WorldWideScience

Sample records for striated muscle myofibrils

  1. Compositional studies of myofibrils from rabbit striated muscle

    Energy Technology Data Exchange (ETDEWEB)

    Etlinger, J.D.; Zak, R.; Fischman, D.A.

    1976-01-01

    The localization of high-molecular-weight (80,000-200,000-daltons) proteins in the sarcomere of striated muscle has been studied by coordinated electron-microscopic and sodium dodecyl sulfate (SDS) gel electrophoretic analysis of native myofilaments and extracted and digested myofibrils. Methods were developed for the isolation of thick and thin filaments and of uncontracted myofibrils which are devoid of endoproteases and membrane fragments. Treatment of crude myofibrils with 0.5% Triton X-100 results in the release of a 110,000-dalton component without affecting the myofibrillar structure. Extraction of uncontracted myofibrils with a relaxing solution of high ionic strength results in the complete disappearance of the A band and M line. In this extract, five other protein bands in addition to myosin are resolved on SDS gels: bands M 1 (190,000 daltons) and M 2 (170,000 daltons), which are suggested to be components of the M line; M 3 (150,000 daltons), a degradation product; and a doublet M 4, M 5 (140,000 daltons), thick-filament protein having the same mobility as C protein.

  2. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    OpenAIRE

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin sub...

  3. Autoradiographic analysis of protein regeneration in striated skeleton muscle

    International Nuclear Information System (INIS)

    Dadoune, J.P.

    1977-01-01

    An autoradiographic study was conducted of protein regeneration in striated muscles aimed at clarifying the contradictions in the literature: while some authors hold that the regeneration rate is identical for all types of myofibril proteins and the myofibril is thus regenerated as a whole, others claim that the regeneration rate differs depending on the type of the myofibril protein. Tritium-labelled leucine incorporation experiments showed the existence of at least 2 pools of newly formed proteins in striated muscles in both adult and young animals. One pool is regenerated in 1 to 2 weeks, the other roughly in a month. The regeneration of proteins is initially more significant in red fibres; thus the rate of myofibril protein regeneration is not uniform. In adult animals regeneration seems to be slower in filaments than in the sarcoplasm and in the mitochondria. (A.K.)

  4. Poorly Understood Aspects of Striated Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Alf Månsson

    2015-01-01

    Full Text Available Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP. Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.

  5. Striated Muscle Function, Regeneration, and Repair

    Science.gov (United States)

    Shadrin, I.Y.; Khodabukus, A.; Bursac, N.

    2016-01-01

    As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751

  6. Systems Biology Approaches to Discerning Striated Muscle Pathologies

    OpenAIRE

    Mukund, Kavitha

    2016-01-01

    The human muscular system represents nearly 75% of the body mass and encompasses two major muscle forms- striated and smooth. Striated muscle, composed broadly of myofibers, accompanying membrane systems, cytoskeletal networks together with the metabolic and regulatory machinery, have revealed complexities in composition, structure and function. A disruption to any component within this complex system of interactions lead to disorders of the muscle, typically characterized by muscle fiber los...

  7. Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis

    Directory of Open Access Journals (Sweden)

    Alessandra Costa

    2014-09-01

    Full Text Available Since the 1980's, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.

  8. EXERCISE MYOPATHY: CHANGES IN MYOFIBRILS OF FAST-TWITCH MUSCLE FIBRES

    Directory of Open Access Journals (Sweden)

    P. Kaasik

    2014-08-01

    Full Text Available The purpose of the present study was to determine the relationships between the changes of myofibrils in fast-twitch oxidative-glycolytic (type IIA fibres and fast-twitch glycolytic (type IIB muscle fibres, protein synthesis and degradation rate in exercise-induced myopathic skeletal muscle. Exhaustive exercise was used to induce myopathy in Wistar rats. Intensity of glycogenolysis in muscle fibres during exercise, protein synthesis rate, degradation rate and structural changes of myofibrils were measured using morphological and biochemical methods. Myofibril cross sectional area (CSA in type IIA fibres decreased 33% and type IIB fibres 44%. Protein degradation rate increased in both type IIA and IIB fibres, 63% and 69% respectively in comparison with the control group. According to the intensity of glycogenolysis, fast oxidative-glycolytic fibres are recruited more frequently during overtraining. Myofibrils in both types of fast-twitch myopathic muscle fibres are significantly thinner as the result of more intensive protein degradation. Regeneration capacity according to the presence of satellite cells is higher in type IIA fibres than in type IIB fibres in myopathic muscle.

  9. Contracture of Slow Striated Muscle during Calcium Deprivation

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1963-01-01

    When deprived of calcium the slow striated muscle fibers of the frog develop reversible contractures in either hypertonic or isotonic solutions. While calcium deprivation continues because of a flowing calcium-free solution the muscles relax slowly and completely. Restoration of calcium during contracture relaxes the muscle promptly to initial tension. When relaxed during calcium lack the return of calcium does not change tension and the muscle stays relaxed. When contractures are induced by solutions containing small amounts of calcium relaxation does not occur or requires several hours. The rate of tension development depends upon the rate at which calcium moves outward since the contractures develop slower in low concentrations of calcium and are absent or greatly slowed in a stagnant calcium-free solution. Withdrawal of calcium prevents the contractile responses to ACh, KCl, or electrical stimulation through the nerve. Muscles return to their original excitability after calcium is restored. Origin of the contractures is unrelated to nerve activity since they are maximal during transmission failure from calcium lack, occur in denervated muscles, and are not blocked by high concentrations of d-tubocurarine, procaine, or atropine. The experiments also indicate that the contractures do not originate from repetitive activity of muscle membranes. The findings are most simply explained by relating the outward movement of calcium as a link for initiating contraction in slow type striated muscle. PMID:14065284

  10. Expression of various sarcomeric tropomyosin isoforms in equine striated muscles

    OpenAIRE

    Dube, Syamalima; Chionuma, Henry; Matoq, Amr; Alshiekh-Nasany, Ruham; Abbott, Lynn; Poiesz, Bernard J.; Dube, Dipak K.

    2017-01-01

    In order to better understand the training and athletic activity of horses, we must have complete understanding of the isoform diversity of various myofibrillar protein genes like tropomyosin. Tropomyosin (TPM), a coiled-coil dimeric protein, is a component of thin filament in striated muscles. In mammals, four TPM genes (TPM1, TPM2, TPM3, and TPM4) generate a multitude of TPM isoforms via alternate splicing and/or using different promoters. Unfortunately, our knowledge of TPM isoform diversi...

  11. Expression of various sarcomeric tropomyosin isoforms in equine striated muscles

    Directory of Open Access Journals (Sweden)

    Syamalima Dube

    2017-06-01

    Full Text Available In order to better understand the training and athletic activity of horses, we must have complete understanding of the isoform diversity of various myofibrillar protein genes like tropomyosin. Tropomyosin (TPM, a coiled-coil dimeric protein, is a component of thin filament in striated muscles. In mammals, four TPM genes (TPM1, TPM2, TPM3, and TPM4 generate a multitude of TPM isoforms via alternate splicing and/or using different promoters. Unfortunately, our knowledge of TPM isoform diversity in the horse is very limited. Hence, we undertook a comprehensive exploratory study of various TPM isoforms from horse heart and skeletal muscle. We have cloned and sequenced two sarcomeric isoforms of the TPM1 gene called TPM1α and TPM1κ, one sarcomeric isoform of the TPM2 and one of the TPM3 gene, TPM2α and TPM3α respectively. By qRT-PCR using both relative expression and copy number, we have shown that TPM1α expression compared to TPM1κ is very high in heart. On the other hand, the expression of TPM1α is higher in skeletal muscle compared to heart. Further, the expression of TPM2α and TPM3α are higher in skeletal muscle compared to heart. Using western blot analyses with CH1 monoclonal antibody we have shown the high expression levels of sarcomeric TPM proteins in cardiac and skeletal muscle. Due to the paucity of isoform specific antibodies we cannot specifically detect the expression of TPM1κ in horse striated muscle. To the best of our knowledge this is the very first report on the characterization of sarcmeric TPMs in horse striated muscle.

  12. Preliminary results of the ATPase reaction pathway of skeletal muscle myofibrils

    Science.gov (United States)

    Houadjeto, M.; Barman, T.; Travers, F.

    1991-05-01

    The ATPases of activated and relaxed rabbit psoas myofibrils were studied by the rapid flow quench method in a solvent of near physiological pH and ionic strength. Both types of myofibrils bind and hydrolyze ATP with transient kinetics very similar to those found with myosin. But the kcat of activated myofibrils was 100× that with the relaxed myofibrils. Relaxed myofibrils and myosin could not be distinguished kinetically.

  13. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation.

    Science.gov (United States)

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A; Papalouka, Vasiliki; Terzis, Gerasimos; Roumeliotis, Theodoros I; Spengos, Konstantinos; Garbis, Spiros D; Manta, Panagiota; Kranias, Evangelia G; Sanoudou, Despina

    2014-07-01

    Muscle lim protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, whereas aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically, it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/cofilin-2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components, including α-actinin, T-cap and MLP. The findings of the present study unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, as well as in differentiated striated muscles as a contributor to sarcomeric integrity. © 2014 FEBS.

  14. Overexpression of TEAD-1 in transgenic mouse striated muscles produces a slower skeletal muscle contractile phenotype.

    Science.gov (United States)

    Tsika, Richard W; Schramm, Christine; Simmer, Gretchen; Fitzsimons, Daniel P; Moss, Richard L; Ji, Juan

    2008-12-26

    TEA domain (TEAD) transcription factors serve important functional roles during embryonic development and in striated muscle gene expression. Our previous work has implicated a role for TEAD-1 in the fast-to-slow fiber-type transition in response to mechanical overload. To investigate whether TEAD-1 is a modulator of slow muscle gene expression in vivo, we developed transgenic mice expressing hemagglutinin (HA)-tagged TEAD-1 under the control of the muscle creatine kinase promoter. We show that striated muscle-restricted HA-TEAD-1 expression induced a transition toward a slow muscle contractile protein phenotype, slower shortening velocity (Vmax), and longer contraction and relaxation times in adult fast twitch extensor digitalis longus muscle. Notably, HA-TEAD-1 overexpression resulted in an unexpected activation of GSK-3alpha/beta and decreased nuclear beta-catenin and NFATc1/c3 protein. These effects could be reversed in vivo by mechanical overload, which decreased muscle creatine kinase-driven TEAD-1 transgene expression, and in cultured satellite cells by TEAD-1-specific small interfering RNA. These novel in vivo data support a role for TEAD-1 in modulating slow muscle gene expression.

  15. In vivo functional and morphological characterization of bone and striated muscle microcirculation in NSG mice.

    Directory of Open Access Journals (Sweden)

    Haider Mussawy

    Full Text Available Organ-specific microcirculation plays a central role in tumor growth, tumor cell homing, tissue engineering, and wound healing. Mouse models are widely used to study these processes; however, these mouse strains often possess unique microhemodynamic parameters, making it difficult to directly compare experiments. The full functional characterization of bone and striated muscle microcirculatory parameters in non-obese diabetic-severe combined immunodeficiency/y-chain; NOD-Prkds IL2rg (NSG mice has not yet been reported. Here, we established either a dorsal skinfold chamber or femur window in NSG mice (n = 23, allowing direct analysis of microcirculatory parameters in vivo by intravital fluorescence microscopy at 7, 14, 21, and 28 days after chamber preparation. Organ-specific differences were observed. Bone had a significantly lower vessel density but a higher vessel diameter than striated muscle. Bone also showed higher effective vascular permeability than striated muscle. The centerline velocity values were similar in the femur window and dorsal skinfold chamber, with a higher volumetric blood flow in bone. Interestingly, bone and striated muscle showed similar tissue perfusion rates. Knowledge of physiological microhemodynamic values of bone and striated muscle in NSG mice makes it possible to analyze pathophysiological processes at these anatomic sites, such as tumor growth, tumor metastasis, and tumor microcirculation, as well as the response to therapeutic agents.

  16. Embracing change: striated-for-smooth muscle replacement in esophagus development.

    Science.gov (United States)

    Krauss, Robert S; Chihara, Daisuke; Romer, Anthony I

    2016-01-01

    The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initially composed only of smooth muscle, but its developmental maturation involves proximal-to-distal replacement of smooth muscle with striated muscle. This fascinating phenomenon raises two important questions: what is the developmental origin of the striated muscle precursor cells, and what are the cellular and morphogenetic mechanisms underlying the process? Studies addressing these questions have provided controversial answers. In this review, we discuss the development of ideas in this area and recent work that has shed light on these issues. A working model has emerged that should permit deeper understanding of the role of ME development and maturation in esophageal disorders and in the functional and evolutionary underpinnings of the variable degree of esophageal striated myogenesis in vertebrate species.

  17. Morphology of lesions in striated muscle fibres from the beige mouse

    DEFF Research Database (Denmark)

    Kirkeby, S

    1982-01-01

    Lesions in striated muscle fibres from the beige mouse are described at both the light- and electronmicroscopical levels. The muscles have two types of lesions, one is well defined cores in the fibres and the other is diffusely enlarged intermyofibrillar spaces (IMS). The cores can be filled...... with membrane-like structures or a fluffy unstructured material. In the areas with enlarged IMS comparatively few organelles are present and the muscle fibres seem to be fragmented....

  18. Embracing change: striated-for-smooth muscle replacement in esophagus development

    OpenAIRE

    Krauss, Robert S.; Chihara, Daisuke; Romer, Anthony I.

    2016-01-01

    The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initia...

  19. Correlation between cross-bridge kinetics obtained from Trp fluorescence of myofibril suspensions and mechanical studies of single muscle fibers in rabbit psoas.

    Science.gov (United States)

    Candau, Robin; Kawai, Masataka

    2011-12-01

    Our goal is to correlate kinetic constants obtained from fluorescence studies of myofibril suspension with those from mechanical studies of skinned muscle fibers from rabbit psoas. In myofibril studies, the stopped-flow technique with tryptophan fluorescence was used; in muscle fiber studies, tension transients with small amplitude sinusoidal length perturbations were used. All experiments were performed using the equivalent solution conditions (200 mM ionic strength, pH 7.00) at 10°C. The concentration of MgATP was varied to characterize kinetic constants of the ATP binding step 1 (K (1): dissociation constant), the binding induced cross-bridge detachment step 2 (k (2), k (-2): rate constants), and the ATP cleavage step 3 (k (3), k (-3)). In myofibrils we found that K (1) = 0.52 ± 0.08 mM (±95% confidence limits), k (2) = 242 ± 24 s(-1), and k (-2) ≈ 0; in muscle fibers, K (1) = 0.46 ± 0.06 mM, k (2) = 286 ± 32 s(-1), and k (-2) = 57 ± 21 s(-1). From these results, we conclude that myofibrils and muscle fibers exhibit nearly equal ATP binding step, and nearly equal ATP binding induced cross-bridge detachment step. Consequently, there is a good correlation between process C (phase 2 of step analysis) and the cross-bridge detachment step. The reverse detachment step is finite in fibers, but almost absent in myofibrils. We further studied partially cross-linked myofibrils and found little change in steps 2 and 3, indicating that cross-linking does not affect these steps. However, we found that K (1) is 2.5× of native myofibrils, indicating that MgATP binding is weakened by the presence of the extra load. We further studied the phosphate (Pi) effect in myofibrils, and found that Pi is a competitive inhibitor of MgATP, with the inhibitory dissociation constant of ~9 mM. Similar results were also deduced from fiber studies. To characterize the ATP cleavage step in myofibrils, we measured the slow rate constant in fluorescence, and

  20. Structural studies of the waves in striated muscle fibres shortened passively below their slack length.

    Science.gov (United States)

    Brown, L M; González-Serratos, H; Huxley, A F

    1984-06-01

    Isolated skeletal muscle fibres of Rana pipiens were shortened below their slack length by longitudinal compression in a gelatine block, and examined by light and electron microscopy. Waves appeared sharply when the striation spacing (S) reached a critical value (about 2 microns) and increased in height with further compression down to S = 1.6 microns while the resting band pattern was maintained. The waves were plane, helical or irregular, with wave lengths of 5-15 striations. The Z lines usually ran perpendicular to the direction of the myofibrils to form wedge-shaped sarcomeres. The bending occurred mainly in the I band. The thin filaments ran stiffly for about 30 nm from the Z line and then bent toward the A band. The thick filaments bent very slightly, particularly at their tips. The edges of the A band were indistinct, and there were no dense lines at the A-I junction. The appearance of the individual sarcomeres resembled those in relaxed myofibrils at slack length, with no Cm bands. The H zone was only seen occasionally in the slack and wavy fibres examined. In very thin sections the individual thin filaments were seen to end in the pseudo-H zone, and not to cross the M line. There was a single array of not more than six thin filaments round each thick one in transverse sections of the M-line region. These observations suggest that the narrowing of the bands observed in fresh wavy fibres is due mainly to the obliquity of the myofibrils, and that the sarcomere length measured parallel to their axis is longer than the striation spacing. The relationship between sarcomere length and the length of the thin-filament complex is discussed.

  1. Kinetic isoforms of intramembrane charge in intact amphibian striated muscle.

    Science.gov (United States)

    Huang, C L

    1996-04-01

    The effects of the ryanodine receptor (RyR) antagonists ryanodine and daunorubicin on the kinetic and steady-state properties of intramembrane charge were investigated in intact voltage-clamped frog skeletal muscle fibers under conditions that minimized time-dependent ionic currents. A hypothesis that RyR gating is allosterically coupled to configurational changes in dihydropyridine receptors (DHPRs) would predict that such interactions are reciprocal and that RyR modification should influence intramembrane charge. Both agents indeed modified the time course of charging transients at 100-200-microM concentrations. They independently abolished the delayed charging phases shown by q gamma currents, even in fibers held at fully polarized, -90-mV holding potentials; such waveforms are especially prominent in extracellular solutions containing gluconate. Charge movements consistently became exponential decays to stable baselines in the absence of intervening inward or other time-dependent currents. The steady-state charge transfers nevertheless remained equal through the ON and the OFF parts of test voltage steps. The charge-voltage function, Q(VT), shifted by approximately +10 mV, particularly through those test potentials at which delayed q gamma currents normally took place but retained steepness factors (k approximately 8.0 to 10.6 mV) that indicated persistent, steeply voltage-dependent q gamma contributions. Furthermore, both RyR antagonists preserved the total charge, and its variation with holding potential, Qmax (VH), which also retained similarly high voltage sensitivities (k approximately 7.0 to 9.0 mV). RyR antagonists also preserved the separate identities of q gamma and q beta species, whether defined by their steady-state voltage dependence or inactivation or pharmacological properties. Thus, tetracaine (2 mM) reduced the available steady-state charge movement and gave shallow Q(VT) (k approximately 14 to 16 mV) and Qmax (VH) (k approximately 14 to 17 m

  2. Striated muscle fiber size, composition and capillary density in diabetes in relation to neuropathy and muscle strength

    DEFF Research Database (Denmark)

    Andreassen, Christer Swan; Jensen, Jacob Malte; Jakobsen, Johannes

    2014-01-01

    OBJECTIVE: Diabetic polyneuropathy (DPN) leads to progressive loss of muscle strength in the lower extremities due to muscular atrophy. Changes in vascularization occur in diabetic striated muscle; however, the relationship between these changes and DPN is as yet unexplored. The aim of the present...... study was to evaluate histologic properties and capillarization of diabetic skeletal muscle in relation to DPN and muscle strength. METHODS: Twenty type 1 and 20 type 2 diabetic (T1D and T2D, respectively) patients underwent biopsy of the gastrocnemic muscle, isokinetic dynamometry at the ankle......, electrophysiological studies, clinical examination, and quantitative sensory examinations. Muscle biopsies were stained immunohistochemically and muscle fiber diameter, fiber type distribution, and capillary density determined. Twenty control subjects were also included in the study. RESULTS: No relationship was found...

  3. The Popeye Domain Containing Genes and Their Function in Striated Muscle

    Science.gov (United States)

    Schindler, Roland F. R.; Scotton, Chiara; French, Vanessa; Ferlini, Alessandra; Brand, Thomas

    2016-01-01

    The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle. PMID:27347491

  4. Isoform composition, gene expression and sarcomeric protein phosphorylation in striated muscle of mice after space flight

    Science.gov (United States)

    Vikhlyantsev, Ivan; Ulanova, Anna; Salmov, Nikolay; Gritsyna, Yulia; Bobylev, Alexandr; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    Using RT-PCR and SDS-PAGE, changes in isoform composition, gene expression, titin and nebulin phosphorylation, as well as changes in isoform composition of myosin heavy chains in striated muscles of mice were studied after 30-day-long space flight onboard the Russian spacecraft “BION-M” No. 1. The muscle fibre-type shift from slow-to-fast was observed in m. gastrocnemius and m. tibialis anterior of animals from “Flight” group. A decrease in the content of the NT and N2A titin isoforms and nebulin in the skeletal muscles of animals from “Flight” group was found. Meanwhile, significant differences in gene expression of these proteins in skeletal muscles of mice from “Flight” and “Control” groups were not observed. Using Pro-Q Diamond stain, an increase in titin phosphorylation in m. gastrocnemius of mice from “Flight” group was detected. The content of the NT, N2BA and N2B titin isoforms in cardiac muscle of mice from “Flight” and “Control” groups did not differ, nevertheless an increase in titin gene expression in the myocardium of the “Flight” group animals was found. The observed changes will be discussed in the context of theirs role in contractile activity of striated muscles of mice in conditions of weightlessness. This work was supported by the Russian Foundation for Basic Research (grants No. 14-04-32240, 14-04-00112). Acknowledgement. We express our gratitude to the teams of Institute of Biomedical Problems RAS and “PROGRESS” Corporation involved in the preparation of the “BION-M” mission.

  5. Immunocytochemical electron microscopic study and western blot analysis of myosin, paramyosin and miniparamyosin in the striated muscle of the fruit fly Drosophila melanogaster and in obliquely striated and smooth muscles of the earthworm Eisenia foetida.

    Science.gov (United States)

    Royuela, M; Fraile, B; Cervera, M; Paniagua, R

    1997-04-01

    Miniparamyosin is a paramyosin isoform (55-60 kDa) that has been isolated in insects (Drosophila) and immunolocalized in several species of arthropods, molluscs, annelids and nematodes. In this study, the presence and distribution of this protein, in comparison with that of paramyosin and myosin, has been examined in the striated muscle (tergal depressor of trochanter) of Drosophila melanogaster, and the obliquely striated muscle (body wall) and the smooth muscle (outer layer of the pseudoheart) of the earthworm Eisenia foetida by means of immunocytochemical electron microscopic study and Western blot analysis miniparamyosin paramyosin and myosin antibodies from Drosophila. In the striated muscle of D. melanogaster, the three proteins were immunolocalized along the length of the thick filaments (A-bands). The distribution of immunogold particles along these filaments was uniform. The relative proportions miniparamyosin/paramyosin/myosin (calculated by counting the number of immunogold particles) were: 1/10/68. In the obliquely striated muscle of E. foetida, immunoreactions to the three proteins were also found in the thick filaments, and the relative proportions miniparamyosin/paramyosin/myosin were 1/2.4/6.9. However, whereas the distribution of both myosin and miniparamyosin along the thick filament length was uniform, paramyosin immunolabelling was more abundant in the extremes of thick filaments (the outer zones of A-bands in the obliquely striated muscle), where the thick filaments become thinner than in the centre (the central zone of A-bands), where these filaments are thicker. The relative proportions of paramyosin in the outer and of paramyosin in the central zones of A-bands were 4/1. This irregular distribution of paramyosin along the thick filament length might be actual but it may also be explained by the fusiform shape of thick filaments in the earthworm: assuming that paramyosin is covered by myosin, paramyosin antigens would be more exposed in the

  6. Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration

    Directory of Open Access Journals (Sweden)

    Juan Mendizabal-Zubiaga

    2016-10-01

    Full Text Available The cannabinoid type 1 (CB1 receptor is widely distributed in the brain and peripheral organs where it regulates cellular functions and metabolism. In the brain, CB1 is mainly localized on presynaptic axon terminals but is also found on mitochondria (mtCB1, where it regulates cellular respiration and energy production. Likewise, CB1 is localized on muscle mitochondria, but very little is known about it. The aim of this study was to further investigate in detail the distribution and functional role of mtCB1 in three different striated muscles. Immunoelectron microscopy for CB1 was used in skeletal muscles (gastrocnemius and rectus abdominis and myocardium from wild-type and CB1-KO mice. Functional assessments were performed in mitochondria purified from the heart of the mice and the mitochondrial oxygen consumption upon application of different acute delta-9-tetrahidrocannabinol (Δ9-THC concentrations (100 nM or 200 nM was monitored. About 26% of the mitochondrial profiles in gastrocnemius, 22% in the rectus abdominis and 17% in the myocardium expressed CB1. Furthermore, the proportion of mtCB1 versus total CB1 immunoparticles was about 60% in the gastrocnemius, 55% in the rectus abdominis and 78% in the myocardium. Importantly, the CB1 immunolabeling pattern disappeared in muscles of CB1-KO mice. Functionally, acute 100 nM or 200 nM THC treatment specifically decreased mitochondria coupled respiration between 12% and 15% in wild-type isolated mitochondria of myocardial muscles but no significant difference was noticed between THC treated and vehicle in mitochondria isolated from CB1-KO heart. Furthermore, gene expression of key enzymes involved in pyruvate synthesis, tricarboxylic acid (TCA cycle and mitochondrial respiratory chain was evaluated in the striated muscle of CB1-WT and CB1-KO. CB1-KO showed an increase in the gene expression of Eno3, Pkm2, and Pdha1, suggesting an increased production of pyruvate. In contrast, no significant

  7. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation.

    Science.gov (United States)

    Wallace, Marita A; Della Gatta, Paul A; Ahmad Mir, Bilal; Kowalski, Greg M; Kloehn, Joachim; McConville, Malcom J; Russell, Aaron P; Lamon, Séverine

    2016-01-01

    Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

  8. Revealing t-tubules in striated muscle with new optical super-resolution microscopy techniques

    Directory of Open Access Journals (Sweden)

    Isuru D. Jayasinghe

    2014-12-01

    Full Text Available The t-tubular system plays a central role in the synchronisation of calcium signalling and excitation-contraction coupling in most striated muscle cells. Light microscopy has been used for imaging t-tubules for well over 100 years and together with electron microscopy (EM, has revealed the three-dimensional complexities of the t-system topology within cardiomyocytes and skeletal muscle fibres from a range of species. The emerging super-resolution single molecule localisation microscopy (SMLM techniques are offering a near 10-fold improvement over the resolution of conventional fluorescence light microscopy methods, with the ability to spectrally resolve nanometre scale distributions of multiple molecular targets. In conjunction with the next generation of electron microscopy, SMLM has allowed the visualisation and quantification of intricate t-tubule morphologies within large areas of muscle cells at an unprecedented level of detail. In this paper, we review recent advancements in the t-tubule structural biology with the utility of various microscopy techniques. We outline the technical considerations in adapting SMLM to study t-tubules and its potential to further our understanding of the molecular processes that underlie the sub-micron scale structural alterations observed in a range of muscle pathologies.

  9. Chaperones and the Proteasome System: Regulating the Construction and Demolition of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Casey Carlisle

    2017-12-01

    Full Text Available Protein folding factors (chaperones are required for many diverse cellular functions. In striated muscle, chaperones are required for contractile protein function, as well as the larger scale assembly of the basic unit of muscle, the sarcomere. The sarcomere is complex and composed of hundreds of proteins and the number of proteins and processes recognized to be regulated by chaperones has increased dramatically over the past decade. Research in the past ten years has begun to discover and characterize the chaperones involved in the assembly of the sarcomere at a rapid rate. Because of the dynamic nature of muscle, wear and tear damage is inevitable. Several systems, including chaperones and the ubiquitin proteasome system (UPS, have evolved to regulate protein turnover. Much of our knowledge of muscle development focuses on the formation of the sarcomere but recent work has begun to elucidate the requirement and role of chaperones and the UPS in sarcomere maintenance and disease. This review will cover the roles of chaperones in sarcomere assembly, the importance of chaperone homeostasis and the cooperation of chaperones and the UPS in sarcomere integrity and disease.

  10. The Drosophila Z-disc protein Z(210) is an adult muscle isoform of Zasp52, which is required for normal myofibril organization in indirect flight muscles.

    Science.gov (United States)

    Chechenova, Maria B; Bryantsev, Anton L; Cripps, Richard M

    2013-02-08

    The Z-disc is a critical anchoring point for thin filaments as they slide during muscle contraction. Therefore, identifying components of the Z-disc is critical for fully comprehending how myofibrils assemble and function. In the adult Drosophila musculature, the fibrillar indirect flight muscles accumulate a >200 kDa Z-disc protein termed Z(210), the identity of which has to date been unknown. Here, we use mass spectrometry and gene specific knockdown studies, to identify Z(210) as an adult isoform of the Z-disc protein Zasp52. The Zasp52 primary transcript is extensively alternatively spliced, and we describe its splicing pattern in the flight muscles, identifying a new Zasp52 isoform, which is the one recognized by the Z(210) antibody. We also demonstrate that Zasp52 is required for the association of α-actinin with the flight muscle Z-disc, and for normal sarcomere structure. These studies expand our knowledge of Zasp isoforms and their functions in muscle. Given the role of Zasp proteins in mammalian muscle development and disease, our results have relevance to mammalian muscle biology.

  11. Detection of a troponin I-like protein in non-striated muscle of the tardigrades (water bears).

    Science.gov (United States)

    Obinata, Takashi; Ono, Kanako; Ono, Shoichiro

    2011-03-01

    Tardigrades, also known as water bears, have somatic muscle fibers that are responsible for movement of their body and legs. These muscle fibers contain thin and thick filaments in a non-striated pattern. However, the regulatory mechanism of muscle contraction in tardigrades is unknown. In the absence of extensive molecular and genomic information, we detected a protein of 31 kDa in whole lysates of tardigrades that cross-reacted with the antibody raised against nematode troponin I (TnI). TnI is a component of the troponin complex that regulates actin-myosin interaction in a Ca(2+)-dependent and actin-linked manner. This TnI-like protein was co-extracted with actin in a buffer containing ATP and EGTA, which is known to induce relaxation of a troponin-regulated contractile system. The TnI-like protein was specifically expressed in the somatic muscle fibers in adult animals and partially co-localized with actin filaments in a non-striated manner. Interestingly, the pharyngeal muscle did not express this protein. These observations suggest that the non-striated somatic muscle of tardigrades has an actin-linked and troponin-regulated system for muscle contraction.

  12. Large-scale Models Reveal the Two-component Mechanics of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Robert Jarosch

    2008-12-01

    Full Text Available This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit. Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation. Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with forceregulating sites for Ca2+ binding, the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.

  13. Splicing transitions of the anchoring protein ENH during striated muscle development.

    Science.gov (United States)

    Ito, Jumpei; Hashimoto, Taiki; Nakamura, Sho; Aita, Yusuke; Yamazaki, Tomoko; Schlegel, Werner; Takimoto, Koichi; Maturana, Andrés D

    2012-05-04

    The ENH (PDLIM5) protein acts as a scaffold to tether various functional proteins at subcellular sites via PDZ and three LIM domains. Splicing of the ENH primary transcript generates various products with different repertories of protein interaction modules. Three LIM-containing ENH predominates in neonatal cardiac tissue, whereas LIM-less ENHs are abundant in adult hearts, as well as skeletal muscles. Here we examine the timing of splicing transitions of ENH gene products during postnatal heart development and C2C12 myoblast differentiation. Real-time PCR analysis shows that LIM-containing ENH1 mRNA is gradually decreased during postnatal heart development, whereas transcripts with the short exon 5 appear in the late postnatal period and continues to increase until at least one month after birth. The splicing transition from LIM-containing ENH1 to LIM-less ENHs is also observed during the early period of C2C12 differentiation. This transition correlates with the emergence of ENH transcripts with the short exon 5, as well as the expression of myogenin mRNA. In contrast, the shift from the short exon 5 to the exon 7 occurs in the late differentiation period. The timing of this late event corresponds to the appearance of mRNA for the skeletal myosin heavy chain MYH4. Thus, coordinated and stepwise splicing transitions result in the production of specific ENH transcripts in mature striated muscles. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The Intriguing Dual Lattices of the Myosin Filaments in Vertebrate Striated Muscles: Evolution and Advantage

    Directory of Open Access Journals (Sweden)

    Pradeep K. Luther

    2014-12-01

    Full Text Available Myosin filaments in vertebrate striated muscle have a long roughly cylindrical backbone with cross-bridge projections on the surfaces of both halves except for a short central bare zone. In the middle of this central region the filaments are cross-linked by the M-band which holds them in a well-defined hexagonal lattice in the muscle A-band. During muscular contraction the M-band-defined rotation of the myosin filaments around their long axes influences the interactions that the cross-bridges can make with the neighbouring actin filaments. We can visualise this filament rotation by electron microscopy of thin cross-sections in the bare-region immediately adjacent to the M-band where the filament profiles are distinctly triangular. In the muscles of teleost fishes, the thick filament triangular profiles have a single orientation giving what we call the simple lattice. In other vertebrates, for example all the tetrapods, the thick filaments have one of two orientations where the triangles point in opposite directions (they are rotated by 60° or 180° according to set rules. Such a distribution cannot be developed in an ordered fashion across a large 2D lattice, but there are small domains of superlattice such that the next-nearest neighbouring thick filaments often have the same orientation. We believe that this difference in the lattice forms can lead to different contractile behaviours. Here we provide a historical review, and when appropriate cite recent work related to the emergence of the simple and superlattice forms by examining the muscles of several species ranging back to primitive vertebrates and we discuss the functional differences that the two lattice forms may have.

  15. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Sung Min Han

    Full Text Available Mutations in VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS and spinal muscular atrophy (SMA, two motor neuron diseases that often include alterations in energy metabolism. We have shown that C. elegans and Drosophila neurons secrete a cleavage product of VAPB, the N-terminal major sperm protein domain (vMSP. Secreted vMSPs signal through Roundabout and Lar-like receptors expressed on striated muscle. The muscle signaling pathway localizes mitochondria to myofilaments, alters their fission/fusion balance, and promotes energy production. Here, we show that neuronal loss of the C. elegans VAPB homolog triggers metabolic alterations that appear to compensate for muscle mitochondrial dysfunction. When vMSP levels drop, cytoskeletal or mitochondrial abnormalities in muscle induce elevated DAF-16, the Forkhead Box O (FoxO homolog, transcription factor activity. DAF-16 promotes muscle triacylglycerol accumulation, increases ATP levels in adults, and extends lifespan, despite reduced muscle mitochondria electron transport chain activity. Finally, Vapb knock-out mice exhibit abnormal muscular triacylglycerol levels and FoxO target gene transcriptional responses to fasting and refeeding. Our data indicate that impaired vMSP signaling to striated muscle alters FoxO activity, which affects energy metabolism. Abnormalities in energy metabolism of ALS patients may thus constitute a compensatory mechanism counterbalancing skeletal muscle mitochondrial dysfunction.

  16. Distribution of Myosin Attachment Times Predicted from Viscoelastic Mechanics of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Bradley M. Palmer

    2011-01-01

    Full Text Available We demonstrate that viscoelastic mechanics of striated muscle, measured as elastic and viscous moduli, emerge directly from the myosin crossbridge attachment time, tatt, also called time-on. The distribution of tatt was modeled using a gamma distribution with shape parameter, p, and scale parameter, β. At 5 mM MgATP, β was similar between mouse α-MyHC (16.0±3.7 ms and β-MyHC (17.9±2.0 ms, and p was higher (P<0.05 for β-MyHC (5.6±0.4 no units compared to α-MyHC (3.2±0.9. At 1 mM MgATP, p approached a value of 10 in both isoforms, but β rose only in the β-MyHC (34.8±5.8 ms. The estimated mean tatt (i.e., pβ product was longer in the β-MyHC compared to α-MyHC, and became prolonged in both isoforms as MgATP was reduced as expected. The application of our viscoelastic model to these isoforms and varying MgATP conditions suggest that tatt is better modeled as a gamma distribution due to its representing multiple temporal events occurring within tatt compared to a single exponential distribution which assumes only one temporal event within tatt.

  17. Increased hypoxia-inducible factor-1α in striated muscle of tumor-bearing mice.

    Science.gov (United States)

    Devine, Raymond D; Bicer, Sabahattin; Reiser, Peter J; Wold, Loren E

    2017-06-01

    that occur during cancer cachexia. NEW & NOTEWORTHY We used proteomics and metadata analysis software to identify contributors to metabolic changes in striated muscle during cancer cachexia. We found increased expression of hypoxia-inducible factor-1α in the heart and skeletal muscle, suggesting a potential target for the therapeutic treatment of cancer cachexia. Copyright © 2017 the American Physiological Society.

  18. Testosterone enhances C-14 2-deoxyglucose uptake by striated muscle. [sex hormones and muscle

    Science.gov (United States)

    Toop, J.; Max, S. R.

    1982-01-01

    The effect of testosterone propionate (TP) on C-14 2-deoxyglucose (C-14 2DG) uptake was studied in the rat levator ani muscle in vivo using the autoradiographic technique. Following a delay of 1 to 3 h after injecting TP, the rate of C-14 2DG uptake in experimental animals began to increase and continued to increase for at least 20 h. The label, which corresponds to C-14 2-deoxyglucose 6-phosphate, as demonstrated by chromatographic analysis of muscle extracts, was uniformly distributed over the entire muscle and was predominantly in muscle fibers, although nonmuscular elements were also labeled. The 1 to 3 h time lag suggests that the TP effect may be genomic, acting via androgen receptors, rather than directly on muscle membranes. Acceleration of glucose uptake may be an important early event in the anabolic response of the rat levator ani muscle to androgens.

  19. ATP binding and cross-bridge detachment steps during full Ca²⁺ activation: comparison of myofibril and muscle fibre mechanics by sinusoidal analysis.

    Science.gov (United States)

    Iorga, Bogdan; Wang, Li; Stehle, Robert; Pfitzer, Gabriele; Kawai, Masataka

    2012-07-15

    Single myofibrils 50–60 μm length and 2–3 μm diameter were isolated from rabbit psoas muscle fibres, and cross-bridge kinetics were studied by small perturbations of the length (∼0.2%) over a range of 15 frequencies (1–250 Hz). The experiments were performed at 15◦C in the presence of 0.05–10 mM MgATP, 8mM phosphate (Pi), 200 mM ionic strength with KAc (acetate), pCa 4.35–4.65, and pH 7.0. Two exponential processes, B and C, were resolved in tension transients. Their apparent rate constants (2πb and 2πc) increased as the [MgATP] was raised from 0.05 mM to 1mM, and then reached saturation at [MgATP] ≥ 1. Given that these rate constants were similar (c/b ∼1.7) at [Pi] ≥ 4 mM, they were combined to achieve an accurate estimate of the kinetic constants: their sum and product were analysed as functions of [MgATP]. These analyses yielded K1 =2.91 ± 0.31 mM −1, k2 =288 ± 36 s−1, and k−2 =10 ± 21 s−1 (±95% confidence limit, n =13 preparations), based on the cross-bridge model: AM+ATP ↔ (step 1) AM.ATP ↔ (step 2) A+M.ATP, where K1 is the ATP association constant (step 1), k2 is the rate constant of the cross-bridge detachment (step 2), and k−2 is the rate constant of its reversal step. These kinetic constants are respectively comparable to those observed in single fibres from rabbit psoas (K1 =2.35 ± 0.31 mM −1, k2 =243 ± 22 s−1, and k−2 =6 ± 14 s−1; n =8 preparations) when analysed by the same methods and under the same experimental conditions. These values are respectively not significantly different from those obtained in myofibrils, indicating that the same kinetic constants can be deduced from myofibril and muscle fibre studies, in terms of ATP binding and cross-bridge detachments steps. The fact that K1 in myofibrils is 1.2 times that in fibres (P≈0.05) may be explained by a small concentration gradient of ATP, ADP and/or Pi in single fibres.

  20. Immunocytochemical electron microscopic study and Western blot analysis of caldesmon and calponin in striated muscle of the fruit fly Drosophila melanogaster and in several muscle cell types of the earthworm Eisenia foetida.

    Science.gov (United States)

    Royuela, M; Fraile, B; Picazo, M L; Paniagua, R

    1997-01-01

    Caldesmon and calponin are two proteins that are characteristic of vertebrate smooth muscle. In invertebrates, caldesmon has only been studied in some molluscan muscles, and no previous references to calponin have been found. The aim of this paper was to investigate the presence and distribution of caldesmon and calponin in several invertebrate muscle cell types, classified according to their ultrastructural pattern: transversely striated muscle (flight muscle from Drosophila melanogaster), obliquely striated muscle (muscular body wall and inner muscular layer of the pseudoheart from the earthworm Eisenia foetida), and a muscle of doubtful classification which seems to be intermediate between smooth muscle and obliquely striated muscle (outer muscular layer of the pseudoheart, from E. foetida), using electron microscopy immunocytochemistry and Western blot analysis. Immunoreactions to both caldesmon and calponin were observed in the outer muscular layer cells from the earthworm pseudoheart but neither in the transversely striated muscle of D. melanogaster nor in the obliquely striated muscle from the earthworm. Present findings suggest that caldesmon- and calponin-like proteins are also present in invertebrate muscle cells, but only in those that are ultrastructurally similar to the vertebrate smooth muscle cells. Since discrepancies in the classification of some invertebrate muscles are common in the literature, the use of distinctive markers, such as troponin, caldesmon and calponin may improve our understanding of the nature and properties of many invertebrate muscles showing an ultrastructural pattern that does not resemble any of the classic muscle types.

  1. Contracture Coupling of Slow Striated Muscle in Non-Ionic Solutions and Replacement of Calcium, Sodium, and Potassium

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1964-01-01

    The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle. PMID:14127603

  2. (−)-EPICATECHIN IMPROVES MITOCHONDRIAL RELATED PROTEIN LEVELS AND AMELIORATES OXIDATIVE STRESS IN DYSTROPHIC DELTA SARCOGLYCAN NULL MOUSE STRIATED MUSCLE

    Science.gov (United States)

    Ramirez-Sanchez, Israel; De los Santos, Sergio; Gonzalez-Basurto, Silvia; Canto, Patricia; Mendoza-Lorenzo, Patricia; Palma-Flores, Carlos; Ceballos-Reyes, Guillermo; Villarreal, Francisco; Zentella-Dehesa, Alejandro; Coral-Vazquez, Ramon

    2014-01-01

    Muscular dystrophies (MD) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD and likely represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (−)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild type or δ-SG null 2.5 month old male mice were treated via oral gavage with either water (control animals) or Epi (1 mg/kg, twice/day) for 2 weeks. Results evidence a significant normalization of total protein carbonylation, recovery of reduced/oxidized glutathione (GSH/GSSG ratio) and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in protein levels for thiolredoxin, glutathione peroxidase, superoxide dismutase 2, catalase and mitochondrial endpoints. Furthermore, we evidence decreases in heart and skeletal muscle fibrosis, accompanied with an improvement in skeletal muscle function with treatment. These results warrant the further investigation of Epi as a potential therapeutic agent to mitigate MD associated muscle degeneration. PMID:25284161

  3. The ‘Goldilocks Zone’ from a redox perspective - Adaptive versus deleterious responses to oxidative stress in striated muscle

    Directory of Open Access Journals (Sweden)

    Rick J Alleman

    2014-09-01

    Full Text Available Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system’s position on the ‘hormetic curve’ is governed by the source and temporality of reactive oxygen species (ROS production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g. months to years inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome.

  4. Creatine kinase deficiency in striated mouse muscle : biochemical and physiological studies

    NARCIS (Netherlands)

    Veld, Frank ter

    2003-01-01

    The balance between ATP energy demand and supply is essential in muscle cells. The creatine kinase system fulfils both a transporting and buffering role in muscle cells, whereby fluctuations in ATP free-energy demand can be counterbalanced. Removal of the creatine kinase proteins with the aid of

  5. Histochemical studies on striated muscle fibres of the beige mutant mouse

    DEFF Research Database (Denmark)

    Kirkeby, S

    1982-01-01

    A histological study of cylindric structures in skeletal muscle fibres from beige mice with the Chediak-Higashi syndrome was carried out. The muscle tissue was investigated morphologically with a differential interference contrast microscope and stained for glycogen, lipid, and basophile elements...

  6. Esterases in striated muscle from mice with the Chediak-Higashi syndrome

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D

    1981-01-01

    In this paper a localized strong reaction for non-specific esterase forming cylindric structures is described within skeletal muscle fibres from the beige mouse. It seems from zymograms and protein electrophoresis that this esterase is membrane bound, highly reactive and present in rather small...... amounts within the muscle fibres....

  7. Mechanical strength of sarcomere structures of skeletal myofibrils studied by submicromanipulation.

    Science.gov (United States)

    Kayamori, Taisuke; Miyake, Norihito; Akiyama, Nao; Aimi, Momoko; Wakayama, Jun'ichi; Kunioka, Yuki; Yamada, Takenori

    2006-01-01

    The mechanical strength of sarcomere structures of skeletal muscle was studied by rupturing single myofibrils of rabbit psoas muscle by submicromanipulation techniques. Microbeads coated with alpha-actinin were attached to the surface of myofibrils immobilized to coverslip. By use of either optical tweezers or atomic force microscope, the attached beads were captured and detached from the myofibrils. During the detachment of the beads, the actin filaments bound specifically to the beads were peeled off from the bulk structures of myofibrils, thus rupturing the peripheral components of the myofibrils bound to the actin filaments. By analyzing the ruptures thus produced in various myofibril preparations, it was found that the sarcomere structure of myofibrils is maintained by numerous molecular components having the mechanical strength sufficient to sustain the contractile force produced by the actomyosin system. The present techniques could be applied to study the mechanical strength of cellular organelles containing actin filaments as their component.

  8. Development of Trichosomoides nasalis (Nematoda: Trichinelloidea) in the murid host: evidence for larval growth in striated muscle fibres

    Science.gov (United States)

    Fall, E.H.; Diagne, M.; Junker, K.; Duplantier, J.M.; Ba, K.; Vallée, I.; Bain, O.

    2012-01-01

    Trichosomoides nasalis (Trichinelloidea) is a parasite of Arvicanthis niloticus (Muridae) in Senegal. Female worms that harbour dwarf males in their uteri, occur in the epithelium of the nasal mucosa. Young laboratory-bred A. niloticus were either fed females containing larvated eggs or intraperitoneally injected with motile first-stage larvae recovered from female uteri. Both resulted in successful infection. Organs examined during rodent necropsy were blood and lymphatic circulatory systems (heart, large vessels, lymphnodes), lungs, liver, kidneys, thoracic and abdominal cavities, thoracic and abdominal muscular walls, diaphragm, tongue, and nasal mucosa. Development to adult nasal stages took three weeks. Recovery of newly hatched larvae from the peritoneal fluid at four-eight hours after oral infection suggests a direct passage from the stomach or intestinal wall to the musculature. However, dissemination through the blood, as observed with Trichinella spiralis, cannot be excluded even though newly hatched larvae of T. nasalis are twice as thick (15 μm). Developing larvae were found in histological sections of the striated muscle of the abdominal and thoracic walls, and larvae in fourth moult were dissected from these sites. Adult females were found in the deep nasal mucosa where mating occurred prior to worms settling in the nasal epithelium. The present study shows a remarkable similarity between T. nasalis and Trichinella species regarding muscle tropism, but the development of T. nasalis is not arrested at the late first-larval stage and does not induce transformation of infected fibres into nurse cells. T. nasalis seems a potential model to study molecular relations between trichinelloid larvae and infected muscle fibres. PMID:22314237

  9. Wheelchair marathon racing causes striated muscle distress in individuals with spinal cord injury.

    Science.gov (United States)

    Ide, M; Tajima, F; Furusawa, K; Mizushima, T; Ogata, H

    1999-03-01

    To assess the effects of wheelchair marathon racing in individuals with spinal cord injury (SCI) on circulating muscle enzymes and myoglobin. Thirty-one men with SCI, including 25 wheelchair marathon athletes and 6 sedentary men. Serum myoglobin (Mb), creatine kinase (CK) activity, and lactate dehydrogenase (LDH) were measured in participants of the 1995 Oita International Wheelchair Marathon Race (42.195 km). Blood samples were obtained 24 hours before, immediately after, 24 hours after, and 7 days after the race. Marathon racing resulted in significant increases in serum Mb, total CK activity, and LDH (pathletes with SCI. Completion of the marathon race did not cause cardiac muscle damage, however. Elevated muscle enzyme levels likely resulted from muscle distress rather than from dehydration.

  10. Impaired contractility of the circular striated urethral sphincter muscle may contribute to stress urinary incontinence in female zucker fatty rats.

    Science.gov (United States)

    Lee, Yung-Chin; Lin, Guiting; Wang, Guifang; Reed-Maldonado, Amanda; Lu, Zhihua; Wang, Lin; Banie, Lia; Lue, Tom F

    2017-08-01

    Obesity has been an independent risk factor for female stress urinary incontinence (SUI), the mechanism of this association remains unknown. The aim of this study is to validate the hypothesis that urethral dysfunction is a possible contributor to SUI in obese women. Ten Zucker Fatty (ZF) (ZUC-Lepr fa 185) and 10 Zucker Lean (ZL) (ZUC-Lepr fa 186) female rats at 12-week-old were used in this experiment. The urethral sphincter rings were harvested from the bladder neck through to the most proximal 2/3 regions. In the organ bath study, single pulses of electrical field stimulation (EFS) were applied. For the fatiguing stimulation, repeated multi-pulse EFS with 70 mA were applied at frequency of 5 Hz for 5 min. Caffeine-containing Krebs' solution was administrated to contract the urethra until the contraction began to reach a plateau for 10 min. We performed immunofluorescence staining of the urethra after the experiment was finished. Compared to ZL controls, ZF rats had significantly impaired muscle contractile activity (MCA) (P female rats had significantly impaired contractile properties of striated urethral sphincter, suggesting urethral dysfunction could be an important contributor to SUI in obesity. © 2016 Wiley Periodicals, Inc.

  11. Impact of a nickel-reduced stainless steel implant on striated muscle microcirculation: a comparative in vivo study.

    Science.gov (United States)

    Kraft, C N; Burian, B; Perlick, L; Wimmer, M A; Wallny, T; Schmitt, O; Diedrich, O

    2001-12-05

    The impairment of skeletal muscle microcirculation by a biomaterial may have profound consequences. With moderately good physical and corrosion characteristics, implant-quality stainless steel is particularly popular in orthopedic surgery. However, due to the presence of a considerable amount of nickel in the alloy, concern has been voiced in respect to local tissue responses. More recently a stainless steel alloy with a significant reduction of nickel has become commercially available. We, therefore, studied in vivo nutritive perfusion and leukocytic response of striated muscle to this nickel-reduced alloy, and compared these results with those of the materials conventional stainless steel and titanium. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, we could demonstrate that reduction of the nickel quantity in a stainless steel implant has a positive effect on local microvascular parameters. Although the implantation of a conventional stainless steel sample led to a distinct and persistent activation of leukocytes combined with disruption of the microvascular endothelial integrity, marked leukocyte extravasation, and considerable venular dilation, animals with a nickel-reduced stainless steel implant showed only a moderate increase of these parameters, with a clear tendency of recuperation. Titanium implants merely caused a transient increase of leukocyte-endothelial cell interaction within the first 120 min, and no significant change in macromolecular leakage, leukocyte extravasation, or venular diameter. Pending biomechanical and corrosion testing, nickel-reduced stainless steel may be a viable alternative to conventional implant-quality stainless steel for biomedical applications. Concerning tolerance by the local vascular system, titanium currently remains unsurpassed. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 404-412, 2001

  12. Lbx2 regulates formation of myofibrils

    Directory of Open Access Journals (Sweden)

    Westerfield Monte

    2009-02-01

    Full Text Available Abstract Background Skeletal muscle differentiation requires assembly of contractile proteins into organized myofibrils. The Drosophila ladybird homeobox gene (lad functions in founder cells of the segmental border muscle to promote myoblast fusion and muscle shaping. Tetrapods have two homologous genes (Lbx. Lbx1 functions in migration and/or proliferation of hypaxial myoblasts, whereas the function of Lbx2 is poorly understood. Results To elucidate the role of Lbx in vertebrate myogenesis, we examined Lbx function in zebrafish. Zebrafish lbx2 transcripts appear in newly formed paraxial mesoderm and become restricted to adaxial cells, precursors of slow muscle. Slow muscles lose lbx2 expression as they differentiate, while a subset of differentiating fast muscle cells transiently expresses lbx2. Fin and hyoid muscle express lbx2 later. In contrast, lbx1b expression first appears lateral to the somites at late segmentation stages and is later restricted to fin muscle. Morpholino knockdown of Lbx1b and Lbx2 suppresses hypaxial muscle development. Moreover, knockdown of Lbx2 results in malformation of muscle fibers and reduced fusion of fast precursors, although no obvious effects on induction or specification are observed. Expression of myofilament genes, including actin and myosin, requires the engrailed repressor domain of Lbx2. Conclusion Our results elucidate a new function of Lbx2 as a regulator of myofibril formation.

  13. Striated muscle activator of Rho signalling (STARS) is reduced in ageing human skeletal muscle and targeted by miR-628-5p.

    Science.gov (United States)

    Russell, A P; Wallace, M A; Kalanon, M; Zacharewicz, E; Della Gatta, P A; Garnham, A; Lamon, S

    2017-06-01

    The striated muscle activator of Rho signalling (STARS) is a muscle-specific actin-binding protein. The STARS signalling pathway is activated by resistance exercise and is anticipated to play a role in signal mechanotransduction. Animal studies have reported a negative regulation of STARS signalling with age, but such regulation has not been investigated in humans. Ten young (18-30 years) and 10 older (60-75 years) subjects completed an acute bout of resistance exercise. Gene and protein expression of members of the STARS signalling pathway and miRNA expression of a subset of miRNAs, predicted or known to target members of STARS signalling pathway, were measured in muscle biopsies collected pre-exercise and 2 h post-exercise. For the first time, we report a significant downregulation of the STARS protein in older subjects. However, there was no effect of age on the magnitude of STARS activation in response to an acute bout of exercise. Finally, we established that miR-628-5p, a miRNA regulated by age and exercise, binds to the STARS 3'UTR to directly downregulate its transcription. This study describes for the first time the resistance exercise-induced regulation of STARS signalling in skeletal muscle from older humans and identifies a new miRNA involved in the transcriptional control of STARS. © 2016 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.

  14. Role of mitochondria-cytoskeleton interactions in respiration regulation and mitochondrial organization in striated muscles.

    Science.gov (United States)

    Varikmaa, Minna; Bagur, Rafaela; Kaambre, Tuuli; Grichine, Alexei; Timohhina, Natalja; Tepp, Kersti; Shevchuk, Igor; Chekulayev, Vladimir; Metsis, Madis; Boucher, François; Saks, Valdur; Kuznetsov, Andrey V; Guzun, Rita

    2014-02-01

    The aim of this work was to study the regulation of respiration and energy fluxes in permeabilized oxidative and glycolytic skeletal muscle fibers, focusing also on the role of cytoskeletal protein tubulin βII isotype in mitochondrial metabolism and organization. By analyzing accessibility of mitochondrial ADP, using respirometry and pyruvate kinase-phosphoenolpyruvate trapping system for ADP, we show that the apparent affinity of respiration for ADP can be directly linked to the permeability of the mitochondrial outer membrane (MOM). Previous studies have shown that MOM permeability in cardiomyocytes can be regulated by VDAC interaction with cytoskeletal protein, βII tubulin. We found that in oxidative soleus skeletal muscle the high apparent Km for ADP is associated with low MOM permeability and high expression of non-polymerized βII tubulin. Very low expression of non-polymerized form of βII tubulin in glycolytic muscles is associated with high MOM permeability for adenine nucleotides (low apparent Km for ADP). © 2013.

  15. Protein Kinase CK2 Regulates Leukocyte-Endothelial Cell Interactions during Ischemia and Reperfusion in Striated Skin Muscle.

    Science.gov (United States)

    Ampofo, Emmanuel; Widmaier, Daniela; Montenarh, Mathias; Menger, Michael D; Laschke, Matthias W

    2016-01-01

    Ischemia and reperfusion (I/R) causes tissue injury by inflammatory processes. This involves the upregulation of endothelial surface proteins by phospho-regulated signaling pathways, resulting in enhanced interactions of leukocytes with endothelial cells. Recently, we found that protein kinase CK2 is a crucial regulator of leukocyte-mediated inflammation. Therefore, in this study we investigated the involvement of CK2 in leukocyte-endothelial cell interactions during I/R injury. We first analyzed the inhibitory action of (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA) and CX-4945 on CK2 kinase activity and the viability of human dermal microvascular endothelial cells (HDMEC). To mimic I/R conditions in vitro, HDMEC were exposed to hypoxia and reoxygenation and the expression of adhesion molecules was analyzed by flow cytometry. Moreover, we analyzed in vivo the effect of CK2 inhibition on leukocyte-endothelial cell interactions in the dorsal skinfold chamber model of I/R injury by means of repetitive intravital fluorescence microscopy and immunohistochemistry. We found that TBCA and CX-4945 suppressed the activity of CK2 in HDMEC without affecting cell viability. This was associated with a significant downregulation of E-selectin and intercellular adhesion molecule (ICAM)-1 after in vitro hypoxia and reoxygenation. In vivo, CX-4945 treatment significantly decreased the numbers of adherent and transmigrated leukocytes in striated muscle tissue exposed to I/R. Our findings indicate that CK2 is involved in the regulation of leukocyte-endothelial cell interactions during I/R by mediating the expression of E-selectin and ICAM-1. © 2016 S. Karger AG, Basel.

  16. Isoform Composition and Gene Expression of Thick and Thin Filament Proteins in Striated Muscles of Mice after 30-Day Space Flight

    Directory of Open Access Journals (Sweden)

    Anna Ulanova

    2015-01-01

    Full Text Available Changes in isoform composition, gene expression of titin and nebulin, and isoform composition of myosin heavy chains as well as changes in titin phosphorylation level in skeletal (m. gastrocnemius, m. tibialis anterior, and m. psoas and cardiac muscles of mice were studied after a 30-day-long space flight onboard the Russian spacecraft “BION-M” number 1. A muscle fibre-type shift from slow-to-fast and a decrease in the content of titin and nebulin in the skeletal muscles of animals from “Flight” group was found. Using Pro-Q Diamond staining, an ~3-fold increase in the phosphorylation level of titin in m. gastrocnemius of mice from the “Flight” group was detected. The content of titin and its phosphorylation level in the cardiac muscle of mice from “Flight” and “Control” groups did not differ; nevertheless an increase (2.2 times in titin gene expression in the myocardium of flight animals was found. The observed changes are discussed in the context of their role in the contractile activity of striated muscles of mice under conditions of weightlessness.

  17. Assembly and Dynamics of Myofibrils

    Directory of Open Access Journals (Sweden)

    Joseph W. Sanger

    2010-01-01

    Full Text Available We review some of the problems in determining how myofibrils may be assembled and just as importantly how this contractile structure may be renewed by sarcomeric proteins moving between the sarcomere and the cytoplasm. We also address in this personal review the recent evidence that indicates that the assembly and dynamics of myofibrils are conserved whether the cells are analyzed in situ or in tissue culture conditions. We suggest that myofibrillogenesis is a fundamentally conserved process, comparable to protein synthesis, mitosis, or cytokinesis, whether examined in situ or in vitro.

  18. Tachykinins are involved in local reflex modulation of vagally mediated striated muscle contractions in the rat esophagus via tachykinin NK1 receptors.

    Science.gov (United States)

    Shiina, T; Shimizu, Y; Boudaka, A; Wörl, J; Takewaki, T

    2006-05-12

    The objective of the present study was to investigate the hypothesis of the presence of a local neural reflex modulating the vagally mediated contractions of striated muscle in the rat esophagus and to determine the possible involvement of tachykinins in such a local neural reflex. Electrical stimulation of the vagus nerve evoked twitch contractile responses that were abolished by d-tubocurarine (5 microM). Capsaicin (1-100 microM) inhibited the vagally mediated twitch contractions o f the normal rat esophageal preparations concentration-dependently but not those of the neonatally capsaicin-treated ones. NG-nitro-L-arginine methyl ester (100 microM), a nitric oxide synthase inhibitor, blocked the inhibitory effect of capsaicin and exogenous application of a nitric oxide donor (1 mM) inhibited the vagally mediated twitch contractions. Capsaicin suppressed acetylcholine release from the normal rat esophageal segments evoked by vagus nerve stimulation but not that from the neonatally capsaicin-treated ones. A selective tachykinin NK1 receptor antagonist (0.1 or 1 microM) attenuated the inhibitory effect of capsaicin. However, antagonists of tachykinin NK2, tachykinin NK3 and calcitonin gene-related peptide receptors (1 microM) did not have any effect. A tachykinin NK1 receptor agonist (1 or 5 microM) inhibited the vagally mediated twitch contractions, which was prevented by NG-nitro-L-arginine methyl ester (100 microM). These data suggest that the rat esophagus might have a local neural reflex inhibiting the vagally mediated striated muscle motility, which consists of capsaicin-sensitive sensory neurons and myenteric nitrergic neurons, and that tachykinins might be involved in the neural reflex through tachykinin NK1 receptors.

  19. Seasonal changes in isoform composition of giant proteins of thick and thin filaments and titin (connectin) phosphorylation level in striated muscles of bears (Ursidae, Mammalia).

    Science.gov (United States)

    Salmov, N N; Vikhlyantsev, I M; Ulanova, A D; Gritsyna, Yu V; Bobylev, A G; Saveljev, A P; Makariushchenko, V V; Maksudov, G Yu; Podlubnaya, Z A

    2015-03-01

    Seasonal changes in the isoform composition of thick and thin filament proteins (titin, myosin heavy chains (MyHCs), nebulin), as well as in the phosphorylation level of titin in striated muscles of brown bear (Ursus arctos) and hibernating Himalayan black bear (Ursus thibetanus ussuricus) were studied. We found that the changes that lead to skeletal muscle atrophy in bears during hibernation are not accompanied by a decrease in the content of nebulin and intact titin-1 (T1) isoforms. However, a decrease (2.1-3.4-fold) in the content of T2 fragments of titin was observed in bear skeletal muscles (m. gastrocnemius, m. longissimus dorsi, m. biceps) during hibernation. The content of the stiffer N2B titin isoform was observed to increase relative to the content of its more compliant N2BA isoform in the left ventricles of hibernating bears. At the same time, in spite of the absence of decrease in the total content of T1 in the myocardium of hibernating brown bear, the content of T2 fragments decreased ~1.6-fold. The level of titin phosphorylation only slightly increased in the cardiac muscle of hibernating brown bear. In the skeletal muscles of brown bear, the level of titin phosphorylation did not vary between seasons. However, changes in the composition of MyHCs aimed at increasing the content of slow (I) and decreasing the content of fast (IIa) isoforms of this protein during hibernation of brown bear were detected. Content of MyHCs I and IIa in the skeletal muscles of hibernating Himalayan black bear corresponded to that in the skeletal muscles of hibernating brown bear.

  20. Response of the JAK-STAT pathway to mammalian hibernation in 13-lined ground squirrel striated muscle.

    Science.gov (United States)

    Logan, Samantha M; Tessier, Shannon N; Tye, Joann; Storey, Kenneth B

    2016-03-01

    Over the course of the torpor-arousal cycle, hibernators must make behavioral, physiological, and molecular rearrangements in order to keep a very low metabolic rate and retain organ viability. 13-lined ground squirrels (Ictidomys tridecemlineatus) remain immobile during hibernation, and although the mechanisms of skeletal muscle survival are largely unknown, studies have shown minimal muscle loss in hibernating organisms. Additionally, the ground squirrel heart undergoes cold-stress, reversible cardiac hypertrophy, and ischemia-reperfusion without experiencing fatal impairment. This study examines the role of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway in the regulation of cell stress in cardiac and skeletal muscles, comparing euthermic and hibernating ground squirrels. Immunoblots showed a fivefold decrease in JAK3 expression during torpor in skeletal muscle, along with increases in STAT3 and 5 phosphorylation and suppressors of cytokine signaling-1 (SOCS1) protein levels. Immunoblots also showed coordinated increases in STAT1, 3 and 5 phosphorylation and STAT1 inhibitor protein expression in cardiac muscle during torpor. PCR analysis revealed that the activation of these pro-survival signaling cascades did not result in coordinate changes in downstream genes such as anti-apoptotic B-cell lymphoma-2 (Bcl-2) family gene expression. Overall, these results indicate activation of the JAK-STAT pathway in both cardiac and skeletal muscles, suggesting a response to cellular stress during hibernation.

  1. Morphoquantitative effects on striated skeletal muscle of Wistar rats (Rattus norvegicus subjected to a diet utilized in young children from rural Mozambique

    Directory of Open Access Journals (Sweden)

    Catarina Tivane Nhamposse

    2016-12-01

    Full Text Available Mozambique is a country of sub-Saharan Africa where about 55% of the population lives below the absolute poverty line with less than one meal a day hardly surviving based on by donations. Food insecurity and precarious nutrition, especially in children, are factors that induce to levels of 44% of chronic malnutrition (CD in infants. The CD is responsible for one third of deaths in children under five years. The aim of this study was to evaluate the morphoquantitative effects in gastrocnemius muscle of Wistar rats fed with a diet utilized by people from rural areas of Mozambique. We used 75 Wistar rats weighing approximately 300 g divided in three groups: nourished or control (N, malnourished (D, and Mozambique or experimental group (M, measured at birth and at weaning. The animals were kept under the same housing conditions, temperature, humidity and light, but with different diets depending on the group: Group N with normal protein diet (20% casein, Group D with hypo-proteic diet (5% casein, and Group M with Mozambique diet. In all groups we evaluated the body mass at birth and weaning, and collected the right gastrocnemius muscle of male pups at weaning for analysis. Serial sections of 10 μm were performed in a cryostat prior to histology techniques of hematoxylin and eosin, picrosirius, NADH-tr and analysis in transmission electron microscope. Statistical evaluation was determined by analysis of variance (ANOVA and Tukey tests. Significant differences were found between groups N, D and M. In group M were observed a great variation of body mass that was approximately similar to group D; Group M also showed the same changes in muscle fiber which exhibited round-shaped contours, and predominance of type III collagen, similarly to malnourished group (D. Ultra-structurally, animals from Mozambique displayed a disorganization of the Z lines of sarcomeres, myofibrils disruption, decreased cross-sectional area and a smaller proportion of

  2. Standardization of metachromatic staining method of myofibrillar ATPase activity of myosin to skeletal striated muscle of mules and donkeys

    Directory of Open Access Journals (Sweden)

    Flora H.F. D'Angelis

    2014-09-01

    Full Text Available This study aims at standardizing the pre-incubation and incubation pH and temperature used in the metachromatic staining method of myofibrillar ATPase activity of myosin (mATPase used for asses and mules. Twenty four donkeys and 10 mules, seven females and three males, were used in the study. From each animal, fragments from the Gluteus medius muscle were collected and percutaneous muscle biopsy was performed using a 6.0-mm Bergström-type needle. In addition to the metachromatic staining method of mATPase, the technique of nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR was also performed to confirm the histochemical data. The histochemical result of mATPase for acidic pre-incubation (pH=4.50 and alkaline incubation (pH=10.50, at a temperature of 37ºC, yielded the best differentiation of fibers stained with toluidine blue. Muscle fibers were identified according to the following colors: type I (oxidative, light blue, type IIA (oxidative-glycolytic, intermediate blue and type IIX (glycolytic, dark blue. There are no reports in the literature regarding the characterization and distribution of different types of muscle fibers used by donkeys and mules when performing traction work, cargo transportation, endurance sports (horseback riding and marching competitions. Therefore, this study is the first report on the standardization of the mATPase technique for donkeys and mules.

  3. Contribution of impaired myofibril and ryanodine receptor function to prolonged low-frequency force depression after in situ stimulation in rat skeletal muscle.

    Science.gov (United States)

    Watanabe, Daiki; Kanzaki, Keita; Kuratani, Mai; Matsunaga, Satoshi; Yanaka, Noriyuki; Wada, Masanobu

    2015-06-01

    The aim of this study was to examine whether prolonged low-frequency force depression (PLFFD) that occurs in situ is the result of decreased myofibrillar Ca(2+) sensitivity and/or reduced sarcoplasmic reticulum (SR) Ca(2+) release. Intact rat gastrocnemius muscles were electrically stimulated via the sciatic nerve until force was reduced to ~50% of the initial and dissected 30 min following the cessation of stimulation. Skinned fibre and whole muscle analyses were performed in the superficial region composed exclusively of type IIB fibres. Fatiguing stimulation significantly reduced the ratio of force at low frequency to that at high frequency to 65% in skinned fibres (1 vs. 50 Hz) and 73% in whole muscles (20 vs. 100 Hz). In order to evaluate changes in myofibrillar Ca(2+) sensitivity and ryanodine receptor caffeine sensitivity, skinned fibres were activated in Ca(2+)- and caffeine-containing solutions, respectively. Skinned fibres from fatigued muscles displayed decreased caffeine sensitivity together with increased myofibrillar Ca(2+) sensitivity. Treatment with 2,2'-dithiodipyridine and reduced glutathione induced a smaller increase in myofibrillar Ca(2+)sensitivity in fatigued than in rested fibres. In fatigued muscles, S-glutathionylation of troponin I was increased and submaximal SR Ca(2+) release, induced by 4-chloro-m-cresol, was decreased. These findings suggest that in the early stage of PLFFD that occurs in fast-twitch muscles of exercising animals and humans, S-glutathionylation of troponin I may attenuate PLFFD by increasing myofibrillar Ca(2+) sensitivity and that under such a circumstance, PLFFD may be ascribable to failure of SR Ca(2+) release.

  4. Multi-tasking role of the mechanosensing protein Ankrd2 in the signaling network of striated muscle.

    Directory of Open Access Journals (Sweden)

    Anna Belgrano

    Full Text Available Ankrd2 (also known as Arpp together with Ankrd1/CARP and DARP are members of the MARP mechanosensing proteins that form a complex with titin (N2A/calpain 3 protease/myopalladin. In muscle, Ankrd2 is located in the I-band of the sarcomere and moves to the nucleus of adjacent myofibers on muscle injury. In myoblasts it is predominantly in the nucleus and on differentiation shifts from the nucleus to the cytoplasm. In agreement with its role as a sensor it interacts both with sarcomeric proteins and transcription factors.Expression profiling of endogenous Ankrd2 silenced in human myotubes was undertaken to elucidate its role as an intermediary in cell signaling pathways. Silencing Ankrd2 expression altered the expression of genes involved in both intercellular communication (cytokine-cytokine receptor interaction, endocytosis, focal adhesion, tight junction, gap junction and regulation of the actin cytoskeleton and intracellular communication (calcium, insulin, MAPK, p53, TGF-β and Wnt signaling. The significance of Ankrd2 in cell signaling was strengthened by the fact that we were able to show for the first time that Nkx2.5 and p53 are upstream effectors of the Ankrd2 gene and that Ankrd1/CARP, another MARP member, can modulate the transcriptional ability of MyoD on the Ankrd2 promoter. Another novel finding was the interaction between Ankrd2 and proteins with PDZ and SH3 domains, further supporting its role in signaling. It is noteworthy that we demonstrated that transcription factors PAX6, LHX2, NFIL3 and MECP2, were able to bind both the Ankrd2 protein and its promoter indicating the presence of a regulatory feedback loop mechanism.In conclusion we demonstrate that Ankrd2 is a potent regulator in muscle cells affecting a multitude of pathways and processes.

  5. S100A1: A Regulator of Striated Muscle Sarcoplasmic Reticulum Ca2+ Handling, Sarcomeric, and Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Mirko Völkers

    2010-01-01

    S100A1 has further been detected at different sites within the cardiac sarcomere indicating potential roles in myofilament function. More recently, a study reported a mitochondrial location of S100A1 in cardiomyocytes. Additionally, normalizing the level of S100A1 protein by means of viral cardiac gene transfer in animal heart failure models resulted in a disrupted progression towards cardiac failure and enhanced survival. This brief review is confined to the physiological and pathophysiological relevance of S100A1 in cardiac and skeletal muscle Ca2+ handling with a particular focus on its potential as a molecular target for future therapeutic interventions.

  6. Creatine kinase binds more firmly to the M-band of rabbit skeletal muscle myofibrils in the presence of its substrates

    Czech Academy of Sciences Publication Activity Database

    Žurmanová, Jitka; Difato, F.; Maláčová, Daniela; Mejsnar, J.; Štefl, B.; Zahradník, I.

    2007-01-01

    Roč. 305, 1-2 (2007), s. 55-61 ISSN 0300-8177 R&D Projects: GA ČR(CZ) GA304/05/0327 Grant - others:MYORES(XE) LSHG-CT-2004-511978 Institutional research plan: CEZ:AV0Z50110509 Source of funding: R - rámcový projekt EK Keywords : muscle * creatine kinase * myofibrillar-sarcoplasmic exchange Subject RIV: ED - Physiology Impact factor: 1.707, year: 2007

  7. Microvascular response of striated muscle to metal debris. A comparative in vivo study with titanium and stainless steel.

    Science.gov (United States)

    Kraft, C N; Diedrich, O; Burian, B; Schmitt, O; Wimmer, M A

    2003-01-01

    Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant.

  8. Effects of BTS (N-benzyl-p-toluene sulphonamide), an inhibitor for myosin-actin interaction, on myofibrillogenesis in skeletal muscle cells in culture.

    Science.gov (United States)

    Kagawa, Maiko; Sato, Naruki; Obinata, Takashi

    2006-11-01

    Actin filaments align around myosin filaments in the correct polarity and in a hexagonal arrangement to form cross-striated structures. It has been postulated that this myosin-actin interaction is important in the initial phase of myofibrillogenesis. It was previously demonstrated that an inhibitor of actin-myosin interaction, BDM (2,3-butanedione monoxime), suppresses myofibril formation in muscle cells in culture. However, further study showed that BDM also exerts several additional effects on living cells. In this study, we further examined the role of actin-myosin interaction in myofibril assembly in primary cultures of chick embryonic skeletal muscle by applying a more specific inhibitor, BTS (N-benzyl-p-toluene sulphonamide), of myosin ATPase and actin-myosin interaction. The assembly of sarcomeric structures from myofibrillar proteins was examined by immunocytochemical methods with the application of BTS to myotubes just after fusion. Addition of BTS (10-50 microM) significantly suppressed the organization of actin and myosin into cross-striated structures. BTS also interfered in the organization of alpha-actinin, C-protein (or MyBP-C), and connectin (or titin) into ordered striated structures, though the sensitivity was less. Moreover, when myotubes cultured in the presence of BTS were transferred to a control medium, sarcomeric structures were formed in 2-3 days, indicating that the inhibitory effect of BTS on myotubes is reversible. These results show that actin-myosin interaction plays a critical role in the process of myofibrillogenesis.

  9. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.

    Science.gov (United States)

    Shirakawa, I; Chaen, S; Bagshaw, C R; Sugi, H

    2000-02-01

    The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase.

  10. Fiber types in the striated urethral and anal sphincters

    DEFF Research Database (Denmark)

    Schrøder, H D; Reske-Nielsen, E

    1983-01-01

    Seven normal human striated urethral and anal sphincters obtained by autopsy were examined using histochemical techniques. In both the urethral sphincter and the subcutaneous (s.c.) and superficial part of the anal sphincter a characteristic pattern with two populations of muscle fibers, abundant...

  11. Dose-dependent separation of the hypertrophic and myotoxic effects of the β2-adrenergic receptor agonist clenbuterol in rat striated muscles.

    Science.gov (United States)

    Burniston, Jatin G; WA, Clark; Tan, Lip-Bun; Goldspink, David F

    2007-01-01

    Muscle growth in response to large doses (i.e., mg.kg-1) of β2-adrenergic receptor agonists has been consistently reported. However, such doses may also induce myocyte death in the heart and skeletal muscles and hence may not be applicable safe doses for humans. Here, we report the hypertrophic and myotoxic effects of different doses of clenbuterol. Rats were infused with clenbuterol (range, 1 μg to 1 mg.kg-1) for 14 days. Muscle protein content, myofiber cross-sectional area and myocyte death were then investigated. Infusions of ≥10 μg.kg-1.d-1 of clenbuterol significantly (Pclenbuterol in the absence of myocyte death. PMID:16411205

  12. The evolutionary origin of bilaterian smooth and striated myocytes

    Science.gov (United States)

    Brunet, Thibaut; Fischer, Antje HL; Steinmetz, Patrick RH; Lauri, Antonella; Bertucci, Paola; Arendt, Detlev

    2016-01-01

    The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module repeatedly – for example, in vertebrate heart evolution. During these smooth-to-striated myocyte conversions, the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolution. DOI: http://dx.doi.org/10.7554/eLife.19607.001 PMID:27906129

  13. The Time Course of the Loss and Recovery of Contracture Ability in Frog Striated Muscle Following Exposure to Ca-Free Solutions

    Science.gov (United States)

    Milligan, J. V.

    1965-01-01

    Using area under the contracture curve to quantitate contractures, the diffusion coefficient of calcium ions within the frog toe muscle during washout in a calcium-free solution and subsequent recovery after reintroduction of calcium to the bathing solution was calculated to be about 2 x 10-6 cm2/sec. The diffusion coefficient measured during washout was found to be independent of temperature or initial calcium ion concentration. During recovery it was found to decrease if the temperature was lowered. This was likely due to the repolarization occurring after the depolarizing effect of the calcium-free solution. The relation between contracture area and [Ca]o was found to be useful over a wider range than that between maximum tension and [Ca]o. The normalized contracture areas were larger at lower calcium concentrations if the contractures were produced with cold potassium solutions or if NO3 replaced Cl in the bathing solutions. Decreasing the potassium concentration of the contracture solution to 50 mM from 115 mM did not change the relation between [Ca]o and the normalized area. If the K concentration of the bathing solution was increased, the areas were decreased at lower concentrations of Ca. PMID:14324991

  14. Interstitial cells of Cajal in the striated musculature of the mouse esophagus

    DEFF Research Database (Denmark)

    Rumessen, J J; de Kerchove d'Exaerde, A; Mignon, S

    2001-01-01

    Interstitial cells of Cajal (ICC) are important regulatory cells in the smooth muscle coats of the digestive tract. Expression of the Kit receptor tyrosine kinase was used in this study as a marker to study their distribution and development in the striated musculature of the mouse esophagus...... scarce in both muscle layers of the thoracic esophagus, while their number increased steeply toward the cardia in the striated portion of the intraabdominal esophagus. They did not form networks and had no relationship with intrinsic myenteric ganglia and motor end-plates. They were often close to nerve...... but absent in adult ICC-deficient KitW-lacZ/KitWv mice. Interstitial cells of Cajal were identified by electron microscopy by their ultrastructure in the striated muscle of the esophagus and exhibited Xgal labeling, while fibroblasts and muscle cells were unlabeled. Interstitial cells of Cajal are scattered...

  15. Disposition of the striated urethral sphincter and its relation to the prostate in human fetuses

    Directory of Open Access Journals (Sweden)

    Luciano A. Favorito

    2007-06-01

    Full Text Available OBJECTIVE: To describe the arrangement of the muscle fibers of the striated urethral sphincter and its relationship with the prostate during the fetal period in humans. MATERIALS AND METHODS: We analyzed 17 prostates from well preserved fresh human fetuses ranging in age from 10 to 31 weeks postconception (WPC. Transversal sections were obtained and stained with Gomori's trichrome and immunolabeled with anti alpha-actin antibody. RESULTS: We found that the urethral striated sphincter (rabdosphincter is located on the periphery of the smooth muscle and there was no merge between striated and smooth muscle fibers in any fetal period. In the prostate apex, the striated sphincter shows a circular arrangement and covers completely the urethra externally, whereas adjacent to verumontanum, it looks like a "horseshoe" and covers only the anterior and lateral surfaces of the urethra. Near the bladder neck, in fetuses younger than 20 WPC, we have found striated muscle fibers only at the anterior surface of the prostate, while in fetuses older than 20 WPC, the striated muscle covers the anterior and lateral surfaces of the prostate. CONCLUSIONS: The urethral sphincter muscle covers the anterior and lateral surfaces of the urethra in all fetuses older than 20 WPC, close to the bladder neck and at the distal prostate. In the region of the prostate apex, the urethral sphincter covers completely the urethra circularly. The knowledge of the normal anatomy of the urethral sphincter in fetuses could be important to understand its alterations in congenital anomalies involving the base of the bladder, the bladder neck and the proximal urethra.

  16. Quantitative comparison of striated toolmarks.

    Science.gov (United States)

    Baiker, Martin; Keereweer, Isaac; Pieterman, René; Vermeij, Erwin; van der Weerd, Jaap; Zoon, Peter

    2014-09-01

    A comparison of striated toolmarks by human examiners is dependent on the experience of the expert and includes a subjective judgment within the process. In this article an automated method is presented for objective comparison of striated marks of screwdrivers. The combination of multi-scale registration (alignment) of toolmarks, that accounts for shift and scaling, with global cross correlation as objective toolmark similarity metric renders the approach robust with respect to large differences in angle of attack and moderate toolmark compression. In addition, a strategy to distinguish between relevant and non-relevant spatial frequency ranges (geometric details) is presented. The performance of the method is evaluated using 3D topography scans of experimental toolmarks of 50 unused screwdrivers. Known match and known non-match similarity distributions are estimated including a large range of angles of attack (15, 30, 45, 60 and 75°) for the known matches. It is demonstrated that the system has high discriminatory power, even if the toolmarks are made at a difference in angle of attack of larger than 15°. The probability distributions are subsequently employed to determine likelihood ratios. A comparison of the results of the automated method with the outcome of a toolmark comparison experiment involving three experienced toolmark examiners reveals, that the automated system is more powerful in correctly supporting the hypothesis of common origin for toolmarks with a large difference in angle of attack (30°). In return, the rate of toolmark comparisons that yield incorrect support for the hypothesis of common origin is higher for the automated system. In addition, a comparison between estimating known match and known non-match distributions using 2D and 3D data is presented and it is shown that for toolmarks of unused screwdrivers, relying on 3D is slightly better than relying on 2D data. Finally, a comparison between estimating known match and known non

  17. Interstitial cells of Cajal in the striated musculature of the mouse esophagus

    DEFF Research Database (Denmark)

    Rumessen, J J; de Kerchove d'Exaerde, A; Mignon, S

    2001-01-01

    Interstitial cells of Cajal (ICC) are important regulatory cells in the smooth muscle coats of the digestive tract. Expression of the Kit receptor tyrosine kinase was used in this study as a marker to study their distribution and development in the striated musculature of the mouse esophagus. Sec...

  18. Sarcomagenesis and myofibril maturation during limb regeneration and development of the newt, Triturus alpestris and salamander, Salamandra salamandra.

    Science.gov (United States)

    Kilarski, W; Kozlowska, M

    1980-01-01

    During limb regeneration of the salamander, Salamandra salamandra, muscles dedifferentiate and then mesenchymal cells appear, which subsequently, differentiate into muscle. Both in regenerates and in developing limbs of newts larvae mesenchymal cells begin to differentiate into myoblasts, which contain both thin (7 nm) and thick (14 nm) filaments, which are often associated with microtubules, developing a cytoskeletal network, which contribute directly to the shape of myoblasts and a linear alignment of the myofibrils. Both thin and thick filaments appear as a tandem near the periphery of the myoblasts, where myofibrilogenesis occurs. In the early stage of sarcomagenesis the appearance of "Z-bodies" was observed. They were intimately associated with the tandem of filaments thus forming the primary sarcomere units. Consequently the "Z-bodies" coalesce to form primitive Z-lines. The maturation of the primary sarcomeres occurs during fibrilogenesis and is manifested by the gradual thining of the Z-line and thickening of the M-line.

  19. The muscle regulatory and structural protein MLP is a cytoskeletal binding partner of betaI-spectrin.

    Science.gov (United States)

    Flick, M J; Konieczny, S F

    2000-05-01

    Muscle LIM protein (MLP) is a striated muscle-specific factor that enhances myogenic differentiation and is critical to maintaining the structural integrity of the contractile apparatus. The ability of MLP to regulate myogenesis is particularly interesting since it exhibits multiple subcellular localizations, being found in both nuclear and cytoplasmic compartments. Despite extensive biochemical analyses on MLP, the mechanism(s) by which it influences the myogenic program remains largely undefined. To further examine the role of MLP as a positive myogenic regulator, a yeast two-hybrid screen was employed to identify cytoplasmic-associated MLP binding partners. From this screen, the cytoskeletal protein betaI-spectrin was isolated. Protein interaction assays demonstrate that MLP and betaI-spectrin associate with one another in vivo as well as when tested under several in vitro binding conditions. betaI-spectrin binds specifically to MLP but not to the MLP related proteins CRP1 and CRP2 or to other LIM domain containing proteins. The MLP:beta-spectrin interaction is mediated by the second LIM motif of MLP and by repeat 7 of beta-spectrin. Confocal microscopy studies also reveal that MLP co-localizes with beta-spectrin at the sarcolemma overlying the Z- and M-lines of myofibrils in both cardiac and skeletal muscle tissue. Given that beta-spectrin is a known costamere protein, we propose that sarcolemma-associated MLP also serves as a key costamere protein, stabilizing the association of the contractile apparatus with the sarcolemma by linking the beta-spectrin network to the alpha-actinin crosslinked actin filaments of the myofibril.

  20. Bones, Muscles, and Joints: The Musculoskeletal System

    Science.gov (United States)

    ... Skeletal muscles are called striated (pronounced: STRY-ay-ted) because they are made up of fibers that ... blood through your body. When we smile and talk, muscles are helping us communicate, and when we ...

  1. Distinctive serum miRNA profile in mouse models of striated muscular pathologies.

    Directory of Open Access Journals (Sweden)

    Nicolas Vignier

    Full Text Available Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD, limb-girdle muscular dystrophy type 2D (LGMD2D, limb-girdle muscular dystrophy type 2C (LGMD2C, Emery-Dreifuss muscular dystrophy (EDMD and hypertrophic cardiomyopathy (HCM. Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.

  2. Preparation of developing Xenopus muscle for sarcomeric protein localization by high-resolution imaging.

    Science.gov (United States)

    Nworu, Chinedu U; Krieg, Paul A; Gregorio, Carol C

    2014-04-01

    Mutations in several sarcomeric proteins have been linked to various human myopathies. Therefore, having an in vivo developmental model available that develops quickly and efficiently is key for investigators to elucidate the critical steps, components and signaling pathways involved in building a myofibril; this is the pivotal foundation for deciphering disease mechanisms as well as the development of myopathy-related therapeutics. Although striated muscle cell culture studies have been extremely informative in providing clues to both the distribution and functions of sarcomeric proteins, myocytes in vivo develop in an irreproducible 3D environment. Xenopus laevis (frog) embryos are cost effective, compliant to protein level manipulations and develop relatively quickly (⩽ a week) in a petri dish, thus providing a powerful system for de novo myofibrillogenesis studies. Although fluorophore-conjugated phalloidin labeling is the gold standard approach for investigating actin-thin filament architecture, it is well documented that phalloidin-labeling can be challenging and inconsistent within Xenopus embryos. Therefore we highlight several techniques that can be utilized to preserve both antibody and fluorophore-conjugated phalloidin labeling within Xenopus embryos for high-resolution fluorescence microscopy. Copyright © 2013. Published by Elsevier Inc.

  3. Cardiomyocyte Hypocontractility and Reduced Myofibril Density in End-Stage Pediatric Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ilse A. E. Bollen

    2017-12-01

    Full Text Available Dilated cardiomyopathy amongst children (pediatric cardiomyopathy, pediatric CM is associated with a high morbidity and mortality. Because little is known about the pathophysiology of pediatric CM, treatment is largely based on adult heart failure therapy. The reason for high morbidity and mortality is largely unknown as well as data on cellular pathomechanisms is limited. Here, we assessed cardiomyocyte contractility and protein expression to define cellular pathomechanisms in pediatric CM. Explanted heart tissue of 11 pediatric CM patients and 18 controls was studied. Contractility was measured in single membrane-permeabilized cardiomyocytes and protein expression was assessed with gel electrophoresis and western blot analysis. We observed increased Ca2+-sensitivity of myofilaments which was due to hypophosphorylation of cardiac troponin I, a feature commonly observed in adult DCM. We also found a significantly reduced maximal force generating capacity of pediatric CM cardiomyocytes, as well as a reduced passive force development over a range of sarcomere lengths. Myofibril density was reduced in pediatric CM compared to controls. Correction of maximal force and passive force for myofibril density normalized forces in pediatric CM cardiomyocytes to control values. This implies that the hypocontractility was caused by the reduction in myofibril density. Unlike in adult DCM we did not find an increase in compliant titin isoform expression in end-stage pediatric CM. The limited ability of pediatric CM patients to maintain myofibril density might have contributed to their early disease onset and severity.

  4. Cardiomyocyte Hypocontractility and Reduced Myofibril Density in End-Stage Pediatric Cardiomyopathy.

    Science.gov (United States)

    Bollen, Ilse A E; van der Meulen, Marijke; de Goede, Kyra; Kuster, Diederik W D; Dalinghaus, Michiel; van der Velden, Jolanda

    2017-01-01

    Dilated cardiomyopathy amongst children (pediatric cardiomyopathy, pediatric CM) is associated with a high morbidity and mortality. Because little is known about the pathophysiology of pediatric CM, treatment is largely based on adult heart failure therapy. The reason for high morbidity and mortality is largely unknown as well as data on cellular pathomechanisms is limited. Here, we assessed cardiomyocyte contractility and protein expression to define cellular pathomechanisms in pediatric CM. Explanted heart tissue of 11 pediatric CM patients and 18 controls was studied. Contractility was measured in single membrane-permeabilized cardiomyocytes and protein expression was assessed with gel electrophoresis and western blot analysis. We observed increased Ca 2+ -sensitivity of myofilaments which was due to hypophosphorylation of cardiac troponin I, a feature commonly observed in adult DCM. We also found a significantly reduced maximal force generating capacity of pediatric CM cardiomyocytes, as well as a reduced passive force development over a range of sarcomere lengths. Myofibril density was reduced in pediatric CM compared to controls. Correction of maximal force and passive force for myofibril density normalized forces in pediatric CM cardiomyocytes to control values. This implies that the hypocontractility was caused by the reduction in myofibril density. Unlike in adult DCM we did not find an increase in compliant titin isoform expression in end-stage pediatric CM. The limited ability of pediatric CM patients to maintain myofibril density might have contributed to their early disease onset and severity.

  5. Glutamine Synthetase in Muscle Is Required for Glutamine Production during Fasting and Extrahepatic Ammonia Detoxification

    NARCIS (Netherlands)

    He, Youji; Hakvoort, Theodorus B. M.; Köhler, S. Eleonore; Vermeulen, Jacqueline L. M.; de Waart, D. Rudi; de Theije, Chiel; ten Have, Gabrie A. M.; van Eijk, Hans M. H.; Kunne, Cindy; Labruyere, Wilhelmina T.; Houten, Sander M.; Sokolovic, Milka; Ruijter, Jan M.; Deutz, Nicolaas E. P.; Lamers, Wouter H.

    2010-01-01

    The main endogenous source of glutamine is de novo synthesis in striated muscle via the enzyme glutamine synthetase (GS). The mice in which GS is selectively but completely eliminated from striated muscle with the Cre-loxP strategy (GS-KO/M mice) are, nevertheless, healthy and fertile. Compared with

  6. Insights from diploblasts; the evolution of mesoderm and muscle.

    Science.gov (United States)

    Burton, Patrick Michael

    2008-01-15

    The origin of both mesoderm and muscle are central questions in metazoan evolution. The majority of metazoan phyla are triploblasts, possessing three discrete germ layers. Attention has therefore been focused on two outgroups to triploblasts, Cnidaria and Ctenophora. Modern texts describe these taxa as diploblasts, lacking a mesodermal germ layer. However, some members of Medusozoa, one of two subphyla within Cnidaria, possess tissue independent of either the ectoderm or endoderm referred to as the entocodon. Furthermore, members of both Cnidaria and Ctenophora have been described as possessing striated muscle, a mesodermal derivative. While it is widely accepted that the ancestor of Eumetazoa was diploblastic, homology of the entocodon and mesoderm as well as striated muscle within Eumetazoa has been suggested. This implies a potential triploblastic ancestor of Eumetazoa possessing striated muscle. In the following review, I examine the evidence for homology of both muscle and mesoderm. Current data support a diploblastic ancestor of cnidarians, ctenophores, and triploblasts lacking striated muscle.

  7. Differences in Contractile Function of Myofibrils within Human Embryonic Stem Cell-Derived Cardiomyocytes vs. Adult Ventricular Myofibrils Are Related to Distinct Sarcomeric Protein Isoforms

    Directory of Open Access Journals (Sweden)

    Bogdan Iorga

    2018-01-01

    Full Text Available Characterizing the contractile function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs is key for advancing their utility for cellular disease models, promoting cell based heart repair, or developing novel pharmacological interventions targeting cardiac diseases. The aim of the present study was to understand whether steady-state and kinetic force parameters of β-myosin heavy chain (βMyHC isoform-expressing myofibrils within human embryonic stem cell-derived cardiomyocytes (hESC-CMs differentiated in vitro resemble those of human ventricular myofibrils (hvMFs isolated from adult donor hearts. Contractile parameters were determined using the same micromechanical method and experimental conditions for both types of myofibrils. We identified isoforms and phosphorylation of main sarcomeric proteins involved in the modulation of force generation of both, chemically demembranated hESC-CMs (d-hESC-CMs and hvMFs. Our results indicate that at saturating Ca2+ concentration, both human-derived contractile systems developed forces with similar rate constants (0.66 and 0.68 s−1, reaching maximum isometric force that was significantly smaller for d-hESC-CMs (42 kPa than for hvMFs (94 kPa. At submaximal Ca2+-activation, where intact cardiomyocytes normally operate, contractile parameters of d-hESC-CMs and hvMFs exhibited differences. Ca2+ sensitivity of force was higher for d-hESC-CMs (pCa50 = 6.04 than for hvMFs (pCa50 = 5.80. At half-maximum activation, the rate constant for force redevelopment was significantly faster for d-hESC-CMs (0.51 s−1 than for hvMFs (0.28 s−1. During myofibril relaxation, kinetics of the slow force decay phase were significantly faster for d-hESC-CMs (0.26 s−1 than for hvMFs (0.21 s−1, while kinetics of the fast force decay were similar and ~20x faster. Protein analysis revealed that hESC-CMs had essentially no cardiac troponin-I, and partially non-ventricular isoforms of some other sarcomeric proteins

  8. Glucose-6-phosphate isomerase is an endogenous inhibitor to myofibril-bound serine proteinase of crucian carp (Carassius auratus).

    Science.gov (United States)

    Sun, Le-Chang; Zhou, Li-Gen; Du, Cui-Hong; Cai, Qiu-Feng; Hara, Kenji; Su, Wen-Jin; Cao, Min-Jie

    2009-06-24

    Glucose-6-phosphate isomerase (GPI) was purified to homogeneity from the skeletal muscle of crucian carp ( Carassius auratus ) by ammonium sulfate fractionation, column chromatographies of Q-Sepharose, SP-Sepharose, and Superdex 200 with a yield of 8.0%, and purification folds of 468. The molecular mass of GPI was 120 kDa as estimated by gel filtration, while on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two subunits (55 and 65 kDa) were identified, suggesting that it is a heterodimer. Interestingly, GPI revealed specific inhibitory activity toward a myofibril-bound serine proteinase (MBSP) from crucian carp, while no inhibitory activity was identified toward other serine proteinases, such as white croaker MBSP and crucian carp trypsin. Kinetic analysis showed that GPI is a competitive inhibitor toward MBSP, and the K(i) was 0.32 microM. Our present results indicated that the multifunctional protein GPI is an endogenous inhibitor to MBSP and may play a significant role in the regulation of muscular protein metabolism in vivo.

  9. The striated MR nephrogram, not a reflection of pathology

    Energy Technology Data Exchange (ETDEWEB)

    Trout, Andrew T.; Care, Marguerite M.; Towbin, Alexander J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology - MLC 5031, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Division of Biostatistics and Epidemiology, Cincinnati, OH (United States)

    2015-10-15

    We have intermittently observed low signal striations in the kidneys on delayed post-contrast MR exams of the spine. While we suspected these striations were due to concentrated gadolinium, the clinical importance of this finding was uncertain. To describe the striated MR nephrogram (low signal striations in the kidney) and assess its clinical relevance. Retrospective review of delayed post-contrast MRIs of the spine (mean: 45 min after contrast administration). The presence of the striated MR nephrogram was correlated with imaging parameters (field strength, time since contrast), and findings (gadolinium in the bladder, inferior vena cava and aorta diameters) and with clinical factors (history of renal disease, laboratory values). Seven hundred seventy-three exams performed on 229 patients, 8.3 ± 5.3 years of age, were reviewed. The striated MR nephrogram was observed in 102/773 examinations (13.2%) and was present on at least one study in 54/229 patients (23.6%). The presence of striations was associated with the specific magnet on which the exam was performed (P < 0.01) but not with magnet field strength. Serum creatinine was minimally lower in patients with striations (0.43 ± 0.12 vs. 0.49 ± 0.18 mg/dL, P = 0.002), but no other clinical or historical data, including time from contrast administration (P = 0.54), fluid status (P = 0.17) and clinical history of renal disease (P = 0.14), were predictive of the presence of striations. The striated MR nephrogram was observed in 13% of delayed post-contrast MR exams of the spine. Precipitating factors are unclear, but the striated nephrogram does not appear to be a marker of clinically apparent renal dysfunction. (orig.)

  10. Increased Hemodynamic Load in Early Embryonic Stages Alters Myofibril and Mitochondrial Organization in the Myocardium

    Directory of Open Access Journals (Sweden)

    Madeline Midgett

    2017-08-01

    Full Text Available Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress results in cardiac defects seen in congenital heart disease (CHD. However, the detrimental remodeling processes that relate altered blood flow to cardiac malformation and defects remain unclear. Heart development is a finely orchestrated process with rapid transformations that occur at the tissue, cell, and subcellular levels. Myocardial cells play an essential role in cardiac tissue maturation by aligning in the direction of stretch and increasing the number of contractile units as hemodynamic load increases throughout development. This study elucidates the early effects of altered blood flow on myofibril and mitochondrial configuration in the outflow tract myocardium in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24 (~24 h during tubular heart stages. 3D focused ion beam scanning electron microscopy analysis determined that increased hemodynamic load induced changes in the developing myocardium, characterized by thicker myofibril bundles that were more disbursed in circumferential orientation, and mitochondria that organized in large clusters around the nucleus. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with altered myofibril thin filament assembly and function, and mitochondrial maintenance and organization. Additionally, pathway analysis of the proteomics data identified possible activation of signaling pathways in response to banding, including the renin-angiotensin system (RAS. Imaging and proteomic data combined indicate that myofibril and mitochondrial arrangement in early embryonic stages is a critical developmental process that when disturbed by altered blood flow may contribute to cardiac malformation and defects.

  11. Immunocytochemical electron microscopic study and western blot analysis of paramyosin in different invertebrate muscle cell types of the fruit fly Drosophila melanogaster, the earthworm Eisenia foetida, and the snail Helix aspersa.

    Science.gov (United States)

    Royuela, M; García-Anchuelo, R; Arenas, M I; Cervera, M; Fraile, B; Paniagua, R

    1996-04-01

    The presence and distribution pattern of paramyosin have been examined in different invertebrate muscle cell types by means of Western blot analysis and electron microscopy immunogold labelling. The muscles studied were: transversely striated muscle with continuous Z lines (flight muscle from Drosophila melanogaster), transversely striated muscle with discontinuous Z lines (heart muscle from the snail Helix aspersa), obliquely striated body wall muscle from the earthworm Eisenia foetida, and smooth muscles (retractor muscle from the snail and pseudoheart outer muscular layer from the earthworm). Paramyosin-like immunoreactivity was localized in thick filaments of all muscles studied. Immunogold particle density was similar along the whole thick filament length in insect flight muscle but it predominated in filament tips of fusiform thick filaments in both snail heart and earthworm body wall musculature when these filaments were observed in longitudinal sections. In obliquely sectioned thick filaments, immunolabelling was more abundant at the sites where filaments disappeared from the section. These results agree with the notion that paramyosin extended along the whole filament length, but that it can only be immunolabelled when it is not covered by myosin. In all muscles examined, immunolabelling density was lower in cross-sectioned myofilaments than in longitudinally sectioned myofilaments. This suggests that paramyosin does not form a continuous filament. The results of a semiquantitative analysis of paramyosin-like immunoreactivity indicated that it was more abundant in striated than in smooth muscles, and that, within striated muscles, transversely striated muscles contain more paramyosin than obliquely striated muscles.

  12. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Directory of Open Access Journals (Sweden)

    Matthew Emerson Randolph

    2015-10-01

    Full Text Available The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies, such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some muscular dystrophies. The biology of muscle stem cells varies depending on their embryologic origins and the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.

  13. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  14. Virtual and simulated striated toolmarks for forensic applications.

    Science.gov (United States)

    Baiker, Martin; Petraco, Nicholas D K; Gambino, Carol; Pieterman, René; Shenkin, Peter; Zoon, Peter

    2016-04-01

    Large numbers of experimental toolmarks of screwdrivers are often required in casework of toolmark examiners and in research environments alike, to be able to recover the angle of attack of a crime scene mark and to determine statistically meaningful properties of toolmarks respectively. However, in practice the number of marks is limited by the time needed to create them. In this article, we present an approach to predict how a striated mark of a particular tool would look like, using 3D surface datasets of screwdrivers. We compare these virtual toolmarks qualitatively and quantitatively with real experimental marks in wax and show that they are very similar. In addition we study toolmark similarity, dependent on the angle of attack, with a very high angular resolution of 1°. The results show that for the tested type of screwdriver, our toolmark comparison framework yields known match similarity scores that are above the mean known non-match similarity scores, even for known match differences in angle of attack of up to 40°. In addition we demonstrate an approach to automatically recover the angle of attack of an experimental toolmark and experiments yield high accuracy and precision of 0.618 ± 4.179°. Furthermore, we present a strategy to study the structural elements of striated toolmarks using wavelet analysis, and show how to use the results to simulate realistic toolmarks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Estudo histomorfométrico do músculo esquelético de ratos em anestro Skeletal muscle histomorphometric study of rats in anestrus

    Directory of Open Access Journals (Sweden)

    Manoel de Almeida Moreira

    2005-08-01

    the myofibrils with six readings in the vertical and five in the horizontal in each sheet, being obtained a multiple number that applied on a specific formula to calculate the coefficient of muscular density. RESULTS: In A the muscular density varied from 60.0 to 52.33, (p<0,05%, with variation of 14,12%, and in B from 73.5 to 54.0, (p<0,05%, with variation of 26,53%. CONCLUSION: The castration provoked sarcopenia in the striated muscle and reduction of myofibrils number.

  16. Study of the striated nature of a glow discharge

    International Nuclear Information System (INIS)

    Hernandez A, M.

    1995-01-01

    In an investigation in progress here, plasma diagnostics and detection of standing and moving striations is being made in a discharge in Argon at pressures of 2 x 10 -1 to 9 x 10 -1 mb and currents of 2 to 9 m-amp inside an discharge tube. Measurement of the temperature of the electrons, the concentration of electrons and the plasma potential are obtained in different places of the discharge by the double probe method, together with the computation system reported in [1]. In similar way an experimental work of the striated column in a discharge plasma to find the regimen of appearance of the standing and moving striations show some properties of moving striations (frequency and velocity) and standing striations. Two different oscilations are observed in motion in contrary directions along the discharge tube with a photomultiplier. (Author)

  17. Alpha-actinin in different invertebrate muscle cell types of Drosophila melanogaster, the earthworm Eisenia foetida, and the snail Helix aspersa.

    Science.gov (United States)

    Royuela, M; Astier, C; Fraile, B; Paniagua, R

    1999-01-01

    The presence and distribution of alpha-actinin has been studied in several invertebrate muscle cell types. These comprised transversely striated muscle (flight muscle) from the fruit fly Drosophila melanogaster, transversely striated muscle (heart muscle) from the snail Helix aspersa, obliquely striated muscle (body wall muscle) from the earthworm Eisenia foetida, smooth muscle (retractor muscle) from H. aspersa, and smooth muscle (outer muscular layer of the pseudoheart) from E. foetida. The study was carried by means of Western blot analysis, ELISA, and immunohistochemical electron microscopy, using anti alpha-actinin antibody. Immunoreaction for a protein with the same molecular weight as that of mammalian alpha-actinin was detected in all muscle types studied, although the amount and intensity of immunoreaction varied among them. In the insect muscle, immunolabelling was found along the whole Z-line. In both the transversely striated muscle from the snail and the obliquely striated muscle from the earthworm, immunolabelling did not occupy the whole Z-line but showed discontinuous, orderly arranged patches along the Z-line course. In the two smooth muscles studied (snail and earthworm), immunolabelling was limited to small patches which did not show an apparently ordered distribution. Since it is assumed that alpha-actinin is located at the anchorage sites for actin filaments, present observations suggest that, only in the Drosophila muscle, actin filaments are parallelly arranged in all their course, whereas in the other invertebrate muscles studied these filaments converge on discontinuously distributed anchorage sites.

  18. Arginylation of Myosin Heavy Chain Regulates Skeletal Muscle Strength

    Directory of Open Access Journals (Sweden)

    Anabelle S. Cornachione

    2014-07-01

    Full Text Available Protein arginylation is a posttranslational modification with an emerging global role in the regulation of actin cytoskeleton. To test the role of arginylation in the skeletal muscle, we generated a mouse model with Ate1 deletion driven by the skeletal muscle-specific creatine kinase (Ckmm promoter. Ckmm-Ate1 mice were viable and outwardly normal; however, their skeletal muscle strength was significantly reduced in comparison to controls. Mass spectrometry of isolated skeletal myofibrils showed a limited set of proteins, including myosin heavy chain, arginylated on specific sites. Atomic force microscopy measurements of contractile strength in individual myofibrils and isolated myosin filaments from these mice showed a significant reduction of contractile forces, which, in the case of myosin filaments, could be fully rescued by rearginylation with purified Ate1. Our results demonstrate that arginylation regulates force production in muscle and exerts a direct effect on muscle strength through arginylation of myosin.

  19. Z-band Alternatively Spliced PDZ Motif Protein (ZASP) Is the Major O-Linked β-N-Acetylglucosamine-substituted Protein in Human Heart Myofibrils*

    Science.gov (United States)

    Leung, Man-Ching; Hitchen, Paul G.; Ward, Douglas G.; Messer, Andrew E.; Marston, Steven B.

    2013-01-01

    We studied O-linked β-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ∼90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p heart myofibrils. PMID:23271734

  20. Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes

    Science.gov (United States)

    Walker, Cameron G.; Crossman, David J.; Petzer, Amorita; Hickey, Anthony; Siekmann, Ivo; Hoshijima, Masahiko; Ellisman, Mark H.; Crampin, Edmund J.; Soeller, Christian

    2015-01-01

    Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils. We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i ≈1 μM; F/F0≈5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 μM (~3 to 100 fold from resting value of 0.1 μM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structure-induced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between

  1. Muscle glycogen stores and fatigue

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Westerblad, Håkan; Nielsen, Joachim

    2013-01-01

    function during fatigue is not well understood and a direct cause-and-effect relationship between glycogen and muscle function remains to be established. The use of electron microscopy has revealed that glycogen is not homogeneously distributed in skeletal muscle fibres, but rather localized in distinct...... the sarcoplasmic reticulum (SR). We and others have provided experimental evidence in favour of a direct role of decreased glycogen, localized within the myofibrils, for the reduction in SR Ca2+ release during fatigue. This is consistent with compartmentalized energy turnover and distinctly localized glycogen...

  2. Roles of the troponin isoforms during indirect flight muscle ...

    Indian Academy of Sciences (India)

    Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to ...

  3. Enhanced contractility with 2-deoxy-ATP and EMD 57033 is correlated with reduced myofibril structure and twitch power in neonatal cardiomyocytes.

    Science.gov (United States)

    Rodriguez, Anthony G; Rodriguez, Marita L; Han, Sangyoon J; Sniadecki, Nathan J; Regnier, Michael

    2013-11-01

    As cardiomyocytes mature, their sarcomeres and Z-band widths increase in length in order for their myofibrils to produce stronger twitch forces during a contraction. In this study, we tested the hypothesis that tensional homeostasis is affected by altering myofibril forces. To assess this hypothesis, neonatal rat cardiomyocytes were cultured on arrays of microposts to measure cellular contractility. An optical line scanning technique was used to measure the deflections in the microposts with high temporal resolution, enabling the analysis of twitch force, twitch velocity, and twitch power. Myofibril force production was elevated by vector-mediated overexpression of ribonucleotide reductase (RR) to increase cellular dATP content or by adding the inotropic agent EMD 57033 (EMD). We found that RR and EMD treatment did not affect cardiomyocyte twitch force, but it did lead to reduced twitch velocity and twitch power. Immunofluorescent analysis of α-actinin revealed that RR-over-expressing cardiomyocytes and EMD-treated cardiomyocytes had lower spread area, sarcomere length, and Z-band width as compared to control cells. These results indicate a correlation between myofibril structure and cardiac power. This correlation was confirmed by exposing the cells to the myosin II inhibitor blebbistatin, and then subsequently washing it out. After wash-out, cardiomyocytes exhibited a reduction in twitch force, velocity, and power due to shorter sarcomere length and Z-band widths. Our results suggest that cardiac myofibril structure is regulated by tensional homeostasis. If myofibril-generated forces in cardiomyocytes are elevated, a state of tensional homeostasis is maintained by producing sufficient twitch forces with a lower degree myofibril structure.

  4. Morphological and biochemical changes in soleus and extensor digitorum longus muscles of rats orbited in Spacelab 3

    Science.gov (United States)

    Riley, D. A.; Slocum, T.; Bain, J. L. W.; Sedlak, F. R.; Elis, S.; Satyanarayana, T.

    1985-01-01

    Muscle atrophy in rats exposed to hypogravity for seven days aboard Spacelab 3 is examined. Hindlimb muscles were harvested 12-16 days postflight, and prepared for enzyme studies and electron microscopy. Simple cell shrinkage was found, with a mean fiber area decrease of 35.8 percent for soleus and 24.9 percent for extensor digitorum longus (EDL) flight muscle fibers, as compared with control muscle fibers. EDL and soleus muscles showed increases in alkaline myofibrillar ATPase, alpha glycerophosphate dehydrogenase, and glycogen, and a decrease in NADH dehydrogenase staining. The 26 percent increase in calcium activated protease suggests that the focal degradation of myofibrils is the key process of myofibril breakdown. The presence in the flight soleus muscles of one percent necrotic fibers is unexplained. The observed shift towards histochemical fast-muscle type properties is consistent with previous findings.

  5. The Regulation of Muscle Structure and Metabolism by Mio/dChREBP in Drosophila.

    Directory of Open Access Journals (Sweden)

    Grzegorz L Polak

    Full Text Available All cells require energy to perform their specialized functions. Muscle is particularly sensitive to the availability of nutrients due to the high-energy requirement for muscle contraction. Therefore the ability of muscle cells to obtain, store and utilize energy is essential for the function of these cells. Mio, the Drosophila homolog of carbohydrate response element binding protein (ChREBP, has recently been identified as a nutrient responsive transcription factor important for triglyceride storage in the fly fat body. However, the function of Mio in muscle is unknown. In this study, we characterized the role of Mio in controlling muscle function and metabolism. Decreasing Mio levels using RNAi specifically in muscle results in increased thorax glycogen storage. Adult Mio-RNAi flies also have a flight defect due to altered myofibril shape and size in the indirect flight muscles as shown by electron microscopy. Myofibril size is also decreased in flies just before emerging from their pupal cases, suggesting a role for Mio in myofibril development. Together, these data indicate a novel role for Mio in controlling muscle structure and metabolism and may provide a molecular link between nutrient availability and muscle function.

  6. Hypogravity-induced atrophy of rat soleus and extensor digitorum longus muscles

    Science.gov (United States)

    Riley, D. A.; Ellis, S.; Slocum, G. R.; Satyanarayana, T.; Bain, J. L.; Sedlak, F. R.

    1987-01-01

    Prolonged exposure of humans to hypogravity causes weakening of their skeletal muscles. This problem was studied in rats exposed to hypogravity for 7 days aboard Spacelab 3. Hindlimb muscles were harvested 12-16 hours postflight for histochemical, biochemical, and ultrastructural analyses. The majority of the soleus and extensor digitorum longus fibers exhibited simple cell shrinkage. However, approximately 1% of the fibers in flight soleus muscles appeared necrotic. Flight muscle fibers showed increased glycogen, lower subsarcolemmal staining for mitochondrial enzymes, and fewer subsarcolemmal mitochondria. During atrophy, myofibrils were eroded by multiple focal losses of myofilaments; lysosomal autophagy was not evident. Tripeptidylaminopeptidase and calcium-activated protease activities of flight soleus fibers were significantly increased, implying a role in myofibril breakdown. Simple fiber atrophy appears to account for muscle weakening during spaceflight, but fiber necrosis is also a contributing factor.

  7. Comparative Statistical Mechanics of Muscle and Non-Muscle Contractile Systems: Stationary States of Near-Equilibrium Systems in A Linear Regime

    Directory of Open Access Journals (Sweden)

    Yves Lecarpentier

    2017-10-01

    Full Text Available A. Huxley’s equations were used to determine the mechanical properties of muscle myosin II (MII at the molecular level, as well as the probability of the occurrence of the different stages in the actin–myosin cycle. It was then possible to use the formalism of statistical mechanics with the grand canonical ensemble to calculate numerous thermodynamic parameters such as entropy, internal energy, affinity, thermodynamic flow, thermodynamic force, and entropy production rate. This allows us to compare the thermodynamic parameters of a non-muscle contractile system, such as the normal human placenta, with those of different striated skeletal muscles (soleus and extensor digitalis longus as well as the heart muscle and smooth muscles (trachea and uterus in the rat. In the human placental tissues, it was observed that the kinetics of the actin–myosin crossbridges were considerably slow compared with those of smooth and striated muscular systems. The entropy production rate was also particularly low in the human placental tissues, as compared with that observed in smooth and striated muscular systems. This is partly due to the low thermodynamic flow found in the human placental tissues. However, the unitary force of non-muscle myosin (NMII generated by each crossbridge cycle in the myofibroblasts of the human placental tissues was similar in magnitude to that of MII in the myocytes of both smooth and striated muscle cells. Statistical mechanics represents a powerful tool for studying the thermodynamics of all contractile muscle and non-muscle systems.

  8. Fish gelatin combined with chitosan coating inhibits myofibril degradation of golden pomfret (Trachinotus blochii) fillet during cold storage.

    Science.gov (United States)

    Feng, Xiao; Bansal, Nidhi; Yang, Hongshun

    2016-06-01

    Coating of gelatin and chitosan can improve fish fillet's quality, but the mechanism is not clear. Chitosan/gelatin coatings significantly prevented deterioration of golden pomfret fillet at 4 °C. Chitosan with 7.2% gelatin group showed the best effect on preserving the length of myofibril, which remained greater than 15 μm at day 17 of storage, while for control, chitosan and chitosan combined with 3.6% gelatin group, it was 5.03, 10.04 and 9.02 μm, respectively. The MALDI-TOF MS result revealed that the coatings slowed down the protein deterioration of fillet. On days 13 and 17, the myosin light chain and myoglobin in control group degraded, while the two proteins still existed in chitosan/gelatin coated groups. Overall, the chitosan with 7.2% gelatin coating had the best effect on preserving fillet's quality during storage. The coating may exert its protective effect via inhibiting myofibril degradation within fillet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Isolation and individual electrical stimulation of single smooth-muscle cells from the urinary bladder of the pig

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron); J.C. Romijn (Johannes); D.J. Griffiths (Derek)

    1987-01-01

    textabstractIn contrast to striated muscle, measurements on strips of smooth muscle cannot be uniquely interpreted in terms of an array of contractile units. Therefore scaling down to the single-cell level is necessary to gain detailed understanding of the contractile process in this type of muscle.

  10. Evaluation of muscle function of the extensor digitorum longus muscle ex vivo and tibialis anterior muscle in situ in mice.

    Science.gov (United States)

    Hakim, Chady H; Wasala, Nalinda B; Duan, Dongsheng

    2013-02-09

    Body movements are mainly provided by mechanical function of skeletal muscle. Skeletal muscle is composed of numerous bundles of myofibers that are sheathed by intramuscular connective tissues. Each myofiber contains many myofibrils that run longitudinally along the length of the myofiber. Myofibrils are the contractile apparatus of muscle and they are composed of repeated contractile units known as sarcomeres. A sarcomere unit contains actin and myosin filaments that are spaced by the Z discs and titin protein. Mechanical function of skeletal muscle is defined by the contractile and passive properties of muscle. The contractile properties are used to characterize the amount of force generated during muscle contraction, time of force generation and time of muscle relaxation. Any factor that affects muscle contraction (such as interaction between actin and myosin filaments, homeostasis of calcium, ATP/ADP ratio, etc.) influences the contractile properties. The passive properties refer to the elastic and viscous properties (stiffness and viscosity) of the muscle in the absence of contraction. These properties are determined by the extracellular and the intracellular structural components (such as titin) and connective tissues (mainly collagen) (1-2). The contractile and passive properties are two inseparable aspects of muscle function. For example, elbow flexion is accomplished by contraction of muscles in the anterior compartment of the upper arm and passive stretch of muscles in the posterior compartment of the upper arm. To truly understand muscle function, both contractile and passive properties should be studied. The contractile and/or passive mechanical properties of muscle are often compromised in muscle diseases. A good example is Duchenne muscular dystrophy (DMD), a severe muscle wasting disease caused by dystrophin deficiency (3). Dystrophin is a cytoskeletal protein that stabilizes the muscle cell membrane (sarcolemma) during muscle contraction (4). In the

  11. The striated muscles in pulmonary arterial hypertension: adaptations beyond the right ventricle

    NARCIS (Netherlands)

    Manders, E.; Rain, S.; Bogaard, H.J.; Handoko, M.L.; Stienen, G.J.M.; Vonk Noordegraaf, A.; Ottenheijm, C.A.C.; de Man, F.S.

    2015-01-01

    Pulmonary arterial hypertension (PAH) is a fatal lung disease characterised by progressive remodelling of the small pulmonary vessels. The daily-life activities of patients with PAH are severely limited by exertional fatigue and dyspnoea. Typically, these symptoms have been explained by right heart

  12. A striated muscle on the hard palate of rodents and rabbits

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, H.; Witter, Kirsti; Míšek, Ivan

    2004-01-01

    Roč. 33, - (2004), s. 96-99 ISSN 0340-2096 R&D Projects: GA ČR GP304/01/P021; GA ČR GA304/02/0448; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z5045916 Keywords : hard palate * rabbits * rodents Subject RIV: EA - Cell Biology Impact factor: 0.625, year: 2004

  13. Comparative Biomechanics of Thick Filaments and Thin Filaments with Functional Consequences for Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Mark S. Miller

    2010-01-01

    Full Text Available The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.

  14. The gaseous plasmonic response of a one-dimensional photonic crystal composed of striated plasma layers

    Science.gov (United States)

    Wang, B.; Righetti, F.; Cappelli, M. A.

    2018-03-01

    We present simulations of the response of a one-dimensional striated plasma slab to incident electromagnetic waves that span regions both above and below the plasma frequency, ωp. Photonic bandgap modes are present throughout these regions, and volume and surface plasmon modes facilitate the response below ωp, where the dielectric constant, ɛp application of these structures as ultra-narrow tunable microwave transmission filters.

  15. Neural correlates of visual motion processing without awareness in patients with striate cortex and pulvinar lesions.

    Science.gov (United States)

    Barleben, Maria; Stoppel, Christian M; Kaufmann, Jörn; Merkel, Christian; Wecke, Thoralf; Goertler, Michael; Heinze, Hans-Jochen; Hopf, Jens-Max; Schoenfeld, Mircea A

    2015-04-01

    Patients with striate cortex lesions experience visual perception loss in the contralateral visual field. In few patients, however, stimuli within the blind field can lead to unconscious (blindsight) or even conscious perception when the stimuli are moving (Riddoch syndrome). Using functional magnetic resonance imaging (fMRI), we investigated the neural responses elicited by motion stimulation in the sighted and blind visual fields of eight patients with lesions of the striate cortex. Importantly, repeated testing ensured that none of the patients exhibited blindsight or a Riddoch syndrome. Three patients had additional lesions in the ipsilesional pulvinar. For blind visual field stimulation, great care was given that the moving stimulus was precisely presented within the borders of the scotoma. In six of eight patients, the stimulation within the scotoma elicited hemodynamic activity in area human middle temporal (hMT) while no activity was observed within the ipsilateral lesioned area of the striate cortex. One of the two patients in whom no ipsilesional activity was observed had an extensive lesion including massive subcortical damage. The other patient had an additional focal lesion within the lateral inferior pulvinar. Fiber-tracking based on anatomical and functional markers (hMT and Pulvinar) on individual diffusion tensor imaging (DTI) data from each patient revealed the structural integrity of subcortical pathways in all but the patient with the extensive subcortical lesion. These results provide clear evidence for the robustness of direct subcortical pathways from the pulvinar to area hMT in patients with striate cortex lesions and demonstrate that ipsilesional activity in area hMT is completely independent of conscious perception. © 2014 Wiley Periodicals, Inc.

  16. In Vivo Sarcomere Lengths Become More Non-uniform upon Activation in Intact Whole Muscle

    Directory of Open Access Journals (Sweden)

    Eng Kuan Moo

    2017-12-01

    Full Text Available The sarcomere force-length relationship has been extensively used to predict muscle force potential. The common practice is to measure the mean sarcomere length (SL in a relaxed muscle at a single location and at a given length, and this mean SL is assumed to represent the SLs at other locations across the muscle. However, in a previous study, we found that SLs are highly non-uniform across an intact passive muscle. Moreover, SL non-uniformity increases during activation in single myofibril experiments. Myofibrils lack some structural proteins that comprise an intact muscle, and therefore, the increased SL dispersion upon activation seen in myofibrils may not occur in intact whole muscle. The objectives of the current study were (i to measure the distribution of SLs in an activated intact muscle; and (ii to assess the feasibility of using the mean SL measured at a specific location of the muscle to predict muscle force. Using state-of-the-art multi-photon microscopy and a miniature tendon force transducer, in vivo sarcomeres in the mouse tibialis anterior were imaged simultaneously with muscle force during isometric tetanic contractions. We found that in vivo SL dispersion increased substantially during activation and reached average differences of ~1.0 μm. These differences in SL are associated with theoretical force differences of 70–100% of the maximal isometric force. Furthermore, SLs measured at a single location in the passive muscle were poor predictors of active force potential. Although mean SLs in the activated muscle were better predictors of force potential, predicted forces still differed by as much as 35% from the experimentally measured maximal isometric forces.

  17. Structure, function and evolution of insect flight muscle

    OpenAIRE

    Iwamoto, Hiroyuki

    2011-01-01

    Insects, the largest group of animals on the earth, owe their prosperity to their ability of flight and small body sizes. The ability of flight provided means for rapid translocation. The small body size allowed access to unutilized niches. By acquiring both features, however, insects faced a new problem: They were forced to beat their wings at enormous frequencies. Insects have overcome this problem by inventing asynchronous flight muscle, a highly specialized form of striated muscle capable...

  18. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    OpenAIRE

    Golub, Aleksander S.; Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po...

  19. PENGARUH ASAM AKROBAT TERHADAP PEMBENTUKAN GEL MIOFIBRIL IKAN MATA BESAR (Selar crumenophthalnus [effect of ascorbic acid on gel formation of myofibril from big eye scad fish (Selar crumenophthalnus

    Directory of Open Access Journals (Sweden)

    Yuli Witono

    2005-08-01

    Full Text Available Effect of ascorbic acid on gel formation of myofibril from big eye scad fish (Selar crumenophthalnuswere studied for its development as food ingredient. Myofibril was galled by the addition of various concentrations of ascorbic acid (0, 0.1, 0.2, 0.3 and 0.4% and the gels were then characterized for its cooking loss, of the gel, but at 0.4% the cooking loss of gel increased significantly. Accordingly, the WHC of the gel changed insignificantly with the ascorbic acid addition below 0.3%, and decrease sharply in the addition of 0.4%. Gel textures were affected by the addition of ascorbic acid at all levels, namely 29.9 ± 1.9, 31.0 ± 0.3, 35.4 ± 0.4, 46.7 ± 1.5, and 115.7 ± 3.2 g/7 mm for 0, 0.1, 0.2, 0.3 and 0.4%, respectively. Sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE showed that addition of ascorbic acid drove formation odfdisulphide bond in the myosin heavy chain (MHC and other myofirillar proteins, resulting in the development of a strong three dimensions structure I myofibril gel as shown by microscopic structure.

  20. The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling

    DEFF Research Database (Denmark)

    Lindskog, Cecilia; Linne, Jerker; Fagerberg, Linn

    2015-01-01

    Background: To understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes and prot......Background: To understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes...... genes are well in line with the physiological functions of cardiac and skeletal muscle, such as contraction, ion transport, regulation of membrane potential and actomyosin structure organization. A large fraction of the transcripts in both cardiac and skeletal muscle correspond to mitochondrial proteins...

  1. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels

    2014-01-01

    of sarcoplasmic reticulum Ca(2+) release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca(2+) ([Ca(2+)]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz......In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator......, 350 ms tetani given at 2 s (high-intensity fatigue, HIF) or 10 s (low-intensity fatigue, LIF) intervals, while force and [Ca(2+)]i were measured. Stimulation continued until force decreased to 30% of its initial value. Fibres were then prepared for analyses of subcellular glycogen distribution...

  2. The pelvic floor muscles: muscle thickness in healthy and urinary-incontinent women measured by perineal ultrasonography with reference to the effect of pelvic floor training. Estrogen receptor studies

    DEFF Research Database (Denmark)

    Bernstein, Inge Thomsen

    1997-01-01

    depends on the structural components in the urethral wall, the position of the bladder neck and proximal urethra, the periurethral striated muscles, and the pelvic floor muscles. By means of pudendal blockade and simultaneous recordings of pressure and cross-sectional area in the urethra, it has been...... demonstrated that the striated periurethral muscles and the pelvic floor muscles are of paramount importance for the closure function. This emphasizes the importance of well-functioning pelvic floor muscles to obtain continence, and probably explains the rationale for the effect of pelvic floor training...... in treating urinary incontinence. This study presents a review of the literature on female urinary incontinence, continence mechanisms, pelvic floor muscles, and pelvic floor training. Furthermore, a review of the literature on estrogen receptors in the pelvic floor muscles is given. Perineal ultrasonography...

  3. High-energy phosphate transfer in human muscle: diffusion of phosphocreatine

    OpenAIRE

    Gabr, Refaat E.; El-Sharkawy, AbdEl-Monem M.; Schär, Michael; Weiss, Robert G.; Bottomley, Paul A.

    2011-01-01

    The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (DPCr) is thus critical for modeling and understanding energy transport in the myocyte, but DPC...

  4. Multiple sources of passive stress relaxation in muscle fibres

    Energy Technology Data Exchange (ETDEWEB)

    Linke, Wolfgang A; Leake, Mark C [Physiology and Biophysics Laboratory, University of Muenster, Schlossplatz 5, D-48149 Muenster (Germany)

    2004-08-21

    The forces developed during stretch of nonactivated muscle consist of velocity-sensitive (viscous/viscoelastic) and velocity-insensitive (elastic) components. At the myofibrillar level, the elastic-force component has been described in terms of the entropic-spring properties of the giant protein titin, but entropic elasticity cannot account for viscoelastic properties, such as stress relaxation. Here we examine the contribution of titin to passive stress relaxation of isolated rat-cardiac myofibrils depleted of actin by gelsolin treatment. Monte Carlo simulations show that, up to {approx}5 s after a stretch, the time course of stress relaxation can be described assuming unfolding of 1-2 immunoglobulin domains per titin molecule. For extended periods of stress relaxation, the simulations failed to correctly describe the myofibril data, suggesting that in situ, titin-Ig domains may be more stable than predicted in earlier single-molecule atomic-force-microscopy studies. The reasons behind this finding remain unknown; simply assuming a reduced unfolding probability of domains-an effect found here by AFM force spectroscopy on titin-Ig domains in the presence of a chaperone, alpha-B-crystallin-did not help correctly simulate the time course of stress relaxation. We conclude that myofibrillar stress relaxation likely has multiple sources. Evidence is provided that in intact myofibrils, an initial, rapid phase of stress relaxation results from viscous resistance due to the presence of actin filaments.

  5. Investigations of ultrastructure of damaged and regenerated skeletal muscle fibers.

    Science.gov (United States)

    Lańcut, Mirosław; Godlewski, Piotr; Lis-Sochocka, Marta; Visconti, Józef; Czerny, Krystyna

    2004-01-01

    Our investigations concerned the head of the parietal part of quadriceps femoris, and we based our investigation on observations of the ultrastructure of muscle fibers using an electron microscope. We observed tissue samples taken from patients (10 men) 25-35 years old, who had old damage of knee joint ligament (after about 6 week's immobilization). In the first group, segments of tissue of parietal head of quadriceps femoris were taken inter-operationally from patients in whom there was found old damage of knee joint ligament. The second group was of tissue segments of this muscle after surgical repair of knee and rehabilitation, which consisted in power training using resistance machines. The muscle fiber samples of quadriceps femoris which were taken from patients during the first operation, showed big changes in their ultrastructure. These changes included: myofibrils disintegration; disturbance of regularly arranged striation in sarcomers; dissappearance of Z line. In the sarcoplasm, we observed large vacuolisation, and in the interfibrillar spaces--an accumulation of exudate and morphotic elements of blood outside the capillary vessels. Observations of muscle tissue after regeneration, showed a big improvement in the muscle cell's ultrastructure--the myofibrils were regularly arranged, and the sarcomers striations showed no deviations from normal structure. We also observed a considerable increase in the number of properly formed ultrastructure mitochondria when compared with the first group.

  6. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles - Possible role in rescuing cellular energy homeostasis

    NARCIS (Netherlands)

    ter Veld, F; Jeneson, JAL; Nicolay, K

    Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single-

  7. Comparative transcriptome analysis of fast twitch muscle and slow twitch muscle in Takifugu rubripes.

    Science.gov (United States)

    Gao, Kailun; Wang, Zhicheng; Zhou, Xiaoxu; Wang, Haoze; Kong, Derong; Jiang, Chen; Wang, Xiuli; Jiang, Zhiqiang; Qiu, Xuemei

    2017-12-01

    Fast twitch muscle and slow twitch muscle are two important organs of Takifugu rubripes. Both tissues are of ectodermic origin, and the differences between the two muscle fibers reflect the differences in their myofibril protein composition and molecular structure. In order to identify and characterize the gene expression profile in the two muscle fibers of T. rubripes, we generated 54 million and 44 million clean reads from the fast twitch muscle and slow twitch muscle, respectively, using RNA-Seq and identified a total of 580 fast-muscle-specific genes, 1533 slow-muscle-specific genes and 11,806 genes expressed by both muscles. Comparative transcriptome analysis of fast and slow twitch muscles allowed the identification of 1508 differentially expressed genes, of which 34 myosin and 30 ubiquitin family genes were determined. These differentially expressed genes (DEGs) were also analyzed by Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In addition, alternative splicing analysis was also performed. The generation of larger-scale transcriptomic data presented in this work would enrich the genetic resources of Takifugu rubripes, which could be valuable to comparative studies of muscles. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Entropic elasticity in the generation of muscle Force - A theoretical model

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2002-01-01

    A novel simplified structural model of sarcomeric force production in striate muscle is presented. Using some simple assumptions regarding the distribution of myosin spring lengths at different sliding velocities it is possible to derive a very simple expression showing the main components...

  9. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    International Nuclear Information System (INIS)

    Rai, Mamta; Nongthomba, Upendra

    2013-01-01

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization

  10. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Mamta; Nongthomba, Upendra, E-mail: upendra@mrdg.iisc.ernet.in

    2013-10-15

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization.

  11. Effect of distribution of striated laser hardening tracks on dry sliding wear resistance of biomimetic surface

    Science.gov (United States)

    Su, Wei; Zhou, Ti; Zhang, Peng; Zhou, Hong; Li, Hui

    2018-01-01

    Some biological surfaces were proved to have excellent anti-wear performance. Being inspired, Nd:YAG pulsed laser was used to create striated biomimetic laser hardening tracks on medium carbon steel samples. Dry sliding wear tests biomimetic samples were performed to investigate specific influence of distribution of laser hardening tracks on sliding wear resistance of biomimetic samples. After comparing wear weight loss of biomimetic samples, quenched sample and untreated sample, it can be suggested that the sample covered with dense laser tracks (3.5 mm spacing) has lower wear weight loss than the one covered with sparse laser tracks (4.5 mm spacing); samples distributed with only dense laser tracks or sparse laser tracks (even distribution) were proved to have better wear resistance than samples distributed with both dense and sparse tracks (uneven distribution). Wear mechanisms indicate that laser track and exposed substrate of biomimetic sample can be regarded as hard zone and soft zone respectively. Inconsecutive striated hard regions, on the one hand, can disperse load into small branches, on the other hand, will hinder sliding abrasives during wear. Soft regions with small range are beneficial in consuming mechanical energy and storing lubricative oxides, however, soft zone with large width (>0.5 mm) will be harmful to abrasion resistance of biomimetic sample because damages and material loss are more obvious on surface of soft phase. As for the reason why samples with even distributed bionic laser tracks have better wear resistance, it can be explained by the fact that even distributed laser hardening tracks can inhibit severe worn of local regions, thus sliding process can be more stable and wear extent can be alleviated as well.

  12. [Electron microscopic findings in a polyneuropathy complicating panarteritis nodosa].

    Science.gov (United States)

    Backwinkel, K P; Feyerabend, H; Sitzer, G; Richter, H W; Themann, H

    1976-01-01

    Electromicroscopial changes were observed in arterioles, nerves, and striated skeleton muscle cells in a case of clinically and histologically definite polyarteritis nodosa with polyneuropathy. Inflammatory infiltrates were found in and around arteriolar walls; motor nerves were partly demarkated and presynaptic motor endplates were degenerated. The myofibrills of skeleton muscle cells showed a disorganization that is regarded as the morphological substrate for the clinically observed muscular weakness in this case.

  13. YAP-mediated mechanotransduction in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Martina eFischer

    2016-02-01

    Full Text Available Skeletal muscle is not only translating chemical energy into mechanical work, it is also a highly adaptive and regenerative tissue whose architecture and functionality is determined by its mechanical and physical environment. Processing intra- and extracellular mechanical signaling cues contributes to the regulation of cell growth, survival, migration and differentiation. Yes-associated Protein (YAP, a transcriptional coactivator downstream of the Hippo pathway and its paralogue, the transcriptional co-activator with PDZ-binding motif (TAZ, were recently found to play a key role in mechanotransduction in various tissues including skeletal muscle. Furthermore, YAP/TAZ modulate myogenesis and muscle regeneration and abnormal YAP activity has been reported in muscular dystrophy and rhabdomyosarcoma. Here, we summarize the current knowledge of mechanosensing and -signaling in striated muscle. We highlight the role of YAP signaling and discuss the different routes and hypotheses of its regulation in the context of mechanotransduction.

  14. Muscle microanatomy and its changes during contraction: the legacy of William Bowman (1816-1892).

    Science.gov (United States)

    Frixione, Eugenio

    2006-01-01

    Striated muscle fine structure began to be really understood following a comprehensive survey of the matter carried out by William Bowman in the late 1830s. The publications resulting from such a study, the first of which earned for the author a precocious election as Fellow of the Royal Society, are herewith examined in the context of contemporary views on the subject as well as of their subsequent repercussion and current knowledge today. It is shown that not only Bowman succeeded in establishing the true architecture of striated muscle fibres to the extent possible with the most advanced technology available in his day--explaining and eradicating alternative erroneous concepts in the process--but also in correctly describing the basic microstructural changes associated with contraction. In addition, although unrecognized by him or others at the time, his experiments with muscle provided direct evidence for the existence of a selectively permeable cell membrane--in the present meaning of the word--over half a century before its officially accepted discovery. Yet, in spite of these remarkable advances, Bowman arrived at the conclusion that the structure of striated muscle fibres is essentially irrelevant for the mechanism of contraction. Possible reasons behind Bowman's breakthrough accomplishments as a pioneer of modern muscle research, and his failure to understand their significance for muscle physiology, are discussed.

  15. Effects of striated laser tracks on thermal fatigue resistance of cast iron samples with biomimetic non-smooth surface

    International Nuclear Information System (INIS)

    Tong, Xin; Zhou, Hong; Liu, Min; Dai, Ming-jiang

    2011-01-01

    In order to enhance the thermal fatigue resistance of cast iron materials, the samples with biomimetic non-smooth surface were processed by Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser. With self-controlled thermal fatigue test method, the thermal fatigue resistance of smooth and non-smooth samples was investigated. The effects of striated laser tracks on thermal fatigue resistance were also studied. The results indicated that biomimetic non-smooth surface was benefit for improving thermal fatigue resistance of cast iron sample. The striated non-smooth units formed by laser tracks which were vertical with thermal cracks had the best propagation resistance. The mechanisms behind these influences were discussed, and some schematic drawings were introduced to describe them.

  16. High-energy phosphate transfer in human muscle: diffusion of phosphocreatine.

    Science.gov (United States)

    Gabr, Refaat E; El-Sharkawy, Abdel-Monem M; Schär, Michael; Weiss, Robert G; Bottomley, Paul A

    2011-07-01

    The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (D(PCr)) is thus critical for modeling and understanding energy transport in the myocyte, but D(PCr) has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured D(PCr) in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ∼28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ∼0.69 × 10(-3) mm(2)/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ∼66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes.

  17. The regulation of catch in molluscan muscle.

    Science.gov (United States)

    Twarog, B M

    1967-07-01

    Molluscan catch muscles are smooth muscles. As with mammalian smooth muscles, there is no transverse ordering of filaments or dense bodies. In contrast to mammalian smooth muscles, two size ranges of filaments are present. The thick filaments are long as well as large in diameter and contain paramyosin. The thin filaments contain actin and appear to run into and join the dense bodies. Vesicles are present which may be part of a sarcoplasmic reticulum. Neural activation of contraction in Mytilus muscle is similar to that observed in mammalian smooth muscles, and in some respects to frog striated muscle. The relaxing nerves, which reduce catch, are unique to catch muscles. 5-Hydroxytryptamine, which appears to mediate relaxation, specifically blocks catch tension but increases the ability of the muscle to fire spikes. It is speculated that Mytilus muscle actomyosin is activated by a Ca(++)-releasing mechanism, and that 5-hydroxytryptamine may reduce catch and increase excitability by influencing the rate of removal of intracellular free Ca(++).

  18. Injection of marinade with actinidin increases tenderness of porcine M. biceps femoris and affects myofibrils and connective tissue

    DEFF Research Database (Denmark)

    Christensen, M.; Torngren, M. A.; Gunvig, A.

    2009-01-01

    BACKGROUND: Marination of beef muscles with brine solutions containing proteolytic enzymes from fruit extracts has been shown to tenderize meat. However, the effect of marination with actinidin on tenderness of pork muscles has not been investigated. Tenderness and eating quality of porcine M....... biceps femoris was investigated by Warner-Bratzler (WB) shear test and sensory evaluation after injection of brine containing up to 11 g L-1 actinidin-containing kiwi fruit powder and 2, 5 or 9 days of storage. RESULTS: actinidin decreased WB shear force, increased tenderness and did not affect flavour...... to control samples. Myofibrillar particle size tended to decrease (P concentration. No major changes were observed by proteome analysis. Atomic force microscopy showed actinidin-induced damage of endomysium surrounding isolated single muscle fibres. CONCLUSION: Our results...

  19. Complete genome sequence of maize yellow striate virus, a new cytorhabdovirus infecting maize and wheat crops in Argentina.

    Science.gov (United States)

    Maurino, Fernanda; Dumón, Analía D; Llauger, Gabriela; Alemandri, Vanina; de Haro, Luis A; Mattio, M Fernanda; Del Vas, Mariana; Laguna, Irma Graciela; Giménez Pecci, María de la Paz

    2018-01-01

    A rhabdovirus infecting maize and wheat crops in Argentina was molecularly characterized. Through next-generation sequencing (NGS) of symptomatic leaf samples, the complete genome was obtained of two isolates of maize yellow striate virus (MYSV), a putative new rhabdovirus, differing by only 0.4% at the nucleotide level. The MYSV genome consists of 12,654 nucleotides for maize and wheat virus isolates, and shares 71% nucleotide sequence identity with the complete genome of barley yellow striate mosaic virus (BYSMV, NC028244). Ten open reading frames (ORFs) were predicted in the MYSV genome from the antigenomic strand and were compared with their BYSMV counterparts. The highest amino acid sequence identity of the MYSV and BYSMV proteins was 80% between the L proteins, and the lowest was 37% between the proteins 4. Phylogenetic analysis suggested that the MYSV isolates are new members of the genus Cytorhabdovirus, family Rhabdoviridae. Yellow striate, affecting maize and wheat crops in Argentina, is an emergent disease that presents a potential economic risk for these widely distributed crops.

  20. A functional magnetic resonance imaging investigation of visual hallucinations in the human striate cortex.

    Science.gov (United States)

    Abid, Hina; Ahmad, Fayyaz; Lee, Soo Y; Park, Hyun W; Im, Dongmi; Ahmad, Iftikhar; Chaudhary, Safee U

    2016-11-29

    Human beings frequently experience fear, phobia, migraine and hallucinations, however, the cerebral mechanisms underpinning these conditions remain poorly understood. Towards this goal, in this work, we aim to correlate the human ocular perceptions with visual hallucinations, and map them to their cerebral origins. An fMRI study was performed to examine the visual cortical areas including the striate, parastriate and peristriate cortex in the occipital lobe of the human brain. 24 healthy subjects were enrolled and four visual patterns including hallucination circle (HCC), hallucination fan (HCF), retinotopy circle (RTC) and retinotopy cross (RTX) were used towards registering their impact in the aforementioned visual related areas. One-way analysis of variance was used to evaluate the significance of difference between induced activations. Multinomial regression and and K-means were used to cluster activation patterns in visual areas of the brain. Significant activations were observed in the visual cortex as a result of stimulus presentation. The responses induced by visual stimuli were resolved to Brodmann areas 17, 18 and 19. Activation data clustered into independent and mutually exclusive clusters with HCC registering higher activations as compared to HCF, RTC and RTX. We conclude that small circular objects, in rotation, tend to leave greater hallucinating impressions in the visual region. The similarity between observed activation patterns and those reported in conditions such as epilepsy and visual hallucinations can help elucidate the cortical mechanisms underlying these conditions. Trial Registration 1121_GWJUNG.

  1. An Electron Microscopic Study of the Irradiation Effects on the Striated Duct Cells of the Submandibular Gland in Rats

    International Nuclear Information System (INIS)

    Lee, Kyu Chan; Lee, Sang Rae

    1990-01-01

    The purpose of this study was to investigate the effects of irradiation on the striated duct cells of the rat submandibular gland ductal tissues which control the characteristics of saliva. For this study, the experimental group was composed of 36 irradiated Sprague Dawley strain rats divided into 8 subgroups- 1 hour, 2 hours, 3 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours after irradiation. 4 non-irradiated rats were used as the control group. The experimental animals were singly irradiated with a dose of 18 Gy gamma ray to their head and neck region by the Co-6-teletherapy unit and sacrificed after each experimental duration. The specimens were examined with a light microscope with an H-E stain and with a transmission electron microscope. The results of this study were as follows. 1. In the light micrograph, a severe atrophic change occurred in the striated duct cells at 2 hours after irradiation and gradual recovery occurred from 6 hours after irradiation. 2. The nuclear chromosomes of the striated duct cells were changed granular at 2 hours after irradiation. Recovery was observed at 6 hours after irradiation. Nuclear bodies were also observed from 3 hours after irradiation. 3. The mitochondria of the striated duct cells had indistinct cristae at 2 hours after irradiation, and were degenerated or swollen at 3 hours after irradiation. They recovered, however, from 6 hours, with an increasing number at 48 hours a regular arrangement was observed at 72 hours after irradiation. 4. The microvilli showed atrophic changes at 2 hours after irradiation and were almost lost at 3 hours after irradiation. They were observed again from 48 hours after irradiation. 5. The rough endoplasmic reticulum and golgi body were not apparent at 1 hours after irradiation and were dilated with degeneration 2 hours after, but intact rough endoplasmic reticulum were observed from 3 hours after irradiation and developed well at 24 hours after irradiation. By the result of this

  2. Striated muscle microvascular response to silver implants: A comparative in vivo study with titanium and stainless steel.

    Science.gov (United States)

    Kraft, C N; Hansis, M; Arens, S; Menger, M D; Vollmar, B

    2000-02-01

    Local microvascular perfusion is the primary line of defense of tissue against microorganisms and plays a considerable role in reparative processes. The impairment of the microcirculation by a biomaterial may therefore have profound consequences. Silver is known to have excellent antimicrobial activity and, although regional and systemic toxic effects have been described, silver is regularly discussed as an implant material in bone surgery. Because little is known about the influence of silver implants on the adjacent host tissue microvasculature, we studied in vivo nutritive perfusion and leukocytic response, and compared these results with those of the conventionally used materials titanium and stainless steel. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, the implantation of a commercially pure silver sample led to a distinct and persistent activation of leukocytes combined with a marked disruption of the microvascular endothelial integrity, massive leukocyte extravasation, and considerable venular dilation. Whereas animals with stainless-steel implants showed a moderate increase in these parameters with a tendency to recuperate, titanium implants caused only a transient increase of leukocyte-endothelial cell interaction within the first 120 min and no significant change in macromolecular leakage, leukocyte extravasation and venular diameter. After 3 days, five of six preparations with silver samples showed severe inflammation and massive edema. Thus, the use of silver as an implant material should be critically judged despite its bactericidal properties. The implant material titanium seems to be well tolerated by the local vascular system and currently represents the golden standard. Copyright 2000 John Wiley & Sons, Inc.

  3. Action of lovastatin, simvastatin, and pravastatin on sterol synthesis and their antiproliferative effect in cultured myoblasts from human striated muscle

    NARCIS (Netherlands)

    Vliet, A.K. van; Nègre-Arrariou, P.; Thiel, G.C.F. van; Bolhuis, P.A.; Cohen, L.H.

    1996-01-01

    Lovastatin, simvastatin, and pravastatin are fairly strong inhibitors of sterol synthesis in human myoblasts in culture. Lovastatin and simvastatin have IC50 values of 19 ± 6 nM and 4.0 ± 2.3 nM, respectively. Pravastatin is a weaker inhibitor of sterol synthesis (IC50 value of 110 ± 38 nM). Through

  4. Effect of anabolic steroids on skeletal muscle mass during hindlimb suspension

    Science.gov (United States)

    Tsika, R. W.; Herrick, R. E.; Baldwin, K. M.

    1987-01-01

    The effect of treatment with an anabolic steroid (nandrolone decanoate) on the muscle mass of plantaris and soleus of a rats in hindlimb suspension, and on the isomyosin expression in these muscles, was investigated in young female rats divided into four groups: normal control (NC), normal steroid (NS), normal suspension (N-sus), and suspension steroid (sus-S). Steroid treatment of suspended animals (sus-S vs N-sus) was found to partially spare body weight and muscle weight, as well as myofibril content of plantaris (but not soleus), but did not modify the isomyosin pattern induced by suspension. In normal rats (NS vs NC), steroid treatment did enhance body weight and plantaris muscle weight; the treatment did not alter isomyosin expression in either muscle type.

  5. Identification and Characterization of Wheat Yellow Striate Virus, a Novel Leafhopper-Transmitted Nucleorhabdovirus Infecting Wheat

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2018-03-01

    Full Text Available A new wheat viral disease was found in China. Bullet-shaped viral particles within the nucleus of the infected wheat leave cells, which possessed 180–210 nm length and 35–40 nm width, were observed under transmission electron microscopy. A putative wheat-infecting rhabdovirus vectored by the leafhopper Psammotettix alienus was identified and tentatively named wheat yellow striate virus (WYSV. The full-length nucleotide sequence of WYSV was determined using transcriptome sequencing and RACE analysis of both wheat samples and leafhoppers P. alienus. The negative-sense RNA genome of WYSV contains 14,486 nucleotides (nt and seven open reading frames (ORFs encode deduced proteins in the order N-P-P3-M-P6-G-L on the antisense strand. In addition, WYSV genome has a 76-nt 3′ leader RNA and a 258-nt 5′ trailer, and the ORFs are separated by conserved intergenic sequences. The entire genome sequence shares 58.1 and 57.7% nucleotide sequence identity with two strains of rice yellow stunt virus (RYSV-A and RYSV-B genomes, respectively. The highest amino acid sequence identity was 63.8% between the L proteins of the WYSV and RYSV-B, but the lowest was 29.5% between the P6 proteins of these viruses. Phylogenetic analysis firmly established WYSV as a new member of the genus Nucleorhabdovirus. Collectively, this study provided evidence that WYSV is likely the first nucleorhabdovirus described infecting wheat via leafhopper P. alienus transmission.

  6. Loss of Smyhc1 or Hsp90alpha1 function results in different effects on myofibril organization in skeletal muscles of zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Marta Codina

    Full Text Available BACKGROUND: Myofibrillogenesis requires the correct folding and assembly of sarcomeric proteins into highly organized sarcomeres. Heat shock protein 90alpha1 (Hsp90alpha1 has been implicated as a myosin chaperone that plays a key role in myofibrillogenesis. Knockdown or mutation of hsp90alpha1 resulted in complete disorganization of thick and thin filaments and M- and Z-line structures. It is not clear whether the disorganization of these sarcomeric structures is due to a direct effect from loss of Hsp90alpha1 function or indirectly through the disorganization of myosin thick filaments. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we carried out a loss-of-function analysis of myosin thick filaments via gene-specific knockdown or using a myosin ATPase inhibitor BTS (N-benzyl-p-toluene sulphonamide in zebrafish embryos. We demonstrated that knockdown of myosin heavy chain 1 (myhc1 resulted in sarcomeric defects in the thick and thin filaments and defective alignment of Z-lines. Similarly, treating zebrafish embryos with BTS disrupted thick and thin filament organization, with little effect on the M- and Z-lines. In contrast, loss of Hsp90alpha1 function completely disrupted all sarcomeric structures including both thick and thin filaments as well as the M- and Z-lines. CONCLUSION/SIGNIFICANCE: Together, these studies indicate that the hsp90alpha1 mutant phenotype is not simply due to disruption of myosin folding and assembly, suggesting that Hsp90alpha1 may play a role in the assembly and organization of other sarcomeric structures.

  7. Titin Isoform Size is Not Correlated with Thin Filament Length in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Marion Lewis Greaser

    2014-02-01

    Full Text Available The mechanisms controlling thin filament length in muscle remain controversial. It was recently reported that thin filament length was related to titin size, and that the latter might be involved in thin filament length determination. Titin plays several crucial roles in the sarcomere, but its function as it pertains to the thin filament has not been explored. We tested this relationship using several muscles from wild type rats and from a mutant rat model which results in increased titin size. Myofibrils were isolated from skeletal muscles (extensor digitorum longus, external oblique, gastrocnemius, longissimus dorsi, psoas major, and tibialis anterior using both adult wild type (WT and homozygous mutant (HM rats. Phalloidin and antibodies against tropomodulin-4 and nebulin’s N-terminus were used to determine thin filament length. The WT rats studied express skeletal muscle titin sizes ranging from 3.2 to 3.7 MDa, while the HM rats express a giant titin isoform sized at 3.7 MDa. No differences in phalloidin-based thin filament length, nebulin N terminus distances from the Z line, or tropomodulin distances from the Z line were observed across genotypes. The data indicates that, although titin performs many sarcomeric functions, its correlation with thin filament length and structure could not be demonstrated in the rat. Current models of thin filament assembly are inadequate to explain the phalloidin, nebulin N terminus, and tropomodulin staining patterns in the myofibril.

  8. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

    Science.gov (United States)

    Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio

    2015-01-01

    Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398

  9. A role for muscle LIM protein (MLP) in vascular remodeling.

    Science.gov (United States)

    Wang, Xiaohong; Li, Qinglu; Adhikari, Neeta; Hall, Jennifer L

    2006-04-01

    Given the well-defined role of LIM-motif containing proteins in cytoskeletal organization, cell fate, and differentiation, we hypothesized that the regulation of LIM proteins played an integral role in vascular remodeling. We screened a compendium of cDNA microarray data from rat vascular smooth muscle cells (VSMC) for novel LIM-containing targets and identified muscle LIM protein (MLP), a gene previously thought to be only in striated muscle. Sequence analysis, RTQPCR and Western blotting reconfirmed expression of MLP in VSMC. MLP was elevated>10-fold 7 days following balloon injury in the rat carotid artery. Wire injury led to a significantly increased intima/media ratio in MLP -/- mice compared to wild-type controls (PMLP deficient VSMC (n=6, PMLP significantly restored apoptotic response (N=6, PMLP in vascular smooth muscle and demonstrate that it plays a critical role in vascular remodeling. This is consistent with earlier findings demonstrating a role for MLP in striated muscle remodeling in response to load and stretch.

  10. A comparative study of various electrodes in electromyography of the striated urethral and anal sphincter in children

    DEFF Research Database (Denmark)

    Nielsen, K K; Kristensen, E S; Qvist, N

    1985-01-01

    The series comprised 41 children aged 6 to 14 years consecutively referred with recurrent urinary tract infection and/or enuresis. Carbon dioxide cystometry was carried out in the supine and the erect position and combined with simultaneous electromyography (EMG). The external urethral sphincter...... was examined with a ring electrode mounted on a urethral catheter, while recordings from the striated anal sphincter were based on an anal plug electrode and perianal electrocardiographic (ECG) skin electrodes: 211 EMG and cystometric examinations were performed and all three methods gave satisfactory results...

  11. Accessibility of Myofilament Cysteines and Effects on ATPase Depend on the Activation State during Exposure to Oxidants

    Science.gov (United States)

    Gross, Sean M.; Lehman, Steven L.

    2013-01-01

    Signaling by reactive oxygen species has emerged as a major physiological process. Due to its high metabolic rate, striated muscle is especially subject to oxidative stress, and there are multiple examples in cardiac and skeletal muscle where oxidative stress modulates contractile function. Here we assessed the potential of cysteine oxidation as a mechanism for modulating contractile function in skeletal and cardiac muscle. Analyzing the cysteine content of the myofilament proteins in striated muscle, we found that cysteine residues are relatively rare, but are very similar between different muscle types and different vertebrate species. To refine this list of cysteines to those that may modulate function, we estimated the accessibility of oxidants to cysteine residues using protein crystal structures, and then sharpened these estimates using fluorescent labeling of cysteines in cardiac and skeletal myofibrils. We demonstrate that cysteine accessibility to oxidants and ATPase rates depend on the contractile state in which preparations are exposed. Oxidant exposure of skeletal and cardiac myofibrils in relaxing solution exposes myosin cysteines not accessible in rigor solution, and these modifications correspond to a decrease in maximum ATPase. Oxidant exposure under rigor conditions produces modifications that increase basal ATPase and calcium sensitivity in ventricular myofibrils, but these effects were muted in fast twitch muscle. These experiments reveal how structural and sequence variations can lead to divergent effects from oxidants in different muscle types. PMID:23894416

  12. The structure of Mytilus smooth muscle and the electrical constants of the resting muscle.

    Science.gov (United States)

    Twarog, B M; Dewey, M M; Hidaka, T

    1973-02-01

    The individual muscle fibers of the anterior byssus retractor muscle (ABRM) of Mytilus edulis L. are uninucleate, 1.2-1.8 mm in length, 5 microm in diameter, and organized into bundles 100-200 microm in diameter, surrounded by connective tissue. Some bundles run the length of the whole muscle. Adjacent muscle cell membranes are interconnected by nexuses at frequent intervals. Specialized attachments exist between muscle fibers and connective tissue. Electrical constants of the resting muscle membrane were measured with intracellular recording electrodes and both extracellular and intracellular current-passing electrodes. With an intracellular current-passing electrode, the time constant tau, was 4.3 +/- 1.5 ms. With current delivered via an extracellular electrode tau was 68.3 +/- 15 ms. The space constant, lambda, was 1.8 mm +/- 0.4. The membrane input resistance, R(eff), ranged from 23 to 51 MOmega. The observations that values of tau depend on the method of passing current, and that the value of lambda is large relative to fiber length and diameter are considered evidence that the individual muscle fibers are electrically interconnected within bundles in a three-dimensional network. Estimations are made of the membrane resistance, R(m), to compare the values to fast and slow striated muscle fibers and mammalian smooth muscles. The implications of this study in reinterpreting previous mechanical and electrical studies are discussed.

  13. Independent specialisation of myosin II paralogues in muscle vs. non-muscle functions during early animal evolution: a ctenophore perspective.

    Science.gov (United States)

    Dayraud, Cyrielle; Alié, Alexandre; Jager, Muriel; Chang, Patrick; Le Guyader, Hervé; Manuel, Michaël; Quéinnec, Eric

    2012-07-02

    Myosin II (or Myosin Heavy Chain II, MHCII) is a family of molecular motors involved in the contractile activity of animal muscle cells but also in various other cellular processes in non-muscle cells. Previous phylogenetic analyses of bilaterian MHCII genes identified two main clades associated respectively with smooth/non-muscle cells (MHCIIa) and striated muscle cells (MHCIIb). Muscle cells are generally thought to have originated only once in ancient animal history, and decisive insights about their early evolution are expected to come from expression studies of Myosin II genes in the two non-bilaterian phyla that possess muscles, the Cnidaria and Ctenophora. We have uncovered three MHCII paralogues in the ctenophore species Pleurobrachia pileus. Phylogenetic analyses indicate that the MHCIIa / MHCIIb duplication is more ancient than the divergence between extant metazoan lineages. The ctenophore MHCIIa gene (PpiMHCIIa) has an expression pattern akin to that of "stem cell markers" (Piwi, Vasa…) and is expressed in proliferating cells. We identified two MHCIIb genes that originated from a ctenophore-specific duplication. PpiMHCIIb1 represents the exclusively muscular form of myosin II in ctenophore, while PpiMHCIIb2 is expressed in non-muscle cells of various types. In parallel, our phalloidin staining and TEM observations highlight the structural complexity of ctenophore musculature and emphasize the experimental interest of the ctenophore tentacle root, in which myogenesis is spatially ordered and strikingly similar to striated muscle formation in vertebrates. MHCIIa expression in putative stem cells/proliferating cells probably represents an ancestral trait, while specific involvement of some MHCIIa genes in smooth muscle fibres is a uniquely derived feature of the vertebrates. That one ctenophore MHCIIb paralogue (PpiMHCIIb2) has retained MHCIIa-like expression features furthermore suggests that muscular expression of the other paralogue, PpiMHCIIb1, was

  14. Independent specialisation of myosin II paralogues in muscle vs. non-muscle functions during early animal evolution: a ctenophore perspective

    Science.gov (United States)

    2012-01-01

    Background Myosin II (or Myosin Heavy Chain II, MHCII) is a family of molecular motors involved in the contractile activity of animal muscle cells but also in various other cellular processes in non-muscle cells. Previous phylogenetic analyses of bilaterian MHCII genes identified two main clades associated respectively with smooth/non-muscle cells (MHCIIa) and striated muscle cells (MHCIIb). Muscle cells are generally thought to have originated only once in ancient animal history, and decisive insights about their early evolution are expected to come from expression studies of Myosin II genes in the two non-bilaterian phyla that possess muscles, the Cnidaria and Ctenophora. Results We have uncovered three MHCII paralogues in the ctenophore species Pleurobrachia pileus. Phylogenetic analyses indicate that the MHCIIa / MHCIIb duplication is more ancient than the divergence between extant metazoan lineages. The ctenophore MHCIIa gene (PpiMHCIIa) has an expression pattern akin to that of "stem cell markers" (Piwi, Vasa…) and is expressed in proliferating cells. We identified two MHCIIb genes that originated from a ctenophore-specific duplication. PpiMHCIIb1 represents the exclusively muscular form of myosin II in ctenophore, while PpiMHCIIb2 is expressed in non-muscle cells of various types. In parallel, our phalloidin staining and TEM observations highlight the structural complexity of ctenophore musculature and emphasize the experimental interest of the ctenophore tentacle root, in which myogenesis is spatially ordered and strikingly similar to striated muscle formation in vertebrates. Conclusion MHCIIa expression in putative stem cells/proliferating cells probably represents an ancestral trait, while specific involvement of some MHCIIa genes in smooth muscle fibres is a uniquely derived feature of the vertebrates. That one ctenophore MHCIIb paralogue (PpiMHCIIb2) has retained MHCIIa-like expression features furthermore suggests that muscular expression of the

  15. Independent specialisation of myosin II paralogues in muscle vs. non-muscle functions during early animal evolution: a ctenophore perspective

    Directory of Open Access Journals (Sweden)

    Dayraud Cyrielle

    2012-07-01

    Full Text Available Abstract Background Myosin II (or Myosin Heavy Chain II, MHCII is a family of molecular motors involved in the contractile activity of animal muscle cells but also in various other cellular processes in non-muscle cells. Previous phylogenetic analyses of bilaterian MHCII genes identified two main clades associated respectively with smooth/non-muscle cells (MHCIIa and striated muscle cells (MHCIIb. Muscle cells are generally thought to have originated only once in ancient animal history, and decisive insights about their early evolution are expected to come from expression studies of Myosin II genes in the two non-bilaterian phyla that possess muscles, the Cnidaria and Ctenophora. Results We have uncovered three MHCII paralogues in the ctenophore species Pleurobrachia pileus. Phylogenetic analyses indicate that the MHCIIa / MHCIIb duplication is more ancient than the divergence between extant metazoan lineages. The ctenophore MHCIIa gene (PpiMHCIIa has an expression pattern akin to that of "stem cell markers" (Piwi, Vasa… and is expressed in proliferating cells. We identified two MHCIIb genes that originated from a ctenophore-specific duplication. PpiMHCIIb1 represents the exclusively muscular form of myosin II in ctenophore, while PpiMHCIIb2 is expressed in non-muscle cells of various types. In parallel, our phalloidin staining and TEM observations highlight the structural complexity of ctenophore musculature and emphasize the experimental interest of the ctenophore tentacle root, in which myogenesis is spatially ordered and strikingly similar to striated muscle formation in vertebrates. Conclusion MHCIIa expression in putative stem cells/proliferating cells probably represents an ancestral trait, while specific involvement of some MHCIIa genes in smooth muscle fibres is a uniquely derived feature of the vertebrates. That one ctenophore MHCIIb paralogue (PpiMHCIIb2 has retained MHCIIa-like expression features furthermore suggests that muscular

  16. A histochemical and X-ray microanalysis study of calcium changes in insect flight muscle degeneration in Solenopsis, the queen fire ant

    International Nuclear Information System (INIS)

    Jones, R.G.; Davis, W.L.; Vinson, S.B.

    1982-01-01

    Potassium pyroantimonate histochemistry, coupled with ethyleneglycoltetraacetic acid (EGTA)-chelation and X-ray microprobe analysis, was employed to localize intracellular calcium binding sites in the normal and degenerating flight musculature in queens of Solenopsis, the fire ant. In normal animals, calcium distribution was light to moderate within myofibrils and mitochondria. In the early contracture stages of the insemination-induced degeneration, both myofilament and mitochondrial calcium loading was markedly increased. In the terminal stages of myofibril breakdown, only Z-lines (isolated or in clusters) with an associated filamentous residue persisted. These complexes were also intensely calcium positive. This study further documents the presence of increased sarcoplasmic calcium during muscle necrosis. Surface membrane defects, mitochondrial calcium overload, and calcium-activated proteases may all be involved in this ''normal'' breakdown process

  17. Karakteristik Organoleptik Tekstur Stik Ikan Asap Yang Dicoating Dengan Penambahan Miofibril Dan Kolagen Ikan Situhuk Hitam (Makaira Indica). [Organoleptical Texture Characteristics of Smoked Fish Stick, Coated with Addition of Myofibrils and Coll

    OpenAIRE

    Rahael, Kristhina P; Berhimpon, Siegfried; Mentang, Feny

    2014-01-01

    The use of synthetic packaging caused a big problem of non-degradable waste, therefore the industries started using biodegradable packaging, and recently research on edible film took attentions of many researches. Edible film made from biopolymers are expected can provided certain characteristics as food packaging. This research aims were to study the textural organoleptic characteristics of edible coating made from collagen and myofibril with the addition of smoke liquid. Edible film mad...

  18. The length-tension curve in muscle depends on lattice spacing

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. D.; Salcedo, M. K.; Irving, T. C.; Regnier, M.; Daniel, T. L.

    2013-07-10

    Classic interpretations of the striated muscle length–tension curve focus on how force varies with overlap of thin (actin) and thick (myosin) filaments. New models of sarcomere geometry and experiments with skinned synchronous insect flight muscle suggest that changes in the radial distance between the actin and myosin filaments, the filament lattice spacing, are responsible for between 20% and 50% of the change in force seen between sarcomere lengths of 1.4 and 3.4 µm. Thus, lattice spacing is a significant force regulator, increasing the slope of muscle's force–length dependence.

  19. Striated nephrogram as an incidental finding in MRI examination of children; Streifiges Nephrogramm als Zufallsbefund nach Kontrastmittelgabe bei Kindern in der MRT

    Energy Technology Data Exchange (ETDEWEB)

    Strocka, S.; Sorge, I.; Ritter, L.; Hirsch, F.W. [Leipzig Univ. (Germany). Dept. of Pediatric Radiology

    2016-01-15

    A highly striated contrast pattern of the kidneys occasionally appears in abdominal MRI examinations of children following the administration of gadolinium. As this phenomenon is well known but has not yet been explicitly described in literature, we investigated how frequently and in which clinical context this occurred. 855 abdominal MRI examinations with contrast media of 362 children between 2006 and 2014 were analysed retrospectively. A striated renal parenchyma was found in a total of nine children and eleven examinations (1.3 % of examinations) and did only occur at a field strength of 3 Tesla. Of these children, seven had previously had tumors and chemotherapy. In two children there was no evidence of a previously serious condition with medications or a kidney disease. All of them had a normal renal function. A noticeably striated nephrogram in the later phase of an MRI examination following administration of gadolinium may appear as an incidental finding in examinations at 3 Tesla without pathological relevance.

  20. The role of proteinase enzymes in the process of conversion of muscle to meat

    Directory of Open Access Journals (Sweden)

    Dümen Emek

    2006-01-01

    Full Text Available Post mortem meat tenderization is a complex mechanism and unfortunately it has not been fully identified scientifically. It is known that endogenous proteinases have an important role in this mechanism. Detailed studies are being performed about the destructive effects of lysosomal proteinases and calcium dependent proteinases on the myofibrils and these are most common topics that are being investigated about meat tenderization processes by the scientists. The aim of this paper is to review the role of proteinase enzymes in the process of conversion of muscle to meat. .

  1. Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    Science.gov (United States)

    Riley, D. A.; Ellis, S.; Bain, J.; Sedlak, F.; Slocum, G.; Oganov, V.

    1990-01-01

    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation.

  2. Identification of Rho GTPases implicated in terminal differentiation of muscle cells in ascidia.

    Science.gov (United States)

    Coisy-Quivy, Marjorie; Sanguesa-Ferrer, Juan; Weill, Mylène; Johnson, David Scott; Donnay, Jean-Marc; Hipskind, Robert; Fort, Philippe; Philips, Alexandre

    2006-10-01

    Members of the Rho GTPase family mediate changes in the actin cytoskeleton and are also implicated in developmental processes, including myogenesis. Nevertheless, a comprehensive analysis of these proteins during myofibrillogenesis has never been performed in any organism. Using the ascidian model to identify the role of Rho GTPases on myofibrillogenesis, we show that transcripts for all Rho GTPases are detected in muscle cells of the embryo. We find that activation of RhoA, TC10 and Cdc42 (cell division cycle 42) disturbs the polarity of muscle cells, whereas that of other Rho GTPases induced cell positioning defects. Moreover, dominant negative version of five Rho GTPases, RhoA, Rac2, RCL2 (Rac- and Cdc42-like 2), TC10 and WRCH (Wnt-1 responsive Cdc42 homologue), impaired the formation of mature myofibrils. Taken together, our results show that several Rho GTPase-dependent pathways are required to control the spatial localization of muscle cells in the embryo and to coordinate myofibril assembly. This stresses the importance of analysing the entire Rho family when studying a new biological process.

  3. Isolated abscess in superior rectus muscle in a child

    Directory of Open Access Journals (Sweden)

    Sushank Ashok Bhalerao

    2015-01-01

    Full Text Available Pyomyositis is a primary bacterial infection of striated muscles nearly always caused by Staphylococcus aureus. Development of the intramuscular abscess involving the extra-ocular muscles (EOMs remains an extremely rare process. We herein present a case of isolated EOM pyomyositis involving superior rectus muscle in a 2-year male child who was referred with complaints of swelling in left eye (LE and inability to open LE since last 1-month. Orbital computed tomography (CT scan showed a well-defined, hypo-dense, peripheral rim-enhancing lesion in relation to left superior rectus muscle suggestive of left superior rectus abscess. The abscess was drained through skin approach. We concluded that pyomyositis of EOM should be considered in any patient presenting with acute onset of orbital inflammation and characteristic CT or magnetic resonance imaging features. Management consists of incision and drainage coupled with antibiotic therapy.

  4. Physical properties of edible films based on bovine myofibril proteinsPropriedades físicas de filmes comestíveis a base de proteínas miofibrilares de carne bovina

    Directory of Open Access Journals (Sweden)

    Florencia Cecilia Menegalli

    2012-04-01

    Full Text Available Myofibril proteins have excellent filmogenic properties. The objective of this article was to study the effect of the thermal treatment, of the pH and of the plasticizer concentration (Cp of the filmogenic solution (FS, using over some physical properties of edible films, using a surface and response methodology (SRM. Films were made of lyophilized myofibril proteins (LMP extracted from bovine muscle, employing the technique of solubility obtained from diluted saline solutions. The films were elaborated from FS containing 1 g of LMP/100g of FS and from Cp of 50 g to 79 g of glycerin/100 g of LMP. The LMP was dispersed in water under moderate agitation, and the pH was kept at 2.5-3.5 with the use of acetic acid. The FS were submitted to thermal treatment at different temperatures for 45 minutes. Films were dried in ventilated oven at 37oC/18hr, conditioned at 75% of relative humidity at 25oC/48 hr before analysis of: mechanical properties by puncture test; apparent opacity by spectrophotometer; solubility by immersion in water; and water vapor permeability by the gravimetric method. In general, films showed good appearance, translucent, easily handled and touchable, except for the films formed with pH 2.5 and at a low temperature (35oC, with a medium thickness of 0.400± 0.005 mm. The pH of the FS significantly affected all the physical properties under study. The temperature of the thermal treatment of the FS greatly affected the force at the rupture, solubility and water vapor permeability. This treatment can promote intermolecular interactions through the formation of disulphide bonds; however a very intense treatment can reverse this effect by irreversible structural alterations in the proteins. The glycerol concentration affected considerably all the properties under study, with the exception of the apparent opacity. Plasticizer increases the mobility of macromolecules with consequences in all physical properties.As proteínas miofibrilares

  5. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1

    Science.gov (United States)

    Baehr, Leslie M.

    2014-01-01

    Muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/atrogin-1 were identified more than 10 years ago as two muscle-specific E3 ubiquitin ligases that are increased transcriptionally in skeletal muscle under atrophy-inducing conditions, making them excellent markers of muscle atrophy. In the past 10 years much has been published about MuRF1 and MAFbx with respect to their mRNA expression patterns under atrophy-inducing conditions, their transcriptional regulation, and their putative substrates. However, much remains to be learned about the physiological role of both genes in the regulation of mass and other cellular functions in striated muscle. Although both MuRF1 and MAFbx are enriched in skeletal, cardiac, and smooth muscle, this review will focus on the current understanding of MuRF1 and MAFbx in skeletal muscle, highlighting the critical questions that remain to be answered. PMID:25096180

  6. Prenatal Co 60-irradiation effects on visual acuity, maturation of the fovea in the retina, and the striate cortex of squirrel monkey offspring

    International Nuclear Information System (INIS)

    Ordy, J.M.; Brizzee, K.R.; Young, R.

    1982-01-01

    In the present study, foveal striate cortex depth increased significantly from 1400 μm to 1650 μm by 90 days, whereas prenatal 100 rad exposure resulted in a significant reduction of foveal striate cortex thickness at 90 days of age. From birth to 90 days, cell packing density decreased, whereas overall neuropil density increased in both control and 100 rad exposed offspring. Regarding the effects of prenatal radiation on Meynert cells, there was a significant difference in the time course of early postnatal spine frequency reduction on apical dendrites of Meynert cells, particularly in laminae V and IV. It seems possible that the significant differences in the time course of perinatal increases and subsequent decreases of spines and synapses on such pyramidal neurons as Meynert cells in the deep layers of the striate cortex may play an important role in the development of binocular acuity. Future follow-up studies will be essential from 90 days to 1 and 2 years to determine the extent of recovery from, and persistence of visual acuity impairments in relation to structural alterations in the foveal projection of the retino-geniculo-striate system of diurnal primates. (orig./MG)

  7. Expression of neurotrophic factors in diabetic muscle--relation to neuropathy and muscle strength.

    Science.gov (United States)

    Andreassen, C S; Jakobsen, J; Flyvbjerg, A; Andersen, H

    2009-10-01

    Diabetic polyneuropathy can lead to atrophy and weakness of distally located striated muscles due to denervation. Lack of neurotrophic support is believed to contribute to the development of diabetic neuropathy. In this study, we measured the expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), neurotrophin 4 (NT-4) and ciliary neurotrophic factor (CNTF) in muscle biopsies taken from the gastrocnemic and deltoid muscles in 42 diabetic patients and 20 healthy control subjects. To express the distal neuropathic gradient and to reduce interindividual variation, a distal/proximal ratio between expression levels in the gastrocnemic and deltoid muscles was calculated for all neurotrophic factors. Neuropathic status was determined by clinical examination, electrophysiological studies and quantitative sensory examination in diabetic patients, and muscle strength at both the shoulder and ankle was assessed by isokinetic dynamometry. Distal/proximal ratios for NT-3 were lower in diabetic patients [median (range) 110.7 (39.8-546.8)] than in controls [157.6 (63.3-385.4); (P < 0.05)], and in neuropathic diabetic patients [107.1 (39.8-326.0)] versus patients without neuropathy [134.5 (46.6-546.8); (P < 0.005)]. Further, ratios for NT-3 were related to muscle strength (r(s) = 0.41, P < 0.01) and showed a tendency towards a negative relationship to the combined score of all measures of neuropathy [Neuropathy rank-sum score (NRSS)] (r(s) = -0.27, P = 0.09). Similar trends were observed for ratios for NT-4. Ratios for NGF (r(s) = -0.32, P < 0.05) and BDNF (r(s) = -0.32, P < 0.05) were related to NRSS, but not to muscle strength. Ratios for CNTF were higher in diabetic patients [64.6 (23.7-258.7)] compared with controls [50.2 (27.2-186.4); (P < 0.05)], but showed no relationship to neither NRSS nor muscle strength. Our results show that the expression of NT-3 is reduced in striated muscles in diabetic patients and is related to

  8. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps

    Science.gov (United States)

    Radugina, E. A.; Almeida, E. A. C.; Blaber, E.; Poplinskaya, V. A.; Markitantova, Y. V.; Grigoryan, E. N.

    2018-02-01

    Mechanical unloading in microgravity during spaceflight is known to cause muscular atrophy, changes in muscle fiber composition, gene expression, and reduction in regenerative muscle growth. Although some limited data exists for long-term effects of microgravity in human muscle, these processes have mostly been studied in rodents for short periods of time. Here we report on how long-term (30-day long) mechanical unloading in microgravity affects murine muscles of the femoral Quadriceps group. To conduct these studies we used muscle tissue from 6 microgravity mice, in comparison to habitat (7), and vivarium (14) ground control mice from the NASA Biospecimen Sharing Program conducted in collaboration with the Institute for Biomedical Problems of the Russian Academy of Sciences, during the Russian Bion M1 biosatellite mission in 2013. Muscle histomorphology from microgravity specimens showed signs of extensive atrophy and regenerative hypoplasia relative to ground controls. Specifically, we observed a two-fold decrease in the number of myonuclei, compared to vivarium and ground controls, and central location of myonuclei, low density of myofibers in the tissue, and of myofibrils within a fiber, as well as fragmentation and swelling of myofibers. Despite obvious atrophy, muscle regeneration nevertheless appeared to have continued after 30 days in microgravity as evidenced by thin and short newly formed myofibers. Many of them, however, showed evidence of apoptotic cells and myofibril degradation, suggesting that long-term unloading in microgravity may affect late stages of myofiber differentiation. Ground asynchronous and vivarium control animals demonstrated normal, well-developed tissue structure with sufficient blood and nerve supply and evidence of regenerative formation of new myofibers free of apoptotic nuclei. Regenerative activity of satellite cells in muscles was observed both in microgravity and ground control groups, using Pax7 and Myogenin

  9. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    Science.gov (United States)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  10. Muscle Cramps

    Science.gov (United States)

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after ... It is a very common muscle problem. Muscle cramps can be caused by nerves that malfunction. Sometimes ...

  11. Muscle differentiation in a colonial ascidian: organisation, gene expression and evolutionary considerations

    Directory of Open Access Journals (Sweden)

    Burighel Paolo

    2009-09-01

    Full Text Available Abstract Background Ascidians are tunicates, the taxon recently proposed as sister group to the vertebrates. They possess a chordate-like swimming larva, which metamorphoses into a sessile adult. Several ascidian species form colonies of clonal individuals by asexual reproduction. During their life cycle, ascidians present three muscle types: striated in larval tail, striated in the heart, and unstriated in the adult body-wall. Results In the colonial ascidian Botryllus schlosseri, we investigated organisation, differentiation and gene expression of muscle beginning from early buds to adults and during zooid regression. We characterised transcripts for troponin T (BsTnT-c, adult muscle-type (BsMA2 and cytoplasmic-type (BsCA1 actins, followed by in situ hybridisation (ISH on sections to establish the spatio-temporal expression of BsTnT-c and BsMA2 during asexual reproduction and in the larva. Moreover, we characterised actin genomic sequences, which by comparison with other metazoans revealed conserved intron patterns. Conclusion Integration of data from ISH, phalloidin staining and TEM allowed us to follow the phases of differentiation of the three muscle kinds, which differ in expression pattern of the two transcripts. Moreover, phylogenetic analyses provided evidence for the close relationship between tunicate and vertebrate muscle genes. The characteristics and plasticity of muscles in tunicates are discussed.

  12. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Science.gov (United States)

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Quantitative evaluation of skeletal muscle defects in second harmonic generation images

    Science.gov (United States)

    Liu, Wenhua; Raben, Nina; Ralston, Evelyn

    2013-02-01

    Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.

  14. Role of active contraction and tropomodulins in regulating actin filament length and sarcomere structure in developing zebrafish skeletal muscle

    Directory of Open Access Journals (Sweden)

    Lise eMazelet

    2016-03-01

    Full Text Available Whilst it is recognised that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1ts25 which lacks functional voltage-gated calcium channels (dihydropyridine receptors in the muscle and pharmacological immobilisation of embryos with a reversible anaesthetic (Tricaine, allowed the study of paralysis (in mutants and anaesthetised fish and recovery of movement (reversal of anaesthetic treatment. The effect of paralysis in early embryos (aged between 17-24 hours post fertilisation, hpf on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localisation of the actin capping proteins Tropomodulin 1 &4 (Tmod in fish aged from 17hpf until 42hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post fertilisation (dpf. Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralysed fish by 42hpf. In conclusion, myofibril organisation is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localisation of Tmod1 to its sarcomeric

  15. Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle.

    Directory of Open Access Journals (Sweden)

    Kenneth S Campbell

    2009-11-01

    Full Text Available Most reductionist theories of muscle attribute a fiber's mechanical properties to the scaled behavior of a single half-sarcomere. Mathematical models of this type can explain many of the known mechanical properties of muscle but have to incorporate a passive mechanical component that becomes approximately 300% stiffer in activating conditions to reproduce the force response elicited by stretching a fast mammalian muscle fiber. The available experimental data suggests that titin filaments, which are the mostly likely source of the passive component, become at most approximately 30% stiffer in saturating Ca2+ solutions. The work described in this manuscript used computer modeling to test an alternative systems theory that attributes the stretch response of a mammalian fiber to the composite behavior of a collection of half-sarcomeres. The principal finding was that the stretch response of a chemically permeabilized rabbit psoas fiber could be reproduced with a framework consisting of 300 half-sarcomeres arranged in 6 parallel myofibrils without requiring titin filaments to stiffen in activating solutions. Ablation of inter-myofibrillar links in the computer simulations lowered isometric force values and lowered energy absorption during a stretch. This computed behavior mimics effects previously observed in experiments using muscles from desmin-deficient mice in which the connections between Z-disks in adjacent myofibrils are presumably compromised. The current simulations suggest that muscle fibers exhibit emergent properties that reflect interactions between half-sarcomeres and are not properties of a single half-sarcomere in isolation. It is therefore likely that full quantitative understanding of a fiber's mechanical properties requires detailed analysis of a complete fiber system and cannot be achieved by focusing solely on the properties of a single half-sarcomere.

  16. Role of skeletal muscle in lung development.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Gugic, Dijana; Saraga-Babic, Mirna; Kablar, Boris

    2012-07-01

    Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.

  17. Synergistic Activities of Abdominal Muscles Are Required for Efficient Micturition in Anesthetized Female Mice.

    Science.gov (United States)

    Zhang, Chuan; Zhang, Yingchun; Cruz, Yolanda; Boone, Timothy B; Munoz, Alvaro

    2018-03-01

    To characterize the electromyographic activity of abdominal striated muscles during micturition in urethane-anesthetized female mice, and to quantitatively evaluate the contribution of abdominal responses to efficient voiding. Cystometric and multichannel electromyographic recordings were integrated to enable a comprehensive evaluation during micturition in urethane-anesthetized female mice. Four major abdominal muscle domains were evaluated: the external oblique, internal oblique, and superior and inferior rectus abdominis. To further characterize the functionality of the abdominal muscles, pancuronium bromide (25 μg/mL or 50 μg/mL, abdominal surface) was applied as a blocking agent of neuromuscular junctions. We observed a robust activation of the abdominal muscles during voiding, with a consistent onset/offset concomitant with the bladder pressure threshold. Pancuronium was effective, in a dose-dependent fashion, for partial and complete blockage of abdominal activity. Electromyographic discharges during voiding were significantly inhibited by applying pancuronium. Decreased cystometric parameters were recorded, including the peak pressure, pressure threshold, intercontractile interval, and voiding duration, suggesting that the voiding efficiency was significantly compromised by abdominal muscle relaxation. The relevance of the abdominal striated musculature for micturition has remained a topic of debate in human physiology. Although the study was performed on anesthetized mice, these results support the existence of synergistic abdominal electromyographic activity facilitating voiding in anesthetized mice. Further, our study presents a rodent model that can be used for future investigations into micturition-related abdominal activity.

  18. Validity of Estimation of Pelvic Floor Muscle Activity from Transperineal Ultrasound Imaging in Men.

    Science.gov (United States)

    Stafford, Ryan E; Coughlin, Geoff; Lutton, Nicholas J; Hodges, Paul W

    2015-01-01

    To investigate the relationship between displacement of pelvic floor landmarks observed with transperineal ultrasound imaging and electromyography of the muscles hypothesised to cause the displacements. Three healthy men participated in this study, which included ultrasound imaging of the mid-urethra, urethra-vesical junction, ano-rectal junction and bulb of the penis. Fine-wire electromyography electrodes were inserted into the puborectalis and bulbocavernosus muscles and a transurethral catheter electrode recorded striated urethral sphincter electromyography. A nasogastric sensor recorded intra-abdominal pressure. Tasks included submaximal and maximal voluntary contractions, and Valsalva. The relationship between each of the parameters measured from ultrasound images and electromyography or intra-abdominal pressure amplitudes was described with nonlinear regression. Strong, non-linear relationships were calculated for each predicted landmark/muscle pair for submaximal contractions (R2-0.87-0.95). The relationships between mid-urethral displacement and striated urethral sphincter electromyography, and bulb of the penis displacement and bulbocavernosus electromyography were strong during maximal contractions (R2-0.74-0.88). Increased intra-abdominal pressure prevented shortening of puborectalis, which resulted in weak relationships between electromyography and anorectal and urethravesical junction displacement during all tasks. Displacement of landmarks in transperineal ultrasound imaging provides meaningful measures of activation of individual pelvic floor muscles in men during voluntary contractions. This method may aid assessment of muscle function or feedback for training.

  19. Validity of Estimation of Pelvic Floor Muscle Activity from Transperineal Ultrasound Imaging in Men.

    Directory of Open Access Journals (Sweden)

    Ryan E Stafford

    Full Text Available To investigate the relationship between displacement of pelvic floor landmarks observed with transperineal ultrasound imaging and electromyography of the muscles hypothesised to cause the displacements.Three healthy men participated in this study, which included ultrasound imaging of the mid-urethra, urethra-vesical junction, ano-rectal junction and bulb of the penis. Fine-wire electromyography electrodes were inserted into the puborectalis and bulbocavernosus muscles and a transurethral catheter electrode recorded striated urethral sphincter electromyography. A nasogastric sensor recorded intra-abdominal pressure. Tasks included submaximal and maximal voluntary contractions, and Valsalva. The relationship between each of the parameters measured from ultrasound images and electromyography or intra-abdominal pressure amplitudes was described with nonlinear regression.Strong, non-linear relationships were calculated for each predicted landmark/muscle pair for submaximal contractions (R2-0.87-0.95. The relationships between mid-urethral displacement and striated urethral sphincter electromyography, and bulb of the penis displacement and bulbocavernosus electromyography were strong during maximal contractions (R2-0.74-0.88. Increased intra-abdominal pressure prevented shortening of puborectalis, which resulted in weak relationships between electromyography and anorectal and urethravesical junction displacement during all tasks.Displacement of landmarks in transperineal ultrasound imaging provides meaningful measures of activation of individual pelvic floor muscles in men during voluntary contractions. This method may aid assessment of muscle function or feedback for training.

  20. A striated, far travelled clast of rhyolitic tuff from Thames river deposits at Ardleigh, Essex, England : evidence for early Middle Pleistocene glaciation in the Thames catchment

    OpenAIRE

    Rose, J.; Carney, J.N.; Silva, B.N.; Booth, S.J.

    2010-01-01

    This paper reports the discovery of an in-situ striated, far-travelled, oversized clast in the Ardleigh Gravels of the Kesgrave Sands and Gravels of the River Thames at Ardleigh, east of Colchester in Essex, eastern England. The morphology, petrography and geochemistry of the clast, and the sedimentology of the host deposit are described. The striations are interpreted, on the basis of their sub-parallelism and the shape and subroundedness of the clast, as glacial and the clast is pr...

  1. Geologic continuous casting below continental and deep-sea detachment faults and at the striated extrusion of Sacsayhuaman, Peru

    Science.gov (United States)

    Spencer, J.E.

    1999-01-01

    In the common type of industrial continuous casting, partially molten metal is extruded from a vessel through a shaped orifice called a mold in which the metal assumes the cross-sectional form of the mold as it cools and solidifies. Continuous casting can be sustained as long as molten metal is supplied and thermal conditions are maintained. I propose that a similar process produced parallel sets of grooves in three geologic settings, as follows: (1) corrugated metamorphic core complexes where mylonized mid-crustal rocks were exhumed by movement along low-angle normal faults known as detachment faults; (2) corrugated submarine surfaces where ultramafic and mafic rocks were exhumed by normal faulting within oceanic spreading centers; and (3) striated magma extrusions exemplified by the famous grooved outcrops at the Inca fortress of Sacsayhuaman in Peru. In each case, rocks inferred to have overlain the corrugated surface during corrugation genesis molded and shaped a plastic to partially molten rock mass as it was extruded from a moderate- to high-temperature reservoir.

  2. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  3. Work Done by Titin Protein Folding Assists Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Jaime Andrés Rivas-Pardo

    2016-02-01

    Full Text Available Current theories of muscle contraction propose that the power stroke of a myosin motor is the sole source of mechanical energy driving the sliding filaments of a contracting muscle. These models exclude titin, the largest protein in the human body, which determines the passive elasticity of muscles. Here, we show that stepwise unfolding/folding of titin immunoglobulin (Ig domains occurs in the elastic I band region of intact myofibrils at physiological sarcomere lengths and forces of 6–8 pN. We use single-molecule techniques to demonstrate that unfolded titin Ig domains undergo a spontaneous stepwise folding contraction at forces below 10 pN, delivering up to 105 zJ of additional contractile energy, which is larger than the mechanical energy delivered by the power stroke of a myosin motor. Thus, it appears inescapable that folding of titin Ig domains is an important, but as yet unrecognized, contributor to the force generated by a contracting muscle.

  4. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development

    Science.gov (United States)

    Kirchmaier, Bettina C.; Poon, Kar Lai; Schwerte, Thorsten; Huisken, Jan; Winkler, Christoph; Jungblut, Benno; Stainier, Didier Y.; Brand, Thomas

    2013-01-01

    The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)s878) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system. PMID:22290329

  5. Muscle pain

    African Journals Online (AJOL)

    Key Summary Points. • Muscle pain, known as myalgia, can be in one targeted area or across many muscles, occurring with overexertion or overuse of these muscles. • Pain can be classified as acute or chronic pain and further categorized as nociceptive or neuropathic. • Causes of muscle pain include stress, physical ...

  6. Cell division in Apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella.

    Directory of Open Access Journals (Sweden)

    Maria E Francia

    Full Text Available Apicomplexa are intracellular parasites that cause important human diseases including malaria and toxoplasmosis. During host cell infection new parasites are formed through a budding process that parcels out nuclei and organelles into multiple daughters. Budding is remarkably flexible in output and can produce two to thousands of progeny cells. How genomes and daughters are counted and coordinated is unknown. Apicomplexa evolved from single celled flagellated algae, but with the exception of the gametes, lack flagella. Here we demonstrate that a structure that in the algal ancestor served as the rootlet of the flagellar basal bodies is required for parasite cell division. Parasite striated fiber assemblins (SFA polymerize into a dynamic fiber that emerges from the centrosomes immediately after their duplication. The fiber grows in a polarized fashion and daughter cells form at its distal tip. As the daughter cell is further elaborated it remains physically tethered at its apical end, the conoid and polar ring. Genetic experiments in Toxoplasma gondii demonstrate two essential components of the fiber, TgSFA2 and 3. In the absence of either of these proteins cytokinesis is blocked at its earliest point, the initiation of the daughter microtubule organizing center (MTOC. Mitosis remains unimpeded and mutant cells accumulate numerous nuclei but fail to form daughter cells. The SFA fiber provides a robust spatial and temporal organizer of parasite cell division, a process that appears hard-wired to the centrosome by multiple tethers. Our findings have broader evolutionary implications. We propose that Apicomplexa abandoned flagella for most stages yet retained the organizing principle of the flagellar MTOC. Instead of ensuring appropriate numbers of flagella, the system now positions the apical invasion complexes. This suggests that elements of the invasion apparatus may be derived from flagella or flagellum associated structures.

  7. Methylmercury intoxication and histochemical demonstration of NADPH-diaphorase activity in the striate cortex of adult cats

    Directory of Open Access Journals (Sweden)

    R.B. Oliveira

    1998-09-01

    Full Text Available The effects of methylmercury (MeHg on histochemical demonstration of the NADPH-diaphorase (NADPH-d activity in the striate cortex were studied in 4 adult cats. Two animals were used as control. The contaminated animals received 50 ml milk containing 0.42 µg MeHg and 100 g fish containing 0.03 µg MeHg daily for 2 months. The level of MeHg in area 17 of intoxicated animals was 3.2 µg/g wet weight brain tissue. Two cats were perfused 24 h after the last dose (group 1 and the other animals were perfused 6 months later (group 2. After microtomy, sections were processed for NADPHd histochemistry procedures using the malic enzyme method. Dendritic branch counts were performed from camera lucida drawings for control and intoxicated animals (N = 80. Average, standard deviation and Student t-test were calculated for each data group. The concentrations of mercury (Hg in milk, fish and brain tissue were measured by acid digestion of samples, followed by reduction of total Hg in the digested sample to metallic Hg using stannous chloride followed by atomic fluorescence analysis. Only group 2 revealed a reduction of the neuropil enzyme activity and morphometric analysis showed a reduction in dendritic field area and in the number of distal dendrite branches of the NADPHd neurons in the white matter (P<0.05. These results suggest that NADPHd neurons in the white matter are more vulnerable to the long-term effects of MeHg than NADPHd neurons in the gray matter.

  8. Altered cross-bridge properties in skeletal muscle dystrophies

    Directory of Open Access Journals (Sweden)

    Aziz eGuellich

    2014-10-01

    Full Text Available Force and motion generated by skeletal muscle ultimately depends on the cyclical interaction of actin with myosin. This mechanical process is regulated by intracellular Ca2+ through the thin filament-associated regulatory proteins i.e.; troponins and tropomyosin. Muscular dystrophies are a group of heterogeneous genetic affections characterized by progressive degeneration and weakness of the skeletal muscle as a consequence of loss of muscle tissue which directly reduces the number of potential myosin cross-bridges involved in force production. Mutations in genes responsible for skeletal muscle dystrophies have been shown to modify the function of contractile proteins and cross-bridge interactions. Altered gene expression or RNA splicing or post-translational modifications of contractile proteins such as those related to oxidative stress, may affect cross-bridge function by modifying key proteins of the excitation-contraction coupling. Micro-architectural change in myofilament is another mechanism of altered cross-bridge performance. In this review, we provide an overview about changes in cross-bridge performance in skeletal muscle dystrophies and discuss their ultimate impacts on striated muscle function.

  9. Electrostatic forces in muscle and cylindrical gel systems

    Energy Technology Data Exchange (ETDEWEB)

    Millman, B.M.; Nickel, B.G.

    1980-10-01

    Repulsive pressure has been measured as a function of lattice spacing in gels of tobacco mosaic virus (TMV) and in the filament lattice of vertebrate striated muscle. External pressures up to ten atm have been applied to these lattices by an osmotic stress method. Numerical solutions to the Poisson-Boltzmann equation in hexagonal lattices have been obtained and compared to the TMV and muscle data. The theoretical curves using values for kappa calculated from the ionic strength give a good fit to experimental data from TMV gels, and an approximate fit to that from the muscle lattice, provided that a charge radius for the muscle thick filaments of approx. 16 nm is assumed. Variations in ionic strength, sarcomere length and state of the muscle give results which agree qualitatively with the theory, though a good fit between experiment and theory in the muscle case will clearly require consideration of other types of forces. We conclude that Poisson-Boltzmann theory can provide a good first approximation to the long-range electrostatic forces operating in such biological gel systems.

  10. Effects of prolonged mechanical ventilation on respiratory muscle ultrastructure and mitochondrial respiration in rabbits.

    Science.gov (United States)

    Bernard, Nathalie; Matecki, Stefan; Py, Guillaume; Lopez, Sandrine; Mercier, Jacques; Capdevila, Xavier

    2003-01-01

    To investigate in rabbits whether prolonged mechanical ventilation (PMV) leads to ultrastructural changes in respiratory muscles and alters diaphragm mitochondrial respiration. Experimental prospective study in a university laboratory. We studied respiratory muscles of seven rabbits after 49+/-1 h of controlled mechanical ventilation. Ten nonventilated rabbits were used as a control group. After mechanical ventilation electron-microscopic observations of the diaphragm and the external intercostal muscles revealed disrupted myofibrils, increased number of lipid vacuoles in the sarcoplasm, and smaller mitochondria with focal membrane disruptions. Volumetric and numerical densities of the mitochondria were significantly lower in the PMV group than the control group. Mitochondrial respiration was quantified in isolated diaphragm muscle-cell mitochondria using two respiratory substrates. There was no difference in oxygen consumption values in the three states of mitochondrial respiration between the two groups except for state 2 (basal state) with pyruvate/malate parameter (53.5+/-20 for the ventilated group vs. 33.8+/-10.2 nmol atom O/mg per minute for the control group). There was no significant difference between groups in ADP/O ratio or respiratory control ratio. PMV leads to respiratory muscle cell degeneration and minor changes in oxidative phosphorylation coupling in diaphragmatic mitochondria. These phenomena may mediate part of damage of respiratory muscles after inactivity related to PMV.

  11. Muscle RING‐finger 2 and 3 maintain striated‐muscle structure and function

    Science.gov (United States)

    Lodka, Dörte; Pahuja, Aanchal; Geers‐Knörr, Cornelia; Scheibe, Renate J.; Nowak, Marcel; Hamati, Jida; Köhncke, Clemens; Purfürst, Bettina; Kanashova, Tamara; Schmidt, Sibylle; Glass, David J.; Morano, Ingo; Heuser, Arnd; Kraft, Theresia; Bassel‐Duby, Rhonda; Olson, Eric N.; Dittmar, Gunnar; Sommer, Thomas

    2015-01-01

    Abstract Background The Muscle‐specific RING‐finger (MuRF) protein family of E3 ubiquitin ligases is important for maintenance of muscular structure and function. MuRF proteins mediate adaptation of striated muscles to stress. MuRF2 and MuRF3 bind to microtubules and are implicated in sarcomere formation with noticeable functional redundancy. However, if this redundancy is important for muscle function in vivo is unknown. Our objective was to investigate cooperative function of MuRF2 and MuRF3 in the skeletal muscle and the heart in vivo. Methods MuRF2 and MuRF3 double knockout mice (DKO) were generated and phenotypically characterized. Skeletal muscle and the heart were investigated by morphological measurements, histological analyses, electron microscopy, immunoblotting, and real‐time PCR. Isolated muscles were subjected to in vitro force measurements. Cardiac function was determined by echocardiography and working heart preparations. Function of cardiomyocytes was measured in vitro. Cell culture experiments and mass‐spectrometry were used for mechanistic analyses. Results DKO mice showed a protein aggregate myopathy in skeletal muscle. Maximal force development was reduced in DKO soleus and extensor digitorum longus. Additionally, a fibre type shift towards slow/type I fibres occurred in DKO soleus and extensor digitorum longus. MuRF2 and MuRF3‐deficient hearts showed decreased systolic and diastolic function. Further analyses revealed an increased expression of the myosin heavy chain isoform beta/slow and disturbed calcium handling as potential causes for the phenotype in DKO hearts. Conclusions The redundant function of MuRF2 and MuRF3 is important for maintenance of skeletal muscle and cardiac structure and function in vivo. PMID:27493870

  12. Interaction Between Troponin and Myosin Enhances Contractile Activity of Myosin in Cardiac Muscle

    OpenAIRE

    Schoffstall, Brenda; LaBarbera, Vincent A.; Brunet, Nicolas M.; Gavino, Belinda J.; Herring, Lauren; Heshmati, Sara; Kraft, Brittany H.; Inchausti, Vanessa; Meyer, Nancy L.; Moonoo, Danamarie; Takeda, Aya K.; Chase, Prescott Bryant

    2011-01-01

    Ca2+ signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility a...

  13. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography

    International Nuclear Information System (INIS)

    Fox, P.T.; Raichle, M.E.

    1984-01-01

    The purpose of this investigation was to determine the relationship between the repetition rate of a simple sensory stimulus and regional cerebral blood flow (rCBF) in the human brain. Positron emission tomography (PET), using intravenously administered H 2 ( 15 )O as the diffusible blood-flow tracer, was employed for all CBF measurements. The use of H 2 ( 15 )O with PET allowed eight CBF measurements to be made in rapid sequence under multiple stimulation conditions without removing the subject from the tomograph. Nine normal volunteers each underwent a series of eight H2( 15 )O PET measurements of CBF. Initial and final scans were made during visual deprivation. The six intervening scans were made during visual activation with patterned-flash stimuli given in random order at 1.0-, 3.9-, 7.8-, 15.5-, 33.1-, and 61-Hz repetition rates. The region of greatest rCBF increase was determined. Within this region the rCBF was determined for every test condition and then expressed as the percentage change from the value of the initial unstimulated scan (rCBF% delta). In every subject, striate cortex rCBF% delta varied systematically with stimulus rate. Between 0 and 7.8 Hz, rCBF% delta was a linear function of stimulus repetition rate. The rCBF response peaked at 7.8 Hz and then declined. The rCBF% delta during visual stimulation was significantly greater than that during visual deprivation for every stimulus rate except 1.0 Hz. The anatomical localization of the region of peak rCBF response was determined for every subject to be the mesial occipital lobes along the calcarine fissure, primary visual cortex. Stimulus rate is a significant determinant of rCBF response in the visual cortex. Investigators of brain responses to selective activation procedures should be aware of the potential effects of stimulus rate on rCBF and other measurements of cerebral metabolism

  14. Curcumin attenuates skeletal muscle mitochondrial impairment in COPD rats: PGC-1α/SIRT3 pathway involved.

    Science.gov (United States)

    Zhang, Ming; Tang, Jingjing; Li, Yali; Xie, Yingying; Shan, Hu; Chen, Mingxia; Zhang, Jie; Yang, Xia; Zhang, Qiuhong; Yang, Xudong

    2017-11-01

    Curcumin has been widely used to treat numerous diseases due to its antioxidant property. The aim of the present study is to investigate the effect of curcumin on skeletal muscle mitochondria in chronic obstructive pulmonary disease (COPD) and its underlying mechanism. The rat model of COPD was established by cigarette smoke exposure combined with intratracheal administration of lipopolysaccharide. Airway inflammation and emphysema were notably ameliorated by the treatment with curcumin. Oral administration of curcumin significantly improved muscle fiber atrophy, myofibril disorganization, interstitial fibrosis and mitochondrial structure damage in the skeletal muscle of COPD rats. Mitochondrial enzyme activities of cytochrome c oxidase, succinate dehydrogenase, Na + /K + -ATPase and Ca 2+ -ATPase in skeletal muscle mitochondria from COPD rats were significantly increased after treatment with curcumin. Moreover, curcumin significantly decreased oxidative stress and inflammation by determining the levels of malondialdehyde, manganese superoxide dismutase, glutathione peroxidase, catalase, IL-6 and TNF-α in skeletal muscle of COPD rats. Furthermore, curcumin significantly increased the mRNA and protein expression of PGC-1α and SIRT3 in the skeletal muscle tissues of COPD rats. These results suggested that curcumin can attenuate skeletal muscle mitochondrial impairment in COPD rats possibly by the up-regulation of PGC-1α/SIRT3 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation.

    Science.gov (United States)

    Arvanitis, Demetrios A; Vafiadaki, Elizabeth; Papalouka, Vasiliki; Sanoudou, Despina

    2017-12-01

    Muscle Lim Protein (MLP) is a protein with multiple functional roles in striated muscle physiology and pathophysiology. Herein, we demonstrate that MLP directly binds to slow, fast, and cardiac myosin-binding protein C (MyBP-C) during myogenesis, as shown by yeast two-hybrid and a range of protein-protein interaction assays. The minimal interacting domains involve MLP inter-LIM and MyBP-C [C4]. The interaction is sensitive to cytosolic Ca 2+ concentrations changes and to MyBP-C phosphorylation by PKA or CaMKII. Confocal microscopy of differentiating myoblasts showed MLP and MyBP-C colocalization during myoblast differentiation. Suppression of the complex formation with recombinant MyBP-C [C4] peptide overexpression, inhibited myoblast differentiation by 65%. Suppression of both MLP and MyBP-C expression in myoblasts by siRNA revealed negative synergistic effects on differentiation. The MLP/MyBP-C complex modulates the actin activated myosin II ATPase activity in vitro, which could interfere with sarcomerogenesis and myofilaments assembly during differentiation. Our data demonstrate a critical role of the MLP/MyBP-C complex during early myoblast differentiation. Its absence in muscles with mutations or aberrant expression of MLP or MyBP-C could be directly implicated in the development of cardiac and skeletal myopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The influence of temperature on the distribution and intensity of the reaction product in rat muscle fibers obtained with the histochemical method for myosin ATPase

    DEFF Research Database (Denmark)

    Kirkeby, S; Tuxen, A

    1989-01-01

    The influence of temperature in the incubation medium on the localization and intensity of myosin ATPase was investigated in striated muscles from the rat using a conventional histochemical technique. It was found that the enzyme reaction was temperature-dependent since the activity in some fibers...... was raised and in others was depressed by alteration of the incubation temperature. There was no obvious correlation between the temperature sensitivity of ATPase in the muscle fibers and their activity for succinic dehydrogenase. It is proposed that the histochemical method for myosin ATPase can be used...

  17. Mercury distribution and lipid oxidation in fish muscle: Effects of washing and isoelectric protein precipitation

    Science.gov (United States)

    Gong, Y.; Krabbenhoft, D.P.; Ren, L.; Egelandsdal, B.; Richards, M.P.

    2011-01-01

    Nearly all the mercury (Hg) in whole muscle from whitefish (Coregonus clupeaformis) and walleye (Sander vitreus) was present as methyl mercury (MeHg). The Hg content in whole muscle from whitefish and walleye was 0.04-0.09 and 0.14-0.81 ppm, respectively. The myofibril fraction contained approximately three-fourths of the Hg in whitefish and walleye whole muscle. The sarcoplasmic protein fraction (e.g., press juice) was the next most abundant source of Hg. Isolated myosin, triacylglycerols, and cellular membranes contained the least Hg. Protein isolates prepared by pH shifting in the presence of citric acid did not decrease Hg levels. Addition of cysteine during washing decreased the Hg content in washed muscle probably through the interaction of the sulfhydryl group in cysteine with MeHg. Primary and secondary lipid oxidation products were lower during 2 ??C storage in isolates prepared by pH shifting compared to those of washed or unwashed mince from whole muscle. This was attributed to removing some of the cellular membranes by pH shifting. Washing the mince accelerated lipid peroxide formation but decreased secondary lipid oxidation products compared to that of the unwashed mince. This suggested that there was a lipid hydroperoxide generating system that was active upon dilution of aqueous antioxidants and pro-oxidants. ?? 2011 American Chemical Society.

  18. Local applications of myostatin-siRNA with atelocollagen increase skeletal muscle mass and recovery of muscle function.

    Directory of Open Access Journals (Sweden)

    Emi Kawakami

    Full Text Available BACKGROUND: Growing evidence suggests that small-interfering RNA (siRNA can promote gene silencing in mammalian cells without induction of interferon synthesis or nonspecific gene suppression. Recently, a number of highly specific siRNAs targeted against disease-causing or disease-promoting genes have been developed. In this study, we evaluate the effectiveness of atelocollagen (ATCOL-mediated application of siRNA targeting myostatin (Mst, a negative regulator of skeletal muscle growth, into skeletal muscles of muscular dystrophy model mice. METHODS AND FINDINGS: We injected a nanoparticle complex containing myostatin-siRNA and ATCOL (Mst-siRNA/ATCOL into the masseter muscles of mutant caveolin-3 transgenic (mCAV-3Tg mice, an animal model for muscular dystrophy. Scrambled (scr -siRNA/ATCOL complex was injected into the contralateral muscles as a control. Two weeks after injection, the masseter muscles were dissected for histometric analyses. To investigate changes in masseter muscle activity by local administration of Mst-siRNA/ATCOL complex, mouse masseter electromyography (EMG was measured throughout the experimental period via telemetry. After local application of the Mst-siRNA/ATCOL complex, masseter muscles were enlarged, while no significant change was observed on the contralateral side. Histological analysis showed that myofibrils of masseter muscles treated with the Mst-siRNA/ATCOL complex were significantly larger than those of the control side. Real-time PCR analysis revealed a significant downregulation of Mst expression in the treated masseters of mCAV-3Tg mice. In addition, expression of myogenic transcription factors was upregulated in the Mst-siRNA-treated masseter muscle, while expression of adipogenic transcription factors was significantly downregulated. EMG results indicate that masseter muscle activity in mCAV-3Tg mice was increased by local administration of the Mst-siRNA/ATCOL complex. CONCLUSION: These data suggest local

  19. At the Start of the Sarcomere: A Previously Unrecognized Role for Myosin Chaperones and Associated Proteins during Early Myofibrillogenesis

    Directory of Open Access Journals (Sweden)

    J. Layne Myhre

    2012-01-01

    Full Text Available The development of striated muscle in vertebrates requires the assembly of contractile myofibrils, consisting of highly ordered bundles of protein filaments. Myofibril formation occurs by the stepwise addition of complex proteins, a process that is mediated by a variety of molecular chaperones and quality control factors. Most notably, myosin of the thick filament requires specialized chaperone activity during late myofibrillogenesis, including that of Hsp90 and its cofactor, Unc45b. Unc45b has been proposed to act exclusively as an adaptor molecule, stabilizing interactions between Hsp90 and myosin; however, recent discoveries in zebrafish and C. elegans suggest the possibility of an earlier role for Unc45b during myofibrillogenesis. This role may involve functional control of nonmuscle myosins during the earliest stages of myogenesis, when premyofibril scaffolds are first formed from dynamic cytoskeletal actin. This paper will outline several lines of evidence that converge to build a model for Unc45b activity during early myofibrillogenesis.

  20. Glacially striated, soft sediment surfaces on late Paleozoic tillite at São Luiz do Purunã, PR

    Directory of Open Access Journals (Sweden)

    Ivo Trosdtorf Jr.

    2005-06-01

    Full Text Available Striae and furrows found on the upper surfaces of three stratigraphically superposed decimetric beds of late Paleozoic lodgement tillite of the Itararé Subgroup in the northern Paraná Basin were engraved by ploughing of clasts and possibly also ice protuberances at the base of the glacier, on unconsolidated to partially consolidated sediment. Associated features indicate that the rheology of the bed varied from stiff during lodgement to soft and deformable during ploughing. Poor drainage of meltwater at the glacier-bed interface may have contributed to lower the strength of sediment to deformation. The deformed interval was probably generated during a single glacial phase or advance of a glacier grounding in a marine or lacustrine water body. Changes in the dynamics of the glacier involving slow and fast flow were correlated respectively with alternation of deposition and erosion. The proposed model is analogous to that of lodgement till complexes from the Pleistocene of the northern hemisphere. Retreat of the glacier was probably fast, followed by settling of muds on top of the upper striated and furrowed surface, and progradation of deltaic sands during post-glacial time.Estrias e sulcos encontrados sobre três camadas decimétricas, estratigraficamente superpostas, de tilito de alojamento neopaleozóico do Subgrupo Itararé, na porção norte da Bacia do Paraná, foram formados por aração de clastos e, possivelmente, por protuberâncias de gelo, na base da geleira. Feições associadas indicam que a reologia do sedimento variou de rígido, durante o alojamento, a inconsolidado e deformável durante a aração. A baixa drenagem da água de degelo na interface geleira-substrato pode ter contribuído para reduzir a resistência do sedimento à deformação. A sucessão acima foi gerada provavelmente durante uma única fase glacial ou avanço de geleira sobre corpo de água marinho ou lacustre. Mudanças na dinâmica da geleira envolvendo

  1. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres

    Science.gov (United States)

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels; Westerblad, Håkan

    2014-01-01

    In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator of sarcoplasmic reticulum Ca2+ release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca2+ ([Ca2+]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz, 350 ms tetani given at 2 s (high-intensity fatigue, HIF) or 10 s (low-intensity fatigue, LIF) intervals, while force and [Ca2+]i were measured. Stimulation continued until force decreased to 30% of its initial value. Fibres were then prepared for analyses of subcellular glycogen distribution by transmission electron microscopy. At fatigue, tetanic [Ca2+]i was reduced to 70 ± 4% and 54 ± 4% of the initial in HIF (P glycogen content was 60–75% lower than in rested control fibres (P glycogen was similar to control. Individual fibres showed a good correlation between the fatigue-induced decrease in tetanic [Ca2+]i and the reduction in intermyofibrillar (P = 0.051) and intramyofibrillar (P = 0.0008) glycogen. In conclusion, the fatigue-induced decrease in tetanic [Ca2+]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca2+]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca2+ release critically depends on energy supply from the intramyofibrillar glycogen pool. PMID:24591577

  2. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres.

    Science.gov (United States)

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels; Westerblad, Hakan

    2014-05-01

    In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator of sarcoplasmic reticulum Ca(2+) release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca(2+) ([Ca(2+)]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz, 350 ms tetani given at 2 s (high-intensity fatigue, HIF) or 10 s (low-intensity fatigue, LIF) intervals, while force and [Ca(2+)]i were measured. Stimulation continued until force decreased to 30% of its initial value. Fibres were then prepared for analyses of subcellular glycogen distribution by transmission electron microscopy. At fatigue, tetanic [Ca(2+)]i was reduced to 70 ± 4% and 54 ± 4% of the initial in HIF (P glycogen content was 60-75% lower than in rested control fibres (P glycogen was similar to control. Individual fibres showed a good correlation between the fatigue-induced decrease in tetanic [Ca(2+)]i and the reduction in intermyofibrillar (P = 0.051) and intramyofibrillar (P = 0.0008) glycogen. In conclusion, the fatigue-induced decrease in tetanic [Ca(2+)]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca(2+)]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca(2+) release critically depends on energy supply from the intramyofibrillar glycogen pool.

  3. Effects of doxorubicin on cardiac muscle subsarcolemmal and intermyofibrillar mitochondria.

    Science.gov (United States)

    Kavazis, Andreas N; Morton, Aaron B; Hall, Stephanie E; Smuder, Ashley J

    2017-05-01

    Doxorubicin (DOX) is a highly effective chemotherapeutic used in the treatment of a broad spectrum of malignancies. However, clinical use of DOX is highly limited by cumulative and irreversible cardiomyopathy that occurs following DOX treatment. The pathogenesis of DOX-induced cardiac muscle dysfunction is complex. However, it has been proposed that the etiology of this myopathy is related to mitochondrial dysfunction, as a result of the dose-dependent increase in the mitochondrial accumulation of DOX. In this regard, cardiac muscle possesses two morphologically distinct populations of mitochondria. Subsarcolemmal (SS) mitochondria are localized just below the sarcolemma, whereas intermyofibrillar (IMF) mitochondria are found between myofibrils. Mitochondria in both regions exhibit subtle differences in biochemical properties, giving rise to differences in respiration, lipid composition, enzyme activities and protein synthesis rates. Based on the heterogeneity of SS and IMF mitochondria, we hypothesized that acute DOX administration would have distinct effects on each cardiac mitochondrial subfraction. Therefore, we isolated SS and IMF mitochondria from the hearts of female Sprague-Dawley rats 48h after administration of DOX. Our results demonstrate that while SS mitochondria appear to accumulate greater amounts of DOX, IMF mitochondria demonstrate a greater apoptotic and autophagic response to DOX exposure. Thus, the divergent protein composition and function of the SS and IMF cardiac mitochondria result in differential responses to DOX, with IMF mitochondria appearing more susceptible to damage after DOX treatment. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  4. Histotopographical study of human periocular elastic fibers using aldehyde-fuchsin staining with special reference to the sleeve and pulley system for extraocular rectus muscles.

    Science.gov (United States)

    Osanai, Hajime; Murakami, Gen; Ohtsuka, Aiji; Suzuki, Daisuke; Nakagawa, Takashi; Tatsumi, Haruyuki

    2009-09-01

    The aim of this study was to investigate the detailed configuration of periocular elastic fibers. Semiserial paraffin sections were made using 40 whole orbital contents from 27 elderly cadavers and stained by the aldehyde-fuchsin method. Periocular tissues were classified into three types according to directions of the elastic fibers, i.e., tissues containing anteroposteriorly running elastic fibers, those with mediolateral fibers, and those with meshwork of fibers. Anteroposterior elastic fiber-dominant tissue was seen in the upper eyelid and newly defined pulley plate for the medial and lateral recti (MR, LR). Mediolateral fibers were predominant in the central part of the inferior rectus pulley. In the pulley plates for the MR and LR, anteroposteriorly running fibers encased the striated muscle. Tenon's capsule and the epimysium of the recti were mediolateral fiber-dominant. However, at the entrance of the muscle terminal where Tenon's capsule reflects and continues to the epimysium, composite elastic fibers provided a meshwork-like skeleton. The elastic mesh was also seen around the lacrimal canaliculi. The pulley for the recti seemed to be composed of two parts--a connective tissue plate encasing the recti and specialized Tenon's capsule at an entrance or porta of the muscle. For both parts, elastic fibers were major functional components. The anteroposterior elastic fibers in the MR and LR pulley plates, especially, seemed to receive anteroposteriorly directed stress and tension from these striated muscles. The elastic interfaces seemed to prevent any concentration of stress that would interfere with periocular striated muscle functions, including hypothetical active pulleys.

  5. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle function

    Science.gov (United States)

    Gallagher, Thomas L.; Arribere, Joshua A.; Geurts, Paul A.; Exner, Cameron R. T.; McDonald, Kent L.; Dill, Kariena K.; Marr, Henry L.; Adkar, Shaunak S.; Garnett, Aaron T.; Amacher, Sharon L.; Conboy, John G.

    2012-01-01

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos was strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle function. PMID:21925157

  6. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions.

    Science.gov (United States)

    Gallagher, Thomas L; Arribere, Joshua A; Geurts, Paul A; Exner, Cameron R T; McDonald, Kent L; Dill, Kariena K; Marr, Henry L; Adkar, Shaunak S; Garnett, Aaron T; Amacher, Sharon L; Conboy, John G

    2011-11-15

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos were strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle functions. Published by Elsevier Inc.

  7. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    Science.gov (United States)

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  8. [Ultrastructure of the deltoid muscle in wrestlers with habitual shoulder dislocation and during rehabilitation after surgical treatment].

    Science.gov (United States)

    Sukhova, Z I; Ivanitskaia, V V; Safonov, V L

    1989-07-01

    Electron microscopical investigation of the musculus deltoideus bioptates has been performed in wrestlers with a habitual shoulder-slip (7 persons). In the same persons contralateral muscle of the healthy arm has been studied (4 persons) and state of the muscle after operative treatment of the shoulder-slip (4 persons) has been analysed. At repeated shoulder-slips signs of the muscle atrophy are noted; this is clear from destructive changes of myofibrils, appearance of a great number of necrotized fibers, outgrowth of the connective tissue. In two cases ectopic formation of the bone in the muscle tissue has been observed. Increasing number of myosatellitocytes, appearance of newly formed fibers after the operative treatment contributes to restoration of the atrophied muscles. During rehabilitation period after the operative eradication of the shoulder-slip, when the program of the restorative loading is working out, it is necessary to take into consideration the severity of the trauma and duration of the disease, in order to avoid lesions of the weakend muscles.

  9. Evaluation of human muscle in vivo by potassium radiometric measuring

    International Nuclear Information System (INIS)

    Sousa, Wanderson de P.

    2000-01-01

    Potassium is an essential element to the human metabolism and is present in all living cells, mainly in the striated muscular fibers. K-40 is one of the natural potassium isotopes with mass percentage of 0,0118% . This isotope emits beta particle and gamma rays with 1460 keV. The energy of K-40 photon and its uniform distribution within the human body allows its in vivo measurement. The objective of this study is to optimize this technique and evaluate the possibility of its medical application in order to quantify muscle increase during recovering procedures. Subjects of both sexes measured until this moment were divided into two groups. Subjects of Group 1 do not exercise routinely and subjects of Group 2 does. In Group 1 the average potassium mass, muscle mass and potassium concentration were (101±16)g of K, (20±3)kg of muscle and (1,3±0,3)g of K/kg of body mass, respectively, while in Group 2 average values were (125±38)g of K, (25±8)kg of muscle and (1,7±0,2)g of K/kg of body mass. The comparison between average values shows a clear difference, which allows to correlate a higher K mass with routine body activity. The technique has shown enough sensitivity for this application. (author)

  10. Effects of yessotoxin (YTX) on the skeletal muscle: an update.

    Science.gov (United States)

    Tubaro, A; Bandi, E; Sosa, S; Soranzo, M R; Giangaspero, A; De Ninis, V; Yasumoto, T; Lorenzon, P

    2008-09-01

    Yessotoxins (YTXs) are algal toxins originally included in the diarrheic toxins. After oral intake, YTXs induce only ultra-structural changes (packages of swollen mitochondria) in cardiac cells. The aim of this study was to investigate the possible effects of YTX on the other contractile striated tissue, the skeletal muscle, in vitro and in vivo. In vitro, in skeletal mouse myotubes, YTX (0.01-1.0 microM) influenced cell excitability in a concentration- and time-dependent way. In the in vivo study, transmission electron microscopy analysis did not reveal any ultrastructural alteration of skeletal muscle after acute (1 mg kg(-1)) or repeated (1 and 2mg kg(-1) day(-1), for 7 days) oral administration of YTX to mice. The observation that effects were detected in vitro but not in vivo supports the hypothesis of a low YTX bioavailability to skeletal muscle after oral intake. Therefore, the results seem to exclude a toxic effect in skeletal muscle when YTX is consumed as a food contaminant.

  11. Power Grid Protection of the Muscle Mitochondrial Reticulum

    Directory of Open Access Journals (Sweden)

    Brian Glancy

    2017-04-01

    Full Text Available Summary: Mitochondrial network connectivity enables rapid communication and distribution of potential energy throughout the cell. However, this connectivity puts the energy conversion system at risk, because damaged elements could jeopardize the entire network. Here, we demonstrate the mechanisms for mitochondrial network protection in heart and skeletal muscle (SKM. We find that the cardiac mitochondrial reticulum is segmented into subnetworks comprising many mitochondria linked through abundant contact sites at highly specific intermitochondrial junctions (IMJs. In both cardiac and SKM subnetworks, a rapid electrical and physical separation of malfunctioning mitochondria occurs, consistent with detachment of IMJs and retraction of elongated mitochondria into condensed structures. Regional mitochondrial subnetworks limit the cellular impact of local dysfunction while the dynamic disconnection of damaged mitochondria allows the remaining mitochondria to resume normal function within seconds. Thus, mitochondrial network security is comprised of both proactive and reactive mechanisms in striated muscle cells. : Network connectivity allows information sharing and distribution but also enables propagation of localized dysfunction. Glancy et al. demonstrate the existence of both proactive and reactive network protection mechanisms designed to minimize the spread of dysfunction throughout the coupled mitochondrial networks in heart and skeletal muscle cells. Keywords: energy distribution, muscle energetics, oxidative phosphorylation, 3D electron microscopy, mitochondrial retraction, mitochondrial dynamics

  12. cDNA cloning of glucose-6-phosphate isomerase from crucian carp (Carassius carassius) and expression of the active region as myofibril-bound serine proteinase inhibitor in Escherichia coli.

    Science.gov (United States)

    Han, Long; Cao, Min-Jie; Shi, Chao-lan; Wei, Xiao-Nan; Li, Huan; Du, Cui-Hong

    2014-02-01

    Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) can act as a myofibril-bound serine proteinase (MBSP) inhibitor (MBSPI) in fish. In order to better understand the biological information of the GPI and its functional domain for inhibiting MBSP, the cDNA of GPI was cloned from crucian carp (Carassius carassius) with RT-PCR, nested-PCR and 3'-RACE. The result of sequencing showed that the GPI cDNA had an open reading frame of 1662bp encoding 553 amino acid residues. After constructing and comparing the three-dimensional structures of GPI and MBSP, the middle fragment of crucian carp GPI (GPI-M) was predicted as a functional domain for inhibiting MBSP. Then the crucian carp GPI-M gene was cloned and expressed in Escherichia coli. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant GPI-M (rGPI-M) with molecular mass of approximately 21kDa in the form of inclusion bodies. The rGPI-M was obtained at an electrophoresis level purity of approximately 95% after denaturation and dialysis renaturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Basal body and striated rootlet changes in primate macular retinal pigmented epithelium after low level diffuse argon laser radiation. Final report 1981-1982

    Energy Technology Data Exchange (ETDEWEB)

    Schuschereba, S.T.; Zwick, H.; Stuck, B.E.; Beatrice, E.S.

    1982-09-01

    Basal bodies or centrioles (BB - microtubule organizing centers) and striated rootlets (SR - bundles of 60 A action-like filaments) have a close association in primate retinal pigmented epithelial (RPE) cells. The frequency of occurrence of these structures was evaluated in the macular RPE after repeated exposure to low level diffuse argon laser radiation (DALR). The awake chaired animal's head was restrained and positioned near the center of the 0.75 m hemisphere which was diffusely irradiated with 514.5 nm laser radiation. The right eye of each subject was occluded during the two-hour exposure session. The first subject received 24 cumulative hours of exposure, the second, 40 hours and the third, 42 hours.

  14. Expression of TPM1κ, a Novel Sarcomeric Isoform of the TPM1 Gene, in Mouse Heart and Skeletal Muscle

    OpenAIRE

    Dube, Syamalima; Panebianco, Lauren; Matoq, Amr A.; Chionuma, Henry N.; Denz, Christopher R.; Poiesz, Bernard J.; Dube, Dipak K.

    2014-01-01

    We have investigated the expression of TPM1 α and TPM1 κ in mouse striated muscles. TPM1 α and TMP1 κ were amplified from the cDNA of mouse heart by using conventional RT-PCR. We have cloned the PCR amplified DNA and determined the nucleotide sequences. Deduced amino acid sequences show that there are three amino acid changes in mouse exon 2a when compared with the human TPM1 κ . However, the deduced amino acid sequences of human TPM1 α and mouse TPM1 α are identical. Conventional RT-PCR data...

  15. Muscle biopsy.

    Science.gov (United States)

    Meola, G; Bugiardini, E; Cardani, R

    2012-04-01

    Muscle biopsy is required to provide a definitive diagnosis in many neuromuscular disorders. It can be performed through an open or needle technique under local anesthesia. The major limitations of the needle biopsy technique are the sample size, which is smaller than that obtained with open biopsy, and the impossibility of direct visualization of the sampling site. However, needle biopsy is a less invasive procedure than open biopsy and is particularly indicated for diagnosis of neuromuscular disease in infancy and childhood. The biopsied muscle should be one affected by the disease but not be too weak or too atrophic. Usually, in case of proximal muscle involvement, the quadriceps and the biceps are biopsied, while under suspicion of mitochondrial disorder, the deltoid is preferred. The samples must be immediately frozen or fixed after excision to prevent loss of enzymatic reactivity, DNA depletion or RNA degradation. A battery of stainings is performed on muscle sections from every frozen muscle biopsy arriving in the pathology laboratory. Histological, histochemical, and histoenzymatic stainings are performed to evaluate fiber atrophy, morphological, and structural changes and metabolic disorders. Moreover, immunohistochemistry and Western blotting analysis may be used for expression analysis of muscle proteins to obtain a specific diagnosis. There are myopathies that do not need muscle biopsy since a genetic test performed on a blood sample is enough for definitive diagnosis. Muscle biopsy is a useful technique which can make an enormous contribution in the field of neuromuscular disorders but should be considered and interpreted together with the patient's family and clinical history.

  16. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    Science.gov (United States)

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425

  17. Interactome Mapping Reveals Important Pathways in Skeletal Muscle Development of Pigs

    Directory of Open Access Journals (Sweden)

    Jianhua Cao

    2014-11-01

    Full Text Available The regulatory relationship and connectivity among genes involved in myogenesis and hypertrophy of skeletal muscle in pigs still remain large challenges. Presentation of gene interactions is a potential way to understand the mechanisms of developmental events in skeletal muscle. In this study, genome-wide transcripts and miRNA profiling was determined for Landrace pigs at four time points using microarray chips. A comprehensive method integrating gene ontology annotation and interactome network mapping was conducted to analyze the biological patterns and interaction modules of muscle development events based on differentially expressed genes and miRNAs. Our results showed that in total 484 genes and 34 miRNAs were detected for the duration from embryonic stage to adult in pigs, which composed two linear expression patterns with consensus changes. Moreover, the gene ontology analysis also disclosed that there were three typical biological events i.e., microstructure assembly of sarcomere at early embryonic stage, myofibril formation at later embryonic stage and function establishments of myoblast cells at postnatal stage. The interactome mappings of different time points also found the down-regulated trend of gene expression existed across the whole duration, which brought a possibility to introduce the myogenesis related miRNAs into the interactome regulatory networks of skeletal muscle in pigs.

  18. Skeletal muscle glycogen content and particle size of distinct subcellular localizations in the recovery period after a high-level soccer match

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Krustrup, Peter; Nybo, Lars

    2012-01-01

    Whole muscle glycogen levels remain low for a prolonged period following a soccer match. The present study was conducted to investigate how this relates to glycogen content and particle size in distinct subcellular localizations. Seven high-level male soccer players had a vastus lateralis muscle...... biopsy collected immediately after and 24, 48, 72 and 120 h after a competitive soccer match. Transmission electron microscopy was used to estimate the subcellular distribution of glycogen and individual particle size. During the first day of recovery, glycogen content increased by ~60% in all...... subcellular localizations, but during the subsequent second day of recovery glycogen content located within the myofibrils (Intramyofibrillar glycogen, a minor deposition constituting 10-15% of total glycogen) did not increase further compared with an increase in subsarcolemmal glycogen (-7 vs. +25...

  19. Role of the occult insulin receptors in the regulation of atrophy and hypertrophy of skeletal muscles

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, M.J.

    1980-10-01

    Insulin levels in the plasma are variable, as are insulin receptor numbers on the surface of skeletal muscles. Increased blood supply to the muscle during exercise delivers more insulin to the muscles even though insulin levels are suppressed by epinephrine. Increasing muscle temperatures result in an increased insulin effect, if enough receptors are available for binding. In exhaustive exercise, insulin levels are minimal but the movement of glucose across the cell membrane increases. Since insulin-receptor affinity decreases at high temperature, the only way this increased movement of glucose can be accomplished is by increased insulin binding. Thus more receptors must be available to capture the insulin. Epinephrine levels drop drastically after exercise. Insulin levels increase and the cell can import glucose, amino acids, and nucleotides. As the cell temperature decreases after exercise, insulin binding increases but the total effect decreases because the many surface receptors disappear again over a period of time. If the muscle is immobilized, the number of surface receptors decreases. There is less insulin effect and as a result the muscle atrophies. Acetylcholine (ACh) causes the proper arrangement of the myofibrils in the foetus, and has some effect on the rate of atrophy in an immobilized muscle. It also appears to maintain the cell membrane organization. Disuse atrophy is caused by a decrease in cell size, while exercise hypertrophy is caused by an increase in cell size. Growth hormone (STH) is therefore ruled out as the exercise hypertrophy controlling factor, since STH causes cell division and not hypertrophy. Testosterone can also be ruled out as the controlling factor in the development of hypertrophy and atrophy of muscles. Estrogen can likewise be ruled out. (ERB)

  20. A superfast muscle in the complex sonic apparatus of Ophidion rochei (Ophidiiformes): histological and physiological approaches.

    Science.gov (United States)

    Kéver, Loïc; Boyle, Kelly S; Dragičević, Branko; Dulčić, Jakov; Parmentier, Eric

    2014-10-01

    In teleosts, superfast muscles are generally associated with the swimbladder wall, whose vibrations result in sound production. In Ophidion rochei, three pairs of muscles were named 'sonic' because their contractions affect swimbladder position: the dorsal sonic muscle (DSM), the intermediate sonic muscle (ISM), and the ventral sonic muscle (VSM). These muscles were investigated thanks to electron microscopy and electromyography in order to determine their function in sound production. Fibers of the VSM and DSM were much thinner than the fibers of the ISM and epaxial musculature. However, only VSM fibers had the typical ultrastructure of superfast muscles: low proportion of myofibrils, and high proportions of sarcoplasmic reticulum and mitochondria. In females, each sound onset was preceded by the onset of electrical activity in the VSM and the DSM (ISM was not tested). The electromyograms of the VSM were very similar to the waveforms of the sounds: means for the pulse period were 3.6±0.5 and 3.6±0.7 ms, respectively. This shows that the fast VSM (ca. 280 Hz) is responsible for the pulse period and fundamental frequency of female sounds. DSM electromyograms were generally characterized by one or two main peaks followed by periods of lower electrical activity, which suggests a sustained contraction over the course of the sound. The fiber morphology of the ISM and its antagonistic position relative to the DSM are not indicative of a muscle capable of superfast contractions. Overall, this study experimentally shows the complexity of the sound production mechanism in the nocturnal fish O. rochei. © 2014. Published by The Company of Biologists Ltd.

  1. Oxygen dependence of respiration in rat spinotrapezius muscle in situ.

    Science.gov (United States)

    Golub, Aleksander S; Pittman, Roland N

    2012-07-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po(2) [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po(2) dependence of oxygen consumption, Vo(2), proportional to the rate of Po(2) decrease. Fitting equations obtained from a model of heterogeneous intracellular Po(2) were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of Vo(2) on Po(2). This curve consists of two regions connected by the point for critical Po(2) of the cell (i.e., Po(2) at the sarcolemma when the center of the cell becomes anoxic). The critical Po(2) was below the Po(2) for half-maximal respiratory rate (P(50)) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O(2)/cm(3)·s and mitochondrial P(50) was k = 10.5 ± 0.8 mmHg. The range of Po(2) values inside the muscle fibers was found to be 4-5 mmHg at the critical Po(2). The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po(2) was substantially lower than the interstitial Po(2) of 53 ± 2 mmHg, a finding that indicates that Vo(2) under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue.

  2. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    Science.gov (United States)

    Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po2 dependence of oxygen consumption, V̇o2, proportional to the rate of Po2 decrease. Fitting equations obtained from a model of heterogeneous intracellular Po2 were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of V̇o2 on Po2. This curve consists of two regions connected by the point for critical Po2 of the cell (i.e., Po2 at the sarcolemma when the center of the cell becomes anoxic). The critical Po2 was below the Po2 for half-maximal respiratory rate (P50) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O2/cm3·s and mitochondrial P50 was k = 10.5 ± 0.8 mmHg. The range of Po2 values inside the muscle fibers was found to be 4–5 mmHg at the critical Po2. The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po2 was substantially lower than the interstitial Po2 of 53 ± 2 mmHg, a finding that indicates that V̇o2 under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue. PMID:22523254

  3. Polarization gating enables sarcomere length measurements by laser diffraction in fibrotic muscle

    Science.gov (United States)

    Young, Kevin W.; Dayanidhi, Sudarshan; Lieber, Richard L.

    2014-11-01

    Sarcomere length is a key parameter commonly measured in muscle physiology since it dictates striated muscle active force. Laser diffraction (LD)-based measurements of sarcomere length are time-efficient and sample a greater number of sarcomeres compared with traditional microscopy-based techniques. However, a limitation to LD techniques is that signal quality is severely degraded by scattering events as photons propagate through tissue. Consequently, sarcomere length measurements are unattainable when the number of scattering events is sufficiently large in muscle tissue with a high scattering probability. This occurs in fibrotic skeletal muscle seen in muscular dystrophies and secondary to tissue trauma, thus eliminating the use of LD to study these skeletal muscle ailments. Here, we utilize polarization gating to extract diffracted signals that are buried in noise created by scattering. Importantly, we demonstrate that polarization-gated laser diffraction (PGLD) enables sarcomere length measurements in muscles from chronically immobilized mice hind limbs; these muscles have a substantial increase of intramuscular connective tissue that scatter light and disable sarcomere length measurements by traditional LD. Further, we compare PGLD sarcomere lengths to those measured by bright field (BF) and confocal microscopy as positive controls and reveal a significant bias of BF but not of confocal microscopy.

  4. Respiratory muscle dysfunction in animal models of hypoxic disease: antioxidant therapy goes from strength to strength

    Directory of Open Access Journals (Sweden)

    O'Halloran KD

    2017-07-01

    Full Text Available Ken D O’Halloran,1 Philip Lewis2 1Department of Physiology, School of Medicine, University College Cork, Cork, Ireland; 2Institute and Policlinic for Occupational Medicine, Environmental Medicine and Preventative Research, University Hospital of Cologne, Germany Abstract: The striated muscles of breathing play a critical role in respiratory homeostasis governing blood oxygenation and pH regulation. Upper airway dilator and thoracic pump muscles retain a remarkable capacity for plasticity throughout life, both in health and disease states. Hypoxia, whatever the cause, is a potent driver of respiratory muscle remodeling with evidence of adaptive and maladaptive outcomes for system performance. The pattern, duration, and intensity of hypoxia are key determinants of respiratory muscle structural-, metabolic-, and functional responses and adaptation. Age and sex also influence respiratory muscle tolerance of hypoxia. Redox stress emerges as the principal protagonist driving respiratory muscle malady in rodent models of hypoxic disease. There is a growing body of evidence demonstrating that antioxidant intervention alleviates hypoxia-induced respiratory muscle dysfunction, and that N-acetyl cysteine, approved for use in humans, is highly effective in preventing hypoxia-induced respiratory muscle weakness and fatigue. We posit that oxygen homeostasis is a key driver of respiratory muscle form and function. Hypoxic stress is likely a major contributor to respiratory muscle malaise in diseases of the lungs and respiratory control network. Animal studies provide an evidence base in strong support of the need to explore adjunctive antioxidant therapies for muscle dysfunction in human respiratory disease. Keywords: respiratory muscle, diaphragm, upper airway, hypoxia, antioxidants, N-acetyl-cysteine, OSA, COPD

  5. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and decreased regeneration in the mouse femoral Quadriceps

    Science.gov (United States)

    Grigoryan, Eleonora; Radugina, Elena A.; Almeida, Eduardo; Blaber, Elizabeth; Poplinskaya, Valentina; Markitantova, Yulia

    Mechanical unloading of muscle during spaceflight in microgravity is known to cause muscular atrophy, changes in muscle fiber type composition, gene expression, and reductions in regenerative muscle growth. Although limited data exists for long-term effects of microgravity in human muscle, these processes have mostly been studied in rodents for short periods of time, up to two weeks of spaceflight. Here we report on how 30-day, long-term, mechanical unloading in microgravity affects mouse muscle of the femoral Quadriceps group. To conduct these studies we used muscle tissue from 6 mice from the NASA Biospecimen Sharing Program conducted in collaboration with the Institute for Biomedical Problems of the Russian Academy of Sciences, during the Russian Bion M1 biosatellite mission in 2013. Muscle morphology observed in histological sections shows signs of extensive atrophy and regenerative hypoplasia. Specifically, we observed a two-fold decrease in the number of myonuclei and low density of myofibrils, their separation and fragmentation. Despite obvious atrophy, muscle regeneration nevertheless appears to have continued after 30 days in microgravity as evidenced by thin and short newly formed muscle fibers. Many of them however showed evidence of apoptosis and degradation of synthesized fibrils, suggesting long-term unloading in microgravity affects late stages of myofiber differentiation. Ground asynchronous and vivarium control animals showed normal, well-developed tissue structure with sufficient blood and nerve supply and evidence of regenerative formation of new muscle fibers free of apoptotic nuclei. Myofiber nuclei stress responses in spaceflight animals was detected by positive nuclear immunolocalization of c-jun and c-myc proteins. Regenerative activity of satellite cells in muscle was localized with pax-7, MyoD and MCad immunostaining, and did not appear altered in microgravity. In summary, long-term spaceflight in microgravity causes significant atrophy

  6. Expression of a dominant negative CELF protein in vivo leads to altered muscle organization, fiber size, and subtype.

    Directory of Open Access Journals (Sweden)

    Dara S Berger

    2011-04-01

    Full Text Available CUG-BP and ETR-3-like factor (CELF proteins regulate tissue- and developmental stage-specific alternative splicing in striated muscle. We previously demonstrated that heart muscle-specific expression of a nuclear dominant negative CELF protein in transgenic mice (MHC-CELFΔ effectively disrupts endogenous CELF activity in the heart in vivo, resulting in impaired cardiac function. In this study, transgenic mice that express the dominant negative protein under a skeletal muscle-specific promoter (Myo-CELFΔ were generated to investigate the role of CELF-mediated alternative splicing programs in normal skeletal muscle.Myo-CELFΔ mice exhibit modest changes in CELF-mediated alternative splicing in skeletal muscle, accompanied by a reduction of endomysial and perimysial spaces, an increase in fiber size variability, and an increase in slow twitch muscle fibers. Weight gain and mean body weight, total number of muscle fibers, and overall muscle strength were not affected.Although these findings demonstrate that CELF activity contributes to the normal alternative splicing of a subset of muscle transcripts in vivo, the mildness of the effects in Myo-CELFΔ muscles compared to those in MHC-CELFΔ hearts suggests CELF activity may be less determinative for alternative splicing in skeletal muscle than in heart muscle. Nonetheless, even these small changes in CELF-mediated splicing regulation were sufficient to alter muscle organization and muscle fiber properties affected in myotonic dystrophy. This lends further evidence to the hypothesis that dysregulation of CELF-mediated alternative splicing programs may be responsible for the disruption of these properties during muscle pathogenesis.

  7. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse

    DEFF Research Database (Denmark)

    Xu, H; Christmas, P; Wu, X R

    1994-01-01

    -linked Duchenne and Becker muscular dystrophies. We have examined M-laminin expression in mice with autosomal recessive muscular dystrophy caused by the mutation dy. The heavy chain of M-laminin was undetectable in skeletal muscle, heart muscle, and peripheral nerve by immunofluorescence and immunoblotting......M-laminin is a major member of the laminin family of basement membrane proteins. It is prominently expressed in striated muscle and peripheral nerve. M-laminin is deficient in patients with the autosomal recessive Fukuyama congenital muscular dystrophy but is normal in patients with the sex...... tissue from dy/dy mice, suggesting that M-laminin heavy-chain mRNA may be produced at very low levels or is unstable. Information about the chromosomal localization of the M heavy-chain in human and mouse suggests that a mutation in the M-chain gene causes the muscular dystrophy in dy/dy mice. The dy...

  8. Maintenance of muscle myosin levels in adult C. elegans requires both the double bromodomain protein BET-1 and sumoylation

    Directory of Open Access Journals (Sweden)

    Kate Fisher

    2013-10-01

    Attenuation of RAS-mediated signalling is a conserved process essential to control cell proliferation, differentiation, and apoptosis. Cooperative interactions between histone modifications such as acetylation, methylation and sumoylation are crucial for proper attenuation in C. elegans, implying that the proteins recognising these histone modifications could also play an important role in attenuation of RAS-mediated signalling. We sought to systematically identify these proteins and found BET-1. BET-1 is a conserved double bromodomain protein that recognises acetyl-lysines on histone tails and maintains the stable fate of various lineages. Unexpectedly, adults lacking both BET-1 and SUMO-1 are depleted of muscle myosin, an essential component of myofibrils. We also show that this muscle myosin depletion does not occur in all animals at a specific time, but rather that the penetrance of the phenotype increases with age. To gain mechanistic insights into this process, we sought to delay the occurrence of the muscle myosin depletion phenotype and found that it requires caspase activity and MEK-dependent signalling. We also performed transcription profiling on these mutants and found an up-regulation of the FGF receptor, egl-15, a tyrosine kinase receptor acting upstream of MEK. Consistent with a MEK requirement, we could delay the muscle phenotype by systemic or hypodermal knock down of egl-15. Thus, this work uncovered a caspase- and MEK-dependent mechanism that acts specifically on ageing adults to maintain the appropriate net level of muscle myosin.

  9. The Role of Nanobiotechnology in the Study of Dystrophin and B-Dystroglycan in Membrane Stability of Aging Skeletal Muscles

    Science.gov (United States)

    Vaseashta, Ashok

    2005-03-01

    Duchene muscular dystrophy (DMD) is one of nine types of muscular dystrophy, a group of genetic degenerative diseases, primarily affecting voluntary muscles, caused by absence of dystrophin. New experiments on mice with DMD has shown that gene therapy can reverse some symptoms of the disease. The ultimate goal of gene therapy for muscle diseases is improvement of strength and function, which will require treatment in multiple muscles simultaneously. A major limitation to gene therapy until now has been that no one had found a method by which a new gene could be delivered to all the muscles of an adult animal. Recent utilization of nanotechnology to life sciences has shown exciting promises in a wide range of disciplines, showing advances in the ability to manipulate, fabricate and alter tiny subjects at the nanometer scale. In the present investigation, we have employed such techniques to study single motors such as myosin and kinesin, as well elastic proteins viz. titin and nebulin, muscle filaments, cytoskeletal filaments, and receptors in cellular membranes and cellular organelles viz. myofibril, ribosome, and chromatin. Application of AFM to images and measures the elastic properties of single monomeric and oligomeric protein, genetically engineered titin, and nebulin molecules will be presented.

  10. Getting Muscles

    Science.gov (United States)

    ... re thinking about aren't possible for kids. Superheroes, of course, aren't real, and professional athletes ... can make you stronger. Why? Because you're using your muscles when you do it. Eat Strong ...

  11. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  12. Molecular analysis of the muscle protein projectin in Lepidoptera.

    Science.gov (United States)

    Ayme-Southgate, A J; Turner, L; Southgate, R J

    2013-01-01

    Striated muscles of both vertebrates and insects contain a third filament composed of the giant proteins, namely kettin and projectin (insects) and titin (vertebrates). All three proteins have been shown to contain several domains implicated in conferring elasticity, in particular a PEVK segment. In this study, the characterization of the projectin protein in the silkmoth, Bombyx mori L. (Lepidoptera: Bombycidae), and the monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), as well as a partial characterization in the Carolina sphinx, Manduca sexta L. (Lepidoptera: Sphingidae), are presented. This study showed that, similar to other insects, projectin's overall modular organization was conserved, but in contrast, the PEVK region had a highly divergent sequence. The analysis of alternative splicing in the PEVK region revealed a small number of possible isoforms and the lack of a flight-muscle specific variant, both characteristics being in sharp contrast with findings from other insects. The possible correlation with difference in flight muscle stiffness and physiology between Lepidoptera and other insect orders is discussed.

  13. Structural abnormalities in the levator palpebrae superioris muscle in patients with congenital blepharoptosis.

    Science.gov (United States)

    Iljin, Aleksandra; Zielinska, Anna; Karasek, Michal; Zielinski, Andrzej; Omulecka, Aleksandra

    2007-01-01

    To evaluate structural and ultrastructural abnormalities of the levator palpebrae superioris (LPS) complex in patients with congenital blepharoptosis. Samples of the LPS complex were obtained from patients operated on for congenital blepharoptosis between 2000 and 2001 and studied under light microscopy (15 cases) and electron microscopy (9 cases). Findings of light microscopy evaluation of the LPS complex correlated closely with the clinical grading of congenital blepharoptosis-hypoplasia, decreased number and varying diameter of muscle fibers, and fibrous tissue hyperplasia in the endomysium and perimysium. The Müller's muscle preserved a normal appearance. Mild blepharoptosis revealed proliferation of collagen fibers on electron microscopy. Moderate blepharoptosis showed abnormal distribution of myofibrils and distortion of the tubular system and mitochondria in addition to the changes observed in mild blepharoptosis. Severe blepharoptosis showed mitochondria loss, cytoplasm thinning, and homogenous fiber areas in addition to the changes observed in mild and moderate blepharoptosis. The clinical degree of severity of congenital blepharoptosis correlates positively with the degree of histopathologic changes in the levator palpebrae superioris muscle.

  14. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle.

    Science.gov (United States)

    Krag, Thomas O; Ruiz-Ruiz, Cristina; Vissing, John

    2017-08-01

    Glycogen storage disease (GSD) type XV is a rare disease caused by mutations in the GYG1 gene that codes for the core molecule of muscle glycogen, glycogenin 1. Nonetheless, glycogen is present in muscles of glycogenin 1-deficient patients, suggesting an alternative for glycogen buildup. A likely candidate is glycogenin 2, an isoform expressed in the liver and heart but not in healthy skeletal muscle. We wanted to investigate the formation of glycogen and changes in glycogen metabolism in patients with GSD type XV. Two patients with mutations in the GYG1 gene were investigated for histopathology, ultrastructure, and expression of proteins involved in glycogen synthesis and metabolism. Apart from occurrence of polyglucosan (PG) bodies in few fibers, glycogen appeared normal in most cells, and the concentration was normal in patients with GSD type XV. We found that glycogenin 1 was absent, but glycogenin 2 was present in the patients, whereas the opposite was the case in healthy controls. Electron microscopy revealed that glycogen was present between and not inside myofibrils in type II fibers, compromising the ultrastructure of these fibers, and only type I fibers contained PG bodies. We also found significant changes to the expression levels of several enzymes directly involved in glycogen and glucose metabolism. To our knowledge, this is the first report demonstrating expression of glycogenin 2 in glycogenin 1-deficient patients, suggesting that glycogenin 2 rescues the formation of glycogen in patients with glycogenin 1 deficiency. Copyright © 2017 Endocrine Society

  15. Proteomic profiling of skeletal muscle in an animal model of overtraining.

    Science.gov (United States)

    Gandra, Paulo Guimaraes; Valente, Richard Hemmi; Perales, Jonas; Pacheco, Antonio Guilherme Fonseca; Macedo, Denise Vaz

    2012-08-01

    Excessive training (i.e. overtraining, OT) may result in underperformance, which can be characterized by the time needed to re-establish performance (i.e. functional overreaching (FOR), nonfunctional overreaching, OT syndrome). The present study is an initial screening for proteins presenting altered abundance in the red (RG) and white (WG) portions of the gastrocnemius muscle from rats submitted to an OT protocol that induced FOR. In the RG, compared to the nontrained control, FOR demonstrated an increased abundance of proteins normally related to adaptation to endurance training (e.g. proteins of oxidative phosphorylation complexes, proteins related to lipid metabolism, antioxidants, and chaperones). In the WG, spots identified as mitochondrial aconitase and a component of the succinate dehydrogenase complex were downregulated in FOR, as were proteins related to myofibril stabilization; these latter were upregulated in the RG. This initial study shows that skeletal muscles with different fiber-type compositions respond differently to an OT period. Also, it is likely that actin-interacting proteins have an important role in muscle adaptation to endurance exercise. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Influences of Desmin and Keratin 19 on Passive Biomechanical Properties of Mouse Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Sameer B. Shah

    2012-01-01

    Full Text Available In skeletal muscle fibers, forces must be transmitted between the plasma membrane and the intracellular contractile lattice, and within this lattice between adjacent myofibrils. Based on their prevalence, biomechanical properties and localization, desmin and keratin intermediate filaments (IFs are likely to participate in structural connectivity and force transmission. We examined the passive load-bearing response of single fibers from the extensor digitorum longus (EDL muscles of young (3 months and aged (10 months wild-type, desmin-null, K19-null, and desmin/K19 double-null mice. Though fibers are more compliant in all mutant genotypes compared to wild-type, the structural response of each genotype is distinct, suggesting multiple mechanisms by which desmin and keratin influence the biomechanical properties of myofibers. This work provides additional insight into the influences of IFs on structure-function relationships in skeletal muscle. It may also have implications for understanding the progression of desminopathies and other IF-related myopathies.

  17. A prospective transmission electron microscopic study of muscle status in oral submucous fibrosis along with retrospective analysis of 80 cases of oral submucous fibrosis

    Science.gov (United States)

    Sumathi, MK; Balaji, Narayanan; Malathi, Narasimhan

    2012-01-01

    Aim and Objective: The present study is undertaken to study the ultra structural features of muscle tissue in moderate and advanced stages of oral submucous fibrosis along with retrospective analysis of 80 cases of oral submucous fibrosis ( osmf) 0 during the period of year 2002 to 2005. Materials and Methods: Five patients with moderate and advanced stages of osmf0 were screened from outpatients department of oral diagnosis, sri Ramachandra dental college and hospital. After a detailed case history, they were subjected to incisional biopsy from an area of buccal mucosa with maximum palpable fibrotic bands.the specimens were cut into two halves, one half was fixed in 10% formalin for routine processing. Second half was fixed in 2.5% glutaraldehyde for electron microscopic examination. Results: Prospective study of muscle fibres from moderate and advanced stages of osmf0 revealed varying changes in high proportion of muscle fibres which includes, irregularity of surface of fibre,sarcolemmal foldings, reduplicated basement membrane, loss and alterations in the myofilaments, hypercontraction of myofibrils, Z line abnormalities, internal nucleus, autophagic vacuoles. These features are suggestive of muscle atrophy and necrosis. Conclusion: Within the limitations of this study, it can be concluded that the ultra structural features In moderate and advanced stages of osmf0 were best studied. These muscle changes can be manifestation of disease, atrophy being secondary to the limited functional activity of the muscles which is brought about by fibrosis or it could be essential part of the disease process itself. PMID:23248458

  18. Mitochondrial energetic metabolism perturbations in skeletal muscles and brain of zebrafish (Danio rerio) exposed to low concentrations of waterborne uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lerebours, Adelaide; Adam-Guillermin, Christelle [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Bat 186, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Brethes, Daniel [CNRS, UMR 5095, Institut de Biochimie et Genetique Cellulaires, Universite Victor Segalen-Bordeaux 2 (France); Frelon, Sandrine; Floriani, Magali; Camilleri, Virginie; Garnier-Laplace, Jacqueline [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Bat 186, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Bourdineaud, Jean-Paul, E-mail: jp.bourdineaud@epoc.u-bordeaux1.fr [CNRS, UMR 5095, Institut de Biochimie et Genetique Cellulaires, Universite Victor Segalen-Bordeaux 2 (France)

    2010-10-01

    Anthropogenic release of uranium (U), originating from the nuclear fuel cycle or military activities, may considerably increase U concentrations in terrestrial and aquatic ecosystems above the naturally occurring background levels found throughout the environment. With a projected increase in the world-wide use of nuclear power, it is important to improve our understanding of the possible effects of this metal on the aquatic fauna at concentrations commensurate with the provisional drinking water guideline value of the World Health Organization (15 {mu}g U/L). The present study has examined the mitochondrial function in brain and skeletal muscles of the zebrafish, Danio rerio, exposed to 30 and 100 {mu}g/L of waterborne U for 10 and 28 days. At the lower concentration, the basal mitochondrial respiration rate was increased in brain at day 10 and in muscles at day 28. This is due to an increase of the inner mitochondrial membrane permeability, resulting in a decrease of the respiratory control ratio. In addition, levels of cytochrome c oxidase subunit IV (COX-IV) increased in brain at day 10, and those of COX-I increased in muscles at day 28. Histological analyses performed by transmission electron microscopy revealed an alteration of myofibrils and a dilatation of endomysium in muscle cells. These effects were largest at the lowest concentration, following 28 days of exposure.

  19. Diaphragm Muscle Adaptation to Sustained Hypoxia: Lessons from Animal Models with Relevance to High Altitude and Chronic Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Philip Lewis

    2016-12-01

    Full Text Available The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and, altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.

  20. Reconstruction of the muscle system in Antygomonas sp. (Kinorhyncha, Cyclorhagida) by means of phalloidin labeling and cLSM.

    Science.gov (United States)

    Müller, Monika C M; Schmidt-Rhaesa, Andreas

    2003-05-01

    In the present investigation the entire muscle system of the cyclorhagid kinorhynch Antygomonas sp. was three-dimensionally reconstructed from whole mounts by means of FITC-phalloidin labeling and confocal scanning microscopy. With this technique, which proved to be especially useful for microscopically small species, we wanted to reinvestigate and supplement the findings obtained by histological and electron microscopical methods. The organization of the major muscle systems can be summarized as follows: 1) All muscle fibers, apart from the intestinal ones, the spine, and the mouth cone muscles, show a cross-striated pattern; 2) Dorsal longitudinal muscle fibers as well as segmentally arranged dorsoventral fibers occur from segment III to XIII; 3) Diagonal muscle fibers are located laterally in segments III to X; 4) Two rings of circular fibers are present in segment II, forming the closing apparatus in Cyclorhagida. Further circular muscles are present in segment I, forming the mouth cone and the eversible introvert, and in the pharyngeal bulb. Copyright 2003 Wiley-Liss, Inc.

  1. Characterization of muscle contraction with second harmonic generation microscopy

    Science.gov (United States)

    Prent, Nicole

    Muscle cells have the ability to change length and generate force due to orchestrated action of myosin nanomotors that cause sliding of actin filaments along myosin filaments in the sarcomeres, the fundamental contractile units, of myocytes. The correlated action of hundreds of sarcomeres is needed to produce the myocyte contractions. This study probes the molecular structure of the myofilaments and investigates the movement correlations between sarcomeres during contraction. In this study, second harmonic generation (SHG) microscopy is employed for imaging striated myocytes. Myosin filaments in striated myocytes inherently have a nonzero second-order susceptibility, [special characters omitted] and therefore generate efficient SHG. Employing polarization-in polarization-out (PIPO) SHG microscopy allows for the accurate determination of the characteristic ratio, [special characters omitted] in birefringent myocytes, which describes the structure of the myosin filament. Analysis shows that the b value at the centre of the myosin filament, where the nonlinear dipoles are better aligned, is slightly lower than the value at the edges of the filament, where there is more disorder in orientation of the nonlinear dipoles from the myosin heads. Forced stretching of myocytes resulted in an SHG intensity increase with the elongation of the sarcomere. SHG microscopy captured individual sarcomeres during contraction, allowing for the measurement of sarcomere length (SL) and SHG intensity (SI) fluctuations. The fluctuations also revealed higher SHG intensity in elongated sarcomeres. The sarcomere synchronization model (SSM) for contracting and quiescent myocytes was developed, and experimentally verified for three cases (isolated cardiomyocyte, embryonic chicken cardiomyocyte, and larva myocyte). During contraction, the action of SLs and SIs between neighbouring sarcomeres partially correlated, whereas in quiescent myocytes the SLs show an anti-correlation and the SIs have no

  2. Target-derived trophic effect on skeletal muscle innervation in senescent mice.

    Science.gov (United States)

    Messi, Maria Laura; Delbono, Osvaldo

    2003-02-15

    In the present work, we tested the hypothesis that target-derived insulin-like growth factor-1 (IGF-1) prevents alterations in neuromuscular innervation in aging mammals. To explore this hypothesis, we studied senescent wild-type mice as a model of deficient IGF-1 secretion and signaling and S1S2 transgenic mice as a tool to investigate the role of sustained overexpression of IGF-1 in striated muscle in neuromuscular innervation. The analysis of the nerve terminal in extensor digitorum longus muscles from senescent mice showed that the decrease in the percentage of cholinesterase-stained zones (CSZ) exhibiting nerve terminal branching, number of nerve branches at the CSZ, and nerve branch points was partially or completely reversed by sustained overexpression of IGF-1 in skeletal muscle. Target-derived IGF-1 also prevented age-related decreases in the postterminal alpha-bungarotoxin immunostained area, as well as the reduction in the number and length of postsynaptic folds, and area and density of postsynaptic folds studied with electron microscopy. Overexpression of IGF-1 in skeletal muscle may account for the lack of age-dependent switch in muscle fiber type composition recorded in senescent mice. In summary, the use of the S1S2 IGF-1 transgenic mouse model allowed us to provide morphological evidence for the role of target-derived IGF-1 in spinal cord motor neurons in senescent mice.

  3. Generation of a vascularized organoid using skeletal muscle as the inductive source.

    LENUS (Irish Health Repository)

    Messina, Aurora

    2005-09-01

    The technology required for creating an in vivo microenvironment and a neovasculature that can grow with and service new tissue is lacking, precluding the possibility of engineering complex three-dimensional organs. We have shown that when an arterio-venous (AV) loop is constructed in vivo in the rat groin, and placed inside a semisealed chamber, an extensive functional vasculature is generated. To test whether this unusually angiogenic environment supports the survival and growth of implanted tissue or cells, we inserted various preparations of rat and human skeletal muscle. We show that after 6 weeks incubation of muscle tissue, the chamber filled with predominantly well-vascularized recipient-derived adipose tissue, but some new donor-derived skeletal muscle and connective tissue were also evident. When primary cultured myoblasts were inserted into the chamber with the AV loop, they converted to mature striated muscle fibers. Furthermore, we identify novel adipogenesis-inducing properties of skeletal muscle. This represents the first report of a specific three-dimensional tissue grown on its own vascular supply.

  4. Physical activity counteracts tumor cell growth in colon carcinoma C26-injected muscles: an interim report

    Directory of Open Access Journals (Sweden)

    Charlotte Hiroux

    2016-06-01

    Full Text Available Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis.

  5. Membrane-stabilizing copolymers confer marked protection to dystrophic skeletal muscle in vivo

    Directory of Open Access Journals (Sweden)

    Evelyne M Houang

    Full Text Available Duchenne muscular dystrophy (DMD is a fatal disease of striated muscle deterioration. A unique therapeutic approach for DMD is the use of synthetic membrane stabilizers to protect the fragile dystrophic sarcolemma against contraction-induced mechanical stress. Block copolymer-based membrane stabilizer poloxamer 188 (P188 has been shown to protect the dystrophic myocardium. In comparison, the ability of synthetic membrane stabilizers to protect fragile DMD skeletal muscles has been less clear. Because cardiac and skeletal muscles have distinct structural and functional features, including differences in the mechanism of activation, variance in sarcolemma phospholipid composition, and differences in the magnitude and types of forces generated, we speculated that optimized membrane stabilization could be inherently different. Our objective here is to use principles of pharmacodynamics to evaluate membrane stabilization therapy for DMD skeletal muscles. Results show a dramatic differential effect of membrane stabilization by optimization of pharmacodynamic-guided route of poloxamer delivery. Data show that subcutaneous P188 delivery, but not intravascular or intraperitoneal routes, conferred significant protection to dystrophic limb skeletal muscles undergoing mechanical stress in vivo. In addition, structure-function examination of synthetic membrane stabilizers further underscores the importance of copolymer composition, molecular weight, and dosage in optimization of poloxamer pharmacodynamics in vivo.

  6. Serotonin as an integrator of leech behavior and muscle mechanical performance.

    Science.gov (United States)

    Gerry, Shannon P; Daigle, Amanda J; Feilich, Kara L; Liao, Jessica; Oston, Azzara L; Ellerby, David J

    2012-08-01

    The obliquely striated muscle in the leech body wall has a broad functional repertoire; it provides power for both locomotion and suction feeding. It also operates over an unusually high strain range, undergoing up to threefold changes in length. Serotonin (5-HT) may support this functional flexibility, integrating behavior and biomechanics. It can act centrally, promoting motor outputs that drive body wall movements, and peripherally, modulating the mechanical properties of body wall muscle. During isometric contractions 5-HT enhances active force production and reduces resting muscle tone. We therefore hypothesized that 5-HT would increase net work output during the cyclical contractions associated with locomotion and feeding. Longitudinal strains measured during swimming, crawling and feeding were applied to body wall muscle in vitro with the timing and duration of stimulation selected to maximize net work output. The net work output during all simulated behaviors significantly increased in the presence of 100μM 5-HT relative to the 5-HT-free control condition. Without 5-HT the muscle strips could not achieve a net positive work output during simulated swimming. The decrease in passive tension associated with 5-HT may also be important in reducing muscle antagonist work during longitudinal muscle lengthening. The behavioral and mechanical effects of 5-HT during locomotion are clearly complementary, promoting particular behaviors and enhancing muscle performance during those behaviors. Although 5-HT can enhance muscle mechanical performance during simulated feeding, low in vivo activity in serotonergic neurons during feeding may mean that its mechanical role during this behavior is less important than during locomotion. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Myosin heavy chain expression in cranial, pectoral fin, and tail muscle regions of zebrafish embryos.

    Science.gov (United States)

    Peng, Mou-Yun; Wen, Hui-Ju; Shih, Li-Jane; Kuo, Ching-Ming; Hwang, Sheng-Ping L

    2002-12-01

    To investigate whether different myosin heavy chain (MHC) isoforms may constitute myofibrils in the trunk and tail musculature and if their respective expression may be regulated by spadetail (spt) and no tail (brachyury), we identified and characterized mRNA expression patterns of an embryonic- and tail muscle-specific MHC gene (named myhz2) during zebrafish development in wild type, spt, and ntl mutant embryos. The identified myhz2 MHC gene encodes a polypeptide containing 1,935 amino acids. Deduced amino acid comparisons showed that myhz2 MHC shared 92.6% sequence identity with that of carp fast skeletal MHC. Temporal and spatial myhz2 MHC mRNA expression patterns were analyzed by quantitative RT-PCR and whole-mount in situ hybridization using primer pairs and probes designed from the 3'-untranslated region (UTR). Temporally myhz2 MHC mRNA appears in pharyngula embryos and peaks in protruding-mouth larvae. The expression level decreased in 7-day-old hatching larvae, and mRNA expression was not detectable in adult fish. Spatially in pharyngula embryos, mRNA was localized only in the tail somite region, while in long-pec embryos, transcripts were also expressed in the two cranial muscle elements of the adductor mandibulae and medial rectus, as well as in pectoral fin muscles and the tail muscle region. Myhz2 MHC mRNA was expressed in most cranial muscle elements, pectoral fin muscles, and the tail muscle region of 3-day-old hatching larvae. In contrast, no expression of myhz2 MHC mRNA could be observed in spt prim-15 mutant embryos. In spt long-pec mutant embryos, transcripts were expressed in two cranial muscle elements and the tail muscle region, but not in pectoral fin muscles, while only trace amounts of myhz2 MHC mRNA were expressed in the remaining tail muscle region of 38 hpf and long-pec ntl mutant embryos. Copyright 2002 Wiley-Liss, Inc.

  8. Sub-cellular localisation of fukutin related protein in different cell lines and in the muscle of patients with MDC1C and LGMD2I

    DEFF Research Database (Denmark)

    Torelli, Silvia; Brown, Susan C; Brockington, Martin

    2005-01-01

    MDC1C and LGMD2I are two allelic forms of muscular dystrophies caused by mutations in the gene encoding for fukutin related protein (FKRP). FKRP encodes for a putative glycosyltransferase, the precise function of which is unknown. However, the marked reduction of alpha-dystroglycan glycosylation...... and in transverse sections of normal skeletal and cardiac muscle, endogenous FKRP surrounded the myonuclei. This localisation was unaffected in the skeletal muscle of patients with MDC1C and LGMD2I carrying various FKRP mutations. These observations imply a specific role for FKRP during striated muscle, neuronal...... and glial development and suggest that protein mis-localisation is not a common mechanism of disease in FKRP-related dystrophies....

  9. Replication in cultured C2C12 muscle cells correlates with the neuroinvasiveness of California serogroup bunyaviruses.

    Science.gov (United States)

    Griot, C; Pekosz, A; Davidson, R; Stillmock, K; Hoek, M; Lukac, D; Schmeidler, D; Cobbinah, I; Gonzalez-Scarano, F; Nathanson, N

    1994-06-01

    The neuroinvasiveness of California serogroup bunyaviruses is determined by the ability of the virus to replicate in striated muscle after peripheral inoculation of mice. Neuroinvasiveness was mapped to the medium (M) RNA segment of the virus, which encodes the viral glycoproteins, when reassortants were made between La Crosse/original virus, a neuroinvasive isolate, and Tahyna-181/57 virus, a nonneuroinvasive clone. We have tested the murine muscle cell line C2C12 as a surrogate for myotropism and have found that there is a slight, but reproducible difference in the replication of virus clones bearing the M RNA segment of La Crosse/original virus compared to clones bearing the M RNA segment of Tahyna-181/57 virus, as determined by viral titer, antigen expression, and plaque formation.

  10. The effect of transient, moderate dietary phosphorus deprivation on phosphorus metabolism, muscle content of different phosphorus-containing compounds, and muscle function in dairy cows.

    Science.gov (United States)

    Grünberg, W; Scherpenisse, P; Dobbelaar, P; Idink, M J; Wijnberg, I D

    2015-08-01

    decline in muscle tissue P content. Electromyographic examination revealed increased occurrence of pathological spontaneous activity in striated muscles after 2 wk of dietary P depletion in several cows, which could be suggestive of neuromuscular membrane instability. No effect on heart muscle activity was identified electrocardiographically. These results suggest that counter-regulatory mechanisms were sufficient to maintain normal muscle tissue P content during transient and moderate P deprivation. Muscle function was not grossly affected, although the increased occurrence of pathological spontaneous activity suggests that subclinical neuropathy or myopathy, or both, may have occurred with ongoing P deprivation. The results presented here indicate that plasma [Pi] is unsuitable for assessing muscle tissue P content in cattle. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Comparative study of the effects of the Ga-As (904 nm, 150 mW) laser and the pulsed ultrasound of 1 MHz in inflammation of tibialis muscle of Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Marcus Vinicius de Mello; Rocha, Lamara Laguardia Valente; Santos, Helio Ricardo dos; Silva, Andre Luis dos Santos; Barbosa, Luis Guilherme; Reis, Joao Batista Alves dos [Centro Universitario de Caratinga, MG (Brazil)]. E-mail; orofacial_1@hotmail.com; Costa, Daniel Almeida da [Faculdade de Minas, Belo Horizonte, MG (Brazil); Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Biofisica e Biometria

    2008-12-15

    This paper aims to compare the therapeutic effect of the laser As-Ga of 904 nm and pulsed Ultrasound of 1 MHz applied in striated skeletal muscle of inflamed rats. The animals received an intramuscular injection of bupivacaine hydrochloride in tibialis muscle in order to induce the inflammatory process, and after 24 hours, the time was considered 0 for the initiation of therapy, using a laser and ultrasound. Samples collected the muscles of the animals were stained with Hematoxylin-Eosin and histological sections of the groups used for the analysis of the muscle tissue in relation to reducing the inflammatory process, comparing the results of the two therapies used. In this study it is suggested that both treatment with laser as with ultrasound can act as anti-inflammatory. However, the laser seems to have anti-inflammatory effect for all periods observed, while the ultrasound was only able to induce declining inflammatory response to seven days. (author)

  12. Deleting exon 55 from the nebulin gene induces severe muscle weakness in a mouse model for nemaline myopathy.

    Science.gov (United States)

    Ottenheijm, Coen A C; Buck, Danielle; de Winter, Josine M; Ferrara, Claudia; Piroddi, Nicoletta; Tesi, Chiara; Jasper, Jeffrey R; Malik, Fady I; Meng, Hui; Stienen, Ger J M; Beggs, Alan H; Labeit, Siegfried; Poggesi, Corrado; Lawlor, Michael W; Granzier, Henk

    2013-06-01

    Nebulin--a giant sarcomeric protein--plays a pivotal role in skeletal muscle contractility by specifying thin filament length and function. Although mutations in the gene encoding nebulin (NEB) are a frequent cause of nemaline myopathy, the most common non-dystrophic congenital myopathy, the mechanisms by which mutations in NEB cause muscle weakness remain largely unknown. To better understand these mechanisms, we have generated a mouse model in which Neb exon 55 is deleted (Neb(ΔExon55)) to replicate a founder mutation seen frequently in patients with nemaline myopathy with Ashkenazi Jewish heritage. Neb(ΔExon55) mice are born close to Mendelian ratios, but show growth retardation after birth. Electron microscopy studies show nemaline bodies--a hallmark feature of nemaline myopathy--in muscle fibres from Neb(ΔExon55) mice. Western blotting studies with nebulin-specific antibodies reveal reduced nebulin levels in muscle from Neb(ΔExon55) mice, and immunofluorescence confocal microscopy studies with tropomodulin antibodies and phalloidin reveal that thin filament length is significantly reduced. In line with reduced thin filament length, the maximal force generating capacity of permeabilized muscle fibres and single myofibrils is reduced in Neb(ΔExon55) mice with a more pronounced reduction at longer sarcomere lengths. Finally, in Neb(ΔExon55) mice the regulation of contraction is impaired, as evidenced by marked changes in crossbridge cycling kinetics and by a reduction of the calcium sensitivity of force generation. A novel drug that facilitates calcium binding to the thin filament significantly augmented the calcium sensitivity of submaximal force to levels that exceed those observed in untreated control muscle. In conclusion, we have characterized the first nebulin-based nemaline myopathy model, which recapitulates important features of the phenotype observed in patients harbouring this particular mutation, and which has severe muscle weakness caused by

  13. An elderly-onset limb girdle muscular dystrophy type 1B (LGMD1B) with pseudo-hypertrophy of paraspinal muscles.

    Science.gov (United States)

    Furuta, Mitsuru; Sumi-Akamaru, Hisae; Takahashi, Masanori P; Hayashi, Yukiko K; Nishino, Ichizo; Mochizuki, Hideki

    2016-09-01

    Mutations in LMNA, encoding A-type lamins, lead to diverse disorders, collectively called "laminopathies," which affect the striated muscle, cardiac muscle, adipose tissue, skin, peripheral nerve, and premature aging. We describe a patient with limb-girdle muscular dystrophy type 1B (LGMD1B) carrying a heterozygous p.Arg377His mutation in LMNA, in whom skeletal muscle symptom onset was at the age of 65 years. Her weakness started at the erector spinae muscles, which showed marked pseudo-hypertrophy even at the age of 72 years. Her first episode of syncope was at 44 years; however, aberrant cardiac conduction was not revealed until 60 years. The p.Arg377His mutation has been previously reported in several familial LMNA-associated myopathies, most of which showed muscle weakness before the 6th decade. This is the first report of pseudo-hypertrophy of paravertebral muscles in LMNA-associated myopathies. The pseudo-hypertrophy of paravertebral muscles and the elderly-onset of muscle weakness make this case unique and reportable. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Reduced nuclear translocation of serum response factor is associated with skeletal muscle atrophy in a cigarette smoke-induced mouse model of COPD

    Directory of Open Access Journals (Sweden)

    Ma R

    2017-02-01

    Full Text Available Ran Ma, Xuefang Gong, Hua Jiang, Chunyi Lin, Yuqin Chen, Xiaoming Xu, Chenting Zhang, Jian Wang, Wenju Lu, Nanshan ZhongGuangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of ChinaAbstract: Skeletal muscle atrophy and dysfunction are common complications in the chronic obstructive pulmonary disease (COPD. However, the underlying molecular mechanism remains elusive. Serum response factor (SRF is a transcription factor which is critical in myocyte differentiation and growth. In this study, we established a mouse COPD model induced by cigarette smoking (CS exposure for 24 weeks, with apparent pathophysiological changes, including increased airway resistance, enlarged alveoli, and skeletal muscle atrophy. Levels of upstream regulators of SRF, striated muscle activator of Rho signaling (STARS, and ras homolog gene family, member A (RhoA were decreased in quadriceps muscle of COPD mice. Meanwhile, the nucleic location of SRF was diminished along with its cytoplasmic accumulation. There was a downregulation of the target muscle-specific gene, Igf1. These results suggest that the CS is one of the major cause for COPD pathogenesis, which induces the COPD-associated skeletal muscle atrophy which is closely related to decreasing SRF nucleic translocation, consequently downregulating the SRF target genes involved in muscle growth and nutrition. The STARS/RhoA signaling pathway might contribute to this course by impacting SRF subcellular distribution. Keywords: SRF, chronic obstructive pulmonary disease, skeletal muscle atrophy, cigarette smoking

  15. Nebulin-like protein in the earthworm Eisenia foetida. Immunocytochemical electron microscopic study and western blot analysis of several muscle cell types.

    Science.gov (United States)

    Royuela, M; Fraile, B; Paniagua, R

    1997-07-01

    Nebulin is a giant protein (500-900 kDa), which has been reported only in the skeletal muscle (not in cardiac muscle) of vertebrates. The possible presence and distribution of nebulin-like proteins in obliquely striated muscles (body wall and inner muscular layer of the pseudoheart) and smooth muscle (outer muscular layer of the pseudoheart) from the earthworm Eisenia foetida have been examined by means of Western blotting analysis and immunoelectron microscopy, using antibodies against mouse nebulin. The results were compared with those obtained in skeletal, cardiac and smooth muscles of the mouse. In the mouse, immunoreaction to nebulin was observed only in the skeletal muscle and extended along the length of the thin filament. In the earthworm, immunoreaction to a nebulin-like protein was found in the muscle of the body wall and the inner muscular layer of the pseudoheart, but not in the outer muscular layer of the pseudoheart. By electron microscopy, immunolabeling to this protein was observed along the whole length of the thin filament. Western blotting analysis of this nebulin-like protein showed a single band at an estimated molecular mass between 350 and 450 kDa that is slightly lower than that of mouse skeletal muscle nebulin.

  16. A comparative study of aging of the elastic fiber system of the diaphragm and the rectus abdominis muscles in rats

    Directory of Open Access Journals (Sweden)

    Rodrigues C.J.

    2000-01-01

    Full Text Available In the present study the age-related changes of the striated muscle elastic fiber system were investigated in the diaphragm and rectus abdominis muscles of 1-, 4-, 8- and 18-month-old rats. The activation patterns of these muscles differ in that the diaphragm is regularly mobilized tens of times every minute during the entire life of the animal whereas the rectus abdominis, although mobilized in respiration, is much less and more irregularly activated. The elastic fibers were stained by the Verhoeff technique for mature elastic fibers. Weigert stain was used to stain mature and elaunin elastic fibers, and Weigert-oxone to stain mature, elaunin and oxytalan elastic fibers. The density of mature and elaunin elastic fibers showed a progressive increase with age, whereas the amount of oxytalan elastic fibers decreased in both diaphragm and rectus abdominis muscles and their muscular fascias. These age-related quantitative and structural changes of the elastic fiber system may reduce the viscoelastic properties of the diaphragm and rectus abdominis muscles, which may compromise the transmission of tensile muscle strength to the tendons and may affect maximum total strength.

  17. Flight capacity of Bactrocera dorsalis (Diptera: Tephritidae) adult females based on flight mill studies and flight muscle ultrastructure.

    Science.gov (United States)

    Chen, Min; Chen, Peng; Ye, Hui; Yuan, Ruiling; Wang, Xiaowei; Xu, Jin

    2015-01-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is considered a major economic threat in many regions worldwide. To better comprehend flight capacity of B. dorsalis and its physiological basis, a computer-monitored flight mill was used to study flight capacity of B. dorsalis adult females of various ages, and the changes of its flight muscle ultrastructures were studied by transmission electron microscopy. The flight capacity (both speed and distance) changed significantly with age of B. dorsalis female adults, peaking at about 15 d; the myofibril diameter of the flight muscle of test insects at 15-d old was the longest, up to 1.56 µm, the sarcomere length at 15-d old was the shortest, averaging at 1.37 µm, volume content of mitochondria of flight muscle at 15-d old reached the peak, it was 32.64%. This study provides the important scientific data for better revealing long-distance movement mechanism of B. dorsalis. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  18. Muscle channelopathies.

    Science.gov (United States)

    Statland, Jeffrey; Phillips, Lauren; Trivedi, Jaya R

    2014-08-01

    Skeletal muscle channelopathies are rare heterogeneous diseases with marked genotypic and phenotypic variability. Despite advances in understanding of the molecular pathology of these disorders, the diverse phenotypic manifestations remain a challenge in diagnosis and therapeutics. These disorders can cause lifetime disability and affect quality of life. There is no treatment of these disorders approved by the US Food and Drug Administration at this time. Recognition and treatment of symptoms might reduce morbidity and improve quality of life. This article summarizes the clinical manifestations, diagnostic studies, pathophysiology, and treatment options in nondystrophic myotonia, congenital myasthenic syndrome, and periodic paralyses. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Troponin T nuclear localization and its role in aging skeletal muscle.

    Science.gov (United States)

    Zhang, Tan; Birbrair, Alexander; Wang, Zhong-Min; Taylor, Jackson; Messi, María Laura; Delbono, Osvaldo

    2013-04-01

    Troponin T (TnT) is known to mediate the interaction between Tn complex and tropomyosin (Tm), which is essential for calcium-activated striated muscle contraction. This regulatory function takes place in the myoplasm, where TnT binds Tm. However, recent findings of troponin I and Tm nuclear translocation in Drosophila and mammalian cells imply other roles for the Tn-Tm complex. We hypothesized that TnT plays a nonclassical role through nuclear translocation. Immunoblotting with different antibodies targeting the NH2- or COOH-terminal region uncovered a pool of fast skeletal muscle TnT3 localized in the nuclear fraction of mouse skeletal muscle as either an intact or fragmented protein. Construction of TnT3-DsRed fusion proteins led to the further observation that TnT3 fragments are closely related to nucleolus and RNA polymerase activity, suggesting a role for TnT3 in regulating transcription. Functionally, overexpression of TnT3 fragments produced significant defects in nuclear shape and caused high levels of apoptosis. Interestingly, nuclear TnT3 and its fragments were highly regulated by aging, thus creating a possible link between the deleterious effects of TnT3 and sarcopenia. We propose that changes in nuclear TnT3 and its fragments cause the number of myonuclei to decrease with age, contributing to muscle damage and wasting.

  20. MyoScreen, a High-Throughput Phenotypic Screening Platform Enabling Muscle Drug Discovery.

    Science.gov (United States)

    Young, Joanne; Margaron, Yoran; Fernandes, Mathieu; Duchemin-Pelletier, Eve; Michaud, Joris; Flaender, Mélanie; Lorintiu, Oana; Degot, Sébastien; Poydenot, Pauline

    2018-03-01

    Despite the need for more effective drug treatments to address muscle atrophy and disease, physiologically accurate in vitro screening models and higher information content preclinical assays that aid in the discovery and development of novel therapies are lacking. To this end, MyoScreen was developed: a robust and versatile high-throughput high-content screening (HT/HCS) platform that integrates a physiologically and pharmacologically relevant micropatterned human primary skeletal muscle model with a panel of pertinent phenotypic and functional assays. MyoScreen myotubes form aligned, striated myofibers, and they show nerve-independent accumulation of acetylcholine receptors (AChRs), excitation-contraction coupling (ECC) properties characteristic of adult skeletal muscle and contraction in response to chemical stimulation. Reproducibility and sensitivity of the fully automated MyoScreen platform are highlighted in assays that quantitatively measure myogenesis, hypertrophy and atrophy, AChR clusterization, and intracellular calcium release dynamics, as well as integrating contractility data. A primary screen of 2560 compounds to identify stimulators of myofiber regeneration and repair, followed by further biological characterization of two hits, validates MyoScreen for the discovery and testing of novel therapeutics. MyoScreen is an improvement of current in vitro muscle models, enabling a more predictive screening strategy for preclinical selection of the most efficacious new chemical entities earlier in the discovery pipeline process.

  1. Alterations in Muscle Mass and Contractile Phenotype in Response to Unloading Models: Role of Transcriptional/Pretranslational Mechanisms

    Directory of Open Access Journals (Sweden)

    Kenneth M Baldwin

    2013-10-01

    Full Text Available Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a muscle unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s. Hence, this review will examine findings from three different animal models of unloading: 1 space flight (SF, i.e., microgravity; 2 hindlimb suspension (HS, a procedure that chronically eliminates weight bearing of the lower limbs; and 3 spinal cord isolation (SI, a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: 1 all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; 2 transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and 3 signaling pathways impacting these alterations appear to be similar in each of the models

  2. Structural and molecular characterization of Kudoa quraishii n. sp. from the trunk muscle of the Indian mackerel Rastrelliger kanagurta (Perciforme, Scombridae) in Saudi Arabia coasts.

    Science.gov (United States)

    Mansour, Lamjed; Harrath, Abdel Halim; Abd-Elkader, Omar H; Alwasel, Saleh; Abdel-Baki, Abdel-Azeem S; Al Omar, Suliman Y

    2014-04-01

    A new Myxozoa, Kudoa quraishii n. sp., is reported in the striated muscle of the Indian mackerel Rastrelliger kanagurta from the Red Sea and the Arabian Gulf in Saudi Arabia. Mean prevalence of infection is about 20% and varies between localities. The parasite develops whitish and oval or rounded pseudocysts of 0.2-3 mm in the striated muscles of the body. Pseudocysts are filled with mature spores. Myxospores are quadrate in shape in apical view with rounded edges and ovoid in side view. Each spore is formed by four equal shell valves and four symmetrical polar capsules. Polar capsules are pyriform in apical view and drop-like in side view. Myxospore measurements in micrometers are 6.14 (5.9-6.34) in width, 5.48 (5.3-5.71) in thickness, and 4.27 (4.1-4.42) in length. Polar capsule measurements in apical view in micrometers are 2.08 (1.88-2.28) and 1.31 (1.10-1.52) length by width. Molecular analysis based on SSU rDNA gene shows closest association with K. amamiensis and K. kenti with respectively 98 and 97.2% of similarities.

  3. Geometrical Conditions Indispensable for Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Ludmila Skubiszak

    2011-03-01

    Full Text Available Computer simulation has uncovered the geometrical conditions under which the vertebrate striated muscle sarcomere can contract. First, all thick filaments should have identical structure, namely: three myosin cross-bridges, building a crown, should be aligned at angles of 0°, 120°, 180°, and the successive crowns and the two filament halves should be turned around 120°. Second, all thick filaments should act simultaneously. Third, coordination in action of the myosin cross-bridges should exist, namely: the three cross-bridges of a crown should act simultaneously and the cross-bridge crowns axially 43 and 14.333 nm apart should act, respectively, simultaneously and with a phase shift. Fifth, six thin filaments surrounding the thick filament should be turned around 180° to each other in each sarcomere half. Sixth, thin filaments should be oppositely oriented in relation to the sarcomere middle. Finally, the structure of each of the thin filaments should change in consequence of strong interaction with myosin heads, namely: the axial distance and the angular alignment between neighboring actin monomers should be, respectively, 2.867 nm and 168° instead of 2.75 nm and 166.15°. These conditions ensure the stereo-specific interaction between actin and myosin and good agreement with the data gathered by electron microscopy and X-ray diffraction methods. The results suggest that the force is generated not only by the myosin cross-bridges but also by the thin filaments; the former acts by cyclical unwrapping and wrapping the thick filament backbone, and the latter byelongation.

  4. Tonic fibres in axial muscle of cyprinid fish larvae: their definition, possible origins and functional importance.

    Science.gov (United States)

    Stoiber, W; Haslett, J R; Steinbacher, P; Freimüller, M; Sänger, A M

    2002-05-01

    Teleost fish are known to develop small populations of muscle fibres that are assumed to be tonic in nature although their contractile properties and many other characteristics remain unknown. Here we attempt to resolve some of the ambiguity and confusions surrounding the definition and functional role of tonic fibres in teleosts and provide new information on their ontogeny. We investigate the differentiation of tonic muscle fibres in three species of cyprinid fish using electron microscopy, histochemistry, immunohistochemistry and in situ hybridization. The fine structure of the fibres defined as tonic in the larvae used in this study complies with patterns known from studies in teleost adults. This allows formal definition of tonic fibres in cyprinid larvae. The tonic fibres may be recognized by a variety of features: (1) by their characteristic position along the medial confines of the red muscle insertion at the horizontal septum, (2) their fine structure, including solid clusters of irregularly cleaved myofibrils, thick and wavy Z-lines, and T-tubules at the A-band/I-band transitions, (3) their histochemical features, specifically weak but obvious staining for mATPase after alkaline preincubation, and lack of SDH activity in the more advanced larval stages, (4) their unique immunological properties, being the only fibre type in the myotome that reacts with a serum against chicken tonic myosin (anti- T2). Expression of tonic characters usually begins within a few fibres in the dorsal domain of the superficial red muscle insertion at the horizontal septum and hence involves a high degree of dorso-ventral polarity. The present evidence indicates that tonic fibres arise from separate myogenic stem cells rather than by transdifferentiation from existing red fibres. First appearance of tonic fibres during ontogeny correlates closely with the onset of free swimming and exogeneous feeding. We use this fact to argue that tonic fibres are probably a prerequisite for

  5. Effects of Vitamin D Treatment on Skeletal Muscle Histology and Ultrastructural Changes in a Rodent Model

    Directory of Open Access Journals (Sweden)

    Sobhy M. Yakout

    2012-07-01

    Full Text Available Vitamin D is well known for its role in maintaining calcium and phosphorus homeostasis and in promoting bone mineralization; however, more of its pleiotropic effects have been described recently. The aim of the present investigation was to study the effect of vitamin D treatment on skeletal muscles changes under different dietary conditions using an animal model. Four groups of C57BL/6J mice (n = 11 each were maintained on either low fat diet (LFD or high fat diet ‎‎(HFD with and without 1α,25–dihydroxyvitamin D3 (calcitriol for 16 weeks. Animal weigh was recorded at baseline and then regular intervals, and at the end of the study, skeletal muscle tissues were harvested for the evaluation of the histopathological and ultrastructural changes. When control C57BL/6J mice were fed high-fat diet for 12 weeks, body weight gain was significantly increased compared with mice fed a LFD. (30.2% vs. 8.4%, p < 0.01. There was a significant gradual decrease in the weight of HFD fed mice that were treated with vitamin D as compared with a steady increase in the weights of controls (6.8% vs. 28.7%, p < 0.01. While the LFD group showed some ultrastructural changes, HDF fed on mice showed great muscle structural abnormalities. The whole sarcosome along with its membrane and cristae were severely damaged with scattered myocytes in HFD group. Furthermore, the mitochondria appeared weak and were on the verge of degenerations. The bands were diminished with loss of connections among myofibrils. These changes were attenuated in the HFD group treated with vitamin D with tissues have regained their normal structural appearance. The current findings indicate an important effect of vitamin D on skeletal muscle histology under HFD conditions.

  6. Muscle pathology in Vici syndrome-A case study with a novel mutation in EPG5 and a summary of the literature.

    Science.gov (United States)

    Hedberg-Oldfors, Carola; Darin, Niklas; Oldfors, Anders

    2017-08-01

    Vici syndrome is a disorder characterized by myopathy, cardiomyopathy, agenesis of the corpus callosum, immunodeficiency, cataracts, hypopigmentation, microcephaly, gross developmental delay and failure to thrive. It is caused by mutations in EPG5, which encodes a protein involved in the autophagy pathway. Although myopathy is part of the syndrome, few publications have described the muscle pathology. We present a detailed morphological analysis in a boy with Vici syndrome due to a novel homozygous one-base deletion in EPG5 (c.784delA), and we review the histopathological findings from previous reports. Muscle biopsy was performed at three months of age and demonstrated small vacuolated fibers, frequently with internal nuclei, and expressing developmental and fast myosin isoforms. There was an increase in acid phosphatase activity in the small fibers, which also showed LAMP-2 upregulation, glycogen accumulation and contained numerous p62-positive inclusions and some lipid droplets. Electron microscopy demonstrated hypoplastic fibers with massive glycogen accumulation and extensive disorganization of the myofibrils. This study expands the muscle pathological features of Vici syndrome and demonstrates a pattern of vacuolar myopathy with glycogen storage and immature, hypoplastic and atrophic muscle fibers. Increased lysosomes and accumulation of p62 are in line with a disturbance of the autophagic pathway as an essential part of the pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Transgenic overexpression of LARGE induces α-dystroglycan hyperglycosylation in skeletal and cardiac muscle.

    Directory of Open Access Journals (Sweden)

    Martin Brockington

    2010-12-01

    Full Text Available LARGE is one of seven putative or demonstrated glycosyltransferase enzymes defective in a common group of muscular dystrophies with reduced glycosylation of α-dystroglycan. Overexpression of LARGE induces hyperglycosylation of α-dystroglycan in both wild type and in cells from dystroglycanopathy patients, irrespective of their primary gene defect, restoring functional glycosylation. Viral delivery of LARGE to skeletal muscle in animal models of dystroglycanopathy has identical effects in vivo, suggesting that the restoration of functional glycosylation could have therapeutic applications in these disorders. Pharmacological strategies to upregulate Large expression are also being explored.In order to asses the safety and efficacy of long term LARGE over-expression in vivo, we have generated four mouse lines expressing a human LARGE transgene. On observation, LARGE transgenic mice were indistinguishable from the wild type littermates. Tissue analysis from young mice of all four lines showed a variable pattern of transgene expression: highest in skeletal and cardiac muscles, and lower in brain, kidney and liver. Transgene expression in striated muscles correlated with α-dystroglycan hyperglycosylation, as determined by immunoreactivity to antibody IIH6 and increased laminin binding on an overlay assay. Other components of the dystroglycan complex and extracellular matrix ligands were normally expressed, and general muscle histology was indistinguishable from wild type controls. Further detailed muscle physiological analysis demonstrated a loss of force in response to eccentric exercise in the older, but not in the younger mice, suggesting this deficit developed over time. However this remained a subclinical feature as no pathology was observed in older mice in any muscles including the diaphragm, which is sensitive to mechanical load-induced damage.This work shows that potential therapies in the dystroglycanopathies based on LARGE upregulation

  8. A fetal human heart cardiac-inducing RNA (CIR) promotes the differentiation of stem cells into cardiomyocytes.

    Science.gov (United States)

    Kochegarov, Andrei; Moses-Arms, Ashley; Lemanski, Larry F

    2015-08-01

    A specific human fetal heart RNA has been discovered, which has the ability to induce myocardial cell formation from mouse embryonic and human-induced pluripotent stem cells in culture. In this study, commercially obtained RNA from human fetal heart was cloned, sequenced, and synthesized using standard laboratory approaches. Molecular analyses of the specific fetal cardiac-inducing RNA (CIR), revealed that it is a fragment of N-sulfoglucosaminesulfohydrolase and the caspase recruitment domain family member 14 precursor. Stem cells transfected with CIRs often form into spindle-shaped cells characteristic of cardiomyocytes,and express the cardiac-specific contractile protein marker, troponin-T, in addition to tropomyosin and α-actinin as detected by immunohistochemical staining. Expression of these contractile proteins showed organization into sarcomeric myofibrils characteristic of striated cardiac muscle cells. Computer analyses of the RNA secondary structures of the active CIR show significant similarities to a RNA from salamander or myofibril-inducing RNA (MIR), which also promotes non-muscle cells to differentiate into cardiac muscle. Thus, these two RNAs, salamander MIR and the newly discovered human-cloned CIR reported here, appear to have evolutionarily conserved secondary structures suggesting that both play major roles in vertebrate heart development and, particularly, in the differentiation of cardiomyocytes from non-muscle cells during development.

  9. Physiological roles of taurine in heart and muscle

    Science.gov (United States)

    2010-01-01

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an

  10. Composição de fibras musculares esqueléticas de eqüinos jovens da raça Brasileiro de Hipismo Composition of skeletal muscle fibers of young Brasileiro de Hipismo horse breed

    Directory of Open Access Journals (Sweden)

    F.H.F. D’Angelis

    2006-08-01

    Full Text Available The aim of this study was to typify the skeletal striated fibers of the gluteus medius muscle of young Brasileiro de Hipismo (BH horses by means of histochemical analysis with m-ATPase and NADH-TR according to the sex and the biopsy depth. It was observed that the frequency (F;% and the relative cross sectional area (RCSA;% of the fibers type IIX were greater than the fibers type IIA, which F and RCSA were greater than the fibers type I. The comparison between sex and muscles depht, showed no significant difference in F and RCSA in the three types of fibers. The results of morphometry showed that the gluteus medius muscle has greater glycolitic metabolism and anaerobic capacity because of the presence of large proportion of type IIX fibers. This may be justified by the genetic influence of Thoroughbred in the formation of Brasileiro de Hipismo breed.

  11. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions

    Science.gov (United States)

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs; de Paoli, Frank Vincenzo; Vissing, Kristian

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber’s oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may

  12. Imaging of muscle injuries

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, G.Y. [Iowa Univ., Iowa City, IA (United States). Dept. of Radiology; Brandser, E.A. [Iowa Univ., Iowa City, IA (United States). Dept. of Radiology; Kathol, M.H. [Iowa Univ., Iowa City, IA (United States). Dept. of Radiology; Tearse, D.S. [Iowa Univ., Iowa City, IA (United States). Dept. of Orthopaedic Surgery; Callaghan, J.J. [Iowa Univ., Iowa City, IA (United States). Dept. of Orthopaedic Surgery

    1996-01-01

    Although skeletal muscle is the single largest tissue in the body, there is little written about it in the radiologic literature. Indirect muscle injuries, also called strains or tears, are common in athletics, and knowing the morphology and physiology of the muscle-tendon unit is the key to the understanding of these injuries. Eccentric muscle activation produces more tension within the muscle tan when it is activated concentrically, making it more susceptible to tearing. Injuries involving the muscle belly tend to occur near the myotendinous junction. In adolescents, the weakest link in the muscle-tendon-bone complex is the apophysis. Traditionally, plain radiography has been the main diagnostic modality for evaluation of these injuries; however, with the advent of MRI it has become much easier to diagnose injuries primarily affecting the soft tissues. This article reviews the anatomy and physiology of the muscle-tendon unit as they relate to indirect muscle injuries. Examples of common muscle injuries are illustrated. (orig.)

  13. Engineering Skeletal Muscle Repair

    OpenAIRE

    Juhas, Mark; Bursac, Nenad

    2013-01-01

    Healthy skeletal muscle has a remarkable capacity for regeneration. Even at a mature age, muscle tissue can undergo a robust rebuilding process that involves the formation of new muscle cells and extracellular matrix and the re-establishment of vascular and neural networks. Understanding and reverse-engineering components of this process is essential for our ability to restore loss of muscle mass and function in cases where the natural ability of muscle for self-repair is exhausted or impaire...

  14. Novel interactions of ankyrins-G at the costameres: The muscle-specific Obscurin/Titin-Binding-related Domain (OTBD) binds plectin and filamin C

    Energy Technology Data Exchange (ETDEWEB)

    Maiweilidan, Yimingjiang; Klauza, Izabela; Kordeli, Ekaterini, E-mail: ekaterini.kordeli@inserm.fr

    2011-04-01

    Ankyrins, the adapters of the spectrin skeleton, are involved in local accumulation and stabilization of integral proteins to the appropriate membrane domains. In striated muscle, tissue-dependent alternative splicing generates unique Ank3 gene products (ankyrins-G); they share the Obscurin/Titin-Binding-related Domain (OTBD), a muscle-specific insert of the C-terminal domain which is highly conserved among ankyrin genes, and binds obscurin and titin to Ank1 gene products. We previously proposed that OTBD sequences constitute a novel domain of protein-protein interactions which confers ankyrins with specific cellular functions in muscle. Here we searched for muscle proteins binding to ankyrin-G OTBD by yeast two hybrid assay, and we found plectin and filamin C, two organizing elements of the cytoskeleton with essential roles in myogenesis, muscle cell cytoarchitecture, and muscle disease. The three proteins coimmunoprecipitate from skeletal muscle extracts and colocalize at costameres in adult muscle fibers. During in vitro myogenesis, muscle ankyrins-G are first expressed in postmitotic myocytes undergoing fusion to myotubes. In western blots of subcellular fractions from C2C12 cells, the majority of muscle ankyrins-G appear associated with membrane compartments. Occasional but not extensive co-localization at nascent costameres suggested that ankyrin-G interactions with plectin and filamin C are not involved in costamere assembly; they would rather reinforce stability and/or modulate molecular interactions in sarcolemma microdomains by establishing novel links between muscle-specific ankyrins-G and the two costameric dystrophin-associated glycoprotein and integrin-based protein complexes. These results report the first protein-protein interactions involving the ankyrin-G OTBD domain and support the hypothesis that OTBD sequences confer ankyrins with a gain of function in vertebrates, bringing further consolidation and resilience of the linkage between sarcomeres

  15. Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence

    Science.gov (United States)

    Mettikolla, Prasad; Calander, Nils; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Borejdo, Julian

    2010-01-01

    Familial hypertrophic cardiomyopathy (FHC) is a serious heart disease that often leads to a sudden cardiac death of young athletes. It is believed that the alteration of the kinetics of interaction between actin and myosin causes FHC by making the heart to pump blood inefficiently. We set out to check this hypothesis ex vivo. During contraction of heart muscle, a myosin cross-bridge imparts periodic force impulses to actin. The impulses are analyzed by fluorescence correlation spectroscopy (FCS) of fluorescently labeled actin. To minimize observation volume and background fluorescence, we carry out FCS measurements in surface plasmon coupled emission mode in a reverse Kretschmann configuration. Fluorescence is a result of near-field coupling of fluorophores excited in the vicinity of the metal-coated surface of a coverslip with the surface plasmons propagating in the metal. Surface plasmons decouple on opposite sides of the metal film and emit in a directional manner as far-field p-polarized radiation. We show that the rate of changes of orientation is significantly faster in contracting cardiac myofibrils of transgenic mice than wild type. These results are consistent with the fact that mutated heart muscle myosin translates actin faster in in vitro motility assays.

  16. Automated multiscale morphometry of muscle disease from second harmonic generation microscopy using tensor-based image processing.

    Science.gov (United States)

    Garbe, Christoph S; Buttgereit, Andreas; Schürmann, Sebastian; Friedrich, Oliver

    2012-01-01

    Practically, all chronic diseases are characterized by tissue remodeling that alters organ and cellular function through changes to normal organ architecture. Some morphometric alterations become irreversible and account for disease progression even on cellular levels. Early diagnostics to categorize tissue alterations, as well as monitoring progression or remission of disturbed cytoarchitecture upon treatment in the same individual, are a new emerging field. They strongly challenge spatial resolution and require advanced imaging techniques and strategies for detecting morphological changes. We use a combined second harmonic generation (SHG) microscopy and automated image processing approach to quantify morphology in an animal model of inherited Duchenne muscular dystrophy (mdx mouse) with age. Multiphoton XYZ image stacks from tissue slices reveal vast morphological deviation in muscles from old mdx mice at different scales of cytoskeleton architecture: cell calibers are irregular, myofibrils within cells are twisted, and sarcomere lattice disruptions (detected as "verniers") are larger in number compared to samples from healthy mice. In young mdx mice, such alterations are only minor. The boundary-tensor approach, adapted and optimized for SHG data, is a suitable approach to allow quick quantitative morphometry in whole tissue slices. The overall detection performance of the automated algorithm compares very well with manual "by eye" detection, the latter being time consuming and prone to subjective errors. Our algorithm outperfoms manual detection by time with similar reliability. This approach will be an important prerequisite for the implementation of a clinical image databases to diagnose and monitor specific morphological alterations in chronic (muscle) diseases. © 2011 IEEE

  17. Essential Amino Acids and Exercise Tolerance in Elderly Muscle-Depleted Subjects with Chronic Diseases: A Rehabilitation without Rehabilitation?

    Directory of Open Access Journals (Sweden)

    Roberto Aquilani

    2014-01-01

    Full Text Available Exercise intolerance remains problematic in subjects with chronic heart failure (CHF and/or chronic obstructive pulmonary disease (COPD. Recent studies show that supplemented essential amino acids (EAAs may exert beneficial effects on CHF/COPD physical capacity. The results from 3 investigations (2 conducted on CHF and 1 on COPD subjects served as the basis for this paper. The 3 studies consistently showed that elderly CHF and COPD improved exercise intolerance after 1–3 months of EAA supplementation (8 g/d. In CHF exercise capacity increased 18.7% to 23% (watts; bicycle test, and 12% to 22% (meters in 6 min walking test. Moreover, patients reduced their resting plasma lactate levels (by 25% and improved tissue insulin sensitivity by 16% (HOMA index. COPD subjects enjoyed similar benefits as CHF ones. They increased physical autonomy by 78.6% steps/day and decreased resting plasma lactate concentrations by 23%. EAA mechanisms explaining improved exercise intolerance could be increases in muscle aerobic metabolism, mass and function, and improvement of tissue insulin sensitivity (the latter only for the CHF population. These mechanisms could be accounted for by EAA’s intrinsic physiological activity which increases myofibrils and mitochondria genesis in skeletal muscle and myocardium and glucose control. Supplemented EAAs can improve the physical autonomy of subjects with CHF/COPD.

  18. Titin force enhancement following active stretch of skinned skeletal muscle fibres.

    Science.gov (United States)

    Powers, Krysta; Joumaa, Venus; Jinha, Azim; Moo, Eng Kuan; Smith, Ian Curtis; Nishikawa, Kiisa; Herzog, Walter

    2017-09-01

    In actively stretched skeletal muscle sarcomeres, titin-based force is enhanced, increasing the stiffness of active sarcomeres. Titin force enhancement in sarcomeres is vastly reduced in mdm , a genetic mutation with a deletion in titin. Whether loss of titin force enhancement is associated with compensatory mechanisms at higher structural levels of organization, such as single fibres or entire muscles, is unclear. The aim of this study was to determine whether mechanical deficiencies in titin force enhancement are also observed at the fibre level, and whether mechanisms compensate for the loss of titin force enhancement. Single skinned fibres from control and mutant mice were stretched actively and passively beyond filament overlap to observe titin-based force. Mutant fibres generated lower contractile stress (force divided by cross-sectional area) than control fibres. Titin force enhancement was observed in control fibres stretched beyond filament overlap, but was overshadowed in mutant fibres by an abundance of collagen and high variability in mechanics. However, titin force enhancement could be measured in all control fibres and most mutant fibres following short stretches, accounting for ∼25% of the total stress following active stretch. Our results show that the partial loss of titin force enhancement in myofibrils is not preserved in all mutant fibres and this mutation likely affects fibres differentially within a muscle. An increase in collagen helps to reestablish total force at long sarcomere lengths with the loss in titin force enhancement in some mutant fibres, increasing the overall strength of mutant fibres. © 2017. Published by The Company of Biologists Ltd.

  19. Interplay between ROS and Antioxidants during Ischemia-Reperfusion Injuries in Cardiac and Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Tingyang Zhou

    2018-01-01

    Full Text Available Ischemia reperfusion (IR, present in myocardial infarction or extremity injuries, is a major clinical issue and leads to substantial tissue damage. Molecular mechanisms underlying IR injury in striated muscles involve the production of reactive oxygen species (ROS. Excessive ROS accumulation results in cellular oxidative stress, mitochondrial dysfunction, and initiation of cell death by activation of the mitochondrial permeability transition pore. Elevated ROS levels can also decrease myofibrillar Ca2+ sensitivity, thereby compromising muscle contractile function. Low levels of ROS can act as signaling molecules involved in the protective pathways of ischemic preconditioning (IPC. By scavenging ROS, antioxidant therapies aim to prevent IR injuries with positive treatment outcomes. Novel therapies such as postconditioning and pharmacological interventions that target IPC pathways hold great potential in attenuating IR injuries. Factors such as aging and diabetes could have a significant impact on the severity of IR injuries. The current paper aims to provide a comprehensive review on the multifaceted roles of ROS in IR injuries, with a focus on cardiac and skeletal muscle, as well as recent advancement in ROS-related therapies.

  20. Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae.

    Science.gov (United States)

    Taniguchi, Yuka; Kurth, Thomas; Medeiros, Daniel Meulemans; Tazaki, Akira; Ramm, Robert; Epperlein, Hans-Henning

    2015-06-18

    Mesenchyme is an embryonic precursor tissue that generates a range of structures in vertebrates including cartilage, bone, muscle, kidney, and the erythropoietic system. Mesenchyme originates from both mesoderm and the neural crest, an ectodermal cell population, via an epithelial to mesenchymal transition (EMT). Because ectodermal and mesodermal mesenchyme can form in close proximity and give rise to similar derivatives, the embryonic origin of many mesenchyme-derived tissues is still unclear. Recent work using genetic lineage tracing methods have upended classical ideas about the contributions of mesodermal mesenchyme and neural crest to particular structures. Using similar strategies in the Mexican axolotl (Ambystoma mexicanum), and the South African clawed toad (Xenopus laevis), we traced the origins of fin mesenchyme and tail muscle in amphibians. Here we present evidence that fin mesenchyme and striated tail muscle in both animals are derived solely from mesoderm and not from neural crest. In the context of recent work in zebrafish, our experiments suggest that trunk neural crest cells in the last common ancestor of tetrapods and ray-finned fish lacked the ability to form ectomesenchyme and its derivatives.

  1. Clonogenic, myogenic progenitors expressing MCAM/CD146 are incorporated as adventitial reticular cells in the microvascular compartment of human post-natal skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Tiziana Persichini

    Full Text Available Recent observation identifies subendothelial (mural cells expressing MCAM, a specific system of clonogenic, self-renewing, osteoprogenitors (a.k.a, "mesenchymal stem cells" in the microvascular compartment of post-natal human bone marrow (BM. In this study, we used MCAM/CD146, as a marker to localize, isolate and assay subendothelial clonogenic cells from the microvasculature of postnatal human skeletal muscle. We show here that these cells share with their BM counterpart, anatomic position (subendothelial/adventitial and ex vivo clonogenicity (CFU-Fs. When assayed under the stringent conditions, these cells display a high spontaneous myogenic potential (independent of co-culture with myoblasts or of in vivo fusion with local myoblasts, which is otherwise only attained in cultures of satellite cells. These muscle-derived mural cells activated a myogenic program in culture. Cultured CD146+ cells expressed the myogenic factors (Pax7, Pax3 and Myf5, NCAM/CD56, desmin as well as proteins characteristic of more advanced myogenic differentiation, such as myosin heavy chain. In vivo, these cells spontaneously generate myotubes and myofibrils. These data identify the anatomy and phenotype of a novel class of committed myogenic progenitor in human post-natal skeletal muscle of subendothelial cells associated with the abluminal surface of microvascular compartment distinct from satellite cells.

  2. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors

    DEFF Research Database (Denmark)

    Isa, Adiba; Nehlin, Jan; Sabir, Hardee Jawad

    2010-01-01

    HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C...... at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either...... undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC) using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced...

  3. Proteomic investigation of embryonic rat heart-derived H9c2 cell line sheds new light on the molecular phenotype of the popular cell model.

    Science.gov (United States)

    Lenčo, Juraj; Lenčová-Popelová, Olga; Link, Marek; Jirkovská, Anna; Tambor, Vojtěch; Potůčková, Eliška; Stulík, Jiří; Šimůnek, Tomáš; Štěrba, Martin

    2015-12-10

    Due to their cardiac origin, H9c2 cells rank among the most popular cell lines in current cardiovascular research, yet molecular phenotype remains elusive. Hence, in this study we used proteomic approach to describe molecular phenotype of H9c2 cells in their undifferentiated (i.e., most frequently used) state, and its functional response to cardiotoxic drug doxorubicin. Of 1671 proteins identified by iTRAQ IEF/LC-MSMS analysis, only 12 proteins were characteristic for striated muscle cells and none was cardiac phenotype-specific. Targeted LC-SRM and western blot analyses confirmed that undifferentiated H9c2 cells are phenotypically considerably different to both primary neonatal cardiomyocytes and adult myocardium. These cells lack proteins essential for formation of striated muscle myofibrils or they express only minor amounts thereof. They also fail to express many proteins important for metabolism of muscle cells. The challenge with clinically relevant concentrations of doxorubicin did not induce a proteomic signature that has been previously noted in primary cardiomyocytes or adult hearts. Instead, several alterations previously described in other cells of mesodermal origin, such as fibroblasts, were observed (e.g., severe down-regulation of collagen synthesis pathway). In conclusion, the molecular phenotype of H9c2 cells resembles very immature myogenic cells with skeletal muscle commitment upon differentiation and thus, translatability of findings obtained in these cells deserves caution. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Sarcomere lattice geometry influences cooperative myosin binding in muscle.

    Directory of Open Access Journals (Sweden)

    Bertrand C W Tanner

    2007-07-01

    Full Text Available In muscle, force emerges from myosin binding with actin (forming a cross-bridge. This actomyosin binding depends upon myofilament geometry, kinetics of thin-filament Ca(2+ activation, and kinetics of cross-bridge cycling. Binding occurs within a compliant network of protein filaments where there is mechanical coupling between myosins along the thick-filament backbone and between actin monomers along the thin filament. Such mechanical coupling precludes using ordinary differential equation models when examining the effects of lattice geometry, kinetics, or compliance on force production. This study uses two stochastically driven, spatially explicit models to predict levels of cross-bridge binding, force, thin-filament Ca(2+ activation, and ATP utilization. One model incorporates the 2-to-1 ratio of thin to thick filaments of vertebrate striated muscle (multi-filament model, while the other comprises only one thick and one thin filament (two-filament model. Simulations comparing these models show that the multi-filament predictions of force, fractional cross-bridge binding, and cross-bridge turnover are more consistent with published experimental values. Furthermore, the values predicted by the multi-filament model are greater than those values predicted by the two-filament model. These increases are larger than the relative increase of potential inter-filament interactions in the multi-filament model versus the two-filament model. This amplification of coordinated cross-bridge binding and cycling indicates a mechanism of cooperativity that depends on sarcomere lattice geometry, specifically the ratio and arrangement of myofilaments.

  5. Healthy Muscles Matter

    Science.gov (United States)

    ... do. Exercising, getting enough rest, and eating a balanced diet will help to keep your muscles healthy for ... keep your muscles in good health. Eating a balanced diet will help manage your weight and provide a ...

  6. The length-force behavior and operating length range of squid muscle vary as a function of position in the mantle wall.

    Science.gov (United States)

    Thompson, Joseph T; Shelton, Ryan M; Kier, William M

    2014-06-15

    Hollow cylindrical muscular organs are widespread in animals and are effective in providing support for locomotion and movement, yet are subject to significant non-uniformities in circumferential muscle strain. During contraction of the mantle of squid, the circular muscle fibers along the inner (lumen) surface of the mantle experience circumferential strains 1.3 to 1.6 times greater than fibers along the outer surface of the mantle. This transmural gradient of strain may require the circular muscle fibers near the inner and outer surfaces of the mantle to operate in different regions of the length-tension curve during a given mantle contraction cycle. We tested the hypothesis that circular muscle contractile properties vary transmurally in the mantle of the Atlantic longfin squid, Doryteuthis pealeii. We found that both the length-twitch force and length-tetanic force relationships of the obliquely striated, central mitochondria-poor (CMP) circular muscle fibers varied with radial position in the mantle wall. CMP circular fibers near the inner surface of the mantle produced higher force relative to maximum isometric tetanic force, P0, at all points along the ascending limb of the length-tension curve than CMP circular fibers near the outer surface of the mantle. The mean ± s.d. maximum isometric tetanic stresses at L₀ (the preparation length that produced the maximum isometric tetanic force) of 212 ± 105 and 290 ± 166 kN m(-2) for the fibers from the outer and inner surfaces of the mantle, respectively, did not differ significantly (P=0.29). The mean twitch:tetanus ratios for the outer and inner preparations, 0.60 ± 0.085 and 0.58 ± 0.10, respectively, did not differ significantly (P=0.67). The circular fibers did not exhibit length-dependent changes in contraction kinetics when given a twitch stimulus. As the stimulation frequency increased, L₀ was approximately 1.06 times longer than LTW, the mean preparation length that yielded maximum isometric twitch

  7. Disassociation of insulin action and Akt/FOXO signaling in skeletal muscle of older Akt-deficient mice

    Science.gov (United States)

    Merrell, Erin; Cinquino, Nicholas; Gaugler, Megan; Ng, Lily

    2012-01-01

    The purpose of the present study was to determine the effect of Akt gene ablation on Akt/Forkhead Box O (FOXO) signaling and atrogene expression. This was accomplished by studying wild-type (WT) and isoform-specific Akt knockout (Akt1−/− and Akt2−/−) mice. The ability of insulin to promote Akt phosphorylation on Ser473 was significantly lower in extensor digitorum longus (EDL) and soleus muscles from Akt1−/− and Akt2−/− mice compared with WT mice. Total Akt1 protein levels were significantly lower in EDL muscles of Akt2−/− mice compared with WT mice, a process that appears to be posttranscriptionally regulated as Akt1 mRNA levels were unchanged. The loss of Akt1 protein in EDL muscles of Akt2−/− mice does not appear to be due to insulin resistance because 4 mo of a high-fat diet failed to reduce Akt1 protein levels in muscles of WT mice. Although FOXO3a phosphorylation and atrogin-1 expression were unaltered in muscles of Akt1−/− and Akt2−/− mice, the expression of the atrogenes Bnip3 and gabarapl were significantly elevated in muscles of both Akt1 and Akt2 knockout mice. Finally, the expression of striated activator of Rho signaling was significantly increased in muscles of Akt2−/− mice compared with Akt1−/− and WT mice. Our results demonstrate that the ablation of Akt isoforms disassociates insulin action and Akt/FOXO signaling to atrogenes. PMID:23100026

  8. Obturator internus muscle strains

    Directory of Open Access Journals (Sweden)

    Caoimhe Byrne, MB BCh, BAO

    2017-03-01

    Full Text Available We report 2 cases of obturator internus muscle strains. The injuries occurred in young male athletes involved in kicking sports. Case 1 details an acute obturator internus muscle strain with associated adductor longus strain. Case 2 details an overuse injury of the bilateral obturator internus muscles. In each case, magnetic resonance imaging played a crucial role in accurate diagnosis.

  9. the sternalis muscle

    African Journals Online (AJOL)

    2009-08-17

    Aug 17, 2009 ... scan of the chest wall was performed to gain clarity of the mam- mographic findings (Figs 1a, 1b and 2). The CT scan demonstrated a flattened band of muscle density lying anterior to the medial margin of the pectoralis muscle. This structure was separated from the underlying pectoralis muscle by a thin ...

  10. Effect of temperature on crossbridge force changes during fatigue and recovery in intact mouse muscle fibers.

    Directory of Open Access Journals (Sweden)

    Marta Nocella

    Full Text Available Repetitive or prolonged muscle contractions induce muscular fatigue, defined as the inability of the muscle to maintain the initial tension or power output. In the present experiments, made on intact fiber bundles from FDB mouse, fatigue and recovery from fatigue were investigated at 24°C and 35°C. Force and stiffness were measured during tetani elicited every 90 s during the pre-fatigue control phase and recovery and every 1.5 s during the fatiguing phase made of 105 consecutive tetani. The results showed that force decline could be split in an initial phase followed by a later one. Loss of force during the first phase was smaller and slower at 35°C than at 24°C, whereas force decline during the later phase was greater at 35°C so that total force depression at the end of fatigue was the same at both temperatures. The initial force decline occurred without great reduction of fiber stiffness and was attributed to a decrease of the average force per attached crossbridge. Force decline during the later phase was accompanied by a proportional stiffness decrease and was attributed to a decrease of the number of attached crossbridge. Similarly to fatigue, at both 24 and 35°C, force recovery occurred in two phases: the first associated with the recovery of the average force per attached crossbridge and the second due to the recovery of the pre-fatigue attached crossbridge number. These changes, symmetrical to those occurring during fatigue, are consistent with the idea that, i initial phase is due to the direct fast inhibitory effect of [Pi]i increase during fatigue on crossbridge force; ii the second phase is due to the delayed reduction of Ca(2+ release and /or reduction of the Ca(2+ sensitivity of the myofibrils due to high [Pi]i.

  11. Lipolysis in Skeletal Muscle

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck

    of AMPK in regulation of lipid handling and lipolysis in the basal non-contracting state and during muscle contractions in skeletal muscle. To evaluate the role of AMPK, we measured protein expression and phosphorylation as well as gene expression of proteins important for regulation of lipid handling...... and lipolysis in skeletal muscle from wildtype mice and mice overexpressing a kinase dead AMPKα2 construct (AMPKα2 KD) in the basal non-contracting state and during in situ stimulated muscle contractions. We found, that IMTG levels were ~50% lower in AMPKα2 KD in the basal resting state, explained by a lower....... IMTG was in wildtype mice reduced with ~50% after muscle contractions with no effect of contractions in AMPKα2 KD mice. Concomitantly, ATGL was phosphorylated at ser406 and HSL on ser565 with muscle contractions in an AMPK dependent manner, suggesting that these sites actives lipolysis during muscle...

  12. Severe muscle atrophy due to spinal cord injury can be reversed in complete absence of peripheral nerves

    Directory of Open Access Journals (Sweden)

    Simona Boncompagni

    2012-12-01

    peripheral nerves. Experimental and clinical results have shown that electrical stimulation training by long impulses can restore muscle mass, force production and movements even after long lasting complete denervation. Measurements by CT-scans revealed a substantial increase of tight muscle cross sectional area during the first years of FES and muscle function of the lower extremities was restored in some patients sufficiently to allow for supported standing, standing, and even for a few steps to be taken. We have described the ultrastructural changes accompanying the recovery of skeletal muscle in the total absence of either sensory or motor innervation. The results showed a striking structural recovery of muscle fiber ultrastructure in all FES treated patients: the 90% (or more of the studied fibers recovery from a very profound atrophy under the influence of the electrical stimulation. Restoration of ultrastructure involves all the major apparatuses of muscle fibers, such as the one deputed to muscle activation and Ca2+ handling (ECC apparatus, to contractility (myofibrils, and to metabolic and energy generation tasks (mitochondria. This structural recovery occurs in complete absence of nerve endings, under the influence of muscle activity, and follows pattern that mimics in many aspects normal muscle differentiation as well as recovery after short-term disuse and/or denervation. The present ultra-structural studies are important because they show that, despite the apparent complete loss of specific structure, the long-term denervated fibers maintain their full differentiation program. Reversal of the damages from long-standing denervation in humans may be of significant importance also for the rehabilitation and the general health of SCI patients.

  13. A Drosophila model of dominant inclusion body myopathy type 3 shows diminished myosin kinetics that reduce muscle power and yield myofibrillar defects.

    Science.gov (United States)

    Suggs, Jennifer A; Melkani, Girish C; Glasheen, Bernadette M; Detor, Mia M; Melkani, Anju; Marsan, Nathan P; Swank, Douglas M; Bernstein, Sanford I

    2017-06-01

    Individuals with inclusion body myopathy type 3 (IBM3) display congenital joint contractures with early-onset muscle weakness that becomes more severe in adulthood. The disease arises from an autosomal dominant point mutation causing an E706K substitution in myosin heavy chain type IIa. We have previously expressed the corresponding myosin mutation (E701K) in homozygous Drosophila indirect flight muscles and recapitulated the myofibrillar degeneration and inclusion bodies observed in the human disease. We have also found that purified E701K myosin has dramatically reduced actin-sliding velocity and ATPase levels. Since IBM3 is a dominant condition, we now examine the disease state in heterozygote Drosophila in order to gain a mechanistic understanding of E701K pathogenicity. Myosin ATPase activities in heterozygotes suggest that approximately equimolar levels of myosin accumulate from each allele. In vitro actin sliding velocity rates for myosin isolated from the heterozygotes were lower than the control, but higher than for the pure mutant isoform. Although sarcomeric ultrastructure was nearly wild type in young adults, mechanical analysis of skinned indirect flight muscle fibers revealed a 59% decrease in maximum oscillatory power generation and an approximately 20% reduction in the frequency at which maximum power was produced. Rate constant analyses suggest a decrease in the rate of myosin attachment to actin, with myosin spending decreased time in the strongly bound state. These mechanical alterations result in a one-third decrease in wing beat frequency and marginal flight ability. With aging, muscle ultrastructure and function progressively declined. Aged myofibrils showed Z-line streaming, consistent with the human heterozygote phenotype. Based upon the mechanical studies, we hypothesize that the mutation decreases the probability of the power stroke occurring and/or alters the degree of movement of the myosin lever arm, resulting in decreased in vitro

  14. A Drosophila model of dominant inclusion body myopathy type 3 shows diminished myosin kinetics that reduce muscle power and yield myofibrillar defects

    Directory of Open Access Journals (Sweden)

    Jennifer A. Suggs

    2017-06-01

    Full Text Available Individuals with inclusion body myopathy type 3 (IBM3 display congenital joint contractures with early-onset muscle weakness that becomes more severe in adulthood. The disease arises from an autosomal dominant point mutation causing an E706K substitution in myosin heavy chain type IIa. We have previously expressed the corresponding myosin mutation (E701K in homozygous Drosophila indirect flight muscles and recapitulated the myofibrillar degeneration and inclusion bodies observed in the human disease. We have also found that purified E701K myosin has dramatically reduced actin-sliding velocity and ATPase levels. Since IBM3 is a dominant condition, we now examine the disease state in heterozygote Drosophila in order to gain a mechanistic understanding of E701K pathogenicity. Myosin ATPase activities in heterozygotes suggest that approximately equimolar levels of myosin accumulate from each allele. In vitro actin sliding velocity rates for myosin isolated from the heterozygotes were lower than the control, but higher than for the pure mutant isoform. Although sarcomeric ultrastructure was nearly wild type in young adults, mechanical analysis of skinned indirect flight muscle fibers revealed a 59% decrease in maximum oscillatory power generation and an approximately 20% reduction in the frequency at which maximum power was produced. Rate constant analyses suggest a decrease in the rate of myosin attachment to actin, with myosin spending decreased time in the strongly bound state. These mechanical alterations result in a one-third decrease in wing beat frequency and marginal flight ability. With aging, muscle ultrastructure and function progressively declined. Aged myofibrils showed Z-line streaming, consistent with the human heterozygote phenotype. Based upon the mechanical studies, we hypothesize that the mutation decreases the probability of the power stroke occurring and/or alters the degree of movement of the myosin lever arm, resulting in

  15. Effect of Pulsatile Electric Field on Cultured Muscle Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2012-02-01

    Full Text Available An effect of an electric field on proliferation and on differentiation of cultured muscle cells has been studied in vitro. C2C12 (the mouse myoblast cell line originated with the cross-striated muscle of C3H mouse was exposed to electric stimuli. In the first experiment, the adhered cells were exposed to the electric field between two electrodes made of platinum wire of 0.2 mm diameter dipped in the medium at 37 degrees Celsius for 72 hours. The electric pulses at a period of one second with a pulse width of 0.1 second were generated with a function generator. Variation was made on the pulse amplitude < 12 V. The number of adhered cells was counted after exposure to electric stimulation. In the second experiment, the cells were cultivated for 96 hours without electric stimulation in an incubator, after electric stimulation of 0.1 V for 72 hours. After incubation, the movement of myotubes was observed with electric stimulation at a period of one second with a pulse width of one millisecond of 30 V. The experimental results show that cells adhere and proliferate under electric pulses lower than 8 V, and that differentiation accelerates with the electric pulses of 0.1 V.

  16. Shared gene structures and clusters of mutually exclusive spliced exons within the metazoan muscle myosin heavy chain genes.

    Directory of Open Access Journals (Sweden)

    Martin Kollmar

    Full Text Available Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs. The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis. Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both have independently been developed

  17. Progressive Structural Defects in Canine Centronuclear Myopathy Indicate a Role for HACD1 in Maintaining Skeletal Muscle Membrane Systems.

    Science.gov (United States)

    Walmsley, Gemma L; Blot, Stéphane; Venner, Kerrie; Sewry, Caroline; Laporte, Jocelyn; Blondelle, Jordan; Barthélémy, Inès; Maurer, Marie; Blanchard-Gutton, Nicolas; Pilot-Storck, Fanny; Tiret, Laurent; Piercy, Richard J

    2017-02-01

    Mutations in HACD1/PTPLA cause recessive congenital myopathies in humans and dogs. Hydroxyacyl-coA dehydratases are required for elongation of very long chain fatty acids, and HACD1 has a role in early myogenesis, but the functions of this striated muscle-specific enzyme in more differentiated skeletal muscle remain unknown. Canine HACD1 deficiency is histopathologically classified as a centronuclear myopathy (CNM). We investigated the hypothesis that muscle from HACD1-deficient dogs has membrane abnormalities in common with CNMs with different genetic causes. We found progressive changes in tubuloreticular and sarcolemmal membranes and mislocalized triads and mitochondria in skeletal muscle from animals deficient in HACD1. Furthermore, comparable membranous abnormalities in cultured HACD1-deficient myotubes provide additional evidence that these defects are a primary consequence of altered HACD1 expression. Our novel findings, including T-tubule dilatation and disorganization, associated with defects in this additional CNM-associated gene provide a definitive pathophysiologic link with these disorders, confirm that dogs deficient in HACD1 are relevant models, and strengthen the evidence for a unifying pathogenesis in CNMs via defective membrane trafficking and excitation-contraction coupling in muscle. These results build on previous work by determining further functional roles of HACD1 in muscle and provide new insight into the pathology and pathogenetic mechanisms of HACD1 CNM. Consequently, alterations in membrane properties associated with HACD1 mutations should be investigated in humans with related phenotypes. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Modeling the Cell Muscle Membrane from Normal and Desmin- or Dystrophin-null Mice as an Elastic System

    Science.gov (United States)

    García-Pelagio, Karla P.; Santamaría-Holek, Ivan; Bloch, Robert J.; Ortega, Alicia; González-Serratos, Hugo

    2010-12-01

    Two of the most important proteins linking the contractile apparatus and costameres at the sarcolemma of skeletal muscle fibers are dystrophin and desmin. We have developed an elastic model of the proteins that link the sarcolemma to the myofibrils. This is a distributed model, with an elastic constant, k, that includes the main protein components of the costameres. The distributed spring model is composed of parallel units attached in series. To test the model, we performed experiments in which we applied negative pressure, generated by an elastimeter, to a small area of the sarcolemma from single myofiber. The negative pressure formed a bleb of variable height, dependent on the pressure applied. We normalized our measurements of k in dystrophin-null (mdx) and desmin-null (des-/-) mice to the value we obtained for wild type (WT) mice, which was set at 1.0. The relative experimental value for the stiffness of myofibers from mice lacking dystrophin or desmin was 0.5 and 0.7, respectively. The theoretical k values of the individual elements were obtained using neural networks (NN), in which the input was the k value for each parallel spring component and the output was the solution of each resulting parallel system. We compare the experimental values of k in control and mutant muscles to the theoretical values obtained by NN for each protein. Computed theoretical values were 0.4 and 0.8 for dystrophin- and desmin-null muscles, respectively, and 0.9 for WT, in reasonable agreement with our experimental results. This suggests that, although it is a simplified spring model solved by NN, it provides a good approximation of the distribution of spring elements and the elastic constants of the proteins that form the costameres. Our results show that dystrophin is the protein that contributes more than any other to the strength of the connections between the sarcolemma and the contractile apparatus, the costameres.

  19. The impact of prolonged hyperinsulinaemia on glucose transport in equine skeletal muscle and digital lamellae.

    Science.gov (United States)

    de Laat, M A; Clement, C K; Sillence, M N; McGowan, C M; Pollitt, C C; Lacombe, V A

    2015-07-01

    An increased incidence of metabolic disease in horses has led to heightened recognition of the pathological consequences of insulin resistance. Laminitis, failure of the weightbearing digital lamellae, is an important consequence. Altered trafficking of specialised glucose transporters (GLUTs), responsible for glucose uptake, is central to the dysregulation of glucose metabolism and may play a role in the pathophysiology of laminitis. We hypothesised that prolonged hyperinsulinaemia alters the regulation of glucose transport in insulin-sensitive tissue and digital lamellae. Our objectives were to compare the relative protein expression of major GLUT isoforms in striated muscle and digital lamellae in healthy horses and during marked and moderate hyperinsulinaemia. Randomised, controlled study. Prolonged hyperinsulinaemia and lamellar damage were induced by a prolonged euglycaemic-hyperinsulinaemic clamp or a prolonged glucose infusion, and results were compared with those of electrolyte-treated control animals. Protein expression of GLUTs was examined with immunoblotting. Lamellar tissue contained more GLUT1 protein than skeletal muscle (P = 0.002) and less GLUT4 than the heart (P = 0.037). During marked hyperinsulinaemia and acute laminitis (induced by the prolonged euglycaemic-hyperinsulinaemic clamp), GLUT1 protein expression was decreased in skeletal muscle (P = 0.029) but unchanged in the lamellae, while novel GLUTs (8 and 12) were increased in the lamellae (P = 0.03) but not in skeletal muscle. However, moderate hyperinsulinaemia and subclinical laminitis (induced by the prolonged glucose infusion) did not cause differential GLUT protein expression in the lamellae compared with control horses. The results suggest that lamellar tissue functions independently of insulin and that insulin resistance may not be an essential component of the aetiology of laminitis. Marked differences in GLUT expression exist between insulin-sensitive and insulin-independent tissues

  20. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    Science.gov (United States)

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  1. The hamstring muscle complex.

    Science.gov (United States)

    van der Made, A D; Wieldraaijer, T; Kerkhoffs, G M; Kleipool, R P; Engebretsen, L; van Dijk, C N; Golanó, P

    2015-07-01

    The anatomical appearance of the hamstring muscle complex was studied to provide hypotheses for the hamstring injury pattern and to provide reference values of origin dimensions, muscle length, tendon length, musculotendinous junction (MTJ) length as well as width and length of a tendinous inscription in the semitendinosus muscle known as the raphe. Fifty-six hamstring muscle groups were dissected in prone position from 29 human cadaveric specimens with a median age of 71.5 (range 45-98). Data pertaining to origin dimensions, muscle length, tendon length, MTJ length and length as well as width of the raphe were collected. Besides these data, we also encountered interesting findings that might lead to a better understanding of the hamstring injury pattern. These include overlapping proximal and distal tendons of both the long head of the biceps femoris muscle and the semimembranosus muscle (SM), a twist in the proximal SM tendon and a tendinous inscription (raphe) in the semitendinosus muscle present in 96 % of specimens. No obvious hypothesis can be provided purely based on either muscle length, tendon length or MTJ length. However, it is possible that overlapping proximal and distal tendons as well as muscle architecture leading to a resultant force not in line with the tendon predispose to muscle injury, whereas the presence of a raphe might plays a role in protecting the muscle against gross injury. Apart from these architectural characteristics that may contribute to a better understanding of the hamstring injury pattern, the provided reference values complement current knowledge on surgically relevant hamstring anatomy. IV.

  2. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Lenhart, Kaitlin C; O'Neill, Thomas J; Cheng, Zhaokang; Dee, Rachel; Demonbreun, Alexis R; Li, Jianbin; Xiao, Xiao; McNally, Elizabeth M; Mack, Christopher P; Taylor, Joan M

    2015-01-01

    The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1

  3. MUSCLE INJURIES IN ATHLETES.

    Science.gov (United States)

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2011-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best "treatment".

  4. An artificial muscle computer

    Science.gov (United States)

    Marc O'Brien, Benjamin; Alexander Anderson, Iain

    2013-03-01

    We have built an artificial muscle computer based on Wolfram's "2, 3" Turing machine architecture, the simplest known universal Turing machine. Our computer uses artificial muscles for its instruction set, output buffers, and memory write and addressing mechanisms. The computer is very slow and large (0.15 Hz, ˜1 m3); however by using only 13 artificial muscle relays, it is capable of solving any computable problem given sufficient memory, time, and reliability. The development of this computer shows that artificial muscles can think—paving the way for soft robots with reflexes like those seen in nature.

  5. Accessory piriformis muscle

    Directory of Open Access Journals (Sweden)

    Sedat Develi

    2017-03-01

    Full Text Available Piriformis muscle originates from facies pelvica of sacrum and inserts on the trochanter major. It is one of the lateral rotator muscles of the hip and a landmark point in the gluteal region since n. ischiadicus descends to the thigh by passing close to the muscle. This contiguity may be associated with the irritation of the nerve which is known as piriformis syndrome. A rare anatomic variation of the muscle which observed on 74 years old male cadaver is discussed in this case report. [Cukurova Med J 2017; 42(1.000: 182-183

  6. Distributions of vimentin and desmin in developing chick myotubes in vivo. I. Immunofluorescence study

    Science.gov (United States)

    1984-01-01

    Antibodies against chicken erythrocyte vimentin and gizzard desmin were affinity purified and then cross-absorbed with the heterologous antigen. They were used to study the in vivo distributions of these proteins in developing and mature myotubes by immunofluorescence microscopy of 0.5-2-micron frozen sections of iliotibialis muscle in 7- 21-day chick embryos, neonatal and 1-d postnatal chicks, and adult chickens. The distributions of vimentin and desmin were coincidental throughout the development of myotubes, but the concentration of vimentin was gradually reduced as the myotubes matured and became largely undetectable at the time of hatching. The process of confining these proteins to the level of Z line from the initial uniform distribution occurred subsequent to the process of bringing myofibrils into lateral registry: in-register lateral association of several myofibrils was occasionally seen as early as in 7-11-d embryos, whereas the cross-striated immunofluorescence pattern of desmin and vimentin was only vaguely discerned in myotubes of 17-d embryos, just 4 d before hatching. In some myotubes of 21-d embryos, myofibrils were in lateral registry as precisely as in adult myofibers but desmin was still widely distributed around Z line in an irregular manner. Nevertheless, in many other myotubes of prenatal or neonatal chicks, desmin became confined to the level of Z line in a manner similar to that seen in adult myofibers, thus essentially completing its redistribution to the confined state of adult myofibers in coincidence with the time of hatching. In extracts from iliotibialis and posterior latissimus dorsi muscles of adult chickens, we detected a hitherto unidentified protein that was very similar to vimentin in molecular weight but did not react with our antivimentin antibody. We discuss the possibility that this protein was confused with vimentin in the past. PMID:6373787

  7. Ischemia causes muscle fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P muscle oxygenation (r = 0.78, P muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  8. Physical Rehabilitation Improves Muscle Function Following Volumetric Muscle Loss Injury

    Science.gov (United States)

    2014-12-19

    muscle , but it did so without significant morphological adaptations (e.g., no hypertrophy and hyperplasia). Wheel running up-regulated metabolic genes...been shown to foster regeneration of injured muscle [5,32,33] and promote hypertrophy (i.e., increased protein synthesis or muscle weight) in muscle ...remaining muscle tissue. Strengthening of synergist muscles can partially compensate for the loss of function due to VML injury. Compensatory hypertrophy

  9. Magnetic resonance imaging at 7T reveals common events in age-related sarcopenia and in the homeostatic response to muscle sterile injury.

    Directory of Open Access Journals (Sweden)

    Antonio Esposito

    Full Text Available Skeletal muscle remodeling in response to various noxae physiologically includes structural changes and inflammatory events. The possibility to study those phenomena in-vivo has been hampered by the lack of validated imaging tools. In our study, we have relied on multiparametric magnetic resonance imaging for quantitative monitoring of muscle changes in mice experiencing age-related sarcopenia or active regeneration after sterile acute injury of tibialis anterior muscle induced by cardiotoxin (CTX injection. The extent of myofibrils' necrosis, leukocyte infiltration, and regeneration have been evaluated and compared with parameters from magnetic resonance imaging: T2-mapping (T2 relaxation time; T2-rt, diffusion-tensor imaging (fractional anisotropy, F.A. and diffusion weighted imaging (apparent diffusion coefficient, ADC. Inflammatory leukocytes within the perimysium and heterogeneous size of fibers characterized aged muscles. They displayed significantly increased T2-rt (P<0.05 and F.A. (P<0.05 compared with young muscles. After acute damage T2-rt increased in otherwise healthy young muscles with a peak at day 3, followed by a progressive decrease to basal values. F.A. dropped 24 hours after injury and afterward increased above the basal level in the regenerated muscle (from day 7 to day 15 returning to the basal value at the end of the follow up period. The ADC displayed opposite kinetics. T2-rt positively correlated with the number of infiltrating leucocytes retrieved by immunomagnetic bead sorting from the tissue (r = 0.92 and with the damage/infiltration score (r = 0.88 while F.A. correlated with the extent of tissue regeneration evaluated at various time points after injury (r = 0.88. Our results indicate that multiparametric MRI is a sensitive and informative tool for monitoring inflammatory and structural muscle changes in living experimental animals; particularly, it allows identifying the increase of T2-rt and F.A. as common events

  10. Muscles, exercise and obesity

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Febbraio, Mark A

    2012-01-01

    of yet unidentified factors, secreted from muscle cells, which may influence cancer cell growth and pancreas function. Many proteins produced by skeletal muscle are dependent upon contraction; therefore, physical inactivity probably leads to an altered myokine response, which could provide a potential...

  11. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of m...

  12. The hamstring muscle complex

    NARCIS (Netherlands)

    van der Made, A. D.; Wieldraaijer, T.; Kerkhoffs, G. M.; Kleipool, R. P.; Engebretsen, L.; van Dijk, C. N.; Golanó, P.

    2015-01-01

    The anatomical appearance of the hamstring muscle complex was studied to provide hypotheses for the hamstring injury pattern and to provide reference values of origin dimensions, muscle length, tendon length, musculotendinous junction (MTJ) length as well as width and length of a tendinous

  13. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  14. [Diabetic muscle infarction].

    Science.gov (United States)

    ter Bals, Edske; van der Woude, Henk-Jan; Smets, Yves F C

    2013-01-01

    Diabetic muscle infarction is a rare complication of diabetes mellitus that typically presents in the thigh; microvascular abnormalities may play a role. A 32-year-old female presented at the outpatient clinic with a painful, swollen thigh. She had suffered from type 1 diabetes for 22 years. The patient was admitted to the nephrology ward for further evaluation. Deep-venous thrombosis and abscess were excluded with echography. After additional investigations - MRI and a biopsy of skin, muscle and fascia - the diagnosis diabetic muscle infarction was made. The patient was treated with bed rest and analgesics. With hindsight, the muscle biopsy was not actually required in reaching a diagnosis. The diagnosis 'diabetic muscle infarction' is made on the basis of clinical presentation in combination with MRI findings. The treatment consists of bed rest and analgesics.

  15. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Directory of Open Access Journals (Sweden)

    Sergio Arrabal

    Full Text Available Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD, a flavoprotein component (E3 of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1, 14 days on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI, triosephosphate isomerase (TPI, enolase (Eno3, lactate dehydrogenase (LDHa, glyoxalase-1 (Glo1 and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  16. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Science.gov (United States)

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  17. A muscle model for hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Klauer Christian

    2015-09-01

    Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.

  18. Respiratory Muscle Plasticity

    Science.gov (United States)

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  19. Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice

    Science.gov (United States)

    Chakravarthy, M. V.; Fiorotto, M. L.; Schwartz, R. J.; Booth, F. W.

    2001-01-01

    Insulin-like growth factor-I (IGF-I) overexpression for 1-month in mouse skeletal muscle increases satellite cell proliferation potential. However, it is unknown whether this beneficial enhancement by IGF-I expression would persist over a longer-term duration in aged mice. This is an important issue to address if a prolonged course of IGF-I is to be used clinically in muscle-wasting conditions where satellite cells may become limiting. Using the IGF-I transgenic (IGF-I Tg) mouse that selectively expresses the IGF-I transgene in striated muscles, we found that 18-months of continuous IGF-I overexpression led to a loss in the enhanced in vitro proliferative capacity of satellite cells from Tg skeletal muscles. Also 18-month-old IGF-I Tg satellite cells lost the enhanced BrdU incorporation, greater pRb and Akt phosphorylations, and decreased p27(Kip1) levels initially observed in cells from 1-month-old IGF-I Tg mice. The levels of those biochemical markers reverted to similar values seen in the 18-months WT littermates. These findings, therefore, suggest that there is no further beneficial effect on enhancing satellite cell proliferation ability with persistent long-term expression of IGF-I in skeletal muscles of these transgenic mice.

  20. Infection of the muscle tissue of the filter-feeding cichlid, Chaetobranchopsis orbicularis Steindachner, 1875, by Kudoa orbicularis (Myxozoa: Multivalvulidae on Marajó Island in the Brazilian Amazon region

    Directory of Open Access Journals (Sweden)

    J.L. Sindeaux-Neto

    Full Text Available ABSTRACT This study describes aspects of infections caused by the myxosporidian Kudoa orbicularis in filter-feeding cichlids, Chaetobranchopsis orbicularis, caught in the Arari River in the municipality of Cachoeira do Arari, on Marajó Island, Pará, Brazil. The parasite forms pseudocysts scattered throughout the striated epaxial and hypaxial muscles. Samples embedded in paraffin were analyzed histologically using hematoxylin-eosin, Gömöri, Ziehl-Neelsen, and Giemsa staining. Necropsy of the C. orbicularis specimens revealed that 100% (50/50 were infected with K. orbicularis. The specimens presented grossly abnormal muscle texture, resulting in extensive inconsistencies and weakness. Progressive softening of the muscles was observed during necropsy, indicating the rapid enzymatic autolysis of the tissue. The parasite found in the muscle tissue of C. orbicularis was identified as K. orbicularis, with clinical signs of disease being observed in the fish. The necropsy revealed extensive damage to the host organism, with well-established fibrocystic infections in the muscle fibers, associated with post mortem myoliquefaction.

  1. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    Science.gov (United States)

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  2. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    Science.gov (United States)

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  3. Muscle Disorders - Multiple Languages

    Science.gov (United States)

    ... Health Information Translations Spanish (español) Expand Section Muscle Disorders: MedlinePlus Health Topic - English ... Health Information Translations Characters not displaying correctly on this page? See language display issues . Return to the MedlinePlus Health Information ...

  4. Neurogenic muscle cramps.

    Science.gov (United States)

    Katzberg, Hans D

    2015-08-01

    Muscle cramps are sustained, painful contractions of muscle and are prevalent in patients with and without medical conditions. The objective of this review is to present updates on the mechanism, investigation and treatment of neurogenic muscle cramps. PubMed and Embase databases were queried between January 1980 and July 2014 for English-language human studies. The American Academy of Neurology classification of studies (classes I-IV) was used to assess levels of evidence. Mechanical disruption, ephaptic transmission, disruption of sensory afferents and persistent inward currents have been implicated in the pathogenesis of neurogenic cramps. Investigations are directed toward identifying physiological triggers or medical conditions predisposing to cramps. Although cramps can be self-limiting, disabling or sustained muscle cramps should prompt investigation for underlying medical conditions. Lifestyle modifications, treatment of underlying conditions, stretching, B-complex vitamins, diltiezam, mexiletine, carbamazepine, tetrahydrocannabinoid, leveteracitam and quinine sulfate have shown evidence for treatment.

  5. Human airway smooth muscle

    NARCIS (Netherlands)

    J.C. de Jongste (Johan)

    1987-01-01

    textabstractThe function of airway smooth muscle in normal subjects is not evident. Possible physiological roles include maintenance of optimal regional ventilation/perfusion ratios, reduction of anatomic dead space, stabilisation of cartilaginous bronchi, defense against impurities and, less

  6. Water and Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Enrico Grazi

    2008-08-01

    Full Text Available The interaction between water and the protein of the contractile machinery as well as the tendency of these proteins to form geometrically ordered structures provide a link between water and muscle contraction. Protein osmotic pressure is strictly related to the chemical potential of the contractile proteins, to the stiffness of muscle structures and to the viscosity of the sliding of the thin over the thick filaments. Muscle power output and the steady rate of contraction are linked by modulating a single parameter, a viscosity coefficient. Muscle operation is characterized by working strokes of much shorter length and much quicker than in the classical model. As a consequence the force delivered and the stiffness attained by attached cross-bridges is much larger than usually believed.

  7. Muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, N B; Gavras, H

    1982-01-01

    glycogenolysis during exercise: contractions principally stimulate glycogenolysis early in exercise, and a direct effect of epinephrine on muscle is needed for continued glycogenolysis. In addition, epinephrine increased oxygen consumption and glucose uptake in both resting and electrically stimulated...

  8. Pneumatic Muscle Actuator Control

    National Research Council Canada - National Science Library

    Lilly, John

    2000-01-01

    This research is relevant to the Air Fore mission because pneumatic muscle actuation devices arc advantageous for certain types of robotics as well as for strength and/or mobility assistance for humans...

  9. Human airway smooth muscle

    OpenAIRE

    Jongste, Johan

    1987-01-01

    textabstractThe function of airway smooth muscle in normal subjects is not evident. Possible physiological roles include maintenance of optimal regional ventilation/perfusion ratios, reduction of anatomic dead space, stabilisation of cartilaginous bronchi, defense against impurities and, less likely, squeezing mucus out of mucous glands and pulling open the alveoli next to the airways1 . Any role of airway smooth muscle is necessarily limited, because an important degree of contraction will l...

  10. Muscle Strength and Poststroke Hemiplegia

    DEFF Research Database (Denmark)

    Kristensen, Otto H; Stenager, Egon; Dalgas, Ulrik

    2017-01-01

    OBJECTIVES: To systematically review (1) psychometric properties of criterion isokinetic dynamometry testing of muscle strength in persons with poststroke hemiplegia (PPSH); and (2) literature that compares muscle strength in patients poststroke with that in healthy controls assessed by criterion...... test in persons with stroke, generally showing marked reductions in muscle strength of paretic and, to a lesser degree, nonparetic muscles when compared with healthy controls, independent of muscle group, contraction mode, and contraction velocity....

  11. Accuracy of measurement by laser diffraction method of length of contracting muscle sarcomeres

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A.A.; Andreyev, O.A.

    The method of laser beam diffraction was used on striate muscle fibers to study changes in sarcomere length during contraction, as determined by the angular distance between (+1)-(left) and (-1)-(right) diffraction maximums. The course of force development was recorded simultaneously. The absolute margin of error in determining the mean length of sarcomeres did not exceed 0.05 ..mu..m in the range of 1.8 to 2.8 ..mu..m lengths, and 0.1 ..mu..m in the range of 2.8 to 3.3. Changes in mean length of sarcomeres were recorded with accuracy to 0.003 ..mu..m with concurrent monitoring of positions (+1) and (-1) maximums. It was demonstrated that during fiber contraction there is shifting not only of (+1) and (-1) maximums, but (0) maximum also, which is attributable to the effects of light refraction with change in shape of illuminated segment of fiber. This change can be caused by redistribution of sarcomere lengths along the axis of the fiber during contraction and, accordingly, local changes in fiber diameter.

  12. Growth associated protein 43 is expressed in skeletal muscle fibers and is localized in proximity of mitochondria and calcium release units.

    Directory of Open Access Journals (Sweden)

    Simone Guarnieri

    Full Text Available The neuronal Growth Associated Protein 43 (GAP43, also known as B-50 or neuromodulin, is involved in mechanisms controlling pathfinding and branching of neurons during development and regeneration. For many years this protein was classified as neuron-specific, but recent evidences suggest that a GAP43 is expressed in the nervous system not only in neurons, but also in glial cells, and b probably it is present also in other tissues. In particular, its expression was revealed in muscles from patients affected by various myopathies, indicating that GAP43 can no-longer considered only as a neuron-specific molecule. We have investigated the expression and subcellular localization of GAP43 in mouse satellite cells, myotubes, and adult muscle (extensor digitorum longus or EDL using Western blotting, immuno-fluorescence combined to confocal microscopy and electron microscopy. Our in vitro results indicated that GAP43 is indeed expressed in both myoblasts and differentiating myotubes, and its cellular localization changes dramatically during maturation: in myoblasts the localization appeared to be mostly nuclear, whereas with differentiation the protein started to display a sarcomeric-like pattern. In adult fibers, GAP43 expression was evident with the protein labeling forming (in longitudinal views a double cross striation reminiscent of the staining pattern of other organelles, such as calcium release units (CRUs and mitochondria. Double immuno-staining and experiments done in EDL muscles fixed at different sarcomere lengths, allowed us to determine the localization, from the sarcomere Z-line, of GAP43 positive foci, falling between that of CRUs and of mitochondria. Staining of cross sections added a detail to the puzzle: GAP43 labeling formed a reticular pattern surrounding individual myofibrils, but excluding contractile elements. This work leads the way to further investigation about the possible physiological and structural role of GAP43 protein in

  13. Ultrastructural immunolocalization of nestin in the regenerating tail of lizards shows its presence during cytoskeletal modifications in the epidermis, muscles and nerves.

    Science.gov (United States)

    Alibardi, Lorenzo

    2015-04-01

    Nestin has been considered a neural stem cell marker, and represents an intermediate filament protein likely involved in restructuring the cytoskeleton in different cell types. The present ultrastructural study has immunodetected nestin especially in the wound epidermis, regenerating myotubes and in the growing nerves of the regenerating tail of lizards. In keratinocytes of the stratified wound epidermis nestin is present in the irregular electron-paler meshwork located along the cell perimeter and among keratin bundles converging into desmosomes. In the regenerating muscles nestin-immunoreactivity remains confined to some external regions along the myotubes and in the cytoplasmic ends of the myotubes not occupied by myofibrils. A diffuse nestin immunolabeling is also present among the neurofilaments of growing axons, in Schwann cells and in ependymal cells of the regenerating spinal cord of the tail. The localization of nestin in sites of cytoskeletal remodeling in keratinocytes, myotubes, ependymal cells and axons, suggests that this protein is associated to the reassembling of keratin tonofilaments in moving keratinocytes, assembling of contractile proteins in myotubes, and in the organization of neurofilaments during the growth and myelination of axons within the regenerating lizard tail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Muscle as a secretory organ

    DEFF Research Database (Denmark)

    Pedersen, Bente K

    2013-01-01

    Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent...... evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists...... of several hundred secreted peptides. This finding provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs such as adipose tissue, liver, pancreas, bones, and brain. In addition, several myokines exert their effects within the muscle itself. Many...

  15. Development of the excitation-contraction coupling machinery and its relation to myofibrillogenesis in human iPSC-derived skeletal myocytes.

    Science.gov (United States)

    Lainé, Jeanne; Skoglund, Gunnar; Fournier, Emmanuel; Tabti, Nacira

    2018-01-05

    Human induced pluripotent stem cells-derived myogenic progenitors develop functional and ultrastructural features typical of skeletal muscle when differentiated in culture. Besides disease-modeling, such a system can be used to clarify basic aspects of human skeletal muscle development. In the present study, we focus on the development of the excitation-contraction (E-C) coupling, a process that is essential both in muscle physiology and as a tool to differentiate between the skeletal and cardiac muscle. The occurrence and maturation of E-C coupling structures (Sarcoplasmic Reticulum-Transverse Tubule (SR-TT) junctions), key molecular components, and Ca 2+ signaling were examined, along with myofibrillogenesis. Pax7 + -myogenic progenitors were differentiated in culture, and developmental changes were examined from a few days up to several weeks. Ion channels directly involved in the skeletal muscle E-C coupling (RyR1 and Cav1.1 voltage-gated Ca 2+ channels) were labeled using indirect immunofluorescence. Ultrastructural changes of differentiating cells were visualized by transmission electron microscopy. On the functional side, depolarization-induced intracellular Ca 2+ transients mediating E-C coupling were recorded using Fura-2 ratiometric Ca 2+ imaging, and myocyte contraction was captured by digital photomicrography. We show that the E-C coupling machinery occurs and operates within a few days post-differentiation, as soon as the myofilaments align. However, Ca 2+ transients become effective in triggering myocyte contraction after 1 week of differentiation, when nascent myofibrils show alternate A-I bands. At later stages, myofibrils become fully organized into adult-like sarcomeres but SR-TT junctions do not reach their triadic structure and typical A-I location. This is mirrored by the absence of cross-striated distribution pattern of both RyR1 and Cav1.1 channels. The E-C coupling machinery occurs and operates within the first week of muscle cells

  16. Hydraulically actuated artificial muscles

    Science.gov (United States)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  17. Foot muscles strengthener

    Directory of Open Access Journals (Sweden)

    Boris T. Glavač

    2012-04-01

    Full Text Available Previous experience in the correction of flat feet consisted of the use of insoles for shoes and exercises with toys, balls, rollers, inclined planes, etc. A device for strengthening foot muscles is designed for the correction of flat feet in children and, as its name suggests, for strengthening foot muscles in adults. The device is made of wood and metal, with a mechanism and technical solutions, enabling the implementation of specific exercises to activate muscles responsible for the formation of the foot arch. It is suitable for home use with controlled load quantities since it has calibrated springs. The device is patented with the Intellectual Property Office, Republic of Serbia, as a petty patent.

  18. Differential scanning calorimetry study of glycerinated rabbit psoas muscle fibres in intermediate state of ATP hydrolysis

    Directory of Open Access Journals (Sweden)

    Farkas Nelli

    2007-06-01

    Full Text Available Abstract Background Thermal denaturation experiments were extended to study the thermal behaviour of the main motor proteins (actin and myosin in their native environment in striated muscle fibres. The interaction of actin with myosin in the highly organized muscle structure is affected by internal forces; therefore their altered conformation and interaction may differ from those obtained in solution. The energetics of long functioning intermediate states of ATP hydrolysis cycle was studied in muscle fibres by differential scanning calorimetry (DSC. Results SETARAM Micro DSC-II was used to monitor the thermal denaturation of the fibre system in rigor and in the presence of nucleotide and nucleotide analogues. The AM.ADP.Pi state of the ATP hydrolysis cycle has a very short lifetime therefore, we mimicked the different intermediate states with AMP.PNP and/or inorganic phosphate analogues Vi and AlF4 or BeFx. Studying glycerol-extracted muscle fibres from the rabbit psoas muscle by DSC, three characteristic thermal transitions were detected in rigor. The thermal transitions can be assigned to myosin heads, myosin rods and actin with transition temperatures (Tm of 52.9 ± 0.7°C, 57.9 ± 0.7°C, 63.7 ± 1.0°C. In different intermediate states of the ATP hydrolysis mimicked by nucleotide analogues a fourth thermal transition was also detected which is very likely connected with nucleotide binding domain of myosin and/or actin filaments. This transition temperature Tm4 depended on the mimicked intermediate states, and varied in the range of 66°C – 77°C. Conclusion According to DSC measurements, strongly and weakly binding states of myosin to actin were significantly different. In the presence of ADP only a moderate change of the DSC pattern was detected in comparison with rigor, whereas in ADP.Pi state trapped by Vi, AlF4 or BeFx a remarkable stabilization was detected on the myosin head and actin filament which is reflected in a 3.0 – 10.0

  19. CREB is activated by muscle injury and promotes muscle regeneration.

    Science.gov (United States)

    Stewart, Randi; Flechner, Lawrence; Montminy, Marc; Berdeaux, Rebecca

    2011-01-01

    The cAMP response element binding protein (CREB) plays key roles in differentiation of embryonic skeletal muscle progenitors and survival of adult skeletal muscle. However, little is known about the physiologic signals that activate CREB in normal muscle. Here we show that CREB phosphorylation and target genes are induced after acute muscle injury and during regeneration due to genetic mutation. Activated CREB localizes to both myogenic precursor cells and newly regenerating myofibers within regenerating areas. Moreover, we found that signals from damaged skeletal muscle tissue induce CREB phosphorylation and target gene expression in primary mouse myoblasts. An activated CREB mutant (CREBY134F) potentiates myoblast proliferation as well as expression of early myogenic transcription factors in cultured primary myocytes. Consistently, activated CREB-YF promotes myoblast proliferation after acute muscle injury in vivo and enhances muscle regeneration in dystrophic mdx mice. Our findings reveal a new physiologic function for CREB in contributing to skeletal muscle regeneration.

  20. Rectus abdominis muscle endometriosis

    International Nuclear Information System (INIS)

    Goker, A.

    2014-01-01

    Endometriosis is characterized by an abnormal existence of functional endometrial tissue outside the uterine cavity, typically occuring within the pelvis of women in reproductive age. We report two cases with endometriosis of the abdominal wall; the first one in the rectus abdominis muscle and the second one in the surgical scar of previous caesarean incision along with the rectus abdominis muscle. Pre-operative evaluation included magnetic resonance imaging. The masses were dissected free from the surrounding tissue and excised with clear margins. Diagnosis of the excised lesions were verified by histopathology. (author)

  1. Effects of oblique muscle surgery on the rectus muscle pulley

    International Nuclear Information System (INIS)

    Okanobu, Hirotaka; Kono, Reika; Ohtsuki, Hiroshi

    2011-01-01

    The purpose of this study was to determine the position of rectus muscle pulleys in Japanese eyes and to evaluate the effect of oblique muscle surgery on rectus muscle pulleys. Quasi-coronal plane MRI was used to determine area centroids of the 4 rectus muscles. The area centroids of the rectus muscles were transformed to 2-dimensional coordinates to represent pulley positions. The effects of oblique muscle surgery on the rectus muscle pulley positions in the coronal plane were evaluated in 10 subjects with cyclovertical strabismus and, as a control, pulley locations in 7 normal Japanese subjects were calculated. The mean positions of the rectus muscle pulleys in the coronal plane did not significantly differ from previous reports on normal populations, including Caucasians. There were significant positional shifts of the individual horizontal and vertical rectus muscle pulleys in 3 (100%) patients with inferior oblique advancement, but not in eyes with inferior oblique recession and superior oblique tendon advancement surgery. The surgical cyclorotatory effect was significantly correlated with the change in the angle of inclination formed by the line connecting the vertical rectus muscles (p=0.0234), but weakly correlated with that of the horizontal rectus muscles. The most important factor that affects the pulley position is the amount of ocular torsion, not the difference in surgical procedure induced by oblique muscle surgery. (author)

  2. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  4. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  5. Pelvic floor muscle training exercises

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003975.htm Pelvic floor muscle training exercises To use the sharing features on this page, please enable JavaScript. Pelvic floor muscle training exercises are a series of exercises ...

  6. MRI appearance of muscle denervation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, S. [University Hospital of Wales, Department of Radiology, Cardiff (United Kingdom); Venkatanarasimha, N.; Walsh, M.A.; Hughes, P.M. [Derriford Hospital, Department of Radiology, Plymouth (United Kingdom)

    2008-05-15

    Muscle denervation results from a variety of causes including trauma, neoplasia, neuropathies, infections, autoimmune processes and vasculitis. Traditionally, the diagnosis of muscle denervation was based on clinical examination and electromyography. Magnetic resonance imaging (MRI) offers a distinct advantage over electromyography, not only in diagnosing muscle denervation, but also in determining its aetiology. MRI demonstrates characteristic signal intensity patterns depending on the stage of muscle denervation. The acute and subacutely denervated muscle shows a high signal intensity pattern on fluid sensitive sequences and normal signal intensity on T1-weighted MRI images. In chronic denervation, muscle atrophy and fatty infiltration demonstrate high signal changes on T1-weighted sequences in association with volume loss. The purpose of this review is to summarise the MRI appearance of denervated muscle, with special emphasis on the signal intensity patterns in acute and subacute muscle denervation. (orig.)

  7. Muscle contraction and force

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Risbo, Jens; Pierzynowski, Stefan G.

    2008-01-01

    of nutrient delivery and waste product removal, but are also tethered to surrounding fibres by collagen "wires". This paper therefore addresses aspects of the ancillary network of skeletal muscle at both a microscopic and functional level in order to better understand its role holistically as a considerable...

  8. Making more heart muscle

    NARCIS (Netherlands)

    van den Hoff, Maurice J. B.; Kruithof, Boudewijn P. T.; Moorman, Antoon F. M.

    2004-01-01

    Postnatally, heart muscle cells almost completely lose their ability to divide, which makes their loss after trauma irreversible. Potential repair by cell grafting or mobilizing endogenous cells is of particular interest for possible treatments for heart disease, where the poor capacity for

  9. Muscles and their myokines

    DEFF Research Database (Denmark)

    Pedersen, Bente Klarlund

    2011-01-01

    that a physically active life plays an independent role in the protection against type 2 diabetes, cardiovascular diseases, cancer, dementia and even depression. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an 'exercise factor', which could......In the past, the role of physical activity as a life-style modulating factor has been considered as that of a tool to balance energy intake. Although it is important to avoid obesity, physical inactivity should be discussed in a much broader context. There is accumulating epidemiological evidence......-like fashion, exerting specific endocrine effects on other organs. Other myokines work via paracrine mechanisms, exerting local effects on signalling pathways involved in muscle metabolism. It has been suggested that myokines may contribute to exercise-induced protection against several chronic diseases....

  10. [Primary muscle cramps].

    Science.gov (United States)

    Serratrice, G

    2008-05-01

    Primary muscle cramps, without known cause, are very frequent especially in the elderly and during the night. They are different from secondary cramps. Likewise they are to be separated from several syndromes erroneously quoted as cramps. The pathophysiological mechanism seems due to result from an initial dysfunction in the distal part of the motoneuron. When the cramps are severe, differential diagnosis with amyotrophic lateral sclerosis may be difficult. Quinine is the best empiric treatment largely used in spite of moderate side effects.

  11. MUSCLE TENSION DYSPHONIA

    Directory of Open Access Journals (Sweden)

    Irena Hočevar Boltežar

    2004-07-01

    Full Text Available Background. Muscle tension dysphonia (MTD is the cause of hoarseness in almost one half of the patients with voice disorders. The otorhinolaryngologic examination discovers no evident organic lesions in the larynx at least in the beginning of the voice problems. The reason for the hoarse voice is a disordered and maladjusted activity of the muscles taking part in phonation and/or articulation. In some patients, the irregular function of the larynx results in mucosal lesions on vocal folds. The factors participating in the development of MTD, directly or indirectly influence the quality of laryngeal mucosa, the activity of the phonatory muscles and/or increase of the vocal load. In the diagnostics and treatment of the MTD a phoniatrician, a speech and language therapist and a psychologist closely cooperate with the patient who must take an active role. The treatment is a long-lasting one but resulted in a high percentage of clinical success.Conclusions. Most likely, MTD is not a special disease but only a reflection of any disorder in the complicated system of regulation and realization of phonation. The prognosis of treatment is good when all unfavourable factors participating in development of MTD are eliminated and a proper professional voice- and psychotherapy started.

  12. Dismorfia muscular Muscle dysmorphia

    Directory of Open Access Journals (Sweden)

    Sheila Seleri Marques Assunção

    2002-12-01

    Full Text Available Preocupações mórbidas com a imagem corporal eram tidas até recentemente como problemas eminentemente femininos. Atualmente estas preocupações também têm sido encontradas no sexo masculino. A dismorfia muscular é um subtipo do transtorno dismórfico corporal que ocorre principalmente em homens que, apesar da grande hipertrofia muscular, consideram-se pequenos e fracos. Além de estar associada a prejuízos sociais, ocupacionais, recreativos e em outras áreas do funcionamento do indivíduo, a dismorfia muscular é também um fator de risco para o abuso de esteróides anabolizantes. Este artigo aborda aspectos epidemiológicos, etiológicos e padrões clínicos da dismorfia muscular, além de tecer comentários sobre estratégias de tratamento para este transtorno.Morbid concern over body image was considered, until recently, a female issue. Nowadays, it has been viewed as a common male disorder. Muscle dysmorphia, a subtype of a body dysmorphic disorder, affects men who, despite having clear muscular hypertroph,y see themselves as frail and small. Besides being associated to major social, leisure and occupational dysfunction, muscle dysmorphia is also a risk factor for the abuse of steroids. This article describes epidemiological, etiological and clinical characteristics of muscle dysmorphia and comments on its treatment strategy.

  13. Activation of respiratory muscles during respiratory muscle training.

    Science.gov (United States)

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (pVIH (pVIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Reinnervation of Paralyzed Muscle by Nerve Muscle Endplate Band Grafting

    Science.gov (United States)

    2016-10-01

    x 3 mm), a nerve branch, intramuscular nerve terminals, and a motor endplate (MEP) band with numerous neuromuscular junctions. The superficial ...when muscle was stretched at optimal tension of 0.8 N. Maximal muscle force was calculated as average muscle contraction to 5 stimulation currents...force during the 200-millisecond contraction was identified, as well as initial passive tension before stimulation. The difference between themaximal

  15. Nuclear Positioning in Muscle Development and Disease

    OpenAIRE

    Eric eFolker; Mary eBaylies

    2013-01-01

    Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, th...

  16. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  17. [WEAK COMBINED MAGNETIC FIELDS ADJUSTED TO THE PARAMETRIC RESONANCE FOR Ca2+ INTENSIFY DYSTROPHIN SYNTHESIS IN MDX MICE SKELETAL MUSCLES AFTER CELL THERAPY].

    Science.gov (United States)

    Sokolova, A V; Sokolov, G V; Mikhailov, V M

    2016-01-01

    The mdx mice are an X-linked myopathic mutants, an animal model for human Duchenne muscular dystrophy (DMD). Mdx mice muscles are characterized by high level of striated muscle fibers (SMF) death followed by regeneration. As a result most SMFs of mdx mice have centrally located nuclei. The possibility of using stem cells therapy for the correction of DMD is actively being studied. One of the approaches to the usage of bone marrow stem cells for cellular therapy of DMD is the replacement of bone marrow after irradiation by X-rays. This method however does not give significant increase of dystrophin synthesis in mdx mice muscles fibers. We have tried to affect the mice after bone marrow transplantation by weak combined magnetic fields adjusted to the parametric resonance for Ca2+(Ca(2+)-MF) based on the data that the weak combined magnetic fields influence on tissues regeneration. We observed a significant increase in the proportion of dystrophin-positive SMFs in group of mdx mice radiation chimera 5 Gy and 3 Gy which was additionally exposed in Ca(2+)-MF in comparison with the control mdx mice and the group of mdx mice radiation chimera 5 Gy and 3 Gy which was kept in terrestrial magnetic field 2 months after chimera preparation--up to 15.8 and 18.3%, respectively. Also, there was an accumulation of SMFs without central nuclei. These data indicate a significanly increased efficacy of cell therapy in the case of additional exposition in Ca(2+)-MF. Thus, the efficiency of bone marrow transplantation mdx mice after both in doses 3 and 5 Gy was considerably enhanced by additional exposition to Ca(2+)-MF. Apparently, such magnetic field can intensify functioning of donor's nuclei which had been incorporated into muscle fibers.

  18. Transplantation of Devitalized Muscle Scaffolds is Insufficient for Appreciable De Novo Muscle Fiber Regeneration After Volumetric Muscle Loss Injury

    Science.gov (United States)

    2014-10-10

    minced muscle grafts were shown to support de novo skeletal muscle regeneration. For instance, devitalized whole extensor digitorum longus (EDL) muscle...antero- lateral aspect of the ankle, and the distal EDL muscle tendon and extensor hallicus longus (EHL) muscle was isolated and severed above the

  19. Exercising with blocked muscle glycogenolysis

    DEFF Research Database (Denmark)

    Nielsen, Tue L; Pinós, Tomàs; Brull, Astrid

    2018-01-01

    of expression and activation of proteins involved in glycolytic flux revealed that in glycolytic, but not oxidative muscle from exercised McArdle mice, the glycolytic flux had changed compared to that in wild-type mice. Specifically, exercise triggered in glycolytic muscle a differentiated activation of insulin......BACKGROUND: McArdle disease (glycogen storage disease type V) is an inborn error of skeletal muscle metabolism, which affects glycogen phosphorylase (myophosphorylase) activity leading to an inability to break down glycogen. Patients with McArdle disease are exercise intolerant, as muscle glycogen......-derived glucose is unavailable during exercise. Metabolic adaptation to blocked muscle glycogenolysis occurs at rest in the McArdle mouse model, but only in highly glycolytic muscle. However, it is unknown what compensatory metabolic adaptations occur during exercise in McArdle disease. METHODS: In this study, 8...

  20. Muscle strength in myasthenia gravis

    DEFF Research Database (Denmark)

    Cejvanovic, S; Vissing, J

    2014-01-01

    is related to disease duration or gender. The aim of this study was to quantify the strength of patients with MG and investigate whether it is related to disease duration. METHODS: Eight muscle groups were tested by manual muscle testing and with a hand-held dynamometer in 38 patients with generalized MG...... and 37 healthy age- and gender-matched controls. The disease duration was recorded and compared with strength measures. RESULTS: On average, muscle strength was decreased by 28% compared with controls (Pstrength measures in individual patients did not differ, suggesting that the muscle...... force reported was not subject to fatigue, but reflected fixed weakness. The male patients showed a greater reduction in muscle force in all eight muscle groups than women with MG (60% vs 77% of normal, Pstrength in shoulder abductors was most affected (51% vs 62...

  1. PDH regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian

    is determined by the overall content / activity of the regulatory proteins PDH kinase (PDK), of which there are 4 isoforms, and PDH phosphatase (PDP), of which there are 2 isoforms. The overall aim of the PhD project was to elucidate 4 issues. 1: Role of muscle type in resting and exercise-induced PDH...... in arm than leg muscles during exercise in humans may be the result of lower PDH-E1? content and not a muscle type dependent difference in PDH regulation. Both low muscle glycogen and increased plasma FFA are associated with upregulation of PDK4 protein and less exercise-induced increase in PDHa activity...... in human skeletal muscle. It may be noted that the increased PDK4 protein associated with elevated plasma FFA occurs already 2 hours after different dietary intake. A week of physical inactivity (bed rest), leading to whole body glucose intolerance, does not affect muscle PDH-E1? content, or the exercise...

  2. Unorthodox angiogenesis in skeletal muscle.

    Science.gov (United States)

    Egginton, S; Zhou, A L; Brown, M D; Hudlická, O

    2001-02-16

    The morphological pattern of angiogenesis occurring in mature, differentiated skeletal muscle in response to chronically increased muscle blood flow, muscle stretch or repetitious muscle contractions was examined to determine (a) whether capillary neoformation follows the generally accepted temporal paradigm, and (b) how the growth pattern is influenced by mechanical stimuli. Adult rats were treated for a maximum of 14 days either with the vasodilator prazosin, to elevate skeletal muscle blood flow, or underwent surgical removal of one ankle flexor, to induce compensatory overload in the remaining muscles, or had muscles chronically stimulated by implanted electrodes. Extensor digitorum longus and/or extensor hallucis proprius muscles were removed at intervals and processed for electron microscopy. A systematic examination of capillaries and their ultrastructure characterised the sequence of morphological changes indicative of angiogenesis, i.e., basement membrane disruption, endothelial cell (EC) sprouting and proliferation [immunogold labelling after bromodeoxyuridine (BrdU) incorporation]. Capillary growth in response to increased blood flow occurred by luminal division without sprouting or basement membrane (BM) breakage. In stretched muscles, EC proliferation and abluminal sprouting gave rise to new capillaries, with BM loss only at sprout tips. These distinct mechanisms appear to be additive as in chronically stimulated muscles (increased blood flow with repetitive stretch and shortening during muscle contractions) both forms of capillary growth occurred. Endothelial cell numbers per capillary profile, mitotic EC nuclei, and BrdU labelling confirmed cell proliferation prior to overt angiogenesis. Physiological angiogenesis within adult skeletal muscle progresses by mechanisms that do not readily conform to the consensus view of capillary growth, derived mainly from observations made during development, pathological vessel growth, or from in vitro systems. The

  3. Immunology Guides Skeletal Muscle Regeneration

    OpenAIRE

    F. Andrea Sass; Michael Fuchs; Matthias Pumberger; Sven Geissler; Georg N. Duda; Carsten Perka; Katharina Schmidt-Bleek

    2018-01-01

    Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is d...

  4. Muscle necrosis - computer tomography aspects

    International Nuclear Information System (INIS)

    Franze, I.; Goebel, N.; Stuckmann, G.

    1985-01-01

    In four patients muscle necroses were observed. In two patients these were caused by intraoperative positioning, in one by having worked with a pneumatic hammer and in one possibly by alcohol. CT showed hypodense areas in the affected muscles which were - in the state of subacute necroses - surrounded by hyperaemic borders. The diagnosis was confirmed by puncture or biopsy. After six months hypodense areas were still perceptible in the atrophic muscles of two patients. (orig.) [de

  5. Muscle dysmorphia: current insights

    Directory of Open Access Journals (Sweden)

    Tod D

    2016-08-01

    Full Text Available David Tod1 Christian Edwards2 Ieuan Cranswick1 1School of Sport and Exercise Science, Faculty of Science, Liverpool John Moores University, Liverpool, Merseyside, 2Institute of Sport and Exercise Science, University of Worcester, Worcester, Worcestershire, UK Abstract: Since 1997, there has been increasing research focusing on muscle dysmorphia, a condition underpinned by people’s beliefs that they have insufficient muscularity, in both the Western and non-Western medical and scientific communities. Much of this empirical interest has surveyed nonclinical samples, and there is limited understanding of people with the condition beyond knowledge about their characteristics. Much of the existing knowledge about people with the condition is unsurprising and inherent in the definition of the disorder, such as dissatisfaction with muscularity and adherence to muscle-building activities. Only recently have investigators started to explore questions beyond these limited tautological findings that may give rise to substantial knowledge advances, such as the examination of masculine and feminine norms. There is limited understanding of additional topics such as etiology, prevalence, nosology, prognosis, and treatment. Further, the evidence is largely based on a small number of unstandardized case reports and descriptive studies (involving small samples, which are largely confined to Western (North American, British, and Australian males. Although much research has been undertaken since the term “muscle dysmorphia” entered the psychiatric lexicon in 1997, there remains tremendous scope for knowledge advancement. A primary task in the short term is for investigators to examine the extent to which the condition exists among well-defined populations to help determine the justification for research funding relative to other public health issues. A greater variety of research questions and designs may contribute to a broader and more robust knowledge base

  6. Muscle damage and muscle remodeling: no pain, no gain?

    Science.gov (United States)

    Flann, Kyle L; LaStayo, Paul C; McClain, Donald A; Hazel, Mark; Lindstedt, Stan L

    2011-02-15

    Skeletal muscle is a dynamic tissue that responds adaptively to both the nature and intensity of muscle use. This phenotypic plasticity ensures that muscle structure is linked to patterns of muscle use throughout the lifetime of an animal. The cascade of events that result in muscle restructuring - for example, in response to resistance exercise training - is often thought to be initiated by muscle damage. We designed this study to test the hypothesis that symptomatic (i.e. detectable) damage is a necessary precursor for muscle remodeling. Subjects were divided into two experimental populations: pre-trained (PT) and naive (NA). Demonstrable muscle damage was avoided in the PT group by a three-week gradual 'ramp-up' protocol. By contrast, the NA group was subjected to an initial damaging bout of exercise. Both groups participated in an eight-week high-force eccentric-cycle ergometry program (20 min, three times per week) designed to equate the total work done during training between the groups. The NA group experienced signs of damage, absent in the PT group, as indicated by greater than five times higher levels of plasma creatine kinase (CK) and self-reporting of initial perceived soreness and exertion, yet muscle size and strength gains were not different for the two groups. RT-PCR analysis revealed similar increases in levels of the growth factor IGF-1Ea mRNA in both groups. Likewise, the significant (Pmuscle volume) were equal in both groups. Finally, strength increases were identical for both groups (PT=25% and NA=26% improvement). The results of this study suggest that muscle rebuilding - for example, hypertrophy - can be initiated independent of any discernible damage to the muscle.

  7. Turning scar into muscle.

    Science.gov (United States)

    de Carvalho, Antonio Carlos Campos; Carvalho, Adriana Bastos

    2012-09-26

    After the demonstration that somatic cells could be reprogrammed to a pluripotent state, exciting new prospects were opened for the cardiac regeneration field. It did not take long for the development of strategies to convert somatic cells directly into cardiomyocytes. Despite the intrinsic difficulties of cell reprogramming, such as low efficiency, the therapeutic possibilities created by the ability to turn scar into muscle are enormous. Here, we discuss some of the major advances and strategies used in direct cardiac reprogramming and examine discrepancies and concerns that still need to be resolved in the field.

  8. Contractures and muscle disease.

    Science.gov (United States)

    Walters, R Jon

    2016-08-01

    Contractures are one of a handful of signs in muscle disease, besides weakness and its distribution, whose presence can help guide us diagnostically, a welcome star on the horizon. Contractures are associated with several myopathies, some with important cardiac manifestations, and consequently are important to recognise; their presence may also provide us with a potential satisfying 'penny dropping' diagnostic moment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Lipoxygenase in chicken muscle

    International Nuclear Information System (INIS)

    Grossman, S.; Bergman, M.; Sklan, D.

    1988-01-01

    The presence of lipoxygenase-type enzymes was demonstrated in chick muscles. Examination of the oxidation products of [ 14 C]arachidonic acid revealed the presence of 15-lipoxygenase. The enzyme was partially purified by affinity chromatography on linoleoyl-aminoethyl-Sepharose. The enzyme was stable on frozen storage, and activity was almost completely preserved after 12-month storage at -20 degree C. During this period the content of cis,cis-1,4-pentadiene fatty acids decreased slightly. It is suggested that lipoxygenase may be responsible for some of the oxidative changes occurring in fatty acids on frozen storage of chicken meat

  10. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...

  11. Nutritional interventions to preserve skeletal muscle mass

    NARCIS (Netherlands)

    Backx, Evelien M.P.

    2016-01-01

    Muscle mass is the main predictor for muscle strength and physical function. The amount of muscle mass can decline rapidly during periods of reduced physical activity or during periods of energy intake restriction. For athletes, it is important to maintain muscle mass, since the loss of muscle is

  12. Trunk extensor muscle fatigue influences trunk muscle activities.

    Science.gov (United States)

    Hoseinpoor, Tahere Seyed; Kahrizi, Sedighe; Mobini, Bahram

    2015-01-01

    Trunk muscles fatigue is one of the risk factors in workplaces and daily activities. Loads would be redistributed among active and passive tissues in a non-optimal manner in fatigue conditions. Therefore, a single tissue might be overloaded with minimal loads and as a result the risk of injury would increase. The goal of this paper was to assess the electromyographic response of trunk extensor and abdominal muscles after trunk extensor muscles fatigue induced by cyclic lifting task. This was an experimental study that twenty healthy women participated. For assessing automatic response of trunk extensor and abdominal muscles before and after the fatigue task, electromyographic activities of 6 muscles: thorasic erector spine (TES), lumbar erector spine (LES), lumbar multifidus (LMF), transverse abdominis/ internal oblique (TrA/IO), rectus abdominis (RA) and external oblique (EO) were recorded in standing position with no load and symmetric axial loads equal to 25% of their body weights. Statistical analysis showed that all the abdominal muscles activity decreased with axial loads after performing fatigue task but trunk extensor activity remained constant. Results of the current study indicated that muscle recruitment strategies changed with muscle fatigue and load bearing, therefore risks of tissue injury may increase in fatigue conditions.

  13. Aspects of smooth muscle function in molluscan catch muscle.

    Science.gov (United States)

    Twarog, B M

    1976-10-01

    1) Catch in Mytilus ABRM may be a specialization of a mechanism common to all muscles that gives rise to stretch resistance in the resting state. Catch appears to be due to actin myosin interaction. Since this interaction is regulated by nerves, it provides a convenient model for studying resting stretch resistance. 2) Studies of the structure of Mytilus ABRM revela two types of intercellular connections: a) direct connections between muscle fibers [these nexal (gap) junctions interconnect the muscle cells electrically]; b) muscle fiber-collagen-muscle fiber connections [these provide mechanical connections between muscle cells via collagen fibers]. The structure of Mytilus ABRM supports speculation that smooth muscle filaments are organized into contractile units. 3) A rise in cAMP levels occurs in response to the relaxing transmitter, serotonin. It is not certain whether the cAMP system directly controls the ability of the contractile proteins to interact or whether it regulates intracellular levels of Ca2+. 4) Calcium ions in activation are derived from two sources: an internal source, probably the sarcoplasmic reticulum, and an external source, across the muscle membrane. 5) The nature of catch remains in question, although most evidence favors the linkage hypothesis.

  14. Skeletal muscle sodium channelopathies.

    Science.gov (United States)

    Nicole, Sophie; Fontaine, Bertrand

    2015-10-01

    This is an update on skeletal muscle sodium channelopathies since knowledge in the field have dramatically increased in the past years. The relationship between two phenotypes and SCN4A has been confirmed with additional cases that remain extremely rare: severe neonatal episodic laryngospasm mimicking encephalopathy, which should be actively searched for since patients respond well to sodium channel blockers; congenital myasthenic syndromes, which have the particularity to be the first recessive Nav1.4 channelopathy. Deep DNA sequencing suggests the contribution of other ion channels in the clinical expressivity of sodium channelopathies, which may be one of the factors modulating the latter. The increased knowledge of channel molecular structure, the quantity of sodium channel blockers, and the availability of preclinical models would permit a most personalized choice of medication for patients suffering from these debilitating neuromuscular diseases. Advances in the understanding of the molecular structure of voltage-gated sodium channels, as well as availability of preclinical models, would lead to improved medical care of patients suffering from skeletal muscle, as well as other sodium channelopathies.

  15. Muscle force compensation among synergistic muscles after fatigue of a single muscle.

    Science.gov (United States)

    Stutzig, Norman; Siebert, Tobias

    2015-08-01

    The aim of this study was to examine control strategies among synergistic muscles after fatigue of a single muscle. It was hypothesized that the compensating mechanism is specific for each fatigued muscle. The soleus (SOL), gastrocnemius lateralis (GL) and medialis (GM) were fatigued in separate sessions on different days. In each experiment, subjects (n = 11) performed maximal voluntary contractions prior to and after fatiguing a single muscle (SOL, GL or GM) while the voluntary muscle activity and torque were measured. Additionally, the maximal single twitch torque of the plantarflexors and the maximal spinal reflex activity (H-reflex) of the SOL, GL and GM were determined. Fatigue was evoked using neuromuscular stimulation. Following fatigue the single twitch torque decreased by -20.1%, -19.5%, and -23.0% when the SOL, GL, or GM, have been fatigued. The maximal voluntary torque did not decrease in any session but the synergistic voluntary muscle activity increased significantly. Moreover, we found no alterations in spinal reflex activity. It is concluded that synergistic muscles compensate each other. Furthermore, it seems that self-compensating mechanism of the fatigued muscles occurred additionally. The force compensation does not depend on the function of the fatigued muscle. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Building Muscles, Keeping Muscles: Protein Turnover During Space Flight

    Science.gov (United States)

    Ferrando, Arny; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    As we age we lose muscle mass and strength. The problem is a matter of use it or lose it and more - a fact to which any active senior can attest. An imbalance in the natural cycle of protein turnover may be a contributing factor to decreased muscle mass. But the answer is not so simple, since aging is associated with changes in hormones, activity levels, nutrition, and often, disease. The human body constantly uses amino acids to build muscle protein, which then breaks down and must be replaced. When protein turnover gets out of balance, so that more protein breaks down than the body can replace, the result is muscle loss. This is not just the bane of aging, however. Severely burned people may have difficulty building new muscle long after the burned skin has been repaired. Answers to why we lose muscle mass and strength - and how doctors can fix it - may come from space. Astronauts usually eat a well-balanced diet and maintain an exercise routine to stay in top health. During long-duration flight, they exercise regularly to reduce the muscle loss that results from being in a near-weightless environment. Despite these precautions, astronauts lose muscle mass and strength during most missions. They quickly recover after returning to Earth - this is a temporary condition in an otherwise healthy population. Members of the STS-107 crew are participating in a study of the effects of space flight, hormone levels, and stress on protein turnover. When we are under stress, the body responds with a change in hormone levels. Researchers hypothesize that this stress-induced change in hormones along with the near-weightlessness might result in the body synthesizing less muscle protein, causing muscles to lose their strength and size. Astronauts, who must perform numerous duties in a confined and unusual environment, experience some stress during their flight, making them excellent candidates for testing the researchers' hypothesis.

  17. Site directed mutagenesis of Drosophila flightin disrupts phosphorylation and impairs flight muscle structure and mechanics.

    Science.gov (United States)

    Barton, Byron; Ayer, Gretchen; Maughan, David W; Vigoreaux, Jim O

    2007-01-01

    Flightin is a myosin rod binding protein that in Drosophila melanogaster is expressed exclusively in the asynchronous indirect flight muscles (IFM). Hyperphosphorylation of flightin coincides with the completion of myofibril assembly and precedes the emergence of flight competency in young adults. To investigate the role of flightin phosphorylation in vivo we generated three flightin null (fln(0)) Drosophila strains that express a mutant flightin transgene with two (Thr158, Ser 162), three (Ser139, Ser141, Ser145) or all five potential phosphorylation sites mutated to alanines. These amino acid substitutions result in lower than normal levels of flightin accumulation and transgenic strains that are unable to beat their wings. On two dimensional gels of IFM proteins, the transgenic strain with five mutant sites (fln(5STA)) is devoid of all phosphovariants, the transgenic strain with two mutant sites (fln(2TSA)) expresses only the two least acidic of the nine phosphovariants, and the transgenic strain with three mutant sites (fln(3SA)) expresses all nine phosphovariants, as the wild-type strain. These results suggest that phosphorylation of Thr158 and/or Ser162 is necessary for subsequent phosphorylation of other sites. All three transgenic strains show normal, albeit long, IFM sarcomeres in newly eclosed adults. In contrast, sarcomeres in fully mature fln(5STA) and fln(2TSA) adults show extensive breakdown while those in fln(3SA) are not as disordered. The fiber hypercontraction phenotype that characterizes fln(0) is fully evident in fln(5STA) and fln(2TSA) but partially rescued in fln(3SA). Mechanics on skinned fibers from newly eclosed flies show alterations in viscous modulus for fln(5STA) and fln(2TSA) that result in a significant reduction in oscillatory power output. Expression of fln(5STA) and fln(2TSA), but not fln(3SA), in a wild-type (fln(+)/fln(+)) background resulted in a dominant negative effect manifested as flight impairments and hypercontracted IFM

  18. Skeletal muscle regeneration is modulated by inflammation

    Directory of Open Access Journals (Sweden)

    Wenjun Yang

    2018-04-01

    Full Text Available Skeletal muscle regeneration is a complex process orchestrated by multiple steps. Recent findings indicate that inflammatory responses could play central roles in bridging initial muscle injury responses and timely muscle injury reparation. The various types of immune cells and cytokines have crucial roles in muscle regeneration process. In this review, we briefly summarise the functions of acute inflammation in muscle regeneration. The translational potential of this article: Immune system is closely relevant to the muscle regeneration. Understanding the mechanisms of inflammation in muscle regeneration is therefore critical for the development of effective regenerative, and therapeutic strategies in muscular disorders. This review provides information for muscle regeneration research regarding the effects of inflammation on muscle regeneration. Keywords: Chronic muscle disorders, Cytokines, Immune cells, Inflammation, Muscle regeneration, Muscle stem cells

  19. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  20. Muscle ultrasound in neuromuscular disorders.

    NARCIS (Netherlands)

    Pillen, S.; Arts, I.M.P.; Zwarts, M.J.

    2008-01-01

    Muscle ultrasound is a useful tool in the diagnosis of neuromuscular disorders, as these disorders result in muscle atrophy and intramuscular fibrosis and fatty infiltration, which can be visualized with ultrasound. Several prospective studies have reported high sensitivities and specificities in

  1. Human skeletal muscle biochemical diversity.

    Science.gov (United States)

    Tirrell, Timothy F; Cook, Mark S; Carr, J Austin; Lin, Evie; Ward, Samuel R; Lieber, Richard L

    2012-08-01

    The molecular components largely responsible for muscle attributes such as passive tension development (titin and collagen), active tension development (myosin heavy chain, MHC) and mechanosensitive signaling (titin) have been well studied in animals but less is known about their roles in humans. The purpose of this study was to perform a comprehensive analysis of titin, collagen and MHC isoform distributions in a large number of human muscles, to search for common themes and trends in the muscular organization of the human body. In this study, 599 biopsies were obtained from six human cadaveric donors (mean age 83 years). Three assays were performed on each biopsy - titin molecular mass determination, hydroxyproline content (a surrogate for collagen content) and MHC isoform distribution. Titin molecular mass was increased in more distal muscles of the upper and lower limbs. This trend was also observed for collagen. Percentage MHC-1 data followed a pattern similar to collagen in muscles of the upper extremity but this trend was reversed in the lower extremity. Titin molecular mass was the best predictor of anatomical region and muscle functional group. On average, human muscles had more slow myosin than other mammals. Also, larger titins were generally associated with faster muscles. These trends suggest that distal muscles should have higher passive tension than proximal ones, and that titin size variability may potentially act to 'tune' the protein's mechanotransduction capability.

  2. Protein Structure-Function Relationship at Work: Learning from Myopathy Mutations of the Slow Skeletal Muscle Isoform of Troponin T.

    Science.gov (United States)

    Mondal, Anupom; Jin, J-P

    2016-01-01

    Troponin T (TnT) is the sarcomeric thin filament anchoring subunit of the troponin complex in striated muscles. A nonsense mutation in exon 11 of the slow skeletal muscle isoform of TnT (ssTnT) gene ( TNNT1 ) was found in the Amish populations in Pennsylvania and Ohio. This single nucleotide substitution causes a truncation of the ssTnT protein at Glu 180 and the loss of the C-terminal tropomyosin (Tm)-binding site 2. As a consequence, it abolishes the myofilament integration of ssTnT and the loss of function causes an autosomal recessive nemaline myopathy (NM). More TNNT1 mutations have recently been reported in non-Amish ethnic groups with similar recessive NM phenotypes. A nonsense mutation in exon 9 truncates ssTnT at Ser 108 , deleting Tm-binding site 2 and a part of the middle region Tm-binding site 1. Two splicing site mutations result in truncation of ssTnT at Leu 203 or deletion of the exon 14-encoded C-terminal end segment. Another splicing mutation causes an internal deletion of the 39 amino acids encoded by exon 8, partially damaging Tm-binding site 1. The three splicing mutations of TNNT1 all preserve the high affinity Tm-binding site 2 but still present recessive NM phenotypes. The molecular mechanisms for these mutations to cause myopathy provide interesting models to study and understand the structure-function relationship of TnT. This focused review summarizes the current knowledge of TnT isoform regulation, structure-function relationship of TnT and how various ssTnT mutations cause recessive NM, in order to promote in depth studies for further understanding the pathogenesis and pathophysiology of TNNT1 myopathies toward the development of effective treatments.

  3. STARS knockout attenuates hypoxia-induced pulmonary arterial hypertension by suppressing pulmonary arterial smooth muscle cell proliferation.

    Science.gov (United States)

    Shi, Zhaoling; Wu, Huajie; Luo, Jianfeng; Sun, Xin

    2017-03-01

    STARS (STriated muscle Activator of Rho Signaling) is a sarcomeric protein, which expressed early in cardiac development and involved in pathological remodeling. Abundant evidence indicated that STARS could regulate cell proliferation, but it's exact function remains unclear. In this study, we aimed to investigate the role of STARS in the proliferation of pulmonary arterial smooth muscle cells (PASMC) and the potential effect on the progression of pulmonary arterial hypertension (PAH). In this study, we established a PAH mouse model through chronic hypoxia exposure as reflected by the increased RVSP and RVHI. Western blot and RT-qPCR detected the increased STARS protein and mRNA levels in PAH mice. Next, we cultured the primary PASMC from PAH mice. After STARS overexpression in PASMC, STARS, SRF and Egr-1 were up-regulated significantly. The MTT assay revealed an increase in cell proliferation. Flow cytometry showed a marked inhibition of cell apoptosis. However, STARS silence in PASMC exerted opposite effects with STARS overexpression. SRF siRNA transfection blocked the effects of STARS overexpression in PASMC. In order to further confirm the role of STARS in PAH mice in vivo, we exposed STARS knockout mice to hypoxia and found lower RVSP and RVHI in knockout mice as compared with controls. Our results not only suggest that STARS plays a crucial role in the development of PAH by increasing the proliferation of PASMC through activation of the SRF/Egr-1 pathway, but also provides a new mechanism for hypoxia-induced PAH. In addition, STARS may represent a potential treatment target. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. The Basis of Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    Antonio Musarò

    2014-01-01

    Full Text Available Muscle regeneration recapitulates many aspects of embryonic myogenesis and is an important homeostatic process of the adult skeletal muscle, which, after development, retains the capacity to regenerate in response to appropriate stimuli, activating the muscle compartment of stem cells, namely, satellite cells, as well as other precursor cells. Moreover, significant evidence suggests that while stem cells represent an important determinant for tissue regeneration, a “qualified” environment is necessary to guarantee and achieve functional results. It is therefore plausible that the loss of control over these cell fate decisions could lead to a pathological transdifferentiation, leading to pathologic defects in the regenerative process. This review provides an overview about the general aspects of muscle development and discusses the cellular and molecular aspects that characterize the five interrelated and time-dependent phases of muscle regeneration, namely, degeneration, inflammation, regeneration, remodeling, and maturation/functional repair.

  5. MR imaging of muscle diseases

    International Nuclear Information System (INIS)

    Kaiser, W.A.; Zeitler, E.; Schalke, B.C.G.

    1986-01-01

    Because of high soft-tissue contrast, MR imaging is especially suitable for the investigation of muscle diseases. Between March 1984 and March 1986, 76 patients with different types of muscle diseases were examined using a 1-T superconductive magnet (Siemens Magnetom). Studied were 14 patients with progressive muscular dystrophy (including carriers), 32 patients with myositis, four patients with myotonic dystrophy, six patients with spinal muscular atrophy, and 20 patients with other muscle diseases, including metabolic disorders. MR imaging showed typical signal patterns in affected muscle groups. These patterns can be used in the differential diagnosis, in biopsy planning, or in evaluation of response to therapy. The T1/T2 ratio especially seems to indicate very early stages of muscle disease

  6. Eccentric exercise-induced muscle damage impairs muscle glycogen repletion.

    Science.gov (United States)

    O'Reilly, K P; Warhol, M J; Fielding, R A; Frontera, W R; Meredith, C N; Evans, W J

    1987-07-01

    Five healthy untrained young male subjects were studied before, immediately after, and 10 days after a 45-min bout of eccentric exercise on a cycle ergometer (201 W). The subjects were sedentary at all other times and consumed a eucaloric meat-free diet. Needle biopsies of the vastus lateralis muscle were examined for intracellular damage and glycogen content. Immediately after exercise, muscle samples showed myofibrillar tearing and edema. At 10 days, there was myofibrillar necrosis, inflammatory cell infiltration, and no evidence of myofibrillar regeneration. Glycogen utilization during the exercise bout was 33 mmol glycosyl units/kg muscle, consistent with the metabolic intensity of 44% of maximal O2 uptake; however, the significant glycogen use by type II fibers contrasted with concentric exercise performed at this intensity. At 10 days after exercise, muscle glycogen was still depleted, in both type I and II fibers. It is possible that the alterations in muscle ultrastructures were related to the lack of repletion of muscle glycogen. Damage produced by eccentric exercise was more persistent than previously reported, indicating that more than 10 days may be necessary for recovery of muscle ultrastructure and carbohydrate reserves.

  7. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

      The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation...... that collagen plays a significant role in determining the tenderness of meat. What are we missing? Therefore, fundamental aspects of connective tissue research have been the centre of attention throughout this thesis. A holistic view has been applied, glancing at this complex tissue which has many facets...... in this thesis that alpha-ketoglutarate, a tricarboxylic acid cycle metabolite, has the potential to control the metabolism of this particular tissue. Finally, a new microscopic method is introduced which allows the study of thermal denaturation of fibrillar collagen and myofibers in real time without any label...

  8. Bulk muscles, loose cables.

    Science.gov (United States)

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-10-17

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. 2014 BMJ Publishing Group Ltd.

  9. Muscling out malaria

    DEFF Research Database (Denmark)

    Hughes, David Peter; Boomsma, Jacobus Jan

    2006-01-01

    ) [2] highlighted the back-to-back articles in Science 3 and 4 that demonstrated the potential biocontrol of malaria by targeting mosquitoes with entomopathogenic fungi (Metarhizium and Beauveria spp.). The wide impact of the original articles and the need to find alternatives to pesticidal control...... where malaria is endemic, humanity cannot afford shortcuts, because any failures owing to poor management or premature implementation will reduce local governmental support rather than enhance it (Andrew Read, pers. commun.). Therefore, if we are to ‘muscle out malaria', well...... of key importance, and the new focus on fungal biocontrol of malaria should therefore act as a catalyst for further research on the basic biology of fungal pathogens. Understanding morphological, biochemical or immune system-based resistance to insect pathogenic fungi will be easier if we know...

  10. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

    that collagen plays a significant role in determining the tenderness of meat. What are we missing? Therefore, fundamental aspects of connective tissue research have been the centre of attention throughout this thesis. A holistic view has been applied, glancing at this complex tissue which has many facets......  The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation....... Collagen, being the major protein in connective tissue, has been extensively investigated with regard to its relation to meat tenderness, but the results have been rather conflicting. Meat from older animals is tougher than that from younger animals, and changes in the properties of the collagen due...

  11. Physics of muscle contraction

    Science.gov (United States)

    Caruel, M.; Truskinovsky, L.

    2018-03-01

    In this paper we report, clarify and broaden various recent efforts to complement the chemistry-centered models of force generation in (skeletal) muscles by mechanics-centered models. The physical mechanisms of interest can be grouped into two classes: passive and active. The main passive effect is the fast force recovery which does not require the detachment of myosin cross-bridges from actin filaments and can operate without a specialized supply of metabolic fuel (ATP). In mechanical terms, it can be viewed as a collective folding-unfolding phenomenon in the system of interacting bi-stable units and modeled by near equilibrium Langevin dynamics. The active force generation mechanism operates at slow time scales, requires detachment and is crucially dependent on ATP hydrolysis. The underlying mechanical processes take place far from equilibrium and are represented by stochastic models with broken time reversal symmetry implying non-potentiality, correlated noise or multiple reservoirs. The modeling approaches reviewed in this paper deal with both active and passive processes and support from the mechanical perspective the biological point of view that phenomena involved in slow (active) and fast (passive) force generation are tightly intertwined. They reveal, however, that biochemical studies in solution, macroscopic physiological measurements and structural analysis do not provide by themselves all the necessary insights into the functioning of the organized contractile system. In particular, the reviewed body of work emphasizes the important role of long-range interactions and criticality in securing the targeted mechanical response in the physiological regime of isometric contractions. The importance of the purely mechanical micro-scale modeling is accentuated at the end of the paper where we address the puzzling issue of the stability of muscle response on the so called ‘descending limb’ of the isometric tetanus.

  12. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  13. Muscle channelopathies and electrophysiological approach

    Directory of Open Access Journals (Sweden)

    Cherian Ajith

    2008-01-01

    Full Text Available Myotonic syndromes and periodic paralyses are rare disorders of skeletal muscle characterized mainly by muscle stiffness or episodic attacks of weakness. Familial forms are caused by mutation in genes coding for skeletal muscle voltage ionic channels. Familial periodic paralysis and nondystrophic myotonias are disorders of skeletal muscle excitability caused by mutations in genes coding for voltage-gated ion channels. These diseases are characterized by episodic failure of motor activity due to muscle weakness (paralysis or stiffness (myotonia. Clinical studies have identified two forms of periodic paralyses: hypokalemic periodic paralysis (hypoKPP and hyperkalemic periodic paralysis (hyperKPP, based on changes in serum potassium levels during the attacks, and three distinct forms of myotonias: paramyotonia congenita (PC, potassium-aggravated myotonia (PAM, and myotonia congenita (MC. PC and PAM have been linked to missense mutations in the SCN4A gene, which encodes α subunit of the voltage-gated sodium channel, whereas MC is caused by mutations in the chloride channel gene (CLCN1. Exercise is known to trigger, aggravate, or relieve symptoms. Therefore, exercise can be used as a functional test in electromyography to improve the diagnosis of these muscle disorders. Abnormal changes in the compound muscle action potential can be disclosed using different exercise tests. Five electromyographic (EMG patterns (I-V that may be used in clinical practice as guides for molecular diagnosis are discussed.

  14. Immunology Guides Skeletal Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    F. Andrea Sass

    2018-03-01

    Full Text Available Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  15. Immunology Guides Skeletal Muscle Regeneration.

    Science.gov (United States)

    Sass, F Andrea; Fuchs, Michael; Pumberger, Matthias; Geissler, Sven; Duda, Georg N; Perka, Carsten; Schmidt-Bleek, Katharina

    2018-03-13

    Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  16. Skeletal muscle performance and ageing.

    Science.gov (United States)

    Tieland, Michael; Trouwborst, Inez; Clark, Brian C

    2018-02-01

    The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  17. Quinine for muscle cramps.

    Science.gov (United States)

    El-Tawil, Sherif; Al Musa, Tarique; Valli, Haseeb; Lunn, Michael P T; Brassington, Ruth; El-Tawil, Tariq; Weber, Markus

    2015-04-05

    Muscle cramps can occur anywhere and for many reasons. Quinine has been used to treat cramps of all causes. However, controversy continues about its efficacy and safety. This review was first published in 2010 and searches were updated in 2014. To assess the efficacy and safety of quinine-based agents in treating muscle cramps. On 27 October 2014 we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE and EMBASE. We searched reference lists of articles up to 2014. We also searched for ongoing trials in November 2014. Randomised controlled trials of people of all ages with muscle cramps in any location and of any cause, treated with quinine or its derivatives. Three review authors independently selected trials for inclusion, assessed risk of bias and extracted data. We contacted study authors for additional information. For comparisons including more than one trial, we assessed the quality of the evidence using Grading of Recommendations Assessment, Development and Evaluation (GRADE). We identified 23 trials with a total of 1586 participants. Fifty-eight per cent of these participants were from five unpublished studies. Quinine was compared to placebo (20 trials, n = 1140), vitamin E (four trials, n = 543), a quinine-vitamin E combination (three trials, n = 510), a quinine-theophylline combination (one trial, n = 77), and xylocaine injections into the gastrocnemius muscle (one trial, n = 24). The most commonly used quinine dosage was 300 mg/day (range 200 to 500 mg). We found no new trials for inclusion when searches were updated in 2014.The risk of bias in the trials varied considerably. All 23 trials claimed to be randomised, but only a minority described randomisation and allocation concealment adequately.Compared to placebo, quinine significantly reduced cramp number over two weeks by 28%, cramp intensity by 10%, and cramp days by 20%. Cramp duration was not significantly affected.A significantly greater number of people

  18. Elicitability of muscle cramps in different leg and foot muscles.

    Science.gov (United States)

    Minetto, Marco Alessandro; Botter, Alberto

    2009-10-01

    To explore the efficacy of muscle motor point stimulation in eliciting muscle cramps, 11 subjects underwent eight sessions of electrical stimulation of the following muscles bilaterally: abductor hallucis flexor hallucis brevis, and both heads of the gastrocnemius muscles. Bursts of 150 square wave stimuli (duration: 152 micros; current intensity: 30% supramaximal) were applied. The stimulation frequency was increased from 4 pulses per second (pps) at increments of 2 pps until a cramp was induced. The number of cramps that could be elicited was smaller in flexor hallucis brevis than in abductor hallucis (16 vs. 22 out of 22 trials each; P cramp susceptibility, and the intermuscle variability in the elicitability profile for electrically induced cramps supports the use of the proposed method for cramp research.

  19. The calf muscle pump revisited.

    Science.gov (United States)

    Williams, Katherine J; Ayekoloye, Olufemi; Moore, Hayley M; Davies, Alun H

    2014-07-01

    Chronic venous disease (CVD) defines the spectrum of manifestations of venous disease that originate as a result of ambulatory venous hypertension. Thus far, the role of the calf muscle pump in the development and potentiation of CVD has been overlooked and understated in the clinical setting, with much greater emphasis placed on reflux and obstruction. The aim of this review is to explore the level of significance that calf muscle pump function or dysfunction bears on the development and potentiation of CVD. EMBASE and MEDLINE databases were searched with keywords "calf" AND "muscle" AND "pump" AND "venous" AND "insufficiency" AND ("lower limb*" OR "leg*"), screened for cross-sectional and longitudinal studies relating to chronic venous insufficiency, highlighting the role of the calf muscle pump in CVD and the extent to which the calf muscle pump is impaired in these cases. This resulted in the inclusion of 10 studies. Compared with healthy subjects, patients with CVD have a reduced ejection fraction (15.9%; P calf muscle pump ejection ability as well as poor venous competence. Calf muscle pump dysfunction is present in 55% of patients with CVD in the literature, but this did not reach significance on meta-analysis. Isotonic exercise programs in patients with active and healed ulcers have been shown to increase calf muscle pump function but not venous competence. Calf muscle pump failure is a therapeutic target in the treatment of CVD. Evidence suggests that isotonic exercise treatment may be an effective method of increasing the hemodynamic performance of the calf muscle pump. This review emphasizes the requirement for more attention to be placed on the treatment of calf muscle pump failure in cases of CVD by use of exercise treatment programs or other methods, which may be of clinical importance in managing symptomatic disease. To establish this in routine clinical practice, these results would need to be replicated in appropriate clinical trials. It would

  20. Bigorexia: bodybuilding and muscle dysmorphia.

    Science.gov (United States)

    Mosley, Philip E

    2009-05-01

    Muscle dysmorphia is an emerging condition that primarily affects male bodybuilders. Such individuals obsess about being inadequately muscular. Compulsions include spending hours in the gym, squandering excessive amounts of money on ineffectual sports supplements, abnormal eating patterns or even substance abuse. In this essay, I illustrate the features of muscle dysmorphia by employing the first-person account of a male bodybuilder afflicted by this condition. I briefly outline the history of bodybuilding and examine whether the growth of this sport is linked to a growing concern with body image amongst males. I suggest that muscle dysmorphia may be a new expression of a common pathology shared with the eating disorders.

  1. Diabetic muscle infarction: radiologic evaluation

    International Nuclear Information System (INIS)

    Chason, D.P.; Fleckenstein, J.L.; Burns, D.K.; Rojas, G.

    1996-01-01

    Four patients with severe diabetes mellitus presenting with acute thigh pain, tenderness, and swelling were evaluated by imaging techniques and biopsy. Edema in the affected muscles was seen in two patients with MRI studies. Femoral artery calcification and mild muscle swelling was present in one patient who underwent CT. Decreased echogenicity was seen in the involved muscle in a patient studied with ultrasound. Serum enzymes were normal or mildly elevated in three patients (not reported in one). Biopsy demonstrated necrosis and regenerative change in all cases. MRI, although nonspecific, is the best imaging technique to suggest the diagnosis of DMI in the appropriate clinical setting, thereby obviating biopsy. (orig./MG)

  2. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons

    NARCIS (Netherlands)

    Visser, Marjolein; Goodpaster, Bret H; Kritchevsky, Stephen B; Newman, Anne B; Nevitt, Michael; Rubin, Susan M; Simonsick, Eleanor M; Harris, Tamara B

    BACKGROUND: Lower muscle mass has been correlated with poor physical function; however, no studies have examined this relationship prospectively. This study aims to investigate whether low muscle mass, low muscle strength, and greater fat infiltration into the muscle predict incident mobility

  3. Muscle strength and muscle endurance: with and without creatine supplementation

    OpenAIRE

    KEBRIT, Daniel; RANI, Sangeeta

    2014-01-01

    Creatine is one of the legal ergogenic aids which are used by athletes here and there. A number of studies assured that it has a positive effect in high intensity short duration intensity exercise performances. This study tried to evaluate the effect of creatine monohydrate supplements on muscle strength and muscle endurance. Twenty subjects (CG= 10 and EG= 10) were participated in three months of exercise training. In this study complete randomized design was used. The EG consumed creatine a...

  4. Up-regulation of alpha-smooth muscle actin in cardiomyocytes from non-hypertrophic and non-failing transgenic mouse hearts expressing N-terminal truncated cardiac troponin I

    Directory of Open Access Journals (Sweden)

    Stephanie Kern

    2014-01-01

    Full Text Available We previously reported that a restrictive N-terminal truncation of cardiac troponin I (cTnI-ND is up-regulated in the heart in adaptation to hemodynamic stresses. Over-expression of cTnI-ND in the hearts of transgenic mice revealed functional benefits such as increased relaxation and myocardial compliance. In the present study, we investigated the subsequent effect on myocardial remodeling. The alpha-smooth muscle actin (α-SMA isoform is normally expressed in differentiating cardiomyocytes and is a marker for myocardial hypertrophy in adult hearts. Our results show that in cTnI-ND transgenic mice of between 2 and 3 months of age (young adults, a significant level of α-SMA is expressed in the heart as compared with wild-type animals. Although blood vessel density was increased in the cTnI-ND heart, the mass of smooth muscle tissue did not correlate with the increased level of α-SMA. Instead, immunocytochemical staining and Western blotting of protein extracts from isolated cardiomyocytes identified cardiomyocytes as the source of increased α-SMA in cTnI-ND hearts. We further found that while a portion of the up-regulated α-SMA protein was incorporated into the sarcomeric thin filaments, the majority of SMA protein was found outside of myofibrils. This distribution pattern suggests dual functions for the up-regulated α-SMA as both a contractile component to affect contractility and as possible effector of early remodeling in non-hypertrophic, non-failing cTnI-ND hearts.

  5. Muscle soreness and delayed-onset muscle soreness.

    Science.gov (United States)

    Lewis, Paul B; Ruby, Deana; Bush-Joseph, Charles A

    2012-04-01

    Immediate and delayed-onset muscle soreness differ mainly in chronology of presentation. Both conditions share the same quality of pain, eliciting and relieving activities and a varying degree of functional deficits. There is no single mechanism for muscle soreness; instead, it is a culmination of 6 different mechanisms. The developing pathway of DOMS begins with microtrauma to muscles and then surrounding connective tissues. Microtrauma is then followed by an inflammatory process and subsequent shifts of fluid and electrolytes. Throughout the progression of these events, muscle spasms may be present, exacerbating the overall condition. There are a multitude of modalities to manage the associated symptoms of immediate soreness and DOMS. Outcomes of each modality seem to be as diverse as the modalities themselves. The judicious use of NSAIDs and continued exercise are suggested to be the most reliable methods and recommended. This review article and each study cited, however, represent just one part of the clinician's decisionmaking process. Careful affirmation of temporary deficits from muscle soreness is not to be taken lightly, nor is the advisement and medical management of muscle soreness prescribed by the clinician.

  6. Transcriptomic analysis of dystrophin RNAi knockdown reveals a central role for dystrophin in muscle differentiation and contractile apparatus organization

    Directory of Open Access Journals (Sweden)

    Graham Ian R

    2010-06-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. DMD has a complex and as yet incompletely defined molecular pathophysiology hindering development of effective ameliorative approaches. Transcriptomic studies so far conducted on dystrophic cells and tissues suffer from non-specific changes and background noise due to heterogeneous comparisons and secondary pathologies. A study design in which a perfectly matched control cell population is used as reference for transcriptomic studies will give a much more specific insight into the effects of dystrophin deficiency and DMD pathophysiology. Results Using RNA interference (RNAi to knock down dystrophin in myotubes from C57BL10 mice, we created a homogenous model to study the transcriptome of dystrophin-deficient myotubes. We noted significant differences in the global gene expression pattern between these myotubes and their matched control cultures. In particular, categorical analyses of the dysregulated genes demonstrated significant enrichment of molecules associated with the components of muscle cell contractile unit, ion channels, metabolic pathways and kinases. Additionally, some of the dysregulated genes could potentially explain conditions and endophenotypes associated with dystrophin deficiency, such as dysregulation of calcium homeostasis (Pvalb and Casq1, or cardiomyopathy (Obscurin, Tcap. In addition to be validated by qPCR, our data gains another level of validity by affirmatively reproducing several independent studies conducted previously at genes and/or protein levels in vivo and in vitro. Conclusion Our results suggest that in striated muscles, dystrophin is involved in orchestrating proper development and organization of myofibers as contractile units, depicting a novel pathophysiology for DMD where the absence of dystrophin results in maldeveloped myofibers prone to physical stress and damage

  7. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Elizabeth C. Coffey

    2018-03-01

    Full Text Available Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA, which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle.

  8. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  9. Muscle pain | Mogole | South African Family Practice

    African Journals Online (AJOL)

    Muscle pain, also known as myalgia, is most commonly associated with sprains or strains. It frequently presents as redness at the site of injury, tenderness, swelling and fever. Muscle pain may occur as a result of excitation of the muscle nociceptor due to overuse of the muscle, viral infections or trauma. The most important ...

  10. Quantitative muscle ultrasonography in amyotrophic lateral sclerosis.

    NARCIS (Netherlands)

    Arts, I.M.P.; Rooij, F.G. van; Overeem, S.; Pillen, S.; Janssen, H.M.; Schelhaas, H.J.; Zwarts, M.J.

    2008-01-01

    In this study, we examined whether quantitative muscle ultrasonography can detect structural muscle changes in early-stage amyotrophic lateral sclerosis (ALS). Bilateral transverse scans were made of five muscles or muscle groups (sternocleidomastoid, biceps brachii/brachialis, forearm flexor group,

  11. Diabetic muscle infarction: atypical MR appearance

    International Nuclear Information System (INIS)

    Sharma, P.; Mangwana, S.; Kapoor, R.K.

    2000-01-01

    We describe a case of diabetic muscle infarction which had atypical features of hyperintensity of the affected muscle on T1-weighted images. Biopsy was performed which revealed diffuse extensive hemorrhage within the infarcted muscle. We believe increased signal intensity on T1-weighted images should suggest hemorrhage within the infarcted muscle. (orig.)

  12. Unconventional Functions of Muscles in Planarian Regeneration.

    Science.gov (United States)

    Cutie, Stephen; Hoang, Alison T; Payumo, Alexander Y; Huang, Guo N

    2017-12-18

    Muscles are traditionally considered in the context of force generation. Scimone et al. (2017), reporting in Nature, now examine muscles in a developmental setting and find unexpected roles for distinct planarian muscle fibers. The authors show that muscles provide patterning signals to promote regeneration and guide tissue growth after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Exercise-induced muscle modifications

    International Nuclear Information System (INIS)

    Kerviler, E. de; Willig, A.L.; Jehenson, P.; Duboc, D.; Syrota, A.

    1990-01-01

    This paper compares changes in muscle proton T2 after exercise in normal subjects and in patients with muscular glycogenoses. Four patients suffering from muscular glycogenosis and eight normal volunteers were studied. Muscle T2s were measured in forearm muscles at rest and after exercise, with a 0.5-T imager. The exercise was performed with handgrips and was evaluated by P-31 spectroscopy (end-exercise decrease in pH and phosphocreatine) performed with a 2-T magnet. In normal subjects, a relative T2 increase, ranging from 14% to 44%, was observed in the exercised muscles. In the patients, who cannot produce lactate during exercise, weak pH variation occurred, and only a slight T2 increase (7% - 9%) was observed

  14. Simvastatin effects on skeletal muscle

    DEFF Research Database (Denmark)

    Larsen, Steen; Stride, Nis; Hey-Mogensen, Martin

    2013-01-01

    Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9)....

  15. Muscle dysfunction in cancer patients

    DEFF Research Database (Denmark)

    Christensen, Jesper Frank; Jones, L W; Andersen, J L

    2014-01-01

    dysfunction in cancer patients lies in the correlation to vital clinical end points such as cancer-specific and all-cause mortality, therapy complications and quality of life (QoL). Such associations strongly emphasize the need for effective therapeutic countermeasures to be developed and implemented......BACKGROUND: Muscle dysfunction is a prevalent phenomenon in the oncology setting where patients across a wide range of diagnoses are subject to impaired muscle function regardless of tumor stage and nutritional state. Here, we review the current evidence describing the degree, causes and clinical...... dysfunction is evident across all stages of the cancer trajectory. The causes of cancer-related muscle dysfunction are complex, but may involve a wide range of tumor-, therapy- and/or lifestyle-related factors, depending on the clinical setting of the individual patient. The main importance of muscle...

  16. Muscle Activation and Movement Coordination.

    OpenAIRE

    Ljung, Carl

    2014-01-01

    The purpose of this project was to empirically develop a method of using electromyography to identify how humans coordinate their muscles during certain sequences of movement and the effect of an injured anterior cruciate ligament to muscle coordination. In this study, more simple movements of the lower extremities are examined and relatively accurate hypothesizes can be made solely based on anatomical theory. However, a general method for electromyographic studies would open up the possibili...

  17. Determinants of muscle carnosine content.

    Science.gov (United States)

    Harris, R C; Wise, J A; Price, K A; Kim, H J; Kim, C K; Sale, C

    2012-07-01

    The main determinant of muscle carnosine (M-Carn) content is undoubtedly species, with, for example, aerobically trained female vegetarian athletes [with circa 13 mmol/kg dry muscle (dm)] having just 1/10th of that found in trained thoroughbred horses. Muscle fibre type is another key determinant, as type II fibres have a higher M-Carn or muscle histidine containing dipeptide (M-HCD) content than type I fibres. In vegetarians, M-Carn is limited by hepatic synthesis of β-alanine, whereas in omnivores this is augmented by the hydrolysis of dietary supplied HCD's resulting in muscle levels two or more times higher. β-alanine supplementation will increase M-Carn. The same increase in M-Carn occurs with administration of an equal molar quantity of carnosine as an alternative source of β-alanine. Following the cessation of supplementation, M-Carn returns to pre-supplementation levels, with an estimated t1/2 of 5-9 weeks. Higher than normal M-Carn contents have been noted in some chronically weight-trained subjects, but it is unclear if this is due to the training per se, or secondary to changes in muscle fibre composition, an increase in β-alanine intake or even anabolic steroid use. There is no measureable loss of M-Carn with acute exercise, although exercise-induced muscle damage may result in raised plasma concentrations in equines. Animal studies indicate effects of gender and age, but human studies lack sufficient control of the effects of diet and changes in muscle fibre composition.

  18. Influence of muscle geometry on shortening speed of fibre, aponeurosis and muscle

    NARCIS (Netherlands)

    Zuurbier, C. J.; Huijing, P. A.

    1992-01-01

    The influence of muscle geometry on muscle shortening of the gastrocnemius medialis muscle (GM) of the rat was studied. Using cinematography, GM geometry was studied during isokinetic concentric activity at muscle lengths ranging from 85 to 105% of the optimum muscle length. The shortening speed of

  19. Assessment of muscle fatigue using electromygraphm sensing

    Science.gov (United States)

    Helmi, Muhammad Hazimin Bin; Ping, Chew Sue; Ishak, Nur Elliza Binti; Saad, Mohd Alimi Bin Mohd; Mokhtar, Anis Shahida Niza Binti

    2017-08-01

    Muscle fatigue is condition of muscle decline in ability after undergoing any physical activity. Observation of the muscle condition of an athlete during training is crucial to prevent or minimize injury and able to achieve optimum performance in actual competition. The aim of this project is to develop a muscle monitoring system to detect muscle fatigue in swimming athlete. This device is capable to measure muscle stress level of the swimmer and at the same time provide indication of muscle fatigue level to trainer. Electromyography signal was recorded from the muscle movement while practicing the front crawl stroke repetitively. The time domain data was processed to frequency spectra in order to study the effect of muscle fatigue. The results show that the recorded EMG signal is able to sense muscle fatigue.

  20. Variability of femoral muscle attachments.

    Science.gov (United States)

    Duda, G N; Brand, D; Freitag, S; Lierse, W; Schneider, E

    1996-09-01

    Analytical and experimental models of the musculoskeletal system often assume single values rather than ranges for anatomical input parameters. The hypothesis of the present study was that anatomical variability significantly influences the results of biomechanical analyses, specifically regarding the moment arms of the various thigh muscles. Insertions and origins of muscles crossing or attaching to the femur were digitized in six specimens. Muscle volumes were measured; muscle attachment area and centroid location were computed. To demonstrate the influence of inter-individual anatomic variability on a mechanical modeling parameter, the corresponding range of muscle moment arms were calculated. Standard deviations, as a percentage of the mean, were about 70% for attachment area and 80% for muscle volume and attachment centroid location. The resulting moment arms of the m. gluteus maximus and m. rectus femoris were especially sensitive to anatomical variations (SD 65%). The results indicate that sensitivity to anatomical variations should be analyzed in any investigation simulating musculoskeletal interactions. To avoid misinterpretations, investigators should consider using several anatomical configurations rather than relying on a mean data set.

  1. Morphology of peroneus tertius muscle.

    Science.gov (United States)

    Joshi, S D; Joshi, S S; Athavale, S A

    2006-10-01

    Peroneus tertius (PT) muscle is peculiar to man, and man is the only member among the primates in whom this muscle occurs. The muscle is variable in its development and attachment. Because of functional demands of bipedal gait and plantigrade foot, part of extensor digitorum brevis (EDB) has migrated upwards into the leg from the dorsum of foot. PT is a muscle that evolution is rendering more important. In a total of 110 cadavers, extensor compartment of leg and dorsum of foot were dissected in both the lower limbs and extensor digitorum longus (EDL), and PT muscles were dissected and displayed. PT was found to be absent in 10.5% limbs, the incidence being greater on the right side. The remaining limbs in which the PT muscle was present had a very extensive origin from lower 3/4th of extensor surface of fibula (20% on right and in 17% on left), and the EDL was very much reduced in size. In approximately 12%, the tendon of PT was thick or even thicker than the tendon of EDL. In 4%, the tendon extended beyond fifth metatarsal up to metatarsophalangeal joint of fifth toe, and in 1.5%, it extended up to the proximal phalanx of little toe. In two cases (both on the right side), where PT was absent, it was replaced by a slip from lateral margin of EDL. We conclude that PT, which is preeminently human, is extending its purchase both proximally and distally. Copyright 2006 Wiley-Liss, Inc.

  2. Mitochondrial respiration in hummingbird flight muscles.

    OpenAIRE

    Suarez, R K; Lighton, J R; Brown, G S; Mathieu-Costello, O

    1991-01-01

    Respiration rates of muscle mitochondria in flying hummingbirds range from 7 to 10 ml of O2 per cm3 of mitochondria per min, which is about 2 times higher than the range obtained in the locomotory muscles of mammals running at their maximum aerobic capacities (VO2max). Capillary volume density is higher in hummingbird flight muscles than in mammalian skeletal muscles. Mitochondria occupy approximately 35% of fiber volume in hummingbird flight muscles and cluster beneath the sarcolemmal membra...

  3. Muscle ultrasound measurements and functional muscle parameters in non-dystrophic myotonias suggest structural muscle changes.

    NARCIS (Netherlands)

    Trip, J.; Pillen, S.; Faber, C.G.; Engelen, B.G.M. van; Zwarts, M.J.; Drost, G.

    2009-01-01

    Patients with non-dystrophic myotonias, including chloride (myotonia congenita) and sodium channelopathies (paramyotonia congenita/potassium aggravated myotonias), may show muscular hypertrophy in combination with some histopathological abnormalities. However, the extent of muscle changes has never

  4. Effect of acupuncture depth on muscle pain

    Directory of Open Access Journals (Sweden)

    Kitakoji Hiroshi

    2011-06-01

    Full Text Available Abstract Background While evidence supports efficacy of acupuncture and/or dry needling in treating musculoskeletal pain, it is unclear which needling method is most effective. This study aims to determine the effects of depth of needle penetration on muscle pain. Methods A total of 22 healthy volunteers performed repeated eccentric contractions to induce muscle soreness in their extensor digital muscle. Subjects were assigned randomly to four groups, namely control group, skin group (depth of 3 mm: the extensor digital muscle, muscle group (depth of 10 mm: the extensor digital muscle and non-segmental group (depth of 10 mm: the anterior tibial muscle. Pressure pain threshold and electrical pain threshold of the skin, fascia and muscle were measured at a point 20 mm distal to the maximum tender point on the second day after the exercise. Results Pressure pain thresholds of skin group (depth of 3 mm: the extensor digital muscle and muscle group (depth of 10 mm: the extensor digital muscle were significantly higher than the control group, whereas the electrical pain threshold at fascia of muscle group (depth of 10 mm: the extensor digital muscle was a significantly higher than control group; however, there was no significant difference between the control and other groups. Conclusion The present study shows that acupuncture stimulation of muscle increases the PPT and EPT of fascia. The depth of needle penetration is important for the relief of muscle pain.

  5. Novel muscle spindles containing muscle fibers devoid of sensory innervation in the extensor digitorum longus muscle of aged rats.

    Science.gov (United States)

    Desaki, Junzo; Nishida, Naoya

    2008-04-01

    We examined the structural features of muscle spindles at the equatorial and juxtaequatorial regions in the extensor digitorum longus muscle of adult (12 months) and aged (25 months) rats. In aged muscle spindles, the lamellated layers of the spindle capsule were a little increased in number compared to those in the adult ones. Two novel muscle spindles were observed in the aged muscle. In one muscle spindle, the spindle capsule contained four thin intrafusal muscle fibers invested by the inner capsule and two muscle fibers between the layers of the spindle capsule. Serial semithin sections revealed that the latter lacked the investment of the spindle capsule at the polar region. The other muscle spindle contained four intrafusal muscle fibers: two thin sensory-innervated muscle fibers invested by the inner capsule and two thick muscle fibers similar in structural features to neighboring extrafusal muscle fibers and lacking sensory innervation within the wide periaxial space. These findings suggest that two muscle fibers between the layers of the spindle capsule may be invested by the newly formed capsular cells during aging, while two thick fibers within the periaxial space may fail to receive the sensory innervation during the early development and follow the course of extrafusal fiber differentiation.

  6. Empirical Evaluation of Voluntarily Activatable Muscle Synergies

    Directory of Open Access Journals (Sweden)

    Shunta Togo

    2017-09-01

    Full Text Available The muscle synergy hypothesis assumes that individual muscle synergies are independent of each other and voluntarily controllable. However, this assumption has not been empirically tested. This study tested if human subjects can voluntarily activate individual muscle synergies extracted by non-negative matrix factorization (NMF, the standard mathematical method for synergy extraction. We defined the activation of a single muscle synergy as the generation of a muscle activity pattern vector parallel to the single muscle synergy vector. Subjects performed an isometric force production task with their right hand, and the 13 muscle activity patterns associated with their elbow and shoulder movements were measured. We extracted muscle synergies during the task using electromyogram (EMG data and the NMF method with varied numbers of muscle synergies. The number (N of muscle synergies was determined by using the variability accounted for (VAF, NVAF and the coefficient of determination (CD, NCD. An additional muscle synergy model with NAD was also considered. We defined a conventional muscle synergy as the muscle synergy extracted by the NVAF, NCD, and NAD. We also defined an extended muscle synergy as the muscle synergy extracted by the NEX> NAD. To examine whether the individual muscle synergy was voluntarily activatable or not, we calculated the index of independent activation, which reflects similarities between a selected single muscle synergy and the current muscle activation pattern of the subject. Subjects were visually feed-backed the index of independent activation, then instructed to generate muscle activity patterns similar to the conventional and extended muscle synergies. As a result, an average of 90.8% of the muscle synergy extracted by the NVAF was independently activated. However, the proportion of activatable muscle synergies extracted by NCD and NAD was lower. These results partly support the assumption of the muscle synergy

  7. Muscle strength rather than muscle mass is associated with osteoporosis in older Chinese adults

    Directory of Open Access Journals (Sweden)

    Yixuan Ma

    2018-02-01

    Conclusion: Based on our study, muscle strength rather than muscle mass is negatively associated with OS in older people; thus, we should pay more attention to muscle strength training in the early stage of the OS.

  8. RETARDATION OF MUSCLE GROWTH IN CASTRATED MALE MICE:

    African Journals Online (AJOL)

    the absolute weights and the muscle mass indices of the muscles of castrated males were ... Muscles, Mice. INTRODUCTION rat levator ani muscles. It was noted that the hypertrophy of the muscle was a result. Muscles of adult male mice are invariably of increase in myofibrilar material .... (1976): Skeletal muscle cellularity.

  9. Inspiratory muscle training attenuates the human respiratory muscle metaboreflex

    Science.gov (United States)

    Witt, Jonathan D; Guenette, Jordan A; Rupert, Jim L; McKenzie, Donald C; Sheel, A William

    2007-01-01

    We hypothesized that inspiratory muscle training (IMT) would attenuate the sympathetically mediated heart rate (HR) and mean arterial pressure (MAP) increases normally observed during fatiguing inspiratory muscle work. An experimental group (Exp, n = 8) performed IMT 6 days per week for 5 weeks at 50% of maximal inspiratory pressure (MIP), while a control group (Sham, n = 8) performed IMT at 10% MIP. Pre- and post-training, subjects underwent a eucapnic resistive breathing task (RBT) (breathing frequency = 15 breaths min−1, duty cycle = 0.70) while HR and MAP were continuously monitored. Following IMT, MIP increased significantly (P inspiratory work. We attribute our findings to a reduced activity of chemosensitive afferents within the inspiratory muscles and may provide a mechanism for some of the whole-body exercise endurance improvements associated with IMT. PMID:17855758

  10. Passive Viscoelastic Properties of Costameres in EDL Skeletal Muscle in Normal and Dystrophin Null Mice

    Science.gov (United States)

    García-Pelagio, Karla P.; Bloch, Robert J.; Ortega, Alicia; Gonzalez-Serratos, Hugo

    2008-08-01

    Costameres at the sarcolemmal skeletal myofibers transmit the lateral force generated by myofibrils from them to the extracellular matrix. We used an elastimeter method by which sucking pressure is applied through a micropipette to the surface membrane of single mice myofibers of the Extensor digitorum longus to measure the viscoelasticity of the sarcolemma-costamere complex as a function of sarcomere length (SL). Constant suction pressure applied to the sarcolemma generated a sarcolemmal-costamere-myofibril bleb of variable height depending on the sucking pressure and SL. It took some time for the bleb to reach a stable height after applying the pressure. This time delay indicates that the sarcolemma-costamere-myofibril system acts as a viscoelastic system. We undertook the present experiments to measure the height stabilization time of the bleb at different sarcomere lengths from which we estimated the viscoelastic parameters of the system. The time course of the bleb formation was biphasic and reached a plateau between 3.5 to 1.3 and 4.9 to 3.5 min for normal and dystrophic mice respectively depending on SL of 3.0 to 5.6 μm. Based on a Maxwell-Voigt system we found the viscoelastic parameters such as viscosity, friction coefficient and the costameres (k) and sarcolemma (k1) elasticity constants.

  11. Inspiratory muscle training for asthma.

    Science.gov (United States)

    Silva, Ivanizia S; Fregonezi, Guilherme A F; Dias, Fernando A L; Ribeiro, Cibele T D; Guerra, Ricardo O; Ferreira, Gardenia M H

    2013-09-08

    In some people with asthma, expiratory airflow limitation, premature closure of small airways, activity of inspiratory muscles at the end of expiration and reduced pulmonary compliance may lead to lung hyperinflation. With the increase in lung volume, chest wall geometry is modified, shortening the inspiratory muscles and leaving them at a sub-optimal position in their length-tension relationship. Thus, the capacity of these muscles to generate tension is reduced. An increase in cross-sectional area of the inspiratory muscles caused by hypertrophy could offset the functional weakening induced by hyperinflation. Previous studies have shown that inspiratory muscle training promotes diaphragm hypertrophy in healthy people and patients with chronic heart failure, and increases the proportion of type I fibres and the size of type II fibres of the external intercostal muscles in patients with chronic obstructive pulmonary disease. However, its effects on clinical outcomes in patients with asthma are unclear. To evaluate the efficacy of inspiratory muscle training with either an external resistive device or threshold loading in people with asthma. We searched the Cochrane Airways Group Specialised Register of trials, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov and reference lists of included studies. The latest search was performed in November 2012. We included randomised controlled trials that involved the use of an external inspiratory muscle training device versus a control (sham or no inspiratory training device) in people with stable asthma. We used standard methodological procedures expected by The Cochrane Collaboration. We included five studies involving 113 adults. Participants in four studies had mild to moderate asthma and the fifth study included participants independent of their asthma severity. There were substantial differences between the studies, including the training protocol, duration of training sessions (10 to 30

  12. Laughing: a demanding exercise for trunk muscles.

    Science.gov (United States)

    Wagner, Heiko; Rehmes, Ulrich; Kohle, Daniel; Puta, Christian

    2014-01-01

    Social, psychological, and physiological studies have provided evidence indicating that laughter imposes an increased demand on trunk muscles. It was the aim of this study to quantify the activation of trunk muscles during laughter yoga in comparison with crunch and back lifting exercises regarding the mean trunk muscle activity. Muscular activity during laughter yoga exercises was measured by surface electromyography of 5 trunk muscles. The activation level of internal oblique muscle during laughter yoga is higher compared to the traditional exercises. The multifidus, erector spinae, and rectus abdominis muscles were nearly half activated during laughter yoga, while the activation of the external oblique muscle was comparable with the crunch and back lifting exercises. Our results indicate that laughter yoga has a positive effect on trunk muscle activation. Thus, laughter seems to be a good activator of trunk muscles, but further research is required whether laughter yoga is a good exercise to improve neuromuscular recruitment patterns for spine stability.

  13. Nuclear Positioning in Muscle Development and Disease

    Directory of Open Access Journals (Sweden)

    Eric eFolker

    2013-12-01

    Full Text Available Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, the nuclei are often clustered within the center of the muscle cell. Although this phenotype has been acknowledged for several decades, it is often ignored as a contributor to muscle weakness. Rather, these nuclei are taken only as a sign of muscle repair. Here we review the evidence that mispositioned myonuclei are not merely a symptom of muscle disease but also a cause. Additionally, we review the working models for how myonuclei move from two different perspectives, from that of the nucleus and from that of the cytoskeleton. We further compare and contrast these mechanisms with the mechanisms of nuclear movement in other cell types both to draw general themes for nuclear movement and to identify muscle-specific considerations. Finally, we focus on factors that can be linked to muscle disease and find that genes that regulate myonuclear movement and positioning have been linked to muscular dystrophy. Although the cause-effect relationship is largely speculative, recent data indicate that the position of nuclei should no longer be considered only a means to diagnose muscle disease.

  14. Diagnosis of skeletal muscle channelopathies.

    Science.gov (United States)

    Spillane, Jennifer; Fialho, Doreen; Hanna, Michael G

    2013-11-01

    Skeletal muscle channelopathies are rare disorders of muscle membrane excitability. Their episodic nature may result in diagnostic difficulty and delays in diagnosis. Advances in diagnostic clinical electrophysiology combined with DNA-based diagnosis have improved diagnostic accuracy and efficiency. Ascribing pathogenic status to identified genetic variants in muscle channel genes may be complex and functional analysis, including molecular expression, may help with this. Accurate clinical and genetic diagnosis enables genetic counselling, advice regarding prognosis and aids treatment selection. An approach to accurate and efficient diagnosis is outlined. The importance of detailed clinical evaluation including careful history, examination and family history is emphasised. The role of specialised electrodiagnostics combined with DNA testing and molecular expression is considered. New potential biomarkers including muscle MRI using MRC Centre protocols are discussed. A combined diagnostic approach using careful clinical assessment, specialised neurophysiology and DNA testing will now achieve a clear diagnosis in most patients with muscle channelopathies. An accurate diagnosis enables genetic counselling and provides information regarding prognosis and treatment selection. Genetic analysis often identifies new variants of uncertain significance. In this situation, functional expression studies as part of a diagnostic service will enable determination of pathogenic status of novel genetic variants.

  15. Muscle channelopathies and related diseases.

    Science.gov (United States)

    Fontaine, Bertrand

    2013-01-01

    Muscle channelopathies and related disorders are neuromuscular disorders predominantly of genetic origin which are caused by mutations in ion channels or genes that play a role in muscle excitability. They include different forms of periodic paralysis which are characterized by acute and reversible attacks of muscle weakness concomitant to changes in blood potassium levels. These disorders may also present as distinguishable myotonic syndromes (slowed muscle relaxation) which have in common lack of involvement of dystrophic changes of the muscle, in contrast to dystrophia myotonica. Recent advances have been made in the diagnosis of these different disorders, which require, in addition to a careful clinical evaluation, detailed EMG and molecular study. Although these diseases are rare, they deserve attention since patients may benefit from drugs which can dramatically improve their condition. Patients may have atypical presentations, sometimes life-threatening, which may delay a proper diagnosis, mostly in the first months of life. The creation of specialized reference centers in the Western world has greatly benefited the proper recognition of these neuromuscular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The Skeletal Muscle Satellite Cell

    Science.gov (United States)

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  17. Regeneration of muscle fibers in the extensor digitorum longus muscle of the aged rat.

    Science.gov (United States)

    Desaki, Junzo

    2008-04-01

    Regeneration of muscle fibers was observed in the extensor digitorum longus (EDL) muscle of aged (24 and 27 months) Wistar rats. The aged muscles consisted almost exclusively of medium-sized muscle fibers. In addition to degenerating and/or atrophied muscle fibers, very small muscle fibers <10 mum in diameter were observed in some muscle bundles which sporadically distributed in the muscle. In the degenerating muscle fibers, satellite cells mostly appeared to be normal, possibly surviving within the scaffold of basal lamina to form new (regenerating) muscle fibers. However, some of the satellite cells were degenerated and destroyed, suggesting the decrease in number of muscle fibers. On the other hand, very small muscle fibers existed between small and/or medium-sized muscle fibers or in the wide interstitial spaces between them solitarily or in small groups. In addition, immature muscle cells having a centrally located nucleus and sporadically distributed myofilaments were observed among the small and/or medium-sized muscle fibers and partially lacked a layer of basal lamina. These immature muscle cells were often closely apposed to fibroblasts with some slender cytoplasmic processes and/or to each other without an interposing basal lamina. These findings suggest that in addition to satellite cells within the basal lamina tubes, some of the regenerating muscle fibers in the aged EDL muscle may be originated from mesenchymal cells such as fibroblasts in the interstitial spaces.

  18. A further observation of muscle spindles in the extensor digitorum longus muscle of the aged rat.

    Science.gov (United States)

    Desaki, Junzo; Nishida, Naoya

    2010-01-01

    We observed three novel muscle spindles in the extensor digitorum longus muscle of the aged (20 months) rat. Two muscle spindles of the three contained thin muscle fibers lacking sensory innervation between the layers of the spindle capsule and within the periaxial space, respectively. The other one contained sensory-innervated thin muscle fibers with an indistinct equatorial nucleation between the layers of the spindle capsule. These findings suggest that the occurrence of thin muscle fibers may be intimately related to the degeneration and regeneration of extrafusal muscle fibers during aging and that these newly formed thin muscle fibers may often fail to receive sensory innervation.

  19. Exercise Promotes Healthy Aging of Skeletal Muscle

    Science.gov (United States)

    Cartee, Gregory D.; Hepple, Russell T.; Bamman, Marcas M.; Zierath, Juleen R.

    2016-01-01

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics, and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes “healthy aging” by inducing modifications in skeletal muscle. PMID:27304505

  20. Partial muscle carnitine palmitoyltransferase-A deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Ross, N.S.; Hoppel, C.L.

    1987-01-02

    After initiation of ibuprofen therapy, a 45-year-old woman developed muscle weakness and tenderness with rhabdomyolysis, culminating in respiratory failure. A muscle biopsy specimen showed a vacuolar myopathy, and markedly decreased muscle carnitine content and carnitine palmitoyltransferase activity. Following recovery, muscle carnitine content was normal but carnitine palmitoyltransferase activity was still abnormally low. The ratio of palmitoyl-coenzyme A plus carnitine to palmitoylcarnitine oxidation by muscle mitochondria isolated from the patient was markedly decreased. The authors conclude that transiently decreased muscle carnitine content interacted with partial deficiency of carnitine palmitoyltransferase-A to produce rhabdomyolysis and respiratory failure and that ibuprofen may have precipitated the clinical event.

  1. Partial muscle carnitine palmitoyltransferase-A deficiency

    International Nuclear Information System (INIS)

    Ross, N.S.; Hoppel, C.L.

    1987-01-01

    After initiation of ibuprofen therapy, a 45-year-old woman developed muscle weakness and tenderness with rhabdomyolysis, culminating in respiratory failure. A muscle biopsy specimen showed a vacuolar myopathy, and markedly decreased muscle carnitine content and carnitine palmitoyltransferase activity. Following recovery, muscle carnitine content was normal but carnitine palmitoyltransferase activity was still abnormally low. The ratio of palmitoyl-coenzyme A plus carnitine to palmitoylcarnitine oxidation by muscle mitochondria isolated from the patient was markedly decreased. The authors conclude that transiently decreased muscle carnitine content interacted with partial deficiency of carnitine palmitoyltransferase-A to produce rhabdomyolysis and respiratory failure and that ibuprofen may have precipitated the clinical event

  2. Vitamin D and muscle function.

    Science.gov (United States)

    Dawson-Hughes, Bess

    2017-10-01

    Muscle weakness is a hallmark of severe vitamin D deficiency, but the effect of milder vitamin D deficiency or insufficiency on muscle mass and performance and risk of falling is uncertain. In this presentation, I review the evidence that vitamin D influences muscle mass and performance, balance, and risk of falling in older adults. Special consideration is given to the impact of both the starting 25-hydroxyvitamin D [25(OH)D] level and the dose administered on the clinical response to supplemental vitamin D in older men and women. Based on available evidence, older adults with serum 25(OH)D levels vitamin D dose range of 800-1000 IU per day has been effective in many studies; lower doses have generally been ineffective and several doses above this range have increased the risk of falls. In conclusion, older adults with serum 25(OH)D levels vitamin D. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    Science.gov (United States)

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these muscles is such that it might be difficult (particularly in the older animals) to cut a transverse section through all the fibres contained in the muscle; some fibres might not enter the plane of section. Results on muscle fibre number in these muscles at different ages may therefore be misleading.

  4. Muscle cramps in liver disease.

    Science.gov (United States)

    Mehta, Shivang S; Fallon, Michael B

    2013-11-01

    Muscle cramps are common in patients with liver disease and adversely influence quality of life. The exact mechanisms by which they occur remain unclear, although a number of pathophysiological events unique to liver disease may contribute. Clinical studies have identified alterations in 3 areas: nerve function, energy metabolism, and plasma volume/electrolytes. Treatments have focused on these particular areas with varied results. This review will focus on the clinical features of muscle cramps in patients with liver disease and review potential mechanisms and current therapies. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Muscle after spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Kristensen, Ida Bruun; Kjaer, Michael

    2009-01-01

    The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers...... years after the injury. There is a progressive drop in the proportion of slow myosin heavy chain (MHC) isoform fibers and a rise in the proportion of fibers that coexpress both the fast and slow MHC isoforms. The oxidative enzymatic activity starts to decline after the first few months post-SCI. Muscles...

  6. Spontaneous waves in muscle fibres

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Stefan; Kruse, Karsten [Department of Theoretical Physics, Saarland University, 66041 Saarbruecken (Germany); Max Planck Institute for the Physics of Complex Systems, Noethnitzer Street 38, 01187 Dresden (Germany)

    2007-11-15

    Mechanical oscillations are important for many cellular processes, e.g. the beating of cilia and flagella or the sensation of sound by hair cells. These dynamic states originate from spontaneous oscillations of molecular motors. A particularly clear example of such oscillations has been observed in muscle fibers under non-physiological conditions. In that case, motor oscillations lead to contraction waves along the fiber. By a macroscopic analysis of muscle fiber dynamics we find that the spontaneous waves involve non-hydrodynamic modes. A simple microscopic model of sarcomere dynamics highlights mechanical aspects of the motor dynamics and fits with the experimental observations.

  7. Muscle phosphoglycerate mutase deficiency revisited

    DEFF Research Database (Denmark)

    Naini, Ali; Toscano, Antonio; Musumeci, Olimpia

    2009-01-01

    storage disease type X and novel mutations in the gene encoding the muscle subunit of PGAM (PGAM2). DESIGN: Clinical, pathological, biochemical, and molecular analyses. SETTING: Tertiary care university hospitals and academic institutions. Patients A 37-year-old Danish man of Pakistani origin who had...... PGAM deficiency, and molecular studies revealed 2 novel homozygous mutations, a nonsense mutation and a single nucleotide deletion. Pathological studies of muscle showed mild glycogen accumulation but prominent tubular aggregates in both patients. CONCLUSIONS: We found that glycogen storage disease...

  8. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.

    Science.gov (United States)

    Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.

  9. PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY

    Directory of Open Access Journals (Sweden)

    Ida Eržen

    2011-05-01

    Full Text Available The present contribution provides an overview of stereological methods applied in the skeletal muscle research at the Institute of Anatomy of the Medical Faculty in Ljubljana. Interested in skeletal muscle plasticity we studied three different topics: (i expression of myosin heavy chain isoforms in slow and fast muscles under experimental conditions, (ii frequency of satellite cells in young and old human and rat muscles and (iii capillary supply of rat fast and slow muscles. We analysed the expression of myosin heavy chain isoforms within slow rat soleus and fast extensor digitorum longus muscles after (i homotopic and heterotopic transplantation of both muscles, (ii low frequency electrical stimulation of the fast muscle and (iii transposition of the fast nerve to the slow muscle. The models applied were able to turn the fast muscle into a completely slow muscle, but not vice versa. One of the indicators for the regenerative potential of skeletal muscles is its satellite cell pool. The estimated parameters, number of satellite cells per unit fibre length, corrected to the reference sarcomere length (Nsc/Lfib and number of satellite cells per number of nuclei (myonuclei and satellite cell nuclei (Nsc/Nnucl indicated that the frequency of M-cadherin stained satellite cells declines in healthy old human and rat muscles compared to young muscles. To access differences in capillary densities among slow and fast muscles and slow and fast muscle fibres, we have introduced Slicer and Fakir methods, and tested them on predominantly slow and fast rat muscles. Discussing three different topics that require different approach, the present paper reflects the three decades of the development of stereological methods: 2D analysis by simple point counting in the 70's, the disector in the 80's and virtual spatial probes in the 90's. In all methods the interactive computer assisted approach was utilised.

  10. Role of Muscle Relaxant (Tizanidine) In Painful Muscle Spasm ...

    African Journals Online (AJOL)

    More prolonged or regular cramps may be treated with drugs. Tizanidine which is an agonist at á ... Inclusion criteria included all the patients suffering from painful muscle spasm in back, neck, shoulder, knee or other anatomical sites with onset not more than two days prior to presentation. The patients suffering from ...

  11. Mechanosensing of matrix by stem cells: From matrix heterogeneity, contractility, and the nucleus in pore-migration to cardiogenesis and muscle stem cells in vivo.

    Science.gov (United States)

    Smith, Lucas; Cho, Sangkyun; Discher, Dennis E

    2017-11-01

    Stem cells are particularly 'plastic' cell types that are induced by various cues to become specialized, tissue-functional lineages by switching on the expression of specific gene programs. Matrix stiffness is among the cues that multiple stem cell types can sense and respond to. This seminar-style review focuses on mechanosensing of matrix elasticity in the differentiation or early maturation of a few illustrative stem cell types, with an intended audience of biologists and physical scientists. Contractile forces applied by a cell's acto-myosin cytoskeleton are often resisted by the extracellular matrix and transduced through adhesions and the cytoskeleton ultimately into the nucleus to modulate gene expression. Complexity is added by matrix heterogeneity, and careful scrutiny of the evident stiffness heterogeneity in some model systems resolves some controversies concerning matrix mechanosensing. Importantly, local stiffness tends to dominate, and 'durotaxis' of stem cells toward stiff matrix reveals a dependence of persistent migration on myosin-II force generation and also rigid microtubules that confer directionality. Stem and progenitor cell migration in 3D can be further affected by matrix porosity as well as stiffness, with nuclear size and rigidity influencing niche retention and fate choices. Cell squeezing through rigid pores can even cause DNA damage and genomic changes that contribute to de-differentiation toward stem cell-like states. Contraction of acto-myosin is the essential function of striated muscle, which also exhibit mechanosensitive differentiation and maturation as illustrated in vivo by beating heart cells and by the regenerative mobilization of skeletal muscle stem cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Myofascial force transmisison between antagonistic rat lower limb muscles: effects of single muscle or muscle group lengthening

    NARCIS (Netherlands)

    Meijer, Hanneke J.M; Rijkelijkhuizen, Josina M.; Huijing, P.A.J.B.M.

    2007-01-01

    Effects of lengthening of the whole group of anterior crural muscles (tibialis anterior and extensor hallucis longus muscles (TA + EHL) and extensor digitorum longus (EDL)) on myofascial interaction between synergistic EDL and TA + EHL muscles, and on myofascial force transmission between anterior

  13. Myofascial force transmission between antagonistic rat lower limb muscles: Effects of single muscle or muscle group lengthening.

    NARCIS (Netherlands)

    Meijer, H.J.M.; Rijkelijkhuizen, J.M.; Huijing, P.A.J.B.M.

    2007-01-01

    Effects of lengthening of the whole group of anterior crural muscles (tibialis anterior and extensor hallucis longus muscles (TA + EHL) and extensor digitorum longus (EDL)) on myofascial interaction between synergistic EDL and TA + EHL muscles, and on myofascial force transmission between anterior

  14. Measurement and Treatment of Passive Muscle Stiffness

    DEFF Research Database (Denmark)

    Kirk, Henrik

    This PhD thesis is based on research conducted at the University of Copenhagen and Helene Elsass Center from 2012 to 2015. Measurements and treatment of passive muscle stiffness in people with cerebral palsy (CP) comprise the focus of the thesis. The thesis summarizes the results from four studies......, which aimed to investigate: 1) The development of a clinical method to evaluate and distinguish neural (reflex mediated stiffness) and non-neural (passive muscle stiffness) components of muscle stiffness in adults with CP by objective and reliable measurements. 2) The association between increased...... passive muscle, muscle strength and gait function in adults with CP 3) The effect of resistance training and gait training accordingly on muscle strength, passive muscle stiffness and functional gait in adults with CP. The first part of the thesis defines reflex mediated stiffness and passive muscle...

  15. Magnetic resonance imaging of facial muscles

    Energy Technology Data Exchange (ETDEWEB)

    Farrugia, M.E. [Department of Clinical Neurology, University of Oxford, Radcliffe Infirmary, Oxford (United Kingdom)], E-mail: m.e.farrugia@doctors.org.uk; Bydder, G.M. [Department of Radiology, University of California, San Diego, CA 92103-8226 (United States); Francis, J.M.; Robson, M.D. [OCMR, Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford (United Kingdom)

    2007-11-15

    Facial and tongue muscles are commonly involved in patients with neuromuscular disorders. However, these muscles are not as easily accessible for biopsy and pathological examination as limb muscles. We have previously investigated myasthenia gravis patients with MuSK antibodies for facial and tongue muscle atrophy using different magnetic resonance imaging sequences, including ultrashort echo time techniques and image analysis tools that allowed us to obtain quantitative assessments of facial muscles. This imaging study had shown that facial muscle measurement is possible and that useful information can be obtained using a quantitative approach. In this paper we aim to review in detail the methods that we applied to our study, to enable clinicians to study these muscles within the domain of neuromuscular disease, oncological or head and neck specialties. Quantitative assessment of the facial musculature may be of value in improving the understanding of pathological processes occurring within facial muscles in certain neuromuscular disorders.

  16. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    in cardiac, skeletal, and smooth muscle suggest all mitochondria are created equal, the contrasting RCR and non-phosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation...

  17. The characteristics of a pneumatic muscle

    Directory of Open Access Journals (Sweden)

    Pietrala Dawid

    2017-01-01

    Full Text Available The article presents static and dynamic characteristics of pneumatic muscles. It presents the structure of the laboratory stand used to test pneumatic muscles. It discusses the methodology for determination of static and dynamic characteristics. The paper also illustrates characteristics showing the relationship of pneumatic muscles length and operating pressure, at a constant loading force (isotonic characteristics. It presents characteristics showing the relationship of pneumatic muscles shortening and values of loading forces, at a constant operational pressure (isobaric characteristics. It also shows the dependence of force generated by the muscle on the operating pressure, at a constant value of pneumatic muscles shortening (isometric characteristics. The paper also presents dynamic characteristics of a pneumatic muscle showing the response of an object to a gradual change in the operating pressure, at a constant loading force acting on the pneumatic muscle.

  18. The characteristics of a pneumatic muscle

    Science.gov (United States)

    Pietrala, Dawid

    The article presents static and dynamic characteristics of pneumatic muscles. It presents the structure of the laboratory stand used to test pneumatic muscles. It discusses the methodology for determination of static and dynamic characteristics. The paper also illustrates characteristics showing the relationship of pneumatic muscles length and operating pressure, at a constant loading force (isotonic characteristics). It presents characteristics showing the relationship of pneumatic muscles shortening and values of loading forces, at a constant operational pressure (isobaric characteristics). It also shows the dependence of force generated by the muscle on the operating pressure, at a constant value of pneumatic muscles shortening (isometric characteristics). The paper also presents dynamic characteristics of a pneumatic muscle showing the response of an object to a gradual change in the operating pressure, at a constant loading force acting on the pneumatic muscle.

  19. Magnetic resonance imaging of facial muscles

    International Nuclear Information System (INIS)

    Farrugia, M.E.; Bydder, G.M.; Francis, J.M.; Robson, M.D.

    2007-01-01

    Facial and tongue muscles are commonly involved in patients with neuromuscular disorders. However, these muscles are not as easily accessible for biopsy and pathological examination as limb muscles. We have previously investigated myasthenia gravis patients with MuSK antibodies for facial and tongue muscle atrophy using different magnetic resonance imaging sequences, including ultrashort echo time techniques and image analysis tools that allowed us to obtain quantitative assessments of facial muscles. This imaging study had shown that facial muscle measurement is possible and that useful information can be obtained using a quantitative approach. In this paper we aim to review in detail the methods that we applied to our study, to enable clinicians to study these muscles within the domain of neuromuscular disease, oncological or head and neck specialties. Quantitative assessment of the facial musculature may be of value in improving the understanding of pathological processes occurring within facial muscles in certain neuromuscular disorders

  20. Study on distribution of terminal branches of the facial nerve in mimetic muscles (orbicularis oculi muscle and orbicularis oris muscle).

    Science.gov (United States)

    Mitsukawa, Nobuyuki; Moriyama, Hiroshi; Shiozawa, Kei; Satoh, Kaneshige

    2014-01-01

    There have been many anatomical reports to date regarding the course of the facial nerve to the mimetic muscles. However, reports are relatively scarce on the detailed distribution of the terminal branches of the facial nerve to the mimetic muscles. In this study, we performed detailed examination of the terminal facial nerve branches to the mimetic muscles, particularly the branches terminating in the orbicularis oculi muscle and orbicularis oris muscle. Examination was performed on 25 Japanese adult autopsy cases, involving 25 hemifaces. The mean age was 87.4 years (range, 60-102 years). There were 12 men and 13 women (12 left hemifaces and 13 right hemifaces). In each case, the facial nerve was exposed through a preauricular skin incision. The main trunk of the facial nerve was dissected from the stylomastoid foramen. A microscope was used to dissect the terminal branches to the periphery and observe them. The course and distribution were examined for all terminal branches of the facial nerve. However, focus was placed on the course and distribution of the zygomatic branch, buccal branch, and mandibular branch to the orbicularis oculi muscle and orbicularis oris muscle. The temporal branch was distributed to the orbicularis oculi muscle in all cases and the marginal mandibular branch was distributed to the orbicularis oris muscle in all cases. The zygomatic branch was distributed to the orbicularis oculi muscle in all cases, but it was also distributed to the orbicularis oris muscle in 10 of 25 cases. The buccal branch was not distributed to the orbicularis oris muscle in 3 of 25 cases, and it was distributed to the orbicularis oculi muscle in 8 cases. There was no significant difference in the variations. The orbicularis oculi muscle and orbicularis oris muscle perform particularly important movements among the facial mimetic muscles. According to textbooks, the temporal branch and zygomatic branch innervate the orbicularis oculi muscle, and the buccal branch

  1. Exercise Promotes Healthy Aging of Skeletal Muscle

    DEFF Research Database (Denmark)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M

    2016-01-01

    caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial...... respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle....

  2. Muscle fatigue: general understanding and treatment

    Science.gov (United States)

    Wan, Jing-jing; Qin, Zhen; Wang, Peng-yuan; Sun, Yang; Liu, Xia

    2017-01-01

    Muscle fatigue is a common complaint in clinical practice. In humans, muscle fatigue can be defined as exercise-induced decrease in the ability to produce force. Here, to provide a general understanding and describe potential therapies for muscle fatigue, we summarize studies on muscle fatigue, including topics such as the sequence of events observed during force production, in vivo fatigue-site evaluation techniques, diagnostic markers and non-specific but effective treatments. PMID:28983090

  3. Muscle fatigue: general understanding and treatment

    OpenAIRE

    Wan, Jing-jing; Qin, Zhen; Wang, Peng-yuan; Sun, Yang; Liu, Xia

    2017-01-01

    Muscle fatigue is a common complaint in clinical practice. In humans, muscle fatigue can be defined as exercise-induced decrease in the ability to produce force. Here, to provide a general understanding and describe potential therapies for muscle fatigue, we summarize studies on muscle fatigue, including topics such as the sequence of events observed during force production, in vivo fatigue-site evaluation techniques, diagnostic markers and non-specific but effective treatments.

  4. Muscle Selection for Focal Limb Dystonia

    OpenAIRE

    Barbara Illowsky Karp; Katharine Alter

    2017-01-01

    Selection of muscles for botulinum toxin injection for limb dystonia is particularly challenging. Limb dystonias vary more widely in the pattern of dystonic movement and involved muscles than cervical dystonia or blepharospasm. The large variation in how healthy individuals perform skilled hand movements, the large number of muscles in the hand and forearm, and the presence of compensatory actions in patients with dystonia add to the complexity of choosing muscles for injection. In this artic...

  5. The characteristics of a pneumatic muscle

    OpenAIRE

    Pietrala Dawid

    2017-01-01

    The article presents static and dynamic characteristics of pneumatic muscles. It presents the structure of the laboratory stand used to test pneumatic muscles. It discusses the methodology for determination of static and dynamic characteristics. The paper also illustrates characteristics showing the relationship of pneumatic muscles length and operating pressure, at a constant loading force (isotonic characteristics). It presents characteristics showing the relationship of pneumatic muscles s...

  6. STRUCTURAL ALTERATIONS OF SKELETAL MUSCLE IN COPD

    Directory of Open Access Journals (Sweden)

    Sunita eMathur

    2014-03-01

    Full Text Available Background: Chronic obstructive pulmonary disease (COPD is a respiratory disease associated with a systemic inflammatory response. Peripheral muscle dysfunction has been well characterized in individuals with COPD and results from a complex interaction between systemic and local factors. Objective: In this narrative review, we will describe muscle wasting in people with COPD, the associated structural changes, muscle regenerative capacity and possible mechanisms for muscle wasting. We will also discuss how structural changes relate to impaired muscle function and mobility in people with COPD. Key Observations: Approximately 30-40% of individuals with COPD experience muscle mass depletion. Furthermore, muscle atrophy is a predictor of physical function and mortality in this population. Associated structural changes include a decreased proportion and size of type-I fibers, reduced oxidative capacity and mitochondrial density mainly in the quadriceps. Observations related to impaired muscle regenerative capacity in individuals with COPD include a lower proportion of central nuclei in the presence or absence of muscle atrophy and decreased maximal telomere length, which has been correlated with reduced muscle cross-sectional area. Potential mechanisms for muscle wasting in COPD may include excessive production of reactive oxygen species, altered amino acid metabolism and lower expression of peroxisome proliferator-activated receptors-gamma-coactivator 1-alpha mRNA. Despite a moderate relationship between muscle atrophy and function, impairments in oxidative metabolism only seems weakly related to muscle function. Conclusion: This review article demonstrates the cellular modifications in the peripheral muscle of people with COPD and describes the evidence of its relationship to muscle function. Future research will focus on rehabilitation strategies to improve muscle wasting and maximize function.

  7. Muscle mechanics and neuromuscular control

    NARCIS (Netherlands)

    Hof, AL

    The purpose of this paper is to demonstrate that the properties of the mechanical system, especially muscle elasticity and limb mass, to a large degree determine force output and movement. This makes the control demands of the central nervous system simpler and more robust. In human triceps surae, a

  8. Aging of Skeletal Muscle Fibers

    Science.gov (United States)

    Miljkovic, Natasa; Lim, Jae-Young; Miljkovic, Iva

    2015-01-01

    Aging has become an important topic for scientific research because life expectancy and the number of men and women in older age groups have increased dramatically in the last century. This is true in most countries of the world including the Republic of Korea and the United States. From a rehabilitation perspective, the most important associated issue is a progressive decline in functional capacity and independence. Sarcopenia is partly responsible for this decline. Many changes underlying the loss of muscle mass and force-generating capacity of skeletal muscle can be understood at the cellular and molecular levels. Muscle size and architecture are both altered with advanced adult age. Further, changes in myofibers include impairments in several physiological domains including muscle fiber activation, excitation-contraction coupling, actin-myosin cross-bridge interaction, energy production, and repair and regeneration. A thorough understanding of these alterations can lead to the design of improved preventative and rehabilitative interventions, such as personalized exercise training programs. PMID:25932410

  9. Evaluation of isokinetic muscle performance.

    Science.gov (United States)

    Watkins, M P; Harris, B A

    1983-03-01

    The development and availability of isokinetic testing equipment, recording systems, and systems for computer analysis have improved the quality and quantity of information about specific skeletal muscle performance. The value of both isokinetic exercise and instrumentation designed to objectively record muscle performance characteristics is becoming more widely recognized, especially by professional members of the sports medicine community. The present demand for appropriate equipment is high and new instrumentation for this purpose is being developed. Current instrumentation continues to be modified and improved. The information gained from carefully designed testing protocols is useful and necessary for understanding the role of specific muscle groups in athletic performance and for determining the readiness of the athlete to resume training or competition following injury or deconditioning. With expanded profile data about the muscle performance characteristics of various categories of athletes, training or rehabilitation programs may be adapted to meet the strength, speed, and endurance requirements of a given sport, which may enhance the quality of participation and prevent the occurrence of injury or reinjury.

  10. Excitation of Mytilus smooth muscle.

    Science.gov (United States)

    Twarog, B M

    1967-10-01

    1. Membrane potentials and tension were recorded during nerve stimulation and direct stimulation of smooth muscle cells of the anterior byssus retractor muscle of Mytilus edulis L.2. The resting potential averaged 65 mV (range 55-72 mV).3. Junction potentials reached 25 mV and decayed to one half maximum amplitude in 500 msec. Spatial summation and facilitation of junction potentials were observed.4. Action potentials, 50 msec in duration and up to 50 mV in amplitude were fired at a membrane potential of 35-40 mV. No overshoot was observed.5. Contraction in response to neural stimulation was associated with spike discharge. Measurement of tension and depolarization in muscle bundles at high K(+) indicated that tension is only produced at membrane potentials similar to those achieved by spike discharge.6. Blocking of junction potentials, spike discharge and contraction by methantheline, an acetylcholine antagonist, supports the hypothesis that the muscle is excited by cholinergic nerves. However, evidence of a presynaptic action of methantheline complicates this argument.

  11. Novel Analog For Muscle Deconditioning

    Science.gov (United States)

    Ploutz-Snyder, Lori; Ryder, Jeff; Buxton, Roxanne; Redd. Elizabeth; Scott-Pandorf, Melissa; Hackney, Kyle; Fiedler, James; Ploutz-Snyder, Robert; Bloomberg, Jacob

    2011-01-01

    Existing models (such as bed rest) of muscle deconditioning are cumbersome and expensive. We propose a new model utilizing a weighted suit to manipulate strength, power, or endurance (function) relative to body weight (BW). Methods: 20 subjects performed 7 occupational astronaut tasks while wearing a suit weighted with 0-120% of BW. Models of the full relationship between muscle function/BW and task completion time were developed using fractional polynomial regression and verified by the addition of pre-and postflightastronaut performance data for the same tasks. Splineregression was used to identify muscle function thresholds below which task performance was impaired. Results: Thresholds of performance decline were identified for each task. Seated egress & walk (most difficult task) showed thresholds of leg press (LP) isometric peak force/BW of 18 N/kg, LP power/BW of 18 W/kg, LP work/BW of 79 J/kg, isokineticknee extension (KE)/BW of 6 Nm/kg, and KE torque/BW of 1.9 Nm/kg.Conclusions: Laboratory manipulation of relative strength has promise as an appropriate analog for spaceflight-induced loss of muscle function, for predicting occupational task performance and establishing operationally relevant strength thresholds.

  12. Muscle fatigue in fibromyalgia is in the brain, not in the muscles

    DEFF Research Database (Denmark)

    Bandak, Elisabeth; Amris, Kirstine; Bliddal, Henning

    2013-01-01

    To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC).......To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC)....

  13. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

    Science.gov (United States)

    Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Chamberlain, Jeffrey; James, David E.

    2016-01-01

    The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554

  14. Muscle strength in patients with chronic pain

    NARCIS (Netherlands)

    van Wilgen, C.P.; Akkerman, L.; Wieringa, J.; Dijkstra, P.U.

    2003-01-01

    Objective: To analyse the influence of chronic pain on muscle strength. Design: Muscle strength of patients with unilateral nonspecific chronic pain, in an upper or lower limb, were measured according to a standardized protocol using a hand-held dynamometer. Before and after muscle strength

  15. Mechanical modeling of skeletal muscle functioning

    NARCIS (Netherlands)

    van der Linden, B.J.J.J.

    1998-01-01

    For movement of body or body segments is combined effort needed of the central nervous system and the muscular-skeletal system. This thesis deals with the mechanical functioning of skeletal muscle. That muscles come in a large variety of geometries, suggest the existence of a relation between muscle

  16. Kinetics of glucose transport in rat muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, Henrik; Vinten, Jørgen

    1987-01-01

    The effects of insulin and prior muscle contractions, respectively, on 3-O-methylglucose (3-O-MG) transport in skeletal muscle were studied in the perfused rat hindquarter. Initial rates of entry of 3-O-MG in red gastrocnemius, soleus, and white gastrocnemius muscles as a function of perfusate 3-O...

  17. Muscle MRI findings in facioscapulohumeral muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Gerevini, Simonetta; Caliendo, Giandomenico; Falini, Andrea [IRCCS San Raffaele Scientific Institute, Neuroradiology Unit, Head and Neck Department, Milan (Italy); Scarlato, Marina; Previtali, Stefano Carlo [IRCCS San Raffaele Scientific Institute, Department of Neurology, INSPE and Division of Neuroscience, Milan (Italy); Maggi, Lorenzo; Pasanisi, Barbara; Morandi, Lucia [Fondazione IRCCS Istituto Neurologico ' ' Carlo Besta' ' , Neuromuscular Diseases and Neuroimmunology Unit, Milan (Italy); Cava, Mariangela [IRCCS San Raffaele Scientific Institute, Department of Radiology and Center for Experimental Imaging, Milan (Italy)

    2016-03-15

    Facioscapulohumeral muscular dystrophy (FSHD) is characterized by extremely variable degrees of facial, scapular and lower limb muscle involvement. Clinical and genetic determination can be difficult, as molecular analysis is not always definitive, and other similar muscle disorders may have overlapping clinical manifestations. Whole-body muscle MRI examination for fat infiltration, atrophy and oedema was performed to identify specific patterns of muscle involvement in FSHD patients (30 subjects), and compared to a group of control patients (23) affected by other myopathies (NFSHD). In FSHD patients, we detected a specific pattern of muscle fatty replacement and atrophy, particularly in upper girdle muscles. The most frequently affected muscles, including paucisymptomatic and severely affected FSHD patients, were trapezius, teres major and serratus anterior. Moreover, asymmetric muscle involvement was significantly higher in FSHD as compared to NFSHD patients. In conclusion, muscle MRI is very sensitive for identifying a specific pattern of involvement in FSHD patients and in detecting selective muscle involvement of non-clinically testable muscles. Muscle MRI constitutes a reliable tool for differentiating FSHD from other muscular dystrophies to direct diagnostic molecular analysis, as well as to investigate FSHD natural history and follow-up of the disease. (orig.)

  18. Exporting vector muscles for facial animation

    NARCIS (Netherlands)

    Bui, T.D.; Butz, Andreas; Kruger, Antonio; Heylen, Dirk K.J.; Olivier, Patrick; Nijholt, Antinus; Poel, Mannes

    2003-01-01

    In this paper we introduce a method of exporting vector muscles from one 3D face to another for facial animation. Starting from a 3D face with an extended version of Waters’ linear muscle system, we transfer the linear muscles to a target 3D face.We also transfer the region division, which is used

  19. Buckling Pneumatic Linear Actuators Inspired by Muscle

    OpenAIRE

    Yang, Dian; Verma, Mohit Singh; So, Ju-Hee; Mosadegh, Bobak; Keplinger, Christoph; Lee, Benjamin; Khashai, Fatemeh; Lossner, Elton Garret; Suo, Zhigang; Whitesides, George McClelland

    2016-01-01

    The mechanical features of biological muscles are difficult to reproduce completely in synthetic systems. A new class of soft pneumatic structures (vacuum-actuated muscle-inspired pneumatic structures) is described that combines actuation by negative pressure (vacuum), with cooperative buckling of beams fabricated in a slab of elastomer, to achieve motion and demonstrate many features that are similar to that of mammalian muscle.

  20. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  1. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    OpenAIRE

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these mus...

  2. Inspiratory muscle training in type 2 diabetes with inspiratory muscle weakness.

    Science.gov (United States)

    Corrêa, Ana Paula S; Ribeiro, Jorge P; Balzan, Fernanda Machado; Mundstock, Lorena; Ferlin, Elton Luiz; Moraes, Ruy Silveira

    2011-07-01

    Patients with type 2 diabetes mellitus may present weakness of the inspiratory muscles. We tested the hypothesis that inspiratory muscle training (IMT) could improve inspiratory muscle strength, pulmonary function, functional capacity, and autonomic modulation in patients with type 2 diabetes and weakness of the inspiratory muscles. Maximal inspiratory muscle pressure (PImax) was evaluated in a sample of 148 patients with type 2 diabetes. Of these, 25 patients with PImaxinspiratory muscle endurance time, pulmonary function, peak oxygen uptake, and HR variability were evaluated before and after intervention. The prevalence of inspiratory muscle weakness was 29%. IMT significantly increased the PImax (118%) and the inspiratory muscle endurance time (495%), with no changes in pulmonary function, functional capacity, or autonomic modulation. There were no significant changes with placebo-IMT. Patients with type 2 diabetes may frequently present inspiratory muscle weakness. In these patients, IMT improves inspiratory muscle function with no consequences in functional capacity or autonomic modulation.

  3. Effect of transcutaneous electrical muscle stimulation on postoperative muscle mass and protein synthesis

    DEFF Research Database (Denmark)

    Vinge, O; Edvardsen, L; Jensen, F

    1996-01-01

    In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein ...... muscle protein synthesis and muscle mass after abdominal surgery and should be evaluated in other catabolic states with muscle wasting.......In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein...... synthesis were assessed by computed tomography and ribosome analysis of percutaneous muscle biopsies before surgery and on the sixth postoperative day. The percentage of polyribosomes in the ribosome suspension decreased significantly (P

  4. In cirrhotic patients reduced muscle strength is unrelated to muscle capacity for ATP turnover suggesting a central limitation

    DEFF Research Database (Denmark)

    Gam, Christiane Marie Bourgin; Nielsen, H B; Secher, Niels H.

    2011-01-01

      We investigated whether in patients with liver cirrhosis reduced muscle strength is related to dysfunction of muscle mitochondria.......  We investigated whether in patients with liver cirrhosis reduced muscle strength is related to dysfunction of muscle mitochondria....

  5. Relationship between neck muscles functions and hand muscles strenght in musicians

    OpenAIRE

    Vaina, Mindaugas

    2016-01-01

    Relationship Between Neck Muscles Functions and Hand Muscles Strenght in Musicians The aim of research work: to determine the relationship between musicians hand muscle strength, fatigue and neck strength, endurance and movement amplitude. Tasks of work: 1. To evaluate and compare the musicians playing with string and wind instruments neck muscle strength, endurance, range of motion, hand muscle strength and fatigue between the groups as well as commonly used standards. 2. To determine the re...

  6. How the condition of occlusal support affects the back muscle force and masticatory muscle activity?

    OpenAIRE

    石岡, 克; 河野, 正司; Ishioka, Masaru; Kohno, Shoji

    2002-01-01

    This study was conducted to determine how the condition of occlusal support affects the back muscle force and masticatory muscle activity. Two groups of subjects were enlisted: sport-trained group and normal group. While electrodes of the electromyography (EMG) were attached to the surface of the masticatory muscles, each subject's back muscle force was recorded during upper body stretching using a back muscle force-measuring device. The task was performed under four different occlusal suppor...

  7. Novel biomarkers of changes in muscle mass or muscle pathology

    DEFF Research Database (Denmark)

    Arvanitidis, Athanasios

    after radiotherapy, before and during the training period. TNNT1 levels were significantly elevated in the patient group compared to the control group, even before engaging in any form of physical activity. After engaging in physical training, the biomarker levels further increased through time......Muscle protein turnover is a dynamic equilibrium that regulates the body composition and homeostasis through various cytokines and proteases. When the balance between protein synthesis and protein degradation is altered, proper muscle function and regeneration is being hampered, affecting patient...... significantly affect several of the biomarkers levels measured in this study, most prominently CRPM and PINP, indicative of significantly altered turnover of extracellular matrix components and CRPM. C3M correlated with Interferon gene score, in PM and DM, and CRPM with MMT8 score in DM. We further developed...

  8. Muscle involvement in leprosy: study of the anterior tibial muscle in 40 patients Alterações musculares na lepra: estudo do músculo tibial anterior em 40 pacientes

    Directory of Open Access Journals (Sweden)

    LINEU CESAR WERNECK

    1999-09-01

    Full Text Available The involvement of skeletal striated muscle in leprosy is considered secondary due to peripheral neuropathy, but some studies point it to a primary muscle lesion. In order to investigate the muscle involvement in leprosy, we studied 40 patients (lepromatous 23, tuberculoid 13, borderline 2 and indeterminate 2. The motor nerve conduction of the peroneal nerves had a reduction of the velocity, decreased compound muscle action potential and sometimes absence of potentials. The electromyographic study of the anterior tibial muscle showed signs of recent and chronic denervation in 77.5% of the cases and no myopathic potentials. The anterior tibial muscle biopsy revealed denervation in 45% of the cases, interstitial inflammatory myopathy in 30% and mixed (myopathic and neuropathic pattern in 12.5%. Acid fast bacillus was detected in 25% of the cases, always in the interstitial tissue. Inflammatory reaction was present in the interstitial space and in patients with the lepromatous type. The histological findings clearly defined the presence of the so-called "Leprous Interstitial Myositis" on the top of denervation signs.O envolvimento do músculo estriado na lepra é considerado secundário à lesão dos nervos periféricos, mas alguns estudos relataram acometimento muscular primário. A fim de verificar esta controvérsia estudamos 40 pacientes com lepra, sendo 23 da forma lepromatosa, 13 da tuberculoide, 2 borderline e 2 indeterminada. Realizamos a neurocondução do nervo peroneiro, junto com eletromiografia e biópsia do músculo tibial anterior. Encontramos redução de velocidade de condução, da amplitude e algumas vezes ausência de potenciais no nervo peroneiro. A eletromiografia do tibial anterior mostrou sinais de desinervação recente e crônica em 77,5% dos casos e não foi encontrada evidência de padrão "miopático". A biópsia do músculo tibial anterior revelou desinervação em 45% dos casos, miopatia inflamatória intersticial em

  9. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  10. Synchronous monitoring of muscle dynamics and muscle force for maximum isometric tetanus

    Science.gov (United States)

    Zakir Hossain, M.; Grill, Wolfgang

    2010-03-01

    Skeletal muscle is a classic example of a biological soft matter . At both macro and microscopic levels, skeletal muscle is exquisitely oriented for force generation and movement. In addition to the dynamics of contracting and relaxing muscle which can be monitored with ultrasound, variations in the muscle force are also expected to be monitored. To observe such force and sideways expansion variations synchronously for the skeletal muscle a novel detection scheme has been developed. As already introduced for the detection of sideways expansion variations of the muscle, ultrasonic transducers are mounted sideways on opposing positions of the monitored muscle. To detect variations of the muscle force, angle of pull of the monitored muscle has been restricted by the mechanical pull of the sonic force sensor. Under this condition, any variation in the time-of-flight (TOF) of the transmitted ultrasonic signals can be introduced by the variation of the path length between the transducers. The observed variations of the TOF are compared to the signals obtained by ultrasound monitoring for the muscle dynamics. The general behavior of the muscle dynamics and muscle force shows almost an identical concept. Since muscle force also relates the psychological boosting-up effects, the influence of boosting-up on muscle force and muscle dynamics can also be quantified form this study. Length-tension or force-length and force-velocity relationship can also be derived quantitatively with such monitoring.

  11. Muscle Selection for Focal Limb Dystonia.

    Science.gov (United States)

    Karp, Barbara Illowsky; Alter, Katharine

    2017-12-29

    Selection of muscles for botulinum toxin injection for limb dystonia is particularly challenging. Limb dystonias vary more widely in the pattern of dystonic movement and involved muscles than cervical dystonia or blepharospasm. The large variation in how healthy individuals perform skilled hand movements, the large number of muscles in the hand and forearm, and the presence of compensatory actions in patients with dystonia add to the complexity of choosing muscles for injection. In this article, we discuss approaches to selecting upper and lower extremity muscles for chemodenervation treatment of limb dystonia.

  12. Muscle Selection for Focal Limb Dystonia

    Directory of Open Access Journals (Sweden)

    Barbara Illowsky Karp

    2017-12-01

    Full Text Available Selection of muscles for botulinum toxin injection for limb dystonia is particularly challenging. Limb dystonias vary more widely in the pattern of dystonic movement and involved muscles than cervical dystonia or blepharospasm. The large variation in how healthy individuals perform skilled hand movements, the large number of muscles in the hand and forearm, and the presence of compensatory actions in patients with dystonia add to the complexity of choosing muscles for injection. In this article, we discuss approaches to selecting upper and lower extremity muscles for chemodenervation treatment of limb dystonia.

  13. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  14. Pathophysiology of muscle contractures in cerebral palsy.

    Science.gov (United States)

    Mathewson, Margie A; Lieber, Richard L

    2015-02-01

    Patients with cerebral palsy present with a variety of adaptations to muscle structure and function. These pathophysiologic symptoms include functional deficits such as decreased force production and range of motion, in addition to changes in muscle structure such as decreased muscle belly size, increased sarcomere length, and altered extracellular matrix structure and composition. On a cellular level, patients with cerebral palsy have fewer muscle stem cells, termed satellite cells, and altered gene expression. Understanding the nature of these changes may present opportunities for the development of new muscle treatment therapies. Published by Elsevier Inc.

  15. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... was unaltered. During saline infusion the adipose tissue release averaged 0.8 ± 0.3 ng min(-1) 100g tissue(-1) whereas skeletal muscle release was 0.5 ± 0.1 ng min(-1) 100g tissue(-1). In young healthy humans, skeletal muscle contribution to whole body leptin production could be substantial given the greater...

  16. Procedural Options for Measuring Muscle Strength

    Directory of Open Access Journals (Sweden)

    Mindova S.

    2016-10-01

    Full Text Available The aim of the present study was to provide alternative means of measurement and evaluation of muscle strength in rehabilitation practice and diagnostics. In the last few years many electronic devices for evaluation of muscle strength have developed. Contemporary studies have shown that in addition to the standard manual muscle testing muscle strength can be assessed more objectively and analytically using electronic dynamometers and equipment. The strain gauges are used as a tool of precision in the industry that allows measurement of mechanical loads by dynamometers. By using these tools is possible to obtain continuous digital measurement and recording of muscle strength.

  17. AMPK in skeletal muscle function and metabolism

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Hingst, Janne Rasmuss; Fentz, Joachim

    2018-01-01

    highly changeable energy turnover. Due to the drastic changes in energy de