WorldWideScience

Sample records for striatum frontal cortex

  1. [Neuroanatomy of Frontal Association Cortex].

    Science.gov (United States)

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  2. Metabolism of glucose in brain of patients with Parkinson's disease. Studies on /sup 11/C-glucose metabolism in the striatum and cerebral cortex during medication or interruption of medication by positron emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, Fuji; Ando, Kazuya; Iio, Masaaki

    1984-12-01

    We examined /sup 11/C accumulation by positron emission computed tomography in the region of interest (ROI) in the brain of 8 patients with Parkinson's disease and 5 normal controls when administered with /sup 11/C-Glucose (per os). /sup 11/C-Glucose was prepared from /sup 11/CO/sub 2/ by photosynthesis. 1) No significant difference was observed in the /sup 11/C accumulation in the striatum and cerebral cortex (frontal cortex, temporal cortex and occipital cortex) in 4 patients with Parkinson's disease between continuous medication and 7--10 day interruption of medication. 2) No difference was observed in the /sup 11/C accumulation in the striatum and cerebral cortex between 8 patients with Parkinson's disease and 5 normal controls. (author).

  3. Better without (lateral) frontal cortex? Insight problems solved by frontal patients.

    Science.gov (United States)

    Reverberi, Carlo; Toraldo, Alessio; D'Agostini, Serena; Skrap, Miran

    2005-12-01

    A recently proposed theory on frontal lobe functions claims that the prefrontal cortex, particularly its dorso-lateral aspect, is crucial in defining a set of responses suitable for a particular task, and biasing these for selection. This activity is carried out for virtually any kind of non-routine tasks, without distinction of content. The aim of this study is to test the prediction of Frith's 'sculpting the response space' hypothesis by means of an 'insight' problem-solving task, namely the matchstick arithmetic task. Starting from Knoblich et al.'s interpretation for the failure of healthy controls to solve the matchstick problem, and Frith's theory on the role of dorsolateral frontal cortex, we derived the counterintuitive prediction that patients with focal damage to the lateral frontal cortex should perform better than a group of healthy participants on this rather difficult task. We administered the matchstick task to 35 patients (aged 26-65 years) with a single focal brain lesion as determined by a CT or an MRI scan, and to 23 healthy participants (aged 34-62 years). The findings seemed in line with theoretical predictions. While only 43% of healthy participants could solve the most difficult matchstick problems ('type C'), 82% of lateral frontal patients did so (Fisher's exact test, P < 0.05). In conclusion, the combination of Frith's and Knoblich et al.'s theories was corroborated.

  4. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players.

    Science.gov (United States)

    Xu, Huan; Wang, Pin; Ye, Zhuo'er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus

  5. Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion

    NARCIS (Netherlands)

    Cohen, M.X.; Ridderinkhof, K.R.; Haupt, S.; Elger, C.E.; Fell, J.

    2008-01-01

    The medial frontal cortex (MFC) has been implicated in the monitoring and selection of actions in the face of competing alternatives, but much remains unknown about its functional properties, including electrophysiological oscillations, during response conflict tasks. Here, we recorded intracranial

  6. Right inferior frontal cortex activity correlates with tolcapone responsivity in problem and pathological gamblers

    Directory of Open Access Journals (Sweden)

    Andrew S. Kayser

    2017-01-01

    Full Text Available Failures of self-regulation in problem and pathological gambling (PPG are thought to emerge from failures of top-down control, reflected neurophysiologically in a reduced capacity of prefrontal cortex to influence activity within subcortical structures. In patients with addictions, these impairments have been argued to alter evaluation of reward within dopaminergic neuromodulatory systems. Previously we demonstrated that augmenting dopamine tone in frontal cortex via use of tolcapone, an inhibitor of the dopamine-degrading enzyme catechol-O-methyltransferase (COMT, reduced delay discounting, a measure of impulsivity, in healthy subjects. To evaluate this potentially translational approach to augmenting prefrontal inhibitory control, here we hypothesized that increasing cortical dopamine tone would reduce delay discounting in PPG subjects in proportion to its ability to augment top-down control. To causally test this hypothesis, we administered the COMT inhibitor tolcapone in a randomized, double-blind, placebo-controlled, within-subject study of 17 PPG subjects who performed a delay discounting task while functional MRI images were obtained. In this subject population, we found that greater BOLD activity during the placebo condition within the right inferior frontal cortex (RIFC, a region thought to be important for inhibitory control, correlated with greater declines in impulsivity on tolcapone versus placebo. Intriguingly, connectivity between RIFC and the right striatum, and not the level of activity within RIFC itself, increased on tolcapone versus placebo. Together, these findings support the hypothesis that tolcapone-mediated increases in top-down control may reduce impulsivity in PPG subjects, a finding with potential translational relevance for gambling disorders, and for behavioral addictions in general.

  7. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players

    Science.gov (United States)

    Xu, Huan; Wang, Pin; Ye, Zhuo’er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus

  8. Distinct changes in CREB phosphorylation in frontal cortex and striatum during contingent and non-contingent performance of a visual attention task

    Directory of Open Access Journals (Sweden)

    Mirjana eCarli

    2011-10-01

    Full Text Available The cyclic-AMP response element binding protein (CREB family of transcription factors has been implicated in numerous forms of behavioural plasticity. We investigated CREB phosphorylation along some nodes of corticostriatal circuitry such as frontal cortex (FC and dorsal (caudate putamen, CPu and ventral (nucleus accumbens, NAC striatum in response to the contingent or non-contingent performance of the five-choice serial reaction time task (5-CSRTT used to assess visuospatial attention. Three experimental manipulations were used; an attentional performance group (contingent, master, a group trained previously on the task but for whom the instrumental contingency coupling responding with stimulus detection and reward was abolished (non-contingent, yoked and a control group matched for food deprivation and exposure to the test apparatus (untrained. Rats trained on the 5-CSRTT (both master and yoked had higher levels of CREB protein in the FC, CPu and NAC compared to untrained controls. Despite the divergent behaviour of master and yoked rats CREB activity in the FC was not substantially different. In rats performing the 5-CSRTT (master, CREB activity was completely abolished in the CPu whereas in the NAC it remained unchanged. In contrast, CREB phosphorylation in CPu and NAC increased only when the contingency changed from goal-dependent to goal-independent reinforcement (yoked. The present results indicate that up-regulation of CREB protein expression across cortical and striatal regions possibly reflects the extensive instrumental learning and performance whereas increased CREB activity in striatal regions may signal the unexpected change in the relationship between instrumental action and reinforcement.

  9. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex.

    Science.gov (United States)

    Deen, Ben; Saxe, Rebecca; Bedny, Marina

    2015-08-01

    In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.

  10. Lateral frontal cortex volume reduction in Tourette syndrome revealed by VBM

    Directory of Open Access Journals (Sweden)

    Wittfoth Matthias

    2012-02-01

    Full Text Available Abstract Background Structural changes have been found predominantly in the frontal cortex and in the striatum in children and adolescents with Gilles de la Tourette syndrome (GTS. The influence of comorbid symptomatology is unclear. Here we sought to address the question of gray matter abnormalities in GTS patients with co-morbid obsessive-compulsive disorder (OCD and/or attention deficit hyperactivity disorder (ADHD using voxel-based morphometry (VBM in twenty-nine adult actually unmedicated GTS patients and twenty-five healthy control subjects. Results In GTS we detected a cluster of decreased gray matter volume in the left inferior frontal gyrus (IFG, but no regions demonstrating volume increases. By comparing subgroups of GTS with comorbid ADHD to the subgroup with comorbid OCD, we found a left-sided amygdalar volume increase. Conclusions From our results it is suggested that the left IFG may constitute a common underlying structural correlate of GTS with co-morbid OCD/ADHD. A volume reduction in this brain region that has been previously identified as a key region in OCD and was associated with the active inhibition of attentional processes may reflect the failure to control behavior. Amygdala volume increase is discussed on the background of a linkage of this structure with ADHD symptomatology. Correlations with clinical data revealed gray matter volume changes in specific brain areas that have been described in these conditions each.

  11. Endoplasmic reticulum stress responses differ in meninges and associated vasculature, striatum, and parietal cortex after a neurotoxic amphetamine exposure.

    Science.gov (United States)

    Thomas, Monzy; George, Nysia I; Saini, Upasana T; Patterson, Tucker A; Hanig, Joseph P; Bowyer, John F

    2010-08-01

    Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.

  12. Comparative Proteomic Analysis of Carbonylated Proteins from the Striatum and Cortex of Pesticide-Treated Mice

    Directory of Open Access Journals (Sweden)

    Christina Coughlan

    2015-01-01

    Full Text Available Epidemiological studies indicate exposures to the herbicide paraquat (PQ and fungicide maneb (MB are associated with increased risk of Parkinson’s disease (PD. Oxidative stress appears to be a premier mechanism that underlies damage to the nigrostriatal dopamine system in PD and pesticide exposure. Enhanced oxidative stress leads to lipid peroxidation and production of reactive aldehydes; therefore, we conducted proteomic analyses to identify carbonylated proteins in the striatum and cortex of pesticide-treated mice in order to elucidate possible mechanisms of toxicity. Male C57BL/6J mice were treated biweekly for 6 weeks with saline, PQ (10 mg/kg, MB (30 mg/kg, or the combination of PQ and MB (PQMB. Treatments resulted in significant behavioral alterations in all treated mice and depleted striatal dopamine in PQMB mice. Distinct differences in 4-hydroxynonenal-modified proteins were observed in the striatum and cortex. Proteomic analyses identified carbonylated proteins and peptides from the cortex and striatum, and pathway analyses revealed significant enrichment in a variety of KEGG pathways. Further analysis showed enrichment in proteins of the actin cytoskeleton in treated samples, but not in saline controls. These data indicate that treatment-related effects on cytoskeletal proteins could alter proper synaptic function, thereby resulting in impaired neuronal function and even neurodegeneration.

  13. Responses of primate frontal cortex neurons during natural vocal communication.

    Science.gov (United States)

    Miller, Cory T; Thomas, A Wren; Nummela, Samuel U; de la Mothe, Lisa A

    2015-08-01

    The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors. Copyright © 2015 the American Physiological Society.

  14. Effects of electroacupuncture on metabolic changes in motor cortex and striatum of 6-hydroxydopamine-induced Parkinsonian rats.

    Science.gov (United States)

    Li, Min; Wang, Ke; Su, Wen-Ting; Jia, Jun; Wang, Xiao-Min

    2017-10-06

    To explore the possible underlying mechanism by investigating the effect of electroacupuncture (EA) treatment on the primary motor cortex and striatum in a unilateral 6-hydroxydopamine (6-OHDA) induced rat Parkinson's disease (PD) model. Male Sprague-Dawley rats were randomly divided into sham group (n=16), model group (n=14), and EA group (n=14). EA stimulation at Dazhui (GV 14) and Baihui (GV20) was applied to PD rats in the EA group for 4 weeks. Behavioral tests were conducted to evaluate the effectiveness of EA treatment. Metabolites were detected by 7.0 T proton nuclear magnetic resonance. Following 4 weeks of EA treatment in PD model rats, the abnormal behavioral impairment induced by 6-OHDA was alleviated. In monitoring changes in metabolic activity, ratios of myoinositol/creatine (Cr) and N-acetyl aspartate (NAA)/Cr in the primary motor cortex were significantly lower at the injected side than the non-injected side in PD rats (P=0.024 and 0.020). The ratios of glutamate + glutamine (Glx)/Cr and NAA/Cr in the striatum were higher and lower, respectively, at the injected side than the non-injected side (P=0.046 and 0.008). EA treatment restored the balance of metabolic activity in the primary motor cortex and striatum. In addition, the taurine/Cr ratio and Glx/Cr ratio were elevated in the striatum of PD model rats compared to sham-lesioned rats (P=0.026 and 0.000). EA treatment alleviated the excessive glutamatergic transmission by down-regulating the striatal Glx/Cr ratio (P=0.001). The Glx/Cr ratio was negatively correlated with floor plane spontaneous locomotion in PD rats (P=0.027 and P=0.0007). EA treatment is able to normalize the metabolic balance in the primary motor cortex and striatum of PD rats, which may contribute to its therapeutic effect on motor deficits. The striatal Glx/Cr ratio may serve as a potential indicator of PD and a therapeutic target of EA treatment.

  15. The frontal-anatomic specificity of design fluency repetitions and their diagnostic relevance for behavioral variant frontotemporal dementia.

    Science.gov (United States)

    Possin, Katherine L; Chester, Serana K; Laluz, Victor; Bostrom, Alan; Rosen, Howard J; Miller, Bruce L; Kramer, Joel H

    2012-09-01

    On tests of design fluency, an examinee draws as many different designs as possible in a specified time limit while avoiding repetition. The neuroanatomical substrates and diagnostic group differences of design fluency repetition errors and total correct scores were examined in 110 individuals diagnosed with dementia, 53 with mild cognitive impairment (MCI), and 37 neurologically healthy controls. The errors correlated significantly with volumes in the right and left orbitofrontal cortex (OFC), the right and left superior frontal gyrus, the right inferior frontal gyrus, and the right striatum, but did not correlate with volumes in any parietal or temporal lobe regions. Regression analyses indicated that the lateral OFC may be particularly crucial for preventing these errors, even after excluding patients with behavioral variant frontotemporal dementia (bvFTD) from the analysis. Total correct correlated more diffusely with volumes in the right and left frontal and parietal cortex, the right temporal cortex, and the right striatum and thalamus. Patients diagnosed with bvFTD made significantly more repetition errors than patients diagnosed with MCI, Alzheimer's disease, semantic dementia, progressive supranuclear palsy, or corticobasal syndrome. In contrast, total correct design scores did not differentiate the dementia patients. These results highlight the frontal-anatomic specificity of design fluency repetitions. In addition, the results indicate that the propensity to make these errors supports the diagnosis of bvFTD. (JINS, 2012, 18, 1-11).

  16. Fetal frontal cortex transplant (14C) 2-deoxyglucose uptake and histology: survival in cavities of host rat brain motor cortex

    International Nuclear Information System (INIS)

    Sharp, F.R.; Gonzalez, M.F.

    1984-01-01

    Fetal frontal neocortex from 18-day-old rat embryonic brain was transplanted into cavities in 30-day-old host motor cortex. Sixty days after transplantation, 5 of 15 transplanted rats had surviving fetal transplants. The fetal cortex transplants were physically attached to the host brain, completely filled the original cavity, and had numerous surviving cells including pyramidal neurons. Cell lamination within the fetal transplant was abnormal. The ( 14 C) 2-deoxyglucose uptake of all five of the fetal neocortex transplants was less than adjacent cortex and contralateral host motor-sensory cortex, but more than adjacent corpus callosum white matter. The results indicate that fetal frontal neocortex can be transplanted into damaged rat motor cortex. The metabolic rate of the transplants suggests they could be partially functional

  17. Different involvement of medial prefrontal cortex and dorso-lateral striatum in automatic and controlled processing of a future conditioned stimulus.

    Science.gov (United States)

    Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M; López, Juan Carlos

    2017-01-01

    Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex.

  18. Learning a New Selection Rule in Visual and Frontal Cortex.

    Science.gov (United States)

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R

    2016-08-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.

  19. Frontal glutamate and reward processing in adolescence and adulthood.

    Science.gov (United States)

    Gleich, Tobias; Lorenz, Robert C; Pöhland, Lydia; Raufelder, Diana; Deserno, Lorenz; Beck, Anne; Heinz, Andreas; Kühn, Simone; Gallinat, Jürgen

    2015-11-01

    The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top-down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood.

  20. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    International Nuclear Information System (INIS)

    Petrides, M.; Pandya, D.N.

    1988-01-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus

  1. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey.

    Science.gov (United States)

    Petrides, M; Pandya, D N

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  2. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Petrides, M.; Pandya, D.N.

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  3. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  4. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25±2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% ± 1.3% and 10.6% ± 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% ± 4.5% vs. 6.6% ± 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release

  5. Acute effects of three club drugs on the striatum of rats: Evaluation by quantitative autoradiography with [18F]FDOPA

    International Nuclear Information System (INIS)

    Fang, Chun-Kai; Chen, Hong-Wen; Wang, Wei-Hsun; Liu, Ren-Shen; Hwang, Jeng-Jong

    2013-01-01

    In this work, we used quantitative autoradiography to study the acute effect of cocaine, methamphetamine, and ketamine on the uptake of [ 18 F]FDOPA in the striatum of rats. Drugs were treated 0.5 h before (pre-treated), and 1.5 h after (post-treated) [ 18 F]FDOPA injections, rats were then sacrificed at 2 h post [ 18 F]FDOPA injections to determine the striatum/frontal cortex binding ratios in the striatum. The ratios were lower in the post-treated groups than those of the pre-treated groups, suggesting a net effect of inhibition of trapping of the tracer. The order of uptake inhibition is: ketamine>methamphetamine>cocaine

  6. Brain networks of social action-outcome contingency: The role of the ventral striatum in integrating signals from the sensory cortex and medial prefrontal cortex.

    Science.gov (United States)

    Sumiya, Motofumi; Koike, Takahiko; Okazaki, Shuntaro; Kitada, Ryo; Sadato, Norihiro

    2017-10-01

    Social interactions can be facilitated by action-outcome contingency, in which self-actions result in relevant responses from others. Research has indicated that the striatal reward system plays a role in generating action-outcome contingency signals. However, the neural mechanisms wherein signals regarding self-action and others' responses are integrated to generate the contingency signal remain poorly understood. We conducted a functional MRI study to test the hypothesis that brain activity representing the self modulates connectivity between the striatal reward system and sensory regions involved in the processing of others' responses. We employed a contingency task in which participants made the listener laugh by telling jokes. Participants reported more pleasure when greater laughter followed their own jokes than those of another. Self-relevant listener's responses produced stronger activation in the medial prefrontal cortex (mPFC). Laughter was associated with activity in the auditory cortex. The ventral striatum exhibited stronger activation when participants made listeners laugh than when another did. In physio-physiological interaction analyses, the ventral striatum showed interaction effects for signals extracted from the mPFC and auditory cortex. These results support the hypothesis that the mPFC, which is implicated in self-related processing, gates sensory input associated with others' responses during value processing in the ventral striatum. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision.

    Science.gov (United States)

    de Graaf, Tom A; de Jong, Maartje C; Goebel, Rainer; van Ee, Raymond; Sack, Alexander T

    2011-10-01

    In bistable vision, one constant ambiguous stimulus leads to 2 alternating conscious percepts. This perceptual switching occurs spontaneously but can also be influenced through voluntary control. Neuroimaging studies have reported that frontal regions are activated during spontaneous perceptual switches, leading some researchers to suggest that frontal regions causally induce perceptual switches. But the opposite also seems possible: frontal activations may themselves be caused by spontaneous switches. Classically implicated in attentional processes, these same regions are also candidates for the origins of voluntary control over bistable vision. Here too, it remains unknown whether frontal cortex is actually functionally relevant. It is even possible that spontaneous perceptual switches and voluntarily induced switches are mediated by the same top-down mechanisms. To directly address these issues, we here induced "virtual lesions," with transcranial magnetic stimulation, in frontal, parietal, and 2 lower level visual cortices using an established ambiguous structure-from-motion stimulus. We found that dorsolateral prefrontal cortex was causally relevant for voluntary control over perceptual switches. In contrast, we failed to find any evidence for an active role of frontal cortex in passive bistable vision. Thus, it seems the same pathway used for willed top-down modulation of bistable vision is not used during passive bistable viewing.

  8. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    Energy Technology Data Exchange (ETDEWEB)

    Esquifino, A.I. [Dept. de Bioquimica y Biologia Molecular III, Universidad Complutense, Madrid (Spain); Seara, R.; Fernandez-Rey, E.; Lafuente, A. [Lab. de Toxicologia, Universidad de Vigo, Orense (Spain)

    2001-05-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  9. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    International Nuclear Information System (INIS)

    Esquifino, A.I.; Seara, R.; Fernandez-Rey, E.; Lafuente, A.

    2001-01-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  10. Modulating phonemic fluency performance in healthy subjects with transcranial magnetic stimulation over the left or right lateral frontal cortex.

    Science.gov (United States)

    Smirni, Daniela; Turriziani, Patrizia; Mangano, Giuseppa Renata; Bracco, Martina; Oliveri, Massimiliano; Cipolotti, Lisa

    2017-07-28

    A growing body of evidence have suggested that non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), can improve the performance of aphasic patients in language tasks. For example, application of inhibitory rTMS or tDCs over the right frontal lobe of dysphasic patients resulted in improved naming abilities. Several studies have also reported that in healthy controls (HC) tDCS application over the left prefrontal cortex (PFC) improve performance in naming and semantic fluency tasks. The aim of this study was to investigate in HC, for the first time, the effects of inhibitory repetitive TMS (rTMS) over left and right lateral frontal cortex (BA 47) on two phonemic fluency tasks (FAS or FPL). 44 right-handed HCs were administered rTMS or sham over the left or right lateral frontal cortex in two separate testing sessions, with a 24h interval, followed by the two phonemic fluency tasks. To account for possible practice effects, an additional 22 HCs were tested on only the phonemic fluency task across two sessions with no stimulation. We found that rTMS-inhibition over the left lateral frontal cortex significantly worsened phonemic fluency performance when compared to sham. In contrast, rTMS-inhibition over the right lateral frontal cortex significantly improved phonemic fluency performance when compared to sham. These results were not accounted for practice effects. We speculated that rTMS over the right lateral frontal cortex may induce plastic neural changes to the left lateral frontal cortex by suppressing interhemispheric inhibitory interactions. This resulted in an increased excitability (disinhibition) of the contralateral unstimulated left lateral frontal cortex, consequently enhancing phonemic fluency performance. Conversely, application of rTMS over the left lateral frontal cortex may induce a temporary, virtual lesion, with effects similar to those reported in left frontal

  11. Influence of motivation on control hierarchy in the human frontal cortex.

    Science.gov (United States)

    Bahlmann, Jörg; Aarts, Esther; D'Esposito, Mark

    2015-02-18

    The frontal cortex mediates cognitive control and motivation to shape human behavior. It is generally observed that medial frontal areas are involved in motivational aspects of behavior, whereas lateral frontal regions are involved in cognitive control. Recent models of cognitive control suggest a rostro-caudal gradient in lateral frontal regions, such that progressively more rostral (anterior) regions process more complex aspects of cognitive control. How motivation influences such a control hierarchy is still under debate. Although some researchers argue that both systems work in parallel, others argue in favor of an interaction between motivation and cognitive control. In the latter case it is yet unclear how motivation would affect the different levels of the control hierarchy. This was investigated in the present functional MRI study applying different levels of cognitive control under different motivational states (low vs high reward anticipation). Three levels of cognitive control were tested by varying rule complexity: stimulus-response mapping (low-level), flexible task updating (mid-level), and sustained cue-task associations (high-level). We found an interaction between levels of cognitive control and motivation in medial and lateral frontal subregions. Specifically, flexible updating (mid-level of control) showed the strongest beneficial effect of reward and only this level exhibited functional coupling between dopamine-rich midbrain regions and the lateral frontal cortex. These findings suggest that motivation differentially affects the levels of a control hierarchy, influencing recruitment of frontal cortical control regions depending on specific task demands. Copyright © 2015 the authors 0270-6474/15/353207-11$15.00/0.

  12. A frontal cortex event-related potential driven by the basal forebrain

    Science.gov (United States)

    Nguyen, David P; Lin, Shih-Chieh

    2014-01-01

    Event-related potentials (ERPs) are widely used in both healthy and neuropsychiatric conditions as physiological indices of cognitive functions. Contrary to the common belief that cognitive ERPs are generated by local activity within the cerebral cortex, here we show that an attention-related ERP in the frontal cortex is correlated with, and likely generated by, subcortical inputs from the basal forebrain (BF). In rats performing an auditory oddball task, both the amplitude and timing of the frontal ERP were coupled with BF neuronal activity in single trials. The local field potentials (LFPs) associated with the frontal ERP, concentrated in deep cortical layers corresponding to the zone of BF input, were similarly coupled with BF activity and consistently triggered by BF electrical stimulation within 5–10 msec. These results highlight the important and previously unrecognized role of long-range subcortical inputs from the BF in the generation of cognitive ERPs. DOI: http://dx.doi.org/10.7554/eLife.02148.001 PMID:24714497

  13. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    Directory of Open Access Journals (Sweden)

    O.A. Olulade

    2015-01-01

    Full Text Available fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA, is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009. Similarly, the left inferior frontal cortex (IFC has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007. Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009. Building on these studies, we here (1 investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2 compare typically reading with dyslexic children, and (3 examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We

  14. Autobiographical memory of the recent past following frontal cortex or temporal lobe excisions.

    Science.gov (United States)

    Thaiss, Laila; Petrides, Michael

    2008-08-01

    Previous research has raised questions regarding the necessity of the frontal cortex in autobiographical memory and the role that it plays in actively retrieving contextual information associated with personally relevant events. Autobiographical memory was studied in patients with unilateral excisions restricted to the frontal cortex or temporal lobe involving the amygdalo-hippocampal region and in normal controls using an event-sampling method. We examined accuracy of free recall, use of strategies during retrieval and memory for specific aspects of the autobiographical events, including temporal order. Patients with temporal lobe excisions were impaired in autobiographical recall. By contrast, patients with frontal cortical excisions exhibited normal autobiographical recall but were less likely to use temporal order spontaneously to organize event retrieval. Instruction to organize retrieval by temporal order failed to improve recall in temporal lobe patients and increased the incidence of plausible intrusion errors in left temporal patients. In contrast, patients with frontal cortical excisions now surpassed control subjects in recall of autobiographical events. Furthermore, the retrieval accuracy for the temporal order of diary events was not impaired in these patients. In a subsequent cued recall test, temporal lobe patients were impaired in their memory for the details of the diary events and their context. In conclusion, a basic impairment in autobiographical memory (including memory for temporal context) results from damage to the temporal lobe and not the frontal cortex. Patients with frontal excisions fail to use organizational strategies spontaneously to aid retrieval but can use these effectively if instructed to do so.

  15. Functional connectivity of the dorsal striatum in female musicians

    Directory of Open Access Journals (Sweden)

    Shoji eTanaka

    2016-04-01

    Full Text Available The dorsal striatum (caudate/putamen is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians.Resting state functional magnetic resonance imaging (fMRI data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to graph theoretical analysis and functional connectivity analysis. The graph theoretical analysis of the entire brain revealed that the degree, which represents the number of connections, of the bilateral putamen was significantly lower in musicians than in nonmusicians. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum and between the left caudate nucleus and cerebellum. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum, with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers. To the best of our knowledge, this is the first study suggesting that long-term musical training results in a less extensive or selective functional network of the dorsal striatum.

  16. The threshold for conscious report: Signal loss and response bias in visual and frontal cortex.

    Science.gov (United States)

    van Vugt, Bram; Dagnino, Bruno; Vartak, Devavrat; Safaai, Houman; Panzeri, Stefano; Dehaene, Stanislas; Roelfsema, Pieter R

    2018-05-04

    Why are some visual stimuli consciously detected, whereas others remain subliminal? We investigated the fate of weak visual stimuli in the visual and frontal cortex of awake monkeys trained to report stimulus presence. Reported stimuli were associated with strong sustained activity in the frontal cortex, and frontal activity was weaker and quickly decayed for unreported stimuli. Information about weak stimuli could be lost at successive stages en route from the visual to the frontal cortex, and these propagation failures were confirmed through microstimulation of area V1. Fluctuations in response bias and sensitivity during perception of identical stimuli were traced back to prestimulus brain-state markers. A model in which stimuli become consciously reportable when they elicit a nonlinear ignition process in higher cortical areas explained our results. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Contralateral Disconnection of the Rat Prelimbic Cortex and Dorsomedial Striatum Impairs Cue-Guided Behavioral Switching

    Science.gov (United States)

    Baker, Phillip M.; Ragozzino, Michael E.

    2014-01-01

    Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for…

  18. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression.

    Science.gov (United States)

    Rajkumar, Ramamoorthy; Dawe, Gavin S

    2018-04-07

    Olfactory bulbectomy (OBX) has been used as a model of depression over several decades. This model presupposes a mechanism that is still not proven in clinical depression. A wealth of clinical literature has focused on the derangements in frontal cortex (prefrontal, orbitofrontal and anterior cingulate cortices) associated with depression. In this comprehensive review, anatomical, electrophysiological and molecular sequelae of bulbectomy in the rodent frontal cortex are explored and compared with findings on brains of humans with major depression. Certain commonalities in neurobiological features of the perturbed frontal cortex in the bulbectomised rodent and the depressed human brain are evident. Also, meta-analysis reports on clinical studies on depressed patients provide prima facie evidence that perturbations in the frontal cortex are associated with major depression. Analysing the pattern of perturbations in the chemical neuroanatomy of the frontal cortex will contribute to understanding of the neurobiology of depression. Revisiting the OBX model of depression to examine these neurobiological changes in frontal cortex with contemporary imaging, proteomics, lipidomics, metabolomics and epigenomics technologies is proposed as an approach to enhance the translational value of this animal model to facilitate identification of targets and biomarkers for clinical depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Bilateral lesions of the medial frontal cortex disrupt recognition of social hierarchy during antiphonal communication in naked mole-rats (Heterocephalus glaber).

    Science.gov (United States)

    Yosida, Shigeto; Okanoya, Kazuo

    2012-02-01

    Generation of the motor patterns of emotional sounds in mammals occurs in the periaqueductal gray matter of the midbrain and is not directly controlled by the cortex. The medial frontal cortex indirectly controls vocalizations, based on the recognition of social context. We examined whether the medial frontal cortex was responsible for antiphonal vocalization, or turn-taking, in naked mole-rats. In normal turn-taking, naked mole-rats vocalize more frequently to dominant individuals than to subordinate ones. Bilateral lesions of the medial frontal cortex disrupted differentiation of call rates to the stimulus animals, which had varied social relationships to the subject. However, medial frontal cortex lesions did not affect either the acoustic properties of the vocalizations or the timing of the vocal exchanges. This suggests that the medial frontal cortex may be involved in social cognition or decision making during turn-taking, while other regions of the brain regulate when animals vocalize and the vocalizations themselves.

  20. The rat frontal cortex serotonin receptors. Influence of supraletal irradiation

    International Nuclear Information System (INIS)

    Chanez, P.O.; Timmermans, R.; Gerber, G.B.

    1984-01-01

    The density of the frontal cortex serotonin-2 receptors was determined after a supralethal irradiation (20 Gy) in Wistar rat. Using spiperone as ligand, we observed an important decrease in the density of serotonin-2 receptor and an increase in the dissociation constant receptor-ligand, 3 days after exposure [fr

  1. Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice

    Directory of Open Access Journals (Sweden)

    Jianing Yu

    2008-12-01

    Full Text Available Layer 5 pyramidal neurons comprise an important but heterogeneous group of cortical projection neurons. In motor-frontal cortex, these neurons are centrally involved in the cortical control of movement. Recent studies indicate that local excitatory networks in mouse motor-frontal cortex are dominated by descending pathways from layer 2/3 to 5. However, those pathways were identified in experiments involving unlabeled neurons in wild type mice. Here, to explore the possibility of class-specific connectivity in this descending pathway, we mapped the local sources of excitatory synaptic input to a genetically labeled population of cortical neurons: YFP-positive layer 5 neurons of YFP-H mice. We found, first, that in motor cortex, YFP-positive neurons were distributed in a double blade, consistent with the idea of layer 5B having greater thickness in frontal neocortex. Second, whereas unlabeled neurons in upper layer 5 received their strongest inputs from layer 2, YFP-positive neurons in the upper blade received prominent layer 3 inputs. Third, YFP-positive neurons exhibited distinct electrophysiological properties, including low spike frequency adaptation, as reported previously. Our results with this genetically labeled neuronal population indicate the presence of distinct local-circuit phenotypes among layer 5 pyramidal neurons in mouse motor-frontal cortex, and present a paradigm for investigating local circuit organization in other genetically labeled populations of cortical neurons.

  2. Grammatical distinctions in the left frontal cortex.

    Science.gov (United States)

    Shapiro, K A; Pascual-Leone, A; Mottaghy, F M; Gangitano, M; Caramazza, A

    2001-08-15

    Selective deficits in producing verbs relative to nouns in speech are well documented in neuropsychology and have been associated with left hemisphere frontal cortical lesions resulting from stroke and other neurological disorders. The basis for these impairments is unresolved: Do they arise because of differences in the way grammatical categories of words are organized in the brain, or because of differences in the neural representation of actions and objects? We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefrontal cortex and to assess its role in producing nouns and verbs. In one experiment subjects generated real words; in a second, they produced pseudowords as nouns or verbs. In both experiments, response latencies increased for verbs but were unaffected for nouns following rTMS. These results demonstrate that grammatical categories have a neuroanatomical basis and that the left prefrontal cortex is selectively engaged in processing verbs as grammatical objects.

  3. Role of Frontal Cortex in Attentional Capture by Singleton Distractors

    Science.gov (United States)

    de Fockert, Jan W.; Theeuwes, Jan

    2012-01-01

    The role of frontal cortex in selective attention to visual distractors was examined in an attentional capture task in which participants searched for a unique shape in the presence or absence of an additional colour singleton distractor. The presence of the additional singleton was associated with slower behavioural responses to the shape target,…

  4. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    International Nuclear Information System (INIS)

    Kienast, Thorsten; Rapp, Michael; Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias; Wrase, Jana; Heinz, Andreas; Braus, Dieter F.; Smolka, Michael N.; Mann, Karl; Roesch, Frank; Cumming, Paul; Gruender, Gerhard; Bartenstein, Peter

    2008-01-01

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [ 18 F]DOPA for measurements of dopamine synthesis capacity and [ 18 F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [ 18 F]DOPA net influx constant K in app /[ 18 F]DMFP-binding potential (BP N D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  5. Cerebral Oxygenation of the Cortex and Striatum following Normobaric Hyperoxia and Mild Hypoxia in Rats by EPR Oximetry using Multi-Probe Implantable Resonators

    Science.gov (United States)

    Hou, Huagang; Li, Hongbin; Dong, Ruhong; Mupparaju, Sriram; Khan, Nadeem; Swartz, Harold

    2013-01-01

    Multi-site electron paramagnetic resonance (EPR) oximetry, using multi-probe implantable resonators, was used to measure the partial pressure of oxygen (pO2) in the brains of rats following normobaric hyperoxia and mild hypoxia. The cerebral tissue pO2 was measured simultaneously in the cerebral cortex and striatum in the same rats before, during, and after normobaric hyperoxia and mild hypoxia challenges. The baseline mean tissue pO2 values (±SE) were not significantly different between the cortex and striatum. During 30 min of 100% O2 inhalation, a statistically significant increase in tissue pO2 of all four sites was observed, however, the tissue pO2 of the striatum area was significantly higher than in the forelimb area of the cortex. Brain pO2 significantly decreased from the baseline value during 15 min of 15% O2 challenge. No differences in the recovery of the cerebral cortex and striatum pO2 were observed when the rats were allowed to breathe 30% O2. It appears that EPR oximetry using implantable resonators can provide information on pO2 under the experimental conditions needed for such a study. The levels of pO2 that occurred in these experiments are readily resolvable by multi-site EPR oximetry with multi-probe resonators. In addition, the ability to simultaneously measure the pO2 in several areas of the brain provides important information that could potentially help differentiate the pO2 changes that can occur due to global or local mechanisms. PMID:21445770

  6. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Directory of Open Access Journals (Sweden)

    Andrew C. Talk

    2016-12-01

    Full Text Available Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity.

  7. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Science.gov (United States)

    Talk, Andrew C.; Grasby, Katrina L.; Rawson, Tim; Ebejer, Jane L.

    2016-01-01

    Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity. PMID:27999366

  8. Differences between Neural Activity in Prefrontal Cortex and Striatum during Learning of Novel Abstract Categories

    OpenAIRE

    Antzoulatos, Evan G.; Miller, Earl K.

    2011-01-01

    Learning to classify diverse experiences into meaningful groups, like categories, is fundamental to normal cognition. To understand its neural basis, we simultaneously recorded from multiple electrodes in the lateral prefrontal cortex and dorsal striatum, two interconnected brain structures critical for learning. Each day, monkeys learned to associate novel, abstract dot-based categories with a right vs. left saccade. Early on, when they could acquire specific stimulus-response associations, ...

  9. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Kienast, Thorsten; Rapp, Michael [Charite Campus Mitte, Department of Psychiatry and Psychotherapy of the Charite University Medical Center, Berlin (Germany); Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias [University of Mainz, Department of Nuclear Medicine, Mainz (Germany); Wrase, Jana; Heinz, Andreas [Charite Campus Mitte, Department of Psychiatry and Psychotherapy of the Charite University Medical Center, Berlin (Germany); Central Institute of Mental Health, Mannheim (Germany); Braus, Dieter F. [University of Hamburg, Neuroimage Nord, Department of Psychiatry, Hamburg (Germany); Smolka, Michael N.; Mann, Karl [Central Institute of Mental Health, Mannheim (Germany); Roesch, Frank [University of Mainz, Institute of Nuclear Chemistry, Mainz (Germany); Cumming, Paul [PET Center and Center for Functionally Integrative Neuroscience, Aarhus (Denmark); Gruender, Gerhard [Aachen University Medical Center, Department of Psychiatry of the RWTH, Mainz (Germany); Bartenstein, Peter [Ludwig-Maximilians-University, Department of Nuclear Medicine, Munich (Germany)

    2008-06-15

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [{sup 18}F]DOPA for measurements of dopamine synthesis capacity and [{sup 18}F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [{sup 18}F]DOPA net influx constant K{sub in}{sup app} /[{sup 18}F]DMFP-binding potential (BP{sub N}D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  10. Corticostriatal field potentials are modulated at delta and theta frequencies during interval-timing task in rodents

    Directory of Open Access Journals (Sweden)

    Eric B Emmons

    2016-04-01

    Full Text Available Organizing movements in time is a critical and highly conserved feature of mammalian behavior. Temporal control of action requires corticostriatal networks. We investigate these networks in rodents using a two-interval timing task while recording local field potentials in medial frontal cortex or dorsomedial striatum. Consistent with prior work, we found cue-triggered delta (1-4 Hz and theta activity (4-8 Hz primarily in rodent medial frontal cortex. We observed delta activity across temporal intervals in medial frontal cortex and dorsomedial striatum. Rewarded responses were associated with increased delta activity in medial frontal cortex. Activity in theta bands in medial frontal cortex and delta bands in the striatum was linked with the timing of responses. These data suggest both delta and theta activity in frontostriatal networks are modulated during interval timing and that activity in these bands may be involved in the temporal control of action.

  11. Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia.

    Science.gov (United States)

    Mittleman, Guy; Goldowitz, Daniel; Heck, Detlef H; Blaha, Charles D

    2008-07-01

    Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 muA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked prefrontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders.

  12. [Interaction between neurons of the frontal cortex and hippocampus during the realization of choice of food reinforcement quality in cats].

    Science.gov (United States)

    Merzhanova, G Kh; Dolbakian, E E; Khokhlova, V N

    2003-01-01

    Six cats were subjected to the procedure of appetitive instrumental conditioning (with light as a conditioned stimuls) by the method of the "active choice" of reinforcement quality. Short-delay conditioned bar-press responses were rewarded with bread-meat mixture, and the delayed responses were reinforced by meat. The animals differed in behavior strategy: four animals preferred the bar-pressing with a long delay (the so-called "self-control" group), and two cats preferred the bar-pressing with a short delay (the so-called "impulsive" group). Multiunit activity in the frontal cortex and hippocampus (CA3) was recorded via chronically implanted nichrome wire semimicroelectrodes. An interaction between the neighboring neurons in the frontal cortex and hippocampus (within local neural networks) and between the neurons of the frontal cortex and hippocampus (distributed neural networks in frontal-hippocampal and hippocampal-frontal directions) was evaluated by means of statistical crosscorrelation analysis of spike trains. Crosscorrelations between neuronal spike trains in the delay range of 0-100 ms were explored. It was shown that the number of crosscorrelations between the neuronal discharges both in the local and distributed networks was significantly higher in the "self-control" cats. It was suggested that the local and distributed neural networks of the frontal cortex and hippocampus are involved in the system of brain structures which determine the behavioral strategy of animals in the "self-control" group.

  13. An inquiry into the semiquantitative parameters of striatal dopamine receptor imaging

    International Nuclear Information System (INIS)

    Cao Guoxiang; Tan Tianzhi; Kuang Anren; Liang Zhenglu

    1998-01-01

    Purpose: To inquire into the optimal striatal reference region for nonspecific IBZM uptake in brain dopamine receptor imaging. Methods: Using in vivo data from rats, the authors compared the results of 125 I-iodobenzamide ( 125 I-IBZM) striatal specific binding that were respectively obtained taking cerebellum and frontal cortex as striatal reference region of nonspecific uptake of ligand. Results: Radioiodination labelled IBZM bound stereoselectively and reversibly to striatal D2 receptors. Frontal cortex and cerebellum showed rapid uptake and rapid washout of ligand. When cerebellar uptake was used as a reference of nonspecific uptake in striatum, IBZM saturation could not be demonstrated. But when the frontal cortex was used as reference region, saturation could be demonstrated with B max = 44 pmol/g striatum tissue. The percentage of haloperidol replacement and the percentage of uptake difference between striatum and other brain regions which were derived from competitive inhibition experiments with a large does of spiperone or haloperidol, suggested that the cerebellar uptake underestimated nonspecific uptake in the striatum while frontal cortex was an appropriate reference region for nonspecific uptake of ligand in striatum. Conclusions: For the calculation of specific IBZM binding and other semiquantitative parameters of striatal dopamine D2 receptor imaging, frontal cortex would be the nonspecific reference region of choice

  14. Methamphetamine blocks exercise effects on Bdnf and Drd2 gene expression in frontal cortex and striatum.

    Science.gov (United States)

    Thompson, Andrew B; Stolyarova, Alexandra; Ying, Zhe; Zhuang, Yumei; Gómez-Pinilla, Fernando; Izquierdo, Alicia

    2015-12-01

    Exposure to drugs of abuse can produce many neurobiological changes which may lead to increased valuation of rewards and decreased sensitivity to their costs. Many of these behavioral alterations are associated with activity of D2-expressing medium spiny neurons in the striatum. Additionally, Bdnf in the striatum has been shown to play a role in flexible reward-seeking behavior. Given that voluntary aerobic exercise can affect the expression of these proteins in healthy subjects, and that exercise has shown promise as an anti-addictive therapy, we set out to quantify changes in D2 and Bdnf expression in methamphetamine-exposed rats given access to running wheels. Sixty-four rats were treated for two weeks with an escalating dose of methamphetamine or saline, then either sacrificed, housed in standard cages, or given free access to a running wheel for 6 weeks prior to sacrifice. Rats treated with methamphetamine ran significantly greater distances than saline-treated rats, suggesting an augmentation in the reinforcement value of voluntary wheel running. Transcription of Drd2 and Bdnf was assessed via RT-qPCR. Protein expression levels of D2 and phosphorylation of the TrkB receptor were measured via western blot. Drd2 and Bdnf mRNA levels were impacted independently by exercise and methamphetamine, but exposure to methamphetamine prior to the initiation of exercise blocked the exercise-induced changes seen in rats treated with saline. Expression levels of both proteins were elevated immediately after methamphetamine, but returned to baseline after six weeks, regardless of exercise status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Attenuated frontal and sensory inputs to the basal ganglia in cannabis users.

    Science.gov (United States)

    Blanco-Hinojo, Laura; Pujol, Jesus; Harrison, Ben J; Macià, Dídac; Batalla, Albert; Nogué, Santiago; Torrens, Marta; Farré, Magí; Deus, Joan; Martín-Santos, Rocío

    2017-07-01

    Heavy cannabis use is associated with reduced motivation. The basal ganglia, central in the motivation system, have the brain's highest cannabinoid receptor density. The frontal lobe is functionally coupled to the basal ganglia via segregated frontal-subcortical circuits conveying information from internal, self-generated activity. The basal ganglia, however, receive additional influence from the sensory system to further modulate purposeful behaviors according to the context. We postulated that cannabis use would impact functional connectivity between the basal ganglia and both internal (frontal cortex) and external (sensory cortices) sources of influence. Resting-state functional connectivity was measured in 28 chronic cannabis users and 29 controls. Selected behavioral tests included reaction time, verbal fluency and exposition to affective pictures. Assessments were repeated after one month of abstinence. Cannabis exposure was associated with (1) attenuation of the positive correlation between the striatum and areas pertaining to the 'limbic' frontal-basal ganglia circuit, and (2) attenuation of the negative correlation between the striatum and the fusiform gyrus, which is critical in recognizing significant visual features. Connectivity alterations were associated with lower arousal in response to affective pictures. Functional connectivity changes had a tendency to normalize after abstinence. The results overall indicate that frontal and sensory inputs to the basal ganglia are attenuated after chronic exposure to cannabis. This effect is consistent with the common behavioral consequences of chronic cannabis use concerning diminished responsiveness to both internal and external motivation signals. Such an impairment of the fine-tuning in the motivation system notably reverts after abstinence. © 2016 Society for the Study of Addiction.

  16. Orbito-frontal cortex and thalamus volumes in the patients with obsessive-compulsive disorder before and after cognitive behavioral therapy.

    Science.gov (United States)

    Atmaca, Murad; Yildirim, Hanefi; Yilmaz, Seda; Caglar, Neslihan; Mermi, Osman; Korkmaz, Sevda; Akaslan, Unsal; Gurok, M Gurkan; Kekilli, Yasemin; Turkcapar, Hakan

    2018-07-01

    Background The effect of a variety of treatment modalities including psychopharmacological and cognitive behavioral therapy on the brain volumes and neurochemicals have not been investigated enough in the patients with obsessive-compulsive disorder. Therefore, in the present study, we aimed to investigate the effect of cognitive behavioral therapy on the volumes of the orbito-frontal cortex and thalamus regions which seem to be abnormal in the patients with obsessive-compulsive disorder. We hypothesized that there would be change in the volumes of the orbito-frontal cortex and thalamus. Methods Twelve patients with obsessive-compulsive disorder and same number of healthy controls were included into the study. At the beginning of the study, the volumes of the orbito-frontal cortex and thalamus were compared by using magnetic resonance imaging. In addition, volumes of these regions were measured before and after the cognitive behavioral therapy treatment in the patient group. Results The patients with obsessive-compulsive disorder had greater left and right thalamus volumes and smaller left and right orbito-frontal cortex volumes compared to those of healthy control subjects at the beginning of the study. When we compared baseline volumes of the patients with posttreatment ones, we detected that thalamus volumes significantly decreased throughout the period for both sides and that the orbito-frontal cortex volumes significantly increased throughout the period for only left side. Conclusions In summary, we found that cognitive behavioral therapy might volumetrically affect the key brain regions involved in the neuroanatomy of obsessive-compulsive disorder. However, future studies with larger sample are required.

  17. Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination

    OpenAIRE

    Zhe Charles Zhou; Chunxiu Yu; Kristin K. Sellers; Flavio Fröhlich

    2016-01-01

    Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contr...

  18. Tritiated imipramine binding sites are decreased in the frontal cortex of suicides

    International Nuclear Information System (INIS)

    Stanley, M.; Virgilio, J.; Gershon, S.

    1982-01-01

    Binding characteristics of tritiated imipramine were determined in the frontal cortex of suicides and well-matched controls. Maximal binding was significantly lower in brains from the suicides. This finding is consistent with reports of decreased tritiated imipramine binding in the platelets of patients diagnosed as having a major affective disorder

  19. Functional specialization of the primate frontal cortex during decision making.

    Science.gov (United States)

    Lee, Daeyeol; Rushworth, Matthew F S; Walton, Mark E; Watanabe, Masataka; Sakagami, Masamichi

    2007-08-01

    Economic theories of decision making are based on the principle of utility maximization, and reinforcement-learning theory provides computational algorithms that can be used to estimate the overall reward expected from alternative choices. These formal models not only account for a large range of behavioral observations in human and animal decision makers, but also provide useful tools for investigating the neural basis of decision making. Nevertheless, in reality, decision makers must combine different types of information about the costs and benefits associated with each available option, such as the quality and quantity of expected reward and required work. In this article, we put forward the hypothesis that different subdivisions of the primate frontal cortex may be specialized to focus on different aspects of dynamic decision-making processes. In this hypothesis, the lateral prefrontal cortex is primarily involved in maintaining the state representation necessary to identify optimal actions in a given environment. In contrast, the orbitofrontal cortex and the anterior cingulate cortex might be primarily involved in encoding and updating the utilities associated with different sensory stimuli and alternative actions, respectively. These cortical areas are also likely to contribute to decision making in a social context.

  20. Connexin31.1 deficiency in the mouse impairs object memory and modulates open-field exploration, acetylcholine esterase levels in the striatum, and cAMP response element-binding protein levels in the striatum and piriform cortex.

    Science.gov (United States)

    Dere, E; Zheng-Fischhöfer, Q; Viggiano, D; Gironi Carnevale, U A; Ruocco, L A; Zlomuzica, A; Schnichels, M; Willecke, K; Huston, J P; Sadile, A G

    2008-05-02

    Neuronal gap junctions in the brain, providing intercellular electrotonic signal transfer, have been implicated in physiological and behavioral correlates of learning and memory. In connexin31.1 (Cx31.1) knockout (KO) mice the coding region of the Cx31.1 gene was replaced by a LacZ reporter gene. We investigated the impact of Cx31.1 deficiency on open-field exploration, the behavioral response to an odor, non-selective attention, learning and memory performance, and the levels of memory-related proteins in the hippocampus, striatum and the piriform cortex. In terms of behavior, the deletion of the Cx31.1 coding DNA in the mouse led to increased exploratory behaviors in a novel environment, and impaired one-trial object recognition at all delays tested. Despite strong Cx31.1 expression in the peripheral and central olfactory system, Cx31.1 KO mice exhibited normal behavioral responses to an odor. We found increased levels of acetylcholine esterase (AChE) and cAMP response element-binding protein (CREB) in the striatum of Cx31.1 KO mice. In the piriform cortex the Cx31.1 KO mice had an increased heterogeneity of CREB expression among neurons. In conclusion, gap-junctions featuring the Cx31.1 protein might be involved in open-field exploration as well as object memory and modulate levels of AChE and CREB in the striatum and piriform cortex.

  1. Development of striatal patch/matrix organization in organotypic co-cultures of perinatal striatum, cortex and substantia nigra.

    Science.gov (United States)

    Snyder-Keller, A; Costantini, L C; Graber, D J

    2001-01-01

    Organotypic cultures of fetal or early postnatal striatum were used to assess striatal patch formation and maintenance in the presence or absence of dopaminergic and glutamatergic influences. Vibratome-cut slices of the striatum prepared from embryonic day 19 to postnatal day 4 rat pups were maintained in static culture on clear membrane inserts in Dulbecco's modified Eagle's medium/F12 (1:1) with 20% horse serum. Some were co-cultured with embryonic day 12-16 ventral mesencephalon and/or embryonic day 19 to postnatal day 4 cortex, which produced a dense dopaminergic innervation and a modest cortical innervation. Donors of striatal and cortical tissue were previously injected with bromo-deoxyuridine (BrdU) on embryonic days 13 and 14 in order to label striatal neurons destined to populate the patch compartment of the striatum. Patches of BrdU-immunoreactive cells were maintained in organotypic cultures of late prenatal (embryonic days 20-22) or early postnatal striatum in the absence of nigral dopaminergic or cortical glutamatergic influences. In slices taken from embryonic day 19 fetuses prior to the time of in vivo patch formation, patches were observed to form after 10 days in vitro, in 39% of nigral-striatal co-cultures compared to 6% of striatal slices cultured alone or in the presence of cortex only. Patches of dopaminergic fibers, revealed by tyrosine hydroxylase immunoreactivity, were observed in the majority of nigral-striatal co-cultures. Immunostaining for the AMPA-type glutamate receptor GluR1 revealed a dense patch distribution in nearly all cultures, which developed in embryonic day 19 cultures after at least six days in vitro. These findings indicate that striatal patch/matrix organization is maintained in organotypic culture, and can be induced to form in vitro in striatal slices removed from fetuses prior to the time of in vivo patch formation. Furthermore, dopaminergic innervation from co-cultured pieces of ventral mesencephalon enhances patch

  2. Increased functional connectivity between prefrontal cortex and reward system in pathological gambling.

    Directory of Open Access Journals (Sweden)

    Saskia Koehler

    Full Text Available Pathological gambling (PG shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum. PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder.

  3. Chronic consumption of a western diet modifies the DNA methylation profile in the frontal cortex of mice.

    Science.gov (United States)

    Yokoyama, Amy S; Dunaway, Keith; Rutkowsky, Jennifer; Rutledge, John C; Milenkovic, Dragan

    2018-02-21

    In our previous work in mice, we have shown that chronic consumption of a Western diet (WD; 42% kcal fat, 0.2% total cholesterol and 34% sucrose) is correlated with impaired cognitive function. Cognitive decline has also been associated with alterations in DNA methylation. Additionally, although there have been many studies analyzing the effect of maternal consumption of a WD on DNA methylation in the offspring, few studies have analyzed how an individual's consumption of a WD can impact his/her DNA methylation. Since the frontal cortex is involved in the regulation of cognitive function and is often affected in cases of cognitive decline, this study aimed to examine how chronic consumption of a WD affects DNA methylation in the frontal cortex of mice. Eight-week-old male mice were fed either a control diet (CD) or a WD for 12 weeks, after which time alterations in DNA methylation were analyzed. Assessment of global DNA methylation in the frontal cortex using dot blot analysis revealed that there was a decrease in global DNA methylation in the WD-fed mice compared with the CD-fed mice. Bioinformatic analysis identified several networks and pathways containing genes displaying differential methylation, particularly those involved in metabolism, cell adhesion and cytoskeleton integrity, inflammation and neurological function. In conclusion, the results from this study suggest that consumption of a WD alters DNA methylation in the frontal cortex of mice and could provide one of the mechanisms by which consumption of a WD impairs cognitive function.

  4. In vivo characteristics of IBZM in rat brains, an agent for quantitative SPECT imaging of D2 dopamine receptors. A basis for semiquantitative measurement of the receptor density using equilibrium analysis

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Maeda, Hisato; Takeuchi, Akira; Koga, Sukehiko; Matsumura, Kaname; Nakashima, Hiromichi; Ichise, Masanori; Kurami, Miki; Nakagawa, Tsuyoshi.

    1994-01-01

    To establish a basis for semiquantitative SPECT measurements of the D 2 dopamine receptor density using equilibrium analysis, we evaluated in vivo kinetic properties of 125 I-IBZM in rat brains. We measured percent uptakes (% dose/g) of 125 I-IBZM in the striatum, frontal cortex, and cerebellum. We made these regional measurements at 15, 30, 45, 60, 90, and 120 minutes after injection, respectively. The specific striatal uptake, which is the uptake difference between striatum and frontal cortex or cerebellum, showed a transient equilibrium phase at 60 min. Theoretically, with these 'reversible' D 2 receptor binding ligands, the tracer-uptake ratio of the striatum-to-frontal cortex or cerebellum during the equilibrium phase provides an estimate of binding potential (Bound/Free=B max /K d ). Our experiment showed that these ratio increased with time after bolus injection of the tracer. Striatum to frontal cortex or cerebellum ratios which were calculated with pooled data (n=12) at 60 minutes in equilibrium phase showed nearly constant values (C.V.=12.3% and 13.5%, respectively). Although measuring the striatum to frontal cortex or cerebellum ratios near equilibrium phase by bolus injection of the tracer which are widely used in human SPECT study could not exactly signify the binding potential, those ratios at fixed time after injection would be reliable for semiquantitative index. (author)

  5. Adrenergic receptors in frontal cortex in human brain.

    Science.gov (United States)

    Cash, R; Raisman, R; Ruberg, M; Agid, Y

    1985-02-05

    The binding of three adrenergic ligands ([3H]prazosin, [3H]clonidine, [3H]dihydroalprenolol) was studied in the frontal cortex of human brain. alpha 1-Receptors, labeled by [3H]prazosin, predominated. [3H]Clonidine bound to two classes of sites, one of high affinity and one of low affinity. Guanosine triphosphate appeared to lower the affinity of [3H]clonidine for its receptor. [3H]Dihydroalprenolol bound to three classes of sites: the beta 1-receptor, the beta 2-receptor and a receptor with low affinity which represented about 40% of the total binding, but which was probably a non-specific site; the beta 1/beta 2 ratio was 1/2.

  6. Aberrant network integrity of the inferior frontal cortex in women with anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Stephanie Kullmann

    2014-01-01

    These results suggest that AN patients have reduced connectivity within the cognitive control system of the brain and increased connectivity within regions important for salience processing. Due to its fundamental role in inhibitory behavior, including motor response, altered integrity of the inferior frontal cortex could contribute to hyperactivity in AN.

  7. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The toxic influence of dibromoacetic acid on the hippocampus and pre-frontal cortex of rat: involvement of neuroinflammation response and oxidative stress.

    Science.gov (United States)

    Jiang, Wenbo; Li, Bai; Chen, Yingying; Gao, Shuying

    2017-12-01

    Dibromoacetic acid (DBA) exsits in drinking water as a by-product of disinfection as a result of chlorination or ozonation processes. Hippocampus and pre-frontal cortex are the key structures in memory formation and weanling babies are more sensitive to environmental toxicant than adults, so this study was conducted to evaluate the potential neurotoxicity effects of DBA exposure when administered intragastrically for 4 weeks to weanling Sprague-Dawley rats, at concentration of 0, 20, 50, 125 mg/kg via the neurobehavioral and neurochemical effects. Results indicated that animals weight gain and food consumption were not significantly affected by DBA. However, morris water maze test showed varying degrees of changes between control and high-dose group. Additionally, the level of malondialdehyde (MDA) and generation of reactive oxygen species (ROS) in the hippocampus and pre-frontal cortex of rats increased significantly. The activities of total superoxide dismutase (SOD) and the glutathione (GSH) content in the hippocampus and pre-frontal cortex of rats decreased significantly after treatment with DBA. Treatment with DBA increased the protein and mRNA expression of Iba-1, NF-κB, TNF-α, IL-6, IL-1β and HO-1 in the hippocampus and pre-frontal cortex of rats. These data suggested that DBA had a toxic influence on the hippocampus and pre-frontal cortex of rats, and that the mechanism of toxicity might be associated with the neuroinflammation response and oxidative stress.

  9. Co-activation-based parcellation of the lateral prefrontal cortex delineates the inferior frontal junction area

    OpenAIRE

    Muhle-Karbe, Paul Simon; Derrfuss, Jan; Lynn, Maggie; Neubert, Franz Xaver; Fox, Peter; Brass, Marcel; Eickhoff, Simon

    2016-01-01

    The inferior frontal junction (IFJ) area, a small region in the posterior lateral prefrontal cortex (LPFC), has received increasing interest in recent years due to its central involvement in the control of action, attention, and memory. Yet, both its function and anatomy remain controversial. Here, we employed a meta-analytic parcellation of the left LPFC to show that the IFJ can be isolated based on its specific functional connections. A seed region, oriented along the left inferior frontal ...

  10. Frontal cortex gray matter volume alterations in pathological gambling occur independently from substance use disorder.

    Science.gov (United States)

    Zois, Evangelos; Kiefer, Falk; Lemenager, Tagrid; Vollstädt-Klein, Sabine; Mann, Karl; Fauth-Bühler, Mira

    2017-05-01

    Neuroimaging in pathological gambling (PG) allows studying brain structure independent of pharmacological/neurotoxic effects occurring in substance addiction. Because of high comorbidity of PG with substance use disorder (SUD), first results on structural deficits in PG are controversial. The current investigation is the first to examine gray matter (GM) volume alterations in PG controlling for the impact of SUD by comparing non-comorbid (PG PURE ) and two comorbid (PG ALCOHOL and PG POLY ) groups. Two hundred and five individuals were included in the analysis: 107 patients diagnosed with PG and 98 healthy controls (HCs). We employed voxel-based morphometry to look for GM volume differences between the groups controlling for age, smoking and depression. GM decreases in the superior medial and orbital frontal cortex occur independently of substance use in PG PURE compared with HCs. The frontal pattern of GM decrease was comparable with PG ALCOHOL group where additionally GM volume was decreased in the anterior cingulate but increased in the amygdala. Moreover, regions in PG ALCOHOL + POLY with reduced GM volume were the medial frontal, anterior cingulate and occipital lobe regions. PG ALCOHOL + POLY not only exhibited structural deficits in comparison with HCs but also relative to PG PURE in the precuneus and post-central gyrus. We demonstrated specific frontal cortex GM deficits in PG without SUD comorbidities. Whereas some target regions reported in earlier studies might result from comorbid substance abuse, there seems to be a core set of frontal alterations associated with addicted gambling behaviour independent of toxic substance effects. © 2016 Society for the Study of Addiction.

  11. L-Tyrosine availability affects basal and stimulated catecholamine indices in prefrontal cortex and striatum of the rat.

    Science.gov (United States)

    Brodnik, Zachary D; Double, Manda; España, Rodrigo A; Jaskiw, George E

    2017-09-01

    We previously found that L-tyrosine (L-TYR) but not D-TYR administered by reverse dialysis elevated catecholamine synthesis in vivo in medial prefrontal cortex (MPFC) and striatum of the rat (Brodnik et al., 2012). We now report L-TYR effects on extracellular levels of catecholamines and their metabolites. In MPFC, reverse dialysis of L-TYR elevated in vivo levels of dihydroxyphenylacetic acid (DOPAC) (L-TYR 250-1000 μM), homovanillic acid (HVA) (L-TYR 1000 μM) and 3-methoxy-4-hydroxyphenylglycol (MHPG) (L-TYR 500-1000 μM). In striatum L-TYR 250 μM elevated DOPAC. We also examined L-TYR effects on extracellular dopamine (DA) and norepinephrine (NE) levels during two 30 min pulses (P2 and P1) of K+ (37.5 mM) separated by t = 2.0 h. L-TYR significantly elevated the ratio P2/P1 for DA (L-TYR 125 μM) and NE (L-TYR 125-250 μM) in MPFC but lowered P2/P1 for DA (L-TYR 250 μM) in striatum. Finally, we measured DA levels in brain slices using ex-vivo voltammetry. Perfusion with L-TYR (12.5-50 μM) dose-dependently elevated stimulated DA levels in striatum. In all the above studies, D-TYR had no effect. We conclude that acute increases within the physiological range of L-TYR levels can increase catecholamine metabolism and efflux in MPFC and striatum. Chronically, such repeated increases in L-TYR availability could induce adaptive changes in catecholamine transmission while amplifying the metabolic cost of catecholamine synthesis and degradation. This has implications for neuropsychiatric conditions in which neurotoxicity and/or disordered L-TYR transport have been implicated. Published by Elsevier Ltd.

  12. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory.

    Science.gov (United States)

    Bastos, André M; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K

    2018-01-30

    All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50-250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4-22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. Copyright © 2018 the Author(s). Published by PNAS.

  13. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice.

    Science.gov (United States)

    Huang, Rong-Rong; Hu, Wen; Yin, Yan-Yan; Wang, Yu-Chan; Li, Wei-Ping; Li, Wei-Zu

    2015-02-01

    Chronic stress has been implicated in many types of neurodegenerative diseases, such as Alzheimer's disease (AD). In our previous study, we demonstrated that chronic restraint stress (CRS) induced reactive oxygen species (ROS) overproduction and oxidative damage in the frontal cortex and hippocampus in mice. In the present study, we investigated the effects of CRS (over a period of 8 weeks) on learning and memory impairment and endoplasmic reticulum (ER) stress in the frontal cortex and hippocampus in male mice. The Morris water maze was used to investigate the effects of CRS on learning and memory impairment. Immunohistochemistry and immunoblot analysis were also used to determine the expression levels of protein kinase C α (PKCα), 78 kDa glucose-regulated protein (GRP78), C/EBP-homologous protein (CHOP) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The results revealed that CRS significantly accelerated learning and memory impairment, and induced neuronal damage in the frontal cortex and hippocampus CA1 region. Moreover, CRS significantly increased the expression of PKCα, CHOP and MANF, and decreased that of GRP78 in the frontal cortex and hippocampus. Our data suggest that exposure to CRS (for 8 weeks) significantly accelerates learning and memory impairment, and the mechanisms involved may be related to ER stress in the frontal cortex and hippocampus.

  14. A multivariate surface-based analysis of the putamen in premature newborns: regional differences within the ventral striatum.

    Directory of Open Access Journals (Sweden)

    Jie Shi

    Full Text Available Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface deformation in these structures. For the first time, here we found regional surface morphological differences in the preterm neonatal ventral striatum. We performed regional group comparisons of the surface anatomy of the striatum (putamen and globus pallidus between 17 preterm and 19 term-born neonates at term-equivalent age. We reconstructed striatal surfaces from manually segmented brain magnetic resonance images and analyzed them using our in-house conformal mapping program. All surfaces were registered to a template with a new surface fluid registration method. Vertex-based statistical comparisons between the two groups were performed via four methods: univariate and multivariate tensor-based morphometry, the commonly used medial axis distance, and a combination of the last two statistics. We found statistically significant differences in regional morphology between the two groups that are consistent across statistics, but more extensive for multivariate measures. Differences were localized to the ventral aspect of the striatum. In particular, we found abnormalities in the preterm anterior/inferior putamen, which is interconnected with the medial orbital/prefrontal cortex and the midline thalamic nuclei including the medial dorsal nucleus and pulvinar. These findings support the hypothesis that the ventral striatum is vulnerable, within the cortico-stiato-thalamo-cortical neural circuitry, which may underlie the risk for long-term development of frontal executive dysfunction, attention deficit hyperactivity

  15. Accurate external localization of the left frontal cortex in dogs by using pointer based frameless neuronavigation

    Directory of Open Access Journals (Sweden)

    Robrecht Dockx

    2017-07-01

    Full Text Available Background In humans, non-stereotactic frameless neuronavigation systems are used as a topographical tool for non-invasive brain stimulation methods such as Transcranial Magnetic Stimulation (TMS. TMS studies in dogs may provide treatment modalities for several neuropsychological disorders in dogs. Nevertheless, an accurate non-invasive localization of a stimulation target has not yet been performed in this species. Hypothesis This study was primarily put forward to externally locate the left frontal cortex in 18 healthy dogs by means of a human non-stereotactic neuronavigation system. Secondly, the accuracy of the external localization was assessed. Animals A total of 18 healthy dogs, drawn at random from the research colony present at the faculty of Veterinary Medicine (Ghent University, were used. Methods Two sets of coordinates (X, Y, Z and X″, Y″, Z″ were compared on each dog their tomographical dataset. Results The non-stereotactic neuronavigation system was able to externally locate the frontal cortex in dogs with accuracy comparable with human studies. Conclusion and clinical importance This result indicates that a non-stereotactic neuronavigation system can accurately externally locate the left frontal cortex and paves the way to use guided non-invasive brain stimulation methods as an alternative treatment procedure for neurological and behavioral disorders in dogs. This technique could, in analogy with human guided non-invasive brain stimulation, provide a better treatment outcome for dogs suffering from anxiety disorders when compared to its non-guided alternative.

  16. Reciprocal activation/inactivation of ERK in the amygdala and frontal cortex is correlated with the degree of novelty of an open-field environment.

    Science.gov (United States)

    Sanguedo, Frederico Velasco; Dias, Caio Vitor Bueno; Dias, Flavia Regina Cruz; Samuels, Richard Ian; Carey, Robert J; Carrera, Marinete Pinheiro

    2016-03-01

    Phosphorylated extracellular signal-regulated kinase (ERK) has been used to identify brain areas activated by exogenous stimuli including psychostimulant drugs. Assess the role of the amygdala in emotional responses. Experimental manipulations were performed in which environmental familiarity was the variable. To provide the maximal degree of familiarity, ERK was measured after removal from the home cage and re-placement back into the same cage. To maximize exposure to an unfamiliar environment, ERK was measured following placement into a novel open field. To assess whether familiarity was the critical variable in the ERK response to the novel open field, ERK was also measured after either four or eight placements into the same environment. ERK quantification was carried out in the amygdala, frontal cortex, and the nucleus accumbens. After home cage re-placement, ERK activation was found in the frontal cortex and nucleus accumbens but was absent in the amygdala. Following placement in a novel environment, ERK activation was more prominent in the amygdala than the frontal cortex or nucleus accumbens. In contrast, with habituation to the novel environment, ERK phosphors declined markedly in the amygdala but increased in the frontal cortex and nucleus accumbens to the level observed following home cage re-placement. The differential responsiveness of the amygdala versus the frontal cortex and the nucleus accumbens to a novel versus a habituated environment is consistent with a reciprocal interaction between these neural systems and points to their important role in the mediation of behavioral activation to novelty and behavioral inactivation with habituation.

  17. The R-enantiomer of citalopram counteracts escitalopram-induced increase in extracellular 5-HT in the frontal cortex of freely moving rats

    DEFF Research Database (Denmark)

    Mørk, A; Kreilgaard, Mads; Sánchez, C

    2003-01-01

    The selective serotonin (5-HT) reuptake inhibitor, citalopram, is a racemic mixture of an S(+)- and R(-)-enantiomer, escitalopram and R-citalopram, respectively. The present study compares the effects of escitalopram, R-citalopram and citalopram on extracellular levels of 5-HT in the frontal cortex...... of freely moving rats. In addition, co-injection of escitalopram and R-citalopram (ratios 1:2 and 1:4) were assessed. In some experiments escitalopram and R-citalopram were infused into the frontal cortex by reverse microdialysis. Finally, the extracellular level of escitalopram in the frontal cortex...... was studied after administration of escitalopram alone or in combination with R-citalopram. Escitalopram (1.0-3.9 mg/kg, s.c.) produced a greater maximal increase in extracellular 5-HT than citalopram (2.0-8.0 mg/kg, s.c.). R-citalopram (15.6 mg/kg s.c.) did not affect the 5-HT levels. When co-injected, R...

  18. Effect of neonatal nociceptin or nocistatin imprinting on the brain concentration of biogenic amines and their metabolites.

    Science.gov (United States)

    Tekes, Kornélia; Gyenge, Melinda; Sótonyi, Péter; Csaba, György

    2009-04-01

    Noradrenaline (NA), dopamine (DA), homovanillic acid (HA), serotonin (5HT) and 5-hydroxyindole acetic acid (5HIAA) content of five brain regions (hypothalamus, hippocampus, brainstem, striatum and frontal cortex) and the cerebrospinal fluid (CSF) was measured in adult (three months old) male and female rats treated neonatally with a single dose of 10 microg nociceptin (NC) or 10 microg nocistatin (NS) for hormonal imprinting. The biogenic amine and metabolite content of cerebrospinal fluid was also determined. In NC treated animals the serotonergic, dopaminergic as well as noradrenergic systems were influenced by the imprinting. The 5HT level increased in hypothalamus, the 5HIAA tissue levels were found increased in hypothalamus. Hippocampus and striatum and the HVA levels increased highly significantly in brainstem. Dopamine level decreased significantly in striatum, however in frontal cortex both noradrenalin and 5HIAA level decreased. Nevertheless, in NS-treated rats decreased NA tissue levels were found in hypothalamus, brainstem and frontal cortex. Decreased DA levels were found in the hypothalamus, brainstem and striatum. NS imprinting resulted in decreased HVA level, but increased one in the brainstem. The 5HT levels decreased in the hypothalamus, brainstem, striatum and frontal cortex, while 5HIAA content of CSF, and frontal cortex decreased, and that of hypothalamus, hippocampus and striatum increased. There was no significant difference between genders except in the 5HT tissue levels of NC treated rats. Data presented show that neonatal imprinting both by NC and NS have long-lasting and brain area specific effects. In earlier experiments endorphin imprinting also influenced the serotonergic system suggesting that during labour release of pain-related substances may durably affect the serotonergic (dopaminergic, adrenergic) system which can impress the animals' later behavior.

  19. INCREASES IN FUNCTIONAL CONNECTIVITY BETWEEN PREFRONTAL CORTEX AND STRIATUM DURING CATEGORY LEARNING

    Science.gov (United States)

    Antzoulatos, Evan G.; Miller, Earl K.

    2014-01-01

    SUMMARY Functional connectivity between the prefrontal cortex (PFC) and striatum (STR) is thought critical for cognition, and has been linked to conditions like autism and schizophrenia. We recorded from multiple electrodes in PFC and STR while monkeys acquired new categories. Category learning was accompanied by an increase in beta-band synchronization of LFPs between, but not within, the PFC and STR. After learning, different pairs of PFC-STR electrodes showed stronger synchrony for one or the other category, suggesting category-specific functional circuits. This category-specific synchrony was also seen between PFC spikes and STR LFPs, but not the reverse, reflecting the direct monosynaptic connections from the PFC to STR. However, causal connectivity analyses suggested that the polysynaptic connections from STR to the PFC exerted a stronger overall influence. This supports models positing that the basal ganglia “train” the PFC. Category learning may depend on the formation of functional circuits between the PFC and STR. PMID:24930701

  20. Is evaluation of humorous stimuli associated with frontal cortex morphology? A pilot study using facial micro-movement analysis and MRI.

    Science.gov (United States)

    Juckel, Georg; Mergl, Roland; Brüne, Martin; Villeneuve, Isabelle; Frodl, Thomas; Schmitt, Gisela; Zetzsche, Thomas; Born, Christine; Hahn, Klaus; Reiser, Maximilian; Möller, Hans-Jürgen; Bär, Karl-Jürgen; Hegerl, Ulrich; Meisenzahl, Eva Maria

    2011-05-01

    Humour involves the ability to detect incongruous ideas violating social rules and norms. Accordingly, humour requires a complex array of cognitive skills for which intact frontal lobe functioning is critical. Here, we sought to examine the association of facial expression during an emotion inducing experiment with frontal cortex morphology in healthy subjects. Thirty-one healthy male subjects (mean age: 30.8±8.9 years; all right-handers) watching a humorous movie ("Mr. Bean") were investigated. Markers fixed at certain points of the face emitting high-frequency ultrasonic signals allowed direct measurement of facial movements with high spatial-temporal resolution. Magnetic resonance images of the frontal cortex were obtained with a 1.5-T Magnetom using a coronar T2- and protondensity-weighted Dual-Echo-Sequence and a 3D-magnetization-prepared rapid gradient echo (MPRAGE) sequence. Volumetric analysis was performed using BRAINS. Frontal cortex volume was partly associated with slower speed of "laughing" movements of the eyes ("genuine" or Duchenne smile). Specifically, grey matter volume was associated with longer emotional reaction time ipsilaterally, even when controlled for age and daily alcohol intake. These results lend support to the hypothesis that superior cognitive evaluation of humorous stimuli - mediated by larger prefrontal grey and white matter volume - leads to a measurable reduction of speed of emotional expressivity in normal adults. Copyright © 2010 Elsevier Srl. All rights reserved.

  1. Amygdala Contributions to Stimulus–Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning

    Science.gov (United States)

    Averbeck, Bruno B.

    2017-01-01

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus–reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus–reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus–reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus–reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus–reward associations. MFC also

  2. Acute effect of Ethanol and Taurine on frontal cortex absolute beta power before and after exercise

    Science.gov (United States)

    Cagy, Mauricio; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Alvarenga, Renato; Alonso, Luciano; Pompeu, Fernando A. M. S.

    2018-01-01

    Ethanol (ET) is a substance that modulates the Central Nervous System (CNS). Frequently, ET intake occurs combined with energy drinks, which contain taurine (TA), an important amino acid found in the body (i.e brain and muscles). Although TA administration has been used in the improvement of physical performance, the impact of TA, ET and exercise remains unknown. This study aimed to analyze the acute effect of 6g of Taurine (TA), 0.6 mL∙kg-1 of Ethanol (ET), and Taurine combined with Ethanol (TA+ET) ingestion on the electrocortical activity before and after a moderate intensity exercise in 9 subjects, 5 women (counterbalanced experimental design). In each of the 4 treatments (Placebo—PL, TA, ET and TA+ET), electroencephalography (EEG) tests were conducted in order to analyze changes in absolute beta power (ABP) in the frontal lobe in 3 moments: baseline (before ingestion), peak (before exercise) and post-exercise. In the PL treatment, the frontal areas showed decrease in ABP after exercise. However, in the ET+TA treatment, ABP values were greater after exercise, except for Fp1. The ET treatment had no effect on the Superior Frontal Gyrus area (F3, Fz and F4) and ABP decreased after exercise in Fp1 and Fp2. In the TA treatment, ABP increased after exercise, while it decreased at the peak moment in most of the frontal regions, except for Fp1, F3 and Fz. We concluded that after a moderate intensity exercise, a decrease in cortical activity occurs in placebo treatment. Moreover, we found a inhibitory effect of TA on cortical activity before exercise and a increased in cortical activity after exercise. A small ET dose is not enough to alter ABP in all regions of the frontal cortex and, in combination with TA, it showed an increase in the frontal cortex activity at the post-exercise moment. PMID:29538445

  3. The role of inferior parietal and inferior frontal cortex in working memory.

    Science.gov (United States)

    Baldo, Juliana V; Dronkers, Nina F

    2006-09-01

    Verbal working memory involves two major components: a phonological store that holds auditory-verbal information very briefly and an articulatory rehearsal process that allows that information to be refreshed and thus held longer in short-term memory (A. Baddeley, 1996, 2000; A. Baddeley & G. Hitch, 1974). In the current study, the authors tested two groups of patients who were chosen on the basis of their relatively focal lesions in the inferior parietal (IP) cortex or inferior frontal (IF) cortex. Patients were tested on a series of tasks that have been previously shown to tap phonological storage (span, auditory rhyming, and repetition) and articulatory rehearsal (visual rhyming and a 2-back task). As predicted, IP patients were disproportionately impaired on the span, rhyming, and repetition tasks and thus demonstrated a phonological storage deficit. IF patients, however, did not show impairment on these storage tasks but did exhibit impairment on the visual rhyming task, which requires articulatory rehearsal. These findings lend further support to the working memory model and provide evidence of the roles of IP and IF cortex in separable working memory processes. ((c) 2006 APA, all rights reserved).

  4. Reduced number of (/sup 3/H)nicotine and (/sup 3/H)acelylcholine binding sites in the frontal cortex of Alzheimer brains

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, A; Winblad, B

    1986-12-03

    Nicotinic cholinergic receptors were measured in human frontal cortex using (/sup 3/H)nicotine and (/sup 3/H)acetylcholine (in the presence of atropine) as receptor ligands. A parallel marked reduction in number of (/sup 3/H)nicotine (52%, P<0.01) and (/sup 3/H)acetylcholine (-55%, P<0.05) binding was found in the frontal cortex of Alzheimer brains (AD/SDAT) when compared to age-matched control brains. As a comparison the number of muscarinic receptors was quantified using (/sup 3/H)quinuclidinyl benzilate and found to be significantly increased (+23%, P<0.01) in AD/SDAT compared to controls. 26 refs.

  5. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    Science.gov (United States)

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    Directory of Open Access Journals (Sweden)

    Noriyuki Oka

    Full Text Available In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves, but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS.The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task. Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections.Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05, but cerebral oxygen exchange increased significantly more during left curves (p < 0.05 in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05 only in the right frontal eye field.Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  7. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving

    Science.gov (United States)

    Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori

    2015-01-01

    Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions

  8. Frontal-striatum dysfunction during reward processing: Relationships to amotivation in schizophrenia.

    Science.gov (United States)

    Chung, Yu Sun; Barch, Deanna M

    2016-04-01

    Schizophrenia is characterized by deficits of context processing, thought to be related to dorsolateral prefrontal cortex (DLPFC) impairment. Despite emerging evidence suggesting a crucial role of the DLPFC in integrating reward and goal information, we do not know whether individuals with schizophrenia can represent and integrate reward-related context information to modulate cognitive control. To address this question, 36 individuals with schizophrenia (n = 29) or schizoaffective disorder (n = 7) and 27 healthy controls performed a variant of a response conflict task (Padmala & Pessoa, 2011) during fMRI scanning, in both baseline and reward conditions, with monetary incentives on some reward trials. We used a mixed state-item design that allowed us to examine both sustained and transient reward effects on cognitive control. Different from predictions about impaired DLPFC function in schizophrenia, we found an intact pattern of increased sustained DLPFC activity during reward versus baseline blocks in individuals with schizophrenia at a group level but blunted sustained activations in the putamen. Contrary to our predictions, individuals with schizophrenia showed blunted cue-related activations in several regions of the basal ganglia responding to reward-predicting cues. Importantly, as predicted, individual differences in anhedonia/amotivation symptoms severity were significantly associated with reduced sustained DLPFC activation in the same region that showed overall increased activity as a function of reward. These results suggest that individual differences in motivational impairments in schizophrenia may be related to dysfunction of the DLPFC and striatum in motivationally salient situations. (c) 2016 APA, all rights reserved).

  9. Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.

    Science.gov (United States)

    Villa, R F; Ferrari, F; Gorini, A

    2012-12-27

    Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO

  10. The morphology of midcingulate cortex predicts frontal-midline theta neurofeedback success

    Directory of Open Access Journals (Sweden)

    Stefanie eEnriquez-Geppert

    2013-08-01

    Full Text Available Humans differ in their ability to learn how to control their own brain activity by neurofeedback. However, neural mechanisms underlying these inter-individual differences, which may determine training success and associated cognitive enhancement, are not well understood. Here, it is asked whether neurofeedback success of frontal-midline (fm theta, an oscillation related to higher cognitive functions, could be predicted by the morphology of brain structures known to be critically involved in fm-theta generation. Nineteen young, right-handed participants underwent magnetic resonance imaging of T1-weighted brain images, and took part in an individualized, eight-session neurofeedback training in order to learn how to enhance activity in their fm-theta frequency band. Initial training success, measured at the second training session, was correlated with the final outcome measure. We found that the inferior, superior and middle frontal cortices were not associated with training success. However, volume of the midcingulate cortex as well as volume and concentration of the underlying white matter structures act as predictor variables for the general responsiveness to training. These findings suggest a neuroanatomical foundation for the ability to learn to control one’s own brain activity.

  11. Neuroimaging Studies Of Striatum In Cognition, Part I: Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Jean-Sebastien eProvost

    2015-10-01

    Full Text Available The striatum has traditionally mainly been associated with playing a key role in the modulation of motor functions. Indeed, lesion studies in animals and studies of some neurological conditions in humans have brought further evidence to this idea. However, better methods of investigation have raised concerns about this notion, and it was proposed that the striatum could also be involved in different types of functions including cognitive ones. Although the notion was originally a matter of debate, it is now well accepted that the caudate nucleus contributes to cognition, while the putamen could be involved in motor functions, and to some extent in cognitive functions as well. With the arrival of modern neuroimaging techniques in the early 1990, knowledge supporting the cognitive aspect of the striatum has greatly increased, and a substantial number of scientific papers were published studying the role of the striatum in healthy individuals. For the first time, it was possible to assess the contribution of specific areas of the brain during the execution of a cognitive task. Neuroanatomical studies have described functional loops involving the striatum and the prefrontal cortex suggesting a specific interaction between these two structures. This review examines the data up to date and provides strong evidence for a specific contribution of the fronto-striatal regions in different cognitive processes, such as set-shifting, self-initiated responses, rule learning, action-contingency, and planning. Finally, a new two-level functional model involving the prefrontal cortex and the dorsal striatum is proposed suggesting an essential role of the dorsal striatum in selecting between competing potential responses or actions, and in resolving a high level of ambiguity.

  12. Enoxacin elevates microRNA levels in rat frontal cortex and prevents learned helplessness

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    2014-02-01

    Full Text Available Major depressive disorder (MDD is a major public health concern. Despite tremendous advancement, the pathogenic mechanisms associated with MDD are still unclear. Moreover, a significant number of MDD subjects do not respond to the currently available medication. MicroRNAs (miRNAs are a class of small non-coding RNAs that control gene expression by modulating translation, mRNA degradation or stability of mRNA targets. The role of miRNAs in disease pathophysiology is emerging rapidly. Recently, we reported that miRNA expression is down-regulated in frontal cortex of depressed suicide subjects, and that rats exposed to repeated inescapable shock show differential miRNA changes depending on whether they exhibited normal adaptive responses or learned helpless behavior. Enoxacin, a fluoroquinolone used clinically as an antibacterial compound, enhances the production of miRNAs in vitro and in peripheral tissues in vivo, but has not yet been tested as an experimental tool to study the relation of miRNA expression to neural functions or behavior. Treatment of rats with 10 or 25 mg/kg enoxacin for one week increased the expression of miRNAs in frontal cortex and decreased the proportion of rats exhibiting learned helpless behavior following inescapable shock. Further studies are warranted to learn whether enoxacin may ameliorate depressive behavior in other rodent paradigms and in human clinical situations, and if so whether its mechanism is due to upregulation of miRNAs.

  13. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.

    Science.gov (United States)

    Rudebeck, Peter H; Ripple, Joshua A; Mitz, Andrew R; Averbeck, Bruno B; Murray, Elisabeth A

    2017-02-22

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus-reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus-reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus-reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus-reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus-reward associations. MFC also showed

  14. Using fNIRS to Examine Occipital and Temporal Responses to Stimulus Repetition in Young Infants: Evidence of Selective Frontal Cortex Involvement

    Science.gov (United States)

    Emberson, Lauren L.; Cannon, Grace; Palmeri, Holly; Richards, John E.; Aslin, Richard N.

    2016-01-01

    How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices. PMID:28012401

  15. Reduced N-acetylaspartate levels in the frontal cortex of 3,4-methylenedioxymethamphetamine (Ecstasy) users: preliminary results.

    Science.gov (United States)

    Reneman, Liesbeth; Majoie, Charles B L M; Flick, Herman; den Heeten, Gerard J

    2002-02-01

    The perceived safety of the recreational drug methylenedioxymethamphetamine (MDMA), or Ecstasy, conflicts with animal evidence indicating that MDMA damages cortical serotonin (5-HT) neurons at doses similar to those used by humans. Few data are available about the effects of MDMA on the human brain. This study was designed to evaluate MDMA-related alterations in metabolite ratios with single-voxel proton ((1)H) MR spectroscopy. Fifteen male MDMA users (mean lifetime exposure, 723 tablets; mean time since last tablet, 12.0 weeks) and 12 age-matched control subjects underwent single-voxel (1)H MR spectroscopy. N-Acetylaspartate (NAA)/creatine (Cr), NAA/Choline (Cho), and myoinositol (MI)/Cr ratios were measured in midfrontal gray matter, midoccipital gray matter, and right parietal white matter. Data were analyzed with linear model-based multivariate analysis of variance. NAA/Cr (P =.04) and NAA/Cho (P =.03) ratios, markers associated with neuronal loss or dysfunction, were reduced in the frontal cortex of MDMA users. Neither NAA/Cr (P =.72) nor NAA/Cho (P =.12) ratios were different between both groups in occipital gray matter and parietal white matter (P =.18). Extent of previous MDMA use and frontal cortical NAA/Cr (rho = -.50, P =.012) or NAA/Cho (rho = -.550, P spectroscopy provide evidence for neuronal abnormality in the frontal cortex of MDMA users; these are correlated with the degree of MDMA exposure. These data suggest that MDMA may be a neurotoxin in humans, as it is in animals.

  16. The involvement of the striatum in decision making

    Science.gov (United States)

    Goulet-Kennedy, Julie; Labbe, Sara; Fecteau, Shirley

    2016-01-01

    Decision making has been extensively studied in the context of economics and from a group perspective, but still little is known on individual decision making. Here we discuss the different cognitive processes involved in decision making and its associated neural substrates. The putative conductors in decision making appear to be the prefrontal cortex and the striatum. Impaired decision-making skills in various clinical populations have been associated with activity in the prefrontal cortex and in the striatum. We highlight the importance of strengthening the degree of integration of both cognitive and neural substrates in order to further our understanding of decision-making skills. In terms of cognitive paradigms, there is a need to improve the ecological value of experimental tasks that assess decision making in various contexts and with rewards; this would help translate laboratory learnings into real-life benefits. In terms of neural substrates, the use of neuroimaging techniques helps characterize the neural networks associated with decision making; more recently, ways to modulate brain activity, such as in the prefrontal cortex and connected regions (eg, striatum), with noninvasive brain stimulation have also shed light on the neural and cognitive substrates of decision making. Together, these cognitive and neural approaches might be useful for patients with impaired decision-making skills. The drive behind this line of work is that decision-making abilities underlie important aspects of wellness, health, security, and financial and social choices in our daily lives. PMID:27069380

  17. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C.; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue. PMID:26594619

  18. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome.

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  19. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kei Mizuno

    2015-01-01

    Full Text Available The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS. We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG, which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  20. Spike-timing dependent plasticity in the striatum

    Directory of Open Access Journals (Sweden)

    Elodie Fino

    2010-06-01

    Full Text Available The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a selected activation of behavioral effectors. The striatal output neurons, the GABAergic medium-sized spiny neurons (MSNs, are in charge of the detection and integration of behaviorally relevant information. This property confers to the striatum the ability to extract relevant information from the background noise and select cognitive-motor sequences adapted to environmental stimuli. As long-term synaptic efficacy changes are believed to underlie learning and memory, the corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Here, we reviewed the different forms of spike-timing dependent plasticity (STDP occurring at corticostriatal synapses. Most of the studies have focused on MSNs and their ability to develop long-term plasticity. Nevertheless, the striatal interneurons (the fast-spiking GABAergic, the NO synthase and cholinergic interneurons also receive monosynaptic afferents from the cortex and tightly regulated corticostriatal information processing. Therefore, it is important to take into account the variety of striatal neurons to fully understand the ability of striatum to develop long-term plasticity. Corticostriatal STDP with various spike-timing dependence have been observed depending on the neuronal sub-populations and experimental conditions. This complexity highlights the extraordinary potentiality in term of plasticity of the corticostriatal pathway.

  1. Subliminal semantic priming changes the dynamic causal influence between the left frontal and temporal cortex.

    Science.gov (United States)

    Matsumoto, Atsushi; Kakigi, Ryusuke

    2014-01-01

    Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.

  2. Effects of sleep deprivation on extracellular serotonin in hippocampus and frontal cortex of the rat

    OpenAIRE

    Bjorvatn, B; Grønli, J; Hamre, F; Sørensen, E; Fiske, E; Bjorkum, Alvhild Alette; Portas, CM; Ursin, R

    2002-01-01

    Sleep deprivation improves the mood of depressed patients, but the exact mechanism behind this effect is unclear. An enhancement of serotonergic neurotransmission has been suggested. In this study, we used in vivo microdialysis to monitor extracellular serotonin in the hippocampus and the frontal cortex of rats during an 8 h sleep deprivation period. These brain regions were selected since both have been implicated in depression. The behavioral state of the animal was continuously monitored b...

  3. Neuroimaging studies of the striatum in cognition Part I: healthy individuals.

    Science.gov (United States)

    Provost, Jean-Sebastien; Hanganu, Alexandru; Monchi, Oury

    2015-01-01

    The striatum has traditionally mainly been associated with playing a key role in the modulation of motor functions. Indeed, lesion studies in animals and studies of some neurological conditions in humans have brought further evidence to this idea. However, better methods of investigation have raised concerns about this notion, and it was proposed that the striatum could also be involved in different types of functions including cognitive ones. Although the notion was originally a matter of debate, it is now well-accepted that the caudate nucleus contributes to cognition, while the putamen could be involved in motor functions, and to some extent in cognitive functions as well. With the arrival of modern neuroimaging techniques in the early 1990, knowledge supporting the cognitive aspect of the striatum has greatly increased, and a substantial number of scientific papers were published studying the role of the striatum in healthy individuals. For the first time, it was possible to assess the contribution of specific areas of the brain during the execution of a cognitive task. Neuroanatomical studies have described functional loops involving the striatum and the prefrontal cortex suggesting a specific interaction between these two structures. This review examines the data up to date and provides strong evidence for a specific contribution of the fronto-striatal regions in different cognitive processes, such as set-shifting, self-initiated responses, rule learning, action-contingency, and planning. Finally, a new two-level functional model involving the prefrontal cortex and the dorsal striatum is proposed suggesting an essential role of the dorsal striatum in selecting between competing potential responses or actions, and in resolving a high level of ambiguity.

  4. Issues in localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology.

    Science.gov (United States)

    Miller, Gregory A; Crocker, Laura D; Spielberg, Jeffrey M; Infantolino, Zachary P; Heller, Wendy

    2013-01-01

    The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative) or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left-hemisphere. Findings that appear contradictory at the level of frontal lobes as the units of analysis can be accommodated because hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.

  5. Reversed Procrastination by Focal Disruption of Medial Frontal Cortex.

    Science.gov (United States)

    Jha, Ashwani; Diehl, Beate; Scott, Catherine; McEvoy, Andrew W; Nachev, Parashkev

    2016-11-07

    An enduring puzzle in the neuroscience of voluntary action is the origin of the remarkably wide dispersion of the reaction time distribution, an interval far greater than is explained by synaptic or signal transductive noise [1, 2]. That we are able to change our planned actions-a key criterion of volition [3]-so close to the time of their onset implies decision-making must reach deep into the execution of action itself [4-6]. It has been influentially suggested the reaction time distribution therefore reflects deliberate neural procrastination [7], giving alternative response tendencies sufficient time for fair competition in pursuing a decision threshold that determines which one is behaviorally manifest: a race model, where action selection and execution are closely interrelated [8-11]. Although the medial frontal cortex exhibits a sensitivity to reaction time on functional imaging that is consistent with such a mechanism [12-14], direct evidence from disruptive studies has hitherto been lacking. If movement-generating and movement-delaying neural substrates are closely co-localized here, a large-scale lesion will inevitably mask any acceleration, for the movement itself could be disrupted. Circumventing this problem, here we observed focal intracranial electrical disruption of the medial frontal wall in the context of the pre-surgical evaluation of two patients with epilepsy temporarily reversing such hypothesized procrastination. Effector-specific behavioral acceleration, time-locked to the period of electrical disruption, occurred exclusively at a specific locus at the ventral border of the pre-supplementary motor area. A cardinal prediction of race models of voluntary action is thereby substantiated in the human brain. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.

    Science.gov (United States)

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-08-01

    The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

  7. Issues in Localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology

    Directory of Open Access Journals (Sweden)

    Gregory A. Miller

    2013-01-01

    Full Text Available The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left hemisphere. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.

  8. The role of medial frontal gyrus in action anticipation in professional badminton players

    Directory of Open Access Journals (Sweden)

    Huan Xu

    2016-11-01

    Full Text Available Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent (BOLD activation was assessed by means of functional magnetic resonance imaging (fMRI. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex. Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate

  9. A fundamental study on accumulation of [125I]IBZM in the rat striatum and on effect of non-labeled ligand

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyoshi; Nakamura, Toshihiko; Satou, Motohiro; Takeda, Tohoru; Wu, Jin; Motoji, Naomi; Shigematsu, Akiyo.

    1995-01-01

    Iodo-125-labeled iodobenzamide ([ 125 I]IBZM) is used as a specific binding radioligand to dopamine D 2 receptors with high affinity and selectivity. The radioligand was homogeneously distributed in the whole brain initially after anministration, and rapidly washed out from the dopamine receptor-poor area followed by persistent retention in the striatum. Regression curve generated from striatum/cortex PSL ratio indicated the constant washout rate from striatum and cortex respectively. In the pretreated rat by cold benzamide (2 mg/kg), the accumulation of the radioligand was significantly suppressed in the striatum (48.8%). Iodine-125-labeled iodo-benzamide has the promise for investigation of dopamine D 2 receptors in the living brain. (author)

  10. Modeling Conflict and Error in the Medial Frontal Cortex

    Science.gov (United States)

    Mayer, Andrew R.; Teshiba, Terri M.; Franco, Alexandre R.; Ling, Josef; Shane, Matthew S.; Stephen, Julia M.; Jung, Rex E.

    2014-01-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anticorrelated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). PMID:21976411

  11. Modeling conflict and error in the medial frontal cortex.

    Science.gov (United States)

    Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E

    2012-12-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.

  12. Cholinergic receptor binding in the frontal cortex of suicide victims

    International Nuclear Information System (INIS)

    Stanley, M.

    1986-01-01

    Because there is a high incidence of individuals diagnosed as having an affective disorder who subsequently commit suicide, the author thought it would be of interest to determine QNB binding in the brains of a large sample of suicide victims, and to compare the findings with a well-matched control group. Brain samples were obtained at autopsy from 22 suicide victims and 22 controls. Frontal cortex samples were diseected, frozen, and stored until assayed. Samples of tissue homogenate were incubated in duplicate with 10 concentrations of tritium-QNB. Specific binding was determined with and without atropine. The results confirmed previous studies in which no changes were noted in suicide versus control brains. While the findings neither disprove nor support the cholinergic hypothesis of depression, they do suggest that the neurochemical basis for the in vivo observations of increased responsivity of depressed individuals to muscarinic cholinergic agents might not involve changes in receptors estimated by QNB binding

  13. A functional difference in information processing between orbitofrontal cortex and ventral striatum during decision-making behaviour.

    Science.gov (United States)

    Stott, Jeffrey J; Redish, A David

    2014-11-05

    Both orbitofrontal cortex (OFC) and ventral striatum (vStr) have been identified as key structures that represent information about value in decision-making tasks. However, the dynamics of how this information is processed are not yet understood. We recorded ensembles of cells from OFC and vStr in rats engaged in the spatial adjusting delay-discounting task, a decision-making task that involves a trade-off between delay to and magnitude of reward. Ventral striatal neural activity signalled information about reward before the rat's decision, whereas such reward-related signals were absent in OFC until after the animal had committed to its decision. These data support models in which vStr is directly involved in action selection, but OFC processes decision-related information afterwards that can be used to compare the predicted and actual consequences of behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Trait aggression and trait impulsivity are not related to frontal cortex 5-HT2A receptor binding in healthy individuals

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sophie; Stenbæk, Dea Siggaard; Holst, Klaus

    2013-01-01

    age 47.0±18.7, range 23-86) to determine if trait aggression and trait impulsivity were related to frontal cortex 5-HT2A receptor binding (5-HT2AR) as measured with [(18)F]-altanserin PET imaging. Trait aggression and trait impulsivity were assessed with the Buss-Perry Aggression Questionnaire (AQ...... and the AQ or BIS-11 total scores. Also, there was no significant interaction between gender and frontal cortex 5-HT2AR in predicting trait aggression and trait impulsivity. This is the first study to examine how 5-HT2AR relates to trait aggression and trait impulsivity in a large sample of healthy......Numerous studies indicate that the serotonergic (5-HT) transmitter system is involved in the regulation of impulsive aggression and there is from post-mortem, in vivo imaging and genetic studies evidence that the 5-HT2A receptor may be involved. We investigated 94 healthy individuals (60 men, mean...

  15. Controlling striatal function via anterior frontal cortex stimulation

    NARCIS (Netherlands)

    Holstein, M.G.A. van; Froböse, M.I.; O'Shea, J.; Aarts, E.; Cools, R.

    2018-01-01

    Motivational, cognitive and action goals are processed by distinct, topographically organized, corticostriatal circuits. We aimed to test whether processing in the striatum is under causal control by cortical regions in the human brain by investigating the effects of offline transcranial magnetic

  16. Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism.

    Science.gov (United States)

    Gu, Feng; Chauhan, Ved; Chauhan, Abha

    2017-10-01

    Monoamine oxidases (MAOs) catalyze the metabolism of monoamine neurotransmitters, such as serotonin, dopamine, and norepinephrine, and are key regulators for brain function. In this study, we analyzed the activities of MAO-A and MAO-B in the cerebellum and frontal cortex from subjects with autism and age-matched control subjects. In the cerebellum, MAO-A activity in subjects with autism (aged 4-38 years) was significantly lower by 20.6% than in controls. When the subjects were divided into children (aged 4-12 years) and young adults (aged 13-38 years) subgroups, a significant decrease by 27.8% in the MAO-A activity was observed only in children with autism compared with controls. When the 95% confidence interval of the control group was taken as a reference range, reduced activity of MAO-A was observed in 70% of children with autism. In the frontal cortex, MAO-A activity in children with autism was also lower by 30% than in the control group, and impaired activity of MAO-A was observed in 55.6% of children with autism, although the difference between the autism and control groups was not significant when all subjects were considered. On the contrary, there was no significant difference in MAO-B activity in both the cerebellum and frontal cortex between children with autism and the control group as well as in adults. These results suggest impaired MAO-A activity in the brain of subjects with autism, especially in children with autism. Decreased activity of MAOs may lead to increased levels of monoaminergic neurotransmitters, such as serotonin, which have been suggested to have a critical role in autism. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex

    OpenAIRE

    Krieger-Redwood, Katya; Teige, Catarina; Davey, James; Hymers, Mark; Jefferies, Elizabeth

    2015-01-01

    Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings – as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is ...

  18. Challenge-driven attention: interacting frontal and brainstem systems

    Directory of Open Access Journals (Sweden)

    Rajeev D S Raizada

    2008-03-01

    Full Text Available The world is an unpredictable place, presenting challenges that fl uctuate from moment to moment. However, the neural systems for responding to such challenges are far from fully understood. Using fMRI, we studied an audiovisual task in which the trials' diffi culty and onset times varied unpredictably. Two regions were found to increase their activation for challenging trials, with their activities strongly correlated: right frontal cortex and the brainstem. The frontal area matched regions found in previous human studies of cognitive control, and activated in a graded manner with increasing task diffi culty. The brainstem responded only to the most diffi cult trials, showing a phasic activity pattern paralleling locus coeruleus recordings in monkeys. These results reveal a bridge between animal and human studies, and suggest interacting roles for the brainstem and right frontal cortex: the brainstem may signal that an attentional challenge is occurring, while right frontal cortex allocates cognitive resources in response.

  19. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  20. Paralimbic system and striatum are involved in motivational behavior.

    Science.gov (United States)

    Nishimura, Masahiko; Yoshii, Yoshihiko; Watanabe, Jobu; Ishiuchi, Shogo

    2009-10-28

    Goal-directed rewarded behavior and goal-directed non-rewarded behavior are concerned with motivation. However, the neural substrates involved in goal-directed non-rewarded behaviors are unknown. Using functional magnetic resonance imaging, we investigated the brain activities of healthy individuals during a novel tool use (turning a screwdriver) to elucidate the relationship between the brain mechanism relevant to goal-directed non-rewarded behavior and motivation. We found that our designed behavioral task evoked activities in the orbitofrontal cortex, striatum, anterior insula, lateral prefrontal cortex, and anterior cingulate cortex compared with a meaningless task. These results suggest that activation in these cerebral regions play important roles in motivational behavior without tangible rewards.

  1. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass

    Science.gov (United States)

    Menegas, William; Bergan, Joseph F; Ogawa, Sachie K; Isogai, Yoh; Umadevi Venkataraju, Kannan; Osten, Pavel; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2015-01-01

    Combining rabies-virus tracing, optical clearing (CLARITY), and whole-brain light-sheet imaging, we mapped the monosynaptic inputs to midbrain dopamine neurons projecting to different targets (different parts of the striatum, cortex, amygdala, etc) in mice. We found that most populations of dopamine neurons receive a similar set of inputs rather than forming strong reciprocal connections with their target areas. A common feature among most populations of dopamine neurons was the existence of dense ‘clusters’ of inputs within the ventral striatum. However, we found that dopamine neurons projecting to the posterior striatum were outliers, receiving relatively few inputs from the ventral striatum and instead receiving more inputs from the globus pallidus, subthalamic nucleus, and zona incerta. These results lay a foundation for understanding the input/output structure of the midbrain dopamine circuit and demonstrate that dopamine neurons projecting to the posterior striatum constitute a unique class of dopamine neurons regulated by different inputs. DOI: http://dx.doi.org/10.7554/eLife.10032.001 PMID:26322384

  2. Frontal and subcortical grey matter reductions in PTSD.

    Science.gov (United States)

    O'Doherty, Daniel C M; Tickell, Ashleigh; Ryder, Will; Chan, Charles; Hermens, Daniel F; Bennett, Maxwell R; Lagopoulos, Jim

    2017-08-30

    Post-traumatic stress disorder (PTSD) is characterised by a range of debilitating psychological, physical and cognitive symptoms. PTSD has been associated with grey matter atrophy in limbic and frontal cortical brain regions. However, previous studies have reported heterogeneous findings, with grey matter changes observed beyond limbic/frontal areas. Seventy-five adults were recruited from the community, 25 diagnosed with PTSD along with 25 healthy and 25 trauma exposed age and gender matched controls. Participants underwent clinical assessment and magnetic resonance imaging. The data-analyses method Voxel Based Morphometry (VBM) was used to estimate cortical grey matter volumes. When compared to both healthy and trauma exposed controls, PTSD subjects demonstrated decreased grey matter volumes within subcortical brain regions-including the hippocampus and amygdala-along with reductions in the anterior cingulate cortex, frontal medial cortex, middle frontal gyrus, superior frontal gyrus, paracingulate gyrus, and precuneus cortex. Significant negative correlations were found between total CAPS lifetime clinical scores/sub-scores and GM volume of both the PTSD and TC groups. GM volumes of the left rACC and right amygdala showed a significant negative correlation within PTSD diagnosed subjects. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. Motor Skills Training Enhances α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Subunit mRNA Expression in the Ipsilateral Sensorimotor Cortex and Striatum of Rats Following Intracerebral Hemorrhage.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Kazuto; Kawanaka, Kentaro; Takamatsu, Yasuyuki; Tamaki, Hiroyuki

    2017-10-01

    We investigated the effects of acrobatic training (AT) on expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits in the sensorimotor cortex and striatum after intracerebral hemorrhage (ICH). Male Wistar rats were divided into 4 groups: ICH without AT (ICH), ICH with AT (ICH + AT), sham operation without AT (SHAM), and sham operation with AT (SHAM + AT). ICH was induced by collagenase injection into the left striatum. The ICH + AT group performed 5 acrobatic tasks daily on days 4-28 post ICH. Forelimb sensorimotor function was evaluated using the forelimb placing test. On days 14 and 29, mRNA expression levels of AMPAR subunits GluR1-4 were measured by real-time reverse transcription-polymerase chain reaction. Forelimb placing test scores were significantly higher in the ICH + AT group than in the ICH group. Expression levels of all AMPAR subunit mRNAs were significantly higher in the ipsilateral sensorimotor cortex of rats in the ICH + AT group than in that of rats in the ICH group on day 29. GluR3 and GluR4 expression levels were reduced in the ipsilateral striatum of rats in the ICH group compared with that of rats in the SHAM group on day 14. These changes may play a critical role in motor skills training-induced recovery after ICH. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. Social isolation stress and chronic glutathione deficiency have a common effect on the glutamine-to-glutamate ratio and myo-inositol concentration in the mouse frontal cortex.

    Science.gov (United States)

    Corcoba, Alberto; Gruetter, Rolf; Do, Kim Q; Duarte, João M N

    2017-09-01

    Environmental stress can interact with genetic predisposition to increase the risk of developing psychopathology. In this work, we tested the hypothesis that social isolation stress interacts with impaired glutathione synthesis and have cumulative effects on the neurochemical profile of the frontal cortex. A mouse model with chronic glutathione deficit induced by knockout (-/-) of the glutamate-cysteine ligase modulatory subunit (Gclm) was exposed to social isolation stress from weaning to post-natal day 65. Using magnetic resonance methods at high-field (14.1 T), we analysed the neurochemical profile in the frontal cortex, brain size and ventricular volume of adult animals. Glutathione deficit was accompanied by elevated concentrations of N-acetylaspartate, alanine, and glutamine, as well as the ratio of glutamine-to-glutamate (Gln/Glu), and by a reduction in levels of myo-inositol and choline-containing compounds in the frontal cortex of -/- animals with respect to wild-type littermates. Although there was no significant interaction between social isolation stress and glutathione deficiency, mice reared in isolation displayed lower myo-inositol concentration (-8.4%, p social isolation had no effect on these parameters. We conclude that social isolation caused neurochemical alterations that may add to those associated to impaired glutathione synthesis. © 2017 International Society for Neurochemistry.

  5. Human medial frontal cortex activity predicts learning from errors.

    Science.gov (United States)

    Hester, Robert; Barre, Natalie; Murphy, Kevin; Silk, Tim J; Mattingley, Jason B

    2008-08-01

    Learning from errors is a critical feature of human cognition. It underlies our ability to adapt to changing environmental demands and to tune behavior for optimal performance. The posterior medial frontal cortex (pMFC) has been implicated in the evaluation of errors to control behavior, although it has not previously been shown that activity in this region predicts learning from errors. Using functional magnetic resonance imaging, we examined activity in the pMFC during an associative learning task in which participants had to recall the spatial locations of 2-digit targets and were provided with immediate feedback regarding accuracy. Activity within the pMFC was significantly greater for errors that were subsequently corrected than for errors that were repeated. Moreover, pMFC activity during recall errors predicted future responses (correct vs. incorrect), despite a sizeable interval (on average 70 s) between an error and the next presentation of the same recall probe. Activity within the hippocampus also predicted future performance and correlated with error-feedback-related pMFC activity. A relationship between performance expectations and pMFC activity, in the absence of differing reinforcement value for errors, is consistent with the idea that error-related pMFC activity reflects the extent to which an outcome is "worse than expected."

  6. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Martinez, Hector R; Gonzalez-Garza, Maria T; Moreno-Cuevas, Jorge E; Caro, Enrique; Gutierrez-Jimenez, Eugenio; Segura, Jose J

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by the selective death of motor neurons. CD133(+) stem cells are known to have the capacity to differentiate into neural lineages. Stem cells may provide an alternative treatment for ALS and other neurodegenerative diseases. Five men and five women (aged 38-62 years) with confirmed ALS were included in this study. Our institutional ethics and research committees approved the protocol. After informed consent was obtained, patients underwent Hidrogen-Magnetic Resonance Imaging (H-MRI) spectroscopy and were given scores according to an ALS functional rating scale, Medical Research Council power muscle scale and daily living activities. Bone marrow was stimulated with 300 microg filgrastim subcutaneously daily for 3 days. Peripheral blood mononuclear cells were obtained after admission by leukapheresis. The cell suspension was conjugated with anti-human CD133 superparamagnetic microbeads, and linked cells were isolated in a magnetic field. The isolated cells (2.5-7.5x10(5)) were resuspended in 300 microL of the patient's cerebrospinal fluid, and implanted in motor cortexes using a Hamilton syringe. Ten patients with confirmed ALS without transplantation were used as a control group. Patients were followed up for a period of 1 year. The autologous transplantation of CD133(+) stem cells into the frontal motor cortex is a safe and well-tolerated procedure in ALS patients. The survival of treated patients was statistically higher (P=0.01) than untreated control patients. Stem-cell transplantation in the motor cortex delays ALS progression and improves quality of life.

  7. Long-range functional interactions of anterior insula and medial frontal cortex are differently modulated by visuospatial and inductive reasoning tasks.

    Science.gov (United States)

    Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide

    2013-09-01

    The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. 5HT2A receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice.

    Science.gov (United States)

    Amodeo, D A; Rivera, E; Cook, E H; Sweeney, J A; Ragozzino, M E

    2017-03-01

    Restricted and repetitive behaviors are a defining feature of autism, which can be expressed as a cognitive flexibility deficit or stereotyped, motor behaviors. There is limited knowledge about the underlying neuropathophysiology contributing to these behaviors. Previous findings suggest that central 5HT 2A receptor activity is altered in autism, while recent work indicates that systemic 5HT 2A receptor antagonist treatment reduces repetitive behaviors in an idiopathic model of autism. 5HT 2A receptors are expressed in the orbitofrontal cortex and striatum. These two regions have been shown to be altered in autism. The present study investigated whether 5HT 2A receptor blockade in the dorsomedial striatum or orbitofrontal cortex in the BTBR mouse strain, an idiopathic model of autism, affects the phenotype related to restricted and repetitive behaviors. Microinfusion of the 5HT 2A receptor antagonist, M100907 into the dorsomedial striatum alleviated a reversal learning impairment and attenuated grooming behavior. M100907 infusion into the orbitofrontal cortex increased perseveration during reversal learning and potentiated grooming. These findings suggest that increased 5HT 2A receptor activity in the dorsomedial striatum may contribute to behavioral inflexibility and stereotyped behaviors in the BTBR mouse. 5HT 2A receptor signaling in the orbitofrontal cortex may be critical for inhibiting a previously learned response during reversal learning and expression of stereotyped behavior. The present results suggest which brain areas exhibit abnormalities underlying repetitive behaviors in an idiopathic mouse model of autism, as well as which brain areas systemic treatment with M100907 may principally act on in BTBR mice to attenuate repetitive behaviors. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination.

    Science.gov (United States)

    Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K; Fröhlich, Flavio

    2016-03-30

    Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contrast visual input. About two-thirds of all recorded neurons in dl-FC were modulated by at least one of the two task variables, task difficulty and target location. More neurons in dl-FC preferred the hard trials; no such preference bias was found for target location. In individual neurons, this preference for specific task types was limited to brief epochs. Finally, optogenetic stimulation confirmed the functional role of the activity in dl-FC before target touch; suppression of activity in pyramidal neurons with the ArchT silencing opsin resulted in a decrease in reaction time to touch the target but not to retrieve reward. In conclusion, dl-FC activity is differentially recruited for high perceptual difficulty in the freely-moving ferret and the resulting signal may provide top-down behavioral inhibition.

  10. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Otsuka, Makoto; Ichiya, Yuici; Kuwabara, Yasuo

    1989-01-01

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author)

  11. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    Science.gov (United States)

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  12. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.

    Science.gov (United States)

    Lobier, Muriel; Palva, J Matias; Palva, Satu

    2018-01-15

    Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Differentiated parietal connectivity of frontal regions for "what" and "where" memory.

    Science.gov (United States)

    Rottschy, C; Caspers, S; Roski, C; Reetz, K; Dogan, I; Schulz, J B; Zilles, K; Laird, A R; Fox, P T; Eickhoff, S B

    2013-11-01

    In a previous meta-analysis across almost 200 neuroimaging experiments, working memory for object location showed significantly stronger convergence on the posterior superior frontal gyrus, whereas working memory for identity showed stronger convergence on the posterior inferior frontal gyrus (dorsal to, but overlapping with Brodmann's area BA 44). As similar locations have been discussed as part of a dorsal frontal-superior parietal reach system and an inferior frontal grasp system, the aim of the present study was to test whether the regions of working-memory related "what" and "where" processing show a similar distinction in parietal connectivity. The regions that were found in the previous meta-analysis were used as seeds for functional connectivity analyses using task-based meta-analytic connectivity modelling and task-independent resting state correlations. While the ventral seed showed significantly stronger connectivity with the bilateral intraparietal sulcus (IPS), the dorsal seed showed stronger connectivity with the bilateral posterior inferior parietal and the medial superior parietal lobule. The observed connections of regions involved in memory for object location and identity thus clearly demonstrate a distinction into separate pathways that resemble the parietal connectivity patterns of the dorsal and ventral premotor cortex in non-human primates and humans. It may hence be speculated that memory for a particular location and reaching towards it as well as object memory and finger positioning for manipulation may rely on shared neural systems. Moreover, the ensuing regions, in turn, featured differential connectivity with the bilateral ventral and dorsal extrastriate cortex, suggesting largely segregated bilateral connectivity pathways from the dorsal visual cortex via the superior and inferior parietal lobules to the dorsal posterior frontal cortex and from the ventral visual cortex via the IPS to the ventral posterior frontal cortex that may

  14. Role of the Frontal Cortex in Standing Postural Sway Tasks While Dual-Tasking: A Functional Near-Infrared Spectroscopy Study Examining Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujita

    2016-01-01

    Full Text Available Posture control during a dual-task involves changing the distribution of attention resources between the cognitive and motor tasks and involves the frontal cortex working memory (WM. The present study aimed to better understand the impact of frontal lobe activity and WM capacity in postural control during a dual-task. High and low WM-span groups were compared using their reading span test scores. High and low WM capacity were compared based on cognitive and balance performance and hemoglobin oxygenation (oxyHb levels during standing during single (S-S, standing during dual (S-D, one leg standing during single (O-S, and one leg standing during dual (O-D tasks. For sway pass length, significant difference in only the O-D task was observed between both groups. oxyHb levels were markedly increased in the right dorsolateral prefrontal cortex and supplementary motor area in the high-span group during a dual-task. Therefore, WM capacity influenced the allocation of attentional resources and motor performance.

  15. BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations.

    Science.gov (United States)

    Costumero, Víctor; Barrós-Loscertales, Alfonso; Fuentes, Paola; Rosell-Negre, Patricia; Bustamante, Juan Carlos; Ávila, César

    2016-09-01

    According to the Reinforcement Sensitivity Theory, behavioral studies have found that individuals with stronger reward sensitivity easily detect cues of reward and establish faster associations between instrumental responses and reward. Neuroimaging studies have shown that processing anticipatory cues of reward is accompanied by stronger ventral striatum activity in individuals with stronger reward sensitivity. Even though establishing response-outcome contingencies has been consistently associated with dorsal striatum, individual differences in this process are poorly understood. Here, we aimed to study the relation between reward sensitivity and brain activity while processing response-reward contingencies. Forty-five participants completed the BIS/BAS questionnaire and performed a gambling task paradigm in which they received monetary rewards or punishments. Overall, our task replicated previous results that have related processing high reward outcomes with activation of striatum and medial frontal areas, whereas processing high punishment outcomes was associated with stronger activity in insula and middle cingulate. As expected, the individual differences in the activity of dorsomedial striatum correlated positively with BAS-Drive. Our results agree with previous studies that have related the dorsomedial striatum with instrumental performance, and suggest that the individual differences in this area may form part of the neural substrate responsible for modulating instrumental conditioning by reward sensitivity.

  16. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    Science.gov (United States)

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  17. 5-HT has contrasting effects in the frontal cortex, but not the hypothalamus, on changes in noradrenaline efflux induced by the monoamine releasing-agent, d-amphetamine, and the reuptake inhibitor, BTS 54 354.

    Science.gov (United States)

    Géranton, Sandrine M; Heal, David J; Stanford, S Clare

    2004-03-01

    There is extensive evidence for functional interactions between central noradrenergic and serotonergic neurones. Here, dual-probe microdialysis was used in freely-moving rats to compare the effects of 5-HT on noradrenergic transmission in the rat frontal cortex and hypothalamus. We studied the effects of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA; which depleted 5-HT stores in both the frontal cortex and the hypothalamus), on spontaneous efflux of noradrenaline and on the noradrenergic responses to d-amphetamine, and the monoamine reuptake inhibitor, BTS 54 354. pCPA pretreatment alone did not affect spontaneous noradrenaline efflux in either brain region, whether or not alpha2-autoreceptors were inactivated by administration of the alpha2-antagonist, atipamezole (1 mg/kg i.p). However, in the frontal cortex, pCPA pretreatment augmented the amplitude of, and prolonged, the noradrenergic response to local infusion of d-amphetamine (10 microM). In contrast, pCPA abolished the increase in cortical noradrenaline efflux induced by local infusion of BTS 54 354 (50 microM). In the hypothalamus, pCPA did not affect the amplitude of the response to either of these agents but did prolong the effects of d-amphetamine on noradrenaline efflux. These findings suggest that serotonergic transmission has complex effects on the noradrenergic response to drugs that increase noradrenergic transmission in the frontal cortex, but has less influence in the hypothalamus.

  18. Prenatal alcohol exposure modifies glucocorticoid receptor subcellular distribution in the medial prefrontal cortex and impairs frontal cortex-dependent learning.

    Directory of Open Access Journals (Sweden)

    Andrea M Allan

    Full Text Available Prenatal alcohol exposure (PAE has been shown to impair learning, memory and executive functioning in children. Perseveration, or the failure to respond adaptively to changing contingencies, is a hallmark on neurobehavioral assessment tasks for human fetal alcohol spectrum disorder (FASD. Adaptive responding is predominantly a product of the medial prefrontal cortex (mPFC and is regulated by corticosteroids. In our mouse model of PAE we recently reported deficits in hippocampal formation-dependent learning and memory and a dysregulation of hippocampal formation glucocorticoid receptor (GR subcellular distribution. Here, we examined the effect of PAE on frontal cortical-dependent behavior, as well as mPFC GR subcellular distribution and the levels of regulators of intracellular GR transport. PAE mice displayed significantly reduced response flexibility in a Y-maze reversal learning task. While the levels of total nuclear GR were reduced in PAE mPFC, levels of GR phosphorylated at serines 203, 211 and 226 were not significantly changed. Cytosolic, but not nuclear, MR levels were elevated in the PAE mPFC. The levels of critical GR trafficking proteins, FKBP51, Hsp90, cyclophilin 40, dynamitin and dynein intermediate chain, were altered in PAE mice, in favor of the exclusion of GR from the nucleus, indicating dysregulation of GR trafficking. Our findings suggest that there may be a link between a deficit in GR nuclear localization and frontal cortical learning deficits in prenatal alcohol-exposed mice.

  19. Dissociations in Hippocampal and Frontal Contributions to Episodic Memory Performance

    OpenAIRE

    Kramer, Joel H.; Rosen, Howard J.; Du, An-Tao; Schuff, Norbert; Hollnagel, Caroline; Weiner, Michael W.; Miller, Bruce L.; Delis, Dean C.

    2005-01-01

    The hippocampus and frontal lobes both contribute to episodic memory performance. In the present study, the authors evaluated the relative contributions of hippocampus, frontal lobes, anterior temporal cortex, and posterior cortex to memory performance in neurodegenerative patients and normal older controls. Subjects (n = 42) were studied with structural MRI and a memory paradigm that measured delayed recall, semantic clustering during recall, recognition discriminability, and recognition res...

  20. Alteration of astrocytes and Wnt/β-catenin signaling in the frontal cortex of autistic subjects

    Directory of Open Access Journals (Sweden)

    Cao Fujiang

    2012-09-01

    Full Text Available Abstract Background Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. To date the etiology of this disorder is poorly understood. Studies suggest that astrocytes play critical roles in neural plasticity by detecting neuronal activity and modulating neuronal networks. Recently, a number of studies suggested that an abnormal function of glia/astrocytes may be involved in the development of autism. However, there is yet no direct evidence showing how astrocytes develop in the brain of autistic individuals. Methods Study subjects include brain tissue from autistic subjects, BTBR T + tfJ (BTBR and Neuroligin (NL-3 knock-down mice. Western blot analysis, Immunohistochemistry and confocal microscopy studies have be used to examine the density and morphology of astrocytes, as well as Wnt and β-catenin protein expression. Results In this study, we demonstrate that the astrocytes in autisitcsubjects exhibit significantly reduced branching processes, total branching length and cell body sizes. We also detected an astrocytosis in the frontal cortex of autistic subjects. In addition, we found that the astrocytes in the brain of an NL3 knockdown mouse exhibited similar alterations to what we found in the autistic brain. Furthermore, we detected that both Wnt and β-catenin proteins are decreased in the frontal cortex of autistic subjects. Wnt/β-catenin pathway has been suggested to be involved in the regulation of astrocyte development. Conclusions Our findings imply that defects in astrocytes could impair neuronal plasticity and partially contribute to the development of autistic-like behaviors in both humans and mice. The alteration of Wnt/β-catenin pathway in the brain of autistic subjects may contribute to the changes of astrocytes.

  1. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2010-01-01

    Full Text Available Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated, and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486. On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats. Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress

  2. Early growth hormone (GH) treatment promotes relevant motor functional improvement after severe frontal cortex lesion in adult rats.

    Science.gov (United States)

    Heredia, Margarita; Fuente, A; Criado, J; Yajeya, J; Devesa, J; Riolobos, A S

    2013-06-15

    A number of studies, in animals and humans, describe the positive effects of the growth hormone (GH) treatment combined with rehabilitation on brain reparation after brain injury. We examined the effect of GH treatment and rehabilitation in adult rats with severe frontal motor cortex ablation. Thirty-five male rats were trained in the paw-reaching-for-food task and the preferred forelimb was recorded. Under anesthesia, the motor cortex contralateral to the preferred forelimb was aspirated or sham-operated. Animals were then treated with GH (0.15 mg/kg/day, s.c) or vehicle during 5 days, commencing immediately or 6 days post-lesion. Rehabilitation was applied at short- and long-term after GH treatment. Behavioral data were analized by ANOVA following Bonferroni post hoc test. After sacrifice, immunohistochemical detection of glial fibrillary acid protein (GFAP) and nestin were undertaken in the brain of all groups. Animal group treated with GH immediately after the lesion, but not any other group, showed a significant improvement of the motor impairment induced by the motor lesion, and their performances in the motor test were no different from sham-operated controls. GFAP immunolabeling and nestin immunoreactivity were observed in the perilesional area in all injured animals; nestin immunoreactivity was higher in GH-treated injured rats (mainly in animals GH-treated 6 days post-lesion). GFAP immunoreactivity was similar among injured rats. Interestingly, nestin re-expression was detected in the contralateral undamaged motor cortex only in GH-treated injured rats, being higher in animals GH-treated immediately after the lesion than in animals GH-treated 6 days post-lesion. Early GH treatment induces significant recovery of the motor impairment produced by frontal cortical ablation. GH effects include increased neurogenesis for reparation (perilesional area) and for increased brain plasticity (contralateral motor area). Copyright © 2013 Elsevier B.V. All rights

  3. Metabolism of glucose in brain of patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Yokoi, Fuji; Ando, Kazuya; Iio, Masaaki.

    1984-01-01

    We examined 11 C accumulation by positron emission computed tomography in the region of interest (ROI) in the brain of 8 patients with Parkinson's disease and 5 normal controls when administered with 11 C-glucose (per os). 11 C-glucose was prepared from 11 CO 2 by photosynthesis. 1) No significant difference was observed in the 11 C accumulation in the striatum and cerebral cortex (frontal cortex, temporal cortex and occipital cortex) in 4 patients with Parkinson's disease between continuous medication and 7--10 day interruption of medication. 2) No difference was observed in the 11 C accumulation in the striatum and cerebral cortex between 8 patients with Parkinson's disease and 5 normal controls. (author)

  4. Storage and executive processes in the frontal lobes.

    Science.gov (United States)

    Smith, E E; Jonides, J

    1999-03-12

    The human frontal cortex helps mediate working memory, a system that is used for temporary storage and manipulation of information and that is involved in many higher cognitive functions. Working memory includes two components: short-term storage (on the order of seconds) and executive processes that operate on the contents of storage. Recently, these two components have been investigated in functional neuroimaging studies. Studies of storage indicate that different frontal regions are activated for different kinds of information: storage for verbal materials activates Broca's area and left-hemisphere supplementary and premotor areas; storage of spatial information activates the right-hemisphere premotor cortex; and storage of object information activates other areas of the prefrontal cortex. Two of the fundamental executive processes are selective attention and task management. Both processes activate the anterior cingulate and dorsolateral prefrontal cortex.

  5. In vivo binding of 125I-LSD to serotonin 5-HT2 receptors in mouse brain

    International Nuclear Information System (INIS)

    Hartig, P.R.; Scheffel, U.; Frost, J.J.; Wagner, H.N. Jr.

    1985-01-01

    The binding of 125 I-LSD (2-[ 125 I]-lysergic acid diethylamide) was studied in various mouse brain regions following intravenous injection of the radioligand. The high specific activity of 125 I-LSD enabled the injection of low mass doses (14ng/kg), which are well below the threshold for induction of any known physiological effect of the probe. The highest levels of 125 I-LSD binding were found in the frontal cortex, olfactory tubercles, extra-frontal cortex and striatum while the lowest level was found in the cerebellum. Binding was saturable in the frontal cortex but increased linearly in the cerebellum with increasing doses of 125 I-LSD. Serotonergic compounds potently inhibited 125 I-LSD binding in cortical regions, olfactory tubercles, and hypothalamus but had no effect in the cerebellum. Dopaminergic compounds caused partial inhibition of binding in the striatum while adrenergic compounds were inactive. From these studies the authors conclude that 125 I-LSD labels serotonin 5-HT 2 receptor sites in cortical regions with no indication that other receptor sites are labeled. In the olfactory tubercles and hypothalamus, 125 I-LSD labeling occurs predominantly or entirely at serotonic 5-HT 2 sites. In the striatum, 125 I-LSD labels approximately equal proportions of serotonergic and dopaminergic sites. These data indicate that 125 I-LSD labels serotonin receptors in vivo and suggests that appropriate derivatives of 2I-LSD may prove useful for tomographic imaging of serotonin 5-HT 2 receptors in the mammalian cortex

  6. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.

    Science.gov (United States)

    Bussey, T J; Everitt, B J; Robbins, T W

    1997-10-01

    The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.

  7. Increased 3H-spiperone binding sites in mesolimbic area related to methamphetamine-induced behavioral hypersensitivity

    International Nuclear Information System (INIS)

    Akiyama, K.; Sato, M.; Otsuki, S.

    1982-01-01

    The specific 3 H-spiperone binding to membrane homogenates of the striatum, mesolimbic area, and frontal cortex was examined in two groups of rats pretreated once daily with saline or 4 mg/kg of methamphetamine (MAP) for 14 days. At 7 days following cessation of chronic pretreatment, all rats received an injection of 4 mg/kg of MAP and were decapitated 1 hr after the injection. In the chronic saline-pretreatment group, the single administration of MAP induced significant changes in the number (Bmax) of specific 3 H-spiperone binding sites (a decrease in the striatum and an increase in the mesolimbic area and frontal cortex), but no significant changes in the affinity (KD) in any brain area. The chronic MAP pretreatment markedly augmented the changes in Bmax in the striatum and mesolimbic area. The increase in specific 3 H-spiperone binding sites in the mesolimbic area is discussed in relation to MAP-induced behavioral hypersensitivity

  8. Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex

    Science.gov (United States)

    Goldstein, Rita Z.; Volkow, Nora D.

    2005-01-01

    Objective Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. Method An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. Results The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to track, update, and modulate the salience of a reinforcer as a function of context and expectation and the ability to control and inhibit prepotent responses. Conclusions These results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervaluing of alternative reinforcers, and deficits in inhibitory control for drug responses. These changes in addiction, which the authors call I-RISA (impaired response inhibition and salience attribution), expand the traditional concepts of drug dependence that emphasize limbic-regulated responses to pleasure and reward. PMID:12359667

  9. Alterations in amino acid levels in mouse brain regions after adjunctive treatment of brexpiprazole with fluoxetine: comparison with (R)-ketamine.

    Science.gov (United States)

    Ma, Min; Ren, Qian; Fujita, Yuko; Yang, Chun; Dong, Chao; Ohgi, Yuta; Futamura, Takashi; Hashimoto, Kenji

    2017-11-01

    Brexpiprazole, a serotonin-dopamine activity modulator, is approved in the USA as an adjunctive therapy to antidepressants for treating major depressive disorders. Similar to the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine, the combination of brexpiprazole and fluoxetine has demonstrated antidepressant-like effects in animal models of depression. The present study was conducted to examine whether the combination of brexpiprazole and fluoxetine could affect the tissue levels of amino acids [glutamate, glutamine, γ-aminobutyric acid (GABA), D-serine, L-serine, and glycine] that are associated with NMDAR neurotransmission. The tissue levels of amino acids in the frontal cortex, striatum, hippocampus, and cerebellum were measured after a single [or repeated (14 days)] oral administration of vehicle, fluoxetine (10 mg/kg), brexpiprazole (0.1 mg/kg), or a combination of the two drugs. Furthermore, we measured the tissue levels of amino acids after a single administration of the NMDAR antagonist (R)-ketamine. A single injection of the combination of fluoxetine and brexpiprazole significantly increased GABA levels in the striatum, the D-serine/L-serine ratio in the frontal cortex, and the glycine/L-serine ratio in the hippocampus. A repeated administration of the combination significantly altered the tissue levels of amino acids in all regions. Interestingly, a repeated administration of the combination significantly decreased the D-serine/L-serine ratio in the frontal cortex, striatum, and hippocampus. In contrast, a single administration of (R)-ketamine significantly increased the D-serine/L-serine ratio in the frontal cortex. These results suggested that alterations in the tissue levels of these amino acids may be involved in the antidepressant-like effects of the combination of brexpiprazole and fluoxetine.

  10. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer’s disease

    Science.gov (United States)

    Franzmeier, Nicolai; Düzel, Emrah; Jessen, Frank; Buerger, Katharina; Levin, Johannes; Duering, Marco; Dichgans, Martin; Haass, Christian; Suárez-Calvet, Marc; Fagan, Anne M; Paumier, Katrina; Benzinger, Tammie; Masters, Colin L; Morris, John C; Perneczky, Robert; Janowitz, Daniel; Catak, Cihan; Wolfsgruber, Steffen; Wagner, Michael; Teipel, Stefan; Kilimann, Ingo; Ramirez, Alfredo; Rossor, Martin; Jucker, Mathias; Chhatwal, Jasmeer; Spottke, Annika; Boecker, Henning; Brosseron, Frederic; Falkai, Peter; Fliessbach, Klaus; Heneka, Michael T; Laske, Christoph; Nestor, Peter; Peters, Oliver; Fuentes, Manuel; Menne, Felix; Priller, Josef; Spruth, Eike J; Franke, Christiana; Schneider, Anja; Kofler, Barbara; Westerteicher, Christine; Speck, Oliver; Wiltfang, Jens; Bartels, Claudia; Araque Caballero, Miguel Ángel; Metzger, Coraline; Bittner, Daniel; Weiner, Michael; Lee, Jae-Hong; Salloway, Stephen; Danek, Adrian; Goate, Alison; Schofield, Peter R; Bateman, Randall J; Ewers, Michael

    2018-01-01

    Abstract Patients with Alzheimer’s disease vary in their ability to sustain cognitive abilities in the presence of brain pathology. A major open question is which brain mechanisms may support higher reserve capacity, i.e. relatively high cognitive performance at a given level of Alzheimer’s pathology. Higher functional MRI-assessed functional connectivity of a hub in the left frontal cortex is a core candidate brain mechanism underlying reserve as it is associated with education (i.e. a protective factor often associated with higher reserve) and attenuated cognitive impairment in prodromal Alzheimer’s disease. However, no study has yet assessed whether such hub connectivity of the left frontal cortex supports reserve throughout the evolution of pathological brain changes in Alzheimer’s disease, including the presymptomatic stage when cognitive decline is subtle. To address this research gap, we obtained cross-sectional resting state functional MRI in 74 participants with autosomal dominant Alzheimer’s disease, 55 controls from the Dominantly Inherited Alzheimer’s Network and 75 amyloid-positive elderly participants, as well as 41 amyloid-negative cognitively normal elderly subjects from the German Center of Neurodegenerative Diseases multicentre study on biomarkers in sporadic Alzheimer’s disease. For each participant, global left frontal cortex connectivity was computed as the average resting state functional connectivity between the left frontal cortex (seed) and each voxel in the grey matter. As a marker of disease stage, we applied estimated years from symptom onset in autosomal dominantly inherited Alzheimer’s disease and cerebrospinal fluid tau levels in sporadic Alzheimer’s disease cases. In both autosomal dominant and sporadic Alzheimer’s disease patients, higher levels of left frontal cortex connectivity were correlated with greater education. For autosomal dominant Alzheimer’s disease, a significant left frontal cortex connectivity

  11. Orbitofrontal cortex function and structure in depression.

    Science.gov (United States)

    Drevets, Wayne C

    2007-12-01

    The orbitofrontal cortex (OFC) has been implicated in the pathophysiology of major depression by evidence obtained using neuroimaging, neuropathologic, and lesion analysis techniques. The abnormalities revealed by these techniques show a regional specificity, and suggest that some OFC regions which appear cytoarchitectonically distinct also are functionally distinct with respect to mood regulation. For example, the severity of depression correlates inversely with physiological activity in parts of the posterior lateral and medial OFC, consistent with evidence that dysfunction of the OFC associated with cerebrovascular lesions increases the vulnerability for developing the major depressive syndrome. The posterior lateral and medial OFC function may also be impaired in individuals who develop primary mood disorders, as these patients show grey-matter volumetric reductions, histopathologic abnormalities, and altered hemodynamic responses to emotionally valenced stimuli, probabilistic reversal learning, and reward processing. In contrast, physiological activity in the anteromedial OFC situated in the ventromedial frontal polar cortex increases during the depressed versus the remitted phases of major depressive disorder to an extent that is positively correlated with the severity of depression. Effective antidepressant treatment is associated with a reduction in activity in this region. Taken together these data are compatible with evidence from studies in experimental animals indicating that some orbitofrontal and medial prefrontal cortex regions function to inhibit, while others function to enhance, emotional expression. Alterations in the functional balance between these regions and the circuits they form with anatomically related areas of the temporal lobe, striatum, thalamus, and brain stem thus may underlie the pathophysiology of mood disorders, such as major depression.

  12. Prenatal alcohol exposure alters p35, CDK5 and GSK3β in the medial frontal cortex and hippocampus of adolescent mice

    Directory of Open Access Journals (Sweden)

    Samantha L. Goggin

    2014-01-01

    Full Text Available Fetal alcohol spectrum disorders (FASDs are the number one cause of preventable mental retardation. An estimated 2–5% of children are diagnosed as having a FASD. While it is known that children prenatally exposed to alcohol experience cognitive deficits and a higher incidence of psychiatric illness later in life, the pathways underlying these abnormalities remain uncertain. GSK3β and CDK5 are protein kinases that are converging points for a vast number of signaling cascades, including those controlling cellular processes critical to learning and memory. We investigated whether levels of GSK3β and CDK5 are affected by moderate prenatal alcohol exposure (PAE, specifically in the hippocampus and medial frontal cortex of the adolescent mouse. In the present work we utilized immunoblotting techniques to demonstrate that moderate PAE increased hippocampal p35 and β-catenin, and decreased total levels of GSK3β, while increasing GSK3β Ser9 and Tyr216 phosphorylation. Interestingly, different alterations were seen in the medial frontal cortex where p35 and CDK5 were decreased and increased total GSK3β was accompanied by reduced Tyr216 of the enzyme. These results suggest that kinase dysregulation during adolescence might be an important contributing factor to the effects of PAE on hippocampal and medial frontal cortical functioning; and by extension, that global modulation of these kinases may produce differing effects depending on brain region.

  13. NEURAL CORRELATES FOR APATHY: FRONTAL - PREFRONTAL AND PARIETAL CORTICAL - SUBCORTICAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2016-12-01

    Full Text Available Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional invovlement; it is an important and heavy-burden clinical condition which strongly impacts in every day life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC and basal ganglia; emotional affective apathy may be related to the orbitomedial PFC and ventral striatum; cognitive apathy may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of autoactivation may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to grey matter atrophy in the anterior cingulate (ACC and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies and a reduced speedness in action decsion, major resposnible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control.We will discuss the importance of these circuits in different pathologies

  14. The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making.

    Science.gov (United States)

    Rudebeck, P H; Bannerman, D M; Rushworth, M F S

    2008-12-01

    Damage to the ventromedial frontal cortex (VMFC) in humans is associated with deficits in decision making. Decision making, however, often happens while people are interacting with others, where it is important to take the social consequences of a course of action into account. It is well known that VMFC lesions also lead to marked alterations in patients' emotions and ability to interact socially; however, it has not been clear which parts of the VMFC are critical for these changes. Recently, there has been considerable interest in the role of the VMFC in choice behavior during interpersonal exchanges. Here, we highlight recent research that suggests that two areas within or adjacent to the VMFC, the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), may play distinct but complementary roles in mediating normal patterns of emotion and social behavior. Converging lines of evidence from human, macaque, and rat studies now suggest that the OFC may be more specialized for simple emotional responses, such as fear and aggression, through its role in representing primary reinforcement or punishment. By contrast, the ACC may play a distinct role in more complex aspects of emotion, such as social interaction, by virtue of its connections with the discrete parts of the temporal lobe and subcortical structures that control autonomic responses.

  15. Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.

    Science.gov (United States)

    Horio, Mao; Ishima, Tamaki; Fujita, Yuko; Inoue, Ran; Mori, Hisashi; Hashimoto, Kenji

    2013-05-01

    d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation.

    Science.gov (United States)

    Nagarajan, Raman P; Hogart, Amber R; Gwye, Ynnez; Martin, Michelle R; LaSalle, Janine M

    2006-01-01

    Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are "pervasive developmental disorders" and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations are a rare cause of autism, MeCP2 expression defects were previously found in autism brain. To further study the role of MeCP2 in autism spectrum disorders (ASDs), we determined the frequency of MeCP2 expression defects in brain samples from autism and other ASDs. We also tested the hypotheses that MECP2 promoter mutations or aberrant promoter methylation correlate with reduced expression in cases of idiopathic autism. MeCP2 immunofluorescence in autism and other neurodevelopmental disorders was quantified by laser scanning cytometry and compared with control postmortem cerebral cortex samples on a large tissue microarray. A significant reduction in MeCP2 expression compared to age-matched controls was found in 11/14 autism (79%), 9/9 RTT (100%), 4/4 Angelman syndrome (100%), 3/4 Prader-Willi syndrome (75%), 3/5 Down syndrome (60%), and 2/2 attention deficit hyperactivity disorder (100%) frontal cortex samples. One autism female was heterozygous for a rare MECP2 promoter variant that correlated with reduced MeCP2 expression. A more frequent occurrence was significantly increased MECP2 promoter methylation in autism male frontal cortex compared to controls. Furthermore, percent promoter methylation of MECP2 significantly correlated with reduced MeCP2 protein expression. These results suggest that both genetic and epigenetic defects lead to reduced MeCP2 expression and may be important in the complex etiology of autism.

  17. Aberrant topology of striatum's connectivity is associated with the number of episodes in depression.

    Science.gov (United States)

    Meng, Chun; Brandl, Felix; Tahmasian, Masoud; Shao, Junming; Manoliu, Andrei; Scherr, Martin; Schwerthöffer, Dirk; Bäuml, Josef; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra M; Riedl, Valentin; Sorg, Christian

    2014-02-01

    In major depressive disorder, depressive episodes reoccur in ∼60% of cases; however, neural mechanisms of depressive relapse are poorly understood. Depressive episodes are characterized by aberrant topology of the brain's intrinsic functional connectivity network, and the number of episodes is one of the most important predictors for depressive relapse. In this study we hypothesized that specific changes of the topology of intrinsic connectivity interact with the course of episodes in recurrent depressive disorder. To address this hypothesis, we investigated which changes of connectivity topology are associated with the number of episodes in patients, independently of current symptoms and disease duration. Fifty subjects were recruited including 25 depressive patients (two to 10 episodes) and 25 gender- and age-matched control subjects. Resting-state functional magnetic resonance imaging, Harvard-Oxford brain atlas, wavelet-transformation of atlas-shaped regional time-series, and their pairwise Pearson's correlation were used to define individual connectivity matrices. Matrices were analysed by graph-based methods, resulting in outcome measures that were used as surrogates of intrinsic network topology. Topological scores were subsequently compared across groups, and, for patients only, related with the number of depressive episodes and current symptoms by partial correlation analysis. Concerning the whole brain connectivity network of patients, small-world topology was preserved but global efficiency was reduced and global betweenness-centrality increased. Aberrant nodal efficiency and centrality of regional connectivity was found in the dorsal striatum, inferior frontal and orbitofrontal cortex as well as in the occipital and somatosensory cortex. Inferior frontal changes were associated with current symptoms, whereas aberrant right putamen network topology was associated with the number of episodes. Results were controlled for effects of total grey matter

  18. Passive heat exposure induced by hot water leg immersion increased oxyhemoglobin in pre-frontal cortex to preserve oxygenation and did not contribute to impaired cognitive functioning

    Science.gov (United States)

    Wijayanto, Titis; Toramoto, Sayo; Tochihara, Yutaka

    2013-07-01

    This study investigated the effects of passive heat exposure on pre-frontal cortex oxygenation and cognitive functioning, specifically to examine whether the change in pre-frontal cortex oxygenation coincided with cognitive functioning during heat exposure. Eleven male students who participated in this study immersed their lower legs to the knees in three different water temperatures, 38 °C, 40 °C, and 42 °C water in an air temperature of 28 º C and 50 % relative humidity for 60 min. After 45 min of leg immersion they performed cognitive functioning tasks assessing their short-term memory while immersing their lower legs. There were higher rectal temperature ( P 0.05). No statistical difference in cognitive functioning among the three conditions was observed with a higher increase of oxyhemoglobin during the cognitive functioning in the 42 °C condition for the left ( P = 0.05) and right ( P thermally comfortable.

  19. Regional Brain Activity in Abstinent Methamphetamine Dependent Males Following Cue Exposure.

    Science.gov (United States)

    Malcolm, Robert; Myrick, Hugh; Li, Xingbao; Henderson, Scott; Brady, Kathleen T; George, Mark S; See, Ronald E

    Neuroimaging of drug-associated cue presentations has aided in understanding the neurobiological substrates of craving and relapse for cocaine, alcohol, and nicotine. However, imaging of cue-reactivity in methamphetamine addiction has been much less studied. Nine caucasian male methamphetamine-dependent subjects and nine healthy controls were scanned in a Phillips 3.0T MRI scan when they viewed a randomized presentation of visual cues of methamphetamine, neutral objects, and rest conditions. Functional Imaging data were analyzed with Statistical Parametric Mapping software 5 (SPM 5). Methamphetamine subjects had significant brain activation in the ventral striatum and medial frontal cortex in comparison to meth pictures and neutral pictures in healthy controls (pcues, have increased brain activity in ventral striatum, caudate nucleus and medial frontal cortex which subserve craving, drug-seeking, and drug use.

  20. Connectivity between Right Inferior Frontal Gyrus and Supplementary Motor Area Predicts After-Effects of Right Frontal Cathodal tDCS on Picture Naming Speed

    DEFF Research Database (Denmark)

    Rosso, Charlotte; Valabregue, R.; Arbizy, C.

    2014-01-01

    Background: Cathodal transcranial direct current stimulation (tDCS) of the right frontal cortex improves language abilities in post-stroke aphasic patients. Yet little is known about the effects of right frontal cathodal tDCS on normal language function. Objective/hypothesis: To explore the catho...

  1. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    Science.gov (United States)

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-09-06

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.

  2. Estrogens regulate neuroinflammatory genes via estrogen receptors α and β in the frontal cortex of middle-aged female rats

    Directory of Open Access Journals (Sweden)

    Mahó Sándor

    2011-07-01

    Full Text Available Abstract Background Estrogens exert anti-inflammatory and neuroprotective effects in the brain mainly via estrogen receptors α (ERα and β (ERβ. These receptors are members of the nuclear receptor superfamily of ligand-dependent transcription factors. This study was aimed at the elucidation of the effects of ERα and ERβ agonists on the expression of neuroinflammatory genes in the frontal cortex of aging female rats. Methods To identify estrogen-responsive immunity/inflammation genes, we treated middle-aged, ovariectomized rats with 17β-estradiol (E2, ERα agonist 16α-lactone-estradiol (16α-LE2 and ERβ agonist diarylpropionitrile (DPN, or vehicle by Alzet minipump delivery for 29 days. Then we compared the transcriptomes of the frontal cortex of estrogen-deprived versus ER agonist-treated animals using Affymetrix Rat230 2.0 expression arrays and TaqMan-based quantitative real-time PCR. Microarray and PCR data were evaluated by using Bioconductor packages and the RealTime StatMiner software, respectively. Results Microarray analysis revealed the transcriptional regulation of 21 immunity/inflammation genes by 16α-LE2. The subsequent comparative real-time PCR study analyzed the isotype specific effects of ER agonists on neuroinflammatory genes of primarily glial origin. E2 regulated the expression of sixteen genes, including down-regulation of complement C3 and C4b, Ccl2, Tgfb1, macrophage expressed gene Mpeg1, RT1-Aw2, Cx3cr1, Fcgr2b, Cd11b, Tlr4 and Tlr9, and up-regulation of defensin Np4 and RatNP-3b, IgG-2a, Il6 and ER gene Esr1. Similar to E2, both 16α-LE2 and DPN evoked up-regulation of defensins, IgG-2a and Il6, and down-regulation of C3 and its receptor Cd11b, Ccl2, RT1-Aw2 and Fcgr2b. Conclusions These findings provide evidence that E2, 16α-LE2 and DPN modulate the expression of neuroinflammatory genes in the frontal cortex of middle-aged female rats via both ERα and ERβ. We propose that ERβ is a promising target to suppress

  3. Rostro-Caudal Organization of Connectivity between Cingulate Motor Areas and Lateral Frontal Regions

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    2018-01-01

    Full Text Available According to contemporary views, the lateral frontal cortex is organized along a rostro-caudal functional axis with increasingly complex cognitive/behavioral control implemented rostrally, and increasingly detailed motor control implemented caudally. Whether the medial frontal cortex follows the same organization remains to be elucidated. To address this issue, the functional connectivity of the 3 cingulate motor areas (CMAs in the human brain with the lateral frontal cortex was investigated. First, the CMAs and their representations of hand, tongue, and eye movements were mapped via task-related functional magnetic resonance imaging (fMRI. Second, using resting-state fMRI, their functional connectivity with lateral prefrontal and lateral motor cortical regions of interest (ROIs were examined. Importantly, the above analyses were conducted at the single-subject level to account for variability in individual cingulate morphology. The results demonstrated a rostro-caudal functional organization of the CMAs in the human brain that parallels that in the lateral frontal cortex: the rostral CMA has stronger functional connectivity with prefrontal regions and weaker connectivity with motor regions; conversely, the more caudal CMAs have weaker prefrontal and stronger motor connectivity. Connectivity patterns of the hand, tongue and eye representations within the CMAs are consistent with that of their parent CMAs. The parallel rostral-to-caudal functional organization observed in the medial and lateral frontal cortex could likely contribute to different hierarchies of cognitive-motor control.

  4. Ventral and Dorsal Striatum Networks in Obesity: Link to Food Craving and Weight Gain.

    Science.gov (United States)

    Contreras-Rodríguez, Oren; Martín-Pérez, Cristina; Vilar-López, Raquel; Verdejo-Garcia, Antonio

    2017-05-01

    The food addiction model proposes that obesity overlaps with addiction in terms of neurobiological alterations in the striatum and related clinical manifestations (i.e., craving and persistence of unhealthy habits). Therefore, we aimed to examine the functional connectivity of the striatum in excess-weight versus normal-weight subjects and to determine the extent of the association between striatum connectivity and individual differences in food craving and changes in body mass index (BMI). Forty-two excess-weight participants (BMI > 25) and 39 normal-weight participants enrolled in the study. Functional connectivity in the ventral and dorsal striatum was indicated by seed-based analyses on resting-state data. Food craving was indicated with subjective ratings of visual cues of high-calorie food. Changes in BMI between baseline and 12 weeks follow-up were assessed in 28 excess-weight participants. Measures of connectivity in the ventral striatum and dorsal striatum were compared between groups and correlated with craving and BMI change. Participants with excess weight displayed increased functional connectivity between the ventral striatum and the medial prefrontal and parietal cortices and between the dorsal striatum and the somatosensory cortex. Dorsal striatum connectivity correlated with food craving and predicted BMI gains. Obesity is linked to alterations in the functional connectivity of dorsal striatal networks relevant to food craving and weight gain. These neural alterations are associated with habit learning and thus compatible with the food addiction model of obesity. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Anatomical Inputs From the Sensory and Value Structures to the Tail of the Rat Striatum

    Directory of Open Access Journals (Sweden)

    Haiyan Jiang

    2018-05-01

    Full Text Available The caudal region of the rodent striatum, called the tail of the striatum (TS, is a relatively small area but might have a distinct function from other striatal subregions. Recent primate studies showed that this part of the striatum has a unique function in encoding long-term value memory of visual objects for habitual behavior. This function might be due to its specific connectivity. We identified inputs to the rat TS and compared those with inputs to the dorsomedial striatum (DMS in the same animals. The TS directly received anatomical inputs from both sensory structures and value-coding regions, but the DMS did not. First, inputs from the sensory cortex and sensory thalamus to the TS were found; visual, auditory, somatosensory and gustatory cortex and thalamus projected to the TS but not to the DMS. Second, two value systems innervated the TS; dopamine and serotonin neurons in the lateral part of the substantia nigra pars compacta (SNc and dorsal raphe nucleus projected to the TS, respectively. The DMS received inputs from the separate group of dopamine neurons in the medial part of the SNc. In addition, learning-related regions of the limbic system innervated the TS; the temporal areas and the basolateral amygdala selectively innervated the TS, but not the DMS. Our data showed that both sensory and value-processing structures innervated the TS, suggesting its plausible role in value-guided sensory-motor association for habitual behavior.

  6. Visual Categorization and the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Jamie K Fitzgerald

    2012-05-01

    Full Text Available The primate brain is adept at rapidly grouping items and events into functional classes, or categories, in order to recognize the significance of stimuli and guide behavior. Higher cognitive functions have traditionally been considered the domain of frontal areas. However, increasing evidence suggests that parietal cortex is also involved in categorical and associative processes. Previous work showed that the parietal cortex is highly involved in spatial processing, attention and saccadic eye movement planning, and more recent studies have found decision-making signals in LIP. We recently found that a subdivision of parietal cortex, the lateral intraparietal area (LIP, reflects learned categories for multiple types of visual stimuli. Additionally, a comparison of categorization signals in parietal and frontal areas found stronger and earlier categorization signals in parietal cortex, arguing that parietal abstract association or category signals are unlikely to arise via feedback from prefrontal cortex (PFC.

  7. Modulation of sibutramine-induced increases in extracellular noradrenaline concentration in rat frontal cortex and hypothalamus by α2-adrenoceptors

    Science.gov (United States)

    Wortley, K E; Heal, D J; Stanford, S C

    1999-01-01

    The effects of sibutramine (0.25–10 mg kg−1 i.p.) on extracellular noradrenaline concentration in the frontal cortex and hypothalamus of freely-moving rats were investigated using microdialysis. The role of presynaptic α2-adrenoceptors in modulating the effects of sibutramine in these brain areas was also determined.Sibutramine induced an increase in extracellular noradrenaline concentration, the magnitude of which paralleled dose, in both brain areas. In the cortex, this increase was gradual and sustained, whereas in the hypothalamus it was more rapid and of shorter duration.In both the cortex and hypothalamus, pretreatment of rats with the α2-adrenoceptor antagonist RX821002 (3 mg kg−1 i.p.) potentiated increases in the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.), by 7 and 10 fold respectively. RX821002 also reduced the latency of sibutramine to reach its maximum effect in the cortex, but not in the hypothalamus.Infusion of RX821002 (1 μM) via the probe increased the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.) in both brain areas. In the hypothalamus, the effects of RX821002 on the accumulation of noradrenaline induced by sibutramine were 2 fold greater than those in the cortex.These findings support evidence that sibutramine inhibits the reuptake of noradrenaline in vivo, but that the accumulation of extracellular noradrenaline is limited by noradrenergic activation of presynaptic α2-adrenoceptors. Furthermore, the data suggest that terminal α2-adrenoceptors in the hypothalamus exert a greater inhibitory effect over the control of extracellular noradrenaline accumulation than do those in the cortex. PMID:10516646

  8. Short-Term Memory for Space and Time Flexibly Recruit Complementary Sensory-Biased Frontal Lobe Attention Networks.

    Science.gov (United States)

    Michalka, Samantha W; Kong, Lingqiang; Rosen, Maya L; Shinn-Cunningham, Barbara G; Somers, David C

    2015-08-19

    The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks

    Science.gov (United States)

    Michalka, Samantha W.; Kong, Lingqiang; Rosen, Maya L.; Shinn-Cunningham, Barbara G.; Somers, David C.

    2015-01-01

    Summary The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. PMID:26291168

  10. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.

    Science.gov (United States)

    Chudasama, Y; Robbins, Trevor W

    2003-09-24

    To examine possible heterogeneity of function within the ventral regions of the rodent frontal cortex, the present study compared the effects of excitotoxic lesions of the orbitofrontal cortex (OFC) and the infralimbic cortex (ILC) on pavlovian autoshaping and discrimination reversal learning. During the pavlovian autoshaping task, in which rats learn to approach a stimulus predictive of reward [conditional stimulus (CS+)], only the OFC group failed to acquire discriminated approach but was unimpaired when preoperatively trained. In the visual discrimination learning and reversal task, rats were initially required to discriminate a stimulus positively associated with reward. There was no effect of either OFC or ILC lesions on discrimination learning. When the stimulus-reward contingencies were reversed, both groups of animals committed more errors, but only the OFC-lesioned animals were unable to suppress the previously rewarded stimulus-reward association, committing more "stimulus perseverative" errors. In contrast, the ILC group showed a pattern of errors that was more attributable to "learning" than perseveration. These findings suggest two types of dissociation between the effects of OFC and ILC lesions: (1) OFC lesions impaired the learning processes implicated in pavlovian autoshaping but not instrumental simultaneous discrimination learning, whereas ILC lesions were unimpaired at autoshaping and their reversal learning deficit did not reflect perseveration, and (2) OFC lesions induced perseverative responding in reversal learning but did not disinhibit responses to pavlovian CS-. In contrast, the ILC lesion had no effect on response inhibitory control in either of these settings. The findings are discussed in the context of dissociable executive functions in ventral sectors of the rat prefrontal cortex.

  11. The role of the frontal cortex in memory: an investigation of the Von Restorff effect

    Science.gov (United States)

    Elhalal, Anat; Davelaar, Eddy J.; Usher, Marius

    2014-01-01

    Evidence from neuropsychology and neuroimaging indicate that the pre-frontal cortex (PFC) plays an important role in human memory. Although frontal patients are able to form new memories, these memories appear qualitatively different from those of controls by lacking distinctiveness. Neuroimaging studies of memory indicate activation in the PFC under deep encoding conditions, and under conditions of semantic elaboration. Based on these results, we hypothesize that the PFC enhances memory by extracting differences and commonalities in the studied material. To test this hypothesis, we carried out an experimental investigation to test the relationship between the PFC-dependent factors and semantic factors associated with common and specific features of words. These experiments were performed using Free-Recall of word lists with healthy adults, exploiting the correlation between PFC function and fluid intelligence. As predicted, a correlation was found between fluid intelligence and the Von-Restorff effect (better memory for semantic isolates, e.g., isolate “cat” within category members of “fruit”). Moreover, memory for the semantic isolate was found to depend on the isolate's serial position. The isolate item tends to be recalled first, in comparison to non-isolates, suggesting that the process interacts with short term memory. These results are captured within a computational model of free recall, which includes a PFC mechanism that is sensitive to both commonality and distinctiveness, sustaining a trade-off between the two. PMID:25018721

  12. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  13. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  14. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.

    Science.gov (United States)

    Marshall, Tom R; O'Shea, Jacinta; Jensen, Ole; Bergmann, Til O

    2015-01-28

    Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8-12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma (>40 Hz) power is boosted contralaterally and attenuated ipsilaterally. These modulations must be under top-down control; however, the control mechanisms are not yet fully understood. Here we investigated the causal contribution of the human frontal eye field (FEF) by combining repetitive transcranial magnetic stimulation (TMS) with subsequent magnetoencephalography. Following inhibitory theta burst stimulation to the left FEF, right FEF, or vertex, participants performed a visual discrimination task requiring covert attention to either visual hemifield. Both left and right FEF TMS caused marked attenuation of alpha modulation in the occipitoparietal cortex. Notably, alpha modulation was consistently reduced in the hemisphere contralateral to stimulation, leaving the ipsilateral hemisphere relatively unaffected. Additionally, right FEF TMS enhanced gamma modulation in left visual cortex. Behaviorally, TMS caused a relative slowing of response times to targets contralateral to stimulation during the early task period. Our results suggest that left and right FEF are causally involved in the attentional top-down control of anticipatory alpha power in the contralateral visual system, whereas a right-hemispheric dominance seems to exist for control of stimulus-induced gamma power. These findings contrast the assumption of primarily intrahemispheric connectivity between FEF and parietal cortex, emphasizing the relevance of interhemispheric interactions. The contralaterality of effects may result from a transient functional reorganization of the dorsal attention network after inhibition of either FEF. Copyright © 2015 the authors 0270-6474/15/351638-10$15.00/0.

  15. Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways

    Science.gov (United States)

    Alloway, Kevin D.; Smith, Jared B.; Mowery, Todd M.; Watson, Glenn D. R.

    2017-01-01

    The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS) region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS) region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R) associations, neurons in DLS receive massive inputs from sensorimotor cortex and are responsive to both active and passive sensory stimulation. While several studies have established that corticostriatal inputs contribute to the stimulus-induced responses observed in the DLS, there is growing awareness that the thalamus has a significant role in conveying sensory-related information to DLS and other parts of the striatum. The thalamostriatal projections to DLS originate mainly from the caudal intralaminar region, which contains the parafascicular (Pf) nucleus, and from higher-order thalamic nuclei such as the medial part of the posterior (POm) nucleus. Based on recent findings, we hypothesize that the thalamostriatal projections from these two regions exert opposing influences on the expression of behavioral habits. This article reviews the subcortical circuits that regulate the transmission of sensory information through these thalamostriatal projection systems, and describes the evidence that indicates these circuits could be manipulated to ameliorate the symptoms of Parkinson’s disease (PD) and related neurological disorders. PMID:28790899

  16. Synchronous retinotopic frontal-temporal activity during long-term memory for spatial location.

    Science.gov (United States)

    Slotnick, Scott D

    2010-05-12

    Early visual areas in occipital cortex are known to be retinotopic. Recently, retinotopic maps have been reported in frontal and parietal cortex during spatial attention and working memory. The present event-related potential (ERP) and functional magnetic resonance imaging (fMRI) study determined whether spatial long-term memory was associated with retinotopic activity in frontal and parietal regions, and assessed whether retinotopic activity in these higher level control regions was synchronous with retinotopic activity in lower level visual sensory regions. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old and new shapes were presented at fixation and participants classified each shape as old and previously on the "left", old and previously on the "right", or "new". Retinotopic effects were manifested by accurate memory for items previously presented on the left producing activity in the right hemisphere and accurate memory for items previously presented on the right producing activity in the left hemisphere. Retinotopic ERP activity was observed in frontal regions and visual sensory (occipital and temporal) regions. In frontal cortex, retinotopic fMRI activity was localized to the frontal eye fields. There were no significant ERP or fMRI retinotopic memory effects in parietal regions. The present long-term memory retinotopic effects complement previous spatial attention and working memory findings (and suggest retinotopic activity in parietal cortex may require an external peripheral stimulus). Furthermore, ERP cross-correlogram analysis revealed that retinotopic activations in frontal and temporal regions were synchronous, indicating that these regions interact during retrieval of spatial information. (c) 2010 Elsevier B.V. All rights reserved.

  17. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.

    Science.gov (United States)

    Sandoval-Salazar, Cuauhtemoc; Ramírez-Emiliano, Joel; Trejo-Bahena, Aurora; Oviedo-Solís, Cecilia I; Solís-Ortiz, Martha Silvia

    2016-02-29

    It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  18. Increased dopamine tone during meditation-induced change of consciousness

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Bertelsen, Camilla; Piccini, Paola

    2002-01-01

    This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized by a dep......This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized...... the frontal cortex to striatal neurons, which in turn project back to the frontal cortex via the pallidum and ventral thalamus. The present study was designed to investigate whether endogenous dopamine release increases during loss of executive control in meditation. Participants underwent two 11C......-raclopride PET scans: one while attending to speech with eyes closed, and one during active meditation. The tracer competes with endogenous dopamine for access to dopamine D2 receptors predominantly found in the basal ganglia. During meditation, 11C-raclopride binding in ventral striatum decreased by 7...

  19. Effects of Crocin on Learning and Memory in Rats Under Chronic Restraint Stress with Special Focus on the Hippocampal and Frontal Cortex Corticosterone Levels.

    Science.gov (United States)

    Dastgerdi, Azadehalsadat Hosseini; Radahmadi, Maryam; Pourshanazari, Ali Asghar; Dastgerdi, Hajaralsadat Hosseini

    2017-01-01

    Chronic stress adversely influences brain functions while crocin, as an effective component of saffron, exhibits positive effects on memory processes. This study investigated the effects of different doses of crocin on the improvement of learning and memory as well as corticosterone (CORT) levels in the hippocampus and frontal cortex of rats subjected to chronic stress. Forty male rats were randomly allocated to five different groups ( n = 8): Control, sham; stress (6 h/day for 21 days) groups, and two groups receiving daily intraperitoneal injections of one of two doses (30 and 60 mg/kg) of crocin accompanied by 21 days of restraint stress. Latency was evaluated as a brain function using the passive avoidance test before and one-day after a foot shock. CORT levels were measured in the homogenized hippocampus and frontal cortex. Results revealed that chronic stress had a significantly ( P effect on memory. Crocin (30 and 60 mg/kg), however, gave increase to significantly ( P effects than its higher (60 mg/kg) dose on learning and memory under chronic stress conditions. Moreover, it was speculated that different doses of crocin act on different neurotransmitters and biochemical factors in the brain.

  20. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain

    Directory of Open Access Journals (Sweden)

    Minchenko Dimitri

    2010-04-01

    Full Text Available Abstract Background The Rett Syndrome (RTT brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected. Results Using microarrays and quantitative PCR, the mRNA expression profiles of these two neuroanatomical regions were compared in postmortem brain tissue from RTT patients and normal controls. A subset of genes was differentially expressed in the frontal cortex of RTT brains, some of which are known to be associated with neurological disorders (clusterin and cytochrome c oxidase subunit 1 or are involved in synaptic vesicle cycling (dynamin 1. RNAi-mediated knockdown of MeCP2 in vitro, followed by further expression analysis demonstrated that the same direction of abnormal expression was recapitulated with MeCP2 knockdown, which for cytochrome c oxidase subunit 1 was associated with a functional respiratory chain defect. Chromatin immunoprecipitation (ChIP analysis showed that MeCP2 associated with the promoter regions of some of these genes suggesting that loss of MeCP2 function may be responsible for their overexpression. Conclusions This study has shed more light on the subset of aberrantly expressed genes that result from MECP2 mutations. The mitochondrion has long been implicated in the pathogenesis of RTT, however it has not been at the forefront of RTT research interest since the discovery of MECP2 mutations. The functional consequence of the underexpression of cytochrome c oxidase subunit 1 indicates that this is an area that should be revisited.

  1. Motor areas of the frontal cortex in patients with motor eloquent brain lesions.

    Science.gov (United States)

    Bulubas, Lucia; Sabih, Jamil; Wohlschlaeger, Afra; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-12-01

    OBJECTIVE Because of its huge clinical potential, the importance of premotor areas for motor function itself and plastic reshaping due to tumors or ischemic brain lesions has received increased attention. Thus, in this study the authors used navigated transcranial magnetic stimulation (nTMS) to investigate whether tumorous brain lesions induce a change in motor cortex localization in the human brain. METHODS Between 2010 and 2013, nTMS motor mapping was performed in a prospective cohort of 100 patients with brain tumors in or adjacent to the rolandic cortex. Spatial data analysis was performed by normalization of the individual motor maps and creation of overlays according to tumor location. Analysis of motor evoked potential (MEP) latencies was performed regarding mean overall latencies and potentially polysynaptic latencies, defined as latencies longer than 1 SD above the mean value. Hemispheric dominance, lesion location, and motor-function deficits were also considered. RESULTS Graphical analysis showed that motor areas were not restricted to the precentral gyrus. Instead, they spread widely in the anterior-posterior direction. An analysis of MEP latency showed that mean MEP latencies were shortest in the precentral gyrus and longest in the superior and middle frontal gyri. The percentage of latencies longer than 1 SD differed widely across gyri. The dominant hemisphere showed a greater number of longer latencies than the nondominant hemisphere (p < 0.0001). Moreover, tumor location-dependent changes in distribution of polysynaptic latencies were observed (p = 0.0002). Motor-function deficit did not show any statistically significant effect. CONCLUSIONS The distribution of primary and polysynaptic motor areas changes in patients with brain tumors and highly depends on tumor location. Thus, these data should be considered for resection planning.

  2. Transcriptional response of rat frontal cortex following acute In Vivo exposure to the pyrethroid insecticides permethrin and deltamethrin

    Directory of Open Access Journals (Sweden)

    Tornero-Velez Rogelio

    2008-11-01

    Full Text Available Abstract Background Pyrethroids are neurotoxic pesticides that interact with membrane bound ion channels in neurons and disrupt nerve function. The purpose of this study was to characterize and explore changes in gene expression that occur in the rat frontal cortex, an area of CNS affected by pyrethroids, following an acute low-dose exposure. Results Rats were acutely exposed to either deltamethrin (0.3 – 3 mg/kg or permethrin (1 – 100 mg/kg followed by collection of cortical tissue at 6 hours. The doses used range from those that cause minimal signs of intoxication at the behavioral level to doses well below apparent no effect levels in the whole animal. A statistical framework based on parallel linear (SAM and isotonic regression (PIR methods identified 95 and 53 probe sets as dose-responsive. The PIR analysis was most sensitive for detecting transcripts with changes in expression at the NOAEL dose. A sub-set of genes (Camk1g, Ddc, Gpd3, c-fos and Egr1 was then confirmed by qRT-PCR and examined in a time course study. Changes in mRNA levels were typically less than 3-fold in magnitude across all components of the study. The responses observed are consistent with pyrethroids producing increased neuronal excitation in the cortex following a low-dose in vivo exposure. In addition, Significance Analysis of Function and Expression (SAFE identified significantly enriched gene categories common for both pyrethroids, including some relating to branching morphogenesis. Exposure of primary cortical cell cultures to both compounds resulted in an increase (~25% in the number of neurite branch points, supporting the results of the SAFE analysis. Conclusion In the present study, pyrethroids induced changes in gene expression in the frontal cortex near the threshold for decreases in ambulatory motor activity in vivo. The penalized regression methods performed similarly in detecting dose-dependent changes in gene transcription. Finally, SAFE analysis of

  3. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc Sandoval-Salazar

    Full Text Available BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC. It has been also proposed that the high-fat diet (HFD could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  4. Perinatal nicotine treatment induces transient increases in NACHO protein levels in the rat frontal cortex

    DEFF Research Database (Denmark)

    Wichern, Franziska; Jensen, Majbrit M; Christensen, Ditte Z

    2017-01-01

    The nicotinic acetylcholine receptor (nAChR) regulator chaperone (NACHO) was recently identified as an important regulator of nAChR maturation and surface expression. Here we show that NACHO levels decrease during early postnatal development in rats. This decrease occurs earlier and to a greater...... degree in the frontal cortex (FC) compared with the hippocampus (HIP). We further show that rats exposed to nicotine during pre- and postnatal development exhibit significantly higher NACHO levels in the FC at postnatal day (PND) 21, but not at PND60. Repeated exposure to nicotine selectively during...... a single exposure to a combination of nicotine and the type II α7 nAChR positive allosteric modulator (PAM) PNU-120596, but not the type I PAM AVL-3288. These findings suggest that exposure to nAChR agonism affects NACHO protein levels, and that this effect is more pronounced during pre- or early postnatal...

  5. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder.

    Science.gov (United States)

    Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai

    2016-09-01

    Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.

  6. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain.

    Directory of Open Access Journals (Sweden)

    Jacqueline C Lieblein-Boff

    Full Text Available Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510 were excluded. In addition, moderate correlations with xenobiotic relationships (2 or those driven by single outliers (3 were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region-specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.

  7. Effects of age and sex on 125I-β-CIT binding to DAT

    International Nuclear Information System (INIS)

    Liu Xingdang; Lin Xiangtong

    2000-01-01

    Objective: To investigate effects of age and sex on 125 I-β-CIT binding to dopamine transporter (DAT). Methods: Detection of the differences in 125 I-β-CIT binding kinetics in vivo between 6 week and 6 month old KM mice, and the differences of in vivo binding between female and male, and between 3 month and 12 month old SD rats.The animals were sacrificed 2 h after injection. Results: Uptake of 125 I-β-CIT in the striatum, frontal cortex, parietal cortex, temporal cortex, occipital cortex, hippocampus, brain stem and whole brain in 6 week old mice was higher than that in 6 month old mice, and similar uptake pattern happened in between 3 month old and in 12 month old SD rats. In 12 months old SD rats, female rats had higher uptake in the striatum than male rats did. Conclusions: Young mice and rats have a higher uptake of 125 I-β-CIT in the striatum than aged ones and female rats have a higher uptake than male ones do. This result indicates that the density of DAT in rat or mouse striatum may be reduced with aging

  8. Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways

    Directory of Open Access Journals (Sweden)

    Kevin D. Alloway

    2017-07-01

    Full Text Available The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R associations, neurons in DLS receive massive inputs from sensorimotor cortex and are responsive to both active and passive sensory stimulation. While several studies have established that corticostriatal inputs contribute to the stimulus-induced responses observed in the DLS, there is growing awareness that the thalamus has a significant role in conveying sensory-related information to DLS and other parts of the striatum. The thalamostriatal projections to DLS originate mainly from the caudal intralaminar region, which contains the parafascicular (Pf nucleus, and from higher-order thalamic nuclei such as the medial part of the posterior (POm nucleus. Based on recent findings, we hypothesize that the thalamostriatal projections from these two regions exert opposing influences on the expression of behavioral habits. This article reviews the subcortical circuits that regulate the transmission of sensory information through these thalamostriatal projection systems, and describes the evidence that indicates these circuits could be manipulated to ameliorate the symptoms of Parkinson’s disease (PD and related neurological disorders.

  9. Auditory and visual connectivity gradients in frontoparietal cortex.

    Science.gov (United States)

    Braga, Rodrigo M; Hellyer, Peter J; Wise, Richard J S; Leech, Robert

    2017-01-01

    A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal-ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior-anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top-down modulation of modality-specific information to occur within higher-order cortex. This could provide a potentially faster and more efficient pathway by which top-down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long-range connections to sensory cortices. Hum Brain Mapp 38:255-270, 2017. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  10. Projections of Somatosensory Cortex and Frontal Eye Fields onto Incertotectal Neurons in the Cat

    Science.gov (United States)

    Perkins, Eddie; Warren, Susan; Lin, Rick C.-S.; May, Paul J.

    2014-01-01

    The goal of this study was to determine whether the input-output characteristics of the zona incerta (ZI) are appropriate for it to serve as a conduit for cortical control over saccade-related activity in the superior colliculus. The study utilized the neuronal tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and biotinylated dextran amine (BDA) in the cat. Injections of WGA-HRP into primary somatosensory cortex (SI) revealed sparse, widespread nontopographic projections throughout ZI. In addition, region-specific areas of more intense termination were present in ventral ZI, although strict topography was not observed. In comparison, the frontal eye fields (FEF) also projected sparsely throughout ZI, but terminated more heavily, medially, along the border between the two sublaminae. Furthermore, retrogradely labeled incertocortical neurons were observed in both experiments. The relationship of these two cortical projections to incertotectal cells was also directly examined by retrogradely labeling incertotectal cells with WGA-HRP in animals that had also received cortical BDA injections. Labeled axonal arbors from both SI and FEF had thin, sparsely branched axons with numerous en passant boutons. They formed numerous close associations with the somata and dendrites of WGA-HRP-labeled incertotectal cells. In summary, these results indicate that both sensory and motor cortical inputs to ZI display similar morphologies and distributions. In addition, both display close associations with incertotectal cells, suggesting direct synaptic contact. From these data, we conclude that inputs from somatosensory and FEF cortex both play a role in controlling gaze-related activity in the superior colliculus by way of the inhibitory incertotectal projection. PMID:17083121

  11. MRI volumetry of prefrontal cortex

    Science.gov (United States)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  12. Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Mario L Diaz

    2012-11-01

    Full Text Available Alterations in the lipid composition of lipid rafts have been demonstrated both in human brain and transgenic mouse models, and it has been postulated that aberrant lipid composition in lipid rafts is partly responsible for neuronal degeneration. In order to assess the impact of lipid changes on lipid raft functional properties, we have aimed at determining relevant physicochemical modifications in lipid rafts purified from frontal cortex of wild type (WT and APP/PS1 double transgenic mice. By means of steady-state fluorescence anisotropy analyses using two lipid soluble fluorescent probes, TMA-DPH (1-[(4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene and DPH (1,6-diphenyl-1,3,5-hexatriene, we demonstrate that cortical lipid rafts from WT and APP/PS1 animals exhibit different biophysical behaviours, depending on genotype but also on age. Thus, aged APP/PS1 animals exhibited slightly more liquid-ordered lipid rafts than WT counterparts. Membrane microviscosity napp analyses demonstrate that WT lipid rafts are more fluid than APP/PS1 animals of similar age, both at the aqueous interface and hydrophobic core of the membrane. napp in APP/PS1 animals was higher for DPH than for TMA-DPH under similar experimental conditions, indicating that the internal core of the membrane is more viscous than the raft membrane at the aqueous interface. The most dramatic changes in biophysical properties of lipid rafts were observed when membrane cholesterol was depleted with methyl-beta-cyclodextrin. Overall, our results indicate that APP/PS1 genotype strongly affects physicochemical properties of lipid raft. Such alterations appear not to be homogeneous across the raft membrane axis, but rather are more prominent at the membrane plane. These changes correlate with aberrant proportions of sphingomyelin, cholesterol and saturated fatty acids, as well as polyunsaturated fatty acids, measured in lipid rafts from frontal cortex in this familial model of

  13. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.

    Science.gov (United States)

    Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S

    2013-10-16

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.

  14. Frontal and Parietal Cortical Interactions with Distributed Visual Representations during Selective Attention and Action Selection

    Science.gov (United States)

    Stokes, Mark; Nobre, Anna C.; Rushworth, Matthew F. S.

    2013-01-01

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity. PMID:24133250

  15. Selective visual attention to emotional words: Early parallel frontal and visual activations followed by interactive effects in visual cortex.

    Science.gov (United States)

    Schindler, Sebastian; Kissler, Johanna

    2016-10-01

    Human brains spontaneously differentiate between various emotional and neutral stimuli, including written words whose emotional quality is symbolic. In the electroencephalogram (EEG), emotional-neutral processing differences are typically reflected in the early posterior negativity (EPN, 200-300 ms) and the late positive potential (LPP, 400-700 ms). These components are also enlarged by task-driven visual attention, supporting the assumption that emotional content naturally drives attention. Still, the spatio-temporal dynamics of interactions between emotional stimulus content and task-driven attention remain to be specified. Here, we examine this issue in visual word processing. Participants attended to negative, neutral, or positive nouns while high-density EEG was recorded. Emotional content and top-down attention both amplified the EPN component in parallel. On the LPP, by contrast, emotion and attention interacted: Explicit attention to emotional words led to a substantially larger amplitude increase than did explicit attention to neutral words. Source analysis revealed early parallel effects of emotion and attention in bilateral visual cortex and a later interaction of both in right visual cortex. Distinct effects of attention were found in inferior, middle and superior frontal, paracentral, and parietal areas, as well as in the anterior cingulate cortex (ACC). Results specify separate and shared mechanisms of emotion and attention at distinct processing stages. Hum Brain Mapp 37:3575-3587, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Altered serotonin, dopamine and norepinepherine levels in 15q duplication and Angelman syndrome mouse models.

    Directory of Open Access Journals (Sweden)

    M Febin Farook

    Full Text Available Childhood neurodevelopmental disorders like Angelman syndrome and autism may be the result of underlying defects in neuronal plasticity and ongoing problems with synaptic signaling. Some of these defects may be due to abnormal monoamine levels in different regions of the brain. Ube3a, a gene that causes Angelman syndrome (AS when maternally deleted and is associated with autism when maternally duplicated has recently been shown to regulate monoamine synthesis in the Drosophila brain. Therefore, we examined monoamine levels in striatum, ventral midbrain, frontal cerebral cortex, cerebellar cortex and hippocampus in Ube3a deficient and Ube3a duplication animals. We found that serotonin (5HT, a monoamine affected in autism, was elevated in the striatum and cortex of AS mice. Dopamine levels were almost uniformly elevated compared to control littermates in the striatum, midbrain and frontal cortex regardless of genotype in Ube3a deficient and Ube3a duplication animals. In the duplication 15q autism mouse model, paternal but not maternal duplication animals showed a decrease in 5HT levels when compared to their wild type littermates, in accordance with previously published data. However, maternal duplication animals show no significant changes in 5HT levels throughout the brain. These abnormal monoamine levels could be responsible for many of the behavioral abnormalities observed in both AS and autism, but further investigation is required to determine if any of these changes are purely dependent on Ube3a levels in the brain.

  17. Disrupted Reinforcement Signaling in Orbital Frontal Cortex and Caudate in Youths with Conduct Disorder/Oppositional Defiant Disorder and High Psychopathic Traits

    Science.gov (United States)

    Finger, Elizabeth C.; Marsh, Abigail A.; Blair, Karina S.; Reid, Marguerite. E.; Sims, Courtney; Ng, Pamela; Pine, Daniel S.; Blair, R. James. R.

    2010-01-01

    OBJECTIVE Dysfunction in amygdala and orbital frontal cortex functioning has been reported in youths and adults with psychopathic traits. However, the specific nature of the computational irregularities within these brain structures remains poorly understood. The current study used the passive avoidance task to examine responsiveness of these systems to early stimulus-reinforcement exposure, when prediction errors are greatest and learning maximized, and to reward in youths with psychopathic traits and comparison youths. METHOD 30 youths (N=15 with conduct disorder or oppositional defiant disorder plus high psychopathic traits and N=15 comparison subjects) completed a 3.0 T fMRI scan while performing a passive avoidance learning task. RESULTS Relative to comparison youth, youths with conduct disorder or oppositional defiant disorder plus psychopathic traits showed reduced orbitofrontal cortex responsiveness both to early stimulus-reinforcement exposure and to rewards, as well as reduced caudate response to early stimulus-reinforcement exposure. Contrary to other predictions, however, there were no group differences in amygdala responsiveness specifically to these two task parameters. However, amygdala responsiveness throughout the task was reduced in the youths with conduct disorder or oppositional defiant disorder plus psychopathic traits. CONCLUSIONS This study demonstrates that youths with conduct disorder or oppositional defiant disorder plus psychopathic traits are marked by a compromised sensitivity to early reinforcement information in both orbitofrontal cortex and caudate and to reward outcome information within orbitofrontal cortex. They further suggest that the integrated functioning of the amygdala, caudate and orbitofrontal cortex may be disrupted in individuals with this disorder. PMID:21078707

  18. Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter.

    Science.gov (United States)

    Chesters, Jennifer; Möttönen, Riikka; Watkins, Kate E

    2018-04-01

    See Crinion (doi:10.1093/brain/awy075) for a scientific commentary on this article.Stuttering is a neurodevelopmental condition affecting 5% of children, and persisting in 1% of adults. Promoting lasting fluency improvement in adults who stutter is a particular challenge. Novel interventions to improve outcomes are of value, therefore. Previous work in patients with acquired motor and language disorders reported enhanced benefits of behavioural therapies when paired with transcranial direct current stimulation. Here, we report the results of the first trial investigating whether transcranial direct current stimulation can improve speech fluency in adults who stutter. We predicted that applying anodal stimulation to the left inferior frontal cortex during speech production with temporary fluency inducers would result in longer-lasting fluency improvements. Thirty male adults who stutter completed a randomized, double-blind, controlled trial of anodal transcranial direct current stimulation over left inferior frontal cortex. Fifteen participants received 20 min of 1-mA stimulation on five consecutive days while speech fluency was temporarily induced using choral and metronome-timed speech. The other 15 participants received the same speech fluency intervention with sham stimulation. Speech fluency during reading and conversation was assessed at baseline, before and after the stimulation on each day of the 5-day intervention, and at 1 and 6 weeks after the end of the intervention. Anodal stimulation combined with speech fluency training significantly reduced the percentage of disfluent speech measured 1 week after the intervention compared with fluency intervention alone. At 6 weeks after the intervention, this improvement was maintained during reading but not during conversation. Outcome scores at both post-intervention time points on a clinical assessment tool (the Stuttering Severity Instrument, version 4) also showed significant improvement in the group receiving

  19. Resting state functional connectivity of the anterior striatum and prefrontal cortex predicts reading performance in school-age children.

    Science.gov (United States)

    Alcauter, Sarael; García-Mondragón, Liliana; Gracia-Tabuenca, Zeus; Moreno, Martha B; Ortiz, Juan J; Barrios, Fernando A

    2017-11-01

    The current study investigated the neural basis of reading performance in 60 school-age Spanish-speaking children, aged 6 to 9years. By using a data-driven approach and an automated matching procedure, we identified a left-lateralized resting state network that included typical language regions (Wernicke's and Broca's regions), prefrontal cortex, pre- and post-central gyri, superior and middle temporal gyri, cerebellum, and subcortical regions, and explored its relevance for reading performance (accuracy, comprehension and speed). Functional connectivity of the left frontal and temporal cortices and subcortical regions predicted reading speed. These results extend previous findings on the relationship between functional connectivity and reading competence in children, providing new evidence about such relationships in previously unexplored regions in the resting brain, including the left caudate, putamen and thalamus. This work highlights the relevance of a broad network, functionally synchronized in the resting state, for the acquisition and perfecting of reading abilities in young children. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Distribution of catecholamines and serotonin in the rat cerebral cortex:

    International Nuclear Information System (INIS)

    Reader, T.A.

    1981-01-01

    The rat cerebral cortex was dissected in five regions and analyzed for the catecholamines noradrenaline, adrenaline and dopamine, and for the indoleamine seroton in using sensitive radioenzymatic assay methods with thin-layer-chromatography. The noradrenaline concentration was highest in the ventral cortex, lateral to the hypothalamus, had intermediate values for the prefrontal, frontal and parietal cortical areas and was lowest in the occipital cortex. Dopamine levels were also highest in the cortex lateral to the hypothalamus, and moderate in the prefrontal and frontal cortical areas, with the lowest values measured for the occipital cortex. The ratios dopamine/noradrenaline further support the hypothesis that they are independent transmitters. Traces of adrenaline were measured in all regions examined. The serotonin distribution was found to be non-homogeneous, with the highest values for the prefrontal cortex and ventral cortex lateral to the hypothalamus. The functional significance of these amines and their ratios are discussed in relation to their role as putative modulators of cortical neuronal excitability. (author)

  1. Facilitation of acetylcholine release in rat frontal cortex by indeloxazine hydrochloride: involvement of endogenous serotonin and 5-HT4 receptors.

    Science.gov (United States)

    Yamaguchi, T; Suzuki, M; Yamamoto, M

    1997-12-01

    Effects of indeloxazine hydrochloride, an inhibitor of serotonin (5-HT) and norepinephrine (NE) reuptake with a facilitatory effect on 5-HT release, on acetylcholine (ACh) output in frontal cortex of conscious rats were characterized using an in vivo microdialysis technique. Systemic administration of indeloxazine (3 and 10 mg/kg, i.p.) increased ACh and 5-HT output in a dose-dependent manner. Depletion of endogenous monoamines by reserpine and of 5-HT by p-chlorophenylalanine, but not that of catecholamines by alpha-methyl-p-tyrosine, significantly attenuated the facilitatory effect of indeloxazine on ACh release. When applied locally by reverse dialysis, indeloxazine (10 and 30 microM) and the selective 5-HT reuptake inhibitor citalopram (10 microM), but not the NE reuptake inhibitor maprotiline (30 microM), increased cortical ACh output. Indeloxazine (10 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 microM) and GR113803 (1 microM), while the 5-HT1A antagonist WAY-100135 (100 microM), 5-HT1A/1B/beta-adrenoceptor antagonist (-)propranolol (150 microM), 5-HT2A/2C antagonist ritanserin (10 microM) and 5-HT3 antagonist ondansetron (10 microM) failed to significantly modify this effect. Neither depletion of monoamines nor treatment with serotonergic antagonists significantly changed the basal ACh level, indicating that endogenous monoamines do not tonically activate ACh release. These results suggest that indeloxazine-induced facilitation of ACh release in rat frontal cortex is mediated by endogenous 5-HT and involves at least in part cortical 5-HT4 receptors.

  2. Rule-guided executive control of response inhibition: functional topography of the inferior frontal cortex.

    Directory of Open Access Journals (Sweden)

    Weidong Cai

    Full Text Available The human inferior frontal cortex (IFC is a large heterogeneous structure with distinct cytoarchitectonic subdivisions and fiber connections. It has been found involved in a wide range of executive control processes from target detection, rule retrieval to response control. Since these processes are often being studied separately, the functional organization of executive control processes within the IFC remains unclear.We conducted an fMRI study to examine the activities of the subdivisions of IFC during the presentation of a task cue (rule retrieval and during the performance of a stop-signal task (requiring response generation and inhibition in comparison to a not-stop task (requiring response generation but not inhibition. We utilized a mixed event-related and block design to separate brain activity in correspondence to transient control processes from rule-related and sustained control processes. We found differentiation in control processes within the IFC. Our findings reveal that the bilateral ventral-posterior IFC/anterior insula are more active on both successful and unsuccessful stop trials relative to not-stop trials, suggesting their potential role in the early stage of stopping such as triggering the stop process. Direct countermanding seems to be outside of the IFC. In contrast, the dorsal-posterior IFC/inferior frontal junction (IFJ showed transient activity in correspondence to the infrequent presentation of the stop signal in both tasks and the left anterior IFC showed differential activity in response to the task cues. The IFC subdivisions also exhibited similar but distinct patterns of functional connectivity during response control.Our findings suggest that executive control processes are distributed across the IFC and that the different subdivisions of IFC may support different control operations through parallel cortico-cortical and cortico-striatal circuits.

  3. Correlation of individual differences in schizotypal personality traits with amphetamine-induced dopamine release in striatal and extrastriatal brain regions.

    Science.gov (United States)

    Woodward, Neil D; Cowan, Ronald L; Park, Sohee; Ansari, M Sib; Baldwin, Ronald M; Li, Rui; Doop, Mikisha; Kessler, Robert M; Zald, David H

    2011-04-01

    Schizotypal personality traits are associated with schizophrenia spectrum disorders, and individuals with schizophrenia spectrum disorders demonstrate increased dopamine transmission in the striatum. The authors sought to determine whether individual differences in normal variation in schizotypal traits are correlated with dopamine transmission in the striatum and in extrastriatal brain regions. Sixty-three healthy volunteers with no history of psychiatric illness completed the Schizotypal Personality Questionnaire and underwent positron emission tomography imaging with [(18)F]fallypride at baseline and after administration of oral d-amphetamine (0.43 mg/kg). Dopamine release, quantified by subtracting each participant's d-amphetamine scan from his or her baseline scan, was correlated with Schizotypal Personality Questionnaire total and factor scores using region-of-interest and voxel-wise analyses. Dopamine release in the striatum was positively correlated with overall schizotypal traits. The association was especially robust in the associative subdivision of the striatum. Voxel-wise analyses identified additional correlations between dopamine release and schizotypal traits in the left middle frontal gyrus and left supramarginal gyrus. Exploratory analyses of Schizotypal Personality Questionnaire factor scores revealed correlations between dopamine release and disorganized schizotypal traits in the striatum, thalamus, medial prefrontal cortex, temporal lobe, insula, and inferior frontal cortex. The association between dopamine signaling and psychosis phenotypes extends to individual differences in normal variation in schizotypal traits and involves dopamine transmission in both striatal and extrastriatal brain regions. Amphetamine-induced dopamine release may be a useful endophenotype for investigating the genetic basis of schizophrenia spectrum disorders.

  4. Multispectral Brain Morphometry in Tourette Syndrome Persisting into Adulthood

    Science.gov (United States)

    Draganski, Bogdan; Martino, Davide; Cavanna, Andrea E.; Hutton, Chloe; Orth, Michael; Robertson, Mary M.; Critchley, Hugo D.; Frackowiak, Richard S.

    2010-01-01

    Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into…

  5. Clinical-physiologic correlates of Alzheimer's disease and frontal lobe dementia

    International Nuclear Information System (INIS)

    Jagust, W.J.; Reed, B.R.; Seab, J.P.; Kramer, J.H.; Budinger, T.F.

    1989-01-01

    Thirty patients with degenerative dementia underwent clinical evaluation, neuropsychological testing, and single photon emission computed tomography (SPECT) with the blood flow tracer [ 123 I]-N-isopropyl-p-iodoamphetamine. Five of these patients were clinically and psychologically different from the others, demonstrating predominant behavioral disturbances with relative preservation of memory function. These five patients, who were felt to have a frontal lobe dementia (FLD), showed SPECT perfusion patterns which differed from the remaining 25 patients, who were diagnosed as having Alzheimer's disease (AD), and from 16 healthy control subjects. The FLD patients showed diminished perfusion in orbitofrontal, dorsolateral frontal, and temporal cortex relative to controls, while the AD patients showed lower perfusion in temporal and parietal cortex than controls. The FLD patients also showed hypoperfusion in both frontal cortical regions relative to AD patients. The pattern of performance on neuropsychological testing paralleled these differences in regional perfusion. These results suggest that clinical evaluation and physiological imaging may enable the differentiation of groups of degenerative dementia patients during life

  6. Age-related changes in the intrinsic functional connectivity of the human ventral vs. dorsal striatum from childhood to middle age

    Directory of Open Access Journals (Sweden)

    James N. Porter

    2015-02-01

    Full Text Available The striatum codes motivated behavior. Delineating age-related differences within striatal circuitry can provide insights into neural mechanisms underlying ontogenic behavioral changes and vulnerabilities to mental disorders. To this end, a dual ventral/dorsal model of striatal function was examined using resting state intrinsic functional connectivity (iFC imaging in 106 healthy individuals, ages 9–44. Broadly, the dorsal striatum (DS is connected to prefrontal and parietal cortices and contributes to cognitive processes; the ventral striatum (VS is connected to medial orbitofrontal and anterior cingulate cortices, and contributes to affective valuation and motivation. Findings revealed patterns of age-related changes that differed between VS and DS iFCs. We found an age-related increase in DS iFC with posterior cingulate cortex (pCC that stabilized after the mid-twenties, but a decrease in VS iFC with anterior insula (aIns and dorsal anterior cingulate cortex (dACC that persisted into mid-adulthood. These distinct developmental trajectories of VS vs. DS iFC might underlie adolescents’ unique behavioral patterns and vulnerabilities to psychopathology, and also speaks to changes in motivational networks that extend well past 25 years old.

  7. Basketball training increases striatum volume.

    Science.gov (United States)

    Park, In Sung; Lee, Kea Joo; Han, Jong Woo; Lee, Nam Joon; Lee, Won Teak; Park, Kyung Ah; Rhyu, Im Joo

    2011-02-01

    The striatum is associated with the learning and retention of motor skills. Several studies have shown that motor learning induces neuronal changes in the striatum. We investigated whether macroscopic change in striatum volume occurs in a segment of the human population who learned basketball-related motor skills and practiced them throughout their entire athletic life. Three-dimensional magnetic resonance imaging volumetry was performed in basketball players and healthy controls, and striatum volumes were compared based on basketball proficiency, region and side. We identified morphological enlargement in the striatum of basketball players in comparison with controls. Our results suggest that continued practice and repetitive performance of basketball-related motor skills may induce plastic structural changes in the human striatum. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Jealousy increased by induced relative left frontal cortical activity.

    Science.gov (United States)

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).

  9. Drug-related cue induced craving and the correlation between the activation in nucleus accumbens and drug craving: a fMRI study on heroin addicts

    International Nuclear Information System (INIS)

    Wang Yarong; Yang Lanying; Li Qiang; Yang Weichuan; Du Pang; Wang Wei

    2010-01-01

    Objective: To explore the neural mechanism underlying the craving of heroin addicts induced by picture-cue and the correlation between the brain activation degree in nucleus accumbens (NAc)/ the ventral striatum and the scores of patients self-report craving. Methods: Twelve active heroin addicts and 12 matched healthy controls underwent fMRI scan while viewing drug-related pictures and neutral pictures presented in a block design paradigm after anatomical scanning in GE 3.0 T scanner. The fMRI data were analyzed with SPM 5. The change of craving scores was tested by Wilcoxon signed rank test. The Pearson correlation between the activation of NAc/the ventral striatum and the heroin craving score was tested by SPSS 13.0. Results: The craving scores of heroin addicts ranged from 0 to 3.70 (median 0.15) before exposed to drug cue and 0 to 5.10 (median 3.25) after viewing drug-related pictures and showed statistical significance (Z=-2.666, P<0.05). There were 16 activated brain areas when heroin dependent patients exposed to visual drug-related cue vs. neutral visual stimuli. The activation brain regions belonged to two parts, one was limbic system (amygdale, hippocampus, putamen, anterior cingulate cortex and caudate), another was brain cortex (middle frontal cortex, inferior frontal cortex, precentral gyrus, middle temporal cortex, inferior temporal cortex, fusiform gyrus, precuneus and middle occipital gyrus). The MR signal activation magnitude of heroin addicts ranged from 0.19 to 3.50. The result displayed a significant positive correlation between the cue-induced fMRI activation in NAc/the ventral striatum and heroin craving severity (r=0.829, P<0.05). Conclusion: Heroin shared the same neural circuitry in part with other drugs of abuse for cue-induced craving, including brain reward circuitry, visualspatial attention circuit and working memory region. In addition, the dysfunction of NAc/the ventral striatum may attribute to heroin-related cue induced craving

  10. Investigation of human frontal cortex under noxious thermal stimulation of temporo-mandibular joint using functional near infrared spectroscopy

    Science.gov (United States)

    Yennu, Amarnath; Rawat, Rohit; Manry, Michael T.; Gatchel, Robert; Liu, Hanli

    2013-03-01

    According to American Academy of Orofacial Pain, 75% of the U.S. population experiences painful symptoms of temporo-mandibular joint and muscle disorder (TMJMD) during their lifetime. Thus, objective assessment of pain is crucial for efficient pain management. We used near infrared spectroscopy (NIRS) as a tool to explore hemodynamic responses in the frontal cortex to noxious thermal stimulation of temporomadibular joint (TMJ). NIRS experiments were performed on 9 healthy volunteers under both low pain stimulation (LPS) and high pain stimulation (HPS), using a temperature-controlled thermal stimulator. To induce thermal pain, a 16X16 mm2 thermode was strapped onto the right TMJ of each subject. Initially, subjects were asked to rate perceived pain on a scale of 0 to 10 for the temperatures from 41°C to 47°C. For the NIRS measurement, two magnitudes of temperatures, one rated as 3 and another rated as 7, were chosen as LPS and HPS, respectively. By analyzing the temporal profiles of changes in oxy-hemoglobin concentration (HbO) using cluster-based statistical tests, we were able to identify several regions of interest (ROI), (e.g., secondary somatosensory cortex and prefrontal cortex), where significant differences (ppain, a neural-network-based classification algorithm was used. With leave-one-out cross validation from 9 subjects, the two levels of pain were identified with 100% mean sensitivity, 98% mean specificity and 99% mean accuracy to high pain. From the receiver operating characteristics curve, 0.99 mean area under curve was observed.

  11. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure.

    Science.gov (United States)

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo; Rydbirk, Rasmus; Olesen, Mikkel Vestergaard; Hay-Schmidt, Anders; Pakkenberg, Bente; Aznar, Susana

    2017-05-30

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT 2A receptor (5-HT 2A R) dependent. Here, we further investigated how blockade of 5-HT 2A Rs in mice exposed to a novel open-field arena affects medial PFC activation and basolateral amygdala (BLA) reactivity. We used c-Fos immunoreactivity (IR) as a marker of neuronal activation and stereological quantification for obtaining the total number of c-Fos-IR neurons as a measure of regional activation. We further examined the impact of 5-HT 2A R blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin-treated animals, upholding its involvement in modulating averseness. Ketanserin did not affect the number of activated striatal-projecting BLA neurons (measured by number of Cholera Toxin b (CTb) retrograde labelled neurons also being c-Fos-IR) following CTb injection in the ventral striatum. These results support a role of 5-HT 2A R activation in modulating mPFC and BLA activation during exposure to a novel environment, which may be interrelated. Conversely, 5-HT 2A R blockade does not seem to affect the amygdala-striatal projection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Right Inferior Frontal Gyrus Activation as a Neural Marker of Successful Lying

    Directory of Open Access Journals (Sweden)

    Oshin eVartanian

    2013-10-01

    Full Text Available There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low × 2 (Instruction: truth or lie repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC, middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus—a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.

  13. Right inferior frontal gyrus activation as a neural marker of successful lying.

    Science.gov (United States)

    Vartanian, Oshin; Kwantes, Peter J; Mandel, David R; Bouak, Fethi; Nakashima, Ann; Smith, Ingrid; Lam, Quan

    2013-01-01

    There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM) load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low) × 2 (Instruction: truth or lie) repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC), middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus-a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.

  14. Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.

    Science.gov (United States)

    Badgaiyan, Rajendra D

    2012-12-01

    Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.

  15. Hemispheric differences in the voluntary control of spatial attention: direct evidence for a right-hemispheric dominance within frontal cortex.

    Science.gov (United States)

    Duecker, Felix; Formisano, Elia; Sack, Alexander T

    2013-08-01

    Lesion studies in neglect patients have inspired two competing models of spatial attention control, namely, Heilman's "hemispatial" theory and Kinsbourne's "opponent processor" model. Both assume a functional asymmetry between the two hemispheres but propose very different mechanisms. Neuroimaging studies have identified a bilateral dorsal frontoparietal network underlying voluntary shifts of spatial attention. However, lateralization of attentional processes within this network has not been consistently reported. In the current study, we aimed to provide direct evidence concerning the functional asymmetry of the right and left FEF during voluntary shifts of spatial attention. To this end, we applied fMRI-guided neuronavigation to disrupt individual FEF activation foci with a longer-lasting inhibitory patterned TMS protocol followed by a spatial cueing task. Our results indicate that right FEF stimulation impaired the ability of shifting spatial attention toward both hemifields, whereas the effects of left FEF stimulation were limited to the contralateral hemifield. These results provide strong direct evidence for right-hemispheric dominance in spatial attention within frontal cortex supporting Heilman's "hemispatial" theory. This complements previous TMS studies that generally conform to Kinsbourne's "opponent processor" model after disruption of parietal cortex, and we therefore propose that both theories are not mutually exclusive.

  16. Greater preference consistency during the Willingness-to-Pay task is related to higher resting state connectivity between the ventromedial prefrontal cortex and the ventral striatum

    Science.gov (United States)

    Mackey, Scott; Olafsson, Valur; Aupperle, Robin; Lu, Kun; Fonzo, Greg; Parnass, Jason; Liu, Thomas; Paulus, Martin P.

    2015-01-01

    The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior. PMID:26271206

  17. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type.

    Science.gov (United States)

    Rajmohan, Ravi; Anderson, Ronald C; Fang, Dan; Meyer, Austin G; Laengvejkal, Pavis; Julayanont, Parunyou; Hannabas, Greg; Linton, Kitten; Culberson, John; Khan, Hafiz; De Toledo, John; Reddy, P Hemachandra; O'Boyle, Michael W

    2017-01-01

    Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT) through the use of the sex determination test (SDT). In the current study, four (1 female, 3 males) CDDAT and nine (4 females, 5 males) age-matched neurotypicals (NT) completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA) and anterior cingulate cortex (ACC). DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF) and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT) performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC), but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  18. Effective Connectivity between Ventral Occipito-Temporal and Ventral Inferior Frontal Cortex during Lexico-Semantic Processing. A Dynamic Causal Modeling Study

    Directory of Open Access Journals (Sweden)

    Marcela Perrone-Bertolotti

    2017-06-01

    Full Text Available It has been suggested that dorsal and ventral pathways support distinct aspects of language processing. Yet, the full extent of their involvement and their inter-regional connectivity in visual word recognition is still unknown. Studies suggest that they might reflect the dual-route model of reading, with the dorsal pathway more involved in grapho-phonological conversion during phonological tasks, and the ventral pathway performing lexico-semantic access during semantic tasks. Furthermore, this subdivision is also suggested at the level of the inferior frontal cortex, involving ventral and dorsal parts for lexico-semantic and phonological processing, respectively. In the present study, we assessed inter-regional brain connectivity and task-induced modulations of brain activity during a phoneme detection and semantic categorization tasks, using fMRI in healthy subject. We used a dynamic causal modeling approach to assess inter-regional connectivity and task demand modulation within the dorsal and ventral pathways, including the following network components: the ventral occipito-temporal cortex (vOTC; dorsal and ventral, the superior temporal gyrus (STG; dorsal, the dorsal inferior frontal gyrus (dIFG; dorsal, and the ventral IFG (vIFG; ventral. We report three distinct inter-regional interactions supporting orthographic information transfer from vOTC to other language regions (vOTC -> STG, vOTC -> vIFG and vOTC -> dIFG regardless of task demands. Moreover, we found that (a during semantic processing (direct ventral pathway the vOTC -> vIFG connection strength specifically increased and (b a lack of modulation of the vOTC -> dIFG connection strength by the task that could suggest a more general involvement of the dorsal pathway during visual word recognition. Results are discussed in terms of anatomo-functional connectivity of visual word recognition network.

  19. Medial cortex activity, self-reflection and depression.

    Science.gov (United States)

    Johnson, Marcia K; Nolen-Hoeksema, Susan; Mitchell, Karen J; Levin, Yael

    2009-12-01

    Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and obligations, and greater activity in posterior medial cortex (precuneus, posterior cingulate) when cued to think about duties and obligations (Experiment 1). However, the MDE group showed less activity than controls in the same area of medial frontal cortex when self-referential cues were more ambiguous with respect to valence (Experiment 2), and less deactivation in a non-self-referential condition in both experiments. Furthermore, individual differences in rumination were positively correlated with activity in both anterior and posterior medial cortex during non-self-referential conditions. These results provide converging evidence for a dissociation of anterior and posterior medial cortex depending on the focus of self-relevant thought. They also provide neural evidence consistent with behavioral findings that depression is associated with disruption of positively valenced thoughts in response to ambiguous cues, and difficulty disengaging from self-reflection when it is appropriate to do so.

  20. Specific metabolomics adaptations define a differential regional vulnerability in the adult human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Rosanna Cabré

    2016-12-01

    Full Text Available Brain neurons offer diverse responses to stresses and detrimental factors during development and aging, and as a result of both neurodegenerative and neuropsychiatric disorders. This multiplicity of responses can be ascribed to the great diversity among neuronal populations. Here we have determined the metabolomic profile of three healthy adult human brain regions—entorhinal cortex, hippocampus, and frontal cortex—using mass spectrometry-based technologies. Our results show the existence of a lessened energy demand, mitochondrial stress, and lower one-carbon metabolism (particularly restricted to the methionine cycle specifically in frontal cortex. These findings, along with the better antioxidant capacity and lower mTOR signaling also seen in frontal cortex, suggest that this brain region is especially resistant to stress compared to the entorhinal cortex and hippocampus, which are more vulnerable regions. Globally, our results show the presence of specific metabolomics adaptations in three mature, healthy human brain regions, confirming the existence of cross-regional differences in cell vulnerability in the human cerebral cortex.

  1. Time and decision making: differential contribution of the posterior insular cortex and the striatum during a delay discounting task.

    Science.gov (United States)

    Wittmann, Marc; Leland, David S; Paulus, Martin P

    2007-06-01

    Delay discounting refers to the fact that an immediate reward is valued more than the same reward if it occurs some time in the future. To examine the neural substrates underlying this process, we studied 13 healthy volunteers who repeatedly had to decide between an immediate and parametrically varied delayed hypothetical reward using a delay discounting task during event-related functional magnetic resonance imaging. Subject's preference judgments resulted in different discounting slopes for shorter ( or =1 year) delays. Neural activation associated with the shorter delays relative to the longer delays was associated with increased activation in the head of the left caudate nucleus and putamen. When individuals selected the delayed relative to the immediate reward, a strong activation was found in bilateral posterior insular cortex. Several brain areas including the left caudate nucleus showed a correlation between the behaviorally determined discounting and brain activation for the contrast of intervals with delays or =1 year. These results suggest that (1) the posterior insula, which is a critical component of the decision-making neural network, is involved in delaying gratification and (2) the degree of neural activation in the striatum, which plays a fundamental role in reward prediction and in time estimation, may code for the time delay.

  2. Rapid eye movement (REM sleep deprivation reduces rat frontal cortex acetylcholinesterase (EC 3.1.1.7 activity

    Directory of Open Access Journals (Sweden)

    Camarini R.

    1997-01-01

    Full Text Available Rapid eye movement (REM sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase controls acetylcholine (Ach availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12. Two additional groups, a home-cage control (N = 6 and a large platform control (N = 6, were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant, membrane-bound (100,000 g pellet and soluble (100,000 g supernatant Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1 in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8. There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2. Our results

  3. GABAA receptor B subunit expression in the superior frontal cortex of human alcoholics

    International Nuclear Information System (INIS)

    Buckley, S.T.; Dodd, P.R.

    2001-01-01

    Full text: Changes in GABA A receptor pharmacology can be ascribed to alterations in expression of specific GABA A receptor subunits. Ethanol is known to be a potent agonist of the GABA A receptor. Chronic abuse of alcohol in humans results in damage of selective brain regions such as the superior frontal cortex (SFC), leading to neuronal cell loss. Studies in our laboratory 1 and elsewhere 2 have shown differences in expression of a number of GABA A receptor subunits in chronic human alcoholism. This suggests that alterations in GABA A receptor composition may be involved in the pathogenesis of alcoholic brain damage. We analysed the expression of the β 1 ,β 2 and β 3 isoforms of the GABA A receptor by a competitive reverse transcription polymerase chain reaction (RT-PCR) technique, which utilised an internal standard (IS) for quantitation. 35 S-dATP was incorporated to enable visualisation of the PCR products. Human brain tissue was obtained at autopsy and stored in 0.32 M sucrose at -80 deg C. Total RNA was extracted from pathologically susceptible and spared regions, SFC and motor cortex respectively,of 22 control and 22 alcoholic patients. 1 μg of total RNA from each sample was co-amplified with 0.5 pg of IS and a ratio determined. A standard consisting of known amounts of β 1 cRNA titrated against 0.5 pg of IS enabled a standard curve to be generated for quantitation of each unknown sample. The samples were subjected to polyacrylamide gel electrophoresis and the dried gel exposed to a phosphorimager screen. Data analysis was performed using the ImageQuant program. Initial results indicate that there is a reduction in expression of all the β transcripts in alcoholics when compared with controls, which supports the hypothesis that the GABA A receptor is altered by alcohol abuse. Supported by NHMRC. Copyright (2001) Australian Neuroscience Society

  4. Quantitative analysis of basal dendritic tree of layer III pyramidal neurons in different areas of adult human frontal cortex.

    Science.gov (United States)

    Zeba, Martina; Jovanov-Milosević, Natasa; Petanjek, Zdravko

    2008-01-01

    Large long projecting (cortico-cortical) layer IIIc pyramidal neurons were recently disclosed to be in the basis of cognitive processing in primates. Therefore, we quantitatively examined the basal dendritic morphology of these neurons by using rapid Golgi and Golgi Cox impregnation methods among three distinct Brodmann areas (BA) of an adult human frontal cortex: the primary motor BA4 and the associative magnopyramidal BA9 from left hemisphere and the Broca's speech BA45 from both hemispheres. There was no statistically significant difference in basal dendritic length or complexity, as dendritic spine number or their density between analyzed BA's. In addition, we analyzed each of these BA's immunocytochemically for distribution of SMI-32, a marker of largest long distance projecting neurons. Within layer IIIc, the highest density of SMI-32 immunopositive pyramidal neurons was observed in associative BA9, while in primary BA4 they were sparse. Taken together, these data suggest that an increase in the complexity of cortico-cortical network within human frontal areas of different functional order may be principally based on the increase in density of large, SMI-32 immunopositive layer IIIc neurons, rather than by further increase in complexity of their dendritic tree and synaptic network.

  5. Moderate effects of noninvasive brain stimulation of the frontal cortex for improving negative symptoms in schizophrenia: Meta-analysis of controlled trials.

    Science.gov (United States)

    Aleman, André; Enriquez-Geppert, Stefanie; Knegtering, Henderikus; Dlabac-de Lange, Jozarni J

    2018-06-01

    Negative symptoms in schizophrenia concern a clinically relevant reduction of goal-directed behavior that strongly and negatively impacts daily functioning. Existing treatments are of marginal effect and novel approaches are needed. Noninvasive neurostimulation by means of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are novel approaches that may hold promise. To provide a quantitative integration of the published evidence regarding effects of rTMS and tDCS over the frontal cortex on negative symptoms, including an analysis of effects of sham stimulation. Meta-analysis was applied, using a random effects model, to calculate mean weighted effect sizes (Cohen's d). Heterogeneity was assessed by using Cochrans Q and I 2 tests. For rTMS treatment, the mean weighted effect size compared to sham stimulation was 0.64 (0.32-0.96; k = 22, total N = 827). Studies with younger participants showed stronger effects as compared to studies with older participants. For tDCS studies a mean weighted effect size of 0.50 (-0.07 to 1.07; k = 5, total N = 134) was found. For all frontal noninvasive neurostimulation studies together (i.e., TMS and tDCS studies combined) active stimulation was superior to sham, the mean weighted effect size was 0.61 (24 studies, 27 comparisons, 95% confidence interval 0.33-0.89; total N = 961). Sham rTMS (baseline - posttreatment comparison) showed a significant improvement of negative symptoms, d = 0.31 (0.09-0.52; k = 16, total N = 333). Whereas previous meta-analyses were underpowered, our meta-analysis had a power of 0.87 to detect a small effect. The available evidence indicates that noninvasive prefrontal neurostimulation can improve negative symptoms. This finding suggests a causal role for the lateral frontal cortex in self-initiated goal-directed behavior. The evidence is stronger for rTMS than for tDCS, although this may be due to the small number of

  6. Spatial distribution of diffuse, primitive, and classic amyloid-beta deposits and blood vessels in the upper laminae of the frontal cortex in Alzheimer disease.

    Science.gov (United States)

    Armstrong, R A; Cairns, N J; Lantos, P L

    1998-12-01

    The spatial distribution of the diffuse, primitive, and classic amyloid-beta deposits was studied in the upper laminae of the superior frontal gyrus in cases of sporadic Alzheimer disease (AD). Amyloid-beta-stained tissue was counterstained with collagen IV to determine whether the spatial distribution of the amyloid-beta deposits along the cortex was related to blood vessels. In all patients, amyloid-beta deposits and blood vessels were aggregated into distinct clusters and in many patients, the clusters were distributed with a regular periodicity along the cortex. The clusters of diffuse and primitive deposits did not coincide with the clusters of blood vessels in most patients. However, the clusters of classic amyloid-beta deposits coincided with those of the large diameter (>10 microm) blood vessels in all patients and with clusters of small-diameter (upper cortical laminae.

  7. Norepinephrine in the Medial Pre-frontal Cortex Supports Accumbens Shell Responses to a Novel Palatable Food in Food-Restricted Mice Only

    Directory of Open Access Journals (Sweden)

    Emanuele Claudio Latagliata

    2018-01-01

    Full Text Available Previous findings from this laboratory demonstrate: (1 that different classes of addictive drugs require intact norepinephrine (NE transmission in the medial pre Frontal Cortex (mpFC to promote conditioned place preference and to increase dopamine (DA tone in the nucleus accumbens shell (NAc Shell; (2 that only food-restricted mice require intact NE transmission in the mpFC to develop conditioned preference for a context associated with milk chocolate; and (3 that food-restricted mice show a significantly larger increase of mpFC NE outflow then free fed mice when experiencing the palatable food for the first time. In the present study we tested the hypothesis that only the high levels of frontal cortical NE elicited by the natural reward in food restricted mice stimulate mesoaccumbens DA transmission. To this aim we investigated the ability of a first experience with milk chocolate to increase DA outflow in the accumbens Shell and c-fos expression in striatal and limbic areas of food–restricted and ad-libitum fed mice. Moreover, we tested the effects of a selective depletion of frontal cortical NE on both responses in either feeding group. Only in food-restricted mice milk chocolate induced an increase of DA outflow beyond baseline in the accumbens Shell and a c-fos expression larger than that promoted by a novel inedible object in the nucleus accumbens. Moreover, depletion of frontal cortical NE selectively prevented both the increase of DA outflow and the large expression of c-fos promoted by milk chocolate in the NAc Shell of food-restricted mice. These findings support the conclusion that in food-restricted mice a novel palatable food activates the motivational circuit engaged by addictive drugs and support the development of noradrenergic pharmacology of motivational disturbances.

  8. Frontal lobe atrophy in motor neuron diseases.

    Science.gov (United States)

    Kiernan, J A; Hudson, A J

    1994-08-01

    Neuronal degeneration in the precentral gyrus alone cannot account for the occurrence of spastic paresis in motor neuron diseases. To look for more extensive cortical atrophy we measured MRIs of the upper parts of the frontal and parietal lobes in 11 sporadic cases of classical amyotrophic lateral sclerosis (ALS), eight patients with primary lateral sclerosis (PLS) and an age- and sex-matched group of 49 neurologically normal people. None of the patients had overt dementia or other mental diseases. In PLS there is progressive spastic paresis but in contrast to ALS there is no lower motor neuron degeneration. The surface area of the precentral gyri and the amount of underlying white matter in PLS were consistently approximately 75% of the normal size. By contrast, there was some shrinkage of the precentral gyri in some of the ALS patients but the mean measurements for the group did not differ significantly from the controls. Anterior to the precentral sulci, the cortical surface area in PLS was approximately 85% of that of the controls, with correspondingly reduced white matter. In ALS the cortical surface areas of the anterior frontal lobes did not differ from those of the controls, but the amount of underlying white matter was reduced almost as much in ALS as it was in PLS. The measured changes in the frontal lobes suggest that in PLS there is simultaneous atrophy of the primary, premotor and supplementary motor areas of the cortex, with consequent degeneration of corticospinal and corticoreticular axons descending through the underlying white matter. These changes could account for the progressive upper motor neuron syndrome. In ALS, with no significant frontal cortical atrophy, the shrinkage of the white matter may be due to degeneration of axons projecting to the frontal cortex from elsewhere. Deprivation of afferents could explain the diminution of motor functions of the frontal lobes in ALS and also the changes in word fluency, judgement and attention that

  9. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type

    Directory of Open Access Journals (Sweden)

    Ravi Rajmohan

    2017-05-01

    Full Text Available Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT through the use of the sex determination test (SDT. In the current study, four (1 female, 3 males CDDAT and nine (4 females, 5 males age-matched neurotypicals (NT completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA and anterior cingulate cortex (ACC. DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC, but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  10. Performance monitoring in the medial frontal cortex and related neural networks: From monitoring self actions to understanding others' actions.

    Science.gov (United States)

    Ninomiya, Taihei; Noritake, Atsushi; Ullsperger, Markus; Isoda, Masaki

    2018-04-27

    Action is a key channel for interacting with the outer world. As such, the ability to monitor actions and their consequences - regardless as to whether they are self-generated or other-generated - is of crucial importance for adaptive behavior. The medial frontal cortex (MFC) has long been studied as a critical node for performance monitoring in nonsocial contexts. Accumulating evidence suggests that the MFC is involved in a wide range of functions necessary for one's own performance monitoring, including error detection, and monitoring and resolving response conflicts. Recent studies, however, have also pointed to the importance of the MFC in performance monitoring under social conditions, ranging from monitoring and understanding others' actions to reading others' mental states, such as their beliefs and intentions (i.e., mentalizing). Here we review the functional roles of the MFC and related neural networks in performance monitoring in both nonsocial and social contexts, with an emphasis on the emerging field of a social systems neuroscience approach using macaque monkeys as a model system. Future work should determine the way in which the MFC exerts its monitoring function via interactions with other brain regions, such as the superior temporal sulcus in the mentalizing system and the ventral premotor cortex in the mirror system. Copyright © 2018. Published by Elsevier B.V.

  11. The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood.

    Science.gov (United States)

    Grinband, Jack; Savitskaya, Judith; Wager, Tor D; Teichert, Tobias; Ferrera, Vincent P; Hirsch, Joy

    2011-07-15

    The dorsal medial frontal cortex (dMFC) is highly active during choice behavior. Though many models have been proposed to explain dMFC function, the conflict monitoring model is the most influential. It posits that dMFC is primarily involved in detecting interference between competing responses thus signaling the need for control. It accurately predicts increased neural activity and response time (RT) for incompatible (high-interference) vs. compatible (low-interference) decisions. However, it has been shown that neural activity can increase with time on task, even when no decisions are made. Thus, the greater dMFC activity on incompatible trials may stem from longer RTs rather than response conflict. This study shows that (1) the conflict monitoring model fails to predict the relationship between error likelihood and RT, and (2) the dMFC activity is not sensitive to congruency, error likelihood, or response conflict, but is monotonically related to time on task. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  13. Bilingualism Alters Children's Frontal Lobe Functioning for Attentional Control

    Science.gov (United States)

    Arredondo, Maria M.; Hu, Xiao-Su; Satterfield, Teresa; Kovelman, Ioulia

    2017-01-01

    Bilingualism is a typical linguistic experience, yet relatively little is known about its impact on children's cognitive and brain development. Theories of bilingualism suggest early dual-language acquisition can improve children's cognitive abilities, specifically those relying on frontal lobe functioning. While behavioral findings present much conflicting evidence, little is known about its effects on children's frontal lobe development. Using functional Near-Infrared Spectroscopy (fNIRS), the findings suggest that Spanish-English bilingual children (n=13, ages 7-13) had greater activation in left prefrontal cortex during a non-verbal attentional control task relative to age-matched English monolinguals. In contrast, monolinguals (n=14) showed greater right prefrontal activation than bilinguals. The present findings suggest early bilingualism yields significant changes to the functional organization of children's prefrontal cortex for attentional control and carry implications for understanding how early life experiences impact cognition and brain development. PMID:26743118

  14. Working memory load impairs the evaluation of behavioral errors in the medial frontal cortex.

    Science.gov (United States)

    Maier, Martin E; Steinhauser, Marco

    2017-10-01

    Early error monitoring in the medial frontal cortex enables error detection and the evaluation of error significance, which helps prioritize adaptive control. This ability has been assumed to be independent from central capacity, a limited pool of resources assumed to be involved in cognitive control. The present study investigated whether error evaluation depends on central capacity by measuring the error-related negativity (Ne/ERN) in a flanker paradigm while working memory load was varied on two levels. We used a four-choice flanker paradigm in which participants had to classify targets while ignoring flankers. Errors could be due to responding either to the flankers (flanker errors) or to none of the stimulus elements (nonflanker errors). With low load, the Ne/ERN was larger for flanker errors than for nonflanker errors-an effect that has previously been interpreted as reflecting differential significance of these error types. With high load, no such effect of error type on the Ne/ERN was observable. Our findings suggest that working memory load does not impair the generation of an Ne/ERN per se but rather impairs the evaluation of error significance. They demonstrate that error monitoring is composed of capacity-dependent and capacity-independent mechanisms. © 2017 Society for Psychophysiological Research.

  15. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    Science.gov (United States)

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  16. Differences in the neural correlates of frontal lobe tests.

    Science.gov (United States)

    Matsuoka, Teruyuki; Kato, Yuka; Imai, Ayu; Fujimoto, Hiroshi; Shibata, Keisuke; Nakamura, Kaeko; Yamada, Kei; Narumoto, Jin

    2018-01-01

    The Executive Interview (EXIT25), the executive clock-drawing task (CLOX1), and the Frontal Assessment Battery (FAB) are used to assess executive function at the bedside. These tests assess distinct psychometric properties. The aim of this study was to examine differences in the neural correlates of the EXIT25, CLOX1, and FAB based on magnetic resonance imaging. Fifty-eight subjects (30 with Alzheimer's disease, 10 with mild cognitive impairment, and 18 healthy controls) participated in this study. Multiple regression analyses were performed to examine the brain regions correlated with the EXIT25, CLOX1, and FAB scores. Age, gender, and years of education were included as covariates. Statistical thresholds were set to uncorrected P-values of 0.001 at the voxel level and 0.05 at the cluster level. The EXIT25 score correlated inversely with the regional grey matter volume in the left lateral frontal lobe (Brodmann areas 6, 9, 44, and 45). The CLOX1 score correlated positively with the regional grey matter volume in the right orbitofrontal cortex (Brodmann area 11) and the left supramarginal gyrus (Brodmann area 40). The FAB score correlated positively with the regional grey matter volume in the right precentral gyrus (Brodmann area 6). The left lateral frontal lobe (Brodmann area 9) and the right lateral frontal lobe (Brodmann area 46) were identified as common brain regions that showed association with EXIT25, CLOX1, and FAB based only a voxel-level threshold. The results of this study suggest that the EXIT25, CLOX1, and FAB may be associated with the distinct neural correlates of the frontal cortex. © 2018 Japanese Psychogeriatric Society.

  17. α2-Adrenoceptor Functionality in Postmortem Frontal Cortex of Depressed Suicide Victims

    Science.gov (United States)

    Valdizán, Elsa M.; Díez-Alarcia, Rebeca; González-Maeso, Javier; Pilar-Cuéllar, Fuencisla; García-Sevilla, Jesús A.; Meana, J. Javier; Pazos, Angel

    2013-01-01

    Background Alterations in brain density and signaling associated with monoamine receptors are believed to play a role in depressive disorders. This study evaluates the functional status of α2A-adrenoceptors in postmortem frontal cortex of depressed subjects. Methods G-protein activation and inhibition of adenylyl cyclase (AC) activity induced by the α2-adrenoceptor agonist UK14304 were measured in triplicate in samples from 15 suicide victims with an antemortem diagnosis of major depression and 15 matched control subjects. Results Basal [35S] guanosine γ thio-phosphate (GTPγS) binding and cyclic adenosine monophosphate accumulation did not differ between groups. In depressed victims, an increase in [35S] GTPγS binding potency (EC50 = .58 μmol/L vs. EC50 = 3.31 μmol/L; p < .01; depressed vs. control) and a significant reduction in the maximal inhibition of AC activity (Imax = 27 ± 4% vs. Imax = 47 ± 5%; p < .01) were observed after incubation with the α2-adrenoceptor agonist UK14304. No differences were found between antidepressant-free and antidepressant-treated subjects. A significant relationship between EC50 values for [35S] GTPγS and Imax values for AC assay was found (n = 30; r = −.43; p < .05). Conclusions The dual regulation of α2A-adrenoceptor signaling pathways raises the possibility that factors affecting the G-protein cycle and/or selective access of Gαi/o–protein to AC might be relevant to receptor abnormalities in depression, providing further support for the involvement of α2A-adrenoceptors in the pathogenesis of depression. PMID:20864091

  18. Learning and motivation in the human striatum.

    Science.gov (United States)

    Shohamy, Daphna

    2011-06-01

    The past decade has seen a dramatic change in our understanding of the role of the striatum in behavior. Early perspectives emphasized a role for the striatum in habitual learning of stimulus-response associations and sequences of actions. Recent advances from human neuroimaging research suggest a broader role for the striatum in motivated learning. New findings demonstrate that the striatum represents multiple learning signals and highlight the contribution of the striatum across many cognitive domains and contexts. Recent findings also emphasize interactions between the striatum and other specialized brain systems for learning. Together, these findings suggest that the striatum contributes to a distributed network that learns to select actions based on their predicted value in order to optimize behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. "It's Not What You Say, But How You Say it": A Reciprocal Temporo-frontal Network for Affective Prosody.

    Science.gov (United States)

    Leitman, David I; Wolf, Daniel H; Ragland, J Daniel; Laukka, Petri; Loughead, James; Valdez, Jeffrey N; Javitt, Daniel C; Turetsky, Bruce I; Gur, Ruben C

    2010-01-01

    Humans communicate emotion vocally by modulating acoustic cues such as pitch, intensity and voice quality. Research has documented how the relative presence or absence of such cues alters the likelihood of perceiving an emotion, but the neural underpinnings of acoustic cue-dependent emotion perception remain obscure. Using functional magnetic resonance imaging in 20 subjects we examined a reciprocal circuit consisting of superior temporal cortex, amygdala and inferior frontal gyrus that may underlie affective prosodic comprehension. Results showed that increased saliency of emotion-specific acoustic cues was associated with increased activation in superior temporal cortex [planum temporale (PT), posterior superior temporal gyrus (pSTG), and posterior superior middle gyrus (pMTG)] and amygdala, whereas decreased saliency of acoustic cues was associated with increased inferior frontal activity and temporo-frontal connectivity. These results suggest that sensory-integrative processing is facilitated when the acoustic signal is rich in affective information, yielding increased activation in temporal cortex and amygdala. Conversely, when the acoustic signal is ambiguous, greater evaluative processes are recruited, increasing activation in inferior frontal gyrus (IFG) and IFG STG connectivity. Auditory regions may thus integrate acoustic information with amygdala input to form emotion-specific representations, which are evaluated within inferior frontal regions.

  20. Multiple [3H]-nemonapride binding sites in calf brain.

    Science.gov (United States)

    Helmeste, D M; Tang, S W; Li, M; Fang, H

    1997-07-01

    [3H]-Nemonapride has been the ligand of choice to label D4 dopamine receptors. Its specificity was questioned when it was discovered that sigma (sigma) sites were also labeled by [3H]-nemonapride. To further characterize the binding of [3H]-nemonapride, three areas of calf brain (striatum, frontal cortex and cerebellum) were examined. In all three areas, [3H]-nemonapride labeled multiple sites. Dopaminergic and sigma sites were the most prominent. The sigma binding profile was sigma-1 like with a Ki binding profile as follows (in order of decreasing potency): haloperidol, PPAP, pentazocine, DTG, U-50488, R(+)-3-PPP. Experiments using sulpiride and pentazocine to block striatal dopaminergic and sigma sites, respectively, revealed additional, not previously characterized binding sites for [3H]-nemonapride. One component which was present in striatum but not in frontal cortex or cerebellum, had affinity for some neuroleptics and WB-4101, but not for typical serotonergic agents. Thus, [3H]-nemonapride has no selectivity for dopamine receptors unless stringent experimental conditions are met.

  1. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    International Nuclear Information System (INIS)

    Brann, M.R.

    1985-01-01

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor

  2. A common currency for the computation of motivational values in the human striatum

    Science.gov (United States)

    Li, Yansong; Dreher, Jean-Claude

    2015-01-01

    Reward comparison in the brain is thought to be achieved through the use of a ‘common currency’, implying that reward value representations are computed on a unique scale in the same brain regions regardless of the reward type. Although such a mechanism has been identified in the ventro-medial prefrontal cortex and ventral striatum in the context of decision-making, it is less clear whether it similarly applies to non-choice situations. To answer this question, we scanned 38 participants with fMRI while they were presented with single cues predicting either monetary or erotic rewards, without the need to make a decision. The ventral striatum was the main brain structure to respond to both cues while showing increasing activity with increasing expected reward intensity. Most importantly, the relative response of the striatum to monetary vs erotic cues was correlated with the relative motivational value of these rewards as inferred from reaction times. Similar correlations were observed in a fronto-parietal network known to be involved in attentional focus and motor readiness. Together, our results suggest that striatal reward value signals not only obey to a common currency mechanism in the absence of choice but may also serve as an input to adjust motivated behaviour accordingly. PMID:24837478

  3. Dynamic Variation in Pleasure in Children Predicts Nonlinear Change in Lateral Frontal Brain Electrical Activity

    Science.gov (United States)

    Light, Sharee N.; Coan, James A.; Frye, Corrina; Goldsmith, H. Hill; Davidson, Richard J.

    2009-01-01

    Individual variation in the experience and expression of pleasure may relate to differential patterns of lateral frontal activity. Brain electrical measures have been used to study the asymmetric involvement of lateral frontal cortex in positive emotion, but the excellent time resolution of these measures has not been used to capture…

  4. Khat distorts the prefrontal cortex histology and function of adult ...

    African Journals Online (AJOL)

    Khat is a psychoactive herbal drug of pronounced ethno-pharmacological significance often abused due to its unregulated use. It affects many brain centers including the prefrontal cortex which is the anterior most part of the frontal lobe. The prefrontal cortex modulates working memory, planning complex cognitive ...

  5. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior.

    Directory of Open Access Journals (Sweden)

    Austin Chou

    Full Text Available Traumatic brain injury (TBI is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior.

  6. Impaired Frontal-Basal Ganglia Connectivity in Male Adolescents with Conduct Disorder.

    Directory of Open Access Journals (Sweden)

    Jibiao Zhang

    Full Text Available Alack of inhibition control has been found in subjects with conduct disorder (CD, but the underlying neuropathophysiology remains poorly understood. The current study investigated the different mechanism of inhibition control in adolescent-onset CD males (n = 29 and well-matched healthy controls (HCs (n = 40 when performing a GoStop task by functional magnetic resonance images. Effective connectivity (EC within the inhibition control network was analyzed using a stochastic dynamic causality model. We found that EC within the inhibition control network was significantly different in the CD group when compared to the HCs. Exploratory relationship analysis revealed significant negative associations between EC between the IFG and striatum and behavioral scale scores in the CD group. These results suggest for the first time that the failure of inhibition control in subjects with CD might be associated with aberrant connectivity of the frontal-basal ganglia pathways, especially between the IFG and striatum.

  7. Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning.

    Science.gov (United States)

    Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M

    2011-01-01

    Reasoning is a key component of adaptable "executive" behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand-or the requirement to remap rules on to novel features-recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions.

  8. Lateral Prefrontal Cortex Subregions Make Dissociable Contributions during Fluid Reasoning

    Science.gov (United States)

    Thompson, Russell; Duncan, John; Owen, Adrian M.

    2011-01-01

    Reasoning is a key component of adaptable “executive” behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand—or the requirement to remap rules on to novel features—recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions. PMID:20483908

  9. Mindfulness based cognitive therapy improves frontal control in bipolar disorder: a pilot EEG study

    Directory of Open Access Journals (Sweden)

    Howells Fleur M

    2012-02-01

    Full Text Available Abstract Background Cognitive processing in Bipolar Disorder is characterized by a number of attentional abnormalities. Mindfulness Based Cognitive Therapy combines mindfulness meditation, a form of attentional training, along with aspects of cognitive therapy, and may improve attentional dysfunction in bipolar disorder patients. Methods 12 euthymic BD patients and 9 control participants underwent record of electroencephalography (EEG, band frequency analysis during resting states (eyes open, eyes closed and during the completion of a continuous performance task (A-X version, EEG event-related potential (ERP wave component analysis. The individuals with BD completed an 8-week MBCT intervention and record of EEG was repeated. Results (1 Brain activity, individuals with BD showed significantly decreased theta band power, increased beta band power, and decreased theta/beta ratios during the resting state, eyes closed, for frontal and cingulate cortices. Post MBCT intervention improvement over the right frontal cortex was seen in the individuals with BD, as beta band power decreased. (2 Brain activation, individuals with BD showed a significant P300-like wave form over the frontal cortex during the cue. Post MBCT intervention the P300-like waveform was significantly attenuated over the frontal cortex. Conclusions Individuals with BD show decreased attentional readiness and activation of non-relevant information processing during attentional processes. These data are the first that show, MBCT in BD improved attentional readiness, and attenuated activation of non-relevant information processing during attentional processes.

  10. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    Science.gov (United States)

    Lauterstein, Dana E.; Tijerina, Pamella B.; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S.; Gordon, Terry; Klein, Catherine B.; Zelikoff, Judith T.

    2016-01-01

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology. PMID:27077873

  11. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    Directory of Open Access Journals (Sweden)

    Dana E. Lauterstein

    2016-04-01

    Full Text Available Electronic cigarettes (e-cigarettes, battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation throughout gestation (3 h/day; 5 days/week to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq. Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  12. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Guo, X. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China); Wang, G.H. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China); Wuhan University, Institute of Neuropsychiatry, Wuhan, China, Institute of Neuropsychiatry, Wuhan University, Wuhan (China); Wang, H.L.; Liu, Z.C.; Liu, H.; Zhu, Z.X.; Li, Y. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China)

    2014-03-03

    Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD.

  13. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress

    International Nuclear Information System (INIS)

    Yang, C.; Guo, X.; Wang, G.H.; Wang, H.L.; Liu, Z.C.; Liu, H.; Zhu, Z.X.; Li, Y.

    2014-01-01

    Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD

  14. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages.

    Science.gov (United States)

    Lauterstein, Dana E; Tijerina, Pamella B; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S; Gordon, Terry; Klein, Catherine B; Zelikoff, Judith T

    2016-04-12

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13-16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4-6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  15. In search of the functional neuroanatomy of sociality: MRI subdivisions of orbital frontal cortex and social cognition.

    Science.gov (United States)

    Nestor, Paul G; Nakamura, Motoaki; Niznikiewicz, Margaret; Thompson, Elizabeth; Levitt, James J; Choate, Victoria; Shenton, Martha E; McCarley, Robert W

    2013-04-01

    We examined social cognition in a sample of healthy participants who had prior magnetic resonance imaging (MRI) gray matter volume studies of the orbital frontal cortex (OFC) that was parcellated into three regions: gyrus rectus, middle orbital gyrus and lateral orbital gyrus. These subjects also completed a self-report measure of Machiavelli personality traits, along with psychometric tests of social comprehension and declarative episodic memory, all of which we used as proxy measures to examine various features of social cognition. The data pointed to distinct functional-anatomical relationships highlighted by strong correlations of left lateral orbital gyrus and Machiavellian scores and right middle orbital gyrus with social comprehension and declarative episodic memory. In addition, hierarchical regression analyses revealed statistical evidence of a double dissociation between Machiavellian scores and left lateral orbital gyrus on one hand, and social comprehension with right middle orbital gyrus, on the other hand. To our knowledge, these findings are the first to show evidence linking normal variation in OFC subregions and different aspects of social cognition.

  16. Frontal white matter anisotropy and antidepressant remission in late-life depression.

    Directory of Open Access Journals (Sweden)

    Warren D Taylor

    2008-09-01

    Full Text Available Neuroanatomic features associated with antidepressant treatment outcomes in older depressed individuals are not well established. This study used diffusion tensor imaging to examine frontal white matter structure in depressed subjects undergoing a 12-week trial of sertraline. We hypothesized that remission would be associated with higher frontal anisotropy measures, and failure to remit with lower anisotropy.74 subjects with Major Depressive Disorder and age 60 years or older were enrolled in a twelve-week open-label trial of sertraline and completed clinical assessments and 1.5T magnetic resonance brain imaging. The apparent diffusion coefficient (ADC and fractional anisotropy (FA were measured in regions of interest placed in the white matter of the dorsolateral prefrontal cortex, anterior cingulate cortex, and corpus callosum. Differences in ADC and FA values between subjects who did and did not remit to treatment over the study period were assessed using generalized estimating equations, controlling for age, sex, medical comorbidity and baseline depression severity.Subjects who did not remit to sertraline exhibited higher FA values in the superior frontal gyri and anterior cingulate cortices bilaterally. There were no statistically significant associations between ADC measures and remission.Failure to remit to sertraline is associated with higher frontal FA values. Functional imaging studies demonstrate that depression is characterized by functional disconnection between frontal and limbic regions. Those individuals where this disconnection is related to structural changes as detected by DTI may be more likely to respond to antidepressants.ClinicalTrials.gov NCT00339066.

  17. Reduced dorso-lateral prefrontal cortex in treatment resistant schizophrenia.

    Science.gov (United States)

    Zugman, André; Gadelha, Ary; Assunção, Idaiane; Sato, João; Ota, Vanessa K; Rocha, Deyvis L; Mari, Jair J; Belangero, Sintia I; Bressan, Rodrigo A; Brietzke, Elisa; Jackowski, Andrea P

    2013-08-01

    Treatment resistance affects up to one third of patients with schizophrenia (SCZ). A better understanding of its biological underlying processes could improve treatment. The aim of this study was to compare cortical thickness between non-resistant SCZ (NR-SCZ), treatment-resistant SCZ (TR-SCZ) patients and healthy controls (HC). Structural MRI scans were obtained from 3 groups of individuals: 61 treatment resistant SCZ individuals, 67 non-resistant SCZ and 80 healthy controls. Images were analyzed using cortical surface modelling (implemented in freesurfer package) to identify group differences in cortical thickness. Statistical significant differences were identified using Monte-Carlo simulation method with a corrected p-cluster<0.01. Patients in the TR-SCZ group showed a widespread reduction in cortical thickness in frontal, parietal, temporal and occipital regions bilaterally. NR-SCZ group had reduced cortex in two regions (left superior frontal cortex and left caudal middle frontal cortex). TR-SCZ group also showed decreased thickness in the left dorsolateral prefrontal cortex (DLPFC) when compared with patients from NR-SCZ group. The reduction in cortical thickness in DLPFC indicates a more severe form of the disease or a specific finding for this group. Alterations in this region should be explored as a putative marker for treatment resistance. Prospective studies, with individuals being followed from first episode psychosis until refractoriness is diagnosed, are needed to clarify these hypotheses. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Lateral prefrontal cortex is organized into parallel dorsal and ventral streams along the rostro-caudal axis.

    Science.gov (United States)

    Blumenfeld, Robert S; Nomura, Emi M; Gratton, Caterina; D'Esposito, Mark

    2013-10-01

    Anatomical connectivity differences between the dorsal and ventral lateral prefrontal cortex (PFC) of the non-human primate strongly suggests that these regions support different functions. However, after years of study, it remains unclear whether these regions are functionally distinct. In contrast, there has been a groundswell of recent studies providing evidence for a rostro-caudal functional organization, along the lateral as well as dorsomedial frontal cortex. Thus, it is not known whether dorsal and ventral regions of lateral PFC form distinct functional networks and how to reconcile any dorso-ventral organization with the medio-lateral and rostro-caudal axes. Here, we used resting-state connectivity data to identify parallel dorsolateral and ventrolateral streams of intrinsic connectivity with the dorsomedial frontal cortex. Moreover, we show that this connectivity follows a rostro-caudal gradient. Our results provide evidence for a novel framework for the intrinsic organization of the frontal cortex that incorporates connections between medio-lateral, dorso-ventral, and rostro-caudal axes.

  19. Comparative study on biodistribution of domestic and imported 125I-β-CIT

    International Nuclear Information System (INIS)

    Liu Xingdang; Lin Xiangtong; Fang Ping; Chen Zhengping; Zhou Xiang; Wang Bocheng; Zhang Manda

    2003-01-01

    Objective: To characterize the kinetics and biodistribution of a domestically synthesized 125 I-2β-carbomethoxy-3β-4-iodopheny1tropane (β-CIT ) and to compare it with that of 125 I-β-CIT imported from RBI company. Methods: 1)The biodistribution of domestic and RBI company produced 125 I-β-CIT in KM mice. Twenty groups of mice (group of 5) were injected into the tail vein with either one of 125 I-β-CIT products. Each group of both products was killed at 5,15,30 and 45 min, and 1, 2, 4, 6, 8 and 24 h. 2)Autoradiography was performed on the brain of SD rats at 2 h after injection. Results: Domestic 125 I-β-CIT was primarily uptaked in the striatum, also in areas rich in 5-HTT such as the brain stem, frontal cortex, parietal cortex, temporal cortex, occipital cortex and hippocampus. Striatal uptake peaked at 2 h postinjection of 125 I-β-CIT. The ratio of specific to nonspecific binding in striatum peaked at 6 h. The highest radioactivity was in the lungs and the less radioactivity was in the liver, kidney, spleen and intestine. Autoradiography confirmed that 125 I-β-CIT primarily bound to striatum and lower room temperature significantly reduced the binding of the agent. Conclusion: The domestic 125 I-β-CIT binds primarily to dopamine transporters in the striatum in mice and rats and the maximum uptake is in the lungs

  20. The role of frontal and parietal brain areas in bistable perception

    NARCIS (Netherlands)

    Knapen, T.; Brascamp, J.; Pearson, J.; van Ee, R.; Blake, R.

    2011-01-01

    When sensory input allows for multiple, competing perceptual interpretations, observers' perception can fluctuate over time, which is called bistable perception. Imaging studies in humans have revealed transient responses in a right-lateralized network in the frontal-parietal cortex (rFPC) around

  1. Bereitschaftspotentials recorded from the lateral part of the superior frontal gyrus in humans.

    Science.gov (United States)

    Ohara, Shinji; Ikeda, Akio; Matsuhashi, Masao; Satow, Takeshi; Kunieda, Takeharu; Mikuni, Nobuhiro; Baba, Koichi; Mihara, Tadahiro; Miyamoto, Susumu; Shibasaki, Hiroshi

    2006-05-15

    To demonstrate the Bereitschaftspotentials (BPs) over the high lateral convexity in the superior frontal gyrus, movement-related cortical potentials with respect to the middle finger extension were recorded in seven patients with refractory epilepsy who underwent subdural implantation of platinum electrode grids and/or strips covering the high lateral frontal convexity. In two out of the seven patients, BPs were recorded from the electrodes placed on the superior frontal gyrus in the vicinity of the border between the medial and lateral frontal lobes, which were distinct from those recorded from the primary sensorimotor cortex. The results suggest the possible contribution of either the lateral dorsal non-primary motor area or the SMA to the generation of the BPs.

  2. Frontal White Matter Damage Impairs Response Inhibition in Children Following Traumatic Brain Injury

    Science.gov (United States)

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-01-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition. PMID:24618405

  3. 3-D Cytoarchitectonic parcellation of human orbitofrontal cortex Correlation with postmortem MRI

    NARCIS (Netherlands)

    Uylings, H.B.M.; Sanz-Arigita, E.J.; Vos, K.; Pool, C.W.; Evers, P.; Rajkowska, G.

    2010-01-01

    The orbitofrontal cortex (OFC) is located on the basal surface of the frontal lobe and is distinguished by its unique anatomical and functional features. Clinical and postmortem studies suggest the involvement of the orbitofrontal cortex in psychiatric disorders. However, the exact parcellation of

  4. Brain reward system's alterations in response to food and monetary stimuli in overweight and obese individuals.

    Science.gov (United States)

    Verdejo-Román, Juan; Vilar-López, Raquel; Navas, Juan F; Soriano-Mas, Carles; Verdejo-García, Antonio

    2017-02-01

    The brain's reward system is crucial to understand obesity in modern society, as increased neural responsivity to reward can fuel the unhealthy food choices that are driving the growing obesity epidemic. Brain's reward system responsivity to food and monetary rewards in individuals with excessive weight (overweight and obese) versus normal weight controls, along with the relationship between this responsivity and body mass index (BMI) were tested. The sample comprised 21 adults with obesity (BMI > 30), 21 with overweight (BMI between 25 and 30), and 39 with normal weight (BMI food (Willing to Pay) and monetary rewards (Monetary Incentive Delay). Neural activations within the brain reward system were compared across the three groups. Curve fit analyses were conducted to establish the association between BMI and brain reward system's response. Individuals with obesity had greater food-evoked responsivity in the dorsal and ventral striatum compared with overweight and normal weight groups. There was an inverted U-shape association between BMI and monetary-evoked responsivity in the ventral striatum, medial frontal cortex, and amygdala; that is, individuals with BMIs between 27 and 32 had greater responsivity to monetary stimuli. Obesity is associated with greater food-evoked responsivity in the ventral and dorsal striatum, and overweight is associated with greater monetary-evoked responsivity in the ventral striatum, the amygdala, and the medial frontal cortex. Findings suggest differential reactivity of the brain's reward system to food versus monetary rewards in obesity and overweight. Hum Brain Mapp 38:666-677, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Positron emission tomography (PET) in psychiatry. PET in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Herholz, K [Max-Planck-Institut fuer Neurologische Forschung und Neurologische Klinik der Universitaet Koeln (Germany)

    1993-08-13

    Currently, clinical PET is mainly useful in psychiatry and related areas for differential diagnosis of dementia. In dementia of Alzheimer type reductions of glucose metabolism are found mainly in the temporoparietal assocaiton cortex, in Pick's disease mainly in the frontal cortex, and in Huntington's disease in the striatum. Other demential diseases usually show less toposelective metabolic impairment. In the future, new diagnostic possibilities may arise from analysis of functional stimulation of specific brain areas and from the use of ligands for specific neurotransmitter systems. (orig.)

  6. Positron emission tomography (PET) in psychiatry

    International Nuclear Information System (INIS)

    Herholz, K.

    1993-01-01

    Currently, clinical PET is mainly useful in psychiatry and related areas for differential diagnosis of dementia. In dementia of Alzheimer type reductions of glucose metabolism are found mainly in the temporoparietal assocaiton cortex, in Pick's disease mainly in the frontal cortex, and in Huntington's disease in the striatum. Other demential diseases usually show less toposelective metabolic impairment. In the future, new diagnostic possibilities may arise from analysis of functional stimulation of specific brain areas and from the use of ligands for specific neurotransmitter systems. (orig.) [de

  7. Orbitofrontal cortex contribution to working memory. N-back ERP study

    International Nuclear Information System (INIS)

    Nakao, Yoshiaki; Tamura, Toshiyo; Kodabashi, Atsushi; Fujimoto, Toshiro; Yarita, Masaru

    2011-01-01

    Remarkable progress in cognitive neuroscience has revealed the involvement of the prefrontal cortex and the orbitofrontal cortex in human working memory, but the orbitofrontal cortex is still one of the least understood regions in the human brain. To elucidate the contribution of the orbitofrontal cortex to human working memory, we studied electroencephalography (EEG) P300 activity in n-back task. We elicited early P3 around 300 ms and late P3 around 360 ms of P300 components in n-back event related potentials (ERP). The amplitudes of the respective peaks changed depending on the working memory load (0-back, 1-back, 2-back, 3-back). We used source analysis to evaluate the orbitofrontal cortex in P3 components. A source model was constructed with the sources seeded from fMRI meta-analysis of n-back task and additional sources in the orbitofrontal cortex and the visual cortex estimated with P100 and late P3 components in the n-back ERP. This source model had more than 99% of GOF (goodness of fit) in n-back ERP. It gave us an insight of brain activity at the positions where sources existed. Early P3 was mainly produced by the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, the inferior parietal lobule, the medial posterior parietal and the visual cortex. Late P3 was mainly produced by the medial premotor, the lateral premotor, the frontal pole and the orbitofrontal cortex. The contribution of the frontal pole and the orbitofrontal cortex had peaks around 390 ms which were later than late P3 component. In this study, the method to evaluate the orbitofrontal cortex activity in n-back ERP was provided. Our results elicited the involvement of the orbitofrontal cortex in late P3 component of n-back ERP. (author)

  8. Reduced Numbers of Somatostatin Receptors in the Cerebral Cortex in Alzheimer's Disease

    Science.gov (United States)

    Flint Beal, M.; Mazurek, Michael F.; Tran, Vinh T.; Chattha, Geetinder; Bird, Edward D.; Martin, Joseph B.

    1985-07-01

    Somatostatin receptor concentrations were measured in patients with Alzheimer's disease and controls. In the frontal cortex (Brodmann areas 6, 9, and 10) and temporal cortex (Brodmann area 21), the concentrations of somatostatin in receptors in the patients were reduced to approximately 50 percent of control values. A 40 percent reduction was seen in the hippocampus, while no significant changes were found in the cingulate cortex, postcentral gyrus, temporal pole, and superior temporal gyrus. Scatchard analysis showed a reduction in receptor number rather than a change in affinity. Somatostatin-like immunoreactivity was significantly reduced in both the frontal and temporal cortex. Somatostatin-like immunoreactivity was linearly related to somatostatin-receptor binding in the cortices of Alzheimer's patients. These findings may reflect degeneration of postsynaptic neurons or cortical afferents in the patients' cerebral cortices. Alternatively, decreased somatostatinlike immunoreactivity in Alzheimer's disease might indicate increased release of somatostatin and down regulation of postsynaptic receptors.

  9. Gene-environment interaction affects substance P and neurokinin A in the entorhinal cortex and periaqueductal grey in a genetic animal model of depression: implications for the pathophysiology of depression

    DEFF Research Database (Denmark)

    Husum, Henriette; Wörtwein, Gitta; Andersson, Weronika

    2008-01-01

    Evidence implies a role for corticotropin-releasing hormone (CRH) and tachykinins, e.g. substance P (SP) and neurokinin A (NKA) in the pathophysiology of depression. We have previously shown that SP- and NKA-like immunoreactivity (-LI) concentrations were altered in the frontal cortex and striatum...... of the congenitally 'depressed' Flinders Sensitive Line (FSL) compared to the Flinders Resistant Line (FRL) control rats. It is also known that environmental stress may affect brain levels of tachykinins. In view of these results we decided to superimpose maternal deprivation, an early life environmental stressor......, onto the genetically predisposed 'depressed' FSL rats and the FRL control rats and use this paradigm as a model of gene-environment interaction. The adult animals were sacrificed, adrenal glands and brains dissected out and SP-, NKA- and CRH-LI levels were determined in ten discrete brain regions...

  10. "Lipid raft aging" in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease.

    Science.gov (United States)

    Díaz, Mario; Fabelo, Noemí; Ferrer, Isidre; Marín, Raquel

    2018-07-01

    Lipid rafts are highly dynamic membrane domains featured by distinctive biochemical composition and physicochemical properties compared with the surrounding plasma membrane. These microstructures are associated not only with cellular signaling and communication in normal nerve cells but also with pathological processing of amyloid precursor protein in Alzheimer's disease. Using lipid rafts isolated from human frontal cortex in nondemented subjects aging 24 to 85 years, we demonstrate here that lipid structure of lipid rafts undergo significant alterations of specific lipid classes and phospholipid-bound fatty acids as brain cortex correlating with aging. Main changes affect levels of plasmalogens, polyunsaturated fatty acids (especially docosahexaenoic acid and arachidonic acid), total polar lipids (mainly phosphatidylinositol, sphingomyelin, sulfatides, and cerebrosides), and total neutral lipids (particularly cholesterol and sterol esters). Besides, relevant relationships between main fatty acids and/or lipid classes were altered in an age-related manner. This "lipid raft aging" exhibits clear gender differences and appear to be more pronounced in women than in men, especially in older (postmenopausal) women. The outcomes led us to conclude that human cortical lipid rafts are modified by aging in a gender-dependent fashion. Given the central role of bilayer lipid matrix in lipid rafts functionality and neuronal signaling, we hypothesize that these findings might underlie the higher prevalence of cognitive decline evolving toward Alzheimer's disease in postmenopausal women. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Executive dysfunction in Parkinson's disease and timing deficits

    Directory of Open Access Journals (Sweden)

    Krystal L Parker

    2013-10-01

    Full Text Available Patients with Parkinson’s disease (PD have deficits in perceptual timing, or the perception and estimation of time. PD patients can also have cognitive symptoms, including deficits in executive functions such as working memory, planning, and visuospatial attention. Here, we discuss how PD-related cognitive symptoms contribute to timing deficits. Timing is influenced by signaling of the neurotransmitter dopamine in the striatum. Timing also involves the frontal cortex, which is dysfunctional in PD. Frontal cortex impairments in PD may influence memory subsystems as well as decision processes during timing tasks. These data suggest that timing may be a type of executive function. As such, timing can be used to study the neural circuitry of cognitive symptoms of PD as they can be studied in animal models. Performance of timing tasks also maybe a useful clinical biomarker of frontal as well as striatal dysfunction in PD.

  12. Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET

    DEFF Research Database (Denmark)

    Pedersen, Jane Rygaard; Johannsen, P; Bak, Christen Kjeldahl

    1998-01-01

    Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known as the Bereitschaftspotent......Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known...... sources subsequently to be active were mapped to the supplementary motor area, premotor cortex, and motor cortex (M1), all in the left hemisphere. (C) 1998 Academic Press....

  13. Cognitive Functions and Neurodevelopmental Disorders Involving the Prefrontal Cortex and Mediodorsal Thalamus

    Directory of Open Access Journals (Sweden)

    Zakaria Ouhaz

    2018-02-01

    Full Text Available The mediodorsal nucleus of the thalamus (MD has been implicated in executive functions (such as planning, cognitive control, working memory, and decision-making because of its significant interconnectivity with the prefrontal cortex (PFC. Yet, whilst the roles of the PFC have been extensively studied, how the MD contributes to these cognitive functions remains relatively unclear. Recently, causal evidence in monkeys has demonstrated that in everyday tasks involving rapid updating (e.g., while learning something new, making decisions, or planning the next move, the MD and frontal cortex are working in close partnership. Furthermore, researchers studying the MD in rodents have been able to probe the underlying mechanisms of this relationship to give greater insights into how the frontal cortex and MD might interact during the performance of these essential tasks. This review summarizes the circuitry and known neuromodulators of the MD, and considers the most recent behavioral, cognitive, and neurophysiological studies conducted in monkeys and rodents; in total, this evidence demonstrates that MD makes a critical contribution to cognitive functions. We propose that communication occurs between the MD and the frontal cortex in an ongoing, fluid manner during rapid cognitive operations, via the means of efference copies of messages passed through transthalamic routes; the conductance of these messages may be modulated by other brain structures interconnected to the MD. This is similar to the way in which other thalamic structures have been suggested to carry out forward modeling associated with rapid motor responding and visual processing. Given this, and the marked thalamic pathophysiology now identified in many neuropsychiatric disorders, we suggest that changes in the different subdivisions of the MD and their interconnections with the cortex could plausibly give rise to a number of the otherwise disparate symptoms (including changes to olfaction

  14. Intertemporal Decision Making After Brain Injury: Amount-Dependent Steeper Discounting after Frontal Cortex Damage

    Directory of Open Access Journals (Sweden)

    Białaszek Wojciech

    2017-12-01

    Full Text Available Traumatic brain injuries to the frontal lobes are associated with many maladaptive forms of behavior. We investigated the association between brain damage and impulsivity, as measured by the rate of delay discounting (i.e., the extent to which future outcomes are devalued in time. The main aim of this study was to test the hypothesis of steeper discounting of different amounts in a group of patients with frontal lobe damage. We used a delay discounting task in the form of a structured interview. A total of 117 participants were divided into five groups: three neurological groups and two groups without brain damage. Our analyses showed that patients with focal damage to the frontal lobes demonstrated steeper delay discounting than other participants. Other clinical groups demonstrated similar discounting rates. The data pattern related to the magnitude effect on the group level suggested that the magnitude effect is absent in the group of patients with damage to the frontal lobes; however, results were less consistent on an individual level. Amount-dependent discounting was observed in only two groups, the healthy control group and the neurological group with other cortical areas damaged.

  15. The role of the striatum in effort-based decision-making in the absence of reward.

    Science.gov (United States)

    Schouppe, Nathalie; Demanet, Jelle; Boehler, Carsten N; Ridderinkhof, K Richard; Notebaert, Wim

    2014-02-05

    Decision-making involves weighing costs against benefits, for instance, in terms of the effort it takes to obtain a reward of a given magnitude. This evaluation process has been linked to the dorsal anterior cingulate cortex (dACC) and the striatum, with activation in these brain structures reflecting the discounting effect of effort on reward. Here, we investigate how cognitive effort influences neural choice processes in the absence of an extrinsic reward. Using functional magnetic resonance imaging in humans, we used an effort-based decision-making task in which participants were required to choose between two options for a subsequent flanker task that differed in the amount of cognitive effort. Cognitive effort was manipulated by varying the proportion of incongruent trials associated with each choice option. Choice-locked activation in the striatum was higher when participants chose voluntarily for the more effortful alternative but displayed the opposite trend on forced-choice trials. The dACC revealed a similar, yet only trend-level significant, activation pattern. Our results imply that activation levels in the striatum reflect a cost-benefit analysis, in which a balance is made between effort discounting and the intrinsic motivation to choose a cognitively challenging task. Moreover, our findings indicate that it matters whether this challenge is voluntarily chosen or externally imposed. As such, the present findings contrast with classical findings on effort discounting that found reductions in striatum activation for higher effort by finding enhancements of the same neural circuits when a cognitively challenging task is voluntarily selected and does not entail the danger of losing reward.

  16. Updating expected action outcome in the medial frontal cortex involves an evaluation of error type.

    Science.gov (United States)

    Maier, Martin E; Steinhauser, Marco

    2013-10-02

    Forming expectations about the outcome of an action is an important prerequisite for action control and reinforcement learning in the human brain. The medial frontal cortex (MFC) has been shown to play an important role in the representation of outcome expectations, particularly when an update of expected outcome becomes necessary because an error is detected. However, error detection alone is not always sufficient to compute expected outcome because errors can occur in various ways and different types of errors may be associated with different outcomes. In the present study, we therefore investigate whether updating expected outcome in the human MFC is based on an evaluation of error type. Our approach was to consider an electrophysiological correlate of MFC activity on errors, the error-related negativity (Ne/ERN), in a task in which two types of errors could occur. Because the two error types were associated with different amounts of monetary loss, updating expected outcomes on error trials required an evaluation of error type. Our data revealed a pattern of Ne/ERN amplitudes that closely mirrored the amount of monetary loss associated with each error type, suggesting that outcome expectations are updated based on an evaluation of error type. We propose that this is achieved by a proactive evaluation process that anticipates error types by continuously monitoring error sources or by dynamically representing possible response-outcome relations.

  17. Synaptic proteome changes in the superior frontal gyrus and occipital cortex of the alcoholic brain.

    Science.gov (United States)

    Etheridge, Naomi; Lewohl, Joanne M; Mayfield, R Dayne; Harris, R Adron; Dodd, Peter R

    2009-06-24

    Cognitive deficits and behavioral changes that result from chronic alcohol abuse are a consequence of neuropathological changes which alter signal transmission through the neural network. To focus on the changes that occur at the point of connection between the neural network cells, synaptosomal preparations from post-mortem human brain of six chronic alcoholics and six non-alcoholic controls were compared using 2D-DIGE. Functionally affected and spared regions (superior frontal gyrus, SFG, and occipital cortex, OC, respectively) were analyzed from both groups to further investigate the specific pathological response that alcoholism has on the brain. Forty-nine proteins were differentially regulated between the SFG of alcoholics and the SFG of controls and 94 proteins were regulated in the OC with an overlap of 23 proteins. Additionally, the SFG was compared to the OC within each group (alcoholics or controls) to identify region specific differences. A selection were identified by MALDI-TOF mass spectrometry revealing proteins involved in vesicle transport, metabolism, folding and trafficking, and signal transduction, all of which have the potential to influence synaptic activity. A number of proteins identified in this study have been previously related to alcoholism; however, the focus on synaptic proteins has also uncovered novel alcoholism-affected proteins. Further exploration of these proteins will illuminate the mechanisms altering synaptic plasticity, and thus neuronal signaling and response, in the alcoholic brain.

  18. Selective activation of the superior frontal gyrus in task-switching: an event-related fNIRS study.

    Science.gov (United States)

    Cutini, Simone; Scatturin, Pietro; Menon, Enrica; Bisiacchi, Patrizia Silvia; Gamberini, Luciano; Zorzi, Marco; Dell'Acqua, Roberto

    2008-08-15

    In the task-switching paradigm, reaction time is longer and accuracy is worse in switch trials relative to repetition trials. This so-called switch cost has been ascribed to the engagement of control processes required to alternate between distinct stimulus-response mapping rules. Neuroimaging studies have reported an enhanced activation of the human lateral prefrontal cortex and the superior frontal gyrus during the task-switching paradigm. Whether neural activation in these regions is dissociable and associated with separable cognitive components of task switching has been a matter of recent debate. We used multi-channel near-infrared spectroscopy (fNIRS) to measure brain cortical activity in a task-switching paradigm designed to avoid task differences, order predictability, and frequency effects. The results showed a generalized bilateral activation of the lateral prefrontal cortex and the superior frontal gyrus in both switch trials and repetition trials. To isolate the activity selectively associated with the task-switch, the overall activity recorded during repetition trials was subtracted from the activity recorded during switch trials. Following subtraction, the remaining activity was entirely confined to the left portion of the superior frontal gyrus. The present results suggest that factors associated with load and maintenance of distinct stimulus-response mapping rules in working memory are likely contributors to the activation of the lateral prefrontal cortex, whereas only activity in the left superior frontal gyrus can be linked unequivocally to switching between distinct cognitive tasks.

  19. Positron emission tomography (PET) in psychiatry. PET in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Herholz, K. (Max-Planck-Institut fuer Neurologische Forschung und Neurologische Klinik der Universitaet Koeln (Germany))

    1993-08-13

    Currently, clinical PET is mainly useful in psychiatry and related areas for differential diagnosis of dementia. In dementia of Alzheimer type reductions of glucose metabolism are found mainly in the temporoparietal assocaiton cortex, in Pick's disease mainly in the frontal cortex, and in Huntington's disease in the striatum. Other demential diseases usually show less toposelective metabolic impairment. In the future, new diagnostic possibilities may arise from analysis of functional stimulation of specific brain areas and from the use of ligands for specific neurotransmitter systems. (orig.)

  20. Ventromedial Frontal Cortex Is Critical for Guiding Attention to Reward-Predictive Visual Features in Humans.

    Science.gov (United States)

    Vaidya, Avinash R; Fellows, Lesley K

    2015-09-16

    Adaptively interacting with our environment requires extracting information that will allow us to successfully predict reward. This can be a challenge, particularly when there are many candidate cues, and when rewards are probabilistic. Recent work has demonstrated that visual attention is allocated to stimulus features that have been associated with reward on previous trials. The ventromedial frontal lobe (VMF) has been implicated in learning in dynamic environments of this kind, but the mechanism by which this region influences this process is not clear. Here, we hypothesized that the VMF plays a critical role in guiding attention to reward-predictive stimulus features based on feedback. We tested the effects of VMF damage in human subjects on a visual search task in which subjects were primed to attend to task-irrelevant colors associated with different levels of reward, incidental to the search task. Consistent with previous work, we found that distractors had a greater influence on reaction time when they appeared in colors associated with high reward in the previous trial compared with colors associated with low reward in healthy control subjects and patients with prefrontal damage sparing the VMF. However, this reward modulation of attentional priming was absent in patients with VMF damage. Thus, an intact VMF is necessary for directing attention based on experience with cue-reward associations. We suggest that this region plays a role in selecting reward-predictive cues to facilitate future learning. There has been a swell of interest recently in the ventromedial frontal cortex (VMF), a brain region critical to associative learning. However, the underlying mechanism by which this region guides learning is not well understood. Here, we tested the effects of damage to this region in humans on a task in which rewards were linked incidentally to visual features, resulting in trial-by-trial attentional priming. Controls and subjects with prefrontal damage

  1. Existence and control of Go/No-Go decision transition threshold in the striatum.

    Directory of Open Access Journals (Sweden)

    Jyotika Bahuguna

    2015-04-01

    Full Text Available A typical Go/No-Go decision is suggested to be implemented in the brain via the activation of the direct or indirect pathway in the basal ganglia. Medium spiny neurons (MSNs in the striatum, receiving input from cortex and projecting to the direct and indirect pathways express D1 and D2 type dopamine receptors, respectively. Recently, it has become clear that the two types of MSNs markedly differ in their mutual and recurrent connectivities as well as feedforward inhibition from FSIs. Therefore, to understand striatal function in action selection, it is of key importance to identify the role of the distinct connectivities within and between the two types of MSNs on the balance of their activity. Here, we used both a reduced firing rate model and numerical simulations of a spiking network model of the striatum to analyze the dynamic balance of spiking activities in D1 and D2 MSNs. We show that the asymmetric connectivity of the two types of MSNs renders the striatum into a threshold device, indicating the state of cortical input rates and correlations by the relative activity rates of D1 and D2 MSNs. Next, we describe how this striatal threshold can be effectively modulated by the activity of fast spiking interneurons, by the dopamine level, and by the activity of the GPe via pallidostriatal backprojections. We show that multiple mechanisms exist in the basal ganglia for biasing striatal output in favour of either the `Go' or the `No-Go' pathway. This new understanding of striatal network dynamics provides novel insights into the putative role of the striatum in various behavioral deficits in patients with Parkinson's disease, including increased reaction times, L-Dopa-induced dyskinesia, and deep brain stimulation-induced impulsivity.

  2. Existence and control of Go/No-Go decision transition threshold in the striatum.

    Science.gov (United States)

    Bahuguna, Jyotika; Aertsen, Ad; Kumar, Arvind

    2015-04-01

    A typical Go/No-Go decision is suggested to be implemented in the brain via the activation of the direct or indirect pathway in the basal ganglia. Medium spiny neurons (MSNs) in the striatum, receiving input from cortex and projecting to the direct and indirect pathways express D1 and D2 type dopamine receptors, respectively. Recently, it has become clear that the two types of MSNs markedly differ in their mutual and recurrent connectivities as well as feedforward inhibition from FSIs. Therefore, to understand striatal function in action selection, it is of key importance to identify the role of the distinct connectivities within and between the two types of MSNs on the balance of their activity. Here, we used both a reduced firing rate model and numerical simulations of a spiking network model of the striatum to analyze the dynamic balance of spiking activities in D1 and D2 MSNs. We show that the asymmetric connectivity of the two types of MSNs renders the striatum into a threshold device, indicating the state of cortical input rates and correlations by the relative activity rates of D1 and D2 MSNs. Next, we describe how this striatal threshold can be effectively modulated by the activity of fast spiking interneurons, by the dopamine level, and by the activity of the GPe via pallidostriatal backprojections. We show that multiple mechanisms exist in the basal ganglia for biasing striatal output in favour of either the `Go' or the `No-Go' pathway. This new understanding of striatal network dynamics provides novel insights into the putative role of the striatum in various behavioral deficits in patients with Parkinson's disease, including increased reaction times, L-Dopa-induced dyskinesia, and deep brain stimulation-induced impulsivity.

  3. The relation of hedonic hunger and restrained eating to lateralized frontal activation.

    Science.gov (United States)

    Winter, S R; Feig, E H; Kounios, J; Erickson, B; Berkowitz, S; Lowe, M R

    2016-09-01

    Asymmetrical alpha activation in the prefrontal cortex (frontal asymmetry) in electroencephalography (EEG) has been related to eating behavior. Prior studies linked dietary restraint with right frontal asymmetry [1] and disinhibition with left frontal asymmetry [2]. The current study simultaneously assessed restrained eating and hedonic hunger (drive for food reward in the absence of hunger) in relation to frontal asymmetry. Resting-state EEG and measures of restrained eating (Revised Restraint Scale; RRS) and hedonic hunger (Power of Food Scale; PFS) were assessed in 61 non-obese adults. Individually, hedonic hunger predicted left asymmetry. However, PFS and RRS were correlated (r=0.48, phunger exhibited left asymmetry irrespective of RRS scores; among those low in PFS, only those high in RRS showed right asymmetry. Results were consistent with literature linking avoidant behaviors (restraint) with right-frontal asymmetry and approach behaviors (binge eating) with left-frontal asymmetry. It appears that a strong drive toward palatable foods predominates at a neural level even when restraint is high. Findings suggest that lateralized frontal activity is an indicator of motivation both to consume and to avoid consuming highly palatable foods. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Mathew Jobin

    2009-04-01

    Full Text Available Abstract Acetylcholine (ACh, the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS. Previous reports from our laboratory on streptozotocin (STZ induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax and affinity (Kd of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.

  5. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    Science.gov (United States)

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that

  6. Repeated whisker stimulation evokes invariant neuronal responses in the dorsolateral striatum of anesthetized rats: a potential correlate of sensorimotor habits

    OpenAIRE

    Mowery, Todd M.; Harrold, Jon B.; Alloway, Kevin D.

    2011-01-01

    The dorsolateral striatum (DLS) receives extensive projections from primary somatosensory cortex (SI), but very few studies have used somesthetic stimulation to characterize the sensory coding properties of DLS neurons. In this study, we used computer-controlled whisker deflections to characterize the extracellular responses of DLS neurons in rats lightly anesthetized with isoflurane. When multiple whiskers were synchronously deflected by rapid back-and-forth movements, whisker-sensitive neur...

  7. A Postmortem Study of Frontal and Temporal Gyri Thickness and Cell Number in Human Obesity.

    Science.gov (United States)

    Gómez-Apo, Erick; García-Sierra, Adrián; Silva-Pereyra, Juan; Soto-Abraham, Virgilia; Mondragón-Maya, Alejandra; Velasco-Vales, Verónica; Pescatello, Linda S

    2018-01-01

    This study aimed to compare cortex thickness and neuronal cell density in postmortem brain tissue from people with overweight or obesity and normal weight. The cortex thickness and neuron density of eight donors with overweight or obesity (mean = 31.6 kg/m 2 ; SD = 4.35; n = 8; 6 male) and eight donors with normal weight (mean = 21.8 kg/m 2 ; SD = 1.5; n = 8; 5 male) were compared. All participants were Mexican and lived in Mexico City. Randomly selected thickness measures of different cortex areas from the frontal and temporal lobes were analyzed based on high-resolution real-size photographs. A histological analysis of systematic-random fields was used to quantify the number of neurons in postmortem left and right of the first, second, and third gyri of frontal and temporal lobe brain samples. No statistical difference was found in cortical thickness between donors with overweight or obesity and individuals with normal weight. A smaller number of neurons was found among the donors with overweight or obesity than the donors with normal weight at different frontal and temporal areas. A lower density of neurons is associated with overweight or obesity. The morphological basis for structural brain changes in obesity requires further investigation. © 2017 The Obesity Society.

  8. Reward-modulated motor information in identified striatum neurons.

    Science.gov (United States)

    Isomura, Yoshikazu; Takekawa, Takashi; Harukuni, Rie; Handa, Takashi; Aizawa, Hidenori; Takada, Masahiko; Fukai, Tomoki

    2013-06-19

    It is widely accepted that dorsal striatum neurons participate in either the direct pathway (expressing dopamine D1 receptors) or the indirect pathway (expressing D2 receptors), controlling voluntary movements in an antagonistically balancing manner. The D1- and D2-expressing neurons are activated and inactivated, respectively, by dopamine released from substantia nigra neurons encoding reward expectation. However, little is known about the functional representation of motor information and its reward modulation in individual striatal neurons constituting the two pathways. In this study, we juxtacellularly recorded the spike activity of single neurons in the dorsolateral striatum of rats performing voluntary forelimb movement in a reward-predictable condition. Some of these neurons were identified morphologically by a combination of juxtacellular visualization and in situ hybridization for D1 mRNA. We found that the striatal neurons exhibited distinct functional activations before and during the forelimb movement, regardless of the expression of D1 mRNA. They were often positively, but rarely negatively, modulated by expecting a reward for the correct motor response. The positive reward modulation was independent of behavioral differences in motor performance. In contrast, regular-spiking and fast-spiking neurons in any layers of the motor cortex displayed only minor and unbiased reward modulation of their functional activation in relation to the execution of forelimb movement. Our results suggest that the direct and indirect pathway neurons cooperatively rather than antagonistically contribute to spatiotemporal control of voluntary movements, and that motor information is subcortically integrated with reward information through dopaminergic and other signals in the skeletomotor loop of the basal ganglia.

  9. Molecular and functional definition of the developing human striatum.

    Science.gov (United States)

    Onorati, Marco; Castiglioni, Valentina; Biasci, Daniele; Cesana, Elisabetta; Menon, Ramesh; Vuono, Romina; Talpo, Francesca; Laguna Goya, Rocio; Lyons, Paul A; Bulfamante, Gaetano P; Muzio, Luca; Martino, Gianvito; Toselli, Mauro; Farina, Cinthia; Barker, Roger A; Biella, Gerardo; Cattaneo, Elena

    2014-12-01

    The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.

  10. Dissociating medial frontal and posterior cingulate activity during self-reflection.

    Science.gov (United States)

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Touryan, Sharon R; Greene, Erich J; Nolen-Hoeksema, Susan

    2006-06-01

    Motivationally significant agendas guide perception, thought and behaviour, helping one to define a 'self' and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus.

  11. Haloperidol-induced changes in neuronal activity in the striatum of the freely moving rat

    Directory of Open Access Journals (Sweden)

    Dorin eYael

    2013-12-01

    Full Text Available The striatum is the main input structure of the basal ganglia, integrating input from the cerebral cortex and the thalamus, which is modulated by midbrain dopaminergic input. Dopamine modulators, including agonists and antagonists, are widely used to relieve motor and psychiatric symptoms in a variety of pathological conditions. Haloperidol, a dopamine D2 antagonist, is commonly used in multiple psychiatric conditions and motor abnormalities. This article reports the effects of haloperidol on the activity of three major striatal subpopulations: medium spiny projection neurons (MSNs, fast spiking interneurons (FSIs and tonically active neurons (TANs. We implanted multi-wire electrode arrays in the rat dorsal striatum and recorded the activity of multiple single units in freely moving animals before and after systemic haloperidol injection. Haloperidol decreased the firing rate of FSIs and MSNs while increasing their tendency to fire in an oscillatory manner in the high voltage spindle (HVS frequency range of 7-9 Hz. Haloperidol led to an increased firing rate of TANs but did not affect their non-oscillatory firing pattern and their typical correlated firing activity. Our results suggest that dopamine plays a key role in tuning both single unit activity and the interactions within and between different subpopulations in the striatum in a differential manner. These findings highlight the heterogeneous striatal effects of tonic dopamine regulation via D2 receptors which potentially enable the treatment of diverse pathological states associated with basal ganglia dysfunction.

  12. Effects of early weaning and social isolation on the expression of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase 1 and 2 mRNAs in the frontal cortex and hippocampus of piglets.

    Science.gov (United States)

    Poletto, R; Steibel, J P; Siegford, J M; Zanella, A J

    2006-01-05

    Pigs weaned at young ages show more abnormal and aggressive behaviors and cognitive deficits compared to later weaned pigs. We investigated the effects of age, weaning and/or social isolation on the expression of genes regulating glucocorticoid response [glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11beta-hydroxysteroid dehydrogenases 1 and 2 (11beta-HSD1 and 11beta-HSD2)] in the frontal cortex and hippocampus. Early- (EW; n = 6) and conventionally-weaned (CW; n = 6) piglets were weaned at 10 and 21 days after birth, respectively. Non-weaned (NW) piglets of both ages (NW; n = 6/group) remained with their dams. Immediately before euthanasia, half of CW, EW and NW animals were socially isolated for 15 min at 12 (EW, NW) and 23 (CW, NW) days of age. Differences in amounts of 11beta-HSD1, 11beta-HSD2, GR and MR mRNA were determined by quantitative real-time RT-PCR and data subjected to multivariate linear mixed model analysis. When compared with NW piglets at 12 days of age, the hippocampi of EW piglets showed decreased gene expression (P Social isolation decreased gene expression (P social isolation affected frontal cortex regardless of age. These results may be correlated with behavioral and cognitive changes reported in EW piglets.

  13. Chronic Underactivity of Medial Frontal Cortical β2-Containing Nicotinic Receptors Increases Clozapine-Induced Working Memory Impairment in Female Rats

    Science.gov (United States)

    Levin, Edward D.; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N. Channelle

    2009-01-01

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of β2-containing nicotinic receptors with dihydro-β-erythrodine (DHβE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal α7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical α7 and β2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHβE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHβE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHβE infusion potentiated clozapine-induced memory impairment, whereas previously the memory

  14. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats.

    Science.gov (United States)

    Levin, Edward D; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N Channelle

    2009-03-17

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously

  15. The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture

    DEFF Research Database (Denmark)

    Jelsing, J; Hay-Schmidt, Anders; Dyrby, Tim

    2006-01-01

    In an attempt to delineate the prefrontal cortex (PFC) in the Gottingen minipig brain the distribution of reciprocal thalamocortical projections was investigated using anterograde and retrograde tracing techniques and evaluated in relation to the specific cytoarchitectonic organization. Tracers...... the medial and rostral pole of the frontal lobe as well as the anterior cingulate, anterior insular and dorsomedial frontal cortices. Subsequently, the reciprocity and specificity of these connections were tested from injections into the traced frontal cortices indicating that the PFC has cortical...... connections to different parts of the MD nucleus. Although the granular layer IV, characteristic of primate PFC could not be identified, both cytoarchitectonic and connectional data suggests that the Gottingen minipig has a structurally divided prefrontal cortex. Stereological estimates of PFC volume showed...

  16. Cerebral blood flow and metabolism analysis in parkinsonian disorders; Pathologie extrapyramidale. Apport de l'imagerie de perfusion et du metabolisme (TEP, TEM)

    Energy Technology Data Exchange (ETDEWEB)

    Defebvre, L. [Hopital Roger Salengro, Service de Neurologie, 59 - Lille (France)

    1999-12-01

    Main metabolic and hemodynamic abnormalities detected by single photon emission computerized tomography and positron emission tomography in extra-pyramidal disorders are reported. In the first stage of Parkinson's disease, cortical metabolism and perfusion can be in normal range or moderately and uniformly reduced. A significant decrease may appear with the disease evolution. Marked abnormalities are observed in parkinsonian patients with dementia (subcortical dementia), involving especially the frontal cortex. A marked diffuse cortical hypo-metabolism (temporal, parietal, occipital and frontal cortex) may suggest the diagnosis of dementia with Lewy bodies, especially in case of fluctuating cognitive decline with recurrent visual hallucinations. In progressive supra-nuclear palsy, a frontal cortex hypo-metabolism is reported precociously, preceding sometimes the cognitive impairment. Metabolic pattern find in multiple system atrophy reflects dysfunction of both nigrostriatal pathways and striatum, with a decrease glucose uptake in putamen and caudate nucleus which also involves cerebellum for the patients with cerebellar syndrome. In cortico-basal degeneration, asymmetric fronto-parietal and striatal hypo-metabolism observed in the controlateral hemisphere to the clinically most affected side, constitute the main characteristic well correlated with apraxia. (author)

  17. The 5-HT6 receptor antagonist idalopirdine potentiates the effects of donepezil on gamma oscillations in the frontal cortex of anesthetized and awake rats without affecting sleep-wake architecture.

    Science.gov (United States)

    Amat-Foraster, Maria; Leiser, Steven C; Herrik, Kjartan F; Richard, Nelly; Agerskov, Claus; Bundgaard, Christoffer; Bastlund, Jesper F; de Jong, Inge E M

    2017-02-01

    The 5-HT 6 receptor is a promising target for cognitive disorders, in particular for Alzheimer's disease (AD). The high affinity and selective 5-HT 6 receptor antagonist idalopirdine (Lu AE58054) is currently in development for mild-moderate AD as adjunct therapy to acetylcholinesterase inhibitors (AChEIs). We studied the effects of idalopirdine alone and in combination with the AChEI donepezil on cortical function using two in vivo electrophysiological methods. Neuronal network oscillations in the frontal cortex were measured during electrical stimulation of the brainstem nucleus pontis oralis (nPO) in the anesthetized rat and by an electroencephalogram (EEG) in the awake, freely moving rat. In conjunction with the EEG study, we investigated the effects of idalopirdine and donepezil on sleep-wake architecture using telemetric polysomnography. Idalopirdine (2 mg/kg i.v.) increased gamma power in the medial prefrontal cortex (mPFC) during nPO stimulation. Donepezil (0.3 and 1 mg/kg i.v.) also increased cortical gamma power and pretreatment with idalopirdine (2 mg/kg i.v.) potentiated and prolonged the effects of donepezil. Similarly, donepezil (1 and 3 mg/kg s.c.) dose-dependently increased frontal cortical gamma power in the freely moving rat and pretreatment with idalopirdine (10 mg/kg p.o.) augmented the effect of donepezil 1 mg/kg. Analysis of the sleep-wake architecture showed that donepezil (1 and 3 mg/kg s.c.) dose-dependently delayed sleep onset and decreased the time spent in both REM and non REM sleep stages. In contrast, idalopirdine (10 mg/kg p.o.) did not affect sleep-wake architecture nor the effects of donepezil. In summary, we show that idalopirdine potentiates the effects of donepezil on frontal cortical gamma oscillations, a pharmacodynamic biomarker associated with cognition, without modifying the effects of donepezil on sleep. The increased cortical excitability may contribute to the procognitive effects of idalopirdine in donepezil

  18. Functional magnetic resonance imaging of the frontal eye fields during saccadic eye movements

    International Nuclear Information System (INIS)

    Miki, Atsushi; Takagi, Mineo; Abe, Haruki; Nakajima, Takashi; Miyauchi, Satoru.

    1996-01-01

    We evaluated activity-induced signal intensity changes in the human cerebral cortex during horizontal saccadic eye movements using functional magnetic resonance imaging (fMRI) based on the blood-oxygenation-level-dependent (BOLD) contrast method. Compared with central fixation, significant signal increases were observed bilaterally in the middle frontal gyrus (Brodmann area 8) during saccadic conditions. The location of the activated area was consistent with that of previously reported frontal eye fields (FEF). These results suggest that fMRI has potential merit for the study of cortical control of eye movements in humans. (author)

  19. Unawareness of deficits in Alzheimer's disease: role of the cingulate cortex.

    Science.gov (United States)

    Amanzio, Martina; Torta, Diana M E; Sacco, Katiuscia; Cauda, Franco; D'Agata, Federico; Duca, Sergio; Leotta, Daniela; Palermo, Sara; Geminiani, Giuliano C

    2011-04-01

    Unawareness of deficits is a symptom of Alzheimer's disease that can be observed even in the early stages of the disease. The frontal hypoperfusion associated with reduced awareness of deficits has led to suggestions of the existence of a hypofunctioning prefrontal pathway involving the right dorsolateral prefrontal cortex, inferior parietal lobe, anterior cingulate gyri and limbic structures. Since this network plays an important role in response inhibition competence and patients with Alzheimer's disease who are unaware of their deficits exhibit impaired performance in response inhibition tasks, we predicted a relationship between unawareness of deficits and cingulate hypofunctionality. We tested this hypothesis in a sample of 29 patients with Alzheimer's disease (15 aware and 14 unaware of their disturbances), rating unawareness according to the Awareness of Deficit Questionnaire-Dementia scale. The cognitive domain was investigated by means of a wide battery including tests on executive functioning, memory and language. Neuropsychiatric aspects were investigated using batteries on behavioural mood changes, such as apathy and disinhibition. Cingulate functionality was assessed with functional magnetic resonance imaging, while patients performed a go/no-go task. In accordance with our hypotheses, unaware patients showed reduced task-sensitive activity in the right anterior cingulate area (Brodmann area 24) and in the rostral prefrontal cortex (Brodmann area 10). Unaware patients also showed reduced activity in the right post-central gyrus (Brodmann area 2), in the associative cortical areas such as the right parietotemporal-occipital junction (Brodmann area 39) and the left temporal gyrus (Brodmann areas 21 and 38), in the striatum and in the cerebellum. These findings suggest that the unawareness of deficits in early Alzheimer's disease is associated with reduced functional recruitment of the cingulofrontal and parietotemporal regions. Furthermore, in line with

  20. Frontal lobe activation during object permanence: data from near-infrared spectroscopy.

    Science.gov (United States)

    Baird, Abigail A; Kagan, Jerome; Gaudette, Thomas; Walz, Kathryn A; Hershlag, Natalie; Boas, David A

    2002-08-01

    The ability to create and hold a mental schema of an object is one of the milestones in cognitive development. Developmental scientists have named the behavioral manifestation of this competence object permanence. Convergent evidence indicates that frontal lobe maturation plays a critical role in the display of object permanence, but methodological and ethical constrains have made it difficult to collect neurophysiological evidence from awake, behaving infants. Near-infrared spectroscopy provides a noninvasive assessment of changes in oxy- and deoxyhemoglobin and total hemoglobin concentration within a prescribed region. The evidence described in this report reveals that the emergence of object permanence is related to an increase in hemoglobin concentration in frontal cortex.

  1. Dopamine D1 sensitivity in the prefrontal cortex predicts general cognitive abilities and is modulated by working memory training.

    Science.gov (United States)

    Wass, Christopher; Pizzo, Alessandro; Sauce, Bruno; Kawasumi, Yushi; Sturzoiu, Tudor; Ree, Fred; Otto, Tim; Matzel, Louis D

    2013-10-15

    A common source of variance (i.e., "general intelligence") underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to co-vary with general intelligence, and dopamine D1 signaling in prefrontal cortex can modulate attentional abilities. Based on their aggregate performance across five diverse tests of learning, here we characterized the general cognitive ability (GCA) of CD-1 outbred mice. In response to a D1 agonist (SKF82958, 1 mg/kg), we then assessed the relationship between GCA and activation of D1 receptor (D1R)-containing neurons in the prelimbic region of the medial prefrontal cortex, the agranular insular cortex, and the dorsomedial striatum. Increased activation of D1R-containing neurons in the prelimbic cortex (but not the agranular insular cortex or dorsomedial striatum) was observed in animals of high GCA relative to those of low GCA (quantified by c-Fos activation in response to the D1 agonist). However, a Western blot analysis revealed no differences in the density of D1Rs in the prelimbic cortex between animals of high and low GCA. Last, it was observed that working memory training promoted an increase in animals' GCA and enhanced D1R-mediated neuronal activation in the prelimbic cortex. These results suggest that the sensitivity (but not density) of D1Rs in the prelimbic cortex may both regulate GCA and be a target for working memory training.

  2. Selection of the regions of interest (SRI) in the SPECT semi-quantitative analysis of central dopaminergic receptors

    International Nuclear Information System (INIS)

    Baulieu, J.L.; Prunier-Levilion, C.; Tranquart, F.; Ribeiro, M.J.; Chartier, J.R.; Guilloteau, D.; Autret, A.; Besnard, J.C.; Bekhechi, D.; Chossat, F.

    1997-01-01

    The aim of this work was to compare different types of SRIs used in the SPECT semi-quantitative analysis of central dopaminergic receptors. The SPECT with 123 I iodolisuride (Cis bio international) was carried out in the same center with a Helix - Elscint double head camera with 'fan beam', one hour after injection of 123 I iodolisuride (190 ± 31 MBq). In 8 patients afflicted with Parkinson's disease (group 1) and 9 patients presenting an extra-pyramidal syndrome by striatal stretching (group 2), two approaches of SRI tracing were undertaken: 1. Geometrical and standard (circles, ellipses, rectangles) SRIs; 2. Anatomical and individual SRIs based on TDM and perfusion scintigraphy. The SRIs were placed on the entire striatum, the head of cauda nucleus, putamen, thalamus, frontal, occipital cortex and cerebellum. In total, for each patient, 31 ratios were calculated of the striatal activity and the activity of a references zone. The discriminative value of the ratios was evaluated by the p value of comparison between groups 1 and 2. A correlation has been searched for between the ratios taken 2 by 2. The most discriminative ratios were: cauda/occipital, cauda/frontal, striatum/occipital based on geometrical standard SRIs (p 0.001, p = 0.002, p = 0.003, respectively). A close correlation has been found between the ratios with occipital and cerebellar references (r 2 0.71) but not between the ratios with frontal or occipital reference, or frontal and cerebellum reference. In the employed conditions, the geometrical tracing of the SRIs is preferable as against an anatomic tracing. The occipital cortex is the best reference while the frontal activity can not be retained as reference. The cauda/occipital ratios allow a very good discrimination between the Parkinson's disease and other extra pyramidal syndromes investigated by 123 I iodolisuride SPECT

  3. Factors influencing frontal cortex development and recovery from early frontal injury.

    Science.gov (United States)

    Halliwell, Celeste; Comeau, Wendy; Gibb, Robbin; Frost, Douglas O; Kolb, Bryan

    2009-01-01

    Neocortical development represents more than a simple unfolding of a genetic blueprint but rather represents a complex dance of genetic and environmental events that interact to adapt the brain to fit a particular environmental context. Although most cortical regions are sensitive to a wide range of experiential factors during development and later in life, the prefrontal cortex appears to be unusually sensitive to perinatal experiences and relatively immune to many adulthood experiences relative to other neocortical regions. One way to examine experience-dependent prefrontal development is to conduct studies in which experiential perturbations are related neuronal morphology. This review of the research reveals both pre- and post-natal factors have important effects on prefrontal development and behaviour. Such factors include psychoactive drugs, including both illicit drugs and prescription drugs, stress, gonadal hormones and sensory and motor stimulation. A second method of study is to examine both the effects of perinatal prefrontal injury on the development of the remaining cerebral mantle and correlated behaviours as well as the effects of post-injury rehabilitation programmes on the anatomical and behavioural measures. Prefrontal injury alters cerebral development in a developmental-stage dependent manner with perinatal injuries having far more deleterious effects than similar injuries later in infancy. The outcome of perinatal injuries can be modified, however, by rehabilitation with many of the factors shown to influence prefrontal development in the otherwise normal brain.

  4. Maps of space in human frontoparietal cortex.

    Science.gov (United States)

    Jerde, Trenton A; Curtis, Clayton E

    2013-12-01

    Prefrontal cortex (PFC) and posterior parietal cortex (PPC) are neural substrates for spatial cognition. We here review studies in which we tested the hypothesis that human frontoparietal cortex may function as a priority map. According to priority map theory, objects or locations in the visual world are represented by neural activity that is proportional to their attentional priority. Using functional magnetic resonance imaging (fMRI), we first identified topographic maps in PFC and PPC as candidate priority maps of space. We then measured fMRI activity in candidate priority maps during the delay periods of a covert attention task, a spatial working memory task, and a motor planning task to test whether the activity depended on the particular spatial cognition. Our hypothesis was that some, but not all, candidate priority maps in PFC and PPC would be agnostic with regard to what was being prioritized, in that their activity would reflect the location in space across tasks rather than a particular kind of spatial cognition (e.g., covert attention). To test whether patterns of delay period activity were interchangeable during the spatial cognitive tasks, we used multivariate classifiers. We found that decoders trained to predict the locations on one task (e.g., working memory) cross-predicted the locations on the other tasks (e.g., covert attention and motor planning) in superior precentral sulcus (sPCS) and in a region of intraparietal sulcus (IPS2), suggesting that these patterns of maintenance activity may be interchangeable across the tasks. Such properties make sPCS in frontal cortex and IPS2 in parietal cortex viable priority map candidates, and suggest that these areas may be the human homologs of the monkey frontal eye field (FEF) and lateral intraparietal area (LIP). Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Behavioral and neural markers of cigarette-craving regulation in young-adult smokers during abstinence and after smoking.

    Science.gov (United States)

    Ghahremani, Dara G; Faulkner, Paul; M Cox, Chelsea; London, Edythe D

    2018-06-01

    Cigarette craving contributes substantially to the maintenance of tobacco use disorder. Behavioral strategies to regulate craving may facilitate smoking cessation but remain underexplored. We adapted an emotion-regulation strategy, using proximal/distal self-positioning, to the context of cigarette craving to examine craving regulation in 42, daily smokers (18-25 years old). After overnight abstinence from smoking, before and after smoking their first cigarette of the day, participants viewed videos of natural scenes presenting young adults who were either smoking cigarettes ("smoke") or not ("non-smoke"). Before each video, participants were instructed to imagine themselves either immersed in the scene ("close") or distanced from it ("far"). They rated their craving after each video. Task-based fMRI data are presented for a subsample of participants (N = 21). We found main effects of smoking, instruction, and video type on craving-lower ratings after smoking than before, following the "far" vs. "close" instructions, and when viewing non-smoke vs. smoke videos. Before smoking, "smoke" vs. "non-smoke" videos elicited activation in, orbitofrontal cortex, anterior cingulate, lateral parietal cortex, mid-occipital cortex, ventral striatum, dorsal caudate, and midbrain. Smoking reduced activation in anterior cingulate, left inferior frontal gyrus, and bilateral temporal poles. Activation was reduced in the ventral striatum and medial prefrontal cortex after the "far" vs. the "close" instruction, suggesting less engagement with the stimuli during distancing. The results indicate that proximal/distal regulation strategies impact cue-elicited craving, potentially via downregulation of the ventral striatum and medial prefrontal cortex, and that smoking during abstinence may increase cognitive control capacity during craving regulation.

  6. Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system.

    Science.gov (United States)

    Oh, Hyuk; Gentili, Rodolphe J; Reggia, James A; Contreras-Vidal, José L

    2011-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator's frontal mirror neuron system can be trained to provide the motor plans for the imitated actions.

  7. Art for reward's sake: visual art recruits the ventral striatum.

    Science.gov (United States)

    Lacey, Simon; Hagtvedt, Henrik; Patrick, Vanessa M; Anderson, Amy; Stilla, Randall; Deshpande, Gopikrishna; Hu, Xiaoping; Sato, João R; Reddy, Srinivas; Sathian, K

    2011-03-01

    A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject- and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non-art images. These findings are consistent with our hypothesis, leading us to propose that the appeal of visual art involves activation of reward circuitry based on artistic status alone and independently of its hedonic value. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings.

    Directory of Open Access Journals (Sweden)

    Yixuan Ku

    2007-08-01

    Full Text Available Our previous studies on scalp-recorded event-related potentials (ERPs showed that somatosensory N140 evoked by a tactile vibration in working memory tasks was enhanced when human subjects expected a coming visual stimulus that had been paired with the tactile stimulus. The results suggested that such enhancement represented the cortical activities involved in tactile-visual crossmodal association. In the present study, we further hypothesized that the enhancement represented the neural activities in somatosensory and frontal cortices in the crossmodal association. By applying independent component analysis (ICA to the ERP data, we found independent components (ICs located in the medial prefrontal cortex (around the anterior cingulate cortex, ACC and the primary somatosensory cortex (SI. The activity represented by the IC in SI cortex showed enhancement in expectation of the visual stimulus. Such differential activity thus suggested the participation of SI cortex in the task-related crossmodal association. Further, the coherence analysis and the Granger causality spectral analysis of the ICs showed that SI cortex appeared to cooperate with ACC in attention and perception of the tactile stimulus in crossmodal association. The results of our study support with new evidence an important idea in cortical neurophysiology: higher cognitive operations develop from the modality-specific sensory cortices (in the present study, SI cortex that are involved in sensation and perception of various stimuli.

  9. Ceruloplasmin deficiency reduces levels of iron and BDNF in the cortex and striatum of young mice and increases their vulnerability to stroke.

    Directory of Open Access Journals (Sweden)

    Sarah J Texel

    Full Text Available Ceruloplasmin (Cp is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, coincident with areas more susceptible to insults. Because of their high metabolic demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral cortex of these young animals are significantly lower than wild-type (WT controls. Also mRNA levels of the neurotrophin brain derived neurotrophic factor (BDNF, known for its role in maintenance of cell viability, were decreased in these brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to ischemic injury by a mechanism that may involve reduced levels of iron and BDNF.

  10. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.

    Science.gov (United States)

    Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F

    2017-08-16

    Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the

  11. Chronic motor cortex stimulation in patients with advanced Parkinson's disease and effects on striatal dopaminergic transmission as assessed by 123I-FP-CIT SPECT: a preliminary report.

    Science.gov (United States)

    Di Giuda, Daniela; Calcagni, Maria L; Totaro, Manuela; Cocciolillo, Fabrizio; Piano, Carla; Soleti, Francesco; Fasano, Alfonso; Cioni, Beatrice; Bentivoglio, Anna R; Giordano, Alessandro

    2012-09-01

    The objective of this study was to assess striatal dopamine transporter availability in patients with advanced Parkinson's disease (PD) before and after 13 months of unilateral extradural motor cortex stimulation (EMCS) with [123I]N-ω-fluoropropyl-2-β-carbo-methoxy-3-β-(4-iodophenyl)nortropane single photon emission computed tomography (123I-FP-CIT SPECT). Six PD patients (five women and one man, aged 63.2 ± 5.6 years) underwent 123I-FP-CIT SPECT and clinical evaluation [Unified Parkinson's Disease Rating Scale (UPDRS) and Parkinson's Disease Quality of Life Scale (PDQL)] preoperatively, 8 and 13 months after EMCS. Striatum-to-occipital cortex, caudate-to-occipital cortex and putamen-to-occipital cortex 123I-FP-CIT uptake ratios were calculated using the region of interest method. Total and part III UPDRS scores significantly decreased at 8 and 13 months after stimulation (P=0.02 and 0.04, respectively); UPDRS part II and PDQL scores improved after 13 months (P=0.02 and 0.04, respectively). No significant differences in 123I-FP-CIT uptake ratios between baseline and follow-up were found in the examined regions. However, a progressive reduction in 123I-FP-CIT uptake ratios in the striatum contralateral to the implant was found. In contrast, no further decrease in 123I-FP-CIT uptake ratios was detected in the striatum ipsilateral to the implant. There were no correlations between changes in 123I-FP-CIT uptake ratios with disease duration, changes in medication dosage and motor UPDRS scores. Despite a small but highly selected sample of advanced PD patients, our results showed that no further dopamine transporter reduction occurred in the striatum ipsilateral to the implant side. This finding could lead to the hypothesis that EMCS might elicit a 'neuroprotective' effect, as suggested by significant clinical benefits.

  12. Learning Touch Preferences with a Tactile Robot Using Dopamine Modulated STDP in a Model of Insular Cortex

    Directory of Open Access Journals (Sweden)

    Ting-Shuo eChou

    2015-07-01

    Full Text Available Neurorobots enable researchers to study how behaviors are produced by neural mechanisms in an uncertain, noisy, real-world environment. To investigate how the somatosensory system processes noisy, real-world touch inputs, we introduce a neurorobot called CARL-SJR, which has a full-body tactile sensory area. The design of CARL-SJR is such that it encourages people to communicate with it through gentle touch. CARL-SJR provides feedback to users by displaying bright colors on its surface. In the present study, we show that CARL-SJR is capable of learning associations between conditioned stimuli (CS; a color pattern on its surface and unconditioned stimuli (US; a preferred touch pattern by applying a spiking neural network (SNN with neurobiologically inspired plasticity. Specifically, we modeled the primary somatosensory cortex, prefrontal cortex, striatum, and the insular cortex, which is important for hedonic touch, to process noisy data generated directly from CARL-SJR’s tactile sensory area. To facilitate learning, we applied dopamine-modulated Spike Timing Dependent Plasticity (STDP to our simulated prefrontal cortex, striatum and insular cortex. To cope with noisy, varying inputs, the SNN was tuned to produce traveling waves of activity that carried spatiotemporal information. Despite the noisy tactile sensors, spike trains, and variations in subject hand swipes, the learning was quite robust. Further, the plasticity (i.e., STDP in primary somatosensory cortex and insular cortex in the incremental pathway of dopaminergic reward system allowed us to control CARL-SJR’s preference for touch direction without heavily pre-processed inputs. The emerged behaviors we found in this model match animal’s behaviors wherein they prefer touch in particular areas and directions. Thus, the results in this paper could serve as an explanation on the underlying neural mechanisms for developing tactile preferences and hedonic touch.

  13. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect.

    Science.gov (United States)

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R

    2016-05-18

    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures

  14. A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex.

    Directory of Open Access Journals (Sweden)

    Toni Cunillera

    Full Text Available Proactive and reactive inhibitory processes are a fundamental part of executive functions, allowing a person to stop inappropriate responses when necessary and to adjust performance in in a long term in accordance to the goals of a task. In the current study, we manipulate, in a single task, both reactive and proactive inhibition mechanisms, and we investigate the within-subjects effect of increasing, by means of anodal transcranial direct current stimulation (tDCS, the involvement of the right inferior frontal cortex (rIFC. Our results show a simultaneous enhancement of these two cognitive mechanisms when modulating the neural activity of rIFC. Thus, the application of anodal tDCS increased reaction times on Go trials, indicating a possible increase in proactive inhibition. Concurrently, the stop-signal reaction time, as a covert index of the inhibitory process, was reduced, demonstrating an improvement in reactive inhibition. In summary, the current pattern of results validates the engagement of the rIFC in these two forms of inhibitory processes, proactive and reactive inhibition and it provides evidence that both processes can operate concurrently in the brain.

  15. Insight in psychotic disorder: relation with psychopathology and frontal lobe function.

    Science.gov (United States)

    Kumar, Atmesh; Sharma, Pranjal; Das, Shyamanta; Nath, Kamal; Talukdar, Uddip; Bhagabati, Dipesh

    2014-01-01

    Through conceptualising poor insight in psychotic disorders as a form of anosognosia, frontal lobe dysfunction is often ascribed a vital role in its pathogenesis. The objective of this study was to compare the relation of insight in patients with psychotic illness to that of psychopathology and frontal lobe function. Forty patients with psychotic disorder were selected from those attending the Department of Psychiatry in a tertiary care teaching hospital. The evaluation of insight was carried out using the Schedule for Assessment of Insight (SAI), that of frontal lobe function by the Frontal Assessment Battery (FAB) and psychopathology by the Brief Psychiatric Rating Scale (BPRS). The correlation coefficients were determined. A negative correlation between SAI and BPRS scores means that the BPRS score is opposite to SAI scores. When the SAI total score was compared with the FAB total score, the correlation coefficient demonstrated a positive correlation. Better insight predicted lesser psychopathology and also that poor insight would exist with greater psychopathology. Better insight predicted a higher functional status of frontal lobes and prefrontal cortex in particular. Insight deficits in schizophrenia and other psychotic illnesses are multidimensional. Integration of different aetiological factors like biological, psychopathological, environmental ones and others are necessary for a better understanding of insight in psychosis. Copyright © 2013 S. Karger AG, Basel.

  16. Frontopolar cortex mediates abstract integration in analogy.

    Science.gov (United States)

    Green, Adam E; Fugelsang, Jonathan A; Kraemer, David J M; Shamosh, Noah A; Dunbar, Kevin N

    2006-06-22

    Integration of abstractly similar relations during analogical reasoning was investigated using functional magnetic resonance imaging. Activation elicited by an analogical reasoning task that required both complex working memory and integration of abstractly similar relations was compared to activation elicited by a non-analogical task that required complex working memory in the absence of abstract relational integration. A left-sided region of the frontal pole of the brain (BA 9/10) was selectively active for the abstract relational integration component of analogical reasoning. Analogical reasoning also engaged a left-sided network of parieto-frontal regions. Activity in this network during analogical reasoning is hypothesized to reflect categorical alignment of individual component terms that make up analogies. This parieto-frontal network was also engaged by the complex control task, which involved explicit categorization, but not by a simpler control task, which did not involve categorization. We hypothesize that frontopolar cortex mediates abstract relational integration in complex reasoning while parieto-frontal regions mediate working memory processes, including manipulation of terms for the purpose of categorical alignment, that facilitate this integration.

  17. Reduced Structural Connectivity in Frontostriatal White Matter Tracts in the Associative Loop in Schizophrenia.

    Science.gov (United States)

    Levitt, James J; Nestor, Paul G; Levin, Laura; Pelavin, Paula; Lin, Pan; Kubicki, Marek; McCarley, Robert W; Shenton, Martha E; Rathi, Yogesh

    2017-11-01

    The striatum receives segregated and integrative white matter tracts from the cortex facilitating information processing in the cortico-basal ganglia network. The authors examined both types of input tracts in the striatal associative loop in chronic schizophrenia patients and healthy control subjects. Structural and diffusion MRI scans were acquired on a 3-T system from 26 chronic schizophrenia patients and 26 matched healthy control subjects. Using FreeSurfer, the associative cortex was parcellated into ventrolateral prefrontal cortex and dorsolateral prefrontal cortex subregions. The striatum was manually parcellated into its associative and sensorimotor functional subregions. Fractional anisotropy and normalized streamlines, an estimate of fiber counts, were assessed in four frontostriatal tracts (dorsolateral prefrontal cortex-associative striatum, dorsolateral prefrontal cortex-sensorimotor striatum, ventrolateral prefrontal cortex-associative striatum, and ventrolateral prefrontal cortex-sensorimotor striatum). Furthermore, these measures were correlated with a measure of cognitive control, the Trail-Making Test, Part B. Results showed reduced fractional anisotropy and fewer streamlines in chronic schizophrenia patients for all four tracts, both segregated and integrative. Post hoc t tests showed reduced fractional anisotropy in the left ventrolateral prefrontal cortex-associative striatum and left ventrolateral prefrontal cortex-sensorimotor striatum and fewer normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum and in the left and right ventrolateral prefrontal cortex-sensorimotor striatum in chronic schizophrenia patients. Furthermore, normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum negatively correlated with Trail-Making Test, Part B, time spent in healthy control subjects but not in chronic schizophrenia patients. These findings demonstrated that structural connectivity is

  18. Resting-state functional connectivity between right anterior insula and right orbital frontal cortex correlate with insight level in obsessive-compulsive disorder

    Directory of Open Access Journals (Sweden)

    Jie Fan

    2017-01-01

    Full Text Available Few studies have explored the neurobiological basis of insight level in obsessive-compulsive disorder (OCD, though the salience network (SN has been implicated in insight deficits in schizophrenia. This study was then designed to investigate whether resting-state (rs functional connectivity (FC of SN was associated with insight level in OCD patients. We analyzed rs-functional magnetic resonance imaging (fMRI data from 21 OCD patients with good insight (OCD-GI, 19 OCD patients with poor insight (OCD-PI, and 24 healthy controls (HCs. Seed-based whole-brain FC and ROI (region of interest-wise connectivity analyses were performed with seeds/ROIs in the bilateral anterior insula (AI and dorsal anterior cingulate cortex (dACC. The right AI-right medial orbital frontal cortex (mOFC connectivity was found to be uniquely decreased in the OCD-PI group, and the value of this aberrant connectivity correlated with insight level in OCD patients. In addition, we found that the OCD-GI group had significantly increased right AI-left dACC connectivity within the SN, relative to HCs (overall trend for groups: OCD-GI > OCD-PI > HC. Our findings suggest that abnormal right AI-right mOFC FC may mediate insight deficits in OCD, perhaps due to impaired encoding and integration of self-evaluative information about OCD-related beliefs and behaviors. Our findings indicate a SN connectivity dissociation between OCD-GI and OCD-PI patients and support the notion of considering OCD-GI and OCD-PI as two distinct disorder subtypes.

  19. Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: implications for age-related behavioral slowing.

    Science.gov (United States)

    Insel, Nathan; Patron, Lilian A; Hoang, Lan T; Nematollahi, Saman; Schimanski, Lesley A; Lipa, Peter; Barnes, Carol A

    2012-11-14

    Age-related cognitive and behavioral slowing may be caused by changes in the speed of neural signaling or by changes in the number of signaling steps necessary to achieve a given function. In the mammalian cortex, neural communication is organized by a 30-100 Hz "gamma" oscillation. There is a putative link between the gamma frequency and the speed of processing in a neural network: the dynamics of pyramidal neuron membrane time constants suggest that synaptic integration is framed by the gamma cycle, and pharmacological slowing of gamma also slows reaction times on behavioral tasks. The present experiments identify reductions in a robust 40-70 Hz gamma oscillation in the aged rat medial frontal cortex. The reductions were observed in the form of local field potentials, later peaks in fast-spiking neuron autocorrelations, and delays in the spiking of inhibitory neurons following local excitatory signals. Gamma frequency did not vary with movement speed, but rats with slower gamma also moved more slowly. Gamma frequency age differences were not observed in hippocampus. Hippocampal CA1 fast-spiking neurons exhibited interspike intervals consistent with a fast (70-100 Hz) gamma frequency, a pattern maintained across theta phases and theta frequencies independent of fluctuations in the average firing rates of the neurons. We propose that an average lengthening of the cortical 15-25 ms gamma cycle is one factor contributing to age-related slowing and that future attempts to offset cognitive declines will find a target in the response of fast-spiking inhibitory neurons to excitatory inputs.

  20. Characterization of the fiber connectivity profile of the cerebral cortex in schizotypal personality disorder: A pilot study

    Directory of Open Access Journals (Sweden)

    Kai eLiu

    2016-05-01

    Full Text Available Schizotypal personality disorder (SPD is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs by combining the techniques of brain surface morphometry and white matter (WM tractography. Diffusion and structural MR data were collected from twenty subjects with SPD (all males; age, 19.7 ± 0.9 yrs and eighteen healthy controls (all males; age, 20.3 ± 1.0 yrs. To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA9 and BA10 and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected. Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02. Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis.

  1. Dissociable contribution of the parietal and frontal cortex to coding movement direction and amplitude

    Directory of Open Access Journals (Sweden)

    Marco eDavare

    2015-05-01

    Full Text Available To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the reaching circuit remains unknown. Here we used transcranial magnetic stimulation (TMS in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS or dorsal premotor cortex (PMd, in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; the targets were either visible for the whole trial (Target-ON or flashed for 200 ms (Target-OFF. Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks - two parameters typically used to probe the planned movement amplitude - irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160-100 ms before movement onset for mIPS and 100-40 ms for left PMd. TMS applied over right PMd had no significant effect. These results indicate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric

  2. Effects of disease duration on the clinical features and brain glucose metabolism in patients with mixed type multiple system atrophy.

    Science.gov (United States)

    Lyoo, C H; Jeong, Y; Ryu, Y H; Lee, S Y; Song, T J; Lee, J H; Rinne, J O; Lee, M S

    2008-02-01

    To study the effect of disease duration on the clinical, neuropsychological and [(18)F]-deoxyglucose (FDG) PET findings in patients with mixed type multiple system atrophy (MSA), this study included 16 controls and 37 mixed-type MSA patients with a shorter than a 3-year history of cerebellar or parkinsonian symptoms. We classified the patients into three groups according to the duration of parkinsonian or cerebellar symptoms (Group I = battery. We compared the FDG PET findings of each group of patients with controls. Group I patients frequently had memory and frontal executive dysfunction. They showed hypometabolism in the frontal cortex, anterior cerebellar hemisphere and vermis. They had parkinsonian motor deficits, but no basal ganglia hypometabolism. Group II and III patients frequently had multiple domain cognitive impairments, and showed hypometabolism in the frontal and parieto-temporal cortices. Hypometabolism of the bilateral caudate and the left posterolateral putamen was observed in Group II, and whole striatum in Group III. In summary, the cortical hypometabolism begins in the frontal cortex and spreads to the parieto-temporal cortex in MSA. This spreading pattern coincides with the progressive cognitive decline. Early caudate hypometabolism may also contribute to the cognitive impairment. Parkinsonian motor deficits precede putaminal hypometabolism that begins in its posterolateral part. Cerebellar hypometabolism occurs early in the clinical courses and seems to be a relevant metabolic descriptor of cerebellar deficits.

  3. Are the Symptoms of Parkinsonism Cortical in Origin?

    Directory of Open Access Journals (Sweden)

    Gordon W. Arbuthnott

    Full Text Available We present three reasons to suspect that the major deleterious consequence of dopamine loss from the striatum is a cortical malfunction. We suggest that it is cortex, rather than striatum, that should be considered as the source of the debilitating symptoms of Parkinson's disease (PD since: 1. Cortical synapses onto striatal dendritic spines are lost in PD. 2. All known treatments of the symptoms of PD disrupt beta oscillations. Oscillations that are also disrupted following antidromic activation of cortical neurons. 3. The final output of basal ganglia directly modulates thalamic connections to layer I of frontal cortical areas, regions intimately associated with motor behaviour.These three reasons combined with evidence that the current summary diagram of the basal ganglia involvement in PD is imprecise at best, suggest that a re-orientation of the treatment strategies towards cortical, rather than striatal malfunction, is overdue. Keywords: Parkinson's disease, Deep brain stimulation, Layer I, Motor cortex

  4. Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone

    International Nuclear Information System (INIS)

    López-Arnau, Raúl; Martínez-Clemente, José; Rodrigo, Teresa; Pubill, David; Camarasa, Jorge; Escubedo, Elena

    2015-01-01

    Mephedrone is a new designer drug of abuse. We have investigated the neurochemical/enzymatic changes after mephedrone administration to adolescent rats (3 × 25 mg/kg, s.c. in a day, with a 2 h interval between doses, for two days) at high ambient temperature (26 ± 2 °C), a schedule that intends to model human recreational abuse. In addition, we have studied the effect of mephedrone in spatial learning and memory. The drug caused a transient decrease in weight gain. After the first dose, animals showed hypothermia but, after the subsequent doses, temperature raised over the values of saline-treated group. We observed the development of tolerance to these thermoregulatory effects of mephedrone. Mephedrone induced a reduction of the densities of dopamine (30% in the frontal cortex) and serotonin (40% in the frontal cortex and the hippocampus and 48% in the striatum) transporters without microgliosis. These deficits were also accompanied by a parallel decrease in the expression of tyrosine hydroxylase and tryptophan hydroxylase 2. These changes matched with a down-regulation of D 2 dopamine receptors in the striatum. Mephedrone also induced an oxidative stress evidenced by an increase of lipid peroxidation in the frontal cortex, and accompanied by a rise in glutathione peroxidase levels in all studied brain areas. Drug-treated animals displayed an impairment of the reference memory in the Morris water maze one week beyond the cessation of drug exposure, while the spatial learning process seems to be preserved. These findings raise concerns about the neuronal long-term effects of mephedrone. - Highlights: • We studied the dopaminergic and serotonergic neurotoxicity of mephedrone in rats. • Mephedrone induced a transient hypothermia following sustained hyperthermia. • In a weekend consumption pattern, mephedrone induced selective neurotoxicity. • Mephedrone generated oxidative stress. • Mephedrone induced an impairment in memory function

  5. Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone

    Energy Technology Data Exchange (ETDEWEB)

    López-Arnau, Raúl; Martínez-Clemente, José [Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona (Spain); Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona (Spain); Rodrigo, Teresa [Animal Experimentation Unit of Psychology and Pharmacy, University of Barcelona (Spain); Pubill, David [Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona (Spain); Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona (Spain); Camarasa, Jorge, E-mail: jcamarasa@ub.edu [Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona (Spain); Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona (Spain); Escubedo, Elena [Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona (Spain); Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona (Spain)

    2015-07-01

    Mephedrone is a new designer drug of abuse. We have investigated the neurochemical/enzymatic changes after mephedrone administration to adolescent rats (3 × 25 mg/kg, s.c. in a day, with a 2 h interval between doses, for two days) at high ambient temperature (26 ± 2 °C), a schedule that intends to model human recreational abuse. In addition, we have studied the effect of mephedrone in spatial learning and memory. The drug caused a transient decrease in weight gain. After the first dose, animals showed hypothermia but, after the subsequent doses, temperature raised over the values of saline-treated group. We observed the development of tolerance to these thermoregulatory effects of mephedrone. Mephedrone induced a reduction of the densities of dopamine (30% in the frontal cortex) and serotonin (40% in the frontal cortex and the hippocampus and 48% in the striatum) transporters without microgliosis. These deficits were also accompanied by a parallel decrease in the expression of tyrosine hydroxylase and tryptophan hydroxylase 2. These changes matched with a down-regulation of D{sub 2} dopamine receptors in the striatum. Mephedrone also induced an oxidative stress evidenced by an increase of lipid peroxidation in the frontal cortex, and accompanied by a rise in glutathione peroxidase levels in all studied brain areas. Drug-treated animals displayed an impairment of the reference memory in the Morris water maze one week beyond the cessation of drug exposure, while the spatial learning process seems to be preserved. These findings raise concerns about the neuronal long-term effects of mephedrone. - Highlights: • We studied the dopaminergic and serotonergic neurotoxicity of mephedrone in rats. • Mephedrone induced a transient hypothermia following sustained hyperthermia. • In a weekend consumption pattern, mephedrone induced selective neurotoxicity. • Mephedrone generated oxidative stress. • Mephedrone induced an impairment in memory function.

  6. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    International Nuclear Information System (INIS)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of [ 3 H] norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 x 10 -5 -10 -3 M, enhanced potassium stimulated [ 3 H] norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of [ 3 H] norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA A receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA A agonist muscimol, 10 -4 M, mimicked the effect of GABA, but the GABA B agonist (±)baclofen, 10 -4 M, did not affect the release of [ 3 H] norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA A , but not GABA B , receptors. In contrast to the results that would be predicted for an event involving GABA A receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10 -8 and 10 -4 M. Thus these receptors may constitute a subclass of GABA A receptors. These results support a role of GABA uptake and GABA A receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat

  7. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  8. Learning of Spatial Relationships between Observed and Imitated Actions allows Invariant Inverse Computation in the Frontal Mirror Neuron System

    Science.gov (United States)

    Oh, Hyuk; Gentili, Rodolphe J.; Reggia, James A.; Contreras-Vidal, José L.

    2014-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator’s frontal mirror neuron system can be trained to provide the motor plans for the imitated actions. PMID:22255261

  9. Dopamine and μ-opioid receptor dysregulation in the brains of binge-eating female rats - possible relevance in the psychopathology and treatment of binge-eating disorder.

    Science.gov (United States)

    Heal, David J; Hallam, Michelle; Prow, Michael; Gosden, Jane; Cheetham, Sharon; Choi, Yong K; Tarazi, Frank; Hutson, Peter

    2017-06-01

    Adult, female rats given irregular, limited access to chocolate develop binge-eating behaviour with normal bodyweight and compulsive/perseverative and impulsive behaviours similar to those in binge-eating disorder. We investigated whether (a) dysregulated central nervous system dopaminergic and opioidergic systems are part of the psychopathology of binge-eating and (b) these neurotransmitter systems may mediate the actions of drugs ameliorating binge-eating disorder psychopathology. Binge-eating produced a 39% reduction of striatal D 1 receptors with 22% and 23% reductions in medial and lateral caudate putamen and a 22% increase of striatal μ-opioid receptors. There was no change in D 1 receptor density in nucleus accumbens, medial prefrontal cortex or dorsolateral frontal cortex, striatal D 2 receptors and dopamine reuptake transporter sites, or μ-opioid receptors in frontal cortex. There were no changes in ligand affinities. The concentrations of monoamines, metabolites and estimates of dopamine (dopamine/dihydroxyphenylacetic acid ratio) and serotonin/5-hydroxyindolacetic acid ratio turnover rates were unchanged in striatum and frontal cortex. However, turnover of dopamine and serotonin in the hypothalamus was increased ~20% and ~15%, respectively. Striatal transmission via D 1 receptors is decreased in binge-eating rats while μ-opioid receptor signalling may be increased. These changes are consistent with the attenuation of binge-eating by lisdexamfetamine, which increases catecholaminergic neurotransmission, and nalmefene, a μ-opioid antagonist.

  10. Opioid receptor imaging and displacement studies with [6-O-[11C]methyl]buprenorphine in baboon brain

    International Nuclear Information System (INIS)

    Galynker, Igor; Schlyer, David J.; Dewey, Stephen L.; Fowler, Joanna S.; Logan, Jean; Gatley, S. John; MacGregor, Robert R.; Ferrieri, Richard A.; Holland, M. J.; Brodie, Jonathan; Simon, Eric; Wolf, Alfred P.

    1996-01-01

    Buprenorphine (BPN) is a mixed opiate agonist-antagonist used as an analgesic and in the treatment of opiate addiction. We have used [6-O-[ 11 C]methyl]buprenorphine ([ 11 C]BPN) to measure the regional distribution in baboon brain, the test-retest stability of repeated studies in the same animal, the displacement of the labeled drug by naloxone in vivo, and the tissue distribution in mice. The regional distribution of radioactivity in baboon brain determined with PET was striatum > thalamus > cingulate gyrus > frontal cortex > parietal cortex > occipital cortex > cerebellum. This distribution corresponded to opiate receptor density and to previously published data (37). The tracer uptake in adult female baboons showed no significant variation in serial scans in the same baboon with no intervention in the same scanning session. HPLC analysis of baboon plasma showed the presence of labeled metabolites with 92% ± 2.2% and 43% ± 14.4% of the intact tracer remaining at 5 and 30 min, respectively. Naloxone, an opiate receptor antagonist, administered 30-40 min after tracer injection at a dose of 1.0 mg/kg i.v., reduced [ 11 C]BPN binding in thalamus, striatum, cingulate gyrus, and frontal cortex to values 0.25 to 0.60 of that with no intervention. There were minimal ( 11 C]BPN can be displaced by naloxone in vivo, and they affirm the feasibility of using this tracer and displacement methodology for short-term kinetics studies with PET. Mouse tissue distribution data were used to estimate the radiation dosimetry to humans. The critical organ was the small intestine, with a radiation dose estimate to humans of 117 nrad/mCi

  11. Effect of fentanyl on 125I-β-CIT uptake in mice brain

    International Nuclear Information System (INIS)

    Liu Xingdang; Lin Xiangtong

    2003-01-01

    Objective: To investigate the effect of fentanyl on 125 I-2β-carbomethoxy-3β-(4-iodophenyl) tropane ( 125 I-β-CIT) uptake in mice brain. Methods: 1) KM mice groups of five were given different doses of fentanyl, and 10 min or 1 h later were given a dose of 125 I-β-CIT. 2)Two groups of animals were killed at 2 h after injection of 125 I-β-CIT. 3)One group of animals were killed at 1 h after injection of 125 I-β-CIT. Results: 1)In the striatum, frontal cortex, hippocampus, brain stem, cerebellum and whole brain, a dose-dependent increase in uptake (%ID/g or %ID) of 125 I-β-CIT was detected at the fentanyl doses ranging from 125 to 300 μg/kg, and the uptakes of hippocampus and cerebellum were higher than that of the controls. There was a great difference in the value of %ID/g or %ID between the group treated with 250 μg/kg fentanyl and the control group; while at the doses from 12.5 to 100 μg/kg, a dose-dependent decrease in uptake in the same regions was observed and all the uptake levels were lower (hippocampus: except 62.5 and 12.5 μg/kg groups; brain stem: except 62.5 μg/kg group) than that of the controls. 2)The uptakes of 125 I-β-CIT in the striatum, frontal cortex, hippocampus, brain stem, cerebellum and whole brain in the groups injected with 125 I-β-CIT 10 min after fentanyl treatment were higher than that in the groups injected with 125 I-β-CIT 1 h after fentanyl treatment. 3)The binding of 125 I-β-CIT in the striatum, frontal cortex, hippocampus, brain stem, cerebellum and whole brain in the groups killed at 1 h after injection of 125 I-β-CIT was higher than that in the control group, but without significant difference. Conclusion: Fentanyl may have different effects on 125 I-β-CIT at various time points and doses

  12. Using imaging to target the prefrontal cortex for transcranial magnetic stimulation studies in treatment-resistant depression

    OpenAIRE

    Johnson, Kevin A.; Ramsey, Dave; Kozel, Frank A.; Bohning, Daryl E.; Anderson, Berry; Nahas, Ziad; Sacke?m, Harold A.; George, Mark S.

    2006-01-01

    Structural imaging studies of the brains of patients with treatment-resistant depression (TRD) have found several abnormalities, including smaller hippocampus, orbitofrontal cortex, or pre?frontal cortex. Transcranial magnetic stimulation (TMS) is a noninvasive means of modulating brain activity, and has shown antidepressant treatment efficacy. 1 The initial methods used for targeting the prefrontal cortex are most likely insufficient. Herwig et al found that a common rule-based approach (the...

  13. Representation of cognitive reappraisal goals in frontal gamma oscillations.

    Science.gov (United States)

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals

  14. Timing tasks synchronize cerebellar and frontal ramping activity and theta oscillations: Implications for cerebellar stimulation in diseases of impaired cognition

    Directory of Open Access Journals (Sweden)

    Krystal Lynn Parker

    2016-01-01

    Full Text Available Timing is a fundamental and highly conserved mammalian capability yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time, has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson’s disease, autism, and schizophrenia. We hypothesis that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. These hypotheses could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic

  15. ACTHsub(1-24) and lysine vasopressin selectively activate dopamine synthesis in frontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Delanoy, R L; Kramarcy, N R; Dunn, A J [Florida Univ., Gainesville (USA). Coll. of Medicine

    1982-01-07

    The accumulation of (/sup 3/H)catecholamines from (/sup 3/H)tyrosine in frontal cortical, septal, striatal and hippocampal slices was examined following intracerebroventricular (i.c.v.) injections of ACTHsub(1-24), lysine vasopressin (LVP) and saline. Both ACTHsub(1-24) and LVP (1..mu..g) selectively increased the accumulation of (/sup 3/H)dopamine (DA) in frontal cortical slices, but did not affect that of (/sup 3/H)norepinephrine (NE). LVP but not ACTHsub(1-24) also inhibited the accumulation of (/sup 3/H)DA in striatal slices. ACTHsub(1-24) did not alter the accumulation of (/sup 3/H)NE in hippocampal slices, nor did LVP alter the accumulation of either catecholamine (CA) in septal slices. In vitro incubations with ACTH analogs or LVP failed to alter the rate of accumulation of (/sup 3/H)CAs in striatal, substantia nigral and frontal cortical slices, except for an inhibitory effect at high doses. This effect is believed to be an artifact of precursor dilution caused by release of tyrosine following degradation of the peptides. Neither peptide modified the increased (/sup 3/H)CA accumulation stimulated by 26 mM K/sup +/, nor did ACTHsub(1-24) modify the inhibition of (/sup 3/H)CA accumulation caused by 3 X 10/sup -6/ M Haloperidol or 3 X 10/sup -7/ M apomorphine. Selective activation of the mesocortical DA system has also been reported to occur in response to footshock, suggesting the possibility that endogenous ACTH and/or LVP might mediate the stress-induced activation of mesocortical DA synthesis. Alternatively, i.c.v. injections of these peptides may themselves be stressful and thus indirectly elicit the response.

  16. Functional impairment of the frontal lobe in methamphetamine dependent patients detected on FDG-PET and WCST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Tae; Kwon, Do Hoon [Bugok National Hostipal, Changnyeong (Korea, Republic of); Lee, Sang Woo; Seo, Ji Hyoung; Kang, Seong Min; Lee, Jae Tae; Lee, Kyu Bo [Kyungpook National University Hospital, Daeug (Korea, Republic of)

    2007-07-01

    There are mounting evidences from neuropsychological and neuroimaging studies to support the view that patients with substance dependence have abnormalities in prefrontal cortex. However, functional deficits in prefrontal cortex has not been adequately studied in methamphetamine dependence. Therefore, the purpose of this study is to examine whether methamphetamine dependent patients have metabolic abnormalities and executive dysfunction. Twenty-one abstinent methamphetamine dependent patients who were hospitalized in Bugok National Hospital underwent resting FDG-PET, after which they completed computerized versions of the Wisconsin Card Sorting Test (WCST). Brain PET images were obtained 30 minutes after intravenous injection of 370 MBq of 18F-FDG. Significant differences of glucose metabolism were estimated for every voxel using t-statistics on SPM2 implemented in Matlab between methamphetamine dependent patients and age-matched normal controls. FDG-PET revealed significant hypometabolism in the left inferior frontal white matter (Talairach coordinates (x, y, z): -34, 7, 31) in methamphetamine dependent patients compared to the normal controls (uncorrect p<0.001, t>3.39). The nearest gray matter region was the left inferior frontal cortex (Brodmann area 9). Methamphetamine dependent patients completed significantly fewer categories (3.662.19) and made more perseveration errors (22.0411.94) and total errors (44.5719.70) on the WCST compared to the normal controls (p<0.01). These data suggest that patients with methamphetamine dependence have functional impairments in prefrontal cortex.

  17. Functional impairment of the frontal lobe in methamphetamine dependent patients detected on FDG-PET and WCST

    International Nuclear Information System (INIS)

    Kim, Yang Tae; Kwon, Do Hoon; Lee, Sang Woo; Seo, Ji Hyoung; Kang, Seong Min; Lee, Jae Tae; Lee, Kyu Bo

    2007-01-01

    There are mounting evidences from neuropsychological and neuroimaging studies to support the view that patients with substance dependence have abnormalities in prefrontal cortex. However, functional deficits in prefrontal cortex has not been adequately studied in methamphetamine dependence. Therefore, the purpose of this study is to examine whether methamphetamine dependent patients have metabolic abnormalities and executive dysfunction. Twenty-one abstinent methamphetamine dependent patients who were hospitalized in Bugok National Hospital underwent resting FDG-PET, after which they completed computerized versions of the Wisconsin Card Sorting Test (WCST). Brain PET images were obtained 30 minutes after intravenous injection of 370 MBq of 18F-FDG. Significant differences of glucose metabolism were estimated for every voxel using t-statistics on SPM2 implemented in Matlab between methamphetamine dependent patients and age-matched normal controls. FDG-PET revealed significant hypometabolism in the left inferior frontal white matter (Talairach coordinates (x, y, z): -34, 7, 31) in methamphetamine dependent patients compared to the normal controls (uncorrect p 3.39). The nearest gray matter region was the left inferior frontal cortex (Brodmann area 9). Methamphetamine dependent patients completed significantly fewer categories (3.662.19) and made more perseveration errors (22.0411.94) and total errors (44.5719.70) on the WCST compared to the normal controls (p<0.01). These data suggest that patients with methamphetamine dependence have functional impairments in prefrontal cortex

  18. Dysfunctional frontal lobe activity during inhibitory tasks in individuals with childhood trauma: An event-related potential study.

    Science.gov (United States)

    Kim, Sungkean; Kim, Ji Sun; Jin, Min Jin; Im, Chang-Hwan; Lee, Seung-Hwan

    2018-01-01

    Individuals who experience childhood trauma are vulnerable to various psychological and behavioral problems throughout their lifetime. This study aimed to investigate whether individuals with childhood trauma show altered frontal lobe activity during response inhibition tasks. In total, 157 healthy individuals were recruited and instructed to perform a Go/Nogo task during electroencephalography recording. Source activities of N2 and P3 of Nogo event-related potentials (ERP) were analyzed. The Childhood Trauma Questionnaire (CTQ) and Barratt Impulsivity Scale (BIS) were applied. Individuals were divided into three groups based on their total CTQ score: low CTQ, middle CTQ, and high CTQ groups. The high CTQ group exhibited significantly higher BIS scores than the low CTQ group. P3 amplitudes of the differences between Nogo and Go ERP waves exhibited higher mean values in the low CTQ than the high CTQ group, with trending effects. In Nogo-P3, the source activities of the right anterior cingulate cortex, bilateral medial frontal cortex (MFC), bilateral superior frontal gyrus (SFG), and right precentral gyrus were significantly lower in the high CTQ than the low CTQ group. Motor impulsivity showed a significant negative correlation with activities of the bilateral MFC and SFG in Nogo-P3 conditions. Our study revealed that individuals with childhood trauma have inhibitory failure and frontal lobe dysfunction in regions related to Nogo-P3.

  19. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis.

    Science.gov (United States)

    Wise, Nan J; Frangos, Eleni; Komisaruk, Barry R

    2016-01-01

    During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. This study extends our previous findings by further characterizing how the brain differentially processes physical 'touch' stimulation and 'imagined' stimulation. Eleven healthy women (age range 29-74) participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions - imagined dildo self-stimulation and imagined speculum stimulation - were included to characterize the effects of erotic versus non-erotic imagery. Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex) and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region), and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the 'reward system'. In addition, these results suggest a mechanism by which some individuals may

  20. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis

    Directory of Open Access Journals (Sweden)

    Nan J. Wise

    2016-10-01

    Full Text Available Background: During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. Objective: This study extends our previous findings by further characterizing how the brain differentially processes physical ‘touch’ stimulation and ‘imagined’ stimulation. Design: Eleven healthy women (age range 29–74 participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions – imagined dildo self-stimulation and imagined speculum stimulation – were included to characterize the effects of erotic versus non-erotic imagery. Results: Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region, and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. Conclusion: The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the

  1. The dorsal striatum and ventral striatum play different roles in the programming of social behaviour: a tribute to Lex Cools.

    Science.gov (United States)

    van den Bos, Ruud

    2015-02-01

    Early work by Lex Cools suggested that the caudate nucleus (dorsal striatum) plays a role in programming social behaviour: enhanced activity in the caudate nucleus increased the extent to which ongoing behaviour is controlled by the individual's own behaviour (internal control) rather than by that of its partners (external control). Interestingly, later studies by others have indicated that the ventral striatum plays a role in external rather than internal control. Here, I discuss the role of these different striatal areas - and the emotional (ventral striatum) and cognitive control (dorsal striatum) system in which they are embedded - in the organization of social behaviour in the context of locus of control. Following on from this discussion, I will pay particular attention to individual differences in social behaviour (individuals with more internal or external control), focusing on the role of dopamine, serotonin and the effects of stress-related challenges in relation to their different position in a dominance hierarchy. I will subsequently allude to potential psychological and behavioural problems in the social domain following on from these differences in locus of control ['social obliviousness' (dorsal stratum) and 'social impulsivity' (ventral striatum)]. In doing so, I provide as a tribute a historical account of the early research by Lex Cools.

  2. Increased premotor cortex activation in high functioning autism during action observation.

    Science.gov (United States)

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    International Nuclear Information System (INIS)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T.

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, [3H]glutamate and [3H]glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of [3H]quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus

  4. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T. (Meijo Univ., Nagoya (Japan))

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, (3H)glutamate and (3H)glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of (3H)quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus.

  5. Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala.

    Science.gov (United States)

    Murray, Elisabeth A; Wise, Steven P; Drevets, Wayne C

    2011-06-15

    Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of "self" underlies the core disorder in MDD; the medial frontal cortex represents "self"; interactions between the amygdala and cortical representations update their valuation; and inefficiency in using positive feedback by orbital prefrontal cortex contributes to MDD. Published by Elsevier Inc.

  6. Task-dependent and distinct roles of the temporoparietal junction and inferior frontal cortex in the control of imitation.

    Science.gov (United States)

    Hogeveen, Jeremy; Obhi, Sukhvinder S; Banissy, Michael J; Santiesteban, Idalmis; Press, Clare; Catmur, Caroline; Bird, Geoffrey

    2015-07-01

    The control of neurological networks supporting social cognition is crucially important for social interaction. In particular, the control of imitation is directly linked to interaction quality, with impairments associated with disorders characterized by social difficulties. Previous work suggests inferior frontal cortex (IFC) and the temporoparietal junction (TPJ) are involved in controlling imitation, but the functional roles of these areas remain unclear. Here, transcranial direct current stimulation (tDCS) was used to enhance cortical excitability at IFC and the TPJ prior to the completion of three tasks: (i) a naturalistic social interaction during which increased imitation is known to improve rapport, (ii) a choice reaction time task in which imitation needs to be inhibited for successful performance and (iii) a non-imitative control task. Relative to sham stimulation, stimulating IFC improved the context-dependent control of imitation-participants imitated more during the social interaction and less during the imitation inhibition task. In contrast, stimulating the TPJ reduced imitation in the inhibition task without affecting imitation during social interaction. Neither stimulation site affected the non-imitative control task. These data support a model in which IFC modulates imitation directly according to task demands, whereas TPJ controls task-appropriate shifts in attention toward representation of the self or the other, indirectly impacting upon imitation. © The Author (2014). Published by Oxford University Press.

  7. Changes in Glutamate/NMDA Receptor Subunit 1 Expression in Rat Brain after Acute and Subacute Exposure to Methamphetamine

    Directory of Open Access Journals (Sweden)

    Walailuk Kerdsan

    2009-01-01

    Full Text Available Methamphetamine (METH is a psychostimulant drug of abuse that produces long-term behavioral changes including behavioral sensitization, tolerance, and dependence. METH has been reported to induce neurotoxic effects in several areas of the brain via the dopaminergic system. Changes of dopamine function can induce malfunction of the glutamatergic system. Therefore, the aim of the present study was to examine the effects of METH administration on the expression of glutamate N-methyl-D-aspartate receptor subunit 1 (NMDAR1 in frontal cortex, striatum, and hippocampal formation after acute and subacute exposure to METH by western blotting. Male Sprague-Dawley rats were injected intraperitoneally with a single dose of 8 mg/kg METH, 4 mg/kg/day METH for 14 days and saline in acute, subacute, and control groups, respectively. A significant increase in NMDAR1 immunoreactive protein was found in frontal cortex in the subacute group (P=.036 but not in the acute group (P=.580. Moreover, a significant increase in NMDAR1 was also observed in striatum in both acute (P=.025 and subacute groups (P=.023. However, no significant differences in NMDAR1 in hippocampal formation were observed in either acute or subacute group. The results suggest that an upregulation of NMDA receptor expression may be a consequence of glutamatergic dysfunction induced by METH.

  8. Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats.

    Science.gov (United States)

    Yadav, Rajesh S; Shukla, Rajendra K; Sankhwar, Madhu Lata; Patel, Devendra K; Ansari, Reyaz W; Pant, Aditya B; Islam, Fakhrul; Khanna, Vinay K

    2010-09-01

    Our recent studies have shown that arsenic-induced neurobehavioral toxicity is protected by curcumin by modulating oxidative stress and dopaminergic functions in rats. In addition, the neuroprotective effect of curcumin has been investigated on arsenic-induced alterations in biogenic amines, their metabolites and nitric oxide (NO), which play an important role in neurotransmission process. Decrease in the levels of dopamine (DA, 28%), norepinephrine (NE, 54%), epinephrine (EPN, 46%), serotonin (5-HT, 44%), 3,4-dihydroxyphenylacetic acid (DOPAC, 20%) and homovanillic acid (HVA, 31%) in corpus striatum; DA (51%), NE (22%), EPN (47%), 5-HT (25%), DOPAC (34%) and HVA (41%) in frontal cortex and DA (35%), NE (35%), EPN (29%), 5-HT (54%), DOPAC (37%) and HVA (46%) in hippocampus, observed in arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) treated rats exhibited a trend of recovery in rats simultaneously treated with arsenic and curcumin (100 mg/kg body weight, p.o., 28 days). Increased levels of NO in corpus striatum (2.4-fold), frontal cortex (6.1-fold) and hippocampus (6.2-fold) in arsenic-treated rats were found decreased in rats simultaneously treated with arsenic and curcumin. It is evident that curcumin modulates levels of brain biogenic amines and NO in arsenic-exposed rats and these results further strengthen its neuroprotective efficacy. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    Science.gov (United States)

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Frontal brain asymmetry as a marker of depression and effectiveness of TMS therapy

    International Nuclear Information System (INIS)

    Mani, D.; Lithgow, B.

    2010-01-01

    Full text: Resting frontal brain electroencephalography (EEG) asymmetry has been hypothesi sed as a diagnostic marker for depression. A number of studies have shown that depressed individuals are characterised by diminished left sided activation of the prefrontal cortex, which is indicated by greater left than right alpha-band power. Relative left frontal region activity is believed to be associated with positive approach related behaviour and relative right frontal activity is seen to be linked to negative withdrawal related behaviour. In this study, frontal brain EEG was recorded from 17 depressed and 19 control subjects, from which frontal brain asymmetry ratios were calculated. The results confirmed the trend of relative left anterior hypoaclivation for individuals with depression compared to the healthy controls. This study also looked at beta and theta band ratios and found theta for depressed is predominantly negative, while the control group dis played mainly positive values. Beta comparison showed little significant difference between control and depressed groups. In addition, there have been few studies that examined frontal brain asymmetry in depression soon after treatment to gauge its effectiv ness. In a very preliminary study, the effect of Transcranial Magnetic Stimulation (TMS) therapy on the alpha band frontal brain asymmetry ratio for 5 depl'essed subjects before and after treatment found a slight increase in FBA ratio for 4 subjects. Further research and a larger subject group is required to validate these results.

  11. The Sensory Striatum Is Permanently Impaired by Transient Developmental Deprivation

    Directory of Open Access Journals (Sweden)

    Todd M. Mowery

    2017-06-01

    Full Text Available Corticostriatal circuits play a fundamental role in regulating many behaviors, and their dysfunction is associated with many neurological disorders. In contrast, sensory disorders, like hearing loss (HL, are commonly linked with processing deficits at or below the level of the auditory cortex (ACx. However, HL can be accompanied by non-sensory deficits, such as learning delays, suggesting the involvement of regions downstream of ACx. Here, we show that transient developmental HL differentially affected the ACx and its downstream target, the sensory striatum. Following HL, both juvenile ACx layer 5 and striatal neurons displayed an excitatory-inhibitory imbalance and lower firing rates. After hearing was restored, adult ACx neurons recovered balanced excitatory-inhibitory synaptic gain and control-like firing rates, but striatal neuron synapses and firing properties did not recover. Thus, a brief period of abnormal cortical activity may induce cellular impairments that persist into adulthood and contribute to neurological disorders that are striatal in origin.

  12. Frontal alpha asymmetry predicts inhibitory processing in youth with attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Ellis, Alissa J; Kinzel, Chantelle; Salgari, Giulia C; Loo, Sandra K

    2017-07-28

    Atypical asymmetry in brain activity has been implicated in the behavioral and attentional dysregulation observed in ADHD. Specifically, asymmetry in neural activity in the right versus left frontal regions has been linked to ADHD, as well as to symptoms often associated with ADHD such as heightened approach behaviors, impulsivity and difficulties with inhibition. Clarifying the role of frontal asymmetry in ADHD-like traits, such as disinhibition, may provide information on the neurophysiological processes underlying these behaviors. ADHD youth (ADHD: n = 25) and healthy, typically developing controls (TD: n = 25) underwent an electroencephalography (EEG) recording while completing a go/no-go task-a commonly used test measuring behavioral inhibition. In addition, advanced signal processing for source localization estimated the location of signal generators underlying frontal alpha asymmetry (FA) during correct and incorrect trials. This is the first study in ADHD to demonstrate that the dorsal-lateral prefrontal cortex (DLPFC) may be responsible for generating frontal alpha. During failed inhibition trials, ADHD youth displayed greater FA than TD youth. In addition, within the ADHD group, frontal asymmetry during later processing stages (i.e., 400-800ms after stimulus) predicted a higher number of commission errors throughout the task. These results suggest that frontal alpha asymmetry may be a specific biomarker of cognitive disinhibition among youth with ADHD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Transcranial direct current stimulation improves short-term memory in an animal model of attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Leffa, Douglas Teixeira; de Souza, Andressa; Scarabelot, Vanessa Leal; Medeiros, Liciane Fernandes; de Oliveira, Carla; Grevet, Eugenio Horacio; Caumo, Wolnei; de Souza, Diogo Onofre; Rohde, Luis Augusto Paim; Torres, Iraci L S

    2016-02-01

    Attention deficit hyperactivity disorder (ADHD) is characterized by impairing levels of hyperactivity, impulsivity and inattention. However, different meta-analyses have reported disruptions in short and long-term memory in ADHD patients. Previous studies indicate that mnemonic dysfunctions might be the result of deficits in attentional circuits, probably due to ineffective dopaminergic modulation of hippocampal synaptic plasticity. In this study we aimed to evaluate the potential therapeutic effects of a neuromodulatory technique, transcranial direct current stimulation (tDCS), in short-term memory (STM) deficits presented by the spontaneous hypertensive rats (SHR), the most widely used animal model of ADHD. Adult male SHR and Wistar Kyoto rats (WKY) were subjected to a constant electrical current of 0.5 mA intensity applied on the frontal cortex for 20 min/day during 8 days. STM was evaluated with an object recognition test conducted in an open field. Exploration time and locomotion were recorded, and brain regions were dissected to determine dopamine and BDNF levels. SHR spent less time exploring the new object when compared to WKY, and tDCS improved object recognition deficits in SHR without affecting WKY performance. Locomotor activity was higher in SHR and it was not affected by tDCS. After stimulation, dopamine levels were increased in the hippocampus and striatum of both strains, while BDNF levels were increased only in the striatum of WKY. These findings suggest that tDCS on the frontal cortex might be able to improve STM deficits present in SHR, which is potentially related to dopaminergic neurotransmission in the hippocampus and striatum of those animals. Copyright © 2016. Published by Elsevier B.V.

  14. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex.

    Science.gov (United States)

    de Vivo, Luisa; Nelson, Aaron B; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara

    2016-04-01

    The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6-8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. © 2016 Associated Professional Sleep Societies, LLC.

  15. Transcranial Direct Current Stimulation of Frontal Cortex Decreases Performance on the WAIS-IV Intelligence Test

    Science.gov (United States)

    Sellers, Kristin K.; Mellin, Juliann M.; Lustenberger, Caroline M.; Boyle, Michael R.; Lee, Won Hee; Peterchev, Angel V.; Frohlich, Flavio

    2015-01-01

    Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2mA at each anode for 20 minutes) or active sham tDCS (2mA for 40 seconds), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2mA for 20 minutes). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement. PMID:25934490

  16. Dissociating frontal regions that co-lateralize with different ventral occipitotemporal regions during word processing☆

    Science.gov (United States)

    Seghier, Mohamed L.; Price, Cathy J.

    2013-01-01

    The ventral occipitotemporal sulcus (vOT) sustains strong interactions with the inferior frontal cortex during word processing. Consequently, activation in both regions co-lateralize towards the same hemisphere in healthy subjects. Because the determinants of lateralisation differ across posterior, middle and anterior vOT subregions, we investigated whether lateralisation in different inferior frontal regions would co-vary with lateralisation in the three different vOT subregions. A whole brain analysis found that, during semantic decisions on written words, laterality covaried in (1) posterior vOT and the precentral gyrus; (2) middle vOT and the pars opercularis, pars triangularis, and supramarginal gyrus; and (3) anterior vOT and the pars orbitalis, middle frontal gyrus and thalamus. These findings increase the spatial resolution of our understanding of how vOT interacts with other brain areas during semantic categorisation on words. PMID:23728081

  17. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    International Nuclear Information System (INIS)

    Moll, Jorge; Oliveira-Souza, Ricardo de

    2001-01-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  18. The Crossed Projection to the Striatum in Two Species of Monkey and in Humans: Behavioral and Evolutionary Significance

    DEFF Research Database (Denmark)

    Innocenti, Giorgio M.; Dyrby, Tim Bjørn; Andersen, Kasper Winther

    2017-01-01

    The corpus callosum establishes the anatomical continuity between the 2 hemispheres and coordinates their activity. Using histological tracing, single axon reconstructions, and diffusion tractography, we describe a callosal projection to n caudatus and putamen in monkeys and humans. In both species......, the origin of this projection is more restricted than that of the ipsilateral projection. In monkeys, it consists of thin axons (0.4–0.6 µm), appropriate for spatial and temporal dispersion of subliminal inputs. For prefrontal cortex, contralateral minus ipsilateral delays to striatum calculated from axon...... diameters and conduction distance are monkey and, by extrapolation,

  19. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Silvia Vanni

    2018-01-01

    Full Text Available Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively and in different genetic forms of prion diseases (gPrD in comparison to Alzheimer's disease (AD subjects and age-matched controls.Methods: Total RNA was obtained from the frontal cortex of vCJD (n = 20, iCJD (n = 11, sCJD (n = 23, gPrD (n = 30, and AD (n = 14 patients and age-matched controls (n = 30. RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis.Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level.Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue—together with specific molecular and conformational features of the pathological agent of the disease—seem to dictate the peculiar

  20. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases.

    Science.gov (United States)

    Vanni, Silvia; Zattoni, Marco; Moda, Fabio; Giaccone, Giorgio; Tagliavini, Fabrizio; Haïk, Stéphane; Deslys, Jean-Philippe; Zanusso, Gianluigi; Ironside, James W; Carmona, Margarita; Ferrer, Isidre; Kovacs, Gabor G; Legname, Giuseppe

    2018-01-01

    Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively) and in different genetic forms of prion diseases (gPrD) in comparison to Alzheimer's disease (AD) subjects and age-matched controls. Methods: Total RNA was obtained from the frontal cortex of vCJD ( n = 20), iCJD ( n = 11), sCJD ( n = 23), gPrD ( n = 30), and AD ( n = 14) patients and age-matched controls ( n = 30). RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis. Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level. Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue)-together with specific molecular and conformational features of the pathological agent of the disease-seem to dictate the peculiar hemoglobin

  1. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  2. Dysconnection of right parietal and frontal cortex in neglect syndrome

    DEFF Research Database (Denmark)

    Dietz, Martin; Nielsen, Jørgen Feldbæk; Roepstorff, Andreas

    2017-01-01

    A lesion to the right hemisphere of the brain often leads to perceptual neglect of the left side of the sensorium. The fact that lesions to different cortical regions lead to the same symptoms points to neglect as a dysconnection syndrome that may result from the dysconnection of a distributed...... network, rather than a disruption of computation in any particular brain region. To test this hypothesis, we used Bayesian analysis of effective connectivity based on electroencephalographic recordings in patients with left-sided neglect after a right-hemisphere lesion. While age-matched healthy controls...... connectivity in the left hemisphere when stimuli appeared on their right. Crucially, this parieto-frontal feedback connectivity was aggravated in patients with more severe symptoms. In contrast, patients and controls did not show differences in the local connectivity within regions. These findings suggest...

  3. Functional magnetic resonance imaging (fMRI) in patients with gliomas adjacent to classical language areas. Lateralization of activated prefrontal cortex is important in determining the dominant hemisphere

    International Nuclear Information System (INIS)

    Karibe, Hiroshi; Kumabe, Toshihiro; Shirane, Reizo; Yoshimoto, Takashi

    2003-01-01

    In patients with gliomas adjacent to classical language areas, lateralized activation of prefrontal cortex was assessed to determine language dominant hemisphere using functional magnetic resonance imaging (fMRI). Twelve patients presented with aphasias were studied. In all patients, either the left frontal operculum or left superior temporal gyri were adjacent to gliomas, suggesting all patients had left lateralization in hemispheric language dominance. Functional MRI was performed with a 1.5T scanner, with the sequence of gradient-echo type echo-planar imaging. As specific language tasks, verb, word, and capping generations were used. Using a cross-correlation analysis method, primary activation maps were generated using pixels with a correlation coefficient of >0.7. The lateralized activation of frontal operculum, superior temporal gyrus, and prefrontal cortex were assessed by calculating laterality index. Successful activation of frontal operculum was imaged in 11 of 12, in the superior temporal gyrus or prefrontal cortex. Three out of 11 cases had apparent activation lateralized in the right frontal operculum on fMRI, while 3 out of 12 cases showed activation in the superior temporal gyrus. On the other hand, all cases had apparent activation lateralized to the left prefrontal cortex. Significant activation of true language area may not be obtained in some cases with gliomas adjacent to classical language areas. In such cases, lateralization of apparent activation of prefrontal cortex may reflect lateralization in the dominant hemisphere. These result suggest that the assessment of apparent activation of prefrontal cortex lateralization is useful to determine the language dominant hemisphere. (author)

  4. Carbon-11 and radioiodinated derivatives of lysergic acid diethylamide: Ligands for the study of serotonin S2 receptors in vivo

    International Nuclear Information System (INIS)

    Lever, J.R.; Hartig, P.R.; Wong, D.F.

    1985-01-01

    2-[ 125 1]-LSD binds selectively and with high affinity to serotonin S2 receptors in vitro. In the present study, the authors prepared 2-[ 123 1]-LSD as well as a carbon-11 labeled analog. They also characterized the in vivo binding of these tracers to receptor sites in mouse brain to assess their potential for tomographic imaging of S2 receptors in man. The temporal distribution of 2-[ 125 1]-LSD paralleled the density of S2 receptors. Regional selectivity was maximal after 15 minutes when tissue to cerebellum ratios were: frontal cortex (2.6), olfactory tubercles (2.4), striatum (2.3), and cortex (2.0). Preinjection of ketanserin, a potent S2 antagonist, inhibited binding. 2-[ 123 1]-LSD, prepared in 20% yield from LSD and electrophilic I-123, gave similar results in vivo and may be useful for SPECT studies. The authors then synthesized N1-([ 11 C]-Me)-2-Br-LSD ( 11 C-MBL) from [ 11 C]-methyl iodide and 2-Br-LSD for PET imaging trials. 11 C-MBL was isolated by HPLC in high chemical and radiochemical purity within 30 minutes from E.O.B. The average radiochemical yield was 20% and the specific activity was determined by U.V. spectroscopy to be up to 1300Ci/mMol (E.O.S.). 11C-MBL showed greater regional selectivity in vivo in mouse brain than 2-[ 125 1]-LSD. After 30 minutes, peak tissue to cerebellum ratios were: frontal cortex (5.4), olfactory tubercles (4.2), striatum (3.0), and cortex (2.8). Preinjection of ketanserin markedly inhibited 11 C-MBL binding. 11 C-MBL is a promising candidate for PET studies of S2 receptors

  5. Opioid receptor imaging and displacement studies with [6-O-[{sup 11}C]methyl]buprenorphine in baboon brain

    Energy Technology Data Exchange (ETDEWEB)

    Galynker, Igor; Schlyer, David J.; Dewey, Stephen L.; Fowler, Joanna S.; Logan, Jean; Gatley, S. John; MacGregor, Robert R.; Ferrieri, Richard A.; Holland, M. J.; Brodie, Jonathan; Simon, Eric; Wolf, Alfred P

    1996-04-01

    Buprenorphine (BPN) is a mixed opiate agonist-antagonist used as an analgesic and in the treatment of opiate addiction. We have used [6-O-[{sup 11}C]methyl]buprenorphine ([{sup 11}C]BPN) to measure the regional distribution in baboon brain, the test-retest stability of repeated studies in the same animal, the displacement of the labeled drug by naloxone in vivo, and the tissue distribution in mice. The regional distribution of radioactivity in baboon brain determined with PET was striatum > thalamus > cingulate gyrus > frontal cortex > parietal cortex > occipital cortex > cerebellum. This distribution corresponded to opiate receptor density and to previously published data (37). The tracer uptake in adult female baboons showed no significant variation in serial scans in the same baboon with no intervention in the same scanning session. HPLC analysis of baboon plasma showed the presence of labeled metabolites with 92% {+-} 2.2% and 43% {+-} 14.4% of the intact tracer remaining at 5 and 30 min, respectively. Naloxone, an opiate receptor antagonist, administered 30-40 min after tracer injection at a dose of 1.0 mg/kg i.v., reduced [{sup 11}C]BPN binding in thalamus, striatum, cingulate gyrus, and frontal cortex to values 0.25 to 0.60 of that with no intervention. There were minimal (< 15%) effects on cerebellum. Naloxone treatment significantly reduced the slope of the Patlak plot in receptor-containing regions. These results demonstrate that [{sup 11}C]BPN can be displaced by naloxone in vivo, and they affirm the feasibility of using this tracer and displacement methodology for short-term kinetics studies with PET. Mouse tissue distribution data were used to estimate the radiation dosimetry to humans. The critical organ was the small intestine, with a radiation dose estimate to humans of 117 nrad/mCi.

  6. Role of Frontal Alpha Oscillations in Creativity

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R.; Foulser, A. Alban; Mellin, Juliann M.; Fröhlich, Flavio

    2015-01-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent EEG data suggests that cortical oscillations in the alpha frequency band (8 – 12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a fundamental role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking, a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40Hz-tACS was used in instead of 10Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal gamma stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. PMID:25913062

  7. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    unknown. Therefore we aim to examine the relationship between BMI and gene expression of central inflammatory markers in the human frontal cortex. Microarray data of 141 neurologically and psychiatrically healthy individuals were obtained through the BrainCloud database. A simple linear regression...... correlated (Plinear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...... analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...

  8. Cytoarchitecture, probability maps and functions of the human frontal pole.

    Science.gov (United States)

    Bludau, S; Eickhoff, S B; Mohlberg, H; Caspers, S; Laird, A R; Fox, P T; Schleicher, A; Zilles, K; Amunts, K

    2014-06-01

    The frontal pole has more expanded than any other part in the human brain as compared to our ancestors. It plays an important role for specifically human behavior and cognitive abilities, e.g. action selection (Kovach et al., 2012). Evidence about divergent functions of its medial and lateral part has been provided, both in the healthy brain and in psychiatric disorders. The anatomical correlates of such functional segregation, however, are still unknown due to a lack of stereotaxic, microstructural maps obtained in a representative sample of brains. Here we show that the human frontopolar cortex consists of two cytoarchitectonically and functionally distinct areas: lateral frontopolar area 1 (Fp1) and medial frontopolar area 2 (Fp2). Based on observer-independent mapping in serial, cell-body stained sections of 10 brains, three-dimensional, probabilistic maps of areas Fp1 and Fp2 were created. They show, for each position of the reference space, the probability with which each area was found in a particular voxel. Applying these maps as seed regions for a meta-analysis revealed that Fp1 and Fp2 differentially contribute to functional networks: Fp1 was involved in cognition, working memory and perception, whereas Fp2 was part of brain networks underlying affective processing and social cognition. The present study thus disclosed cortical correlates of a functional segregation of the human frontopolar cortex. The probabilistic maps provide a sound anatomical basis for interpreting neuroimaging data in the living human brain, and open new perspectives for analyzing structure-function relationships in the prefrontal cortex. The new data will also serve as a starting point for further comparative studies between human and non-human primate brains. This allows finding similarities and differences in the organizational principles of the frontal lobe during evolution as neurobiological basis for our behavior and cognitive abilities. Copyright © 2013 Elsevier Inc. All

  9. Fatty acid composition of the postmortem prefrontal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder.

    Science.gov (United States)

    Hamazaki, Kei; Maekawa, Motoko; Toyota, Tomoko; Dean, Brian; Hamazaki, Tomohito; Yoshikawa, Takeo

    2015-06-30

    Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Connections of the medial posterior parietal cortex (area 7m) in the monkey.

    Science.gov (United States)

    Leichnetz, G R

    2001-06-01

    The afferent and efferent cortical and subcortical connections of the medial posterior parietal cortex (area 7m) were studied in cebus (Cebus apella) and macaque (Macaca fascicularis) monkeys using the retrograde and anterograde capabilities of the horseradish peroxidase (HRP) technique. The principal intraparietal corticocortical connections of area 7m in both cebus and macaque cases were with the ipsilateral medial bank of the intraparietal sulcus (MIP) and adjacent superior parietal lobule (area 5), inferior parietal lobule (area 7a), lateral bank of the IPS (area 7ip), caudal parietal operculum (PGop), dorsal bank of the caudal superior temporal sulcus (visual area MST), and medial prestriate cortex (including visual area PO and caudal medial lobule). Its principal frontal corticocortical connections were with the prefrontal cortex in the shoulder above the principal sulcus and the cortex in the shoulder above the superior ramus of the arcuate sulcus (SAS), the area purported to contain the smooth eye movement-related frontal eye field (FEFsem) in the cebus monkey by other investigators. There were moderate connections with the cortex in the rostral bank of the arcuate sulcus (purported to contain the saccade-related frontal eye field; FEFsac), supplementary eye field (SEF), and rostral dorsal premotor area (PMDr). Area 7m also had major connections with the cingulate cortex (area 23), particularly the ventral bank of the cingulate sulcus. The principal subcortical connections of area 7m were with the dorsal portion of the ventrolateral thalamic (VLc) nucleus, lateral posterior thalamic nucleus, lateral pulvinar, caudal mediodorsal thalamic nucleus and medial pulvinar, central lateral, central superior lateral, and central inferior intralaminar thalamic nuclei, dorsolateral caudate nucleus and putamen, middle region of the claustrum, nucleus of the diagonal band, zona incerta, pregeniculate nucleus, anterior and posterior pretectal nuclei, intermediate layer of

  11. Neurochemical characterization of the tree shrew dorsal striatum

    Directory of Open Access Journals (Sweden)

    MATTHEW W RICE

    2011-08-01

    Full Text Available The striatum is a major component of the basal ganglia and is associated with motor and cognitive functions. Striatal pathologies have been linked to several disorders, including Huntington's, Tourette's syndrome, obsessive-compulsive disorders and schizophrenia. For the study of these striatal pathologies different animal models have been used, including rodents and non-human primates. Rodents lack on morphological complexity (for example, the lack of well defined caudate and putamen nuclei, which makes it difficult to translate data to the human paradigm. Primates, and especially higher primates, are the closest model to humans, but there are ever-increasing restrictions to the use of these animals for research. In our search for a non-primate animal model with a striatum that anatomically (and perhaps functionally can resemble that of humans, we turned our attention to the tree shrew. Evolutionary genetic studies have provided strong data supporting that the tree shrews (Scadentia are one of the closest groups to primates, although their brain anatomy has only been studied in detail for specific brain areas. Morphologically, the tree shrew striatum resembles the primate striatum with the presence of an internal capsule separating the caudate and putamen, but little is known about its neurochemical composition. Here we analyzed the expression of calcium-binding proteins, the presence and distribution of the striosome and matrix compartments (by the use of calbindin, tyrosine hydroxylase and acetylcholinesterase immunohistochemistry, and the GABAergic system by immunohistochemistry against glutamic acid decarboxylase and Golgi impregnation. In summary, our results show that when compared to primates, the tree shrew dorsal striatum presents striking similarities in the distribution of most of the markers studied, while presenting some marked divergences when compared to the rodent striatum.

  12. Inactivation of the prelimbic or infralimbic cortex impairs decision-making in the rat gambling task.

    Science.gov (United States)

    Zeeb, Fiona D; Baarendse, P J J; Vanderschuren, L J M J; Winstanley, Catharine A

    2015-12-01

    Studies employing the Iowa Gambling Task (IGT) demonstrated that areas of the frontal cortex, including the ventromedial prefrontal cortex, orbitofrontal cortex (OFC), dorsolateral prefrontal cortex, and anterior cingulate cortex (ACC), are involved in the decision-making process. However, the precise role of these regions in maintaining optimal choice is not clear. We used the rat gambling task (rGT), a rodent analogue of the IGT, to determine whether inactivation of or altered dopamine signalling within discrete cortical sub-regions disrupts decision-making. Following training on the rGT, animals were implanted with guide cannulae aimed at the prelimbic (PrL) or infralimbic (IL) cortices, the OFC, or the ACC. Prior to testing, rats received an infusion of saline or a combination of baclofen and muscimol (0.125 μg of each/side) to inactivate the region and an infusion of a dopamine D2 receptor antagonist (0, 0.1, 0.3, and 1.0 μg/side). Rats tended to increase their choice of a disadvantageous option and decrease their choice of the optimal option following inactivation of either the IL or PrL cortex. In contrast, OFC or ACC inactivation did not affect decision-making. Infusion of a dopamine D2 receptor antagonist into any sub-region did not alter choice preference. Online activity of the IL or PrL cortex is important for maintaining an optimal decision-making strategy, but optimal performance on the rGT does not require frontal cortex dopamine D2 receptor activation. Additionally, these results demonstrate that the roles of different cortical regions in cost-benefit decision-making may be dissociated using the rGT.

  13. Chronic alcohol exposure disrupts top-down control over basal ganglia action selection to produce habits.

    Science.gov (United States)

    Renteria, Rafael; Baltz, Emily T; Gremel, Christina M

    2018-01-15

    Addiction involves a predominance of habitual control mediated through action selection processes in dorsal striatum. Research has largely focused on neural mechanisms mediating a proposed progression from ventral to dorsal lateral striatal control in addiction. However, over reliance on habit striatal processes may also arise from reduced cortical input to striatum, thereby disrupting executive control over action selection. Here, we identify novel mechanisms through which chronic intermittent ethanol exposure and withdrawal (CIE) disrupts top-down control over goal-directed action selection processes to produce habits. We find CIE results in decreased excitability of orbital frontal cortex (OFC) excitatory circuits supporting goal-directed control, and, strikingly, selectively reduces OFC output to the direct output pathway in dorsal medial striatum. Increasing the activity of OFC circuits restores goal-directed control in CIE-exposed mice. Our findings show habitual control in alcohol dependence can arise through disrupted communication between top-down, goal-directed processes onto basal ganglia pathways controlling action selection.

  14. Relationship of frontal D2/3 binding potentials to cognition

    DEFF Research Database (Denmark)

    Fagerlund, Birgitte; Pinborg, Lars H; Mortensen, Erik Lykke

    2013-01-01

    for set shifting. The main findings indicated a relation between D2/3 receptor binding in the frontal cortex and set shifting, planning and attention, but also support a differential involvement of cortical dopamine D2/3 receptor binding in at least some cognitive functions, perhaps particularly attention......Studies of in vivo dopamine receptors in schizophrenia have mostly focused on D2 receptors in striatal areas or on D1 receptors in cortex. No previous study has examined the correlation between cortical dopamine D2/3 receptor binding potentials and cognition in schizophrenia patients. The objective......, in schizophrenia patients compared to healthy people. The results suggest that cortical D2/3 receptor function may be more involved in some cognitive functions (i.e. attention, fluency and planning) in patients with schizophrenia than in healthy people, suggesting that information processing in schizophrenia may...

  15. Frontal and temporal cortical functional recovery after electroconvulsive therapy for depression: A longitudinal functional near-infrared spectroscopy study.

    Science.gov (United States)

    Hirano, Jinichi; Takamiya, Akihiro; Yamagata, Bun; Hotta, Syogo; Miyasaka, Yukiko; Pu, Shenghong; Iwanami, Akira; Uchida, Hiroyuki; Mimura, Masaru

    2017-08-01

    While the efficacy and tolerability of electroconvulsive therapy (ECT) for depression has been well established, the acute effects of ECT on brain function remain unclear. Particularly, although cognitive dysfunction has been consistently observed after ECT, little is known about the extent and time course of ECT-induced brain functional changes, as observed during cognitive tasks. Considering the acute antidepressant effects of ECT on depression, aberrant brain functional responses during cognitive tasks in patients with depression may improve immediately after this treatment. To clarify changes in cortical functional responses to cognitive tasks following ECT, we used task-related functional near-infrared spectroscopy (NIRS) to assess 30 patients with major depressive disorder or bipolar depression before and after an ECT series, as well as 108 healthy controls. Prior to ECT, patients exhibited significantly smaller [oxy-Hb] values in the bilateral frontal cortex during a letter verbal fluency task (VFT) compared with healthy controls. We found a significant increase in [oxy-Hb] values in the bilateral frontal cortex during the VFT after ECT in the patient group. A decrease in depression severity was significantly correlated with an increase in [oxy-Hb] values in the right ventrolateral prefrontal cortex following ECT. This is the first NIRS study to evaluate brain functional changes before vs. after ECT. Impaired functional responses, observed during the cognitive task in depressed patients, were normalized after ECT. Thus, recovery from abnormal functional responses to cognitive tasks in the frontal brain regions may be associated with the acute therapeutic effects of ECT for depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. GABAA receptors, but not dopamine, serotonin or NMDA receptors, are increased in the frontal cortex from schizophrenic subjects

    International Nuclear Information System (INIS)

    Daen, B.; Hussain, T.; Scarr, E.; Tomaskovic, E.; Kitsoulis, S.; Pavey, G.; Hill, C.; Keks, N.; Opeskin, K.; Copolov, D.L.

    1998-01-01

    Full text: Having shown changed 5HT 2A receptor density in the frontal cortex (FC) from schizophrenic subjects (1) we now report on further studies of the molecular neuroanatomy of the FC in schizophrenia. We used in situ radioligand binding and autoradiography to measure the density of [ 3 H]8OH-DPAT (1 nM) binding (5HT 1A receptors) and [ 3 H]GR113808 (2.4nM) binding (5HT 4 receptors) in Brodmann's areas (BA) 8, 9 and 10 from 10 schizophrenic and 10 controls subjects. In addition, [ 3 H]muscimol (100 nM) binding (GABA A receptors), [ 3 H]TCP (20nM) binding (NMDA receptors), [ 3 H]SCH 23390 (3nM) binding (DA D 1 like receptors) and [ 3 H]YM-09151-2 (4nM) binding (DA D 2 -like receptors) was measured in BA 9 from 17 schizophrenic and 17 control subjects. Subjects were matched for age and sex and the post-mortem interval for tissue collection did not differ. There was a significant increase (18%) in the density of GABA A receptors in BA 9 from subjects with schizophrenia (p<0.05) with no change in NMDA, dopamine or serotonin receptors. These data support the hypothesis that there are selective changes in neurotransmitter receptors in the FC of subjects with schizophrenia. It is not yet clear if such changes contribute to the pathology of the illness. Copyright (1998) Australian Neuroscience Society

  17. Frontal cortical control of posterior sensory and association cortices through the claustrum.

    Science.gov (United States)

    White, Michael G; Mathur, Brian N

    2018-04-06

    The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a channelrhodopsin-assisted long-circuit mapping strategy in mouse brain slices. We find that anterior cingulate cortex input to the claustrum is transiently amplified by claustrum neurons that, in turn, project to parietal association cortex or to primary and secondary visual cortices. Additionally, we observe that claustrum drive of cortical neurons in parietal association cortex is layer-specific, eliciting action potential generation briefly in layers II/III, IV, and VI but not V. These data are the first to provide a functional anatomical substrate through claustrum that may underlie top-down functions, such as executive attention or working memory, providing critical insight to this most interconnected and enigmatic nucleus.

  18. Functional brain networks involved in decision-making under certain and uncertain conditions

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Danielle C.; Moss, Mark B.; Killiany, Ronald J. [Boston University School of Medicine, Department of Anatomy and Neurobiology, Boston, MA (United States); Mian, Asim Z. [Boston University School of Medicine, Department of Radiology, Boston, MA (United States); Budson, Andrew E. [VA Boston Healthcare System, Boston, MA (United States)

    2018-01-15

    The aim of this study was to describe imaging markers of decision-making under uncertain conditions in normal individuals, in order to provide baseline activity to compare to impaired decision-making in pathological states. In this cross-sectional study, 19 healthy subjects ages 18-35 completed a novel decision-making card-matching task using a Phillips T3 Scanner and a 32-channel head coil. Functional data were collected in six functional runs. In one condition of the task, the participant was certain of the rule to apply to match the cards; in the other condition, the participant was uncertain. We performed cluster-based comparison of the two conditions using FSL fMRI Expert Analysis Tool and network-based analysis using MATLAB. The uncertain > certain comparison yielded three clusters - a midline cluster that extended through the midbrain, the thalamus, bilateral prefrontal cortex, the striatum, and bilateral parietal/occipital clusters. The certain > uncertain comparison yielded bilateral clusters in the insula, parietal and temporal lobe, as well as a medial frontal cluster. A larger, more connected functional network was found in the uncertain condition. The involvement of the insula, parietal cortex, temporal cortex, ventromedial prefrontal cortex, and orbitofrontal cortex of the certain condition reinforces the notion that certainty is inherently rewarding. For the uncertain condition, the involvement of the prefrontal cortex, parietal cortex, striatum, thalamus, amygdala, and hippocampal involvement was expected, as these are areas involved in resolving uncertainty and rule updating. The involvement of occipital cortical involvement and midbrain involvement may be attributed to increased visual attention and increased motor control. (orig.)

  19. Functional brain networks involved in decision-making under certain and uncertain conditions

    International Nuclear Information System (INIS)

    Farrar, Danielle C.; Moss, Mark B.; Killiany, Ronald J.; Mian, Asim Z.; Budson, Andrew E.

    2018-01-01

    The aim of this study was to describe imaging markers of decision-making under uncertain conditions in normal individuals, in order to provide baseline activity to compare to impaired decision-making in pathological states. In this cross-sectional study, 19 healthy subjects ages 18-35 completed a novel decision-making card-matching task using a Phillips T3 Scanner and a 32-channel head coil. Functional data were collected in six functional runs. In one condition of the task, the participant was certain of the rule to apply to match the cards; in the other condition, the participant was uncertain. We performed cluster-based comparison of the two conditions using FSL fMRI Expert Analysis Tool and network-based analysis using MATLAB. The uncertain > certain comparison yielded three clusters - a midline cluster that extended through the midbrain, the thalamus, bilateral prefrontal cortex, the striatum, and bilateral parietal/occipital clusters. The certain > uncertain comparison yielded bilateral clusters in the insula, parietal and temporal lobe, as well as a medial frontal cluster. A larger, more connected functional network was found in the uncertain condition. The involvement of the insula, parietal cortex, temporal cortex, ventromedial prefrontal cortex, and orbitofrontal cortex of the certain condition reinforces the notion that certainty is inherently rewarding. For the uncertain condition, the involvement of the prefrontal cortex, parietal cortex, striatum, thalamus, amygdala, and hippocampal involvement was expected, as these are areas involved in resolving uncertainty and rule updating. The involvement of occipital cortical involvement and midbrain involvement may be attributed to increased visual attention and increased motor control. (orig.)

  20. Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.

    Science.gov (United States)

    Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís

    2015-11-01

    Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with

  1. Let's inhibit our excitement: the relationships between Stroop, behavioral disinhibition, and the frontal lobes.

    Science.gov (United States)

    Heflin, Lara H; Laluz, Victor; Jang, Jung; Ketelle, Robin; Miller, Bruce L; Kramer, Joel H

    2011-09-01

    The Stroop (Stroop, 1935) is a frequently used neuropsychological test, with poor performance typically interpreted as indicative of disinhibition and frontal lobe damage. This study tested those interpretations by examining relationships between Stroop performance, behavioral disinhibition, and frontal lobe atrophy. Participants were 112 patients with mild cognitive impairment or dementia, recruited through UCSF's Memory and Aging Center. Participants received comprehensive dementia evaluations including structural MRI, neuropsychological testing, and informant interviews. Freesurfer, a semiautomated parcellation program, was used to analyze 1.5T MRI scans. Behavioral disinhibition was measured using the Neuropsychiatric Inventory (Cummings, 1997; Cummings et al., 1994) Disinhibition Scale. The sample (n = 112) mean age was 65.40 (SD = 8.60) years, education was 16.64 (SD = 2.54) years, and Mini-Mental State Examination (MMSE; Folstein et al., 1975) was 26.63 (SD = 3.32). Hierarchical linear regressions were used for data analysis. Controlling for age, MMSE, and color naming, Stroop performance was not significantly associated with disinhibition (β = 0.01, ΔR² = 0.01, p = .29). Hierarchical regressions controlling for age, MMSE, color naming, intracranial volume, and temporal and parietal lobes, examined whether left or right hemisphere regions predict Stroop performance. Bilaterally, parietal lobe atrophy best predicted poorer Stroop (left: β = 0.0004, ΔR² = 0.02, p = .002; right: β = 0.0004, ΔR² = 0.02, p = .002). Of frontal regions, only dorsolateral prefrontal cortex atrophy predicted poorer Stroop (β = 0.001, ΔR² = 0.01, p = .03); left and right anterior cingulate cortex atrophy predicted better Stroop (left: β = -0.003, ΔR² = 0.01, p = .02; right: β = -0.004, ΔR² = 0.01, p = .02). These findings suggest Stroop performance is a poor measure of behavioral disinhibition and frontal lobe atrophy even among a relatively high-risk population

  2. Location coding by opponent neural populations in the auditory cortex.

    Directory of Open Access Journals (Sweden)

    G Christopher Stecker

    2005-03-01

    Full Text Available Although the auditory cortex plays a necessary role in sound localization, physiological investigations in the cortex reveal inhomogeneous sampling of auditory space that is difficult to reconcile with localization behavior under the assumption of local spatial coding. Most neurons respond maximally to sounds located far to the left or right side, with few neurons tuned to the frontal midline. Paradoxically, psychophysical studies show optimal spatial acuity across the frontal midline. In this paper, we revisit the problem of inhomogeneous spatial sampling in three fields of cat auditory cortex. In each field, we confirm that neural responses tend to be greatest for lateral positions, but show the greatest modulation for near-midline source locations. Moreover, identification of source locations based on cortical responses shows sharp discrimination of left from right but relatively inaccurate discrimination of locations within each half of space. Motivated by these findings, we explore an opponent-process theory in which sound-source locations are represented by differences in the activity of two broadly tuned channels formed by contra- and ipsilaterally preferring neurons. Finally, we demonstrate a simple model, based on spike-count differences across cortical populations, that provides bias-free, level-invariant localization-and thus also a solution to the "binding problem" of associating spatial information with other nonspatial attributes of sounds.

  3. Ventromedial Prefrontal Cortex Activation Is Associated with Memory Formation for Predictable Rewards

    Science.gov (United States)

    Bialleck, Katharina A.; Schaal, Hans-Peter; Kranz, Thorsten A.; Fell, Juergen; Elger, Christian E.; Axmacher, Nikolai

    2011-01-01

    During reinforcement learning, dopamine release shifts from the moment of reward consumption to the time point when the reward can be predicted. Previous studies provide consistent evidence that reward-predicting cues enhance long-term memory (LTM) formation of these items via dopaminergic projections to the ventral striatum. However, it is less clear whether memory for items that do not precede a reward but are directly associated with reward consumption is also facilitated. Here, we investigated this question in an fMRI paradigm in which LTM for reward-predicting and neutral cues was compared to LTM for items presented during consumption of reliably predictable as compared to less predictable rewards. We observed activation of the ventral striatum and enhanced memory formation during reward anticipation. During processing of less predictable as compared to reliably predictable rewards, the ventral striatum was activated as well, but items associated with less predictable outcomes were remembered worse than items associated with reliably predictable outcomes. Processing of reliably predictable rewards activated the ventromedial prefrontal cortex (vmPFC), and vmPFC BOLD responses were associated with successful memory formation of these items. Taken together, these findings show that consumption of reliably predictable rewards facilitates LTM formation and is associated with activation of the vmPFC. PMID:21326612

  4. [Correlation of diffusion tensor imaging between the cerebral cortex and speech discrimination in presbycusis].

    Science.gov (United States)

    Peng, Lu; Yu, Shuilian; Chen, Ruichun; Jing, Yan; Liang, Jianping

    2015-09-01

    To investigate the relationship between pure-tone average (PTA), the fractional anisotropy (FA) of the auditory pathway, cognitive cortex and auditory cortex in presbycusis. Twenty-five elderly subjects with presbycusis were participated in the study. PTA, speech discrimination abilities were evaluated in each subject. Diffusion tensor imaging (DTI) was applied to access the FA of the IC, the superior frontal gyrus and the Heschl's gyrus. Compare the difference between two sides of the values of FA in the three areas. Bivariate correlation analysis was performed to evaluate the effects of PTA and FA of the inferior colliculus (IC), the superior frontal gyrus and the Heschl's gyrus on speech discrimination abilities. There were no significant differences between the left and right side of the inferior colliculus (P > 0.05). Higher FA values were recorded at the left side of the Heschl's gyrus and the superior frontal gyrus (P < 0.05). Both PTA and the FA of the superior frontal gyrus have a negative association with speech discrimination abilities (P < 0.01, P < 0.05), while the FA of the Heschl's gyrus has a positive association with speech discrimination abilities (P < 0.05). Our findings indicated that the speech discrimination abilities of the elderly is not only related to the peripheral auditory function, but also to the central auditory and cognitive function.

  5. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Jorge [LABS and Rede D' Or Hospitais, Rio de Janeiro RJ (Brazil). Grupo de Neuroimagem e Neurologia do Comportamento; Eslinger, Paul J. [Pensylvania State Univ. (United States). College of Medicine. Div. of Neurology and Behavioral Science; The Milton S. Hershey Medical Center, Hershey, PN (United States); Oliveira-Souza, Ricardo de [Universidade do Rio de Janeiro (UNI-Rio), RJ (Brazil). Hospital Universitario Gaffree e Guinle]. E-mail: neuropsychiatry@hotmail.com

    2001-09-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  6. Urethritis due to corynebacterium striatum: An emerging germ.

    Science.gov (United States)

    Frikh, Mohammed; El Yaagoubi, Imad; Lemnouer, Abdelhay; Elouennass, Mostafa

    2015-01-01

    Corynedbacterium striatum (CS) is a Gram-positive coryneform bacillus that is part of mucous and skin flora. It has been considered as a causative agent of many infections in intensive care, neurology, traumatology and urology, but was never implicated in non-gonococcal urethritis. We report the case of a nosocomial urethritis due to Corynebacterium striatum following resection of an intrameatus condyloma.

  7. Prefrontal cortex volume reductions and tic inhibition are unrelated in uncomplicated GTS adults.

    Science.gov (United States)

    Ganos, Christos; Kühn, Simone; Kahl, Ursula; Schunke, Odette; Brandt, Valerie; Bäumer, Tobias; Thomalla, Götz; Haggard, Patrick; Münchau, Alexander

    2014-01-01

    Tics in Gilles de la Tourette syndrome (GTS) are repetitive patterned movements, resembling spontaneous motor behaviour, but escaping voluntary control. Previous studies hypothesised relations between structural alterations in prefrontal cortex of GTS adults and tic severity using voxel-based morphometry (VBM), but could not demonstrate a significant association. The relation between prefrontal cortex structure and tic inhibition has not been investigated. Here, we used VBM to examine 14 GTS adults without associated comorbidities, and 15 healthy controls. We related structural alterations in GTS to clinical measures of tic severity and tic control. Grey matter volumes in the right inferior frontal gyrus and the left frontal pole were reduced in patients relative to healthy controls. These changes were not related to tic severity and tic inhibition. Prefrontal grey matter volume reductions in GTS adults are not related to state measures of tic phenomenology. © 2013.

  8. Frontal and superior temporal auditory processing abnormalities in schizophrenia.

    Science.gov (United States)

    Chen, Yu-Han; Edgar, J Christopher; Huang, Mingxiong; Hunter, Michael A; Epstein, Emerson; Howell, Breannan; Lu, Brett Y; Bustillo, Juan; Miller, Gregory A; Cañive, José M

    2013-01-01

    Although magnetoencephalography (MEG) studies show superior temporal gyrus (STG) auditory processing abnormalities in schizophrenia at 50 and 100 ms, EEG and corticography studies suggest involvement of additional brain areas (e.g., frontal areas) during this interval. Study goals were to identify 30 to 130 ms auditory encoding processes in schizophrenia (SZ) and healthy controls (HC) and group differences throughout the cortex. The standard paired-click task was administered to 19 SZ and 21 HC subjects during MEG recording. Vector-based Spatial-temporal Analysis using L1-minimum-norm (VESTAL) provided 4D maps of activity from 30 to 130 ms. Within-group t-tests compared post-stimulus 50 ms and 100 ms activity to baseline. Between-group t-tests examined 50 and 100 ms group differences. Bilateral 50 and 100 ms STG activity was observed in both groups. HC had stronger bilateral 50 and 100 ms STG activity than SZ. In addition to the STG group difference, non-STG activity was also observed in both groups. For example, whereas HC had stronger left and right inferior frontal gyrus activity than SZ, SZ had stronger right superior frontal gyrus and left supramarginal gyrus activity than HC. Less STG activity was observed in SZ than HC, indicating encoding problems in SZ. Yet auditory encoding abnormalities are not specific to STG, as group differences were observed in frontal and SMG areas. Thus, present findings indicate that individuals with SZ show abnormalities in multiple nodes of a concurrently activated auditory network.

  9. Inferior frontal gyrus activation predicts individual differences in perceptual learning of cochlear-implant simulations.

    Science.gov (United States)

    Eisner, Frank; McGettigan, Carolyn; Faulkner, Andrew; Rosen, Stuart; Scott, Sophie K

    2010-05-26

    This study investigated the neural plasticity associated with perceptual learning of a cochlear implant (CI) simulation. Normal-hearing listeners were trained with vocoded and spectrally shifted speech simulating a CI while cortical responses were measured with functional magnetic resonance imaging (fMRI). A condition in which the vocoded speech was spectrally inverted provided a control for learnability and adaptation. Behavioral measures showed considerable individual variability both in the ability to learn to understand the degraded speech, and in phonological working memory capacity. Neurally, left-lateralized regions in superior temporal sulcus and inferior frontal gyrus (IFG) were sensitive to the learnability of the simulations, but only the activity in prefrontal cortex correlated with interindividual variation in intelligibility scores and phonological working memory. A region in left angular gyrus (AG) showed an activation pattern that reflected learning over the course of the experiment, and covariation of activity in AG and IFG was modulated by the learnability of the stimuli. These results suggest that variation in listeners' ability to adjust to vocoded and spectrally shifted speech is partly reflected in differences in the recruitment of higher-level language processes in prefrontal cortex, and that this variability may further depend on functional links between the left inferior frontal gyrus and angular gyrus. Differences in the engagement of left inferior prefrontal cortex, and its covariation with posterior parietal areas, may thus underlie some of the variation in speech perception skills that have been observed in clinical populations of CI users.

  10. CB1 cannabinoid receptor expression in the striatum: Association with corticostriatal circuits and developmental regulation

    Directory of Open Access Journals (Sweden)

    Vincent eVan Waes

    2012-03-01

    Full Text Available Corticostriatal circuits mediate various aspects of goal-directed behavior and are critically important for basal ganglia-related disorders. Activity in these circuits is regulated by the endocannabinoid system via stimulation of CB1 cannabinoid receptors. CB1 receptors are highly expressed in projection neurons and select interneurons of the striatum, but expression levels vary considerably between different striatal regions (functional domains. We investigated CB1 receptor expression within specific corticostriatal circuits by mapping CB1 mRNA levels in striatal sectors defined by their cortical inputs in rats. We also assessed changes in CB1 expression in the striatum during development. Our results show that CB1 expression is highest in juveniles (P25 and then progressively decreases towards adolescent (P40 and adult (P70 levels. At every age, CB1 receptors are predominantly expressed in sensorimotor striatal sectors, with considerably lower expression in associative and limbic sectors. Moreover, for most corticostriatal circuits there is an inverse relationship between cortical and striatal expression levels. Thus, striatal sectors with high CB1 expression (sensorimotor sectors tend to receive inputs from cortical areas with low expression, while striatal sectors with low expression (associative/limbic sectors receive inputs from cortical regions with higher expression (medial prefrontal cortex. In so far as CB1 mRNA levels reflect receptor function, our findings suggest differential CB1 signaling between different developmental stages and between sensorimotor and associative/limbic circuits. The regional distribution of CB1 receptor expression in the striatum further suggests that, in sensorimotor sectors, CB1 receptors mostly regulate GABA inputs from local axon collaterals of projection neurons, whereas in associative/limbic sectors, CB1 regulation of GABA inputs from interneurons and glutamate inputs may be more important.

  11. Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias.

    Science.gov (United States)

    Ott, Derek V M; Ullsperger, Markus; Jocham, Gerhard; Neumann, Jane; Klein, Tilmann A

    2011-07-15

    The prefrontal cortex is known to play a key role in higher-order cognitive functions. Recently, we showed that this brain region is active in reinforcement learning, during which subjects constantly have to integrate trial outcomes in order to optimize performance. To further elucidate the role of the dorsolateral prefrontal cortex (DLPFC) in reinforcement learning, we applied continuous theta-burst stimulation (cTBS) either to the left or right DLPFC, or to the vertex as a control region, respectively, prior to the performance of a probabilistic learning task in an fMRI environment. While there was no influence of cTBS on learning performance per se, we observed a stimulation-dependent modulation of reward vs. punishment sensitivity: Left-hemispherical DLPFC stimulation led to a more reward-guided performance, while right-hemispherical cTBS induced a more avoidance-guided behavior. FMRI results showed enhanced prediction error coding in the ventral striatum in subjects stimulated over the left as compared to the right DLPFC. Both behavioral and imaging results are in line with recent findings that left, but not right-hemispherical stimulation can trigger a release of dopamine in the ventral striatum, which has been suggested to increase the relative impact of rewards rather than punishment on behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Differential Recruitment of Parietal Cortex during Spatial and Non-spatial Reach Planning

    Directory of Open Access Journals (Sweden)

    Pierre-Michel Bernier

    2017-05-01

    Full Text Available The planning of goal-directed arm reaching movements is associated with activity in the dorsal parieto-frontal cortex, within which multiple regions subserve the integration of arm- and target-related sensory signals to encode a motor goal. Surprisingly, many of these regions show sustained activity during reach preparation even when target location is not specified, i.e., when a motor goal cannot be unambiguously formed. The functional role of these non-spatial preparatory signals remains unresolved. Here this process was investigated in humans by comparing reach preparatory activity in the presence or absence of information regarding upcoming target location. In order to isolate the processes specific to reaching and to control for visuospatial attentional factors, the reaching task was contrasted to a finger movement task. Functional MRI and electroencephalography (EEG were used to characterize the spatio-temporal pattern of reach-related activity in the parieto-frontal cortex. Reach planning with advance knowledge of target location induced robust blood oxygenated level dependent and EEG responses across parietal and premotor regions contralateral to the reaching arm. In contrast, reach preparation without knowledge of target location was associated with a significant BOLD response bilaterally in the parietal cortex. Furthermore, EEG alpha- and beta-band activity was restricted to parietal scalp sites, the magnitude of the latter being correlated with reach reaction times. These results suggest an intermediate stage of sensorimotor transformations in bilateral parietal cortex when target location is not specified.

  13. Interfering with the neural activity of mirror-related frontal areas impairs mentalistic inferences.

    Science.gov (United States)

    Herbet, Guillaume; Lafargue, Gilles; Moritz-Gasser, Sylvie; Bonnetblanc, François; Duffau, Hugues

    2015-07-01

    According to recently proposed interactive dual-process theories, mentalizing abilities emerge from the coherent interaction between two physically distinct neural systems: (1) the mirror network, coding for the low-level embodied representations involved in pre-reflective sociocognitive processes and (2) the mentalizing network per se, which codes for higher level representations subtending the reflective attribution of psychological states. However, although the latest studies have shown that the core areas forming these two neurocognitive systems do indeed maintain effective connectivity during mentalizing, it is unclear whether an intact mirror system (and, more specifically, its anterior node, namely the posterior inferior frontal cortex) is a prerequisite for accurate mentalistic inferences. Intraoperative brain mapping via direct electrical stimulation offers a unique opportunity to address this issue. Electrical stimulation of the brain creates a "virtual" lesion, which provides functional information on well-defined parts of the cerebral cortex. In the present study, five patients were mapped in real time while they performed a mentalizing task. We found six responsive sites: four in the lateral part of the right pars opercularis and two in the dorsal part of the right pars triangularis. On the subcortical level, two additional sites were located within the white matter connectivity of the pars opercularis. Taken as a whole, our results suggest that the right inferior frontal cortex and its underlying axonal connectivity have a key role in mentalizing. Specifically, our findings support the hypothesis whereby transient, functional disruption of the mirror network influences higher order mentalistic inferences.

  14. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography

    International Nuclear Information System (INIS)

    Schliebs, R.; Walch, C.

    1989-01-01

    The laminar distribution of muscarinic acetylcholine receptors, including the M1-receptor subtype, of beta-adrenergic receptors, and noradrenaline uptake sites, was studied in the adult rat visual, frontal, somatosensory and motor cortex, using quantitative receptor autoradiography. In the visual cortex, the highest density of muscarinic acetylcholine receptors was found in layer I. From layer II/III to layer V binding decreases continueously reaching a constant binding level in layers V and VI. This laminar pattern of muscarinic receptor density differs somewhat from that observed in the non-visual cortical regions examined: layer II/III contained the highest receptor density followed by layer I and IV: lowest density was found in layer V and VI. The binding profile of the muscarinic cholinergic M1-subtype through the visual cortex shows a peak in cortical layer II and in the upper part of layer VI, whereas in the non-visual cortical regions cited the binding level was high in layer II/III, moderate in layer I and IV, and low in layer VI. Layers I to IV of the visual cortex contained the highest beta-adrenergic receptor densities, whereas only low binding levels were observed in the deeper layers. A similar laminar distribution was found also in the frontal, somatosensory and motor cortex. The density of noradrenaline uptake sites was high in all layers of the cortical regions studied, but with noradrenaline uptake sites somewhat more concentrated in the superficial layers than in deeper ones. The distinct laminar pattern of cholinergic and noradrenergic receptor sites indicates a different role for acetylcholine and noradrenaline in the functional anatomy of the cerebral cortex, and in particular, the visual cortex. (author)

  15. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Schliebs, R; Walch, C [Leipzig Univ. (German Democratic Republic). Bereich Medizin; Stewart, M G [Open Univ., Milton Keynes (UK)

    1989-01-01

    The laminar distribution of muscarinic acetylcholine receptors, including the M1-receptor subtype, of beta-adrenergic receptors, and noradrenaline uptake sites, was studied in the adult rat visual, frontal, somatosensory and motor cortex, using quantitative receptor autoradiography. In the visual cortex, the highest density of muscarinic acetylcholine receptors was found in layer I. From layer II/III to layer V binding decreases continueously reaching a constant binding level in layers V and VI. This laminar pattern of muscarinic receptor density differs somewhat from that observed in the non-visual cortical regions examined: layer II/III contained the highest receptor density followed by layer I and IV: lowest density was found in layer V and VI. The binding profile of the muscarinic cholinergic M1-subtype through the visual cortex shows a peak in cortical layer II and in the upper part of layer VI, whereas in the non-visual cortical regions cited the binding level was high in layer II/III, moderate in layer I and IV, and low in layer VI. Layers I to IV of the visual cortex contained the highest beta-adrenergic receptor densities, whereas only low binding levels were observed in the deeper layers. A similar laminar distribution was found also in the frontal, somatosensory and motor cortex. The density of noradrenaline uptake sites was high in all layers of the cortical regions studied, but with noradrenaline uptake sites somewhat more concentrated in the superficial layers than in deeper ones. The distinct laminar pattern of cholinergic and noradrenergic receptor sites indicates a different role for acetylcholine and noradrenaline in the functional anatomy of the cerebral cortex, and in particular, the visual cortex. (author).

  16. Brain activation during fast driving in a driving simulator: the role of the lateral prefrontal cortex.

    Science.gov (United States)

    Jäncke, Lutz; Brunner, Béatrice; Esslen, Michaela

    2008-07-16

    Little is currently known about the neural underpinnings of the cognitive control of driving behavior in realistic situations and of the driver's speeding behavior in particular. In this study, participants drove in realistic scenarios presented in a high-end driving simulator. Scalp-recorded EEG oscillations in the alpha-band (8-13 Hz) with a 30-electrode montage were recorded while the participants drove under different conditions: (i) excessively fast (Fast), (ii) in a controlled manner at a safe speed (Correct), and (iii) impatiently in the context of testing traffic conditions (Impatient). Intracerebral sources of alpha-band activation were estimated using low resolution electrical tomography. Given that previous studies have shown a strong negative correlation between the Bold response in the frontal cortex and the alpha-band power, we used alpha-band-related activity as an estimation of frontal activation. Statistical analysis revealed more alpha-band-related activity (i.e. less neuronal activation) in the right lateral prefrontal cortex, including the dorsolateral prefrontal cortex, during fast driving. Those participants who speeded most and exhibited greater risk-taking behavior demonstrated stronger alpha-related activity (i.e. less neuronal activation) in the left anterior lateral prefrontal cortex. These findings are discussed in the context of current theories about the role of the lateral prefrontal cortex in controlling risk-taking behavior, task switching, and multitasking.

  17. Frontal lobe functioning during a simple response conflict task in first-episode psychosis and its relationship to treatment response.

    Science.gov (United States)

    Shafritz, Keith M; Ikuta, Toshikazu; Greene, Allison; Robinson, Delbert G; Gallego, Juan; Lencz, Todd; DeRosse, Pamela; Kingsley, Peter B; Szeszko, Philip R

    2018-05-09

    Prior functional magnetic resonance imaging (fMRI) studies have investigated the neural mechanisms underlying cognitive control in patients with psychosis with findings of both hypo- and hyperfrontality. One factor that may contribute to inconsistent findings is the use of complex and polyfactorial tasks to investigate frontal lobe functioning. In the current study we employed a simple response conflict task during fMRI to examine differences in brain activation between patients experiencing their first-episode of psychosis (n = 33) and age- and sex-matched healthy volunteers (n = 33). We further investigated whether baseline brain activation among patients predicted changes in symptom severity and treatment response following 12 weeks of controlled antipsychotic treatment. During the task subjects were instructed to press a response button on the same side or opposite side of a circle that appeared on either side of a central fixation point. Imaging data revealed that for the contrast of opposite-side vs. same-side, patients showed significantly greater activation compared with healthy volunteers in the anterior cingulate cortex and intraparietal sulcus. Among patients, greater baseline anterior cingulate cortex, temporal-parietal junction, and superior temporal cortex activation predicted greater symptom reduction and therapeutic response following treatment. All findings remained significant after covarying for task performance. Intact performance on this relatively parsimonious task was associated with frontal hyperactivity suggesting the need for patients to utilize greater neural resources to achieve task performance comparable to healthy individuals. Moreover, frontal hyperactivity observed using a simple fMRI task may provide a biomarker for predicting treatment response in first-episode psychosis.

  18. Frontal D2/3 Receptor Availability in Schizophrenia Patients Before and After Their First Antipsychotic Treatment

    DEFF Research Database (Denmark)

    Nørbak-Emig, Henrik; Ebdrup, Bjørn H; Fagerlund, Birgitte

    2016-01-01

    the relation between frontal D2/3 receptor availability and treatment effect on positive symptoms. METHODS: Twenty-five antipsychotic-naïve first-episode schizophrenia patients were examined with the Positive and Negative Syndrome Scale, tested with the cognitive test battery Cambridge Neuropsychological Test......BACKGROUND: We have previously reported associations between frontal D2/3 receptor binding potential positive symptoms and cognitive deficits in antipsychotic-naïve schizophrenia patients. Here, we examined the effect of dopamine D2/3 receptor blockade on cognition. Additionally, we explored.......56, P=.003; D2/3 receptor binding potential right frontal cortex rho = 0.48, P=.016). CONCLUSIONS: Our data support the hypothesis of a negative influence of D2/3 receptor blockade on specific cognitive functions in schizophrenia. This is highly clinically relevant given the well-established association...

  19. Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum

    Directory of Open Access Journals (Sweden)

    Yuji Takahashi

    2007-12-01

    Full Text Available Both dorsal and ventral striatum are implicated in the "habitization" of behavior that occurs in addiction. Here we examined the effect of cocaine exposure on associative encoding in these two regions. Neural activity was recorded during go/no-go discrimination learning and reversal. Activity in ventral striatum developed and reversed rapidly, tracking the valence of the predicted outcome, whereas activity in dorsolateral striatum developed and reversed more slowly, tracking discriminative responding. This difference is consistent with the putative roles of these two areas in promoting habit-like behavior. Dorsolateral striatum has been directly implicated in habit or stimulus response learning, whereas ventral striatum appears to be involved indirectly by allowing cues associated with reward to exert a general motivational influence on responding. Interestingly cocaine exposure did not uniformly enhance processing across both regions. Instead cocaine reduced the degree and flexibility of cue-evoked firing in ventral striatum while marginally enhanced cue-selective firing in dorsolateral striatum. Thus cocaine exposure causes regionally specific effects on neural processing in striatum; these effects may promote the habitization of behavior by shifting control from ventral to dorsolateral regions.

  20. Real-time parallel processing of grammatical structure in the fronto-striatal system: a recurrent network simulation study using reservoir computing.

    Science.gov (United States)

    Hinaut, Xavier; Dominey, Peter Ford

    2013-01-01

    Sentence processing takes place in real-time. Previous words in the sentence can influence the processing of the current word in the timescale of hundreds of milliseconds. Recent neurophysiological studies in humans suggest that the fronto-striatal system (frontal cortex, and striatum--the major input locus of the basal ganglia) plays a crucial role in this process. The current research provides a possible explanation of how certain aspects of this real-time processing can occur, based on the dynamics of recurrent cortical networks, and plasticity in the cortico-striatal system. We simulate prefrontal area BA47 as a recurrent network that receives on-line input about word categories during sentence processing, with plastic connections between cortex and striatum. We exploit the homology between the cortico-striatal system and reservoir computing, where recurrent frontal cortical networks are the reservoir, and plastic cortico-striatal synapses are the readout. The system is trained on sentence-meaning pairs, where meaning is coded as activation in the striatum corresponding to the roles that different nouns and verbs play in the sentences. The model learns an extended set of grammatical constructions, and demonstrates the ability to generalize to novel constructions. It demonstrates how early in the sentence, a parallel set of predictions are made concerning the meaning, which are then confirmed or updated as the processing of the input sentence proceeds. It demonstrates how on-line responses to words are influenced by previous words in the sentence, and by previous sentences in the discourse, providing new insight into the neurophysiology of the P600 ERP scalp response to grammatical complexity. This demonstrates that a recurrent neural network can decode grammatical structure from sentences in real-time in order to generate a predictive representation of the meaning of the sentences. This can provide insight into the underlying mechanisms of human cortico

  1. Modeling ADHD-type arousal with unilateral frontal cortex damage in rats and beneficial effects of play therapy.

    Science.gov (United States)

    Panksepp, Jaak; Burgdorf, Jeff; Turner, Cortney; Gordon, Nakia

    2003-06-01

    It has been recently shown that human adolescents with Attention Deficit/Hyperactivity Disorder (ADHD) have frontal lobe deficits, especially on the right sides of their brains (). ADHD is commonly treated with psychostimulants which may have adverse consequences. Hence, less invasive therapies need to be developed. In the present work, we tested the ability of right frontal lesions to induce hyperactivity in rats. We also evaluated the effects of chronic play therapy during early adolescence to reduce both hyperactivity and the elevated playfulness later in development. Play therapy was able to reduce both hyperactivity and excessive playfulness. In additional work, we found that access to rough-and-tumble play in normal animals could enhance subsequent behavioral indices of behavioral inhibition (i.e., freezing in response to a startle stimulus) that appeared to be independent of increased fearfulness and fatigue. Overall, these results suggest that (1) neonatal frontal lobe lesions can be used as an animal model of the overactivity in ADHD and (2) rough-and-tumble play therapy may be a new useful treatment for ADHD.

  2. {alpha}4 {beta}2 nicotinic acetylcholine receptor in Alzheimer's disease and mild cognitive impairment: a study with 5-[I-123]iodo-A-85380 SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun Kyung; Kim, Yu Kyeong; Kim, Sang Yun; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    It has been reported that the number of neuronal nicotinic acetylcholine receptors (nAChRs) is decreased in Alzheimer's disease (AD) and the degree of cholinergic deficit is correlated with cognitive impairment. We examined neuronal nAChR distribution of AD patients using 5-[I-123]iodo-A85380 (5-IA) SPECT and correlated it with the pattern of cerebral glucose metabolic impairment and the severity of cognitive impairment. Five clinically diagnosed AD patients, 5 amnestic mild cognitive impairment (MCI) patients, and 10 age- and sex-matched healthy controls were studied with 5-IA SPECT and brain FDG PET. 5-IA SPECT was performed for 30 min at 120 min after radiotracer injection. FDG PET was done within one month interval. Neuropsychological tests were done for cognitive evaluation. A nAChR parameter DV was calculated in brain regions using cerebellum as reference tissue. All scan images were analyzed using SPM2 and ANOVA was done for group comparison. P value less than 0.005 was considered significant. 5-IA SPECT images of AD patients revealed significantly reduced nAChR distribution in the anterior cingulate cortex, striatum, and the left temporal cortex. MCI patients demonstrated decreased receptor distribution mainly in the subcortical areas. Cortical nAChR distribution showed correlation with cortical glucose metabolism and subcortical with that of posterior cingulate cortex (PCC). Episodic memory and semantic verbal fluency showed significant correlation with nAChR distribution of periventricular white matter (PVWM), visuospatial function evaluated with RCFT with that of PCC, left temporoparietal cortex, and frontal lobe white matter, and MMSE with that of PVWM, frontal cortex, and striatum. These data demonstrate reduction of nAChR distribution in patients with AD, which has significant correlation with cerebral glucose metabolism and cognitive impairment. It might be useful for diagnosis of AD, and for monitoring individualized treatments targeted at nAChRs.

  3. α4 β2 nicotinic acetylcholine receptor in Alzheimer's disease and mild cognitive impairment: a study with 5-[I-123]iodo-A-85380 SPECT

    International Nuclear Information System (INIS)

    Park, Eun Kyung; Kim, Yu Kyeong; Kim, Sang Yun; Kim, Sang Eun

    2007-01-01

    It has been reported that the number of neuronal nicotinic acetylcholine receptors (nAChRs) is decreased in Alzheimer's disease (AD) and the degree of cholinergic deficit is correlated with cognitive impairment. We examined neuronal nAChR distribution of AD patients using 5-[I-123]iodo-A85380 (5-IA) SPECT and correlated it with the pattern of cerebral glucose metabolic impairment and the severity of cognitive impairment. Five clinically diagnosed AD patients, 5 amnestic mild cognitive impairment (MCI) patients, and 10 age- and sex-matched healthy controls were studied with 5-IA SPECT and brain FDG PET. 5-IA SPECT was performed for 30 min at 120 min after radiotracer injection. FDG PET was done within one month interval. Neuropsychological tests were done for cognitive evaluation. A nAChR parameter DV was calculated in brain regions using cerebellum as reference tissue. All scan images were analyzed using SPM2 and ANOVA was done for group comparison. P value less than 0.005 was considered significant. 5-IA SPECT images of AD patients revealed significantly reduced nAChR distribution in the anterior cingulate cortex, striatum, and the left temporal cortex. MCI patients demonstrated decreased receptor distribution mainly in the subcortical areas. Cortical nAChR distribution showed correlation with cortical glucose metabolism and subcortical with that of posterior cingulate cortex (PCC). Episodic memory and semantic verbal fluency showed significant correlation with nAChR distribution of periventricular white matter (PVWM), visuospatial function evaluated with RCFT with that of PCC, left temporoparietal cortex, and frontal lobe white matter, and MMSE with that of PVWM, frontal cortex, and striatum. These data demonstrate reduction of nAChR distribution in patients with AD, which has significant correlation with cerebral glucose metabolism and cognitive impairment. It might be useful for diagnosis of AD, and for monitoring individualized treatments targeted at nAChRs

  4. Frontal cortical asymmetry may partially mediate the influence of social power on anger expression

    Directory of Open Access Journals (Sweden)

    Dongdong eLi

    2016-02-01

    Full Text Available When irritated by other people, powerful people usually tend to express their anger explicitly and directly, whereas people in less powerful positions are more likely not to show their feelings freely. The neural mechanism behind power and its influence on expression tendency has been scarcely explored. This study recorded frontal EEG activity at rest and frontal EEG activation while participants were engaged in a writing task describing an anger-eliciting event, in which they were irritated by people with higher or lower social power. Participants’ anger levels and expression inclination levels were self-reported on nine-point visual analog Likert scales, and also rated by independent raters based on the essays they had written. The results showed that high social power was indeed associated with greater anger expression tendency and greater left frontal activation than low social power. This is in line with the approach-inhibition theory of power. The mid-frontal asymmetric activation served as a partial mediator between social power and expression inclination. This effect may relate to the functions of the prefrontal cortex, which is in charge of information integration and evaluation and the control of motivation direction, as reported by previous studies.

  5. Dissociable Changes of Frontal and Parietal Cortices in Inherent Functional Flexibility across the Human Life Span.

    Science.gov (United States)

    Yin, Dazhi; Liu, Wenjing; Zeljic, Kristina; Wang, Zhiwei; Lv, Qian; Fan, Mingxia; Cheng, Wenhong; Wang, Zheng

    2016-09-28

    Extensive evidence suggests that frontoparietal regions can dynamically update their pattern of functional connectivity, supporting cognitive control and adaptive implementation of task demands. However, it is largely unknown whether this flexibly functional reconfiguration is intrinsic and occurs even in the absence of overt tasks. Based on recent advances in dynamics of resting-state functional resonance imaging (fMRI), we propose a probabilistic framework in which dynamic reconfiguration of intrinsic functional connectivity between each brain region and others can be represented as a probability distribution. A complexity measurement (i.e., entropy) was used to quantify functional flexibility, which characterizes heterogeneous connectivity between a particular region and others over time. Following this framework, we identified both functionally flexible and specialized regions over the human life span (112 healthy subjects from 13 to 76 years old). Across brainwide regions, we found regions showing high flexibility mainly in the higher-order association cortex, such as the lateral prefrontal cortex (LPFC), lateral parietal cortex, and lateral temporal lobules. In contrast, visual, auditory, and sensory areas exhibited low flexibility. Furthermore, we observed that flexibility of the right LPFC improved during maturation and reduced due to normal aging, with the opposite occurring for the left lateral parietal cortex. Our findings reveal dissociable changes of frontal and parietal cortices over the life span in terms of inherent functional flexibility. This study not only provides a new framework to quantify the spatiotemporal behavior of spontaneous brain activity, but also sheds light on the organizational principle behind changes in brain function across the human life span. Recent neuroscientific research has demonstrated that the human capability of adaptive task control is primarily the result of the flexible operation of frontal brain networks. However

  6. Pediatric frontal mucocele secondary to a bifid frontal sinus septum.

    Science.gov (United States)

    Plikaitis, Christina M; Purzycki, Adam R; Couture, Daniel; David, Lisa R

    2010-09-01

    A mucocele is a mucus-containing sac lined with epithelium that arises within a sinus when its drainage is compromised. The frontal sinus is the most common location, with frontal mucocele development occurring when the nasofrontal duct becomes obstructed because of polyps, bone tumors, prior surgery, sinusitis, trauma, or anatomic variation. We report an unusual case of a sterile pediatric frontal mucocele presenting as a slowly enlarging forehead mass due to a bifid frontal sinus septum. A 9-year-old girl presented to the craniofacial clinic for evaluation of a right frontal mass that had been slowly growing over the past year. She was otherwise healthy and had no history of previous trauma or sinus infections. Computed tomography (CT) scan results revealed a localized frontal fluid collection with protrusion and thinning of the anterior frontal bone between 2 midline bony septii. Surgical cranialization of the frontal sinus was performed. The anatomy of her lesion seen both on CT scan and intraoperatively likely explains this unusual case presentation. Instead of the usual inciting event of an intact frontal sinus drainage system becoming blocked, this patient seemed to have a primary developmental lack of any drainage system that led to her mucocele. During formation of her frontal sinus, she developed a bifid septum within the midline that excluded a portion of her frontal sinus from the lateral nasofrontal ducts. With mucus-producing epithelium trapped within these bony confines, pressure began to mount with expansion and thinning of the bone both anteriorly and posteriorly. The lack of any infectious symptoms and sterile culture results may support that this space developed primarily and was never in continuity with the external drainage system. Only 4 other patients have been reported with asymptomatic forehead swelling as the only presenting symptom, with the age ranging from 33 to 79 years. This patient represents the first clinical report of a congenital

  7. Altered structural covariance of the striatum in functional dyspepsia patients.

    Science.gov (United States)

    Liu, P; Zeng, F; Yang, F; Wang, J; Liu, X; Wang, Q; Zhou, G; Zhang, D; Zhu, M; Zhao, R; Wang, A; Gong, Q; Liang, F

    2014-08-01

    Functional dyspepsia (FD) is thought to be involved in dysregulation within the brain-gut axis. Recently, altered striatum activation has been reported in patients with FD. However, the gray matter (GM) volumes in the striatum and structural covariance patterns of this area are rarely explored. The purpose of this study was to examine the GM volumes and structural covariance patterns of the striatum between FD patients and healthy controls (HCs). T1-weighted magnetic resonance images were obtained from 44 FD patients and 39 HCs. Voxel-based morphometry (VBM) analysis was adopted to examine the GM volumes in the two groups. The caudate- or putamen-related regions identified from VBM analysis were then used as seeds to map the whole brain voxel-wise structural covariance patterns. Finally, a correlation analysis was used to investigate the effects of FD symptoms on the striatum. The results showed increased GM volumes in the bilateral putamen and right caudate. Compared with the structural covariance patterns of the HCs, the FD-related differences were mainly located in the amygdala, hippocampus/parahippocampus (HIPP/paraHIPP), thalamus, lingual gyrus, and cerebellum. And significant positive correlations were found between the volumes in the striatum and the FD duration in the patients. These findings provided preliminary evidence for GM changes in the striatum and different structural covariance patterns in patients with FD. The current results might expand our understanding of the pathophysiology of FD. © 2014 John Wiley & Sons Ltd.

  8. Dopamine release in ventral striatum of pathological gamblers losing money

    DEFF Research Database (Denmark)

    Linnet, J; Peterson, E; Doudet, D J

    2010-01-01

    Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective: To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue...... gambling despite losses, known as 'chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method: We used Positron Emission Tomography (PET) with [(11)C]raclopride to measure...... dopamine release in the ventral striatum of 16 PG and 15 HC playing the Iowa Gambling Task (IGT). Results: PG who lost money had significantly increased dopamine release in the left ventral striatum compared with HC. PG and HC who won money did not differ in dopamine release. Conclusion: Our findings...

  9. Motor cortex stimulation and neuropathic pain: how does motor cortex stimulation affect pain-signaling pathways?

    Science.gov (United States)

    Kim, Jinhyung; Ryu, Sang Baek; Lee, Sung Eun; Shin, Jaewoo; Jung, Hyun Ho; Kim, Sung June; Kim, Kyung Hwan; Chang, Jin Woo

    2016-03-01

    Neuropathic pain is often severe. Motor cortex stimulation (MCS) is used for alleviating neuropathic pain, but the mechanism of action is still unclear. This study aimed to understand the mechanism of action of MCS by investigating pain-signaling pathways, with the expectation that MCS would regulate both descending and ascending pathways. Neuropathic pain was induced in Sprague-Dawley rats. Surface electrodes for MCS were implanted in the rats. Tactile allodynia was measured by behavioral testing to determine the effect of MCS. For the pathway study, immunohistochemistry was performed to investigate changes in c-fos and serotonin expression; micro-positron emission tomography (mPET) scanning was performed to investigate changes of glucose uptake; and extracellular electrophysiological recordings were performed to demonstrate brain activity. MCS was found to modulate c-fos and serotonin expression. In the mPET study, altered brain activity was observed in the striatum, thalamic area, and cerebellum. In the electrophysiological study, neuronal activity was increased by mechanical stimulation and suppressed by MCS. After elimination of artifacts, neuronal activity was demonstrated in the ventral posterolateral nucleus (VPL) during electrical stimulation. This neuronal activity was effectively suppressed by MCS. This study demonstrated that MCS effectively attenuated neuropathic pain. MCS modulated ascending and descending pain pathways. It regulated neuropathic pain by affecting the striatum, periaqueductal gray, cerebellum, and thalamic area, which are thought to regulate the descending pathway. MCS also appeared to suppress activation of the VPL, which is part of the ascending pathway.

  10. Frontal D2/3 Receptor Availability in Schizophrenia Patients Before and After Their First Antipsychotic Treatment: Relation to Cognitive Functions and Psychopathology.

    Science.gov (United States)

    Nørbak-Emig, Henrik; Ebdrup, Bjørn H; Fagerlund, Birgitte; Svarer, Claus; Rasmussen, Hans; Friberg, Lars; Allerup, Peter N; Rostrup, Egill; Pinborg, Lars H; Glenthøj, Birte Y

    2016-05-01

    We have previously reported associations between frontal D2/3 receptor binding potential positive symptoms and cognitive deficits in antipsychotic-naïve schizophrenia patients. Here, we examined the effect of dopamine D2/3 receptor blockade on cognition. Additionally, we explored the relation between frontal D2/3 receptor availability and treatment effect on positive symptoms. Twenty-five antipsychotic-naïve first-episode schizophrenia patients were examined with the Positive and Negative Syndrome Scale, tested with the cognitive test battery Cambridge Neuropsychological Test Automated Battery, scanned with single-photon emission computerized tomography using the dopamine D2/3 receptor ligand [(123)I]epidepride, and scanned with MRI. After 3 months of treatment with either risperidone (n=13) or zuclopenthixol (n=9), 22 patients were reexamined. Blockade of extrastriatal dopamine D2/3 receptors was correlated with decreased attentional focus (r = -0.615, P=.003) and planning time (r = -0.436, P=.048). Moreover, baseline frontal dopamine D2/3 binding potential and positive symptom reduction correlated positively (D2/3 receptor binding potential left frontal cortex rho = 0.56, P=.003; D2/3 receptor binding potential right frontal cortex rho = 0.48, P=.016). Our data support the hypothesis of a negative influence of D2/3 receptor blockade on specific cognitive functions in schizophrenia. This is highly clinically relevant given the well-established association between severity of cognitive disturbances and a poor functional outcome in schizophrenia. Additionally, the findings support associations between frontal D2/3 receptor binding potential at baseline and the effect of antipsychotic treatment on positive symptoms. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  11. Aerobic Glycolysis in the Frontal Cortex Correlates with Memory Performance in Wild-Type Mice But Not the APP/PS1 Mouse Model of Cerebral Amyloidosis.

    Science.gov (United States)

    Harris, Richard A; Tindale, Lauren; Lone, Asad; Singh, Olivia; Macauley, Shannon L; Stanley, Molly; Holtzman, David M; Bartha, Robert; Cumming, Robert C

    2016-02-10

    Aerobic glycolysis and lactate production in the brain plays a key role in memory, yet the role of this metabolism in the cognitive decline associated with Alzheimer's disease (AD) remains poorly understood. Here we examined the relationship between cerebral lactate levels and memory performance in an APP/PS1 mouse model of AD, which progressively accumulates amyloid-β. In vivo (1)H-magnetic resonance spectroscopy revealed an age-dependent decline in lactate levels within the frontal cortex of control mice, whereas lactate levels remained unaltered in APP/PS1 mice from 3 to 12 months of age. Analysis of hippocampal interstitial fluid by in vivo microdialysis revealed a significant elevation in lactate levels in APP/PS1 mice relative to control mice at 12 months of age. An age-dependent decline in the levels of key aerobic glycolysis enzymes and a concomitant increase in lactate transporter expression was detected in control mice. Increased expression of lactate-producing enzymes correlated with improved memory in control mice. Interestingly, in APP/PS1 mice the opposite effect was detected. In these mice, increased expression of lactate producing enzymes correlated with poorer memory performance. Immunofluorescent staining revealed localization of the aerobic glycolysis enzymes pyruvate dehydrogenase kinase and lactate dehydrogenase A within cortical and hippocampal neurons in control mice, as well as within astrocytes surrounding amyloid plaques in APP/PS1 mice. These observations collectively indicate that production of lactate, via aerobic glycolysis, is beneficial for memory function during normal aging. However, elevated lactate levels in APP/PS1 mice indicate perturbed lactate processing, a factor that may contribute to cognitive decline in AD. Lactate has recently emerged as a key metabolite necessary for memory consolidation. Lactate is the end product of aerobic glycolysis, a unique form of metabolism that occurs within certain regions of the brain. Here

  12. Exploration of central dopamine D2 receptors by autoradiography, pathology and functional behaviour observation in rat model with experimental parkinsonism

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    1996-01-01

    The rat model with experimental parkinsonism mimic the course of human parkinsonism were made by cerebral-stereotaxic techniques. 125 I-IBZM was used to evaluate the D 2 receptors distribution by autoradiographic analysis of coronal brain section. In 6 parkinsonism model rats, on the lesioned side the striatum/frontal cortex ratio was 5.32 +- 0.37, it was significantly (P 125 I-IBZM as the ligand of D 2 receptor can well reflect the distribution and changes of D 2 receptors, and also as the theoretical basis for the clinical imaging diagnosis

  13. Pharmacological studies of dopamine transporter imaging agent 125/131I-β-CIT

    International Nuclear Information System (INIS)

    Ding Shiyu; Zhou Xiang; Chen Zhengping; Wu Chunying; Lin Yansong; Ji Shuren; Lu Chunxiong; Fang Ping; Tang Jun; Wang Feng

    2001-01-01

    To prepare 125/131 I-β-CIT (2β-carbomethoxy-3β-(4-iodophenyl) tropane) as an imaging agent for dopamine transporter (DAT), the labelling method from tributylstannyl precursor with peracetic acid has been reported. The radiochemical purity (RCP) of the labelled compound was over 95% determined by HPLC and TLC. The stability, partition coefficients were also determined. The pharmacological studies of the imaging agent were performed in rats, mice, rabbits and normal monkey. The ligand showed preferable uptake in brain (1.9% ID/organ in rats and 4.5% ID/organ in mice at 5 min). The ratios of striatum/cerebellum, hippocampus/cerebellum and cortex/cerebellum were 28.9, 3.97 and 4.75 at 6 h in rats, and 8.52, 2.99 and 3.06 at 6 h in mice, respectively. In monkey brain imaging the ratios of striatum/frontal cortex (ST/FC) and striatum/occipital cortex (ST/OC) were 5.14 and 5.97 at 4h, respectively. All of above showed the high affinity of the ligand to DAT. The compound was primarily metabolized in liver because the hepatic uptake was much higher than other organs (75.4% ID/organ at 18h). The half-life of blood elimination was 5 min. The dose received by mice was 2500 times as high as that received by human in the test of undue toxicity, which evaluated the safety of the agent. All the results suggest that β-CIT can be used as a potential DAT imaging agent

  14. Frontal ataxia in childhood.

    Science.gov (United States)

    Erasmus, C E; Beems, T; Rotteveel, J J

    2004-12-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial seizures. It proved to be caused by a small right-sided cavernoma in the middle frontal gyrus. After surgical intervention the symptoms and the seizures disappeared. Two subsequent cases concern teenage patients presenting with headache after an ENT infection and on physical examination mild dysmetric function of the upper limbs and slight disequilibrium, due to right-sided frontal lobe abscesses. After neurosurgical and antibiotic therapy the symptoms were relieved. The frontal origin of ataxia should be considered in children presenting with a "cerebellar syndrome". Frontal gait disorders consist of a clinical pattern of different gait disorders. The syndrome has been mentioned in the literature under different names. Our patients show signs compatible with the term frontal disequilibrium, a clinical pattern of frontal gait disorder. This assumes walking problems characterized by loss of control of motor planning, leading to imbalance. Remarkably, frontal ataxia may mimic developmental delay as demonstrated in the first case and may be the leading mild symptom in extensive frontal lobe damage as demonstrated by the two other cases. We suppose that frontal ataxia is the result of a disturbance in the cerebellar-frontal circuitries and an impairment of executive and planning functions of the basal ganglia-frontal lobe circuitry.

  15. Impaired cognitive control mediates the relationship between cortical thickness of the superior frontal gyrus and role functioning in schizophrenia.

    Science.gov (United States)

    Tully, Laura M; Lincoln, Sarah Hope; Liyanage-Don, Nadia; Hooker, Christine I

    2014-02-01

    Structural abnormalities in the lateral prefrontal cortex (LPFC) are well-documented in schizophrenia and recent evidence suggests that these abnormalities relate to functional outcome. Cognitive control mechanisms, reliant on the LPFC, are impaired in schizophrenia and predict functional outcome, thus impaired cognitive control could mediate the relationship between neuroanatomical abnormalities in the LPFC and functional outcome. We used surface-based morphometry to investigate relationships between cortical surface characteristics, cognitive control, and measures of social and role functioning in 26 individuals with schizophrenia and 29 healthy controls. Results demonstrate that schizophrenia participants had thinner cortex in a region of the superior frontal gyrus (BA10). Across all participants, decreased cortical thickness in this region related to decreased cognitive control and decreased role functioning. Moreover, cognitive control fully mediated the relationship between cortical thickness in the superior frontal gyrus and role functioning, indicating that neuroanatomical abnormalities in the LPFC adversely impact role functioning via impaired cognitive control processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Frontal lobe damage impairs process and content in semantic memory: evidence from category-specific effects in progressive non-fluent aphasia.

    Science.gov (United States)

    Reilly, Jamie; Rodriguez, Amy D; Peelle, Jonathan E; Grossman, Murray

    2011-06-01

    Portions of left inferior frontal cortex have been linked to semantic memory both in terms of the content of conceptual representation (e.g., motor aspects in an embodied semantics framework) and the cognitive processes used to access these representations (e.g., response selection). Progressive non-fluent aphasia (PNFA) is a neurodegenerative condition characterized by progressive atrophy of left inferior frontal cortex. PNFA can, therefore, provide a lesion model for examining the impact of frontal lobe damage on semantic processing and content. In the current study we examined picture naming in a cohort of PNFA patients across a variety of semantic categories. An embodied approach to semantic memory holds that sensorimotor features such as self-initiated action may assume differential importance for the representation of manufactured artifacts (e.g., naming hand tools). Embodiment theories might therefore predict that patients with frontal damage would be differentially impaired on manufactured artifacts relative to natural kinds, and this prediction was borne out. We also examined patterns of naming errors across a wide range of semantic categories and found that naming error distributions were heterogeneous. Although PNFA patients performed worse overall on naming manufactured artifacts, there was no reliable relationship between anomia and manipulability across semantic categories. These results add to a growing body of research arguing against a purely sensorimotor account of semantic memory, suggesting instead a more nuanced balance of process and content in how the brain represents conceptual knowledge. Copyright © 2010 Elsevier Srl. All rights reserved.

  17. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure

    DEFF Research Database (Denmark)

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo

    2017-01-01

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT2A receptor (5-HT2AR) dependent. Here, we further investigated how blockade of 5-HT2ARs in mice exposed to a novel open-field...... of 5-HT2AR blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5 mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time...... spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin...

  18. The neural correlates of attachment security in typically developing children.

    Science.gov (United States)

    Choi, Eun Jung; Taylor, Margot J; Hong, Soon-Beom; Kim, Changdai; Yi, Soon-Hyung

    2018-07-01

    This study investigated neural correlates of children's attachment security using functional magnetic resonance imaging. Fifty-one boys' attachment styles (age mean = 9.5 years, SD = 0.61) were assessed with the Separation Anxiety Test (SAT). We created an fMRI version of the SAT to activate children's attachment system in fMRI environment and contrasted two conditions in which children were instructed to infer the specific feeling of the boy in the picture or to identify objects or physical activities. In the final fMRI analysis (N = 21), attachment security could be detected at the neural level corresponding to the behavioural differences in the attachment interview. Securely attached children showed greater activation in the frontal, limbic and basal ganglia area which included the dorsolateral prefrontal cortex, amygdala, cingulate cortex and striatum, compared to other children who had lower quality of attachment. These regions have a key role in socio-emotional information processing and also represent a brain network related to approach and avoidance motivation in humans. Especially the striatum, strongly linked to reward processing underpinning social approach and avoidance motivation, showed the largest effects in these differences and also positively correlated with emotional openness scores in SAT. This suggests that the quality of attachment configures the approach and avoidance motivational system in our brain mediated by the striatum. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Top-down modulation from inferior frontal junction to FEFs and intraparietal sulcus during short-term memory for visual features.

    Science.gov (United States)

    Sneve, Markus H; Magnussen, Svein; Alnæs, Dag; Endestad, Tor; D'Esposito, Mark

    2013-11-01

    Visual STM of simple features is achieved through interactions between retinotopic visual cortex and a set of frontal and parietal regions. In the present fMRI study, we investigated effective connectivity between central nodes in this network during the different task epochs of a modified delayed orientation discrimination task. Our univariate analyses demonstrate that the inferior frontal junction (IFJ) is preferentially involved in memory encoding, whereas activity in the putative FEFs and anterior intraparietal sulcus (aIPS) remains elevated throughout periods of memory maintenance. We have earlier reported, using the same task, that areas in visual cortex sustain information about task-relevant stimulus properties during delay intervals [Sneve, M. H., Alnæs, D., Endestad, T., Greenlee, M. W., & Magnussen, S. Visual short-term memory: Activity supporting encoding and maintenance in retinotopic visual cortex. Neuroimage, 63, 166-178, 2012]. To elucidate the temporal dynamics of the IFJ-FEF-aIPS-visual cortex network during memory operations, we estimated Granger causality effects between these regions with fMRI data representing memory encoding/maintenance as well as during memory retrieval. We also investigated a set of control conditions involving active processing of stimuli not associated with a memory task and passive viewing. In line with the developing understanding of IFJ as a region critical for control processes with a possible initiating role in visual STM operations, we observed influence from IFJ to FEF and aIPS during memory encoding. Furthermore, FEF predicted activity in a set of higher-order visual areas during memory retrieval, a finding consistent with its suggested role in top-down biasing of sensory cortex.

  20. Shape abnormalities of the striatum in Alzheimer's disease.

    Science.gov (United States)

    de Jong, Laura W; Ferrarini, Luca; van der Grond, Jeroen; Milles, Julien R; Reiber, Johan H C; Westendorp, Rudi G J; Bollen, Edward L E M; Middelkoop, Huub A M; van Buchem, Mark A

    2011-01-01

    Postmortem studies show pathological changes in the striatum in Alzheimer's disease (AD). Here, we examine the surface of the striatum in AD and assess whether changes of the surface are associated with impaired cognitive functioning. The shape of the striatum (n. accumbens, caudate nucleus, and putamen) was compared between 35 AD patients and 35 individuals without cognitive impairment. The striatum was automatically segmented from 3D T1 magnetic resonance images and automatic shape modeling tools (Growing Adaptive Meshes) were applied for morphometrical analysis. Repeated permutation tests were used to identify locations of consistent shape deformities of the striatal surface in AD. Linear regression models, corrected for age, gender, educational level, head size, and total brain parenchymal volume were used to assess the relation between cognitive performance and local surface deformities. In AD patients, differences of shape were observed on the medial head of the caudate nucleus and on the ventral lateral putamen, but not on the accumbens. The head of the caudate nucleus and ventral lateral putamen are characterized by extensive connections with the orbitofrontal and medial temporal cortices. Severity of cognitive impairment was associated with the degree of deformity of the surfaces of the accumbens, rostral medial caudate nucleus, and ventral lateral putamen. These findings provide evidence for the hypothesis that in AD primarily associative and limbic cerebral networks are affected.

  1. Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex

    Science.gov (United States)

    Grossman, Emily D.; Srinivasan, Ramesh

    2011-01-01

    Single pulses of transcranial magnetic stimulation (TMS) result in distal and long-lasting oscillations, a finding directly challenging the virtual lesion hypothesis. Previous research supporting this finding has primarily come from stimulation of the motor cortex. We have used single-pulse TMS with simultaneous EEG to target seven brain regions, six of which belong to the visual system [left and right primary visual area V1, motion-sensitive human middle temporal cortex, and a ventral temporal region], as determined with functional MRI-guided neuronavigation, and a vertex “control” site to measure the network effects of the TMS pulse. We found the TMS-evoked potential (TMS-EP) over visual cortex consists mostly of site-dependent theta- and alphaband oscillations. These site-dependent oscillations extended beyond the stimulation site to functionally connected cortical regions and correspond to time windows where the EEG responses maximally diverge (40, 200, and 385 ms). Correlations revealed two site-independent oscillations ∼350 ms after the TMS pulse: a theta-band oscillation carried by the frontal cortex, and an alpha-band oscillation over parietal and frontal cortical regions. A manipulation of stimulation intensity at one stimulation site (right hemisphere V1-V3) revealed sensitivity to the stimulation intensity at different regions of cortex, evidence of intensity tuning in regions distal to the site of stimulation. Together these results suggest that a TMS pulse applied to the visual cortex has a complex effect on brain function, engaging multiple brain networks functionally connected to the visual system with both invariant and site-specific spatiotemporal dynamics. With this characterization of TMS, we propose an alternative to the virtual lesion hypothesis. Rather than a technique that simulates lesions, we propose TMS generates natural brain signals and engages functional networks. PMID:21715670

  2. Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test.

    Science.gov (United States)

    Sellers, Kristin K; Mellin, Juliann M; Lustenberger, Caroline M; Boyle, Michael R; Lee, Won Hee; Peterchev, Angel V; Fröhlich, Flavio

    2015-09-01

    Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants were included in the final analysis. These participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2 mA at each anode for 20 min) or active sham tDCS (2 mA for 40 s), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2 mA for 20 min). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex.

    Science.gov (United States)

    Krieger-Redwood, Katya; Teige, Catarina; Davey, James; Hymers, Mark; Jefferies, Elizabeth

    2015-09-01

    Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings - as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is better specified by their visible features - however, not all of these features will be relevant to uncovering a given association, tapping selection/inhibition processes. To explore potential differences across modalities, we took a commonly-used manipulation of controlled retrieval demands, namely the identification of weak vs. strong associations, and compared word and picture versions. There were 4 key findings: (1) Regions of interest (ROIs) in posterior IFG (BA44) showed graded effects of modality (e.g., words>pictures in left BA44; pictures>words in right BA44). (2) An equivalent response was observed in left mid-IFG (BA45) across modalities, consistent with the multimodal semantic control deficits that typically follow LIFG lesions. (3) The anterior IFG (BA47) ROI showed a stronger response to verbal than pictorial associations, potentially reflecting a role for this region in establishing a meaningful context that can be used to direct semantic retrieval. (4) The left pMTG ROI also responded to difficulty across modalities yet showed a stronger response overall to verbal stimuli, helping to reconcile two distinct literatures that have implicated this site in semantic control and lexical-semantic access respectively. We propose that left anterior IFG and pMTG work together to maintain a meaningful context that shapes ongoing semantic processing, and that this process is more strongly taxed by word than picture associations. Copyright © 2015 The Authors. Published by

  4. Pavlovian reward prediction and receipt in schizophrenia: relationship to anhedonia.

    Directory of Open Access Journals (Sweden)

    Erin C Dowd

    Full Text Available Reward processing abnormalities have been implicated in the pathophysiology of negative symptoms such as anhedonia and avolition in schizophrenia. However, studies examining neural responses to reward anticipation and receipt have largely relied on instrumental tasks, which may confound reward processing abnormalities with deficits in response selection and execution. 25 chronic, medicated outpatients with schizophrenia and 20 healthy controls underwent functional magnetic resonance imaging using a pavlovian reward prediction paradigm with no response requirements. Subjects passively viewed cues that predicted subsequent receipt of monetary reward or non-reward, and blood-oxygen-level-dependent signal was measured at the time of cue presentation and receipt. At the group level, neural responses to both reward anticipation and receipt were largely similar between groups. At the time of cue presentation, striatal anticipatory responses did not differ between patients and controls. Right anterior insula demonstrated greater activation for nonreward than reward cues in controls, and for reward than nonreward cues in patients. At the time of receipt, robust responses to receipt of reward vs. nonreward were seen in striatum, midbrain, and frontal cortex in both groups. Furthermore, both groups demonstrated responses to unexpected versus expected outcomes in cortical areas including bilateral dorsolateral prefrontal cortex. Individual difference analyses in patients revealed an association between physical anhedonia and activity in ventral striatum and ventromedial prefrontal cortex during anticipation of reward, in which greater anhedonia severity was associated with reduced activation to money versus no-money cues. In ventromedial prefrontal cortex, this relationship held among both controls and patients, suggesting a relationship between anticipatory activity and anhedonia irrespective of diagnosis. These findings suggest that in the absence of

  5. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD.

    Science.gov (United States)

    Sokunbi, Moses O; Fung, Wilson; Sawlani, Vijay; Choppin, Sabine; Linden, David E J; Thome, Johannes

    2013-12-30

    In patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging techniques have revealed abnormalities in various brain regions, including the frontal cortex, striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as sample entropy have been used to probe the regularity of brain magnetoencephalography signals in patients with ADHD. In the present study, we extend this technique to analyse the complex output patterns of the 4 dimensional resting state functional magnetic resonance imaging signals in adult patients with ADHD. After adjusting for the effect of age, we found whole brain entropy differences (P=0.002) between groups and negative correlation (r=-0.45) between symptom scores and mean whole brain entropy values, indicating lower complexity in patients. In the regional analysis, patients showed reduced entropy in frontal and occipital regions bilaterally and a significant negative correlation between the symptom scores and the entropy maps at a family-wise error corrected cluster level of Pentropy is a useful tool in revealing abnormalities in the brain dynamics of patients with psychiatric disorders. © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Non-invasive Prefrontal/Frontal Brain Stimulation Is Not Effective in Modulating Food Reappraisal Abilities or Calorie Consumption in Obese Females

    Directory of Open Access Journals (Sweden)

    Felicitas Grundeis

    2017-06-01

    Full Text Available Background/Objectives: Previous studies suggest that non-invasive transcranial direct current stimulation (tDCS applied to the prefrontal cortex modulates food choices and calorie intake in obese humans.Participants/Methods: In the present fully randomized, placebo-controlled, within-subject and double-blinded study, we applied single sessions of anodal, cathodal, and sham tDCS to the left dorsolateral prefrontal cortex (DLPFC and contralateral frontal operculum in 25 hungry obese women and investigated possible influences on food reappraisal abilities as well as calorie intake. We hypothesized that tDCS, (i improves the ability to regulate the desire for visually presented foods and, (ii reduces their consumption.Results: We could not confirm an effect of anodal or cathodal tDCS, neither on the ability to modulate the desire for visually presented foods, nor on calorie consumption.Conclusions: The present findings do not support the notion of prefrontal/frontal tDCS as a promising treatment option for obesity.

  7. Functional role of frontal alpha oscillations in creativity.

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R; Foulser, A Alban; Mellin, Juliann M; Fröhlich, Flavio

    2015-06-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent electroencephalography (EEG) data suggests that cortical oscillations in the alpha frequency band (8-12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a functional role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10 Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking (TTCT), a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40 Hz-tACS was used instead of 10 Hz-tACS to rule out a general "electrical stimulation" effect. No significant change in the Creativity Index was found for such frontal 40 Hz stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Loss of metabolites from monkey striatum during PET with FDOPA

    DEFF Research Database (Denmark)

    Cumming, P; Munk, O L; Doudet, D

    2001-01-01

    constants using data recorded during 240 min of FDOPA circulation in normal monkeys and in monkeys with unilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesions. Use of the extended models increased the magnitudes of K(D)(i) and k(D)(3) in striatum; in the case of k(D)(3), variance...... of the estimate was substantially improved upon correction for metabolite loss. The rate constants for metabolite loss were higher in MPTP-lesioned monkey striatum than in normal striatum. The high correlation between individual estimates of k(Lin)(cl) and k(DA)(9) suggests that both rate constants reveal loss...

  9. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    Science.gov (United States)

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.

  10. Monkey cortex through fMRI glasses.

    Science.gov (United States)

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Interference effects of transcranial direct current stimulation over the right frontal cortex and adrenergic system on conditioned fear.

    Science.gov (United States)

    Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza

    2017-11-01

    The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.

  12. Neuroimaging meta-analysis of cannabis use studies reveals convergent functional alterations in brain regions supporting cognitive control and reward processing.

    Science.gov (United States)

    Yanes, Julio A; Riedel, Michael C; Ray, Kimberly L; Kirkland, Anna E; Bird, Ryan T; Boeving, Emily R; Reid, Meredith A; Gonzalez, Raul; Robinson, Jennifer L; Laird, Angela R; Sutherland, Matthew T

    2018-03-01

    Lagging behind rapid changes to state laws, societal views, and medical practice is the scientific investigation of cannabis's impact on the human brain. While several brain imaging studies have contributed important insight into neurobiological alterations linked with cannabis use, our understanding remains limited. Here, we sought to delineate those brain regions that consistently demonstrate functional alterations among cannabis users versus non-users across neuroimaging studies using the activation likelihood estimation meta-analysis framework. In ancillary analyses, we characterized task-related brain networks that co-activate with cannabis-affected regions using data archived in a large neuroimaging repository, and then determined which psychological processes may be disrupted via functional decoding techniques. When considering convergent alterations among users, decreased activation was observed in the anterior cingulate cortex, which co-activated with frontal, parietal, and limbic areas and was linked with cognitive control processes. Similarly, decreased activation was observed in the dorsolateral prefrontal cortex, which co-activated with frontal and occipital areas and linked with attention-related processes. Conversely, increased activation among users was observed in the striatum, which co-activated with frontal, parietal, and other limbic areas and linked with reward processing. These meta-analytic outcomes indicate that cannabis use is linked with differential, region-specific effects across the brain.

  13. PTSD symptom severity is associated with increased recruitment of top-down attentional control in a trauma-exposed sample.

    Science.gov (United States)

    White, Stuart F; Costanzo, Michelle E; Blair, James R; Roy, Michael J

    2015-01-01

    increased PTSD symptomatology in combat-exposed, but PTSD negative, armed services members. First, these data indicate increased emotional responsiveness by: (i) the positive relationship between PTSD symptom severity and amygdala responsiveness to emotional relative to neutral stimuli; (ii) greater BOLD response as a function of PTSD symptom severity in regions implicated in emotion (striatum) and representation (occipital and temporal cortices) during emotional relative to neutral conditions; and (iii) increased connectivity between the amygdala and regions implicated in emotion (insula/caudate) and representation (middle temporal cortex) as a function of PTSD symptom severity during emotional relative to neutral trials. Second, these data indicate a greater need for the recruitment of regions implicated in top down attention as indicated by (i) greater BOLD response in superior/middle frontal gyrus as a function of PTSD symptom severity in task relative to view conditions; (ii) greater BOLD response in dmFC/dACC, lateral frontal and inferior parietal cortices as a function of PTSD symptom severity in emotional relative to neutral conditions and (iii) greater functional connectivity between the amygdala and inferior parietal cortex as a function of PTSD symptom severity during emotional relative to neutral conditions.

  14. Specific marker of feigned memory impairment: The activation of left superior frontal gyrus.

    Science.gov (United States)

    Chen, Zi-Xiang; Xue, Li; Liang, Chun-Yu; Wang, Li-Li; Mei, Wei; Zhang, Qiang; Zhao, Hu

    2015-11-01

    Faking memory impairment means normal people complain lots of memory problems without organic damage in forensic assessments. Using alternative forced-choice paradigm, containing digital or autobiographical information, previous neuroimaging studies have indicated that faking memory impairment could cause the activation in the prefrontal and parietal regions, and might involve a fronto-parietal-subcortical circuit. However, it is still unclear whether different memory types have influence on faking or not. Since different memory types, such as long-term memory (LTM) and short-term memory (STM), were found supported by different brain areas, we hypothesized that feigned STM or LTM impairment had distinct neural activation mapping. Besides that, some common neural correlates may act as the general characteristic of feigned memory impairment. To verify this hypothesis, the functional magnetic resonance imaging (fMRI) combined with an alternative word forced-choice paradigm were used in this study. A total of 10 right-handed participants, in this study, had to perform both STW and LTM tasks respectively under answering correctly, answering randomly and feigned memory impairment conditions. Our results indicated that the activation of the left superior frontal gyrus and the left medial frontal gyrus was associated with feigned LTM impairment, whereas the left superior frontal gyrus, the left precuneus and the right anterior cingulate cortex (ACC) were highly activated while feigning STM impairment. Furthermore, an overlapping was found in the left superior frontal gyrus, and it suggested that the activity of the left superior frontal gyrus might be acting as a specific marker of feigned memory impairment. Copyright © 2015. Published by Elsevier Ltd.

  15. Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience

    Science.gov (United States)

    2016-01-01

    that the hippocampus and the dorsal striatum memory systems operate independently and in parallel when rats learn one type of task at a time, but interact cooperatively and in synergism when rats concurrently learn two types of tasks. Furthermore, new learning is modulated by past experiences. These results can be explained by a model in which independent and parallel information processing that occurs in the separate memory-related neural circuits is supplemented by information transfer between the memory systems at the level of the cortex. PMID:27307234

  16. Is the frontal dysexecutive syndrome due to a working memory deficit? Evidence from patients with stroke.

    Science.gov (United States)

    Roussel, Martine; Dujardin, Kathy; Hénon, Hilde; Godefroy, Olivier

    2012-07-01

    Although frontal dysexecutive disorders are frequently considered to be due to working memory deficit, this has not been systematically examined and very little evidence is available for impairment of working memory in frontal damage. The objective of this study was to examine the components of working memory, their anatomy and the relations with executive functions in patients with stroke involving the frontal or posterior cortex. The study population consisted of 29 patients (frontal: n=17; posterior: n=12) and 29 matched controls. Phonological loop (letter and word spans, phonological store; rehearsal process), visuospatial sketchpad (visuospatial span) and the central executive (working memory span, dual task and updating process) were examined. The group comparison analysis showed impairment in the frontal group of: (i) verbal spans (Pdeficit of the rehearsal process (P=0.006); (iii) visuospatial span (P=0.04); (iv) working memory span (P=0.001) that disappeared after controlling for verbal span and (v) running memory (P=0.05) unrelated to updating conditions. The clinical anatomical correlation study showed that impairment of the central executive depended on frontal and posterior lesion. Cognitive dysexecutive disorders were observed in 11/20 patients with central executive deficit and an inverse dissociation was observed in two patients. Receiver operating characteristic curve analysis indicated that cognitive dysexecutive disorders had the highest ability to discriminate frontal lesions (area under curve=0.844, 95% confidence interval: 0.74-0.95; P=0.0001; central executive impairment: area under curve=0.732, 95% confidence interval: 0.57-0.82; P=0.006). This study reveals that frontal lesions induce mild impairment of short-term memory associated with a deficit of the rehearsal process supporting the role of the frontal lobe in this process; the central executive depends on lesions in the frontal lobe and posterior regions accounting for its low frequency

  17. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    International Nuclear Information System (INIS)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging

  18. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging.

  19. Are personality traits of juvenile myoclonic epilepsy related to frontal lobe dysfunctions? A proton MRS study.

    Science.gov (United States)

    de Araújo Filho, Gerardo Maria; Lin, Katia; Lin, Jaime; Peruchi, Mirella M; Caboclo, Luís Otávio S F; Guaranha, Mirian S B; Guilhoto, Laura M F F; Carrete, Henrique; Yacubian, Elza Márcia T

    2009-05-01

    Personality traits characterized by emotional instability and immaturity, unsteadiness, lack of discipline, hedonism, frequent and rapid mood changes, and indifference toward one's disease have been associated with patients who have juvenile myoclonic epilepsy (JME). Literature data demonstrate worse seizure control and more psychosocial dysfunctions among patients with JME who have those traits. In this controlled study we performed a correlation analysis of psychiatric scores with magnetic resonance spectroscopy (MRS) values across JME patients, aiming to verify the existence of a possible relation between frontal lobe dysfunction and the prevalence of personality disorders (PDs) in JME. Sixteen JME patients with cluster B PDs, 41 JME patients without any psychiatric disorder, and 30 healthy controls were submitted to a psychiatric evaluation and to a quantitative multivoxel MRS of thalamus; insula; cingulate gyrus; striatum; and frontal, parietal, and occipital lobes. Groups were homogeneous according to age, gender, and manual dominance. Psychiatric evaluation was performed through the Scheduled Clinical Interview for DSM-IV, Axis I and II (SCID I and II, respectively). A significant reduction of N-acetyl-aspartate over creatinine (NAA/Cr) ratio was observed mainly in the left frontal lobe in the JME and PD group. In addition, a significant increase in the glutamate-glutamine over creatinine GLX/Cr ratio was also observed in this referred region in the same group. These data support the hypothesis that PDs in JME could represent neuronal dysfunction and possibly a more severe form of this epileptic syndrome.

  20. Anodal Transcranial Direct Current Stimulation Promotes Frontal Compensatory Mechanisms in Healthy Elderly Subjects.

    Science.gov (United States)

    Cespón, Jesús; Rodella, Claudia; Rossini, Paolo M; Miniussi, Carlo; Pellicciari, Maria C

    2017-01-01

    Recent studies have demonstrated that transcranial direct current stimulation (tDCS) is potentially useful to improve working memory. In the present study, young and elderly subjects performed a working memory task ( n -back task) during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex (DLPFC). We investigated modulations of behavioral performance and electrophysiological correlates of working memory processes (frontal and parietal P300 event-related potentials). A strong tendency to modulated working memory performance was observed after the application of tDCS. In detail, young, but not elderly, subjects benefited from additional practice in the absence of real tDCS, as indicated by their more accurate responses after sham tDCS. The cathodal tDCS had no effect in any group of participants. Importantly, anodal tDCS improved accuracy in elderly. Moreover, increased accuracy after anodal tDCS was correlated with a larger frontal P300 amplitude. These findings suggest that, in elderly subjects, improved working memory after anodal tDCS applied over the left DLPFC may be related to the promotion of frontal compensatory mechanisms, which are related to attentional processes.

  1. Anodal Transcranial Direct Current Stimulation Promotes Frontal Compensatory Mechanisms in Healthy Elderly Subjects

    Directory of Open Access Journals (Sweden)

    Jesús Cespón

    2017-12-01

    Full Text Available Recent studies have demonstrated that transcranial direct current stimulation (tDCS is potentially useful to improve working memory. In the present study, young and elderly subjects performed a working memory task (n-back task during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex (DLPFC. We investigated modulations of behavioral performance and electrophysiological correlates of working memory processes (frontal and parietal P300 event-related potentials. A strong tendency to modulated working memory performance was observed after the application of tDCS. In detail, young, but not elderly, subjects benefited from additional practice in the absence of real tDCS, as indicated by their more accurate responses after sham tDCS. The cathodal tDCS had no effect in any group of participants. Importantly, anodal tDCS improved accuracy in elderly. Moreover, increased accuracy after anodal tDCS was correlated with a larger frontal P300 amplitude. These findings suggest that, in elderly subjects, improved working memory after anodal tDCS applied over the left DLPFC may be related to the promotion of frontal compensatory mechanisms, which are related to attentional processes.

  2. Attention modulates the dorsal striatum response to love stimuli.

    Science.gov (United States)

    Langeslag, Sandra J E; van der Veen, Frederik M; Röder, Christian H

    2014-02-01

    In previous functional magnetic resonance imaging (fMRI) studies concerning romantic love, several brain regions including the caudate and putamen have consistently been found to be more responsive to beloved-related than control stimuli. In those studies, infatuated individuals were typically instructed to passively view the stimuli or to think of the viewed person. In the current study, we examined how the instruction to attend to, or ignore the beloved modulates the response of these brain areas. Infatuated individuals performed an oddball task in which pictures of their beloved and friend served as targets and distractors. The dorsal striatum showed greater activation for the beloved than friend, but only when they were targets. The dorsal striatum actually tended to show less activation for the beloved than the friend when they were distractors. The longer the love and relationship duration, the smaller the response of the dorsal striatum to beloved-distractor stimuli was. We interpret our findings in terms of reinforcement learning. By virtue of using a cognitive task with a full factorial design, we show that the dorsal striatum is not activated by beloved-related information per se, but only by beloved-related information that is attended. Copyright © 2012 Wiley Periodicals, Inc.

  3. Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis.

    Science.gov (United States)

    Fiene, Marina; Rufener, Katharina S; Kuehne, Maria; Matzke, Mike; Heinze, Hans-Jochen; Zaehle, Tino

    2018-03-01

    Fatigue is one of the most common and debilitating symptoms affecting patients with multiple sclerosis (MS). Sustained cognitive effort induces cognitive fatigue, operationalized as subjective exhaustion and fatigue-related objective alertness decrements with time-on-task. During prolonged cognitive testing, MS patients show increased simple reaction times (RT) accompanied by lower amplitudes and prolonged latencies of the P300 event-related potential. Previous studies suggested a major role of structural and functional abnormalities in the frontal cortex including a frontal hypo-activation in fatigue pathogenesis. In the present study we investigated the neuromodulatory effect of transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) on objective measures of fatigue-related decrements in cognitive performance in MS patients. P300 during an auditory oddball task and simple reaction times in an alertness test were recorded at baseline, during and after stimulation. Compared to sham, anodal tDCS caused an increase in P300 amplitude that persisted after the end of stimulation and eliminated the fatigue-related increase in RT over the course of a testing session. Our findings demonstrate that anodal tDCS over the left DLPFC can counteract performance decrements associated with fatigue thereby leading to an improvement in the patient's ability to cope with sustained cognitive demands. This provides causal evidence for the functional relevance of the left DLPFC in fatigue pathophysiology. The results indicate that tDCS-induced modulations of frontal activity can be an effective therapeutic option for the treatment of fatigue-related declines in cognitive performance in MS patients.

  4. The association between aerobic fitness and cognitive function in older men mediated by frontal lateralization.

    Science.gov (United States)

    Hyodo, Kazuki; Dan, Ippeita; Kyutoku, Yasushi; Suwabe, Kazuya; Byun, Kyeongho; Ochi, Genta; Kato, Morimasa; Soya, Hideaki

    2016-01-15

    Previous studies have shown that higher aerobic fitness is related to higher cognitive function and higher task-related prefrontal activation in older adults. However, a holistic picture of these factors has yet to be presented. As a typical age-related change of brain activation, less lateralized activity in the prefrontal cortex during cognitive tasks has been observed in various neuroimaging studies. Thus, this study aimed to reveal the relationship between aerobic fitness, cognitive function, and frontal lateralization. Sixty male older adults each performed a submaximal incremental exercise test to determine their oxygen intake (V·O2) at ventilatory threshold (VT) in order to index their aerobic fitness. They performed a color-word Stroop task while prefrontal activation was monitored using functional near infrared spectroscopy. As an index of cognitive function, Stroop interference time was analyzed. Partial correlation analyses revealed significant correlations among higher VT, shorter Stroop interference time and greater left-lateralized dorsolateral prefrontal cortex (DLPFC) activation when adjusting for education. Moreover, mediation analyses showed that left-lateralized DLPFC activation significantly mediated the association between VT and Stroop interference time. These results suggest that higher aerobic fitness is associated with cognitive function via lateralized frontal activation in older adults. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Effects of dopamine D1 receptor blockade in the prelimbic prefrontal cortex or lateral dorsal striatum on frontostriatal function in Wistar and Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Gauthier, Jamie M; Tassin, David H; Dwoskin, Linda P; Kantak, Kathleen M

    2014-07-15

    Attention Deficit Hyperactivity Disorder (ADHD) is associated with dysfunctional prefrontal and striatal circuitry and dysregulated dopamine neurotransmission. Spontaneously Hypertensive Rats (SHR), a heuristically useful animal model of ADHD, were evaluated against normotensive Wistar (WIS) controls to determine whether dopamine D1 receptor blockade of either prelimbic prefrontal cortex (plPFC) or lateral dorsal striatum (lDST) altered learning functions of both interconnected sites. A strategy set shifting task measured plPFC function (behavioral flexibility/executive function) and a reward devaluation task measured lDST function (habitual responding). Prior to tests, rats received bilateral infusions of SCH 23390 (1.0 μg/side) or vehicle into plPFC or lDST. Following vehicle, SHR exhibited longer lever press reaction times, more trial omissions, and fewer completed trials during the set shift test compared to WIS, indicating slower decision-making and attentional/motivational impairment in SHR. After reward devaluation, vehicle-treated SHR responded less than WIS, indicating relatively less habitual responding in SHR. After SCH 23390 infusions into plPFC, WIS expressed the same behavioral phenotype as vehicle-treated SHR during set shift and reward devaluation tests. In SHR, SCH 23390 infusions into plPFC exacerbated behavioral deficits in the set shift test and maintained the lower rate of responding in the reward devaluation test. SCH 23390 infusions into lDST did not modify set shifting in either strain, but produced lower rates of responding than vehicle infusions after reward devaluation in WIS. This research provides pharmacological evidence for unidirectional interactions between prefrontal and striatal brain regions, which has implications for the neurological basis of ADHD and its treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Thinner Cortex in Collegiate Football Players With, but not Without, a Self-Reported History of Concussion.

    Science.gov (United States)

    Meier, Timothy B; Bellgowan, Patrick S F; Bergamino, Maurizio; Ling, Josef M; Mayer, Andrew R

    2016-02-15

    Emerging evidence suggests that a history of sports-related concussions can lead to long-term neuroanatomical changes. The extent to which similar changes are present in young athletes is undetermined at this time. Here, we tested the hypothesis that collegiate football athletes with (n = 25) and without (n = 24) a self-reported history of concussion would have cortical thickness differences and altered white matter integrity relative to healthy controls (n = 27) in fronto-temporal regions that appear particularly susceptible to traumatic brain injury. Freesurfer software was used to estimate cortical thickness, fractional anisotropy was calculated in a priori white matter tracts, and behavior was assessed using a concussion behavioral battery. Groups did not differ in self-reported symptoms (p > 0.10) or cognitive performance (p > 0.10). Healthy controls reported significantly higher happiness levels than both football groups (all p 0.10). However, football athletes with a history of concussion had significantly thinner cortex in the left anterior cingulate cortex, orbital frontal cortex, and medial superior frontal cortex relative to healthy controls (p = 0.02, d = -0.69). Further, football athletes with a history of concussion had significantly thinner cortex in the right central sulcus and precentral gyrus relative to football athletes without a history of concussion (p = 0.03, d = -0.71). No differences were observed between football athletes without a history of concussion and healthy controls. These results suggest that previous concussions, but not necessarily football exposure, may be associated with cortical thickness differences in collegiate football athletes.

  7. Pulvinar projections to the striatum and amygdala

    Directory of Open Access Journals (Sweden)

    Jonathan D Day-Brown

    2010-11-01

    Full Text Available Visually-guided movement is possible in the absence of conscious visual perception, a phenomenon referred to as blindsight. Similarly, fearful images can elicit emotional responses in the absence of their conscious perception. Both capabilities are thought to be mediated by pathways from the retina through the superior colliculus (SC and pulvinar nucleus. To define potential pathways that underlie behavioral responses to unperceived visual stimuli, we examined the projections from the pulvinar nucleus to the striatum and amygdala in the tree shrew (Tupaia belangeri, a species considered to be a protypical primate. The tree shrew brain has a large pulvinar nucleus that contains two SC-recipient subdivisions; the dorsal (Pd and central (Pc pulvinar both receive topographic (specific projections from SC, and Pd receives an additional nontopographic (diffuse projection from SC (Chomsung et al., 2008; JCN 510:24-46. Anterograde and retrograde tract tracing revealed that both Pd and Pc project to the caudate and putamen, and Pd, but not Pc, additionally projects to the lateral amygdala. Using immunocytochemical staining for substance P (SP and parvalbumin (PV to reveal the patch/matrix organization of tree shrew striatum, we found that SP-rich/PV-poor patches interlock with a PV-rich/SP-poor matrix. Confocal microscopy revealed that tracer-labeled pulvinostriatal terminals preferentially innervate the matrix. Electron microscopy revealed that the postsynaptic targets of tracer-labeled pulvino-striatal and pulvino-amygdala terminals are spines, demonstrating that the pulvinar nucleus projects to the spiny output cells of the striatum matrix and the lateral amygdala, potentially relaying: 1 topographic visual information from SC to striatum to aid in guiding precise movements, and 2 nontopographic visual information from SC to the amygdala alerting the animal to potentially dangerous visual images.

  8. Contribution of different regions of the prefrontal cortex and lesion laterality to deficit of decision-making on the Iowa Gambling Task.

    Science.gov (United States)

    Ouerchefani, Riadh; Ouerchefani, Naoufel; Allain, Philippe; Ben Rejeb, Mohamed Riadh; Le Gall, Didier

    2017-02-01

    Few studies have examined the contribution of different sub-regions of the prefrontal cortex and lesion laterality to decision-making abilities. In addition, there are inconsistent findings about the role of ventromedial and dorsolateral lesions in decision-making deficit. In this study, decision-making processes are investigated following different damaged areas of the prefrontal cortex. We paid particular attention to the contribution of laterality, lesion location and lesion volume in decision-making deficit. Twenty-seven patients with discrete ventromedial lesions, dorsolateral lesions or extended-frontal lesions were compared with normal subjects on the Iowa Gambling Task (IGT). Our results showed that all frontal subgroups were impaired on the IGT in comparison with normal subjects. We noted also that IGT performance did not vary systematically based on lesion laterality or location. More precisely, our lesion analysis revealed that decision-making processes depend on a large cerebral network, including both ventromedial and dorsolateral areas of the prefrontal cortex. Consistent with past findings, our results support the claim that IGT deficit is not solitarily associated with ventromedial prefrontal cortex lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli

    Directory of Open Access Journals (Sweden)

    Lanuza Enrique

    2007-11-01

    Full Text Available Abstract Background Vertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb. The main projections of the olfactory bulb are directed to the olfactory cortex and olfactory amygdala (the anterior and posterolateral cortical amygdalae. The posterolateral cortical amygdaloid nucleus mainly projects to other amygdaloid nuclei; other seemingly minor outputs are directed to the ventral striatum, in particular to the olfactory tubercle and the islands of Calleja. Results Although the olfactory projections have been previously described in the literature, injection of dextran-amines into the rat main olfactory bulb was performed with the aim of delimiting the olfactory tubercle and posterolateral cortical amygdaloid nucleus in our own material. Injection of dextran-amines into the posterolateral cortical amygdaloid nucleus of rats resulted in anterograde labeling in the ventral striatum, in particular in the core of the nucleus accumbens, and in the medial olfactory tubercle including some islands of Calleja and the cell bridges across the ventral pallidum. Injections of Fluoro-Gold into the ventral striatum were performed to allow retrograde confirmation of these projections. Conclusion The present results extend previous descriptions of the posterolateral cortical amygdaloid nucleus efferent projections, which are mainly directed to the core of the nucleus accumbens and the medial olfactory tubercle. Our data indicate that the projection to the core of the nucleus accumbens arises from layer III; the projection to the olfactory tubercle arises from layer II and is much more robust than previously thought. This latter projection is directed to the medial olfactory tubercle including the corresponding islands of Calleja, an area recently described as critical node for the neural circuit of addiction to some stimulant drugs of abuse.

  10. Transcranial Magnetic Stimulation over Left Inferior Frontal and Posterior Temporal Cortex Disrupts Gesture-Speech Integration.

    Science.gov (United States)

    Zhao, Wanying; Riggs, Kevin; Schindler, Igor; Holle, Henning

    2018-02-21

    Language and action naturally occur together in the form of cospeech gestures, and there is now convincing evidence that listeners display a strong tendency to integrate semantic information from both domains during comprehension. A contentious question, however, has been which brain areas are causally involved in this integration process. In previous neuroimaging studies, left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) have emerged as candidate areas; however, it is currently not clear whether these areas are causally or merely epiphenomenally involved in gesture-speech integration. In the present series of experiments, we directly tested for a potential critical role of IFG and pMTG by observing the effect of disrupting activity in these areas using transcranial magnetic stimulation in a mixed gender sample of healthy human volunteers. The outcome measure was performance on a Stroop-like gesture task (Kelly et al., 2010a), which provides a behavioral index of gesture-speech integration. Our results provide clear evidence that disrupting activity in IFG and pMTG selectively impairs gesture-speech integration, suggesting that both areas are causally involved in the process. These findings are consistent with the idea that these areas play a joint role in gesture-speech integration, with IFG regulating strategic semantic access via top-down signals acting upon temporal storage areas. SIGNIFICANCE STATEMENT Previous neuroimaging studies suggest an involvement of inferior frontal gyrus and posterior middle temporal gyrus in gesture-speech integration, but findings have been mixed and due to methodological constraints did not allow inferences of causality. By adopting a virtual lesion approach involving transcranial magnetic stimulation, the present study provides clear evidence that both areas are causally involved in combining semantic information arising from gesture and speech. These findings support the view that, rather than being

  11. Mind the movement: Frontal asymmetry stands for behavioral motivation, bilateral frontal activation for behavior.

    Science.gov (United States)

    Rodrigues, Johannes; Müller, Mathias; Mühlberger, Andreas; Hewig, Johannes

    2018-01-01

    Frontal asymmetry has been investigated over the past 30 years, and several theories have been developed about its meaning. The original theory of Davidson and its diversification by Harmon-Jones & Allen allocated approach motivation to relative left frontal brain activity and withdrawal motivation to relative right frontal brain activity. Hewig and colleagues extended this theory by adding bilateral frontal activation representing a biological correlate of the behavioral activation system if actual behavior is shown. Wacker and colleagues formulated a theory related to the revised reinforcement sensitivity theory by Gray & McNaughton. Here, relative left frontal brain activation represents the revised behavioral activation system and behavior, while relative right frontal brain activation represents the revised behavioral inhibition system, representing the experience of conflict. These theories were investigated with a newly developed paradigm where participants were able to move around freely in a virtual T maze via joystick while having their EEG recorded. Analyzing the influence of frontal brain activation during this virtual reality task on observable behavior for 30 participants, we found more relative left frontal brain activation during approach behavior and more relative right brain activation for withdrawal behavior of any kind. Additionally, there was more bilateral frontal brain activation when participants were engaged in behavior compared to doing nothing. Hence, this study provides evidence for the idea that frontal asymmetry stands for behavioral approach or avoidance motivation, and bilateral frontal activation stands for behavior. Additionally, observable behavior is not only determined by frontal asymmetry, but also by relevant traits. © 2017 Society for Psychophysiological Research.

  12. Neurocomputational Consequences of Evolutionary Connectivity Changes in Perisylvian Language Cortex

    OpenAIRE

    Schomers, M.R.; Garagnani, M.; Pulvermüller, F.

    2017-01-01

    The human brain sets itself apart from that of its primate relatives by specific neuroanatomical features, especially the strong linkage of left perisylvian language areas (frontal and temporal cortex) by way of the arcuate fasciculus (AF). AF connectivity has been shown to correlate with verbal working memory?a specifically human trait providing the foundation for language abilities?but a mechanistic explanation of any related causal link between anatomical structure and cognitive function i...

  13. Acute Frontal Lobe Dysfunction Following Prefrontal Low-Frequency Repetitive Transcranial Magnetic Stimulation in a Patient with Treatment-Resistant Depression

    Directory of Open Access Journals (Sweden)

    Guilhem Carle

    2017-05-01

    Full Text Available The potential of repetitive transcranial magnetic stimulation (rTMS to treat numerous neurological and psychiatric disorders has been thoroughly studied for the last two decades. Here, we report for the first time, the case of a 65-year-old woman suffering from treatment-resistant depression who developed an acute frontal lobe syndrome following eight sessions of low-frequency rTMS (LF-rTMS to the right dorsolateral prefrontal cortex while also treated with sertraline and mianserin. The pathophysiological mechanisms underlying such an unexpected acute frontal lobe dysfunction are discussed in relation to the therapeutic use of LF-rTMS in combination with pharmacotherapy in depressed patients.

  14. Brain substrates of social decision-making in dual diagnosis: cocaine dependence and personality disorders.

    Science.gov (United States)

    Verdejo-Garcia, Antonio; Verdejo-Román, Juan; Albein-Urios, Natalia; Martínez-González, José M; Soriano-Mas, Carles

    2017-03-01

    Cocaine dependence frequently co-occurs with personality disorders, leading to increased interpersonal problems and greater burden of disease. Personality disorders are characterised by patterns of thinking and feeling that divert from social expectations. However, the comorbidity between cocaine dependence and personality disorders has not been substantiated by measures of brain activation during social decision-making. We applied functional magnetic resonance imaging to compare brain activations evoked by a social decision-making task-the Ultimatum Game-in 24 cocaine dependents with personality disorders (CDPD), 19 cocaine dependents without comorbidities and 19 healthy controls. In the Ultimatum Game participants had to accept or reject bids made by another player to split monetary stakes. Offers varied in fairness (in fair offers the proposer shares ~50 percent of the money; in unfair offers the proposer shares <30 percent of the money), and participants were told that if they accept both players get the money, and if they reject both players lose it. We contrasted brain activations during unfair versus fair offers and accept versus reject choices. During evaluation of unfair offers CDPD displayed lower activation in the insula and the anterior cingulate cortex and higher activation in the lateral orbitofrontal cortex and superior frontal and temporal gyri. Frontal activations negatively correlated with emotion recognition. During rejection of offers CDPD displayed lower activation in the anterior cingulate cortex, striatum and midbrain. Dual diagnosis is linked to hypo-activation of the insula and anterior cingulate cortex and hyper-activation of frontal-temporal regions during social decision-making, which associates with poorer emotion recognition. © 2015 Society for the Study of Addiction.

  15. [Brodmann Areas 8 and 9 Including the Frontal Eye Field].

    Science.gov (United States)

    Watanabe, Masataka

    2017-04-01

    Based on cytoarchitectonic analyses, Brodmann assigned numbers 8 and 9 to certain areas of the dorsal and medial prefrontal cortex (PFC) in humans and monkeys. Petrides and Pandya re-analyzed the cytoarchitectures of the human and monkey PFCs, and proposed slightly different brain maps for both species. They assigned numbers 8, 9 and 9/46 to the areas that were originally named areas 8 and 9. Areas 8 and 9 have both lateral and medial regions respectively. The lateral area 8 is important for conditional discrimination learning. The frontal eye field which occupies the most caudal region of area 8, is responsible for visual attention and control of eye movements. The lateral area 9 and area 9/46 are functionally similar to area 46 and play important roles in executive control. The dorsomedial prefrontal cortex (DMPFC) comprises the medial regions of areas 8 and 9 and is related to "Theory of Mind" and social cognition. The DMPFC is also known to show "default mode of brain activity" (i.e., more activity during rest than during cognitive task).

  16. Distinct frontal regions for processing sentence syntax and story grammar.

    Science.gov (United States)

    Sirigu, A; Cohen, L; Zalla, T; Pradat-Diehl, P; Van Eeckhout, P; Grafman, J; Agid, Y

    1998-12-01

    Time is a fundamental dimension of cognition. It is expressed in the sequential ordering of individual elements in a wide variety of activities such as language, motor control or in the broader domain of long range goal-directed actions. Several studies have shown the importance of the frontal lobes in sequencing information. The question addressed in this study is whether this brain region hosts a single supramodal sequence processor, or whether separate mechanisms are required for different kinds of temporally organised knowledge structures such as syntax and action knowledge. Here we show that so-called agrammatic patients, with lesions in Broca's area, ordered word groups correctly to form a logical sequence of actions but they were severely impaired when similar word groups had to be ordered as a syntactically well-formed sentence. The opposite performance was observed in patients with dorsolateral prefrontal lesions, that is, while their syntactic processing was intact at the sentence level, they demonstrated a pronounced deficit in producing temporally coherent sequences of actions. Anatomical reconstruction of lesions from brain scans revealed that the sentence and action grammar deficits involved distinct, non-overlapping sites within the frontal lobes. Finally, in a third group of patients whose lesions encompassed both Broca's area and the prefrontal cortex, the two types of deficits were found. We conclude that sequence processing is specific to knowledge domains and involves different networks within the frontal lobes.

  17. Experimentally-induced maternal hypothyroidism alters crucial enzyme activities in the frontal cortex and hippocampus of the offspring rat.

    Science.gov (United States)

    Koromilas, Christos; Tsakiris, Stylianos; Kalafatakis, Konstantinos; Zarros, Apostolos; Stolakis, Vasileios; Kimpizi, Despoina; Bimpis, Alexios; Tsagianni, Anastasia; Liapi, Charis

    2015-02-01

    Thyroid hormone insufficiency during neurodevelopment can result into significant structural and functional changes within the developing central nervous system (CNS), and is associated with the establishment of serious cognitive impairment and neuropsychiatric symptomatology. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism as a multilevel experimental approach to the study of hypothyroidism-induced changes on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a brain region-specific manner. This experimental approach has been recently developed and characterized by the authors based on neurochemical analyses performed on newborn and 21-day-old rat offspring whole brain homogenates; as a continuum to this effort, the current study focused on two CNS regions of major significance for cognitive development: the frontal cortex and the hippocampus. Maternal exposure to PTU in the drinking water during gestation and/or lactation resulted into changes in the activities of acetylcholinesterase and two important adenosinetriphosphatases (Na(+),K(+)- and Mg(2+)-ATPase), that seemed to take place in a CNS-region-specific manner and that were dependent upon the PTU-exposure timeframe followed. As these findings are analyzed and compared to the available literature, they: (i) highlight the variability involved in the changes of the aforementioned enzymatic parameters in the studied CNS regions (attributed to both the different neuroanatomical composition and the thyroid-hormone-dependent neurodevelopmental growth/differentiation patterns of the latter), (ii) reveal important information with regards to the neurochemical mechanisms that could be involved in the way clinical hypothyroidism could affect optimal neurodevelopment and, ultimately, cognitive function, as well as (iii) underline the need for the adoption of more consistent

  18. Localization of dysfunction in major depressive disorder: Prefrontal cortex and amygdala

    OpenAIRE

    Murray, Elisabeth A.; Wise, Steven P.; Drevets, Wayne C.

    2010-01-01

    Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of ‘self’ underlies the core disorder in MDD; the medial frontal cortex represents ‘self’; interactions between the amygdala and cortical representations update their valuation; and inefficiency in u...

  19. Adenylyl cyclase-5 in the dorsal striatum function as a molecular switch for the generation of behavioral preferences for cue-directed food choices.

    Science.gov (United States)

    Kim, Hannah; Kim, Tae-Kyung; Kim, Ji-Eun; Park, Jin-Young; Lee, Yunjin; Kang, Minkyung; Kim, Kyoung-Shim; Han, Pyung-Lim

    2014-11-07

    Behavioral choices in habits and innate behaviors occur automatically in the absence of conscious selection. These behaviors are not easily modified by learning. Similar types of behaviors also occur in various mental illnesses including drug addiction, obsessive-compulsive disorder, schizophrenia, and autism. However, underlying mechanisms are not clearly understood. In the present study, we investigated the molecular mechanisms regulating unconditioned preferred behaviors in food-choices. Mice lacking adenylyl cyclase-5 (AC5 KO mice), which is preferentially expressed in the dorsal striatum, consumed food pellets nearly one after another in cages. AC5 KO mice showed aversive behaviors to bitter tasting quinine, but they compulsively chose quinine-containing AC5 KO-pellets over fresh pellets. The unusual food-choice behaviors in AC5 KO mice were due to the gain of behavioral preferences for food pellets containing an olfactory cue, which wild-type mice normally ignored. Such food-choice behaviors in AC5 KO mice disappeared when whiskers were trimmed. Conversely, whisker trimming in wildtype mice induced behavioral preferences for AC5 KO food pellets, indicating that preferred food-choices were not learned through prior experience. Both AC5 KO mice and wildtype mice with trimmed whiskers had increased glutamatergic input from the barrel cortex into the dorsal striatum, resulting in an increase in the mGluR1-dependent signaling cascade. The siRNA-mediated inhibition of mGluR1 in the dorsal striatum in AC5 KO mice and wildtype mice with trimmed whiskers abolished preferred choices for AC5 KO food pellets, whereas siRNA-mediated inhibition of mGluR3 glutamate receptors in the dorsal striatum in wildtype mice induced behavioral preferences for AC5 KO food pellets, thus mimicking AC5 KO phenotypes. Our results show that the gain and loss of behavioral preferences for a specific cue-directed option were regulated by specific cellular factors in the dorsal striatum, such

  20. Deceptive but Not Honest Manipulative Actions Are Associated with Increased Interaction between Middle and Inferior Frontal gyri

    Directory of Open Access Journals (Sweden)

    Maxim Kireev

    2017-08-01

    Full Text Available The prefrontal cortex is believed to be responsible for execution of deceptive behavior and its involvement is associated with greater cognitive efforts. It is also generally assumed that deception is associated with the inhibition of default honest actions. However, the precise neurophysiological mechanisms underlying this process remain largely unknown. The present study was aimed to use functional magnetic resonance imaging to reveal the underlying functional integration within the prefrontal cortex during the task which requires that subjects to deliberately mislead an opponent through the sequential execution of deceptive and honest claims. To address this issue, we performed psychophysiological interaction (PPI analysis, which allows for statistical assessment of changes in functional relationships between active brain areas in changing psychological contexts. As a result the whole brain PPI-analysis established that both manipulative honest and deceptive claiming were associated with an increase in connectivity between the left middle frontal gyrus and right temporo-parietal junction (rTPJ. Taking into account the role played by rTPJ in processes associated with the theory of mind the revealed data can reflect possible influence of socio-cognitive context on the process of selecting manipulative claiming regardless their honest or deceptive nature. Direct comparison between deceptive and honest claims revealed pattern enhancement of coupling between the left middle frontal gyrus and the left inferior frontal gyrus. This finding provided evidence that the execution of deception relies to a greater extent on higher-order hierarchically-organized brain mechanisms of executive control required to select between two competing deceptive or honest task sets.

  1. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    Science.gov (United States)

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Memory-Guided Attention: Independent Contributions of the Hippocampus and Striatum.

    Science.gov (United States)

    Goldfarb, Elizabeth V; Chun, Marvin M; Phelps, Elizabeth A

    2016-01-20

    Memory can strongly influence how attention is deployed in future encounters. Though memory dependent on the medial temporal lobes has been shown to drive attention, how other memory systems could concurrently and comparably enhance attention is less clear. Here, we demonstrate that both reinforcement learning and context memory facilitate attention in a visual search task. Using functional magnetic resonance imaging, we dissociate the mechanisms by which these memories guide attention: trial by trial, the hippocampus (not the striatum) predicted attention benefits from context memory, while the striatum (not the hippocampus) predicted facilitation from rewarded stimulus-response associations. Responses in these regions were also distinctly correlated with individual differences in each type of memory-guided attention. This study provides novel evidence for the role of the striatum in guiding attention, dissociable from hippocampus-dependent context memory.

  3. Frontal ataxia in childhood.

    OpenAIRE

    Erasmus, C.E.; Beems, T.; Rotteveel, J.J.

    2004-01-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial seizures. It proved to be caused by a small right-sided cavernoma in the middle frontal gyrus. After surgical intervention the symptoms and the seizures disappeared. Two subsequent cases concern teen...

  4. Why do patients with neurodegenerative frontal syndrome fail to answer: 'In what way are an orange and a banana alike?'.

    Science.gov (United States)

    Lagarde, Julien; Valabrègue, Romain; Corvol, Jean-Christophe; Garcin, Béatrice; Volle, Emmanuelle; Le Ber, Isabelle; Vidailhet, Marie; Dubois, Bruno; Levy, Richard

    2015-02-01

    Concept formation is the ability to create an abstract link between dissimilar objects or thoughts and is crucial for abstract and creative thinking. This process is related to the integrity of the prefrontal cortex, given the altered performances reported in patients with frontal damage, particularly those suffering from the behavioural variant of frontotemporal dementia. However, the cognitive mechanisms and neural bases of verbal concept formation are not clearly understood. The present study was aimed at addressing the following unresolved issues regarding concept formation in the field of neurology and cognitive neuroscience: (i) Are alterations in concept formation specific to frontotemporal dementia or are they also present in other cortical neurodegenerative disorders such as Alzheimer's disease? (ii) Is impaired performance in concept formation due to cortical lesions specific to frontotemporal dementia or to a cortico-subcortical frontal syndrome? and (iii) What are the cognitive mechanisms and neural bases underlying concept formation? To address these questions, we designed the Verbal Concept Formation Task, an experimental paradigm based on the similarities test. Patients presenting with severe frontal dysfunction (frontotemporal dementia, n = 18, and the Richardson form of progressive supranuclear palsy, n = 21) or with medial temporal pathology (amnestic mild cognitive impairment or Alzheimer's disease, n = 14) and healthy participants (n = 18) were given the Verbal Concept Formation Task and a large battery of neuropsychological tests. In addition, all participants underwent 3D T1-weighted MRI to analyse grey matter volume using voxel-based morphometry. Frontal patients were significantly impaired on the Verbal Concept Formation Task as compared to non-frontal participants (P = 0.00001). Global performance score was positively correlated with scores in cognitive tasks assessing executive functions and with grey matter volume in several areas, mostly

  5. Craving behavioral intervention for internet gaming disorder: remediation of functional connectivity of the ventral striatum.

    Science.gov (United States)

    Zhang, Jin-Tao; Ma, Shan-Shan; Li, Chiang-Shan R; Liu, Lu; Xia, Cui-Cui; Lan, Jing; Wang, Ling-Jiao; Liu, Ben; Yao, Yuan-Wei; Fang, Xiao-Yi

    2018-01-01

    Psychobehavioral intervention is an effective treatment of Internet addiction, including Internet gaming disorder (IGD). However, the neural mechanisms underlying its efficacy remain unclear. Cortical-ventral striatum (VS) circuitry is a common target of psychobehavioral interventions in drug addiction, and cortical-VS dysfunction has been reported in IGD; hence, the primary aim of the study was to investigate how the VS circuitry responds to psychobehavioral interventions in IGD. In a cross-sectional study, we examined resting-state functional connectivity of the VS in 74 IGD subjects (IGDs) and 41 healthy controls (HCs). In a follow-up craving behavioral intervention (CBI) study, of the 74 IGD subjects, 20 IGD subjects received CBI (CBI+) and 16 IGD subjects did not (CBI-). All participants were scanned twice with similar time interval to assess the effects of CBI. IGD subjects showed greater resting-state functional connectivity of the VS to left inferior parietal lobule (lIPL), right inferior frontal gyrus and left middle frontal gyrus, in positive association with the severity of IGD. Moreover, compared with CBI-, CBI+ showed significantly greater decrease in VS-lIPL connectivity, along with amelioration in addiction severity following the intervention. These findings demonstrated that functional connectivity between VS and lIPL, each presumably mediating gaming craving and attentional bias, may be a potential biomarker of the efficacy of psychobehavioral intervention. These results also suggested that non-invasive techniques such as transcranial magnetic or direct current stimulation targeting the VS-IPL circuitry may be used in the treatment of Internet gaming disorders. © 2016 Society for the Study of Addiction.

  6. Frontal white matter alterations in short-term medicated panic disorder patients without comorbid conditions: a diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Borah Kim

    Full Text Available The frontal cortex might play an important role in the fear network, and white matter (WM integrity could be related to the pathophysiology of panic disorder (PD. A few studies have investigated alterations of WM integrity in PD. The aim of this study was to determine frontal WM integrity differences between patients with PD without comorbid conditions and healthy control (HC subjects by using diffusion tensor imaging. Thirty-six patients with PD who had used medication within 1 week and 27 age- and sex-matched HC subjects participated in this study. Structural brain magnetic resonance imaging was performed on all participants. Panic Disorder Severity Scale and Beck Anxiety Inventory (BAI scores were assessed. Tract-based spatial statistics (TBSS was used for image analysis. TBSS analysis showed decreased fractional anisotropy (FA in frontal WM and WM around the frontal lobe, including the corpus callosum of both hemispheres, in patients with PD compared to HC subjects. Moreover, voxel-wise correlation analysis revealed that the BAI scores for patients with PD were positively correlated with their FA values for regions showing group differences in the FA of frontal WM of both hemispheres. Altered integrity in frontal WM of patients with PD without comorbid conditions might represent the structural pathophysiology in these patients, and these changes could be related to clinical symptoms of PD.

  7. Frontoparietal cortex mediates perceptual transitions in bistable perception.

    Science.gov (United States)

    Weilnhammer, Veith A; Ludwig, Karin; Hesselmann, Guido; Sterzer, Philipp

    2013-10-02

    During bistable vision, perception oscillates between two mutually exclusive percepts despite constant sensory input. Greater BOLD responses in frontoparietal cortex have been shown to be associated with endogenous perceptual transitions compared with "replay" transitions designed to closely match bistability in both perceptual quality and timing. It has remained controversial, however, whether this enhanced activity reflects causal influences of these regions on processing at the sensory level or, alternatively, an effect of stimulus differences that result in, for example, longer durations of perceptual transitions in bistable perception compared with replay conditions. Using a rotating Lissajous figure in an fMRI experiment on 15 human participants, we controlled for potential confounds of differences in transition duration and confirmed previous findings of greater activity in frontoparietal areas for transitions during bistable perception. In addition, we applied dynamic causal modeling to identify the neural model that best explains the observed BOLD signals in terms of effective connectivity. We found that enhanced activity for perceptual transitions is associated with a modulation of top-down connectivity from frontal to visual cortex, thus arguing for a crucial role of frontoparietal cortex in perceptual transitions during bistable perception.

  8. Frontal ataxia in childhood.

    NARCIS (Netherlands)

    Erasmus, C.E.; Beems, T.; Rotteveel, J.J.

    2004-01-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial

  9. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex.

    Science.gov (United States)

    Martín, Virginia; Fabelo, Noemí; Santpere, Gabriel; Puig, Berta; Marín, Raquel; Ferrer, Isidre; Díaz, Mario

    2010-01-01

    Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimer's disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.

  10. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum

    NARCIS (Netherlands)

    Willuhn, Ingo; Burgeno, Lauren M; Groblewski, Peter A; Phillips, Paul E M

    Drug addiction is a neuropsychiatric disorder marked by escalating drug use. Dopamine neurotransmission in the ventromedial striatum (VMS) mediates acute reinforcing effects of abused drugs, but with protracted use the dorsolateral striatum is thought to assume control over drug seeking. We measured

  11. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA

    DEFF Research Database (Denmark)

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-01-01

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples...

  12. Habit formation coincides with shifts in reinforcement representations in the sensorimotor striatum.

    Science.gov (United States)

    Smith, Kyle S; Graybiel, Ann M

    2016-03-01

    Evaluating outcomes of behavior is a central function of the striatum. In circuits engaging the dorsomedial striatum, sensitivity to goal value is accentuated during learning, whereas outcome sensitivity is thought to be minimal in the dorsolateral striatum and its habit-related corticostriatal circuits. However, a distinct population of projection neurons in the dorsolateral striatum exhibits selective sensitivity to rewards. Here, we evaluated the outcome-related signaling in such neurons as rats performed an instructional T-maze task for two rewards. As the rats formed maze-running habits and then changed behavior after reward devaluation, we detected outcome-related spike activity in 116 units out of 1,479 recorded units. During initial training, nearly equal numbers of these units fired preferentially either after rewarded runs or after unrewarded runs, and the majority were responsive at only one of two reward locations. With overtraining, as habits formed, firing in nonrewarded trials almost disappeared, and reward-specific firing declined. Thus error-related signaling was lost, and reward signaling became generalized. Following reward devaluation, in an extinction test, postgoal activity was nearly undetectable, despite accurate running. Strikingly, when rewards were then returned, postgoal activity reappeared and recapitulated the original early response pattern, with nearly equal numbers responding to rewarded and unrewarded runs and to single rewards. These findings demonstrate that outcome evaluation in the dorsolateral striatum is highly plastic and tracks stages of behavioral exploration and exploitation. These signals could be a new target for understanding compulsive behaviors that involve changes to dorsal striatum function. Copyright © 2016 the American Physiological Society.

  13. Frontal Lobe Seizures

    Science.gov (United States)

    ... cause of frontal lobe epilepsy remains unknown. Complications Status epilepticus. Frontal lobe seizures tend to occur in clusters and may provoke a dangerous condition called status epilepticus — in which seizure activity lasts much longer than ...

  14. Differential involvement of left prefrontal cortex in inductive and deductive reasoning.

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J

    2004-10-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.

  15. c-Fos induction in mesotelencephalic dopamine pathway projection targets and dorsal striatum following oral intake of sugars and fats in rats.

    Science.gov (United States)

    Dela Cruz, J A D; Coke, T; Karagiorgis, T; Sampson, C; Icaza-Cukali, D; Kest, K; Ranaldi, R; Bodnar, R J

    2015-02-01

    Overconsumption of nutrients high in fats and sugars can lead to obesity. Previous studies indicate that sugar or fat consumption activate individual brain sites using Fos-like immunoreactivity (FLI). Sugars and fats also elicit conditioned flavor preferences (CFP) that are differentially mediated by flavor-flavor (orosensory: f/f) and flavor-nutrient (post-ingestive: f/n) processes. Dopamine (DA) signaling in the medial prefrontal cortex (mPFC), the amygdala (AMY) and the nucleus accumbens (NAc), has been implicated in acquisition and expression of fat- and sugar-CFP. The present study examined the effects of acute consumption of fat (corn oil: f/f and f/n), glucose (f/f and f/n), fructose, (f/f only), saccharin, xanthan gum or water upon simultaneous FLI activation of DA mesotelencephalic nuclei (ventral tegmental area (VTA)) and projections (infralimbic and prelimbic mPFC, basolateral and central-cortico-medial AMY, core and shell of NAc as well as the dorsal striatum). Consumption of corn oil solutions, isocaloric to glucose and fructose, significantly increased FLI in all sites except for the NAc shell. Glucose intake significantly increased FLI in both AMY areas, dorsal striatum and NAc core, but not in either mPFC area, VTA or Nac shell. Correspondingly, fructose intake significantly increased FLI in the both AMY areas, the infralimbic mPFC and dorsal striatum, but not the prelimbic mPFC, VTA or either NAc area. Saccharin and xanthan gum intake failed to activate FLI relative to water. When significant FLI activation occurred, highly positive relationships were observed among sites, supporting the idea of activation of a distributed brain network mediating sugar and fat intake. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Disturbed neural circuits in a subtype of chronic catatonic schizophrenia demonstrated by F-18-FDG-PET and F-18-DOPA-PET

    International Nuclear Information System (INIS)

    Lauer, M.; Beckmann, H.; Stoeber, G.; Schirrmeister, H.; Gerhard, A.; Ellitok, E.; Reske, S.N.

    2001-01-01

    Permanent verbal, visual scenic and coenaestetic hallucinations are the most prominent psychopathological symptoms aside from psychomotor disorders in speech-sluggish catatonia, a subtype of chronic catatonic schizophrenia according to Karl Leonhard. These continuous hallucinations serve as an excellent paradigm for the investigation of the assumed functional disturbances of cortical circuits in schizophrenia. Data from positron emission tomography (F-18-FDG-PET and F-18-DOPA-PET) from three patients with this rare phenotype were available (two cases of simple speech-sluggish catatonia, one case of a combined speech-prompt/speech-sluggish subtype) and were compared with a control collective. During their permanent hallucinations, all catatonic patients showed a clear bitemporal hypometabolism in the F-18-FDG-PET. Both patients with the simple speech-sluggish catatonia showed an additional bilateral thalamic hypermetabolism and an additional bilateral hypometabolism of the frontal cortex, especially on the left side. In contrast, the patient with the combined speech-prompt/speech-sluggish catatonia showed a bilateral thalamic hypo-metabolism combined with a bifrontal cortical hypermetabolism. However, the left/right ratio of the frontal cortex also showed a lateralization effect with a clear relative hypometabolism of the left frontal cortex. The F-18-DOPA-PET of both schizophrenic patients with simple speech-sluggish catatonia showed a normal F-18-DOPA storage in the striatum, whereas in the right putamen of the patient with the combined form a higher right/left ratio in F-DOPA storage was discernible, indicating an additional lateralized influence of the dopaminergic system in this subtype of chronic catatonic schizophrenia. (author)

  17. Human dorsal striatum encodes prediction errors during observational learning of instrumental actions.

    Science.gov (United States)

    Cooper, Jeffrey C; Dunne, Simon; Furey, Teresa; O'Doherty, John P

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of others. In this study, we investigated the extent to which human dorsal striatum is involved in observational as well as experiential instrumental reward learning. Human participants were scanned with fMRI while they observed a confederate over a live video performing an instrumental conditioning task to obtain liquid juice rewards. Participants also performed a similar instrumental task for their own rewards. Using a computational model-based analysis, we found reward prediction errors in the dorsal striatum not only during the experiential learning condition but also during observational learning. These results suggest a key role for the dorsal striatum in learning instrumental associations, even when those associations are acquired purely by observing others.

  18. Oxidative stress in a model of toxic demyelination in rat brain: the effect of piracetam and vinpocetine.

    Science.gov (United States)

    Abdel-Salam, Omar M E; Khadrawy, Yasser A; Salem, Neveen A; Sleem, Amany A

    2011-06-01

    We studied the role of oxidative stress and the effect of vinpocetine (1.5, 3 or 6 mg/kg) and piracetam (150 or 300 mg/kg) in acute demyelination of the rat brain following intracerebral injection of ethidium bromide (10 μl of 0.1%). ethidium bromide caused (1) increased malondialdehyde (MDA) in cortex, hippocampus and striatum; (2) decreased total antioxidant capacity (TAC) in cortex, hippocampus and striatum; (3) decreased reduced glutathione (GSH) in cortex and hippocampus (4); increased serum nitric oxide and (5) increased striatal (but not cortical or hippocampal) acetylcholinesterase (AChE) activity. MDA decreased in striatum and cortex by the lower doses of vinpocetine or piracetam but increased in cortex and hippocampus and in cortex, hypothalamus and striatum by the higher dose of vinpocetine or piracetam, respectively along with decreased TAC. GSH increased by the higher dose of piracetam and by vinpocetine which also decreased serum nitric oxide. Vinpocetine and piracetam displayed variable effects on regional AChE activity.

  19. Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study.

    Science.gov (United States)

    Kemerdere, Rahsan; de Champfleur, Nicolas Menjot; Deverdun, Jérémy; Cochereau, Jérôme; Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2016-01-01

    The neural correlates of stuttering are to date incompletely understood. Although the possible involvement of the basal ganglia, the cerebellum and certain parts of the cerebral cortex in this speech disorder has previously been reported, there are still not many studies investigating the role of white matter fibers in stuttering. Axonal stimulation during awake surgery provides a unique opportunity to study the functional role of structural connectivity. Here, our goal was to investigate the white matter tracts implicated in stuttering, by combining direct electrostimulation mapping and postoperative tractography imaging, with a special focus on the left frontal aslant tract. Eight patients with no preoperative stuttering underwent awake surgery for a left frontal low-grade glioma. Intraoperative cortical and axonal electrical mapping was used to interfere in speech processing and subsequently provoke stuttering. We further assessed the relationship between the subcortical sites leading to stuttering and the spatial course of the frontal aslant tract. All patients experienced intraoperative stuttering during axonal electrostimulation. On postsurgical tractographies, the subcortical distribution of stimulated sites matched the topographical position of the left frontal aslant tract. This white matter pathway was preserved during surgery, and no patients had postoperative stuttering. For the first time to our knowledge, by using direct axonal stimulation combined with postoperative tractography, we provide original data supporting a pivotal role of the left frontal aslant tract in stuttering. We propose that this speech disorder could be the result of a disconnection within a large-scale cortico-subcortical circuit subserving speech motor control.

  20. Frontal-subcortical volumetric deficits in single episode, medication-naïve depressed patients and the effects of 8 weeks fluoxetine treatment: a VBM-DARTEL study.

    Directory of Open Access Journals (Sweden)

    Lingtao Kong

    Full Text Available BACKGROUND: Convergent studies suggest that morphological abnormalities of frontal-subcortical circuits which involved with emotional and cognitive processing may contribute to the pathophysiology of major depressive disorder (MDD. Antidepressant treatment which has been reported to reverse the functional abnormalities of frontal-subcortical circuits in MDD may have treating effects to related brain morphological abnormalities. In this study, we used voxel-based morphometry method to investigate whole brain structural abnormalities in single episode, medication-naïve MDD patients. Furthermore, we investigated the effects of an 8 weeks pharmacotherapy with fluoxetine. METHODS: 28 single episode, medication-naïve MDD participants and 28 healthy controls (HC acquired the baseline high-resolution structural magnetic resonance imaging (sMRI scan. 24 MDD participants acquired a follow-up sMRI scan after 8 weeks antidepressant treatment. Gray matter volumetric (GMV difference between groups was examined. RESULTS: Medication-naïve MDD had significantly decreased GMV in the right dorsolateral prefrontal cortex and left middle frontal gyrus as well as increased GMV in the left thalamus and right insula compared to HC (P<0.05, corrected. Moreover, treated MDD had significantly increased GMV in the left middle frontal gyrus and right orbitofrontal cortex compared to HC (P<0.05, corrected. No difference on GMV was detected between medication-naïve MDD group and treated MDD group. CONCLUSIONS: This study of single episode, medication-naïve MDD subjects demonstrated structural abnormalities of frontal-subcortical circuitsin the early stage of MDD and the effects of 8 weeks successful antidepressant treatment, suggesting these abnormalities may play an important role in the neuropathophysiology of MDD at its onset.

  1. Amygdala-prefrontal cortex resting-state functional connectivity varies with first depressive or manic episode in bipolar disorder.

    Science.gov (United States)

    Wei, Shengnan; Geng, Haiyang; Jiang, Xiaowei; Zhou, Qian; Chang, Miao; Zhou, Yifang; Xu, Ke; Tang, Yanqing; Wang, Fei

    2017-02-22

    Bipolar disorder (BD) is one of the most complex mental illnesses, characterized by interactive depressive and manic states that are 2 contrary symptoms of disease states. The bilateral amygdala and prefrontal cortex (PFC) appear to play critical roles in BD; however, abnormalities seem to manifest differently in the 2 states and may provide further insight into underlying mechanisms. Sixteen participants with first-episode depressive and 13 participants with first-episode manic states of bipolar disorder as well as 30 healthy control (HC) participants underwent resting-state functional magnetic resonance imaging (fMRI). Resting-state functional connectivity (rsFC) between the bilateral amygdala and PFC was compared among the 3 groups. Compared with depressive state participants of the BD group, manic state participants of the BD group showed a significant decrease in rsFC between the amygdala and right orbital frontal cortex (pamygdala and left middle frontal cortex was significantly decreased in depressive and manic state participants of the BD group when compared with the HC group (pamygdala- left PFC functional connectivity might present the trait feature for BD, while deficits in amygdala- right PFC functional connectivity might be specific to manic episode, compared to depressive episode. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. a7 nicotinic receptor agonism mitigates phencyclidine-induced changes in synaptophysin and Arc gene expression in the mouse prefrontal cortex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    Repeated phencyclidine (PCP) administration in mice reproduces several histopathological features of schizophrenia, such as reduced synaptophysin and parvalbumin mRNA expression in the frontal cortex. These changes can be prevented by co-administering the a7 nicotinic acetylcholine receptor (n...

  3. α7 nicotinic receptor agonism mitigates phencyclidine-induced changes in synaptophysin and Arc gene expression in the mouse prefrontal cortex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    Repeated phencyclidine (PCP) administration in mice reproduces several histopathological features of schizophrenia, such as reduced synaptophysin and parvalbumin mRNA expression in the frontal cortex. These changes can be prevented by co-administering the α7 nicotinic acetylcholine receptor (n...

  4. Loss of metabolites from monkey striatum during PET with FDOPA

    DEFF Research Database (Denmark)

    Cumming, P; Munk, O L; Doudet, D

    2001-01-01

    diffusion of [(18)F]fluorodopamine metabolites from brain. Consequently, time-radioactivity recordings of striatum are progressively influenced by metabolite loss. In linear analyses, the net blood-brain clearance of FDOPA (K(D)(i), ml g(-1) min(-1)) can be corrected for this loss by the elimination rate...... constant k(Lin)(cl) (min(-1)). Similarly, the DOPA decarboxylation rate constant (k(D)(3), min(-1)) calculated by compartmental analysis can also be corrected for metabolite loss by the elimination rate constant k(DA)(9) (min(-1)). To compare the two methods, we calculated the two elimination rate...... of the estimate was substantially improved upon correction for metabolite loss. The rate constants for metabolite loss were higher in MPTP-lesioned monkey striatum than in normal striatum. The high correlation between individual estimates of k(Lin)(cl) and k(DA)(9) suggests that both rate constants reveal loss...

  5. Subregions of the human superior frontal gyrus and their connections.

    Science.gov (United States)

    Li, Wei; Qin, Wen; Liu, Huaigui; Fan, Lingzhong; Wang, Jiaojian; Jiang, Tianzi; Yu, Chunshui

    2013-09-01

    The superior frontal gyrus (SFG) is located at the superior part of the prefrontal cortex and is involved in a variety of functions, suggesting the existence of functional subregions. However, parcellation schemes of the human SFG and the connection patterns of each subregion remain unclear. We firstly parcellated the human SFG into the anteromedial (SFGam), dorsolateral (SFGdl), and posterior (SFGp) subregions based on diffusion tensor tractography. The SFGam was anatomically connected with the anterior and mid-cingulate cortices, which are critical nodes of the cognitive control network and the default mode network (DMN). The SFGdl was connected with the middle and inferior frontal gyri, which are involved in the cognitive execution network. The SFGp was connected with the precentral gyrus, caudate, thalamus, and frontal operculum, which are nodes of the motor control network. Resting-state functional connectivity analysis further revealed that the SFGam was mainly correlated with the cognitive control network and the DMN; the SFGdl was correlated with the cognitive execution network and the DMN; and the SFGp was correlated with the sensorimotor-related brain regions. The SFGam and SFGdl were further parcellated into three and two subclusters that are well corresponding to Brodmann areas. These findings suggest that the human SFG consists of multiple dissociable subregions that have distinct connection patterns and that these subregions are involved in different functional networks and serve different functions. These results may improve our understanding on the functional complexity of the SFG and provide us an approach to investigate the SFG at the subregional level. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Regulatory behavior and frontal activity: Considering the role of revised-BIS in relative right frontal asymmetry.

    Science.gov (United States)

    Gable, Philip A; Neal, Lauren B; Threadgill, A Hunter

    2018-01-01

    Essential to human behavior are three core personality systems: approach, avoidance, and a regulatory system governing the two motivational systems. Decades of research has linked approach motivation with greater relative left frontal-cortical asymmetry. Other research has linked avoidance motivation with greater relative right frontal-cortical asymmetry. However, past work linking withdrawal motivation with greater relative right frontal asymmetry has been mixed. The current article reviews evidence suggesting that activation of the regulatory system (revised Behavioral Inhibition System [r-BIS]) may be more strongly related to greater relative right frontal asymmetry than withdrawal motivation. Specifically, research suggests that greater activation of the r-BIS is associated with greater relative right frontal activity, and reduced r-BIS activation is associated with reduced right frontal activity (greater relative left frontal activity). We review evidence examining trait and state frontal activity using EEG, source localization, lesion studies, neuronal stimulation, and fMRI supporting the idea that r-BIS may be the core personality system related to greater relative right frontal activity. In addition, the current review seeks to disentangle avoidance motivation and r-BIS as substrates of relative right frontal asymmetry. © 2017 Society for Psychophysiological Research.

  7. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder.

    Science.gov (United States)

    Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N

    2017-12-01

    Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.

  8. New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography.

    Science.gov (United States)

    De Benedictis, Alessandro; Petit, Laurent; Descoteaux, Maxime; Marras, Carlo Efisio; Barbareschi, Mattia; Corsini, Francesco; Dallabona, Monica; Chioffi, Franco; Sarubbo, Silvio

    2016-12-01

    Extensive studies revealed that the human corpus callosum (CC) plays a crucial role in providing large-scale bi-hemispheric integration of sensory, motor and cognitive processing, especially within the frontal lobe. However, the literature lacks of conclusive data regarding the structural macroscopic connectivity of the frontal CC. In this study, a novel microdissection approach was adopted, to expose the frontal fibers of CC from the dorsum to the lateral cortex in eight hemispheres and in one entire brain. Post-mortem results were then combined with data from advanced constrained spherical deconvolution in 130 healthy subjects. We demonstrated as the frontal CC provides dense inter-hemispheric connections. In particular, we found three types of fronto-callosal fibers, having a dorso-ventral organization. First, the dorso-medial CC fibers subserve homotopic connections between the homologous medial cortices of the superior frontal gyrus. Second, the ventro-lateral CC fibers subserve homotopic connections between lateral frontal cortices, including both the middle frontal gyrus and the inferior frontal gyrus, as well as heterotopic connections between the medial and lateral frontal cortices. Third, the ventro-striatal CC fibers connect the medial and lateral frontal cortices with the contralateral putamen and caudate nucleus. We also highlighted an intricate crossing of CC fibers with the main association pathways terminating in the lateral regions of the frontal lobes. This combined approach of ex vivo microdissection and in vivo diffusion tractography allowed demonstrating a previously unappreciated three-dimensional architecture of the anterior frontal CC, thus clarifying the functional role of the CC in mediating the inter-hemispheric connectivity. Hum Brain Mapp 37:4718-4735, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Reduced frontal brain volume in non-treatment-seeking cocaine-dependent individuals: exploring the role of impulsivity, depression, and smoking.

    Science.gov (United States)

    Crunelle, Cleo L; Kaag, Anne Marije; van Wingen, Guido; van den Munkhof, Hanna E; Homberg, Judith R; Reneman, Liesbeth; van den Brink, Wim

    2014-01-01

    In cocaine-dependent patients, gray matter (GM) volume reductions have been observed in the frontal lobes that are associated with the duration of cocaine use. Studies are mostly restricted to treatment-seekers and studies in non-treatment-seeking cocaine abusers are sparse. Here, we assessed GM volume differences between 30 non-treatment-seeking cocaine-dependent individuals and 33 non-drug using controls using voxel-based morphometry. Additionally, within the group of non-treatment-seeking cocaine-dependent individuals, we explored the role of frequently co-occurring features such as trait impulsivity (Barratt Impulsivity Scale, BIS), smoking, and depressive symptoms (Beck Depression Inventory), as well as the role of cocaine use duration, on frontal GM volume. Smaller GM volumes in non-treatment-seeking cocaine-dependent individuals were observed in the left middle frontal gyrus. Moreover, within the group of cocaine users, trait impulsivity was associated with reduced GM volume in the right orbitofrontal cortex, the left precentral gyrus, and the right superior frontal gyrus, whereas no effect of smoking severity, depressive symptoms, or duration of cocaine use was observed on regional GM volumes. Our data show an important association between trait impulsivity and frontal GM volumes in cocaine-dependent individuals. In contrast to previous studies with treatment-seeking cocaine-dependent patients, no significant effects of smoking severity, depressive symptoms, or duration of cocaine use on frontal GM volume were observed. Reduced frontal GM volumes in non-treatment-seeking cocaine-dependent subjects are associated with trait impulsivity and are not associated with co-occurring nicotine dependence or depression.

  10. A novel locus in the oxidative stress-related gene ALOX12 moderates the association between PTSD and thickness of the prefrontal cortex.

    Science.gov (United States)

    Miller, Mark W; Wolf, Erika J; Sadeh, Naomi; Logue, Mark; Spielberg, Jeffrey M; Hayes, Jasmeet P; Sperbeck, Emily; Schichman, Steven A; Stone, Angie; Carter, Weleetka C; Humphries, Donald E; Milberg, William; McGlinchey, Regina

    2015-12-01

    Oxidative stress has been implicated in many common age-related diseases and is hypothesized to play a role in posttraumatic stress disorder (PTSD)-related neurodegeneration (Miller and Sadeh, 2014). This study examined the influence of the oxidative stress-related genes ALOX 12 and ALOX 15 on the association between PTSD and cortical thickness. Factor analyses were used to identify and compare alternative models of the structure of cortical thickness in a sample of 218 veterans. The best-fitting model was then used for a genetic association analysis in White non-Hispanic participants (n=146) that examined relationships between 33 single nucleotide polymorphisms (SNPs) spanning the two genes, 8 cortical thickness factors, and each SNP×PTSD interaction. Results identified a novel ALOX12 locus (indicated by two SNPs in perfect linkage disequilibrium: rs1042357 and rs10852889) that moderated the association between PTSD and reduced thickness of the right prefrontal cortex. A whole-cortex vertex-wise analysis showed this effect to be localized to clusters spanning the rostral middle frontal gyrus, superior frontal gyrus, rostral anterior cingulate cortex, and medial orbitofrontal cortex. These findings illustrate a novel factor-analytic approach to neuroimaging-genetic analyses and provide new evidence for the possible involvement of oxidative stress in PTSD-related neurodegeneration. Published by Elsevier Ltd.

  11. Decoding rule search domain in the left inferior frontal gyrus

    Science.gov (United States)

    Babcock, Laura; Vallesi, Antonino

    2018-01-01

    Traditionally, the left hemisphere has been thought to extract mainly verbal patterns of information, but recent evidence has shown that the left Inferior Frontal Gyrus (IFG) is active during inductive reasoning in both the verbal and spatial domains. We aimed to understand whether the left IFG supports inductive reasoning in a domain-specific or domain-general fashion. To do this we used Multi-Voxel Pattern Analysis to decode the representation of domain during a rule search task. Thirteen participants were asked to extract the rule underlying streams of letters presented in different spatial locations. Each rule was either verbal (letters forming words) or spatial (positions forming geometric figures). Our results show that domain was decodable in the left prefrontal cortex, suggesting that this region represents domain-specific information, rather than processes common to the two domains. A replication study with the same participants tested two years later confirmed these findings, though the individual representations changed, providing evidence for the flexible nature of representations. This study extends our knowledge on the neural basis of goal-directed behaviors and on how information relevant for rule extraction is flexibly mapped in the prefrontal cortex. PMID:29547623

  12. Corynebacterium striatum infecting a malignant cutaneous lesion: the emergence of an opportunistic pathogen Corynebacterium striatum infectando lesão cutânea maligna: a emergência de um patógeno oportunista

    Directory of Open Access Journals (Sweden)

    Silvana Vargas Superti

    2009-04-01

    Full Text Available We described a case of a 27-year old male patient with skin and soft tissue infection of a neoplastic lesion caused by Corynebacterium striatum, an organism which has been rarely described as a human pathogen. Identification was confirmed by DNA sequencing. Successful treatment with penicillin was achieved. The role of the C. striatum as an emerging opportunistic pathogen is discussed.Descrevemos infecção de lesão neoplásica em paciente masculino de 27 anos, envolvendo pele e partes moles, causada por Corynebacterium striatum, um microrganismo raramente descrito como patógeno humano. A identificação foi confirmada por seqüenciamento de DNA. O paciente foi tratado com penicilina, com sucesso. O papel do C. striatum como patógeno oportunista é discutido.

  13. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    Science.gov (United States)

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  14. Stopping, goal-conflict, trait anxiety and frontal rhythmic power in the stop-signal task.

    Science.gov (United States)

    Neo, Phoebe S-H; Thurlow, Jane K; McNaughton, Neil

    2011-12-01

    The medial right frontal cortex is implicated in fast stopping of an initiated motor action in the stop-signal task (SST). To assess whether this region is also involved in the slower behavioural inhibition induced by goal conflict, we tested for effects of goal conflict (when stop and go tendencies are balanced) on low-frequency rhythms in the SST. Stop trials were divided, according to the delays at which the stop signal occurred, into short-, intermediate-, and long-delay trials. Consistent with goal-conflict processing, intermediate-delay trials were associated with greater 7-8 Hz EEG power than short- or long-delay trials at medial right frontal sites (Fz, F4, and F8). At F8, 7-8 Hz power was linked to high trait anxiety and neuroticism. A separate 4-7 Hz power increase was also seen in stop, relative to go, trials, but this was independent of delay, was maximal at the central midline site Cz, and predicted faster stopping. Together with previous data on the SST, these results suggest that the right frontal region could be involved in multiple inhibition mechanisms. We propose a hierarchical model of the control of stopping that integrates the literature on the neural control of fast motor stopping with that on slower, motive-directed behavioural inhibition.

  15. Hemiballism due to the lesion in the striatum demonstrated by CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, S; Ito, N; Hirayama, K [Chiba Univ. (Japan). School of Medicine; Tochigi, S

    1981-09-01

    Two cases of hemiballism due to vascular lesions in the striatum demonstrated by CT scan were reported. Case 1 was a 58-year-old man with hypertension and diabetes mellitus, who had cerebral hemorrhage in the right striatum. Hemiballistic movements, which were confined to his face, neck and trunk as well as limbs of the left side, appeared soon after CVA and improved on treatment with haloperidol up to 4 mg per day. Case 2 was a 63-year-old woman with hypertension, who had probable cerebral infarct in the right striatum. The hemiballistic movements, confined to her right side, appeared soon after CVA and improved on treatment with chlorpromazine up to 50 mg per day, and perphenazine up to 6 mg per day. Whereas case 1 had contralateral hemiballism, case 2 had homolateral hemiballism, both due to vascular lesions in the striatum. Although it has been generally accepted, from postmortem and experimental studies, that the lesion responsible for hemiballism was localized in the contralateral subthalamic nucleus, a few cases of hemiballism have been reported, in which the subthalamic nucleus (Luys' body) and its connections appeared to be intact at necropsy. The present cases of hemiballism with involvement of the striatum without involvement of the subthalamic nucleus by CT scan, seem to be the first reported cases. It is not clear in the CT scan whether the subthalamic nucleus is also involved in addition to the striatal lesion, however, it is unlikely due to different vascular supplies to these areas. From a clinical and an experimental point of view, we would like to propose that hemiballism can occur due to the lesion in the striatum, especially the caudate nucleus even when the subthalamic nucleus and its connections are intact.

  16. Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs.

    Science.gov (United States)

    Berke, J D

    2009-09-01

    Oscillations may organize communication between components of large-scale brain networks. Although gamma-band oscillations have been repeatedly observed in cortical-basal ganglia circuits, their functional roles are not yet clear. Here I show that, in behaving rats, distinct frequencies of ventral striatal local field potential oscillations show coherence with different cortical inputs. The approximately 50 Hz gamma oscillations that normally predominate in awake ventral striatum are coherent with piriform cortex, whereas approximately 80-100 Hz high-gamma oscillations are coherent with frontal cortex. Within striatum, entrainment to gamma rhythms is selective to fast-spiking interneurons, with distinct fast-spiking interneuron populations entrained to different gamma frequencies. Administration of the psychomotor stimulant amphetamine or the dopamine agonist apomorphine causes a prolonged decrease in approximately 50 Hz power and increase in approximately 80-100 Hz power. The same frequency switch is observed for shorter epochs spontaneously in awake, undrugged animals and is consistently provoked for reward receipt. Individual striatal neurons can participate in these brief high-gamma bursts with, or without, substantial changes in firing rate. Switching between discrete oscillatory states may allow different modes of information processing during decision-making and reinforcement-based learning, and may also be an important systems-level process by which stimulant drugs affect cognition and behavior.

  17. Reduced levels of NR1 and NR2A with depression-like behavior in different brain regions in prenatally stressed juvenile offspring.

    Directory of Open Access Journals (Sweden)

    Hongli Sun

    Full Text Available Adolescence is a time of continued brain maturation, particularly in limbic and cortical regions, which undoubtedly plays a role in the physiological and emotional changes. Juvenile rats repeatedly exposed to prenatal stress (PS exhibit behavioral features often observed in neuropsychiatric disorders including depression. However, to date the underlying neurological mechanisms are still unclear. In the current study, juvenile offspring rats whose mothers were exposed to PS were evaluated for depression-related behaviors in open field and sucrose preference test. NMDA receptor subunits NR1 and NR2A in the hippocampus, frontal cortex and striatum were assayed by western blotting. The results indicated that PS resulted in several behavioral anomalies in the OFT and sucrose preference test. Moreover, reduced levels of NMDA receptor subunits NR1 and NR2A in the hippocampus, and NR1 in prefrontal cortex and striatum of prenatally stressed juvenile offspring were found. Treatment with MK-801 to pregnant dams could prevent all those changes in the juvenile offspring. Collectivity, these data support the argument that PS to pregnant dams could induce depression-like behavior, which may be involved with abnormal expression of NR1 and NR2A in specific brain regions, and MK-801 may have antidepressant-like effects on the juvenile offspring.

  18. Auditory conflict resolution correlates with medial-lateral frontal theta/alpha phase synchrony.

    Science.gov (United States)

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters "A" or "O". They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60-110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance.

  19. Auditory Conflict Resolution Correlates with Medial–Lateral Frontal Theta/Alpha Phase Synchrony

    Science.gov (United States)

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters “A” or “O”. They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60–110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance. PMID:25343503

  20. Word wins over Face: Emotional Stroop effect activates the frontal cortical network

    Directory of Open Access Journals (Sweden)

    Shima Ovaysikia

    2011-01-01

    Full Text Available The prefrontal cortex (PFC has been implicated in higher order cognitive control of behaviour. Sometimes such control is executed through suppression of an unwanted response in order to avoid conflict. Conflict occurs when two simultaneously competing processes lead to different behavioral outcomes, as seen in tasks such as the anti-saccade, go/no-go and the Stroop task. We set out to examine whether different types of stimuli in a modified emotional Stroop task would cause similar interference effects as the original Stroop-colour/word, and whether the required suppression mechanism(s would recruit similar regions of the medial PFC (mPFC. By using emotional words and emotional faces in this Stroop experiment, we examined the two well-learned automatic behaviours of word reading and recognition of face expressions. In our emotional Stroop paradigm, words were processed faster than face expressions with incongruent trials yielding longer reaction times (RT and larger number of errors compared to the congruent trials. This novel Stroop effect activated the anterior and inferior regions of the mPFC, namely the anterior cingulate cortex (ACC, inferior frontal gyrus (IFG as well as the superior frontal gyrus. Our results suggest that prepotent behaviours such as reading and recognition of face expressions are stimulus-dependent and perhaps hierarchical, hence recruiting distinct regions of the mPFC. Moreover, the faster processing of word reading compared to reporting face expressions is indicative of the formation of stronger stimulus-response (SR associations of an over-learned behaviour compared to an instinctive one, which could alternatively be explained through the distinction between awareness and selective attention.