical comparison between groups. Secondary objectives were comparison of cumulative urine volumes in the first 24 h of post-operative period and serum BUN levels which were obtained in first, second, third and seventh post-operative days. Results:In group A, all of consecutive serum creatinine levels were significantly lower in comparison with group B. With regard to secondary outcomes, no significant difference between groups was observed. Conclusion:Intra-operative tight control of metabolic acidosis by infusion of Sodium Bicarbonate in renal transplant recipients may improve early post-operative renal function.

  17. Effects of tight versus non tight control of metabolic acidosis on early renal function after kidney transplantation

    Directory of Open Access Journals (Sweden)

    Etezadi Farhad

    2012-09-01

    Full Text Available Abstract Background Recently, several studies have been conducted to determine the optimal strategy for intra-operative fluid replacement therapy in renal transplantation surgery. Since infusion of sodium bicarbonate as a buffer seems to be safer than other buffer compounds (lactate, gluconate, acetatethat indirectly convert into it within the liver, We hypothesized tight control of metabolic acidosis by infusion of sodium bicarbonate may improve early post-operative renal function in renal transplant recipients. Methods 120 patients were randomly divided into two equal groups. In group A, bicarbonate was infused intra-operatively according to Base Excess (BE measurements to achieve the normal values of BE (−5 to +5 mEq/L. In group B, infusion of bicarbonate was allowed only in case of severe metabolic acidosis (BE ≤ −15 mEq/L or bicarbonate ≤ 10 mEq/L or PH ≤ 7.15. Minute ventilation was adjusted to keep PaCO2 within the normal range. Primary end-point was sampling of serum creatinine level in first, second, third and seventh post-operative days for statistical comparison between groups. Secondary objectives were comparison of cumulative urine volumes in the first 24 h of post-operative period and serum BUN levels which were obtained in first, second, third and seventh post-operative days. Results In group A, all of consecutive serum creatinine levels were significantly lower in comparison with group B. With regard to secondary outcomes, no significant difference between groups was observed. Conclusion Intra-operative tight control of metabolic acidosis by infusion of Sodium Bicarbonate in renal transplant recipients may improve early post-operative renal function.

  18. Metabolic and cardiovascular risk in patients with a history of differentiated thyroid carcinoma: A case-controlled cohort study.

    Science.gov (United States)

    Giusti, Massimo; Mortara, Lorenzo; Degrandi, Roberta; Cecoli, Francesca; Mussap, Michele; Rodriguez, Guido; Ferone, Diego; Minuto, Francesco

    2008-09-29

    Hyperthyroidism seems to increase metabolic and cardiovascular risk, while the effects of sub-clinical hyperthyroidism are controversial. We evaluated metabolic and cardiovascular parameters in differentiated thyroid carcinoma (DTC) patients with suppressed thyrotropin (TSH) due to levo-thyroxine (L-T4) therapy. We studied DTC patients and, as a control group, patients with a history of surgery for non-malignant thyroid pathology. Significantly higher insulin and lower HDL-cholesterol levels were recorded in DTC subjects. In both groups, insulin levels were significantly related with body mass index (BMI) but not with age or L-T4 dosage. In DTC patients, a significant negative correlation was seen between HDL-cholesterol and BMI or L-T4 dosage. In both groups, intima-media thickness (IMT) correlated positively with age, BMI, glucose levels and systolic blood pressure. In DTC patients, increased IMT was significantly correlated with glycated hemoglobin (HbA1c), cholesterol and triglycerides. In DTC patients, C-reactive protein correlated positively with insulin, insulin resistance, triglycerides and systolic blood pressure, and negatively with HDL-cholesterol. In both DTC and control subjects, fibrinogen correlated positively with age, BMI, increased IMT, HbA1c and systolic blood pressure. In DTC subjects, plasma fibrinogen concentrations correlated positively with insulin resistance, cholesterol and LDL-cholesterol, and negatively with TSH levels. Our data confirm that the favorable evolution of DTC can be impaired by a high incidence of abnormal metabolic and cardiovascular data that are, at least in part, related to L-T4 therapy. These findings underline the need for adequate L-T4 titration.

  19. Metabolic and cardiovascular risk in patients with a history of differentiated thyroid carcinoma: A case-controlled cohort study

    Directory of Open Access Journals (Sweden)

    Giusti Massimo

    2008-09-01

    Full Text Available Abstract Hyperthyroidism seems to increase metabolic and cardiovascular risk, while the effects of sub-clinical hyperthyroidism are controversial. We evaluated metabolic and cardiovascular parameters in differentiated thyroid carcinoma (DTC patients with suppressed thyrotropin (TSH due to levo-thyroxine (L-T4 therapy. We studied DTC patients and, as a control group, patients with a history of surgery for non-malignant thyroid pathology. Significantly higher insulin and lower HDL-cholesterol levels were recorded in DTC subjects. In both groups, insulin levels were significantly related with body mass index (BMI but not with age or L-T4 dosage. In DTC patients, a significant negative correlation was seen between HDL-cholesterol and BMI or L-T4 dosage. In both groups, intima-media thickness (IMT correlated positively with age, BMI, glucose levels and systolic blood pressure. In DTC patients, increased IMT was significantly correlated with glycated hemoglobin (HbA1c, cholesterol and triglycerides. In DTC patients, C-reactive protein correlated positively with insulin, insulin resistance, triglycerides and systolic blood pressure, and negatively with HDL-cholesterol. In both DTC and control subjects, fibrinogen correlated positively with age, BMI, increased IMT, HbA1c and systolic blood pressure. In DTC subjects, plasma fibrinogen concentrations correlated positively with insulin resistance, cholesterol and LDL-cholesterol, and negatively with TSH levels. Our data confirm that the favorable evolution of DTC can be impaired by a high incidence of abnormal metabolic and cardiovascular data that are, at least in part, related to L-T4 therapy. These findings underline the need for adequate L-T4 titration.

  20. Caloric restriction alters the metabolic response to a mixed-meal: results from a randomized, controlled trial.

    Directory of Open Access Journals (Sweden)

    Kim M Huffman

    Full Text Available To determine if caloric restriction (CR would cause changes in plasma metabolic intermediates in response to a mixed meal, suggestive of changes in the capacity to adapt fuel oxidation to fuel availability or metabolic flexibility, and to determine how any such changes relate to insulin sensitivity (S(I.Forty-six volunteers were randomized to a weight maintenance diet (Control, 25% CR, or 12.5% CR plus 12.5% energy deficit from structured aerobic exercise (CR+EX, or a liquid calorie diet (890 kcal/d until 15% reduction in body weightfor six months. Fasting and postprandial plasma samples were obtained at baseline, three, and six months. A targeted mass spectrometry-based platform was used to measure concentrations of individual free fatty acids (FFA, amino acids (AA, and acylcarnitines (AC. S(I was measured with an intravenous glucose tolerance test.Over three and six months, there were significantly larger differences in fasting-to-postprandial (FPP concentrations of medium and long chain AC (byproducts of FA oxidation in the CR relative to Control and a tendency for the same in CR+EX (CR-3 month P = 0.02; CR-6 month P = 0.002; CR+EX-3 month P = 0.09; CR+EX-6 month P = 0.08. After three months of CR, there was a trend towards a larger difference in FPP FFA concentrations (P = 0.07; CR-3 month P = 0.08. Time-varying differences in FPP concentrations of AC and AA were independently related to time-varying S(I (P<0.05 for both.Based on changes in intermediates of FA oxidation following a food challenge, CR imparted improvements in metabolic flexibility that correlated with improvements in S(I.ClinicalTrials.gov NCT00099151.

  1. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism.

    Science.gov (United States)

    Hasel, Philip; Dando, Owen; Jiwaji, Zoeb; Baxter, Paul; Todd, Alison C; Heron, Samuel; Márkus, Nóra M; McQueen, Jamie; Hampton, David W; Torvell, Megan; Tiwari, Sachin S; McKay, Sean; Eraso-Pichot, Abel; Zorzano, Antonio; Masgrau, Roser; Galea, Elena; Chandran, Siddharthan; Wyllie, David J A; Simpson, T Ian; Hardingham, Giles E

    2017-05-02

    The influence that neurons exert on astrocytic function is poorly understood. To investigate this, we first developed a system combining cortical neurons and astrocytes from closely related species, followed by RNA-seq and in silico species separation. This approach uncovers a wide programme of neuron-induced astrocytic gene expression, involving Notch signalling, which drives and maintains astrocytic maturity and neurotransmitter uptake function, is conserved in human development, and is disrupted by neurodegeneration. Separately, hundreds of astrocytic genes are acutely regulated by synaptic activity via mechanisms involving cAMP/PKA-dependent CREB activation. This includes the coordinated activity-dependent upregulation of major astrocytic components of the astrocyte-neuron lactate shuttle, leading to a CREB-dependent increase in astrocytic glucose metabolism and elevated lactate export. Moreover, the groups of astrocytic genes induced by neurons or neuronal activity both show age-dependent decline in humans. Thus, neurons and neuronal activity regulate the astrocytic transcriptome with the potential to shape astrocyte-neuron metabolic cooperation.

  2. Control of amino acid transport coordinates metabolic reprogramming in T-cell malignancy.

    Science.gov (United States)

    Grzes, K M; Swamy, M; Hukelmann, J L; Emslie, E; Sinclair, L V; Cantrell, D A

    2017-12-01

    This study explores the regulation and importance of System L amino acid transport in a murine model of T-cell acute lymphoblastic leukemia (T-ALL) caused by deletion of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). There has been a strong focus on glucose transport in leukemias but the present data show that primary T-ALL cells have increased transport of multiple nutrients. Specifically, increased leucine transport in T-ALL fuels mammalian target of rapamycin complex 1 (mTORC1) activity which then sustains expression of hypoxia inducible factor-1α (HIF1α) and c-Myc; drivers of glucose metabolism in T cells. A key finding is that PTEN deletion and phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P 3 ) accumulation is insufficient to initiate leucine uptake, mTORC1 activity, HIF1α or c-Myc expression in T cells and hence cannot drive T-ALL metabolic reprogramming. Instead, a key regulator for leucine transport in T-ALL is identified as NOTCH. Mass spectrometry based proteomics identifies SLC7A5 as the predominant amino acid transporter in primary PTEN -/- T-ALL cells. Importantly, expression of SLC7A5 is critical for the malignant transformation induced by PTEN deletion. These data reveal the importance of regulated amino acid transport for T-cell malignancies, highlighting how a single amino acid transporter can have a key role.

  3. Hepatic mTORC1 Opposes Impaired Insulin Action to Control Mitochondrial Metabolism in Obesity

    Directory of Open Access Journals (Sweden)

    Blanka Kucejova

    2016-07-01

    Full Text Available Dysregulated mitochondrial metabolism during hepatic insulin resistance may contribute to pathophysiologies ranging from elevated glucose production to hepatocellular oxidative stress and inflammation. Given that obesity impairs insulin action but paradoxically activates mTORC1, we tested whether insulin action and mammalian target of rapamycin complex 1 (mTORC1 contribute to altered in vivo hepatic mitochondrial metabolism. Loss of hepatic insulin action for 2 weeks caused increased gluconeogenesis, mitochondrial anaplerosis, tricarboxylic acid (TCA cycle oxidation, and ketogenesis. However, activation of mTORC1, induced by the loss of hepatic Tsc1, suppressed these fluxes. Only glycogen synthesis was impaired by both loss of insulin receptor and mTORC1 activation. Mice with a double knockout of the insulin receptor and Tsc1 had larger livers, hyperglycemia, severely impaired glycogen storage, and suppressed ketogenesis, as compared to those with loss of the liver insulin receptor alone. Thus, activation of hepatic mTORC1 opposes the catabolic effects of impaired insulin action under some nutritional states.

  4. Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus.

    Science.gov (United States)

    Mury, Flávia B; Lugon, Magda D; DA Fonseca, Rodrigo Nunes; Silva, Jose R; Berni, Mateus; Araujo, Helena M; Fontenele, Marcio Ribeiro; Abreu, Leonardo Araujo DE; Dansa, Marílvia; Braz, Glória; Masuda, Hatisaburo; Logullo, Carlos

    2016-10-01

    Rhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4'-6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target β-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.

  5. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis.

    Science.gov (United States)

    Glover, Louise E; Bowers, Brittelle E; Saeedi, Bejan; Ehrentraut, Stefan F; Campbell, Eric L; Bayless, Amanda J; Dobrinskikh, Evgenia; Kendrick, Agnieszka A; Kelly, Caleb J; Burgess, Adrianne; Miller, Lauren; Kominsky, Douglas J; Jedlicka, Paul; Colgan, Sean P

    2013-12-03

    Mucosal surfaces of the lower gastrointestinal tract are subject to frequent, pronounced fluctuations in oxygen tension, particularly during inflammation. Adaptive responses to hypoxia are orchestrated largely by the hypoxia-inducible transcription factors (HIFs). As HIF-1α and HIF-2α are coexpressed in mucosal epithelia that constitute the barrier between the lumen and the underlying immune milieu, we sought to define the discrete contribution of HIF-1 and HIF-2 transactivation pathways to intestinal epithelial cell homeostasis. The present study identifies creatine kinases (CKs), key metabolic enzymes for rapid ATP generation via the phosphocreatine-creatine kinase (PCr/CK) system, as a unique gene family that is coordinately regulated by HIF. Cytosolic CKs are expressed in a HIF-2-dependent manner in vitro and localize to apical intestinal epithelial cell adherens junctions, where they are critical for junction assembly and epithelial integrity. Supplementation with dietary creatine markedly ameliorated both disease severity and inflammatory responses in colitis models. Further, enzymes of the PCr/CK metabolic shuttle demonstrate dysregulated mucosal expression in a subset of ulcerative colitis and Crohn disease patients. These findings establish a role for HIF-regulated CK in epithelial homeostasis and reveal a fundamental link between cellular bioenergetics and mucosal barrier.

  6. Impact of ELKa, the Electronic Device for Prandial Insulin Dose Calculation, on Metabolic Control in Children and Adolescents with Type 1 Diabetes Mellitus: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Agnieszka Kowalska

    2017-01-01

    Full Text Available Background. The ELKa system is composed of computer software, with a database of nutrients, and a dedicated USB kitchen scale. It was designed to automatize the everyday calculations of food exchanges and prandial insulin doses. Aim. To investigate the influence of the ELKa on metabolic control in children with type 1 diabetes mellitus (T1DM. Methods. A randomized, parallel, open-label clinical trial involved 106 patients aged 50% of meals achieved lower HbA1C levels (P=0.002, lower basal insulin amounts (P=0.049, and lower intrasubject standard deviation of blood glucose levels (P=0.023 in comparison with the control. Moreover, in the intervention group, significant reduction of HbA1C level, by 0.55% point (P=0.002, was noted. No intergroup differences were found in the hypoglycemic episodes, BMI-SDS, bolus insulin dosage, and total daily insulin dosage. Conclusions. The ELKa system improves metabolic control in children with T1DM under regular usage. The trial is registered at ClinicalTrials.gov, number NCT02194517.

  7. A 12-week low-carbohydrate, high-fat diet improves metabolic health outcomes over a control diet in a randomised controlled trial with overweight defence force personnel.

    Science.gov (United States)

    Zinn, Caryn; McPhee, Julia; Harris, Nigel; Williden, Micalla; Prendergast, Kate; Schofield, Grant

    2017-11-01

    Overweight, obesity, and poor health is becoming a global concern for defence force personnel. Conventional nutrition guidelines are being questioned for their efficacy in achieving optimal body composition and long-term health. This study compared the effects of a 12-week low-carbohydrate, high-fat diet with a conventional, high-carbohydrate, low-fat diet on weight reduction and metabolic health outcomes in at-risk New Zealand Defence Force personnel. In this randomised controlled trial, 41 overweight personnel were assigned to intervention and control groups. Weight, waist circumference, fasting lipids, and glycaemic control were assessed at baseline and at 12 weeks. Within-group change scores were analysed using the t statistic and interpreted using a p resistance; moderate, likely beneficial effects for HDL cholesterol, triglyceride:HDLc ratio and HbA1c; and a small, likely harmful effect for low-density lipoprotein cholesterol. This dietary approach shows promise for short-term weight loss and improved metabolic health outcomes conditions compared with mainstream recommendations. It should be offered to defence force personnel at least as a viable alternative means to manage their weight and health.

  8. [Esmolol improves clinical outcome and tissue oxygen metabolism in patients with septic shock through controlling heart rate].

    Science.gov (United States)

    Xinqiang, Liu; Weiping, Huang; Miaoyun, Wen; Wenxin, Zeng; Wenqiang, Jiang; Shenglong, Chen; Juhao, Zeng; Hongki, Zeng

    2015-09-01

    To investigate whether esmolol could improve clinical outcome and tissue oxygen metabolism by controlling heart rate (HR) in patients with septic shock. A single-center double-blinded randomized controlled trial was conducted. The patients suffering from septic shock received 6-hour early goal directed herapy (EGDT) with pulmonary artery wedge pressure ≥ 12 mmHg (1 mmHg = 0.133 kPa) or central venous pressure CVP) ≥ 12 mmHg requiring norepinephrine to maintain mean arterial pressure (MAP) ≥ 65 mmHg and HR ≥ 95 bpm admitted to intensive care unit (ICU) of Guangdong General Hospital from September 2013 to September 2014 were enrolled. They were randomly divided into esmolol group and control group by computer-based random number generator. All patients received conventional basic treatment, while those in the esmolol group received in addition persistent esmolol infusion by micro pump with dosage of 0.05 mg · kg(-1) · min(-1) with the dosage adjusted to maintain HR lower than 100 bpm within 24 hours. The patients in control group did not receive drug intervention for HR. The primary end-points consisted of length of stay in ICU and 28-day mortality. The secondary end-points included hemodynamic parameters [HR, MAP, CVP, cardiac index (CI), stroke volume index (SVI), systemic vascular resistance index (SVRI)] and tissue oxygen metabolism parameters [central venous oxygen saturation (ScvO2), lactate level (Lac)] before and 24, 48, 72 hours after the treatment. A total of 48 patients with septic shock were enrolled with 24 patients in esmolol group and 24 in control group. (1) The primary end-points: compared with control group, the length of stay in the ICU in the esmolol group was significantly shortened (days: 13.75 ± 8.68 vs. 21.70 ± 6.06, t = 3.680, P = 0.001), and 28-day mortality was significantly lowered [25.0% (6/24) vs. 62.5% (15/24 ), χ2 = 6.857, P = 0.009]. (2) The secondary end-points: there were no significant difference in the hemodynamic and

  9. [Effect of meal frequency and carbohydrate intake on the metabolic control of patients with type 2 diabetes mellitus].

    Science.gov (United States)

    Leiva, Tamara; Basfi-Fer, Karen; Rojas, Pamela; Carrasco, Fernando; Ruz O, Manuel

    2016-10-01

    Increasing meal frequency is commonly used in the clinical practice as part of the nutritional treatment of patients with type 2 Diabetes Mellitus (DM2), although its effect on metabolic control parameters is controversial. To evaluate the association of energy intake, meal frequency, and amount of carbohydrates with fasting plasma glucose and glycosylated hemoglobin in a group of patients with DM2 without insulin therapy. Dietary intake was evaluated in 60 subjects with DM2 through three-day food records. The meal frequency was estimated establishing the main meal times considering snacks. Meal frequency was 4.7 ± 1.1 times per day. There was a positive association between glycosylated and fasting blood glucose levels (p Meal frequency was associated with energy intake (p meal frequency, available carbohydrates and energy intake, body mass index and fasting plasma glucose were analyzed in a multiple linear regression model, fasting blood glucose was the variable that best predicted changes in glycosylated hemoglobin (45.5%). Meal frequency had no association with glycosylated hemoglobin. Meal frequency showed no association with metabolic control parameters in DM2 patients.

  10. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Teresa C Leone

    2005-04-01

    Full Text Available The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha was targeted in mice. PGC-1alpha null (PGC-1alpha(-/- mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1alpha(-/- mice. With age, the PGC-1alpha(-/- mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1alpha(-/- mice, leading to reduced muscle performance and exercise capacity. PGC-1alpha(-/- mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1alpha(-/- mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1alpha(-/- mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1alpha(-/- mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1alpha(-/- mice. These results demonstrate that PGC-1alpha is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

  11. Behaviour and metabolic control in children with Type 1 diabetes mellitus on insulin pump therapy: 2-year follow-up.

    Science.gov (United States)

    Knight, S J; Northam, E A; Cameron, F J; Ambler, G R

    2011-09-01

    This study investigated whether continuous subcutaneous insulin infusion is associated with sustained improvement in behaviour and metabolic control. Children with Type 1 diabetes mellitus (n = 27, 8-18 years old) who had been assessed previously prior to commencing continuous subcutaneous insulin infusion, and 6-8 weeks later, were re-evaluated 2 years after commencing insulin pump therapy. Behaviour was reassessed using the Behavioral Assessment System for Children-2nd edition (BASC-2) and current HbA(1c) levels were recorded. Two years after commencing continuous subcutaneous insulin infusion, parent-reported internalizing and externalizing symptoms were significantly lower than pre-insulin pump therapy commencement levels. Self reports of internalizing and externalizing problems did not differ significantly across the three assessment points. There was no significant difference between pre-insulin pump therapy HbA(1c) and HbA(1c) after 2 years on continuous subcutaneous insulin infusion, despite an initial improvement 6-8 weeks after commencing the therapy. Children with Type 1 diabetes mellitus showed sustained improvements in parent-reported behaviour, but not in self reports of behaviour or in metabolic control 2 years after commencement of continuous subcutaneous insulin infusion. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  12. RelTime Rates Collapse to a Strict Clock When Estimating the Timeline of Animal Diversification.

    Science.gov (United States)

    Lozano-Fernandez, Jesus; Dos Reis, Mario; Donoghue, Philip C J; Pisani, Davide

    2017-05-01

    Establishing an accurate timescale for the history of life is crucial to understand evolutionary processes. For this purpose, relaxed molecular clock models implemented in a Bayesian MCMC framework are generally used. However, these methods are time consuming. RelTime, a non-Bayesian method implementing a fast, ad hoc, algorithm for relative dating, was developed to overcome the computational inefficiencies of Bayesian software. RelTime was recently used to investigate the timing of origin of animals, yielding results consistent with early strict clock studies from the 1980s and 1990s, estimating metazoans to have a Mesoproterozoic origin-over a billion years ago. RelTime results are unexpected and disagree with the largest majority of modern, relaxed, Bayesian molecular clock analyses, which suggest animals originated in the Tonian-Cryogenian (less that 850 million years ago). Here, we demonstrate that RelTime-inferred divergence times for the origin of animals are spurious, a consequence of the inability of RelTime to relax the clock along the internal branches of the animal phylogeny. RelTime-inferred divergence times are comparable to strict-clock estimates because they are essentially inferred under a strict clock. Our results warn us of the danger of using ad hoc algorithms making implicit assumptions about rate changes along a tree. Our study roundly rejects a Mesoproterozoic origin of animals; metazoans emerged in the Tonian-Cryogenian, and diversified in the Ediacaran, in the immediate prelude to the routine fossilization of animals in the Cambrian associated with the emergence of readily preserved skeletons. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes.

    Science.gov (United States)

    Bircher, Lea; Geirnaert, Annelies; Hammes, Frederik; Lacroix, Christophe; Schwab, Clarissa

    2018-04-17

    Strict anaerobic gut microbes have been suggested as 'next-generation probiotics' for treating several intestinal disorders. The development of preservation techniques is of major importance for therapeutic application. This study investigated cryopreservation (-80°C) and lyophilization survival and storage stability (4°C for 3 months) of the strict anaerobic gut microbes Bacteroides thetaiotaomicron, Faecalibacterium prausnitzii, Roseburia intestinalis, Anaerostipes caccae, Eubacterium hallii and Blautia obeum. To improve preservation survival, protectants sucrose and inulin (both 5% w/v) were added for lyophilization and were also combined with glycerol (15% v/v) for cryopreservation. Bacterial fitness, evaluated by maximum growth rate and lag phase, viability and membrane integrity were determined using a standardized growth assay and by flow cytometry as markers for preservation resistance. Lyophilization was more detrimental to viability and fitness than cryopreservation, but led to better storage stability. Adding sucrose and inulin enhanced viability and the proportion of intact cells during lyophilization of all strains. Viability of protectant-free B. thetaiotaomicron, A. caccae and F. prausnitzii was above 50% after cryopreservation and storage and increased to above 80% if protectants were present. The addition of glycerol, sucrose and inulin strongly enhanced the viability of B. obeum, E. hallii and R. intestinalis from 0.03-2% in protectant-free cultures to 11-37%. This is the first study that quantitatively compared the effect of cryopreservation and lyophilization and the addition of selected protectants on viability and fitness of six strict anaerobic gut microbes. Our results suggest that efficiency of protectants is process- and species-specific. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Metabolic syndrome in patients with bipolar disorder: comparison with major depressive disorder and non-psychiatric controls.

    Science.gov (United States)

    Silarova, Barbora; Giltay, Erik J; Van Reedt Dortland, Arianne; Van Rossum, Elisabeth F C; Hoencamp, Erik; Penninx, Brenda W J H; Spijker, Annet T

    2015-04-01

    We aimed to investigate the prevalence of the metabolic syndrome (MetS) and its individual components in subjects with bipolar disorder (BD) compared to those with major depressive disorder (MDD) and non-psychiatric controls. We examined 2431 participants (mean age 44.3±13.0, 66.1% female), of whom 241 had BD; 1648 had MDD; and 542 were non-psychiatric controls. The MetS was ascertained according to NCEP ATP III criteria. Multivariable analyses were adjusted for age, sex, ethnicity, level of education, smoking status and severity of depressive symptoms, and in the case of BD subjects, also for psychotropic medication use. Subjects with BD had a significantly higher prevalence of MetS when compared to subjects with MDD and non-psychiatric controls (28.4% vs. 20.2% and 16.5%, respectively, ppsychiatric controls). The differences between BD subjects with controls could partly be ascribed to a higher mean waist circumference (91.0 cm vs. 88.8, respectively, p=0.03). In stratified analysis, the differences in the prevalence of MetS between patients with BD and MDD were found in symptomatic but not in asymptomatic cases. This study confirms a higher prevalence of MetS in patients with BD compared to both MDD patients and controls. Specifically at risk are patients with a higher depression score and abdominal obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effects of growth temperature and strictly anaerobic recovery on the survival of Listeria monocytogenes during pasteurization.

    OpenAIRE

    Knabel, S J; Walker, H W; Hartman, P A; Mendonca, A F

    1990-01-01

    Listeria monocytogenes F5069 was suspended in either Trypticase soy broth-0.6% yeast extract (TSBYE) or sterile, whole milk and heated at 62.8 degrees C in sealed thermal death time tubes. Severely heat-injured cells were recovered in TSBYE within sealed thermal death time tubes because of the formation of reduced conditions in the depths of the TSBYE. Also, the use of strictly anaerobic Hungate techniques significantly increased recovery in TSBYE containing 1.5% agar compared with aerobicall...

  16. The Dirichlet problem for the Monge-Ampere equation in convex (but not strictly convex domains

    Directory of Open Access Journals (Sweden)

    David Hartenstine

    2006-10-01

    Full Text Available It is well-known that the Dirichlet problem for the Monge-Amp`ere equation $det D^2 u = mu$ in a bounded strictly convex domain $Omega$ in $mathbb{R}^n$ has a weak solution (in the sense of Aleksandrov for any finite Borel measure $mu$ on $Omega$ and for any continuous boundary data. We consider the Dirichlet problem when $Omega$ is only assumed to be convex, and give a necessary and sufficient condition on the boundary data for solvability.

  17. Selections of the metric projection operator and strict solarity of sets with continuous metric projection

    Science.gov (United States)

    Alimov, A. R.

    2017-07-01

    In a broad class of finite-dimensional Banach spaces, we show that a closed set with lower semicontinuous metric projection is a strict sun, admits a continuous selection of the metric projection operator onto it, has contractible intersections with balls, and its (nonempty) intersection with any closed ball is a retract of this ball. For sets with continuous metric projection, a number of new results relating the solarity of such sets to the stability of the operator of best approximation are obtained. Bibliography 25 titles.

  18. Transplanting Diseases from Organ Donors in Western Europe: Fault Liability or Strict Liability?

    Science.gov (United States)

    Broeckx, Nils; Verhoeven, Dimitri

    2015-06-01

    This article will examine the problem of disease transmission through organ transplantation from a civil liability perspective. Both fault liability and strict product liability might be possible. These two types of liability will be compared, while applying them to the actions of the central parties involved in organ donation and transplantation, namely the physician/hospital, the donor and the organ exchange organisation. While product liability is generally an easier way to obtain compensation than fault liability, it might nevertheless place too heavy a burden on the transplant professionals.

  19. Single molecule experiments challenge the strict wave-particle dualism of light.

    Science.gov (United States)

    Greulich, Karl Otto

    2010-01-21

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  20. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    Directory of Open Access Journals (Sweden)

    Karl Otto Greulich

    2010-01-01

    Full Text Available Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise―only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  1. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice.

    Science.gov (United States)

    Cani, Patrice D; Bibiloni, Rodrigo; Knauf, Claude; Waget, Aurélie; Neyrinck, Audrey M; Delzenne, Nathalie M; Burcelin, Rémy

    2008-06-01

    Diabetes and obesity are characterized by a low-grade inflammation whose molecular origin is unknown. We previously determined, first, that metabolic endotoxemia controls the inflammatory tone, body weight gain, and diabetes, and second, that high-fat feeding modulates gut microbiota and the plasma concentration of lipopolysaccharide (LPS), i.e., metabolic endotoxemia. Therefore, it remained to demonstrate whether changes in gut microbiota control the occurrence of metabolic diseases. We changed gut microbiota by means of antibiotic treatment to demonstrate, first, that changes in gut microbiota could be responsible for the control of metabolic endotoxemia, the low-grade inflammation, obesity, and type 2 diabetes and, second, to provide some mechanisms responsible for such effect. We found that changes of gut microbiota induced by an antibiotic treatment reduced metabolic endotoxemia and the cecal content of LPS in both high-fat-fed and ob/ob mice. This effect was correlated with reduced glucose intolerance, body weight gain, fat mass development, lower inflammation, oxidative stress, and macrophage infiltration marker mRNA expression in visceral adipose tissue. Importantly, high-fat feeding strongly increased intestinal permeability and reduced the expression of genes coding for proteins of the tight junctions. Furthermore, the absence of CD14 in ob/ob CD14(-)(/)(-) mutant mice mimicked the metabolic and inflammatory effects of antibiotics. This new finding demonstrates that changes in gut microbiota controls metabolic endotoxemia, inflammation, and associated disorders by a mechanism that could increase intestinal permeability. It would thus be useful to develop strategies for changing gut microbiota to control, intestinal permeability, metabolic endotoxemia, and associated disorders.

  2. 13C Mrs Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Science.gov (United States)

    Miller, Corin O.; Cao, Jin; Zhu, He; Chen, Li M.; Wilson, George; Kennan, Richard; Gore, John C.

    2017-06-01

    Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs) using 13C MRS. Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz) NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys) were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal), along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion) half way through the study on the second study session. Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e. monotonic increases in the 13C-glycogen NMR signal) was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen synthesis

  3. Negative Affectivity Predicts Lower Quality of Life and Metabolic Control in Type 2 Diabetes Patients: A Structural Equation Modeling Approach.

    Science.gov (United States)

    Conti, Chiara; Di Francesco, Giulia; Fontanella, Lara; Carrozzino, Danilo; Patierno, Chiara; Vitacolonna, Ester; Fulcheri, Mario

    2017-01-01

    Introduction: It is essential to consider the clinical assessment of psychological aspects in patients with Diabetes Mellitus (DM), in order to prevent potentially adverse self-management care behaviors leading to diabetes-related complications, including declining levels of Quality of Life (QoL) and negative metabolic control. Purpose : In the framework of Structural Equation Modeling (SEM), the specific aim of this study is to evaluate the influence of distressed personality factors as Negative Affectivity (NA) and Social Inhibition (SI) on diabetes-related clinical variables (i.e., QoL and glycemic control). Methods: The total sample consists of a clinical sample, including 159 outpatients with Type 2 Diabetes Mellitus (T2DM), and a control group composed of 102 healthy respondents. All participants completed the following self- rating scales: The Type D Scale (DS14) and the World Health Organization QoL Scale (WHOQOLBREF). Furthermore, the participants of the clinical group were assessed for HbA1c, disease duration, and BMI. The observed covariates were BMI, gender, and disease duration, while HbA1c was considered an observed variable. Results: SEM analysis revealed significant differences between groups in regards to the latent construct of NA and the Environmental dimension of QoL. For the clinical sample, SEM showed that NA had a negative impact on both QoL dimensions and metabolic control. Conclusions: Clinical interventions aiming to improve medication adherence in patients with T2DM should include the psychological evaluation of Type D Personality traits, by focusing especially on its component of NA as a significant risk factor leading to negative health outcomes.

  4. Effect of testosterone treatment on glucose metabolism in men with type 2 diabetes: a randomized controlled trial.

    Science.gov (United States)

    Gianatti, Emily J; Dupuis, Philippe; Hoermann, Rudolf; Strauss, Boyd J; Wentworth, John M; Zajac, Jeffrey D; Grossmann, Mathis

    2014-08-01

    To determine whether testosterone therapy improves glucose metabolism in men with type 2 diabetes (T2D) and lowered testosterone. We conducted a randomized, double-blind, parallel, placebo-controlled trial in 88 men with T2D, aged 35-70 years with an HbA1c ≤8.5% (69 mmol/mol), and a total testosterone level, measured by immunoassay, of ≤12.0 nmol/L (346 ng/dL). Participants were randomly assigned to 40 weeks of intramuscular testosterone undecanoate (n = 45) or matching placebo (n = 43). All study subjects were included in the primary analysis. Seven men assigned to testosterone and six men receiving placebo did not complete the study. Main outcome measures were insulin resistance by homeostatic model assessment (HOMA-IR, primary outcome) and glycemic control by HbA1c (secondary outcome). Testosterone therapy did not improve insulin resistance (mean adjusted difference [MAD] for HOMA-IR compared with placebo -0.08 [95% CI -0.31 to 0.47; P = 0.23]) or glycemic control (MAD HbA1c 0.36% [0.0-0.7]; P = 0.05), despite a decrease in fat mass (MAD -2.38 kg [-3.10 to -1.66]; P Testosterone therapy reduced subcutaneous (MAD -320 cm(3) [-477 to -163]; P Testosterone therapy does not improve glucose metabolism or visceral adiposity in obese men with moderately controlled T2D and modest reductions in circulating testosterone levels typical for men with T2D. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Negative Affectivity Predicts Lower Quality of Life and Metabolic Control in Type 2 Diabetes Patients: A Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Chiara Conti

    2017-05-01

    Full Text Available Introduction: It is essential to consider the clinical assessment of psychological aspects in patients with Diabetes Mellitus (DM, in order to prevent potentially adverse self-management care behaviors leading to diabetes-related complications, including declining levels of Quality of Life (QoL and negative metabolic control.Purpose: In the framework of Structural Equation Modeling (SEM, the specific aim of this study is to evaluate the influence of distressed personality factors as Negative Affectivity (NA and Social Inhibition (SI on diabetes-related clinical variables (i.e., QoL and glycemic control.Methods: The total sample consists of a clinical sample, including 159 outpatients with Type 2 Diabetes Mellitus (T2DM, and a control group composed of 102 healthy respondents. All participants completed the following self- rating scales: The Type D Scale (DS14 and the World Health Organization QoL Scale (WHOQOLBREF. Furthermore, the participants of the clinical group were assessed for HbA1c, disease duration, and BMI. The observed covariates were BMI, gender, and disease duration, while HbA1c was considered an observed variable.Results: SEM analysis revealed significant differences between groups in regards to the latent construct of NA and the Environmental dimension of QoL. For the clinical sample, SEM showed that NA had a negative impact on both QoL dimensions and metabolic control.Conclusions: Clinical interventions aiming to improve medication adherence in patients with T2DM should include the psychological evaluation of Type D Personality traits, by focusing especially on its component of NA as a significant risk factor leading to negative health outcomes.

  6. Randomised controlled trial: Effects of aerobic exercise training programme on indices of adiposity and metabolic markers in hypertension

    International Nuclear Information System (INIS)

    Lamina, S.; Okoye, C.G.

    2013-01-01

    Objective: To investigate the effects of interval training programme on blood pressure, maximal oxygen consumption, indices of adiposity and metabolic markers in black African men with essential hypertension. Methods: The study was conducted at Murtala Muhammed Specialist Hospital, Kano, Nigeria, from October 24, 2007 to February 24, 2009. It comprised 245 male patients with mild to moderate (systolic blood pressure 140-179 and diastolic blood pressure 90-109 mmHg) essential hypertension who were age-matched and grouped into experimental and control groups. The experimental group was involved in an 8-week training programme of between 45 and 60 minutes, while the controls remained sedentary during the period. Cardiovascular parameters, maximal oxygen consumption, per cent body fat, waist-to-hip ratio, body mass index, fasting blood sugar, total cholesterol, triglyceride, high density lipoprotein, low density lipoprotein and artherogenic index were assessed. Analysis of co-variance and Pearson correlation tests were used in data analysis which was done using SPSS 16. Results: The study had 140 (57.1%) cases with a mean age of 58.90+-7.35 years, and 105 (42.9%) controls with a mean age of 58.27+-6.24 years. It revealed significant increased effect of interval training programme on maximal oxygen consumption and high-density lipoprotein. There was significant reduction in on all the other controls. Changes in maximal oxygen consumption as a result of interval training significantly and negatively correlated with the other variables except high-density lipoprotein. Conclusions: The therapeutic role of interval exercise training on blood pressure reduction may be mediated through elevation of high-density lipoprotein, reduction of other markers of metabolism, and reduction in bodyweight and fatness. (author)

  7. [Metabolic Control, Evaluation and Follow-up Interventions in Patients With Schizophrenia].

    Science.gov (United States)

    Oviedo, Gabriel Fernando; Gómez Restrepo, Carlos; Bohórquez Peñaranda, Adriana; García Valencia, Jenny; Jaramillo, Luis Eduardo; Tamayo, Nathalie; Arenas, María Luisa; Vélez Fernández, Carolina

    2015-01-01

    To determine the laboratory tests, related to metabolic risk that should be practiced to adult patients diagnosed with schizophrenia. To assist the clinician decision-making process about complementary diagnostic evaluation strategies in adult diagnosed with schizophrenia. A clinical practice guideline was elaborated under the parameters of the Methodological Guide of the Ministerio de Salud y Protección Social to identify, synthesize and evaluate the evidence and make recommendations about the treatment and follow-up of adult patients with schizophrenia. The evidence of NICE guide 82 was adopted and updated. The evidence was presented to the Guideline Developing Group and recommendations, employing the GRADE system, were produced. The risk of overall mortality in schizophrenia is higher than in the general population excluding suicide. Results related with mortality associated to antipsychotics showed contradictory results. Metabolic outcomes showed a higher incidence and association with schizophrenia and treatment with antipsychotics (AP). The diagnosis of dyslipidemia in men with schizophrenia appears to be lower in comparison with the general population. However, changes in weight, blood sugar levels, HDL cholesterol and triglycerides are influenced by the use of antipsychotics in general there is a higher risk of developing diabetes mellitus in adults with schizophrenia. Based on the evidence found a plan was formulated for the evaluation of physiological and paraclinical variables during and before the management with AP in adult diagnosed with schizophrenia. The overall quality of evidence is low considering that most of the reports come from observational studies that have risk of bias and some designs have methodological limitations. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  8. Dissecting rice polyamine metabolism under controlled long-term drought stress.

    Directory of Open Access Journals (Sweden)

    Phuc Thi Do

    Full Text Available A selection of 21 rice cultivars (Oryza sativa L. ssp. indica and japonica was characterized under moderate long-term drought stress by comprehensive physiological analyses and determination of the contents of polyamines and selected metabolites directly related to polyamine metabolism. To investigate the potential regulation of polyamine biosynthesis at the transcriptional level, the expression of 21 genes encoding enzymes involved in these pathways were analyzed by qRT-PCR. Analysis of the genomic loci revealed that 11 of these genes were located in drought-related QTL regions, in agreement with a proposed role of polyamine metabolism in rice drought tolerance. The cultivars differed widely in their drought tolerance and parameters such as biomass and photosynthetic quantum yield were significantly affected by drought treatment. Under optimal irrigation free putrescine was the predominant polyamine followed by free spermidine and spermine. When exposed to drought putrescine levels decreased markedly and spermine became predominant in all cultivars. There were no correlations between polyamine contents and drought tolerance. GC-MS analysis revealed drought-induced changes of the levels of ornithine/arginine (substrate, substrates of polyamine synthesis, proline, product of a competing pathway and GABA, a potential degradation product. Gene expression analysis indicated that ADC-dependent polyamine biosynthesis responded much more strongly to drought than the ODC-dependent pathway. Nevertheless the fold change in transcript abundance of ODC1 under drought stress was linearly correlated with the drought tolerance of the cultivars. Combining metabolite and gene expression data, we propose a model of the coordinate adjustment of polyamine biosynthesis for the accumulation of spermine under drought conditions.

  9. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L.

    Science.gov (United States)

    Li, Zhenhua; Zhang, Jie; Liu, Yiling; Zhao, Jiehong; Fu, Junjie; Ren, Xueliang; Wang, Guoying; Wang, Jianhua

    2016-02-09

    Auxin was recognized as a secondary dormancy phytohormone, controlling seed dormancy and germination. However, the exogenous auxin-controlled seed dormancy and germination remain unclear in physiological process and gene network. Tobacco seeds soaked in 1000 mg/l auxin solution showed markedly decreased germination compared with that in low concentration of auxin solutions and ddH2O. Using an electron microscope, observations were made on the seeds which did not unfold properly in comparison to those submerged in ddH2O. The radicle traits measured by WinRHIZO, were found to be also weaker than the other treatment groups. Quantified by ELISA, there was no significant difference found in β-1,3glucanase activity and abscisic acid (ABA) content between the seeds imbibed in gradient concentration of auxin solution and those soaked in ddH2O. However, gibberellic acid (GA) and auxin contents were significantly higher at the time of exogenous auxin imbibition and were gradually reduced at germination. RNA sequencing (RNA-seq), revealed that the transcriptome of auxin-responsive dormancy seeds were more similar to that of the imbibed seeds when compared with primary dormancy seeds by principal component analysis. The results of gene differential expression analysis revealed that auxin-controlled seed secondary dormancy was associated with flavonol biosynthetic process, gibberellin metabolic process, adenylyl-sulfate reductase activity, thioredoxin activity, glutamate synthase (NADH) activity and chromatin regulation. In addition, auxin-responsive germination responded to ABA, auxin, jasmonic acid (JA) and salicylic acid (SA) mediated signaling pathway (red, far red and blue light), glutathione and methionine (Met) metabolism. In this study, exogenous auxin-mediated seed secondary dormancy is an environmental model that prevents seed germination in an unfavorable condition. Seeds of which could not imbibe normally, and radicles of which also could not develop normally and

  10. Favourable effects of consuming a Palaeolithic-type diet on characteristics of the metabolic syndrome: a randomized controlled pilot-study

    OpenAIRE

    Boers, Inge; Muskiet, Frits A. J.; Berkelaar, Evert; Schut, Erik; Penders, Ria; Hoenderdos, Karine; Wichers, Harry J.; Jong, Miek C.

    2014-01-01

    Background The main goal of this randomized controlled single-blinded pilot study was to study whether, independent of weight loss, a Palaeolithic-type diet alters characteristics of the metabolic syndrome. Next we searched for outcome variables that might become favourably influenced by a Paleolithic-type diet and may provide new insights in the pathophysiological mechanisms underlying the metabolic syndrome. In addition, more information on feasibility and designing an innovative dietary re...

  11. Target setting in intensive insulin management is associated with metabolic control: the Hvidoere Childhood Diabetes Study Group Centre Differences Study 2005

    DEFF Research Database (Denmark)

    Swift, P.G.F.; Skinner, T.C.; de Beaufort, C.E.

    2010-01-01

    Objective: To evaluate glycaemic targets set by diabetes teams, their perception by adolescents and parents, and their influence on metabolic control. Methods: Clinical data and questionnaires were completed by adolescents, parents/carers and diabetes teams in 21 international centres. HbA1c was ...... setting of glycaemic targets by diabetes teams is strongly associated with HbA1c outcome in adolescents. Target setting appears to play a significant role in explaining the differences in metabolic outcomes between centres...

  12. Metabolomics reveals the metabolic shifts following an intervention with rye bread in postmenopausal women- a randomized control trial

    Directory of Open Access Journals (Sweden)

    Moazzami Ali A

    2012-10-01

    Full Text Available Abstract Background Epidemiological studies have consistently shown that whole grain (WG cereals can protect against the development of chronic diseases, but the underlying mechanism is not fully understood. Among WG products, WG rye is considered even more potent because of its unique discrepancy in postprandial insulin and glucose responses known as the rye factor. In this study, an NMR-based metabolomics approach was applied to study the metabolic effects of WG rye as a tool to determine the beneficial effects of WG rye on human health. Methods Thirty-three postmenopausal Finnish women with elevated serum total cholesterol (5.0-8.5 mmol/L and BMI of 20–33 kg/m2 consumed a minimum of 20% of their daily energy intake as high fiber WG rye bread (RB or refined wheat bread (WB in a randomized, controlled, crossover design with two 8-wk intervention periods separated by an 8-wk washout period. At the end of each intervention period, fasting serum was collected for NMR-based metabolomics and the analysis of cholesterol fractions. Multilevel partial least squares discriminant analysis was used for paired comparisons of multivariate data. Results The metabolomics analysis of serum showed lower leucine and isoleucine and higher betaine and N,N-dimethylglycine levels after RB than WB intake. To further investigate the metabolic effects of RB, the serum cholesterol fractions were measured. Total- and LDL-cholesterol levels were higher after RB intake than after WB (p Conclusions This study revealed favorable shifts in branched amino acid and single carbon metabolism and an unfavorable shift in serum cholesterol levels after RB intake in postmenopausal women, which should be considered for evaluating health beneficial effects of rye products.

  13. Treatment of metabolic syndrome by combination of physical activity and diet needs an optimal protein intake: a randomized controlled trial.

    Science.gov (United States)

    Dutheil, Frédéric; Lac, Gérard; Courteix, Daniel; Doré, Eric; Chapier, Robert; Roszyk, Laurence; Sapin, Vincent; Lesourd, Bruno

    2012-09-17

    The recommended dietary allowance (RDA) for protein intake has been set at 1.0-1.3 g/kg/day for senior. To date, no consensus exists on the lower threshold intake (LTI = RDA/1.3) for the protein intake (PI) needed in senior patients ongoing both combined caloric restriction and physical activity treatment for metabolic syndrome. Considering that age, caloric restriction and exercise are three increasing factors of protein need, this study was dedicated to determine the minimal PI in this situation, through the determination of albuminemia that is the blood marker of protein homeostasis. Twenty eight subjects (19 M, 9 F, 61.8 ± 6.5 years, BMI 33.4 ± 4.1 kg/m²) with metabolic syndrome completed a three-week residential programme (Day 0 to Day 21) controlled for nutrition (energy balance of -500 kcal/day) and physical activity (3.5 hours/day). Patients were randomly assigned in two groups: Normal-PI (NPI: 1.0 g/kg/day) and High-PI (HPI: 1.2 g/kg/day). Then, patients returned home and were followed for six months. Albuminemia was measured at D0, D21, D90 and D180. At baseline, PI was spontaneously 1.0 g/kg/day for both groups. Albuminemia was 40.6 g/l for NPI and 40.8 g/l for HPI. A marginal protein under-nutrition appeared in NPI with a decreased albuminemia at D90 below 35 g/l (34.3 versus 41.5 g/l for HPI, p treatment based on restricted diet and exercise in senior people with metabolic syndrome, the lower threshold intake for protein must be set at 1.2 g/kg/day to maintain blood protein homeostasis.

  14. Oral health status in patients with diabetes mellitus type 2 in relation to metabolic control of the disease

    Directory of Open Access Journals (Sweden)

    Stojanović Nikola

    2010-01-01

    Full Text Available Introduction. As a systemic disease, diabetes mellitus may lead to several complications affecting both the quality and the length of life. While periodontal disease is one of the major oral health problems in patients with diabetes, reports of an increased risk of dental caries among diabetics are controversial. Objective. The aim of this study was to investigate oral health status in patients with diabetes mellitus type 2 in relation to metabolic control of the disease. Methods. The study included 47 randomly sampled diabetics patients, divided into two groups; those with poorly controlled diabetes (glycosylated haemoglobin - HbA1c ≥9% and those with better controlled diabetes (HbA1c<9%. All patients completed a questionnaire about their medical and oral health. Decayed, missing, and filled teeth (DMFT and plaque index (PI, bleeding on probing (BOP, probing pocket depth (PPD and clinical attachment loss (CAL were recorded. Results. The patients with poorly controlled diabetes had a significantly higher number of tooth caries compared to those with better controlled diabetes (6.5±4.3 vs. 4.3±2.9; p<0.05. Of periodontal parameters, only PPD was significantly higher in the patients with poorly controlled diabetes than in those with better controlled diabetes (5.8±0.9 vs. 5.2±0.8; p<0.05. DMFT index, PI, PPD and CAL exhibited positive correlation only with patients' age. Conclusion. The study indicates that there is a relationship between poor control of diabetes and caries, and periodontal disease.

  15. Clinical study on the prevalence and comparative analysis of metabolic syndrome and its components among Chinese breast cancer women and control population.

    Science.gov (United States)

    Wu, Yu-Tuan; Luo, Qing-Qing; Li, Xin; Arshad, Bilal; Xu, Zhou; Ran, Liang; Zhao, Chun-Xia; Wu, He; Shi, Yan-Ling; Chen, Hao-Ran; Li, Hao; Li, Hong-Yuan; Wu, Kai-Nan; Kong, Ling-Quan

    2018-01-01

    Metabolic syndrome has been previously identified as a risk factor for breast cancer and is increasingly a public health concern. This study aims to investigate the prevalence of metabolic syndrome and its components among primary breast cancer and control population. The clinical data of metabolic syndrome and its components in the breast cancer (605 cases) and control population (3212 cases), from Breast Cancer Center and Physical Examination Center of Chongqing, China, from July 2015 to February 2017, were collected for comparative analysis. This study was prospectively registered in Chinese Clinical Trial Registry (http://www.chictr.org.cn/, number: ChiCTR-OOB-15007543). The prevalence of metabolic syndrome in breast cancer (32.6%) was obviously higher than that in control population (18.2%) (pmetabolic syndrome in breast cancer group aged below 60 years (24.9%, pmetabolic syndrome and its components in Chinese breast cancer women, and metabolic syndrome is closely related with breast cancer. Therefore, screening and prevention strategy of metabolic syndrome should be carried out in the management of breast cancer.

  16. Combined treatment with melatonin and insulin improves glycemic control, white adipose tissue metabolism and reproductive axis of diabetic male rats.

    Science.gov (United States)

    Oliveira, Ariclecio Cunha de; Andreotti, Sandra; Sertie, Rogério António Laurato; Campana, Amanda Baron; de Proença, André Ricardo Gomes; Vasconcelos, Renata Prado; Oliveira, Keciany Alves de; Coelho-de-Souza, Andrelina Noronha; Donato-Junior, José; Lima, Fábio Bessa

    2018-04-15

    Melatonin treatment has been reported to be capable of ameliorating metabolic diabetes-related abnormalities but also to cause hypogonadism in rats. We investigated whether the combined treatment with melatonin and insulin can improve insulin resistance and other metabolic disorders in rats with streptozotocin-induced diabetes during neonatal period and the repercussion of this treatment on the hypothalamic-pituitary-gonadal axis. At the fourth week of age, diabetic animals started an 8-wk treatment with only melatonin (0.2 mg/kg body weight) added to drinking water at night or associated with insulin (NHP, 1.5 U/100 g/day) or only insulin. Animals were then euthanized, and the subcutaneous (SC), epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Hypothalamus was collected for gene expression and blood samples were collected for biochemical assays. The treatment with melatonin plus insulin (MI) was capable of maintaining glycemic control. In epididymal (EP) and subcutaneous (SC) adipocytes, the melatonin plus insulin (MI) treatment group recovered the insulin responsiveness. In the hypothalamus, melatonin treatment alone promoted a significant reduction in kisspeptin-1, neurokinin B and androgen receptor mRNA levels, in relation to control group. Combined treatment with melatonin and insulin promoted a better glycemic control, improving insulin sensitivity in white adipose tissue (WAT). Indeed, melatonin treatment reduced hypothalamic genes related to reproductive function. Copyright © 2017. Published by Elsevier Inc.

  17. [An analysis of the diabetic population in a Spanish rural are: morbidity profile, use of resources, complications and metabolic control].

    Science.gov (United States)

    Inoriza, José M; Pérez, Marc; Cols, Montse; Sánchez, Inma; Carreras, Marc; Coderch, Jordi

    2013-11-01

    To describe the characteristics of a diabetic population, morbidity profile, resource consumption, complications and degree of metabolic control. Cross-sectional study during 2010. Four Health Areas (91.301 people) where the integrated management organization Serveis de Salut integrated Baix Empordà completely provide healthcare assistance. 4.985 diabetic individuals, identified through clinical codes using the ICD-9-MC classification and the 3M? Clinical Risk Groups software. Morbidity profile, related complications and degree of metabolic control were obtained for the target diabetic population. We analyzed the consumption of healthcare resources, pharmaceutical and blood glucose reagent strips. All measurements obtained at individual level. 99.3% of the diabetic population were attended at least once at a primary care center (14.9% of visits). 39.5% of primary care visits and less than 10% of the other scanned resources were related to the management of diabetes. The pharmaceutical expenditure was 25.4% of the population consumption (average cost ?1.014,57). 36.5% of diabetics consumed reagents strips (average cost ?120,65). The more frequent CRG are 5424-Diabetes (27%); 6144-Diabetes and Hypertension (25,5%) and 6143-Diabetes and Other Moderate Chronic Disease (17,2%). The degree of disease control is better in patients not consumers of antidiabetic drugs or treated with oral antidiabetic agents not secretagogues. Comorbidity is decisive in the consumption of resources. Just a few part of this consumption is specifically related to the management of diabetes. Results obtained provide a whole population approach to the main existing studies in our national and regional context. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  18. Treatment of depression in type 2 diabetic patients: effects on depressive symptoms, quality of life and metabolic control.

    Science.gov (United States)

    Nicolau, Joana; Rivera, Rosmeri; Francés, Carla; Chacártegui, Begoña; Masmiquel, Lluís

    2013-08-01

    Type 2 diabetes (T2DM) almost doubles the risk of comorbid depression, with lifetime prevalence up to 29%. Recognition and treatment of depression in T2DM are important because of its association with hyperglycemia, diabetic complications and poor quality of life (QoL). However, although currently available medical therapy for depression is effective in reducing depressive symptoms, it does not consistently improve HbA1c levels. The aim of this study was to determine the effects of antidepressant therapy on depressive symptoms, health-related QoL and metabolic control in T2DM. 48 T2DM (47.8% males, age 59.8 ± 11.1, T2DM duration 9.5 ± 6.5 years) who had a major depressive disorder diagnosed with a Beck Depression Inventory (BDI) test score greater than 16 and confirmed with a structured interview, were prescribed citalopram 20mg once daily. 10 out of 48 refused the prescription and were used as controls. BDI score, BMI, HbA1c and the Spanish version of the SF-36 Health Survey were recorded baseline and after 6 months of treatment. Sociodemographic characteristics, complications related to T2DM and comorbidities were also recorded. No differences in baseline characteristics were observed between the two groups. When compared with the untreated group (n=10), patients treated with citalopram (n=38) showed significant improvements in BDI score and in almost all areas of quality of life, except in general health and bodily pain. No differences in HbA1c, waist circumference or BMI were found. Treating depressive symptoms with medical therapy in T2DM is associated with improvements in QoL and depression, but with no improvement in metabolic control or weight. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Effects of testosterone treatment on glucose metabolism and symptoms in men with type 2 diabetes and the metabolic syndrome: a systematic review and meta-analysis of randomized controlled clinical trials.

    Science.gov (United States)

    Grossmann, Mathis; Hoermann, Rudolf; Wittert, Gary; Yeap, Bu B

    2015-09-01

    The effects of testosterone treatment on glucose metabolism and other outcomes in men with type 2 diabetes (T2D) and/or the metabolic syndrome are controversial. To perform a systematic review and meta-analysis of placebo-controlled double-blind randomized controlled clinical trials (RCT) of testosterone treatment in men with T2D and/or the metabolic syndrome. A systematic search of RCTs was conducted using Medline, Embase and the Cochrane Register of controlled trials from inception to July 2014 followed by a manual review of the literature. Eligible studies were published placebo-controlled double-blind RCTs published in English. Two reviewers independently selected studies, determined study quality and extracted outcome and descriptive data. Of the 112 identified studies, seven RCTs including 833 men were eligible for the meta-analysis. In studies using a simple linear equation to calculate the homeostatic model assessment of insulin resistance (HOMA1), testosterone treatment modestly improved insulin resistance, compared to placebo, pooled mean difference (MD) -1·58 [-2·25, -0·91], P treatment effect was nonsignificant for RCTs using a more stringent computer-based equation (HOMA2), MD -0·19 [-0·86, 0·49], P = 0·58). Testosterone treatment did not improve glycaemic (HbA1c) control, MD -0·15 [-0·39, 0·10], P = 0·25, or constitutional symptoms, Aging Male Symptom score, MD -2·49 [-5·81, 0·83], P = 0·14). This meta-analysis does not support the routine use of testosterone treatment in men with T2D and/or the metabolic syndrome without classical hypogonadism. Additional studies are needed to determine whether hormonal interventions are warranted in selected men with T2D and/or the metabolic syndrome. © 2014 John Wiley & Sons Ltd.

  20. Analysis of the impact of environmental and social factors, with a particular emphasis on education, on the level of metabolic control in type 1 diabetes in children.

    Science.gov (United States)

    Stefanowicz, Anna; Birkholz, Dorota; Myśliwiec, Małgorzata; Niedźwiecki, Maciej; Owczuk, Radosław; Balcerska, Anna

    2012-01-01

    Type 1 diabetes is a chronic, incurable childhood disease. Chronically uncontrolled diabetes is associated with eye, kidney, nerve, heart and blood vessel damage and function impairment. The aim of this study was to evaluate the impact of various social and environmental factors, with a particular emphasis on education, on the level of metabolic control in diabetes. The survey research was conducted in 102 children aged 0-18 years, diagnosed with type 1 diabetes. Based on the HbA(1c ) level, patients were divided into: group A (63 patients with fairly well and moderately controlled type 1 diabetes mellitus) and group B (39 patients with metabolically uncontrolled type 1 diabetes mellitus). The impact of various environmental and social factors on the degree of metabolic control of type 1 diabetes was analysed. No effect of typical environmental and social factors, such as: place of residence, gender, parents' education and their professional activity, on the level of metabolic control of type 1 diabetes was found. However, groups A and B significantly differed in the level of knowledge about diabetes and its treatment, in the regularity of meals, in possessing a nutrition scale and in the self-assessed preparation for taking care and custody of a child with type 1 diabetes. 1. Children with type 1 diabetes and their parents require ongoing education about the disease and its treatment. 2. The regularity of meals and the use of a nutrition scale have considerable impact on the level of metabolic control of the disease.