WorldWideScience

Sample records for striated muscle fibres

  1. Morphology of lesions in striated muscle fibres from the beige mouse

    DEFF Research Database (Denmark)

    Kirkeby, S

    1982-01-01

    Lesions in striated muscle fibres from the beige mouse are described at both the light- and electronmicroscopical levels. The muscles have two types of lesions, one is well defined cores in the fibres and the other is diffusely enlarged intermyofibrillar spaces (IMS). The cores can be filled...... with membrane-like structures or a fluffy unstructured material. In the areas with enlarged IMS comparatively few organelles are present and the muscle fibres seem to be fragmented....

  2. Healthy and diseased striated muscle studied by analytical scanning electron microscopy with special reference to fibre type

    International Nuclear Information System (INIS)

    Wroblewski, R.

    1982-01-01

    X-ray microanalytical investigations of striated muscles in the scanning electron microscope are reviewed. The main part of the studies was performed on cryosections cut with a conventional cryostat operating at -20 degrees C to -40 degrees C. The preparation procedure including different types of attachment of the sections to the specimen holder is described in detail. The elemental changes in muscle are related to the muscle fibre type as demonstrated by histochemical methods or to histochemically demonstrated inclusions in diseased muscles. This is of great importance, because muscle disorders are often characterised by selective involvement of different muscle fibre types. The preparation methods of muscle for analytical scanning electron microscopy and the obtained results are compared with studies performed on thin cryo and epoxy sections, analysed in the transmission and scanning-transmission electron microscope. It is evident that X-ray microanalysis performed on thick cryosections provide a quick survey of the elemental composition of whole cells, and should be followed in interesting cases by close examination on the organelle level studied in thin cryosections in the transmission and scanning-transmission electron microscope

  3. Autoradiographic analysis of protein regeneration in striated skeleton muscle

    International Nuclear Information System (INIS)

    Dadoune, J.P.

    1977-01-01

    An autoradiographic study was conducted of protein regeneration in striated muscles aimed at clarifying the contradictions in the literature: while some authors hold that the regeneration rate is identical for all types of myofibril proteins and the myofibril is thus regenerated as a whole, others claim that the regeneration rate differs depending on the type of the myofibril protein. Tritium-labelled leucine incorporation experiments showed the existence of at least 2 pools of newly formed proteins in striated muscles in both adult and young animals. One pool is regenerated in 1 to 2 weeks, the other roughly in a month. The regeneration of proteins is initially more significant in red fibres; thus the rate of myofibril protein regeneration is not uniform. In adult animals regeneration seems to be slower in filaments than in the sarcoplasm and in the mitochondria. (A.K.)

  4. Striated Muscle Function, Regeneration, and Repair

    Science.gov (United States)

    Shadrin, I.Y.; Khodabukus, A.; Bursac, N.

    2016-01-01

    As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751

  5. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    OpenAIRE

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin sub...

  6. Systems Biology Approaches to Discerning Striated Muscle Pathologies

    OpenAIRE

    Mukund, Kavitha

    2016-01-01

    The human muscular system represents nearly 75% of the body mass and encompasses two major muscle forms- striated and smooth. Striated muscle, composed broadly of myofibers, accompanying membrane systems, cytoskeletal networks together with the metabolic and regulatory machinery, have revealed complexities in composition, structure and function. A disruption to any component within this complex system of interactions lead to disorders of the muscle, typically characterized by muscle fiber los...

  7. The homeobox gene Msx in development and transdifferentiation of jellyfish striated muscle.

    Science.gov (United States)

    Galle, Sabina; Yanze, Nathalie; Seipel, Katja

    2005-01-01

    Bilaterian Msx homeobox genes are generally expressed in areas of cell proliferation and in association with multipotent progenitor cells. Likewise, jellyfish Msx is expressed in progenitor cells of the developing entocodon, a cell layer giving rise to the striated and smooth muscles of the medusa. However, in contrast to the bilaterian homologs, Msx gene expression is maintained at high levels in the differentiated striated muscle of the medusa in vivo and in vitro. This tissue exhibits reprogramming competence. Upon induction, the Msx gene is immediately switched off in the isolated striated muscle undergoing transdifferentiation, to be upregulated again in the emerging smooth muscle cells which, in a stem cell like manner, undergo quantal cell divisions producing two cell types, a proliferating smooth muscle cell and a differentiating nerve cell. This study indicates that the Msx protein may be a key component of the reprogramming machinery responsible for the extraordinary transdifferentation and regeneration potential of striated muscle in the hydrozoan jellyfish.

  8. Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis

    Directory of Open Access Journals (Sweden)

    Alessandra Costa

    2014-09-01

    Full Text Available Since the 1980's, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.

  9. Ultrastructure of striated muscle fibers in the middle third of the human esophagus

    OpenAIRE

    Faussone-Pellegrini, M.S; Cortesini, C.

    1986-01-01

    Striated muscle fibers and .their spatial relationship to smooth muscle cells have been studied in the middle third of human esophagus. Biopsies were obtained from 3 patients during surgery. In both the circular and longitudinal layers, the muscle coat of this transition zone was composed of fascicles of uniform dimensioi~ (100-200 pm of diameter); some of these bundles were made up of striated muscle fibers, others were pure bundles of smooth muscle cells and ...

  10. Esophageal striated muscle contractions in patients with Chagas' disease and idiopathic achalasia

    Directory of Open Access Journals (Sweden)

    R.O. Dantas

    2002-06-01

    Full Text Available Chagas' disease causes degeneration and reduction of the number of intrinsic neurons of the esophageal myenteric plexus, with consequent absent or partial lower esophageal sphincter relaxation and loss of peristalsis in the esophageal body. The impairment of esophageal motility is seen mainly in the distal smooth muscle region. There is no study about esophageal striated muscle contractions in the disease. In 81 patients with heartburn (44 with esophagitis taken as controls, 51 patients with Chagas' disease (21 with esophageal dilatation and 18 patients with idiopathic achalasia (11 with esophageal dilatation we studied the amplitude, duration and area under the curve of esophageal proximal contractions. Using the manometric method and a continuous perfusion system we measured the esophageal striated muscle contractions 2 to 3 cm below the upper esophageal sphincter after swallows of a 5-ml bolus of water. There was no significant difference in striated muscle contractions between patients with heartburn and esophagitis and patients with heartburn without esophagitis. There was also no significant difference between patients with heartburn younger or older than 50 years or between men and women or in esophageal striated muscle contractions between patients with heartburn and Chagas' disease. The esophageal proximal amplitude of contractions was lower in patients with idiopathic achalasia than in patients with heartburn. In patients with Chagas' disease there was no significant difference between patients with esophageal dilatation and patients with normal esophageal diameter. Esophageal striated muscle contractions in patients with Chagas' disease have the same amplitude and duration as seen in patients with heartburn. Patients with idiopathic achalasia have a lower amplitude of contraction than patients with heartburn.

  11. Contracture of Slow Striated Muscle during Calcium Deprivation

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1963-01-01

    When deprived of calcium the slow striated muscle fibers of the frog develop reversible contractures in either hypertonic or isotonic solutions. While calcium deprivation continues because of a flowing calcium-free solution the muscles relax slowly and completely. Restoration of calcium during contracture relaxes the muscle promptly to initial tension. When relaxed during calcium lack the return of calcium does not change tension and the muscle stays relaxed. When contractures are induced by solutions containing small amounts of calcium relaxation does not occur or requires several hours. The rate of tension development depends upon the rate at which calcium moves outward since the contractures develop slower in low concentrations of calcium and are absent or greatly slowed in a stagnant calcium-free solution. Withdrawal of calcium prevents the contractile responses to ACh, KCl, or electrical stimulation through the nerve. Muscles return to their original excitability after calcium is restored. Origin of the contractures is unrelated to nerve activity since they are maximal during transmission failure from calcium lack, occur in denervated muscles, and are not blocked by high concentrations of d-tubocurarine, procaine, or atropine. The experiments also indicate that the contractures do not originate from repetitive activity of muscle membranes. The findings are most simply explained by relating the outward movement of calcium as a link for initiating contraction in slow type striated muscle. PMID:14065284

  12. Revealing t-tubules in striated muscle with new optical super-resolution microscopy techniques

    Directory of Open Access Journals (Sweden)

    Isuru D. Jayasinghe

    2014-12-01

    Full Text Available The t-tubular system plays a central role in the synchronisation of calcium signalling and excitation-contraction coupling in most striated muscle cells. Light microscopy has been used for imaging t-tubules for well over 100 years and together with electron microscopy (EM, has revealed the three-dimensional complexities of the t-system topology within cardiomyocytes and skeletal muscle fibres from a range of species. The emerging super-resolution single molecule localisation microscopy (SMLM techniques are offering a near 10-fold improvement over the resolution of conventional fluorescence light microscopy methods, with the ability to spectrally resolve nanometre scale distributions of multiple molecular targets. In conjunction with the next generation of electron microscopy, SMLM has allowed the visualisation and quantification of intricate t-tubule morphologies within large areas of muscle cells at an unprecedented level of detail. In this paper, we review recent advancements in the t-tubule structural biology with the utility of various microscopy techniques. We outline the technical considerations in adapting SMLM to study t-tubules and its potential to further our understanding of the molecular processes that underlie the sub-micron scale structural alterations observed in a range of muscle pathologies.

  13. Expression of various sarcomeric tropomyosin isoforms in equine striated muscles

    Directory of Open Access Journals (Sweden)

    Syamalima Dube

    2017-06-01

    Full Text Available In order to better understand the training and athletic activity of horses, we must have complete understanding of the isoform diversity of various myofibrillar protein genes like tropomyosin. Tropomyosin (TPM, a coiled-coil dimeric protein, is a component of thin filament in striated muscles. In mammals, four TPM genes (TPM1, TPM2, TPM3, and TPM4 generate a multitude of TPM isoforms via alternate splicing and/or using different promoters. Unfortunately, our knowledge of TPM isoform diversity in the horse is very limited. Hence, we undertook a comprehensive exploratory study of various TPM isoforms from horse heart and skeletal muscle. We have cloned and sequenced two sarcomeric isoforms of the TPM1 gene called TPM1α and TPM1κ, one sarcomeric isoform of the TPM2 and one of the TPM3 gene, TPM2α and TPM3α respectively. By qRT-PCR using both relative expression and copy number, we have shown that TPM1α expression compared to TPM1κ is very high in heart. On the other hand, the expression of TPM1α is higher in skeletal muscle compared to heart. Further, the expression of TPM2α and TPM3α are higher in skeletal muscle compared to heart. Using western blot analyses with CH1 monoclonal antibody we have shown the high expression levels of sarcomeric TPM proteins in cardiac and skeletal muscle. Due to the paucity of isoform specific antibodies we cannot specifically detect the expression of TPM1κ in horse striated muscle. To the best of our knowledge this is the very first report on the characterization of sarcmeric TPMs in horse striated muscle.

  14. In vivo functional and morphological characterization of bone and striated muscle microcirculation in NSG mice.

    Directory of Open Access Journals (Sweden)

    Haider Mussawy

    Full Text Available Organ-specific microcirculation plays a central role in tumor growth, tumor cell homing, tissue engineering, and wound healing. Mouse models are widely used to study these processes; however, these mouse strains often possess unique microhemodynamic parameters, making it difficult to directly compare experiments. The full functional characterization of bone and striated muscle microcirculatory parameters in non-obese diabetic-severe combined immunodeficiency/y-chain; NOD-Prkds IL2rg (NSG mice has not yet been reported. Here, we established either a dorsal skinfold chamber or femur window in NSG mice (n = 23, allowing direct analysis of microcirculatory parameters in vivo by intravital fluorescence microscopy at 7, 14, 21, and 28 days after chamber preparation. Organ-specific differences were observed. Bone had a significantly lower vessel density but a higher vessel diameter than striated muscle. Bone also showed higher effective vascular permeability than striated muscle. The centerline velocity values were similar in the femur window and dorsal skinfold chamber, with a higher volumetric blood flow in bone. Interestingly, bone and striated muscle showed similar tissue perfusion rates. Knowledge of physiological microhemodynamic values of bone and striated muscle in NSG mice makes it possible to analyze pathophysiological processes at these anatomic sites, such as tumor growth, tumor metastasis, and tumor microcirculation, as well as the response to therapeutic agents.

  15. Muscle fibre capillarization is a critical factor in muscle fibre hypertrophy during resistance exercise training in older men.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; Joanisse, Sophie; Leenders, Marika; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2017-04-01

    Adequate muscle fibre perfusion is critical for the maintenance of muscle mass; it is essential in the rapid delivery of oxygen, nutrients and growth factors to the muscle, stimulating muscle fibre growth. Muscle fibre capillarization is known to decrease substantially with advancing age. However, whether (relative) low muscle fibre capillarization negatively impacts the muscle hypertrophic response following resistance exercise training in older adults is unknown. Twenty-two healthy older men (71 ± 1 years) performed 24 weeks of progressive resistance type exercise training. To assess the change in muscle fibre characteristics, percutaneous biopsies from the vastus lateralis muscle were taken before and following 12 and 24 weeks of the intervention programme. A comparison was made between participants who had a relatively low type II muscle fibre capillary-to-fibre perimeter exchange index (CFPE; LOW group) and high type II muscle fibre CFPE (HIGH group) at baseline. Type I and type II muscle fibre size, satellite cell, capillary content and distance between satellite cells to the nearest capillary were determined by immunohistochemistry. Overall, type II muscle fibre size (from 5150 ± 234 to 6719 ± 446 µm 2 , P muscle fibre, P muscle fibre capillarization, whereas muscle fibre size (from 5170 ± 390 to 7133 ± 314 µm 2 , P muscle fibre, P muscle fibre capillarization were observed in response to 12 and 24 weeks of resistance exercise training in both the LOW and HIGH group. Type II muscle fibre capillarization at baseline may be a critical factor for allowing muscle fibre hypertrophy to occur during prolonged resistance exercise training in older men. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  16. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres.

    Science.gov (United States)

    Hanft, Laurin M; McDonald, Kerry S

    2010-08-01

    According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length

  17. The Popeye Domain Containing Genes and Their Function in Striated Muscle

    Science.gov (United States)

    Schindler, Roland F. R.; Scotton, Chiara; French, Vanessa; Ferlini, Alessandra; Brand, Thomas

    2016-01-01

    The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle. PMID:27347491

  18. Poorly Understood Aspects of Striated Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Alf Månsson

    2015-01-01

    Full Text Available Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP. Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.

  19. Muscle architecture and fibre characteristics of rat gastrocnemius and semimembranosus muscles during isometric contractions.

    Science.gov (United States)

    Huijing, P A; van Lookeren Campagne, A A; Koper, J F

    1989-01-01

    Rat gastrocnemius medialis (GM) and semimembranosus (SM) muscles have a very different morphology. GM is a very pennate muscle, combining relatively short muscle fibre length with sizable fibre angles and long muscle and aponeurosis lengths. SM is a more parallel-fibred muscle, combining a relatively long fibre length with a small fibre angle and short aponeurosis length. The mechanisms of fibre shortening as well as angle increase are operational in GM as well as SM. However, as a consequence of isometric contraction, changes of fibre length and angle are greater for GM than for SM at any relative muscle length. These differences are particularly notable at short muscle lengths: at 80% of optimum muscle length, fibre length changes of approximately 30% are coupled to fibre angle changes of 15 degrees in GM, while for SM these changes are 4% and 0.6 degrees, respectively. A considerable difference was found for normalized active slack muscle length (GM approximately 80 and SM approximately 45%). This is explained by differences of degree of pennation as well as factors related to differences found for estimated fibre length-force characteristics. Estimated normalized active fibre slack length was considerably smaller for SM than for GM (approximately 40 and 60%, respectively). The most likely explanation of these findings are differences of distribution of optimum fibre lengths, possibly in combination with differences of myofilament lengths and/or fibre length distributions.

  20. Regenerating human muscle fibres express GLUT3 protein

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2002-01-01

    The presence of the GLUT3 glucose transporter protein in human muscle cells is a matter of debate. The present study was designed to establish whether GLUT3 is expressed in mature human skeletal muscle fibres and, if so, whether its expression changes under different conditions, such as metabolic...... muscle fibres, nor did metabolic stress, training or de- and re-innervation induce GLUT3 expression, while a few GLUT3 expressing fibres were seen in some cases of polymyositis. In contrast, GLUT4 was expressed in all investigated muscle fibres. GLUT3 immunoreactivity was found in perineural...... and endoneural cells, indicating that GLUT3 is important for glucose transport into nerves through the perineurium. Taken together, these data suggest that GLUT3 expression is restricted to regenerating muscle fibres and nerves in adult human muscle. Although the significance of GLUT3 in adult human muscle...

  1. New Insights into Muscle Fibre Types in Casertana Pig

    Directory of Open Access Journals (Sweden)

    Salvatore Velotto

    2010-01-01

    Full Text Available Little is known about the Casertana pig. The aim of this study was to evaluate the effect of sex on histochemical and morphometrical characteristics of muscle fibres (myocytes in this pure breed and to verify the presence of giant fibres as well as vascularity of the muscle. Finally, maximum shortening velocity and isometric tension were measured in single muscle fibres. Sixteen Casertana pigs (8 males, 8 females from a farm in Campania (Italy were slaughtered at one year of age. Muscle tissues were obtained from psoas minor, rhomboideus and longissimus dorsi. Myofibres were stained for myosin adenosine triphosphatase, succinic dehydrogenase, and α-amylase-periodic acid schiff. For all fibre types, the area and perimeter were measured. Slowtwitch oxidative fibres, fast-twitch glycolytic fibres and fast-twitch oxidative-glycolytic fibres were histochemically differentiated; an image-analyzing system was used. The results showed significant differences between the sexes in the size of all three fibre types. The psoas minor muscle had a high percentage of slow-twitch oxidative fibres and contained more capillaries per fibre and per mm2 than rhomboideus and longissimus dorsi, in which fast-twitch glycolytic fibres dominated. The cross-sectional area of all fibre types was larger in longissimus dorsi than in rhomboideus and psoas minor muscles; the giant fibres were present in the longissimus dorsi muscle only. Besides, isometric tension values were higher in fast-twitch glycolytic fibres than in the other ones. Variations in fibre type composition may contribute to meat quality.

  2. Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism

    Science.gov (United States)

    Lee, Kevin Y.; Singh, Manvendra K.; Ussar, Siegfried; Wetzel, Petra; Hirshman, Michael F.; Goodyear, Laurie J.; Kispert, Andreas; Kahn, C. Ronald

    2015-01-01

    Skeletal muscle is composed of both slow-twitch oxidative myofibers and fast-twitch glycolytic myofibers that differentially impact muscle metabolism, function and eventually whole-body physiology. Here we show that the mesodermal transcription factor T-box 15 (Tbx15) is highly and specifically expressed in glycolytic myofibers. Ablation of Tbx15 in vivo leads to a decrease in muscle size due to a decrease in the number of glycolytic fibres, associated with a small increase in the number of oxidative fibres. This shift in fibre composition results in muscles with slower myofiber contraction and relaxation, and also decreases whole-body oxygen consumption, reduces spontaneous activity, increases adiposity and glucose intolerance. Mechanistically, ablation of Tbx15 leads to activation of AMPK signalling and a decrease in Igf2 expression. Thus, Tbx15 is one of a limited number of transcription factors to be identified with a critical role in regulating glycolytic fibre identity and muscle metabolism. PMID:26299309

  3. The role of Six1 in muscle progenitor cells and the establishment of fast-twitch muscle fibres

    OpenAIRE

    Nord, Hanna

    2014-01-01

    Myogenesis is the process of skeletal muscle tissue formation where committed muscle progenitor cells differentiate into skeletal muscle fibres. Depending on the instructive cues the muscle progenitor cells receive they will differentiate into specific fibre types with different properties. The skeletal muscle fibres can be broadly classified as fast-twitch fibres or slow-twitch fibres, based on their contractile speed. However, subgroups of fast- and slow-twitch fibres with different metabol...

  4. Polymorphism of myofibrillar proteins of rabbit skeletal-muscle fibres. An electrophoretic study of single fibres.

    OpenAIRE

    Salviati, G; Betto, R; Danieli Betto, D

    1982-01-01

    Rabbit predominantly fast-twitch-fibre and predominantly slow-twitch-fibre skeletal muscles of the hind limbs, the psoas, the diaphragm and the masseter muscles were fibre-typed by one-dimensional polyacrylamide-gel electrophoresis of the myofibrillar proteins of chemically skinned single fibres. Investigation of the distribution of fast-twitch-fibre and slow-twitch-fibre isoforms of myosin light chains and the type of myosin heavy chains, based on peptide 'maps' published in Cleveland. Fisch...

  5. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Sung Min Han

    Full Text Available Mutations in VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS and spinal muscular atrophy (SMA, two motor neuron diseases that often include alterations in energy metabolism. We have shown that C. elegans and Drosophila neurons secrete a cleavage product of VAPB, the N-terminal major sperm protein domain (vMSP. Secreted vMSPs signal through Roundabout and Lar-like receptors expressed on striated muscle. The muscle signaling pathway localizes mitochondria to myofilaments, alters their fission/fusion balance, and promotes energy production. Here, we show that neuronal loss of the C. elegans VAPB homolog triggers metabolic alterations that appear to compensate for muscle mitochondrial dysfunction. When vMSP levels drop, cytoskeletal or mitochondrial abnormalities in muscle induce elevated DAF-16, the Forkhead Box O (FoxO homolog, transcription factor activity. DAF-16 promotes muscle triacylglycerol accumulation, increases ATP levels in adults, and extends lifespan, despite reduced muscle mitochondria electron transport chain activity. Finally, Vapb knock-out mice exhibit abnormal muscular triacylglycerol levels and FoxO target gene transcriptional responses to fasting and refeeding. Our data indicate that impaired vMSP signaling to striated muscle alters FoxO activity, which affects energy metabolism. Abnormalities in energy metabolism of ALS patients may thus constitute a compensatory mechanism counterbalancing skeletal muscle mitochondrial dysfunction.

  6. Muscle Fibre Types, Ubiquinone Content and Exercise Capacity in Hypertension and Effort Angina

    DEFF Research Database (Denmark)

    Karlsson, Jan; Diamant, Bertil; Folkers, Karl

    1991-01-01

    Farmakologi, hypertension, IHD, skeletal muscle fibre composition, muscle coenzyme Q10, ischaemic heart disease, effort angina, muscle fibre lesion, muscle ubiquinone......Farmakologi, hypertension, IHD, skeletal muscle fibre composition, muscle coenzyme Q10, ischaemic heart disease, effort angina, muscle fibre lesion, muscle ubiquinone...

  7. New Insights into Muscle Fibre Types in Casertana Pig

    OpenAIRE

    Salvatore Velotto; Claudia Vitale; Tommaso Stasi; Antonio Crasto

    2010-01-01

    Little is known about the Casertana pig. The aim of this study was to evaluate the effect of sex on histochemical and morphometrical characteristics of muscle fibres (myocytes) in this pure breed and to verify the presence of giant fibres as well as vascularity of the muscle. Finally, maximum shortening velocity and isometric tension were measured in single muscle fibres. Sixteen Casertana pigs (8 males, 8 females) from a farm in Campania (Italy) were slaughtered at one year of age. Muscle ti...

  8. The expression of NFATc1 in adult rat skeletal muscle fibres.

    Science.gov (United States)

    Mutungi, Gabriel

    2008-03-01

    Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.

  9. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism

    International Nuclear Information System (INIS)

    Meyer, R.A.; Kushmerick, M.J.; Brown, T.R.

    1982-01-01

    This review presents the principles and limitations of phosphorus nuclear magnetic resonance ( 31 P-NMR) spectroscopy as applied to the study of striated muscle metabolism. Application of the techniques discussed include noninvasive measurement of high-energy phosphate, intracellular pH, intracellular free Mg 2+ , and metabolite compartmentation. In perfused cat biceps (fast-twitch) muscles, but not in soleus (slow-twitch), NMR spectra indicate a substantially lower (1 mM) free inorganic phosphate level than when measured chemically (6 mM). In addition, saturation and inversion spin-transfer methods that enable direct measurement of the unidirectional fluxes through creatine kinase are described. In perfused cat biceps muscle, results suggest that this enzyme and its substrates are in simple chemical equilibrium

  10. Two functionally different muscle fibre types in some salps?

    Directory of Open Access Journals (Sweden)

    Q. Bone

    1998-12-01

    Full Text Available This paper describes the structure and operation of the fibres in the locomotor muscle bands of several salp species. In many species, for example Thalia democratica or Pegea confoederata, all the muscle fibres of the locomotor muscle bands are similar in width and structure. In others, for example Salpa fusiformis and S. maxima, although fibre structure is similar, the marginal fibres edging the bands may be some 3-4 times the width of those in the centre of the band. In Ihlea punctata, not only is there a more striking difference in width between the marginal and central fibres of the bands, but also the two differ in structure. The marginal fibres are up to 10 times the width of the central fibres and the two differ in myofibrillar and mitochondrial content. Intracellular recordings from the fibres show that the normally compound spike potentials do not overshoot resting potentials (up to -70 mV, and are decremental. The two types of fibre may be separately activated. It is suggested that in Ihlea punctata, the wide marginal fibres may be involved in slow swimming, the central narrow fibres in `escape´ swimming.

  11. Architecture of vagal motor units controlling striated muscle of esophagus: peripheral elements patterning peristalsis?

    Science.gov (United States)

    Powley, Terry L; Mittal, Ravinder K; Baronowsky, Elizabeth A; Hudson, Cherie N; Martin, Felecia N; McAdams, Jennifer L; Mason, Jacqueline K; Phillips, Robert J

    2013-12-01

    Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n=78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are "hardwired," in the peripheral architecture of esophageal motor units. © 2013.

  12. Neuromuscular organization of avian flight muscle: architecture of single muscle fibres in muscle units of the pectoralis (pars thoracicus) of pigeon (Columba livia)

    Science.gov (United States)

    Sokoloff, A. J.

    1999-01-01

    The M. pectoralis (pars thoracicus) of pigeons (Columba livia) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap 'in-series'. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (± s.d.) 10.74 ± 0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ± 3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.

  13. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    Science.gov (United States)

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.

  14. GLUT4 expression at the plasma membrane is related to fibre volume in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Gaster, M; Vach, W; Beck-Nielsen, H

    2002-01-01

    In this study we examined the relationship between GLUT4 expression at the plasma membrane and muscle fibre size in fibre-typed human muscle fibres by immunocytochemistry and morphometry in order to gain further insight into the regulation of GLUT4 expression. At the site of the plasma membrane...

  15. Myostatin, a profibrotic factor and the main inhibitor of striated muscle mass, is present in the penile and vascular smooth muscle.

    Science.gov (United States)

    Kovanecz, I; Masouminia, M; Gelfand, R; Vernet, D; Rajfer, J; Gonzalez-Cadavid, N F

    2017-09-01

    Myostatin is present in striated myofibers but, except for myometrial cells, has not been reported within smooth muscle cells (SMC). We investigated in the rat whether myostatin is present in SMC within the penis and the vascular wall and, if so, whether it is transcriptionally expressed and associated with the loss of corporal SMC occurring in certain forms of erectile dysfunction (ED). Myostatin protein was detected by immunohistochemistry/fluorescence and western blots in the perineal striated muscles, and also in the SMC of the penile corpora, arteries and veins, and aorta. Myostatin was found in corporal SMC cultures, and its transcriptional expression (and its receptor) was shown there by DNA microarrays. Myostatin protein was measured by western blots in the penile shaft of rats subjected to bilateral cavernosal nerve resection (BCNR), that were left untreated, or treated (45 days) with muscle-derived stem cells (MDSC), or concurrent daily low-dose sildenafil. Myostatin was not increased by BCNR (compared with sham operated animals), but over expressed after treatment with MDSC. This was reduced by concurrent sildenafil. The presence of myostatin in corporal and vascular SMC, and its overexpression in the corpora by MDSC therapy, may have relevance for the stem cell treatment of corporal fibrosis and ED.

  16. Nox4 Is Dispensable for Exercise Induced Muscle Fibre Switch.

    Directory of Open Access Journals (Sweden)

    Juri Vogel

    Full Text Available By producing H2O2, the NADPH oxidase Nox4 is involved in differentiation of mesenchymal cells. Exercise alters the composition of slow and fast twitch fibres in skeletal. Here we hypothesized that Nox4 contributes to exercise-induced adaptation such as changes in muscle metabolism or muscle fibre specification and studied this in wildtype and Nox4-/- mice.Exercise, as induced by voluntary running in a running wheel or forced running on a treadmill induced a switch from fast twitch to intermediate fibres. However the induced muscle fibre switch was similar between Nox4-/- and wildtype mice. The same held true for exercise-induced expression of PGC1α or AMPK activation. Both are increased in response to exercise, but with no difference was observed between wildtype and Nox4-/- mice.Thus, exercise-induced muscle fibre switch is Nox4-independent.

  17. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans.

    Science.gov (United States)

    Krustrup, Peter; Secher, Niels H; Relu, Mihai U; Hellsten, Ylva; Söderlund, Karin; Bangsbo, Jens

    2008-12-15

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P fibres, respectively. From 127 s of exercise, muscle VO2 was higher (P muscle VO2 response was slower (P muscle homogenate CP was lowered (P muscle lactate production was similar in CUR and CON (37.8 +/- 4.1 versus 35.2 +/- 6.2 mmol). Estimated total muscle ATP turnover was 19% higher (P fibres are less efficient than ST fibres in vivo at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation.

  18. Relationships between myonuclear domain size and fibre properties in the muscles of Thoroughbred horses.

    Science.gov (United States)

    Kawai, M; Kuwano, A; Hiraga, A; Miyata, H

    2010-11-01

    The myonuclear domain (MND) is the region of cytoplasm governed by a single myonucleus. Myonuclear domain size is an important factor for muscle fibre plasticity because each myonucleus has limitations in the capacity of protein synthesis. Previous studies have demonstrated that differences in MND size exist in different fibre types in several species, including horses. To understand the basic mechanism of muscle plasticity, the relationships between MND size, muscle fibre type population and metabolic properties of skeletal muscles throughout the whole body in Thoroughbred horses were examined. Post mortem samples were taken from 20 muscles in 3 Thoroughbred horses aged 3-5 years of age. Fibre type population was determined on serial cross sections of each muscle sample, stained for monoclonal antibodies to each myosin heavy chain isoform. Oxidative (succinic dehydrogenase; SDH) and glycolytic (phosphofructokinase; PFK) enzyme activities were determined spectrophotometrically in each muscle sample. Furthermore, 30 single fibres were isolated from each muscle under stereomicroscopy and then fibre volume and myonuclear number for a given length analysed under confocal microscopy. The MND size of each single fibre was measured after normalisation of sarcomere length to 2.8 µm by staining with membrane-specific dye. Immunohistochemical staining indicated that soleus, vastus lateralis and gluteus medius muscles had the highest percentage of type I, IIa and IIx muscle fibre, respectively. Biochemical analysis indicated highest activities of SDH and PFK in diaphragm and longissimus lumborum muscles, respectively. MNDs were largest in the splenius muscle and smallest in the soleus and masseter muscles. Myonuclear domain size is significantly related to type I muscle fibre population, but not to SDH activities of the muscles. The MND size of muscle fibre depends on fibre type population rather than mitochondrial enzyme activities. © 2010 EVJ Ltd.

  19. Regional organization of fibre types in normal and reinnervated hindlimb muscles

    NARCIS (Netherlands)

    Wang, Liangchun

    2001-01-01

    The present thesis concerns the spatial distribution of the "slow" type I fibres within muscles of the hindlimb. It is known since long ago that some muscles may have strikingly heterogeneous distributions of type I and II fibres, but this phenomenon of "fibre type regionalization" has still not

  20. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.......Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  1. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.

    Science.gov (United States)

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-07-15

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

  2. Orthogonal muscle fibres have different instructive roles in planarian regeneration.

    Science.gov (United States)

    Scimone, M Lucila; Cote, Lauren E; Reddien, Peter W

    2017-11-30

    The ability to regenerate missing body parts exists throughout the animal kingdom. Positional information is crucial for regeneration, but how it is harboured and used by differentiated tissues is poorly understood. In planarians, positional information has been identified from study of phenotypes caused by RNA interference in which the wrong tissues are regenerated. For example, inhibition of the Wnt signalling pathway leads to regeneration of heads in place of tails. Characterization of these phenotypes has led to the identification of position control genes (PCGs)-genes that are expressed in a constitutive and regional manner and are associated with patterning. Most PCGs are expressed within planarian muscle; however, how muscle is specified and how different muscle subsets affect regeneration is unknown. Here we show that different muscle fibres have distinct regulatory roles during regeneration in the planarian Schmidtea mediterranea. myoD is required for formation of a specific muscle cell subset: the longitudinal fibres, oriented along the anterior-posterior axis. Loss of longitudinal fibres led to complete regeneration failure because of defects in regeneration initiation. A different transcription factor-encoding gene, nkx1-1, is required for the formation of circular fibres, oriented along the medial-lateral axis. Loss of circular fibres led to a bifurcated anterior-posterior axis with fused heads forming in single anterior blastemas. Whereas muscle is often viewed as a strictly contractile tissue, these findings reveal that different muscle types have distinct and specific regulatory roles in wound signalling and patterning to enable regeneration.

  3. Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics.

    Science.gov (United States)

    Vydevska-Chichova, M; Mileva, K; Todorova, R; Dimitrova, M; Radicheva, N

    2005-12-01

    Continuous activity of isolated frog gastrocnemius muscle fibres provoked by repetitive stimulation of 5 Hz was used as an experimental model for fatigue development in different fibre types. Parameter changes of the elicited intracellular action potentials and mechanical twitches during the period of uninterrupted activity were used as criteria for fatigue evaluation. Slow fatigable muscle fibre (SMF) and fast fatigable muscle fibre (FMF) types were distinguished depending on the duration of their uninterrupted activity, which was significantly longer in SMFs than in FMFs. The normalized changes of action potential amplitude and duration were significantly smaller in FMFs than in SMFs. The average twitch force and velocity of contraction and relaxation were significantly higher in FMFs than in SMFs. Myosin ATPase (mATPase) and succinate dehydrogenase activity were studied by histochemical assessment in order to validate the fibre type classification based on their electrophysiological characteristics. Based on the relative mATPase reactivity, the fibres of the studied muscle were classified as one of five different types (1-2, 2, 2-3, 3 and tonic). Smaller sized fibres (tonic and type 3) expressed higher succinate dehydrogenase activity than larger sized fibres (type 1-2, 2), which is related to the fatigue resistance. The differences between fatigue development in SMFs and FMFs during continuous activity were associated with fibre-type specific mATPase and succinate dehydrogenase activity.

  4. A simplified immunohistochemical classification of skeletal muscle fibres in mouse

    Directory of Open Access Journals (Sweden)

    M. Kammoun

    2014-06-01

    Full Text Available The classification of muscle fibres is of particular interest for the study of the skeletal muscle properties in a wide range of scientific fields, especially animal phenotyping. It is therefore important to define a reliable method for classifying fibre types. The aim of this study was to establish a simplified method for the immunohistochemical classification of fibres in mouse. To carry it out, we first tested a combination of several anti myosin heavy chain (MyHC antibodies in order to choose a minimum number of antibodies to implement a semi-automatic classification. Then, we compared the classification of fibres to the MyHC electrophoretic pattern on the same samples. Only two anti MyHC antibodies on serial sections with the fluorescent labeling of the Laminin were necessary to classify properly fibre types in Tibialis Anterior and Soleus mouse muscles in normal physiological conditions. This classification was virtually identical to the classification realized by the electrophoretic separation of MyHC. This immunohistochemical classification can be applied to the total area of Tibialis Anterior and Soleus mouse muscles. Thus, we provide here a useful, simple and time-efficient method for immunohistochemical classification of fibres, applicable for research in mouse

  5. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Science.gov (United States)

    Janghra, Narinder; Morgan, Jennifer E; Sewry, Caroline A; Wilson, Francis X; Davies, Kay E; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  6. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Directory of Open Access Journals (Sweden)

    Narinder Janghra

    Full Text Available Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these

  7. Histochemical and functional fibre typing of the rabbit masseter muscle

    NARCIS (Netherlands)

    Bredman, J. J.; Weijs, W. A.; Moorman, A. F.; Brugman, P.

    1990-01-01

    The fibre-type distribution of the masseter muscle of the rabbit was studied by means of the myosin-ATPase and succinate dehydrogenase reactions. Six different fibre types were found and these were unequally distributed between and within the anatomical compartments of the muscle. Most of the

  8. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise......Exercise induces free oxygen radicals that cause oxidative stress, and metallothioneins (MTs) are increased in states of oxidative stress and possess anti-apoptotic effects. We therefore studied expression of the antioxidant factors metallothionein I and II (MT-I + II) in muscle biopsies obtained...... in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...

  9. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.

    Science.gov (United States)

    Lin, Jiandie; Wu, Hai; Tarr, Paul T; Zhang, Chen-Yu; Wu, Zhidan; Boss, Olivier; Michael, Laura F; Puigserver, Pere; Isotani, Eiji; Olson, Eric N; Lowell, Bradford B; Bassel-Duby, Rhonda; Spiegelman, Bruce M

    2002-08-15

    The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination.

  10. Esterases in striated muscle from mice with the Chediak-Higashi syndrome

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D

    1981-01-01

    In this paper a localized strong reaction for non-specific esterase forming cylindric structures is described within skeletal muscle fibres from the beige mouse. It seems from zymograms and protein electrophoresis that this esterase is membrane bound, highly reactive and present in rather small...

  11. Effect of controlled exercise on middle gluteal muscle fibre composition in Thoroughbred foals.

    Science.gov (United States)

    Eto, D; Yamano, S; Kasashima, Y; Sugiura, T; Nasu, T; Tokuriki, M; Miyata, H

    2003-11-01

    Most racehorses are trained regularly from about age 18 months; therefore, little information is available on the effect of training in Thoroughbred foals. Well-controlled exercise could improve muscle potential ability for endurance running. Thoroughbred foals at age 2 months were separated into control and training (treadmill exercise) groups and samples obtained from the middle gluteal muscle at 2 and 12 months post partum. Muscle fibre compositions were determined by histochemical and electrophoretical techniques and succinic dehydrogenase (SDH) activity was analysed in each fibre type. All fibre types were hypertrophied with growth and type I and IIA fibres were significantly larger in the training than the control group at age 12 months. A significant increase of SDH activity was found in type IIX muscle fibres in the training group. Training in young Thoroughbred horses can facilitate muscle fibre hypertrophy and increase the oxidative capacity of type IIX fibres, which could potentially enhance stamina at high speeds. To apply this result to practical training, further studies are needed to determine more effective and safe intensities of controlled exercise.

  12. Contracture Coupling of Slow Striated Muscle in Non-Ionic Solutions and Replacement of Calcium, Sodium, and Potassium

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1964-01-01

    The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle. PMID:14127603

  13. Specific fibre composition and metabolism of the rectus abdominis muscle of bovine Charolais cattle

    Science.gov (United States)

    2010-01-01

    Background An important variability of contractile and metabolic properties between muscles has been highlighted. In the literature, the majority of studies on beef sensorial quality concerns M. longissimus thoracis. M. rectus abdominis (RA) is easy to sample without huge carcass depreciation and may appear as an alternative to M. longissimus thoracis for fast and routine physicochemical analysis. It was considered interesting to assess the muscle fibres of M. rectus abdominis in comparison with M. longissimus thoracis (LT) and M. triceps brachii (TB) on the basis of metabolic and contractile properties, area and myosin heavy chain isoforms (MyHC) proportions. Immuno-histochemical, histochemical, histological and enzymological techniques were used. This research concerned two populations of Charolais cattle: RA was compared to TB in a population of 19 steers while RA was compared to LT in a population of 153 heifers. Results RA muscle had higher mean fibre areas (3350 μm2 vs 2142 to 2639 μm2) than the two other muscles. In RA muscle, the slow-oxidative fibres were the largest (3957 μm2) and the fast-glycolytic the smallest (2868 μm2). The reverse was observed in TB muscle (1725 and 2436 μm2 respectively). In RA muscle, the distinction between fast-oxidative-glycolytic and fast-glycolytic fibres appeared difficult or impossible to establish, unlike in the other muscles. Consequently the classification based on ATPase and SDH activities seemed inappropriate, since the FOG fibres presented rather low SDH activity in this muscle in comparison to the other muscles of the carcass. RA muscle had a higher proportion of I fibres than TB and LT muscles, balanced by a lower proportion either of IIX fibres (in comparison to TB muscle) or of IIA fibres (in comparison to LT muscle). However, both oxidative and glycolytic enzyme activities were lower in RA than in TB muscle, although the LDH/ICDH ratio was higher in RA muscle (522 vs 340). Oxidative enzyme activities were

  14. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  15. Muscle fibre type composition and body composition in hammer throwers.

    Science.gov (United States)

    Terzis, Gerasimos; Spengos, Konstantinos; Kavouras, Stavros; Manta, Panagiota; Georgiadis, Giorgos

    2010-01-01

    Aim of the present study was to describe the muscle fibre type composition and body composition of well-trained hammer throwers. Six experienced hammer throwers underwent the following measurements: one repetition maximum in squat, snatch, and clean, standing broad jump, backward overhead shot throw and the hammer throw. Dual x-ray absorptiometry was used for body composition analysis. Fibre type composition and cross sectional area was determined in muscle biopsy samples of the right vastus lateralis. Eight physical education students served as a control group. One repetition maximum in squat, snatch and clean for the hammer throwers was 245 ± 21, 132 ± 13 and 165 ± 12kg, respectively. Lean body mass was higher in hammer throwers (85.9 ± 3. 9kg vs. 62.7 ± 5.1kg (p hammer throwers and 51 ± 8% in the control group (p Hammer throwers had significantly larger type IIA fibres (7703 ± 1171 vs. 5676 ± 1270μm(2), p Hammer throwing performance correlated significantly with lean body mass (r = 0.81, p hammer throwers have larger lean body mass and larger muscular areas occupied by type II fibres, compared with relatively untrained subjects. Moreover, it seems that the enlarged muscle mass of the hammer throwers contributes significantly to the hammer throwing performance. Key pointsWell-trained hammer throwers had increased lean body mass, higher type IIA muscle fibres cross sectional areas, as well as higher bone mineral density, compared to controls.Increased lean body mass was closely related with hammer throwing performance.The relative high percentage of type IIX muscle fibres in vastus lateralis in hammer throwers warrants further investigation.

  16. Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration

    Directory of Open Access Journals (Sweden)

    Juan Mendizabal-Zubiaga

    2016-10-01

    Full Text Available The cannabinoid type 1 (CB1 receptor is widely distributed in the brain and peripheral organs where it regulates cellular functions and metabolism. In the brain, CB1 is mainly localized on presynaptic axon terminals but is also found on mitochondria (mtCB1, where it regulates cellular respiration and energy production. Likewise, CB1 is localized on muscle mitochondria, but very little is known about it. The aim of this study was to further investigate in detail the distribution and functional role of mtCB1 in three different striated muscles. Immunoelectron microscopy for CB1 was used in skeletal muscles (gastrocnemius and rectus abdominis and myocardium from wild-type and CB1-KO mice. Functional assessments were performed in mitochondria purified from the heart of the mice and the mitochondrial oxygen consumption upon application of different acute delta-9-tetrahidrocannabinol (Δ9-THC concentrations (100 nM or 200 nM was monitored. About 26% of the mitochondrial profiles in gastrocnemius, 22% in the rectus abdominis and 17% in the myocardium expressed CB1. Furthermore, the proportion of mtCB1 versus total CB1 immunoparticles was about 60% in the gastrocnemius, 55% in the rectus abdominis and 78% in the myocardium. Importantly, the CB1 immunolabeling pattern disappeared in muscles of CB1-KO mice. Functionally, acute 100 nM or 200 nM THC treatment specifically decreased mitochondria coupled respiration between 12% and 15% in wild-type isolated mitochondria of myocardial muscles but no significant difference was noticed between THC treated and vehicle in mitochondria isolated from CB1-KO heart. Furthermore, gene expression of key enzymes involved in pyruvate synthesis, tricarboxylic acid (TCA cycle and mitochondrial respiratory chain was evaluated in the striated muscle of CB1-WT and CB1-KO. CB1-KO showed an increase in the gene expression of Eno3, Pkm2, and Pdha1, suggesting an increased production of pyruvate. In contrast, no significant

  17. Chaperones and the Proteasome System: Regulating the Construction and Demolition of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Casey Carlisle

    2017-12-01

    Full Text Available Protein folding factors (chaperones are required for many diverse cellular functions. In striated muscle, chaperones are required for contractile protein function, as well as the larger scale assembly of the basic unit of muscle, the sarcomere. The sarcomere is complex and composed of hundreds of proteins and the number of proteins and processes recognized to be regulated by chaperones has increased dramatically over the past decade. Research in the past ten years has begun to discover and characterize the chaperones involved in the assembly of the sarcomere at a rapid rate. Because of the dynamic nature of muscle, wear and tear damage is inevitable. Several systems, including chaperones and the ubiquitin proteasome system (UPS, have evolved to regulate protein turnover. Much of our knowledge of muscle development focuses on the formation of the sarcomere but recent work has begun to elucidate the requirement and role of chaperones and the UPS in sarcomere maintenance and disease. This review will cover the roles of chaperones in sarcomere assembly, the importance of chaperone homeostasis and the cooperation of chaperones and the UPS in sarcomere integrity and disease.

  18. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition

    DEFF Research Database (Denmark)

    Nielsen, Anders Rinnov; Mounier, Remi; Plomgaard, Peter

    2007-01-01

    The cytokine interleukin-15 (IL-15) has been demonstrated to have anabolic effects in cell culture systems. We tested the hypothesis that IL-15 is predominantly expressed by type 2 skeletal muscle fibres, and that resistance exercise regulates IL-15 expression in muscle. Triceps brachii, vastus...... lateralis quadriceps and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers (n = 14), because these muscles are characterized by having different fibre-type compositions. In addition, healthy, normally physically active male subjects (n = 8) not involved...

  19. Functional characterization of muscle fibres from patients with chronic fatigue syndrome: case-control study.

    Science.gov (United States)

    Pietrangelo, T; Toniolo, L; Paoli, A; Fulle, S; Puglielli, C; Fanò, G; Reggiani, C

    2009-01-01

    Chronic fatigue syndrome (CFS) is a disabling condition characterized by unexplained chronic fatigue that impairs normal activities. Although immunological and psychological aspects are present, symptoms related to skeletal muscles, such as muscle soreness, fatigability and increased lactate accumulation, are prominent in CFS patients. In this case-control study, the phenotype of the same biopsy samples was analyzed by determining i) fibre-type proportion using myosin isoforms as fibre type molecular marker and gel electrophoresis as a tool to separate and quantify myosin isoforms, and ii) contractile properties of manually dissected, chemically made permeable and calcium-activated single muscle fibres. The results showed that fibre-type proportion was significantly altered in CSF samples, which showed a shift from the slow- to the fast-twitch phenotype. Cross sectional area, force, maximum shortening velocity and calcium sensitivity were not significantly changed in single muscle fibres from CSF samples. Thus, the contractile properties of muscle fibres were preserved but their proportion was changed, with an increase in the more fatigue-prone, energetically expensive fast fibre type. Taken together, these results support the view that muscle tissue is directly involved in the pathogenesis of CSF and it might contribute to the early onset of fatigue typical of the skeletal muscles of CFS patients.

  20. Power output of skinned skeletal muscle fibres from the cheetah (Acinonyx jubatus)

    Science.gov (United States)

    West, T.G.; Toepfer, Christopher N.; Woledge, Roger C.; Curtin, N.A.; Rowlerson, Anthea; Kalakoutis, Michaeljohn; Hudson, Penny; Wilson, Alan M.

    2015-01-01

    SUMMARY Muscle samples were taken from the gluteus, semitendinosus and longissimus muscles of a captive cheetah immediately after euthanasia. Fibres were “skinned” to remove all membranes leaving the contractile filament array intact and functional. Segments of skinned fibres from these cheetah muscles and from rabbit psoas muscle were activated at 20°C by a temperature jump protocol. Step and ramp length changes were imposed after active stress had developed. The stiffness of the non-contractile ends of the fibres (series elastic component) was measured at two different stress values in each fibre; stiffness was strongly dependent on stress. Using these stiffness values, the speed of shortening of the contractile component was evaluated, and hence the power it was producing. Fibres were analysed for myosin heavy chain content using gel electrophoresis, and identified as either slow (Type I) or fast (Type II). The power output of cheetah Type II fibre segments was 92.5 ± 4.3 W kg−1 (mean ±s.e., 14 fibres) during shortening at relative stress 0.15 (=stress during shortening/isometric stress). For rabbit psoas fibre segments (presumably Type IIX) the corresponding value was significantly higher (Pcheetah was less than that of rabbit when maximally activated at 20°C, and does not account for the superior locomotor performance of the cheetah. PMID:23580727

  1. Power output of skinned skeletal muscle fibres from the cheetah (Acinonyx jubatus).

    Science.gov (United States)

    West, Timothy G; Toepfer, Christopher N; Woledge, Roger C; Curtin, Nancy A; Rowlerson, Anthea; Kalakoutis, Michaeljohn; Hudson, Penny; Wilson, Alan M

    2013-08-01

    Muscle samples were taken from the gluteus, semitendinosus and longissimus muscles of a captive cheetah immediately after euthanasia. Fibres were 'skinned' to remove all membranes, leaving the contractile filament array intact and functional. Segments of skinned fibres from these cheetah muscles and from rabbit psoas muscle were activated at 20°C by a temperature-jump protocol. Step and ramp length changes were imposed after active stress had developed. The stiffness of the non-contractile ends of the fibres (series elastic component) was measured at two different stress values in each fibre; stiffness was strongly dependent on stress. Using these stiffness values, the speed of shortening of the contractile component was evaluated, and hence the power it was producing. Fibres were analysed for myosin heavy chain content using gel electrophoresis, and identified as either slow (type I) or fast (type II). The power output of cheetah type II fibre segments was 92.5±4.3 W kg(-1) (mean ± s.e., 14 fibres) during shortening at relative stress 0.15 (the stress during shortening/isometric stress). For rabbit psoas fibre segments (presumably type IIX) the corresponding value was significantly higher (Pcheetah was less than that of rabbit when maximally activated at 20°C, and does not account for the superior locomotor performance of the cheetah.

  2. Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Atkin, Julie D; Scott, Rachel L; West, Jan M; Lopes, Elizabeth; Quah, Alvin K J; Cheema, Surindar S

    2005-05-01

    This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.

  3. Muscle fibre types of fishes : structural and functional specialization

    NARCIS (Netherlands)

    Akster, H.A.

    1984-01-01

    Muscles of fishes are active in a variety of movements that differ in velocity, duration and excursion length. To investigate how muscles meet the, often conflicting, demands imposed upon them by these movements, the fibre type composition of several muscles was determined. The ultrastructural and

  4. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans

    DEFF Research Database (Denmark)

    Krustrup, Peter; Secher, Niels; Relu, Mihai U.

    2008-01-01

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W...... without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P ... at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation....

  5. Myosin heavy-chain isoform distribution, fibre-type composition and fibre size in skeletal muscle of patients on haemodialysis

    DEFF Research Database (Denmark)

    Molsted, Stig; Eidemak, Inge; Sorensen, Helle Tauby

    2007-01-01

    of age-, gender- and BMI-matched untrained control subjects. The aerobic work capacity of the patients was also determined. Results. The MHC composition for I, IIA and IIX isoforms was found to be 35.3%±18.2%, 35.9%±7.1% and 28.9%±15.6%, respectively, findings supported by the ATPase histochemically...... determined fibre-type composition of the vastus lateralis muscle. The mean fibre area of type 1 and 2 fibres was 3283±873 and 3594±1483 µm2, respectively. The MHC composition and the size of the type 1 fibres of the patients on HD were significantly different from those of the control subjects. Conclusions....... The data demonstrate relatively fewer type 1 and consequently more type 2x fibres, with a corresponding change in MHC isoforms (MHC I and MHC IIX) in the skeletal muscle of patiens on HD. Several patients on HD were found to have type 1 (or relative percentage of MHC I) fibres. Such a low percentage...

  6. Glucose intolerance in the West African Diaspora: a skeletal muscle fibre type distribution hypothesis.

    Science.gov (United States)

    Nielsen, J; Christensen, D L

    2011-08-01

    In the United States, Black Americans are largely descendants of West African slaves; they have a higher relative proportion of obesity and experience a higher prevalence of diabetes than White Americans. However, obesity rates alone cannot explain the higher prevalence of type 2 diabetes. Type 2 diabetes is characterized by insulin resistance and beta-cell dysfunction. We hypothesize that the higher prevalence of type 2 diabetes in African Americans (as compared to White Americans) is facilitated by an inherited higher percentage of skeletal muscle fibre type II and a lower percentage of skeletal muscle fibre type I. Skeletal muscle fibre type II is less oxidative and more glycolytic than skeletal muscle fibre type I. Lower oxidative capacity is associated with lower fat oxidation and a higher disposal of lipids, which are stored as muscular adipose tissue in higher amounts in Black compared to White Americans. In physically active individuals, the influence of muscle fibre composition will not be as detrimental as in physically inactive individuals. This discrepancy is caused by the plasticity in the skeletal muscle fibre characteristics towards a higher activity of oxidative enzymes as a consequence of physical activity. We suggest that a higher percentage of skeletal muscle fibre type II combined with physical inactivity has an impact on insulin sensitivity and high prevalence of type 2 diabetes in Blacks of West African ancestry. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  7. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

    Science.gov (United States)

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F

    2015-10-13

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

  8. Different β-adrenergic receptor density in different rat skeletal muscle fibre types

    International Nuclear Information System (INIS)

    Jensen, J.; Dahl, H.A.; Broers, O.

    1995-01-01

    The effects of adrenaline on skeletal muscle differ between fibre types. The aim of the present study was to investigate the β-adrenoceptor density, affinity and subtype in rat skeletal muscles with different fibre type composition. β-Adrenoceptors were determined in cryostat sections to avoid methodological problems with variable recovery, using the non-selective βadrenoceptor ligand [ 3 H]CGP-12177 and β 1 - and β 2 -selective cold ligands CGP 20712A and ICI 118,551. In the presence of protease inhibitors [ 3 H]CGP-12177 binding was stable, saturable, reversible, and displaceable. Scatchard analysis of binding saturation data was compatible with a single class of specific binding sites. Binding site density (B max ) was higher (P -1 ) than in adult extensor digitorum longus (4.74±0.39 fmol x mg protein -1 ), whereas the dissociation constants (K d ), 0.37±0.05 and 0.31±0.04 nM for soleus and extensor digitorum longus, respectively, were not significantly different. For young rats (5-6 weeks), B max was 11.21±0.33 and 5.45±0.11 fmol x mg protein -1 (P d was 0.27±0.02 and 0.24±0.04 nM for soleus and epitrochlearis, respectively. These results correspond to a receptor density of 2 and 1 pmol x g w.wt. -1 in muscles containing mainly type I and type II fibres, respectively. Displacement studies with CGP 20712A and ICI 118,551 were compatible with mainly β 2 -adrenoceptors, but 7-10% β 1 -adrenoceptors were present in both types of muscle. In conclusion, the receptor density is twice as high in muscles containing mainly type I muscle fibres compared to muscles containing mainly type II fibres, and this may explain some of the different effects of adrenaline between the two muscle fibre types. (au)

  9. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    Directory of Open Access Journals (Sweden)

    Tibor Istvan Toth

    Full Text Available In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1 positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2 the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3 there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  10. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres.

    Science.gov (United States)

    Mutungi, G; Ranatunga, K W

    2001-01-01

    The effects of a ramp stretch (amplitude muscle fibre length (L0), speed twitch tension and twitch tension re-development were examined in intact mammalian (rat) fast and slow muscle fibre bundles. The experiments were done in vitro at 20 degrees C and at an initial sarcomere length of 2.68 microm. In both fibre types, a stretch applied during the rising phase of the twitch response (including the time of stimulation) increased the re-developed twitch tension (15-35%). A stretch applied before the stimulus had little or no effect on the twitch myogram in fast muscle fibres, but it increased the twitch tension (approximately 5%) in slow muscle fibres. A similar stretch had little or no effect on tetanic tension in either muscle fibre type. In general, the results indicate that the contractile-activation mechanism may be stretch sensitive and this is particularly pronounced in slow muscle fibres. Recorded at a high sampling rate and examined at an appropriate time scale, the transitory tension response to a stretch rose in at least two phases; an initial rapid tension rise to a break (break point tension, P1a) followed by a slower tension rise (apparent P2a) to a peak reached at the end of the stretch. Plotted against stretch velocity, P1a tension increased in direct proportion to stretch velocity (viscous-like) whereas, P2a tension (calculated as peak tension minus P1a tension) increased with stretch velocity to a plateau (visco-elastic). Examined at the peak of a twitch, P1a tension had a slope (viscosity coefficient) of 1.8 kN m(-2) per L0 s(-1) in fast fibres and 4.7 kN m(-2) per L0 s(-1) in slow muscle fibres. In the same preparations, P2a tension had a relaxation time of 8 ms in the fast muscle fibres and 25 ms in the slow muscle fibres. The amplitudes of both tension components scaled with the instantaneous twitch tension in qualitatively the same way as the instantaneous fibre stiffness. These fast/slow fibre type differences probably reflect differences in

  11. Capillarity, oxidative capacity and fibre composition of the soleus and gastrocnemius muscles of rats in hypothyroidism.

    Science.gov (United States)

    Sillau, A H

    1985-01-01

    Muscle capillarity, mean and maximal diffusion distances and muscle fibre composition were evaluated in frozen sections stained for myosin ATPase of the soleus and the white area of the gastrocnemius medial head (gastrocnemius) of rats made hypothyroid by the injection of propylthiouracil (PTU) (50 mg kg-1) every day for 21 or 42 days. Oxygen consumption in the presence of excess ADP and Pi with pyruvate plus malate as substrates and the activity of cytochrome c oxidase were measured in muscle homogenates. Treatment with PTU decreased body oxygen consumption and the concentration of triiodothyronine in plasma. The capacity of the soleus and gastrocnemius muscles' homogenates to oxidize pyruvate plus malate and their cytochrome c oxidase activity were reduced after 21 or 42 days of treatment with PTU. Fibre composition in the soleus muscle was changed by treatment with PTU. There was a decrease in the proportion of type IIa or fast glycolytic oxidative fibres and an increase in type I or slow oxidative fibres. After 21 days of PTU administration there was also an increase in the proportion of fibres classified as IIc. The changes in fibre composition are believed to be the result of changes in the types of myosin synthesized by the fibres. Therefore, the fibres classified as IIc are, most probably, IIa fibres in the process of changing their myosin to that of the type I fibres. No changes in fibre composition were evident in the white area of the gastrocnemius medial head, an area made up of IIb or fast glycolytic fibres. The indices of capillarity: capillary density and capillary to fibre ratio, as well as mean and maximal diffusion distances from the capillaries, were not changed by the treatment with PTU in the muscles studied. The lack of changes in capillarity in spite of significant changes in oxidative capacity indicates that in skeletal muscle capillarity is not necessarily related to the oxidative capacity of the fibres. PMID:3989729

  12. Transient impairments in single muscle fibre contractile function after prolonged cycling in elite endurance athletes

    DEFF Research Database (Denmark)

    Hvid, L G; Gejl, Kasper Degn; Bech, R D

    2013-01-01

    Prolonged muscle activity impairs whole-muscle performance and function. However, little is known about the effects of prolonged muscle activity on the contractile function of human single muscle fibres. The purpose of this study was to investigate the effects of prolonged exercise and subsequent...... recovery on the contractile function of single muscle fibres obtained from elite athletes....

  13. ATP and phosphocreatine utilization in single human muscle fibres during the development of maximal power output at elevated muscle temperatures.

    Science.gov (United States)

    Gray, Stuart R; Söderlund, Karin; Ferguson, Richard A

    2008-05-01

    In this study, we examined the effect of muscle temperature (Tm) on adenosine triphosphate (ATP) and phosphocreatine utilization in single muscle fibres during the development of maximal power output in humans. Six male participants performed a 6-s maximal sprint on a friction-braked cycle ergometer under both normal (Tm = 34.3 degrees C, s = 0.6) and elevated (T(m) = 37.3 degrees C, s = 0.2) muscle temperature conditions. During the elevated condition, muscle temperature of the legs was raised, passively, by hot water immersion followed by wrapping in electrically heated blankets. Muscle biopsies were taken from the vastus lateralis before and immediately after exercise. Freeze-dried single fibres were dissected, characterized according to myosin heavy chain composition, and analysed for ATP and phosphocreatine content. Single fibres were classified as: type I, IIA, IIAX25 (1 - 25% IIX isoform), IIAX50 (26 - 50% IIX), IIAX75 (51 - 75% IIX), or IIAX100 (76 - 100% IIX). Maximal power output and pedal rate were both greater (P < 0.05) during the elevated condition by 258 W (s = 110) and 22 rev . min(-1) (s = 6), respectively. In both conditions, phosphocreatine content decreased significantly in all fibre types, with a greater decrease during the elevated condition in type IIA fibres (P < 0.01). Adenosine triphosphate content was also reduced to a greater (P < 0.01) extent in type IIA fibres during the elevated condition. The results of the present study indicate that after passive elevation of muscle temperature, there was a greater decrease in ATP and phosphocreatine content in type IIA fibres than in the normal trial, which contributed to the higher maximal power output.

  14. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle.

    Science.gov (United States)

    Fusi, L; Brunello, E; Yan, Z; Irving, M

    2016-10-31

    Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway.

  15. Electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle induces involuntary reflex contraction of the frontalis muscles.

    Science.gov (United States)

    Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Ryokuya

    2013-02-01

    The levator and frontalis muscles lack interior muscle spindles, despite consisting of slow-twitch fibres that involuntarily sustain eyelid-opening and eyebrow-raising against gravity. To compensate for this anatomical defect, this study hypothetically proposes that initial voluntary contraction of the levator fast-twitch muscle fibres stretches the mechanoreceptors in Müller's muscle and evokes proprioception, which continuously induces reflex contraction of slow-twitch fibres of the levator and frontalis muscles. This study sought to determine whether unilateral transcutaneous electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle could induce electromyographic responses in the frontalis muscles, with monitoring responses in the orbicularis oculi muscles. The study population included 27 normal subjects and 23 subjects with aponeurotic blepharoptosis, who displayed persistently raised eyebrows on primary gaze and light eyelid closure. The stimulation induced a short-latency response in the ipsilateral frontalis muscle of all subjects and long-latency responses in the bilateral frontalis muscles of normal subjects. However, it did not induce long-latency responses in the bilateral frontalis muscles of subjects with aponeurotic blepharoptosis. The orbicularis oculi muscles showed R1 and/or R2 responses. The stimulation might reach not only the proprioceptive fibres, but also other sensory fibres related to the blink or corneal reflex. The experimental system can provoke a monosynaptic short-latency response in the ipsilateral frontalis muscle, probably through the mesencephalic trigeminal proprioceptive neuron and the frontalis motor neuron, and polysynaptic long-latency responses in the bilateral frontalis muscles through an unknown pathway. The latter neural circuit appeared to be engaged by the circumstances of aponeurotic blepharoptosis.

  16. Hypertrophy of mature xenopus muscle fibres in culture induced by synergy of albumin and insulin

    NARCIS (Netherlands)

    Jaspers, R.T.; van Beek-Harmsen, B.J.; Blankenstein, M.A.; Goldspink, G.; Huijing, P.A.J.B.M.; van der Laarse, W.J.

    2008-01-01

    The aim of this study was to investigate effects of albumin and insulin separately as well as in combination on mature muscle fibres during long-term culture. Single muscle fibres were dissected from m. iliofibularis of Xenopus laevis and attached to a force transducer in a culture chamber. Fibres

  17. Quantitative analysis of single muscle fibre action potentials recorded at known distances

    NARCIS (Netherlands)

    Albers, B.A.; Put, J.H.M.; Wallinga, W.; Wirtz, P.

    1989-01-01

    In vivo records of single fibre action potentials (SFAPs) have always been obtained at unknown distance from the active muscle fibre. A new experimental method has been developed enabling the derivation of the recording distance in animal experiments. A single fibre is stimulated with an

  18. Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue.

    Science.gov (United States)

    Macdonald, W A; Stephenson, D G

    2006-05-15

    Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 microm to 1.0 mm). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (-log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 microm, with no further alteration when the [ADP] was increased to 1.0 mm. The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 microm, but was increased by 26% when the [ADP] was elevated to 1.0 mm. This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres.

  19. Correlation between pennation angle and image quality of skeletal muscle fibre tractography using deterministic diffusion tensor imaging.

    Science.gov (United States)

    Okamoto, Yoshikazu; Okamoto, Toru; Yuka, Kujiraoka; Hirano, Yuji; Isobe, Tomonori; Minami, Manabu

    2012-12-01

    The aim of this study was to ascertain whether a correlation existed between muscle pennation angle and the ability to successfully perform tractography of the lower leg muscle fibres with deterministic diffusion tensor imaging (DTI) in normal volunteers. Fourteen volunteers aged 20-39 (mean 28.2 years old) were recruited. All volunteers were scanned using DTI, and six fibre tractographs were constructed from one lower leg of each volunteer, and the 'fibre density' was calculated in each of the tractographs. The pennation angle is the angle formed by the muscle fibre and the aponeurosis. The average pennation angle (AVPA) and standard deviation of the pennation angle (SDPA) were also measured for each muscle by ultrasonography in the same region as the MRI scan. For all 84 tractography images, the correlation coefficient between the fibre density and AVPA or SDPA was calculated. Fibre density and AVPA showed a moderate negative correlation (R = -0.72), and fibre density and SDPA showed a weak negative correlation (R = -0.47). With respect to comparisons within each muscle, AVPA and fibre density showed a moderate negative correlation in the gastrocnemius lateralis muscle (R = -0.57). Our data suggest that a larger, more variable pennation angle resulted in worse skeletal muscle tractography using deterministic DTI. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  20. Chaperone-mediated autophagy components are upregulated in sporadic inclusion-body myositis muscle fibres.

    Science.gov (United States)

    Cacciottolo, M; Nogalska, A; D'Agostino, C; Engel, W K; Askanas, V

    2013-12-01

    Sporadic inclusion-body myositis (s-IBM) is an age-associated degenerative muscle disease. Characteristic features are muscle-fibre vacuolization and intramuscle-fibre accumulations of multiprotein aggregates, which may result from the demonstrated impairments of the 26S proteasome and autophagy. Chaperone-mediated autophagy (CMA) is a selective form of lysosomal degradation targeting proteins carrying the KFERQ motif. Lysosome-associated membrane protein type 2A (LAMP2A) and the heat-shock cognate protein 70 (Hsc70) constitute specific CMA components. Neither CMA components nor CMA activity has been studied in normal or disease human muscle, to our knowledge. We studied CMA components by immunocytochemistry, immunoblots, real-time PCR and immunoprecipitation in: (a) 16 s-IBM, nine aged-matched normal and nine disease control muscle biopsies; and (b) cultured human muscle fibres (CHMFs) with experimentally inhibited activities of either the 26S proteasome or autophagy. Compared with age-matched controls, in s-IBM muscle, LAMP2A and Hsc70 were on a given transverse section accumulated as aggregates in approximately 5% of muscle fibres, where they (a) colocalized with each other and α-synuclein (α-syn), a CMA-targeted protein; and (b) were bound to each other and to α-syn by immunoprecipitation. By immunoblots, LAMP2A was increased sevenfold P pathogenic aspect in s-IBM. © 2013 British Neuropathological Society.

  1. EFFECT OF REARING SYSTEM ON THE MUSCLE FIBRE CHARACTERISTICS OF CHICKEN BREEDS WITH DIFFERENT GROWTH SPEED

    Directory of Open Access Journals (Sweden)

    P. Avellini

    2009-06-01

    Full Text Available The study was conducted to evaluate the influence of the rearing system on the muscle fibre characteristics of two meat chicken breeds such as the Ross and the Livorno characterized by extremely fast and extremely slow growth speed respectively. No differences between the breeds were found in the conventional rearing system except for muscle fibre area. On the other hand, in the free range rearing system, differences in muscle fibre composition were evidenced between the breeds especially in the Ileotibialis lateralis muscle with the Livorno having a greater percentage of αR fibres (57,71 vs 36,65. A higher percentage of αR fibres (57,71 vs 46,90 was found in the Ileotibialis lateralis of the free range reared Livorno chickens compared to the conventionally reared ones.

  2. A comparative study of charge movement in rat and frog skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W

    1981-12-01

    1. The middle of the fibre voltage--clamp technique (Adrian & Marshall, 1977), modified where necessary for electrically short muscle fibres, has been used to measure non-linear charge movements in mammalian fast twitch (rat extensor digitorum longus), mammalian slow twitch (rat soleus) and frog (sartorius) muscles. 2. The maximum amount of charge moved in mammalian fast twitch muscle at 2 degrees C in hypertonic solution, was 3--5 times greater than in slow twitch muscle. The voltage distribution of fast twitch charge was 10--15 mV more positive when compared to slow twitch. 3. In both mammalian muscle types hypertonic Ringer solution negatively shifted the voltage distribution of charge some 6 mV. The steepness of charge moved around mechanical threshold was unaffected by hypertonicity. 4. The amount of charge in frog sartorius fibres at 2 degrees C in hypertonic solution was about half of that in rat fast twitch muscle; the voltage distribution of the frog charge was similar to rat soleus muscle. 5. Warming between 2 and 15 degrees C had no effect on either the amount of steady-state distribution of charge in mammalian or frog muscles. 6. At 2 degrees C, the kinetics of charge movement in fast and slow twitch mammalian muscles were similar and 2--3 times faster than frog muscle at the same temperature. In fast and slow mammalian fibres at 2 degrees C similar times were taken to shift the same fractions of the total amount of charge. The Q10 of charge movement kinetics was between 1.2 and 2.0 in the three muscles studied.

  3. Mitochondrial oxidative enzyme activity in individual fibre types in hypo- and hyperthyroid rat skeletal muscles.

    Science.gov (United States)

    Johnson, M A; Turnbull, D M

    1984-04-01

    Quantitative cytochemical and biochemical techniques have been used in combination to study the response of mitochondrial oxidative enzymes in individual muscle fibre types to hypo- and hyperthyroidism. Hypothyroidism resulted in decreased activity of succinate dehydrogenase (SDH), L-glycerol-3-phosphate dehydrogenase (L-GPDH), and D-3-hydroxybutyrate dehydrogenase (D-HBDH) in all fibre types of both slow-twitch soleus and fast-twitch extensor digitorum longus (e.d.l.) muscles. In hyperthyroidism, only L-GPDH activity increased in e.d.l. but more marked increases were seen in soleus muscles, which also showed increased SDH activity. In addition to these alterations in the enzyme activity in individual fibre types the metabolic profile of the muscle is further modified by the hormone-induced interconversion of slow- to fast-twitch fibres and vice versa.

  4. The effect of exercise on skeletal muscle fibre type distribution in obesity: From cellular levels to clinical application.

    Science.gov (United States)

    Pattanakuhar, Sintip; Pongchaidecha, Anchalee; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    Skeletal muscles play important roles in metabolism, energy expenditure, physical strength, and locomotive activity. Skeletal muscle fibre types in the body are heterogeneous. They can be classified as oxidative types and glycolytic types with oxidative-type are fatigue-resistant and use oxidative metabolism, while fibres with glycolytic-type are fatigue-sensitive and prefer glycolytic metabolism. Several studies demonstrated that an obese condition with abnormal metabolic parameters has been negatively correlated with the distribution of oxidative-type skeletal muscle fibres, but positively associated with that of glycolytic-type muscle fibres. However, some studies demonstrated otherwise. In addition, several studies demonstrated that an exercise training programme caused the redistribution of oxidative-type skeletal muscle fibres in obesity. In contrast, some studies showed inconsistent findings. Therefore, the present review comprehensively summarizes and discusses those consistent and inconsistent findings from clinical studies, regarding the association among the distribution of skeletal muscle fibre types, obese condition, and exercise training programmes. Furthermore, the possible underlying mechanisms and clinical application of the alterations in muscle fibre type following obesity are presented and discussed. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  5. McArdle disease does not affect skeletal muscle fibre type profiles in humans

    Directory of Open Access Journals (Sweden)

    Tertius Abraham Kohn

    2014-11-01

    Full Text Available Patients suffering from glycogen storage disease V (McArdle disease were shown to have higher surface electrical activity in their skeletal muscles when exercising at the same intensity as their healthy counterparts, indicating more muscle fibre recruitment. To explain this phenomenon, this study investigated whether muscle fibre type is shifted towards a predominance in type I fibres as a consequence of the disease. Muscle biopsies from the Biceps brachii (BB (n = 9 or Vastus lateralis (VL (n = 8 were collected over a 13-year period from male and female patients diagnosed with McArdle disease, analysed for myosin heavy chain (MHC isoform content using SDS-PAGE, and compared to healthy controls (BB: n = 3; VL: n = 10. All three isoforms were expressed and no difference in isoform expression in VL was found between the McArdle patients and healthy controls (MHC I: 33±19% vs. 43±7%; MHC IIa: 52±9% vs. 40±7%; MHC IIx: 15±18% vs. 17±9%. Similarly, the BB isoform content was also not different between the two groups (MHC I: 33±14% vs. 30±11%; MHC IIa: 46±17% vs. 39±5%; MHC IIx: 21±13% vs. 31±14%. In conclusion, fibre type distribution does not seem to explain the higher surface EMG in McArdle patients. Future studies need to investigate muscle fibre size and contractility of McArdle patients.

  6. Determination of cable parameters in skeletal muscle fibres during repetitive firing of action potentials

    Science.gov (United States)

    Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm

    2014-01-01

    Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl− and KATP K+ ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450–1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above −20 mV. PMID:25128573

  7. Effects of ageing on single muscle fibre contractile function following short-term immobilisation

    DEFF Research Database (Denmark)

    Hvid, Lars G; Ortenblad, Niels; Aagaard, Per

    2011-01-01

    Very little attention has been given to the combined effects of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile...... IIa: young 18% and old 25%; P selective decrease in Ca(2+) sensitivity in MHC IIa fibres of young (P ....05), respectively. In conclusion, 2 weeks of lower limb immobilisation caused greater impairments in single muscle fibre force and specific force in MHC IIa than MHC I fibres independently of age. In contrast, immobilisation-induced changes in Ca(2+) sensitivity that were dependent on age and MHC isoform....

  8. Determining the impact of oxidation on the motility of single muscle-fibres expressing different myosin isoforms

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Li, M.; Baron, Caroline P.

    2013-01-01

    heavy chain (MyHC) isoforms has not been previously investigated. Oxidation of myosin isolated from muscle fibres originating from various porcine muscles with a different metabolic profile was studied using a single muscle fibre in-vitro motility assay, allowing measurements of catalytic properties...... (motility speed) and force-generation capacity of specific MyHC isoforms. In the experimental procedure, single muscle fibres were split in different segments and each segment was exposed to a different concentration of hydrogen peroxide. Speed and force measurements were recorded and compared, to assess...... the effect of myosin oxidation on motility and force. The MyHC isoform expression in the single muscle fibre was subsequently determined on silver-stained gel SDS-PAGE. Preliminary results indicate a decrease of directionality and speed of the in-vitro motility as a result of an oxidative environment...

  9. Fiber types in the striated urethral and anal sphincters

    DEFF Research Database (Denmark)

    Schrøder, H D; Reske-Nielsen, E

    1983-01-01

    Seven normal human striated urethral and anal sphincters obtained by autopsy were examined using histochemical techniques. In both the urethral sphincter and the subcutaneous (s.c.) and superficial part of the anal sphincter a characteristic pattern with two populations of muscle fibers, abundant...

  10. Heart size and mean muscle fibre cross-sectional area related to birth weight in pigs

    Directory of Open Access Journals (Sweden)

    M. RUUSUNEN

    2008-12-01

    Full Text Available One of the aims in domestic pig breeding has been to increase the size of litters resulting in variation in birth weight of piglets. Pig breeding has also resulted in increased body muscle mass. Muscles with the same size can consist either of large number of thin muscle fibres or small number of thick muscle fibres. Larger body muscle content means that in living animal the heart must pump blood to larger muscle mass than earlier. Our interest in this study was to investigate the relationship between the pig’s birth weight and (i growth performance and carcass composition, (ii the size of organs, and (iii the mean muscle fibre cross-sectional area at slaughter. The study consisted of twenty pigs slaughtered at the age of 165±2 days. The day after the slaughter, the carcass composition was determined by dissecting the chilled carcass into lean, fat, bones, and skin and organs were weighed. The average cross sectional area of muscle fibres was determined from three fast-twitch muscles longissimus dorsi, semimembranosus, gluteus superficialis, and two slow-twitch muscles infraspinatus and masseter. The birth weight of pigs ranged from 0.9 to 2.2 kg. We found no clear relationships between the birth weight and the pig’s growth performance from birth to slaughter. When the birth weight increased the heart weight at slaughter increased as well (P < 0.01. The heart weight was higher in those pigs with high carcass weight (P < 0.05 and with the high weight of total muscle mass in the carcass (P < 0.001. The cross sectional area of muscle fibres in M. longissimus dorsi (P < 0.05, M. semimembranosus (P < 0.10, and M. gluteus superficialis (P < 0.05 was larger in those pigs with low birth weight compared to those found in pigs with high birth weight.;

  11. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres.

    Science.gov (United States)

    Gejl, Kasper D; Ørtenblad, Niels; Andersson, Erik; Plomgaard, Peter; Holmberg, Hans-Christer; Nielsen, Joachim

    2017-05-01

    Glycogen is stored in local spatially distinct compartments within skeletal muscle fibres and is the main energy source during supramaximal exercise. Using quantitative electron microscopy, we show that supramaximal exercise induces a differential depletion of glycogen from these compartments and also demonstrate how this varies with fibre types. Repeated exercise alters this compartmentalized glycogen depletion. The results obtained in the present study help us understand the muscle metabolic dynamics of whole body repeated supramaximal exercise, and suggest that the muscle has a compartmentalized local adaptation to repeated exercise, which affects glycogen depletion. Skeletal muscle glycogen is heterogeneously distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 3-13% of the total glycogen volume, the availability of intramyofibrillar glycogen is of particular importance to muscle function. The present study aimed to investigate the depletion of these three subcellular glycogen compartments during repeated supramaximal exercise in elite athletes. Ten elite cross-country skiers (aged 25 ± 4 years, V̇O2 max : 65 ± 4 ml kg -1  min -1 ; mean ± SD) performed four ∼4 min supramaximal sprint time trials (STT 1-4) with 45 min of recovery. The subcellular glycogen volumes in musculus triceps brachii were quantified from electron microscopy images before and after both STT 1 and 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type 1 fibres [-52%; (-89:-15%)] than type 2 fibres [-15% (-52:22%)] (P = 0.02), whereas the depletion of intermyofibrillar glycogen [main effect: -19% (-33:0%), P = 0.006] and subsarcolemmal glycogen [main effect: -35% (-66:0%), P = 0.03] was similar between fibre types. By contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types [main effect: -31% (-50:-11%), P = 0

  12. Characterisation of myosin heavy chain gene variants in the fast and slow muscle fibres of gammarid amphipods.

    Science.gov (United States)

    Whiteley, N M; Magnay, J L; McCleary, S J; Nia, S Khazraee; El Haj, A J; Rock, J

    2010-10-01

    Recent molecular work has revealed a large diversity of myosin heavy chain (MyHC) gene variants in the abdominal musculature of gammarid amphipods. An unusual truncated MyHC transcript from the loop 1 region (Variant A(3)) was consistently observed in multiple species and populations. The current study aimed to determine whether this MyHC variant is specific to a particular muscle fibre type, as a change in net charge to the loop 1 region of Variant A(3) could be functionally significant. The localisation of different fibre types within the abdominal musculature of several gammarid species revealed that the deep flexor and extensor muscles are fast-twitch muscle fibres. The dorsal superficial muscles were identified as slow fibres and the muscles extrinsic to the pleopods were identified as intermediate fibres. Amplification of loop 1 region mRNA from isolated superficial extensor and deep flexor muscles, and subsequent liquid chromatography and sequence analysis revealed that Variant A(3) was the primary MyHC variant in slow muscles, and the conserved A(1) sequence was the primary variant in fast muscles. The specific role of Variant A(3) in the slow muscles remains to be investigated. 2010 Elsevier Inc. All rights reserved.

  13. Postnatal changes in electromyographic signals during piglet growth, and in relation to muscle fibre types

    DEFF Research Database (Denmark)

    Andersen, Ninette Kieme; Ravn, L.S.; Guy, J.H.

    2008-01-01

    This study uses non-invasive evoked surface electromyography (SEMG) to investigate postnatal muscle development in pigs, and to assess any correlation between recorded signal parameters and muscle fibre types in two different skeletal muscles. Four litters (n=43) of Large White x Landrace pigs were...... used. Evoked SEMG mesurements were taken on days 2, 5, 14, 26, 60 and 151 post partum from m. Longissimus dorsi (LD) and on days 14, 26, 60 and 151 post partum from m. Biceps femoris (BF). A third of each litter was slaughtered at days 27, 61 and 153 post partum. Biopsy samples for LD and BF were taken...... to categorize day 5 post partum, whilst for BF significant increases occurred from days 14 to 26 post partum. Fibre type development in both muscles showed a significant decrease in type IIA fibre number (Ptype IIB fibre number (P

  14. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy.

    Science.gov (United States)

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-05-28

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.

  15. Proximo-distal organization and fibre type regionalization in rat hindlimb muscles

    NARCIS (Netherlands)

    Wang, LC; Kernell, D

    Five muscles of the rat's lower hindlimb were compared with regard to their histochemical fibre type distribution at seven different proximo-distal levels. The muscles were: extensor digitorum longus (ED), flexor digitorum and hallucis longus (FD), gastrocnemius medialis (GM), peroneus longus (PE)

  16. Human skeletal muscle: transition between fast and slow fibre types.

    Science.gov (United States)

    Neunhäuserer, Daniel; Zebedin, Michaela; Obermoser, Magdalena; Moser, Gerhard; Tauber, Mark; Niebauer, Josef; Resch, Herbert; Galler, Stefan

    2011-05-01

    Human skeletal muscles consist of different fibre types: slow fibres (slow twitch or type I) containing the myosin heavy chain isoform (MHC)-I and fast fibres (fast twitch or type II) containing MHC-IIa (type IIA) or MHC-IId (type IID). The following order of decreasing kinetics is known: type IID > type IIA > type I. This order is especially based on the kinetics of stretch activation, which is the most discriminative property among fibre types. In this study we tested if hybrid fibres containing both MHC-IIa and MHC-I (type C fibres) provide a transition in kinetics between fast (type IIA) and slow fibres (type I). Our data of stretch activation kinetics suggest that type C fibres, with different ratios of MHC-IIa and MHC-I, do not provide a continuous transition. Instead, a specialized group of slow fibres, which we called "transition fibres", seems to provide a transition. Apart of their kinetics of stretch activation, which is most close to that of type IIA, the transition fibres are characterized by large cross-sectional areas and low maximal tensions. The molecular cause for the mechanical properties of the transition fibres is unknown. It is possible that the transition fibres contain an unknown slow MHC isoform, which cannot be separated by biochemical methods. Alternatively, or in addition, isoforms of myofibrillar proteins, other than MHC, and posttranslational modifications of myofibrillar proteins could play a role regarding the characteristics of the transition fibres.

  17. Interstitial cells of Cajal in the striated musculature of the mouse esophagus

    DEFF Research Database (Denmark)

    Rumessen, J J; de Kerchove d'Exaerde, A; Mignon, S

    2001-01-01

    . Sections and whole-mounts were studied by immunohistochemistry. KitW-lacZ transgenic mice, which carry the lacZ reporter gene inserted in place of the first exon of the Kit gene, were processed for Xgal histochemistry, for quantitative analysis and for ultrastructural studies. Spindle-shaped ICC were...... scarce in both muscle layers of the thoracic esophagus, while their number increased steeply toward the cardia in the striated portion of the intraabdominal esophagus. They did not form networks and had no relationship with intrinsic myenteric ganglia and motor end-plates. They were often close to nerve...... between striated muscle cells in the mouse esophagus. They are close to nerves with defined neurochemical coding and could possibly represent specialized esophageal spindle proprioceptors....

  18. Comparison of muscle fibre characteristics and production traits among offspring from Meishan dams mated to different sires

    Directory of Open Access Journals (Sweden)

    Ki-Chang Hong

    2010-01-01

    Full Text Available This study evaluated how various porcine sires affected muscle fibre characteristics, with respect to production traits. Sires from Berkshire, Duroc, Meishan, and Yorkshire pigs were mated to Meishan dams (BM, DM, MM, and YM offspring, respectively. A total of 96 pigs were evaluated for muscle fibre characteristics and production traits. The progeny from Duroc and Yorkshire sires had the greatest number of total fibres (P<0.05 and exhibited less backfat thickness (P<0.001 and larger loin muscle areas (P<0.05 than BM pigs. The DM and BM crossbreds showed higher marbling (P<0.01, and colour scores (P<0.05, as well as lower shear force scores (P<0.001. The MM pigs had greater proportional area of type IIb muscle fibres (P<0.05, and also displayed higher drip loss (P<0.01, higher lightness (P<0.001, and a greater incidence of PSE pork (pale, soft, and exudative; 25% than DM, BM, and YM. These results showed that a greater number of total muscle fibres without increasing the cross sectional area of fibres improved lean meat production, and that a lower proportion of type IIb fibres was associated with better meat quality. For these reasons, the Duroc sire × Meishan dam crossbreed emerged as the most appropriate mating type examined herein to simultaneously enhance both lean meat production and meat quality.

  19. Temperature-dependent changes in the viscoelasticity of intact resting mammalian (rat) fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Mutungi, G; Ranatunga, K W

    1998-04-01

    1. The tension and sarcomere length responses induced by ramp stretches (at amplitudes of 1-3 % fibre length (Lo) and speeds of 0.01-12 Lo s-1) were examined at different temperatures (range, 10-35 degrees C) in resting intact muscle fibre bundles isolated from the soleus (a slow-twitch muscle) and extensor digitorum longus (a fast-twitch muscle) of the rat. Some observations are also presented on the effects of chemical skinning on passive viscoelasticity at 10 degrees C. 2. As previously reported, the tension response to a ramp stretch, in different preparations and under various conditions, could be resolved into a viscous (P1), a viscoelastic (P2) and an elastic (P3) component and showed characteristic differences between slow and fast muscle fibres. 3. Chemical skinning of the muscle fibres led to a decrease in the amplitude of all three tension components. However, the fast-slow fibre differences remained after skinning. For example, the viscosity coefficient derived from P1 tension data decreased from 0.84 +/- 0.06 before skinning to 0.44 +/- 0.06 kN s m-2 after skinning in fast fibres; the corresponding values in slow fibres were 2.1 +/- 0.08 and 0.87 +/- 0.09 kN s m-2, respectively. 4. Increasing the experimental temperature from 10 to 35 degrees C led to a decrease in all the tension components in both fast and slow muscle fibre bundles. The decrease of P1 (viscous) tension was such that the viscosity coefficient calculated using P1 data was reduced from 0.84 +/- 0.1 to 0.43 +/- 0.05 kN s m-2 in fast fibres and from 2.0 +/- 0.1 to 1.0 +/- 0.1 kN s m-2 in slow fibres (Q10 of approximately 1.3 in both). 5. In both fast and slow muscle fibre preparations, the plateau tension of the viscoelastic component (P2) decreased by 60-80 % as the temperature was increased from 10 to 35 degrees C giving P2 tension a Q10 of approximately 1.4 in slow fibres and approximately 1.7 in the fast fibres. Additionally, the relaxation time of the viscoelasticity decreased from

  20. Altered myoplasmic Ca(2+) handling in rat fast-twitch skeletal muscle fibres during disuse atrophy.

    Science.gov (United States)

    Weiss, Norbert; Andrianjafiniony, Tina; Dupré-Aucouturier, Sylvie; Pouvreau, Sandrine; Desplanches, Dominique; Jacquemond, Vincent

    2010-03-01

    Calcium-dependent signalling pathways are believed to play an important role in skeletal muscle atrophy, but whether intracellular Ca(2+) homeostasis is affected in that situation remains obscure. We show here that there is a 20% atrophy of the fast-type flexor digitorum brevis (FDB) muscle in rats hind limb unloaded (HU) for 2 weeks, with no change in fibre type distribution. In voltage-clamp experiments, the amplitude of the slow Ca(2+) current was found similar in fibres from control and HU animals. In fibres loaded with the Ca(2+) dye indo-1, the value for the rate of [Ca(2+)] decay after the end of 5-100-ms-long voltage-clamp depolarisations from -80 to +10 mV was found to be 30-50% lower in fibres from HU animals. This effect was consistent with a reduced contribution of both saturable and non-saturable components of myoplasmic Ca(2+) removal. However, there was no change in the relative amount of parvalbumin, and type 1 sarco-endoplasmic reticulum Ca(2+)-ATPase was increased by a factor of three in the atrophied muscles. Confocal imaging of mitochondrial membrane potential showed that atrophied FDB fibres had significantly depolarized mitochondria as compared to control fibres. Depolarization of mitochondria in control fibres with carbonyl cyanide-p-trifluoromethoxyphenylhydrazone induced a slowing of the decay of [Ca(2+)] transients accompanied by an increase in resting [Ca(2+)] and a reduction of the peak amplitude of the transients. Overall results provide the first functional evidence for severely altered intracellular Ca(2+) removal capabilities in atrophied fast-type muscle fibres and highlight the possible contribution of reduced mitochondrial polarisation.

  1. Myonuclear domain size and myosin isoform expression in muscle fibres from mammals representing a 100,000-fold difference in body size.

    Science.gov (United States)

    Liu, Jing-Xia; Höglund, Anna-Stina; Karlsson, Patrick; Lindblad, Joakim; Qaisar, Rizwan; Aare, Sudhakar; Bengtsson, Ewert; Larsson, Lars

    2009-01-01

    This comparative study of myonuclear domain (MND) size in mammalian species representing a 100,000-fold difference in body mass, ranging from 25 g to 2500 kg, was undertaken to improve our understanding of myonuclear organization in skeletal muscle fibres. Myonuclear domain size was calculated from three-dimensional reconstructions in a total of 235 single muscle fibre segments at a fixed sarcomere length. Irrespective of species, the largest MND size was observed in muscle fibres expressing fast myosin heavy chain (MyHC) isoforms, but in the two smallest mammalian species studied (mouse and rat), MND size was not larger in the fast-twitch fibres expressing the IIA MyHC isofom than in the slow-twitch type I fibres. In the larger mammals, the type I fibres always had the smallest average MND size, but contrary to mouse and rat muscles, type IIA fibres had lower mitochondrial enzyme activities than type I fibres. Myonuclear domain size was highly dependent on body mass in the two muscle fibre types expressed in all species, i.e. types I and IIA. Myonuclear domain size increased in muscle fibres expressing both the beta/slow (type I; r = 0.84, P fast IIA MyHC isoform (r = 0.90; P muscle fibre type, independent of species. However, myosin isoform expression is not the sole protein determining MND size, and other protein systems, such as mitochondrial proteins, may be equally or more important determinants of MND size.

  2. Inward rectifier potassium currents in mammalian skeletal muscle fibres

    Science.gov (United States)

    DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L

    2015-01-01

    Inward rectifying potassium (Kir) channels play a central role in maintaining the resting membrane potential of skeletal muscle fibres. Nevertheless their role has been poorly studied in mammalian muscles. Immunohistochemical and transgenic expression were used to assess the molecular identity and subcellular localization of Kir channel isoforms. We found that Kir2.1 and Kir2.2 channels were targeted to both the surface andthe transverse tubular system membrane (TTS) compartments and that both isoforms can be overexpressed up to 3-fold 2 weeks after transfection. Inward rectifying currents (IKir) had the canonical features of quasi-instantaneous activation, strong inward rectification, depended on the external [K+], and could be blocked by Ba2+ or Rb+. In addition, IKir records show notable decays during large 100 ms hyperpolarizing pulses. Most of these properties were recapitulated by model simulations of the electrical properties of the muscle fibre as long as Kir channels were assumed to be present in the TTS. The model also simultaneously predicted the characteristics of membrane potential changes of the TTS, as reported optically by a fluorescent potentiometric dye. The activation of IKir by large hyperpolarizations resulted in significant attenuation of the optical signals with respect to the expectation for equal magnitude depolarizations; blocking IKir with Ba2+ (or Rb+) eliminated this attenuation. The experimental data, including the kinetic properties of IKir and TTS voltage records, and the voltage dependence of peak IKir, while measured at widely dissimilar bulk [K+] (96 and 24 mm), were closely predicted by assuming Kir permeability (PKir) values of ∼5.5 × 10−6 cm s−1 and equal distribution of Kir channels at the surface and TTS membranes. The decay of IKir records and the simultaneous increase in TTS voltage changes were mostly explained by K+ depletion from the TTS lumen. Most importantly, aside from allowing an accurate estimation of

  3. GLUT11, but not GLUT8 or GLUT12, is expressed in human skeletal muscle in a fibre type-specific pattern

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Schürmann, A

    2004-01-01

    or amyotrophic lateral sclerosis (ALS) were studied. GLUT8 and 12 immunoreactivity was below detection level in both developing and adult muscle fibres. GLUT11 immunoreactivity, however, was present in slow-twitch muscle fibres, but not in fast twitch fibres. Since, in contrast, GLUT4 was expressed in all...... exclusively in slow-twitch muscle fibres and is unaffected by physiological and pathophysiological conditions except in primary myopathy. GLUT8 and GLUT12 do not appear to be of importance in human muscle under physiological and pathophysiological conditions....... to induce GLUT8 or -12 expression. Likewise, the fibre type-dependent pattern of GLUT11 immunoreactivity was unaltered. However, some slow muscle fibres lose their GLUT11 immunoreactivity under regeneration. Our results indicate that GLUT11 immunoreactivity, in contrast to that of GLUT4, is expressed...

  4. Sensitivity of different types of fibres in rabbit skeletal muscle to pneumatic compression by tourniquet and to ischaemia.

    Science.gov (United States)

    Fridén, J; Pedowitz, R A; Thornell, L E

    1994-06-01

    Morphometric properties (distribution of types of fibre and fibre areas) in the non-necrotic regions of four different rabbit muscles (superficial portions of semimembranosus, biceps femoris, tibialis anterior, and soleus muscles) were measured 48 hours after a tourniquet had been applied around the thigh for two hours at either 125 or 350 mmHg. There was an considerable increase of the relative numbers of both large and small fibres as well as changes in the proportions of the types of fibre. The most dramatic percentage change in type of fibre was in the semimembranosus when compressed at 350 mmHg, which showed an increase of the relative frequency of fibres with type 2AB staining characteristics from 10.2% to 18.0% (p < 0.001). Extreme changes in fibre area were found exclusively in semimembranosus and biceps femoris. Most fibres of abnormal size were of type 2, type 2B fibre areas being the most affected. This study shows that morphometry is a valuable tool in the assessment of the more subtle indications of injury. Compression and ischaemia together have a more dramatic effect on muscle morphology and morphometric properties in the non-necrotic regions than ischaemia alone. These data also show that muscles are differentially sensitive to compression and ischaemia. This information may be useful into the understanding of more complex functional deficits observed after the use of tourniquet.

  5. Capillary network in slow and fast muscles and in oxidative and glycolytic muscle fibres

    Czech Academy of Sciences Publication Activity Database

    Čebašek, V.; Kubínová, Lucie; Ribarič, S.; Eržen, I.

    2005-01-01

    Roč. 24, March (2005), s. 51-58 ISSN 1580-3139 Grant - others:SI-CZ(CZ) KONTAKT 19/2005 Institutional research plan: CEZ:AV0Z50110509 Keywords : capillaries * skeletal muscle fibre s-oxidative and glycolytic * stereology Subject RIV: EA - Cell Biology

  6. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1990-02-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV.

  7. Reduced sarcoplasmic reticulum content of releasable Ca2+ in rat soleus muscle fibres after eccentric contractions

    DEFF Research Database (Denmark)

    Nielsen, J S; Sahlin, K; Ørtenblad, N

    2007-01-01

    AIM: The purpose was to evaluate the effects of fatiguing eccentric contractions (EC) on calcium (Ca2+) handling properties in mammalian type I muscles. We hypothesized that EC reduces both endogenous sarcoplasmic reticulum (SR) content of releasable Ca2+ (eSRCa2+) and myofibrillar Ca2+ sensitivity....... METHODS: Isolated rat soleus muscles performed 30 EC bouts. Single fibres were isolated from the muscle and after mechanical removal of sarcolemma used to measure eSRCa2+, rate of SR Ca2+ loading and myofibrillar Ca2+ sensitivity. RESULTS: Following EC maximal force in whole muscle was reduced by 30......% and 16/100 Hz force ratio by 33%. The eSRCa2+ in fibres from non-stimulated muscles was 45 +/- 5% of the maximal loading capacity. After EC, eSRCa2+ per fibre CSA decreased by 38% (P = 0.05), and the maximal capacity of SR Ca2+ loading was depressed by 32%. There were no effects of EC on either...

  8. Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans.

    Science.gov (United States)

    Lamboley, C R; Wyckelsma, V L; Dutka, T L; McKenna, M J; Murphy, R M; Lamb, G D

    2015-06-01

    Muscle weakness in old age is due in large part to an overall loss of skeletal muscle tissue, but it remains uncertain how much also stems from alterations in the properties of the individual muscle fibres. This study examined the contractile properties and amount of stored intracellular calcium in single muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) adults. The maximum level of force production (per unit cross-sectional area) in fast twitch fibres in Old subjects was lower than in Young subjects, and the fibres were also less sensitive to activation by calcium. The amount of calcium stored inside muscle fibres and available to trigger contraction was also lower in both fast- and slow-twitch muscle fibres in the Old subjects. These findings indicate that muscle weakness in old age stems in part from an impaired capacity for force production in the individual muscle fibres. This study examined the contractile properties and sarcoplasmic reticulum (SR) Ca(2+) content in mechanically skinned vastus lateralis muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) humans to investigate whether changes in muscle fibre properties contribute to muscle weakness in old age. In type II fibres of Old subjects, specific force was reduced by ∼17% and Ca(2+) sensitivity was also reduced (pCa50 decreased ∼0.05 pCa units) relative to that in Young. S-Glutathionylation of fast troponin I (TnIf ) markedly increased Ca(2+) sensitivity in type II fibres, but the increase was significantly smaller in Old versus Young (+0.136 and +0.164 pCa unit increases, respectively). Endogenous and maximal SR Ca(2+) content were significantly smaller in both type I and type II fibres in Old subjects. In fibres of Young, the SR could be nearly fully depleted of Ca(2+) by a combined caffeine and low Mg(2+) stimulus, whereas in fibres of Old the amount of non-releasable Ca(2+) was significantly increased (by > 12% of endogenous Ca(2+) content). Western

  9. Hormone replacement therapy improves contractile function and myonuclear organization of single muscle fibres from postmenopausal monozygotic female twin pairs.

    Science.gov (United States)

    Qaisar, Rizwan; Renaud, Guillaume; Hedstrom, Yvette; Pöllänen, Eija; Ronkainen, Paula; Kaprio, Jaakko; Alen, Markku; Sipilä, Sarianna; Artemenko, Konstantin; Bergquist, Jonas; Kovanen, Vuokko; Larsson, Lars

    2013-05-01

    Ageing is associated with a decline in muscle mass and strength leading to increased physical dependency in old age. Postmenopausal women experience a greater decline than men of similar age in parallel with the decrease in female sex steroid hormone production. We recruited six monozygous female twin pairs (55-59 years old) where only one twin pair was on hormone replacement therapy (HRT use = 7.8 ± 4.3 years) to investigate the association of HRT with the cytoplasmic volume supported by individual myonuclei (myonuclear domain (MND) size,) together with specific force at the single fibre level. HRT use was associated with a significantly smaller (∼27%; P muscle fibres expressing the type I but not the IIa myosin heavy chain (MyHC) isoform. In comparison to non-users, higher specific force was recorded in HRT users both in muscle fibres expressing type I (∼27%; P fibre-type dependent, i.e. the higher specific force in fast-twitch muscle fibres was primarily caused by higher force per cross-bridge while slow-twitch fibres relied on both a higher number and force per cross-bridge. HRT use had no effect on fibre cross-sectional area (CSA), velocity of unloaded shortening (V0) and relative proportion of MyHC isoforms. In conclusion, HRT appears to have significant positive effects on both regulation of muscle contraction and myonuclei organization in postmenopausal women.

  10. A mini-overview of single muscle fibre mechanics: the effects of age, inactivity and exercise in animals and humans.

    Science.gov (United States)

    Jee, Hyunseok; Kim, Jong-Hee

    2017-09-05

    Many basic movements of living organisms are dependent on muscle function. Muscle function allows for the coordination and harmonious integrity of movement that is necessary for various biological processes. Gross and fine motor skills are both regulated at the micro-level (single muscle fibre level), controlled by neuronal regulation, and it is therefore important to understand muscle function at both micro- and macro-levels to understand the overall movement of living organisms. Single muscle mechanics and the cellular environment of muscles fundamentally allow for the harmonious movement of our bodies. Indeed, a clear understanding of the functionality of muscle at the micro-level is indispensable for explaining muscular function at the macro-(whole gross muscle) level. By investigating single muscle fibre mechanics, we can also learn how other factors such Ca2+ kinetics, enzyme activity and contractile proteins can contribute to muscle mechanics at the micro- and macro-levels. Further, we can also describe how aging affects the capacity of skeletal muscle cells, as well as how exercise can prevent aging-based sarcopenia and frailty. The purpose of this review is to introduce and summarise the current knowledge of single muscle fibre mechanics in light of aging and inactivity. We then describe how exercise mitigates negative muscle adaptations that occur under those circumstances. In addition, single muscle fibre mechanics in both animal and human models are discussed.

  11. Adaptive functional specialisation of architectural design and fibre type characteristics in agonist shoulder flexor muscles of the llama, Lama glama.

    Science.gov (United States)

    Graziotti, Guillermo H; Chamizo, Verónica E; Ríos, Clara; Acevedo, Luz M; Rodríguez-Menéndez, J M; Victorica, C; Rivero, José-Luis L

    2012-08-01

    Like other camelids, llamas (Lama glama) have the natural ability to pace (moving ipsilateral limbs in near synchronicity). But unlike the Old World camelids (bactrian and dromedary camels), they are well adapted for pacing at slower or moderate speeds in high-altitude habitats, having been described as good climbers and used as pack animals for centuries. In order to gain insight into skeletal muscle design and to ascertain its relationship with the llama's characteristic locomotor behaviour, this study examined the correspondence between architecture and fibre types in two agonist muscles involved in shoulder flexion (M. teres major - TM and M. deltoideus, pars scapularis - DS and pars acromialis - DA). Architectural properties were found to be correlated with fibre-type characteristics both in DS (long fibres, low pinnation angle, fast-glycolytic fibre phenotype with abundant IIB fibres, small fibre size, reduced number of capillaries per fibre and low oxidative capacity) and in DA (short fibres, high pinnation angle, slow-oxidative fibre phenotype with numerous type I fibres, very sparse IIB fibres, and larger fibre size, abundant capillaries and high oxidative capacity). This correlation suggests a clear division of labour within the M. deltoideus of the llama, DS being involved in rapid flexion of the shoulder joint during the swing phase of the gait, and DA in joint stabilisation during the stance phase. However, the architectural design of the TM muscle (longer fibres and lower fibre pinnation angle) was not strictly matched with its fibre-type characteristics (very similar to those of the postural DA muscle). This unusual design suggests a dual function of the TM muscle both in active flexion of the shoulder and in passive support of the limb during the stance phase, pulling the forelimb to the trunk. This functional specialisation seems to be well suited to a quadruped species that needs to increase ipsilateral stability of the limb during the support

  12. Adaptive functional specialisation of architectural design and fibre type characteristics in agonist shoulder flexor muscles of the llama, Lama glama

    Science.gov (United States)

    Graziotti, Guillermo H; Chamizo, Verónica E; Ríos, Clara; Acevedo, Luz M; Rodríguez-Menéndez, J M; Victorica, C; Rivero, José-Luis L

    2012-01-01

    Like other camelids, llamas (Lama glama) have the natural ability to pace (moving ipsilateral limbs in near synchronicity). But unlike the Old World camelids (bactrian and dromedary camels), they are well adapted for pacing at slower or moderate speeds in high-altitude habitats, having been described as good climbers and used as pack animals for centuries. In order to gain insight into skeletal muscle design and to ascertain its relationship with the llama’s characteristic locomotor behaviour, this study examined the correspondence between architecture and fibre types in two agonist muscles involved in shoulder flexion (M. teres major – TM and M. deltoideus, pars scapularis – DS and pars acromialis – DA). Architectural properties were found to be correlated with fibre-type characteristics both in DS (long fibres, low pinnation angle, fast-glycolytic fibre phenotype with abundant IIB fibres, small fibre size, reduced number of capillaries per fibre and low oxidative capacity) and in DA (short fibres, high pinnation angle, slow-oxidative fibre phenotype with numerous type I fibres, very sparse IIB fibres, and larger fibre size, abundant capillaries and high oxidative capacity). This correlation suggests a clear division of labour within the M. deltoideus of the llama, DS being involved in rapid flexion of the shoulder joint during the swing phase of the gait, and DA in joint stabilisation during the stance phase. However, the architectural design of the TM muscle (longer fibres and lower fibre pinnation angle) was not strictly matched with its fibre-type characteristics (very similar to those of the postural DA muscle). This unusual design suggests a dual function of the TM muscle both in active flexion of the shoulder and in passive support of the limb during the stance phase, pulling the forelimb to the trunk. This functional specialisation seems to be well suited to a quadruped species that needs to increase ipsilateral stability of the limb during the

  13. Wearing of complete dentures reduces slow fibre and enhances hybrid fibre fraction in masseter muscle

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Karen, Petr; Eržen, I.

    2012-01-01

    Roč. 39, č. 8 (2012), s. 608-614 ISSN 0305-182X R&D Projects: GA MŠk(CZ) MEB090910; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : human masseter * MyHC isoforms * muscle fibre types Subject RIV: FH - Neurology Impact factor: 2.344, year: 2012

  14. Redox responses are preserved across muscle fibres with differential susceptibility to aging.

    Science.gov (United States)

    Smith, Neil T; Soriano-Arroquia, Ana; Goljanek-Whysall, Katarzyna; Jackson, Malcolm J; McDonagh, Brian

    2018-04-15

    Age-related loss of muscle mass and function is associated with increased frailty and loss of independence. The mechanisms underlying the susceptibility of different muscle types to age-related atrophy are not fully understood. Reactive oxygen species (ROS) are recognised as important signalling molecules in healthy muscle and redox sensitive proteins can respond to intracellular changes in ROS concentrations modifying reactive thiol groups on Cysteine (Cys) residues. Conserved Cys residues tend to occur in functionally important locations and can have a direct impact on protein function through modifications at the active site or determining protein conformation. The aim of this work was to determine age-related changes in the redox proteome of two metabolically distinct murine skeletal muscles, the quadriceps a predominantly glycolytic muscle and the soleus which contains a higher proportion of mitochondria. To examine the effects of aging on the global proteome and the oxidation state of individual redox sensitive Cys residues, we employed a label free proteomics approach including a differential labelling of reduced and reversibly oxidised Cys residues. Our results indicate the proteomic response to aging is dependent on muscle type but redox changes that occur primarily in metabolic and cytoskeletal proteins are generally preserved between metabolically distinct tissues. Skeletal muscle containing fast twitch glycolytic fibres are more susceptible to age related atrophy compared to muscles with higher proportions of oxidative slow twitch fibres. Contracting skeletal muscle generates reactive oxygen species that are required for correct signalling and adaptation to exercise and it is also known that the intracellular redox environment changes with age. To identify potential mechanisms for the distinct response to age, this article combines a global proteomic approach and a differential labelling of reduced and reversibly oxidised Cysteine residues in two

  15. Patient-specific fibre-based models of muscle wrapping

    Science.gov (United States)

    Kohout, J.; Clapworthy, G. J.; Zhao, Y.; Tao, Y.; Gonzalez-Garcia, G.; Dong, F.; Wei, H.; Kohoutová, E.

    2013-01-01

    In many biomechanical problems, the availability of a suitable model for the wrapping of muscles when undergoing movement is essential for the estimation of forces produced on and by the body during motion. This is an important factor in the Osteoporotic Virtual Physiological Human project which is investigating the likelihood of fracture for osteoporotic patients undertaking a variety of movements. The weakening of their skeletons makes them particularly vulnerable to bone fracture caused by excessive loading being placed on the bones, even in simple everyday tasks. This paper provides an overview of a novel volumetric model that describes muscle wrapping around bones and other muscles during movement, and which includes a consideration of how the orientations of the muscle fibres change during the motion. The method can calculate the form of wrapping of a muscle of medium size and visualize the outcome within tenths of seconds on commodity hardware, while conserving muscle volume. This makes the method suitable not only for educational biomedical software, but also for clinical applications used to identify weak muscles that should be strengthened during rehabilitation or to identify bone stresses in order to estimate the risk of fractures. PMID:24427519

  16. Distinctive serum miRNA profile in mouse models of striated muscular pathologies.

    Directory of Open Access Journals (Sweden)

    Nicolas Vignier

    Full Text Available Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD, limb-girdle muscular dystrophy type 2D (LGMD2D, limb-girdle muscular dystrophy type 2C (LGMD2C, Emery-Dreifuss muscular dystrophy (EDMD and hypertrophic cardiomyopathy (HCM. Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.

  17. A role for Insulin-like growth factor 2 in specification of the fast skeletal muscle fibre

    Directory of Open Access Journals (Sweden)

    Ting Tao

    2007-06-01

    Full Text Available Abstract Background Fibre type specification is a poorly understood process beginning in embryogenesis in which skeletal muscle myotubes switch myosin-type to establish fast, slow and mixed fibre muscle groups with distinct function. Growth factors are required to establish slow fibres; it is unknown how fast twitch fibres are specified. Igf-2 is an embryonically expressed growth factor with established in vitro roles in skeletal muscle. Its localisation and role in embryonic muscle differentiation had not been established. Results Between E11.5 and E15.5 fast Myosin (FMyHC localises to secondary myotubes evenly distributed throughout the embryonic musculature and gradually increasing in number so that by E15.5 around half contain FMyHC. The Igf-2 pattern closely correlates with FMyHC from E13.5 and peaks at E15.5 when over 90% of FMyHC+ myotubes also contain Igf-2. Igf-2 lags FMyHC and it is absent from muscle myotubes until E13.5. Igf-2 strongly down-regulates by E17.5. A striking feature of the FMyHC pattern is its increased heterogeneity and attenuation in many fibres from E15.5 to day one after birth (P1. Transgenic mice (MIG which express Igf-2 in all of their myotubes, have increased FMyHC staining, a higher proportion of FMyHC+ myotubes and loose their FMyHC staining heterogeneity. In Igf-2 deficient mice (MatDi FMyHC+ myotubes are reduced to 60% of WT by E15.5. In vitro, MIG induces a 50% excess of FMyHC+ and a 30% reduction of SMHyC+ myotubes in C2 cells which can be reversed by Igf-2-targeted ShRNA resulting in 50% reduction of FMyHC. Total number of myotubes was not affected. Conclusion In WT embryos the appearance of Igf-2 in embryonic myotubes lags FMyHC, but by E15.5 around 45% of secondary myotubes contain both proteins. Forced expression of Igf-2 into all myotubes causes an excess, and absence of Igf-2 suppresses, the FMyHC+ myotube component in both embryonic muscle and differentiated myoblasts. Igf-2 is thus required, not for

  18. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles.

    Science.gov (United States)

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-03-15

    The effect of exogenous hydrogen peroxide (H(2)O(2)) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mM H(2)O(2) diminished the ability of the Ca(2+)-depleted SR to reload Ca(2+) in both slow (P fast twitch fibres (P fast twitch fibres by 24 +/- 5 % (P slow twitch fibres. Treatment with 1 mM H(2)O(2) also increased the peak force of low [caffeine] contracture by approximately 45% in both fibre types compared to control (P slow twitch fibres, compared to control (no H(2)O(2); P fast twitch fibres was not altered by 1 mM H(2)O(2) treatment. Equilibration with 5 mM H(2)O(2) induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mM DTT. Peak DICR was also increased approximately 40% by 5 mM H(2)O(2) in slow twitch fibres compared to control (no H(2)O(2); P slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca(2+) release during contraction and/or an increase in Ca(2+) sensitivity.

  19. Power output and force-velocity relationship of red and white muscle fibres from the Pacific blue marlin (Makaira nigricans).

    Science.gov (United States)

    Johnston, I A; Salamonski, J

    1984-07-01

    Single white fibres and small bundles (two to three) of red fibres were isolated from the trunk muscle of Pacific Blue Marlin (50-121 kg body weight). Fibres were chemically skinned with 1% Brij. Maximum Ca2+-activated force production (Po) was 57 kN m-2 for red fibres and 176 kN m-2 for white fibres at 25 degrees C. The force-velocity (P-V) characteristics of these fibres were determined at 15 and 25 degrees C. Points below 0.6 Po on the P-V curve could be fitted to a linear form of Hill's equation. The degree of curvature of the P-V curve was similar at 15 and 25 degrees C (Hill's constant a/Po = 0.24 and 0.12 for red and white fibres respectively). Extrapolated maximum contraction velocities (Vmax) were 2.5 muscle lengths s-1 (Lo S-1) (red fibres) and 5.3 Lo S-1 (white fibres) at 25 degrees C. Q10(15-25 degrees C) values for Vmax were 1.4 and 1.3 for red and white fibres respectively. Maximum power output had a similar low temperature dependence and amounted to 13 W kg-1 for red and 57 W kg-1 for white muscle at 25 degrees C. The results are briefly discussed in relation to the locomotion and ecology of marlin.

  20. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise

    DEFF Research Database (Denmark)

    Kristensen, Dorte Enggaard; Albers, Peter Hjorth; Prats, Clara

    2015-01-01

    are expressed in a fibre type-dependent manner and that fibre type-specific activation of AMPK and downstream targets is dependent on exercise intensity. Pools of type I and II fibres were prepared from biopsies of m. vastus lateralis from healthy men before and after two exercise trials; A) continuous cycling......AMP-activated protein kinase (AMPK) is a regulator of energy homeostasis during exercise. Studies suggest muscle fibre type-specific AMPK expression. However, fibre type-specific regulation of AMPK and downstream targets during exercise has not been proven. We hypothesized that AMPK subunits...... (CON) 30 min at 69 ± 1% VO2peak or B) interval cycling (INT) 30 min with 6 × 1.5 min high-intense bouts peaking at 95 ± 2% VO2peak . In type I vs. II fibres a higher β1 AMPK (+215%) and lower γ3 AMPK expression (-71%) was found. α1 , α2 , β2 and γ1 AMPK expression was similar between fibre types...

  1. The Intriguing Dual Lattices of the Myosin Filaments in Vertebrate Striated Muscles: Evolution and Advantage

    Directory of Open Access Journals (Sweden)

    Pradeep K. Luther

    2014-12-01

    Full Text Available Myosin filaments in vertebrate striated muscle have a long roughly cylindrical backbone with cross-bridge projections on the surfaces of both halves except for a short central bare zone. In the middle of this central region the filaments are cross-linked by the M-band which holds them in a well-defined hexagonal lattice in the muscle A-band. During muscular contraction the M-band-defined rotation of the myosin filaments around their long axes influences the interactions that the cross-bridges can make with the neighbouring actin filaments. We can visualise this filament rotation by electron microscopy of thin cross-sections in the bare-region immediately adjacent to the M-band where the filament profiles are distinctly triangular. In the muscles of teleost fishes, the thick filament triangular profiles have a single orientation giving what we call the simple lattice. In other vertebrates, for example all the tetrapods, the thick filaments have one of two orientations where the triangles point in opposite directions (they are rotated by 60° or 180° according to set rules. Such a distribution cannot be developed in an ordered fashion across a large 2D lattice, but there are small domains of superlattice such that the next-nearest neighbouring thick filaments often have the same orientation. We believe that this difference in the lattice forms can lead to different contractile behaviours. Here we provide a historical review, and when appropriate cite recent work related to the emergence of the simple and superlattice forms by examining the muscles of several species ranging back to primitive vertebrates and we discuss the functional differences that the two lattice forms may have.

  2. Distribution of muscle fibre conduction velocity for representative samples of motor units in the full recruitment range of the tibialis anterior muscle.

    Science.gov (United States)

    Del Vecchio, A; Negro, F; Felici, F; Farina, D

    2018-02-01

    Motor units are recruited in an orderly manner according to the size of motor neurones. Moreover, because larger motor neurones innervate fibres with larger diameters than smaller motor neurones, motor units should be recruited orderly according to their conduction velocity (MUCV). Because of technical limitations, these relations have been previously tested either indirectly or in small motor unit samples that revealed weak associations between motor unit recruitment threshold (RT) and MUCV. Here, we analyse the relation between MUCV and RT for large samples of motor units. Ten healthy volunteers completed a series of isometric ankle dorsiflexions at forces up to 70% of the maximum. Multi-channel surface electromyographic signals recorded from the tibialis anterior muscle were decomposed into single motor unit action potentials, from which the corresponding motor unit RT, MUCV and action potential amplitude were estimated. Established relations between muscle fibre diameter and CV were used to estimate the fibre size. Within individual subjects, the distributions of MUCV and fibre diameters were unimodal and did not show distinct populations. MUCV was strongly correlated with RT (mean (SD) R 2  = 0.7 (0.09), P motor units), which supported the hypothesis that fibre diameter is associated with RT. The results provide further evidence for the relations between motor neurone and muscle fibre properties for large samples of motor units. The proposed methodology for motor unit analysis has also the potential to open new perspectives in the study of chronic and acute neuromuscular adaptations to ageing, training and pathology. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  3. Increased hypoxia-inducible factor-1α in striated muscle of tumor-bearing mice.

    Science.gov (United States)

    Devine, Raymond D; Bicer, Sabahattin; Reiser, Peter J; Wold, Loren E

    2017-06-01

    that occur during cancer cachexia. NEW & NOTEWORTHY We used proteomics and metadata analysis software to identify contributors to metabolic changes in striated muscle during cancer cachexia. We found increased expression of hypoxia-inducible factor-1α in the heart and skeletal muscle, suggesting a potential target for the therapeutic treatment of cancer cachexia. Copyright © 2017 the American Physiological Society.

  4. Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.

    Science.gov (United States)

    Kothiyal, K P; Ibramsha, M

    1986-01-01

    Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.

  5. A membrane glucocorticoid receptor mediates the rapid/non-genomic actions of glucocorticoids in mammalian skeletal muscle fibres.

    Science.gov (United States)

    Pérez, María Hernández-Alcalá; Cormack, Jonathan; Mallinson, David; Mutungi, Gabriel

    2013-10-15

    Glucocorticoids (GCs) are steroid hormones released from the adrenal gland in response to stress. They are also some of the most potent anti-inflammatory and immunosuppressive drugs currently in clinical use. They exert most of their physiological and pharmacological actions through the classical/genomic pathway. However, they also have rapid/non-genomic actions whose physiological and pharmacological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the rapid/non-genomic effects of two widely prescribed glucocorticoids, beclomethasone dipropionate (BDP) and prednisolone acetate (PDNA), on force production in isolated, intact, mouse skeletal muscle fibre bundles. The results show that the effects of both GCs on maximum isometric force (Po) were fibre-type dependent. Thus, they increased Po in the slow-twitch fibre bundles without significantly affecting that of the fast-twitch fibre bundles. The increase in Po occurred within 10 min and was insensitive to the transcriptional inhibitor actinomycin D. Also, it was maximal at ∼250 nM and was blocked by the glucocorticoid receptor (GCR) inhibitor RU486 and a monoclonal anti-GCR, suggesting that it was mediated by a membrane (m) GCR. Both muscle fibre types expressed a cytosolic GCR. However, a mGCR was present only in the slow-twitch fibres. The receptor was more abundant in oxidative than in glycolytic fibres and was confined mainly to the periphery of the fibres where it co-localised with laminin. From these findings we conclude that the rapid/non-genomic actions of GCs are mediated by a mGCR and that they are physiologically/therapeutically beneficial, especially in slow-twitch muscle fibres.

  6. Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast- and slow-twitch skeletal muscles of rats.

    Science.gov (United States)

    Plant, D R; Lynch, G S; Williams, D A

    2000-01-01

    We examined the effects of redox modulation on single membrane-permeabilized fibre segments from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of adult rats to determine whether the contractile apparatus was the redox target responsible for the increased contractility of muscles exposed to low concentrations of H2O2. The effects of H2O2 on maximum Ca2+-activated force were dose-dependent with 30 min exposure to 5 mM H2O2 causing a progressive decrease by 22+/-3 and 13+/-2% in soleus and EDL permeabilized muscle fibres, respectively. Lower concentrations of exogenous H2O2 (100 microM and 1 mM) had no effect on maximum Ca2+-activated force. Subsequent exposure to the reductant dithiothreitol (DTT, 10 mM, 10 min) fully reversed the H2O2-induced depression of force in EDL, but not in soleus muscle fibres. Incubation with DTT alone for 10 min did not alter Ca2+-activated force in either soleus or EDL muscle fibres. The sensitivity of the contractile filaments to Ca2+ (pCa50) was not altered by exposure to any concentration of exogenous H2O2. However, all concentrations of H2O2 diminished the Hill coefficient in permeabilized fibres from the EDL muscle, indicating that the cooperativity of Ca2+ binding to troponin is altered. H2O2 (5 mM) did not affect rigor force, which indicates that the number of crossbridges participating in contraction was not reduced. In conclusion, H2O2 may reduce the maximum Ca2+ activated force production in skinned muscle fibres by decreasing the force per crossbridge.

  7. Immunolabelling, histochemistry and in situ hybridisation in human skeletal muscle fibres to detect myosin heavy chain expression at the protein and mRNA level

    Science.gov (United States)

    SERRANO, A. L.; PÉREZ, MARGARITA; LUCÍA, A.; CHICHARRO, J. L.; QUIROZ-ROTHE, E.; RIVERO, J. L. L.

    2001-01-01

    The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in vastus lateralis muscle biopsies of 15 young men (with an average age of 22 y) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry and in situ hybridisation with probes specific for MHC β-slow, MHC-IIA and MHC-IIX. The characterisation of a large number of individual fibres was compared and correlated on a fibre-to-fibre basis. The panel of monoclonal antibodies used in the study allowed classification of human skeletal muscle fibres into 5 categories according to the MHC isoform they express at the protein level, types I, I+IIA, IIA, IIAX and IIX. Hybrid fibres coexpressing two isoforms represented a considerable proportion of the fibre composition (about 14%) and were clearly underestimated by mATPase histochemistry. For a very high percentage of fibres there was a precise correspondence between the MHC protein isoforms and mRNA transcripts. The integrated methods used demonstrate a high degree of precision of the immunohistochemical procedure used for the identification and quantification of human skeletal muscle fibre types. The monoclonal antibody S5-8H2 is particularly useful for identifying hybrid IIAX fibres. This protocol offers new prospects for muscle fibre classification in human experimental studies. PMID:11554510

  8. Methods for demonstration of enzyme activity in muscle fibres at the muscle/bone interface in demineralized tissue

    DEFF Research Database (Denmark)

    Kirkeby, S; Vilmann, H

    1981-01-01

    A method for demonstration of activity for ATPase and various oxidative enzymes (succinic dehydrogenase, alpha-glycerophosphate dehydrogenase, and lactic dehydrogenase) in muscle/bone sections of fixed and demineralized tissue has been developed. It was found that it is possible to preserve...... considerable amounts of the above mentioned enzymes in the muscle fibres at the muscle/bone interfaces. The best results were obtained after 20 min fixation, and 2-3 weeks of storage in MgNa2EDTA containing media. As the same technique previously has been used to describe patterns of resorption and deposition...

  9. An electron microscopic investigation into the possible source of new muscle fibres in teleost fish.

    Science.gov (United States)

    Stoiber, W; Sänger, A M

    1996-12-01

    This study is based on transmission electron microscopic (TEM) investigations of deep (fast, 'white') teleost fish muscle proliferation in early developmental stages of three European cyprinid species and the rainbow trout. Our fine structural findings provide evidence that early myotomal growth in these animals may utilize different mechanisms that are activated in close succession during early life history. First, initial enlargement of the deep muscle bulk in the embryo seems to be due to hypertrophy of the somite-cell derived stock of muscle fibres. Second, we suggest that deep muscle growth becomes additionally powered by attachment of presumptive myogenic cells that originate from and proliferate within the adjacent mesenchymal tissue lining. Third, mesenchyme-derived muscle cell precursors are thought to enter the myotomes via the myosepta. After migration between the pre-established muscle fibres these cells may function as myosatellite cells, thus at least partly providing the stem cell population for subsequent rapid hyperplastic growth. Finally, there is evidence that presumptive deep muscle satellite cells also proliferate by mitotic division in situ. A similar process of myogenic cell migration and proliferation may foster intermediate fibre differentiation. The model of myogenic cell migration is discussed in view of in vitro and in vivo data on satellite cell migratory power and with respect to temperature-induced and species dependent differences. As for the latter, our results indicate that patterns of muscle differentiation may diverge between a fast growing salmonid species and a moderately growing cyprinid species of similar final size. The model is compatible with the well-established idea that teleost muscle growth may rely on different subclasses of myosatellite cells.

  10. Muscle fibre type composition of a number of limb muscles in different types of horse.

    Science.gov (United States)

    Snow, D H; Guy, P S

    1980-03-01

    Skeletal muscle of the equine was differentiated into three fibre types according to myosin ATPase (pH 9.4) and succinic dehydrogenase activity. The percentage of these types was determined in the musculus deltoideus, m triceps brachii caput longum, m gluteus medius, m semitendinosis, m biceps femoris and m vastus lateralis of the thoroughbred, Shetland pony, pony, heavy hunter and donkey. In addition the m gluteus medius was examined in the arab and American racing quarterhorse. High myosin ATPase activity fibres varied from a mean of 93.2 per cent in the m gluteus medius of the quarterhorse to 58.2 per cent in the m vastus lateralis of the donkey. In the m gluteus medius it was found that the percentage of high mycosin ATPase (pH 9.4) fibres varied significantly among breeds and these differences were related to the sprinting speed of the breed.

  11. Gene gun bombardment-mediated expression and translocation of EGFP-tagged GLUT4 in skeletal muscle fibres in vivo

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M M; Reynet, Christine; Schjerling, Peter

    2002-01-01

    the enhanced green fluorescent protein (EGFP) labelling technique with physical transfection methods in vivo: intramuscular plasmid injection or gene gun bombardment. During optimisation experiments with plasmid coding for the EGFP reporter alone EGFP-positive muscle fibres were counted after collagenase...... treatment of in vivo transfected flexor digitorum brevis (FDB) muscles. In contrast to gene gun bombardment, intramuscular injection produced EGFP expression in only a few fibres. Regardless of the transfection technique, EGFP expression was higher in muscles from 2-week-old rats than in those from 6-week......Cellular protein trafficking has been studied to date only in vitro or with techniques that are invasive and have a low time resolution. To establish a gentle method for analysis of glucose transporter-4 (GLUT4) trafficking in vivo in fully differentiated rat skeletal muscle fibres we combined...

  12. Quantification of fibre type regionalisation : an analysis of lower hindlimb muscles in the rat

    NARCIS (Netherlands)

    Wang, LC; Kernell, D

    Newly developed concepts and methods for the quantification of fibre type regionalisation were used for comparison between all muscles traversing the ankle of the rat lower hindlimb (n = 13). For each muscle, cross-sections from the proximodistal midlevel were stained for myofibrillar ATPase and

  13. Eccentric Contraction-Induced Muscle Fibre Adaptation

    Directory of Open Access Journals (Sweden)

    Arabadzhiev T. I.

    2009-12-01

    Full Text Available Hard-strength training induces strength increasing and muscle damage, especially after eccentric contractions. Eccentric contractions also lead to muscle adaptation. Symptoms of damage after repeated bout of the same or similar eccentrically biased exercises are markedly reduced. The mechanism of this repeated bout effect is unknown. Since electromyographic (EMG power spectra scale to lower frequencies, the adaptation is related to neural adaptation of the central nervous system (CNS presuming activation of slow-non-fatigable motor units or synchronization of motor unit firing. However, the repeated bout effect is also observed under repeated stimulation, i.e. without participation of the CNS. The aim of this study was to compare the possible effects of changes in intracellular action potential shape and in synchronization of motor units firing on EMG power spectra. To estimate possible degree of the effects of central and peripheral changes, interferent EMG was simulated under different intracellular action potential shapes and different degrees of synchronization of motor unit firing. It was shown that the effect of changes in intracellular action potential shape and muscle fibre propagation velocity (i.e. peripheral factors on spectral characteristics of EMG signals could be stronger than the effect of synchronization of firing of different motor units (i.e. central factors.

  14. Voltage clamp methods for the study of membrane currents and SR Ca2+ release in adult skeletal muscle fibres

    Science.gov (United States)

    Hernández-Ochoa, Erick O.; Schneider, Martin F.

    2012-01-01

    Skeletal muscle excitation-contraction (E-C)1 coupling is a process composed of multiple sequential stages, by which an action potential triggers sarcoplasmic reticulum (SR)2 Ca2+ release and subsequent contractile activation. The various steps in the E-C coupling process in skeletal muscle can be studied using different techniques. The simultaneous recordings of sarcolemmal electrical signals and the accompanying elevation in myoplasmic Ca2+, due to depolarization-initiated SR Ca2+ release in skeletal muscle fibres, have been useful to obtain a better understanding of muscle function. In studying the origin and mechanism of voltage dependency of E-C coupling a variety of different techniques have been used to control the voltage in adult skeletal fibres. Pioneering work in muscles isolated from amphibians or crustaceans used microelectrodes or ‘high resistance gap’ techniques to manipulate the voltage in the muscle fibres. The development of the patch clamp technique and its variant, the whole-cell clamp configuration that facilitates the manipulation of the intracellular environment, allowed the use of the voltage clamp techniques in different cell types, including skeletal muscle fibres. The aim of this article is to present an historical perspective of the voltage clamp methods used to study skeletal muscle E-C coupling as well as to describe the current status of using the whole-cell patch clamp technique in studies in which the electrical and Ca2+ signalling properties of mouse skeletal muscle membranes are being investigated. PMID:22306655

  15. Fractographic observations of the microstructural characteristics of flax fibre composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Asian, Mustafa; Lilholt, Hans

    2016-01-01

    Natural fibre composites possess a number of special microstructural characteristics, which need to be documented to aid in the further development of these materials. Using field emission scanning electron microscopy, fractographic observations of the microstructural characteristics of aligned f...... novel observations, measurements and interpretations to be used in the further analysis and understanding of the properties of natural fibre composites. (C) 2015 Elsevier Ltd. All rights reserved.......Natural fibre composites possess a number of special microstructural characteristics, which need to be documented to aid in the further development of these materials. Using field emission scanning electron microscopy, fractographic observations of the microstructural characteristics of aligned...... flax fibre/thermoplastic composites are presented. The findings are presented in relation to the three operational parts in composites: fibres, matrix and fibre/matrix interface. For the flax fibres, the striated structure on the fibre surface is shown to consist of cellulose macrofibrils oriented...

  16. A quantitative description of tubular system Ca2+ handling in fast‐ and slow‐twitch muscle fibres

    Science.gov (United States)

    Cully, Tanya R.; Edwards, Joshua N.; Murphy, Robyn M.

    2016-01-01

    Key points Current methods do not allow a quantitative description of Ca2+ movements across the tubular (t‐) system membrane without isolating the membranes from their native skeletal muscle fibre.Here we present a fluorescence‐based method that allows determination of the t‐system [Ca2+] transients and derivation of t‐system Ca2+ fluxes in mechanically skinned skeletal muscle fibres. Differences in t‐system Ca2+‐handling properties between fast‐ and slow‐twitch fibres from rat muscle are resolved for the first time using this new technique.The method can be used to study Ca2+ handling of the t‐system and allows direct comparisons of t‐system Ca2+ transients and Ca2+ fluxes between groups of fibres and fibres from different strains of animals. Abstract The tubular (t‐) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca2+ gradient and exchanges Ca2+ between the extracellular and intracellular environments. Little is known of the Ca2+‐handling properties of the t‐system as the small Ca2+ fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t‐system‐trapped rhod‐5N inside skinned fibres from rat and [Ca2+]t‐sys, allowing confocal measurements of Ca2+‐dependent changes in rhod‐5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca2+] transients in the t‐system ([Ca2+]t‐sys (t)). Furthermore, t‐system Ca2+‐buffering power was determined so that t‐system Ca2+ fluxes could be derived from [Ca2+]t‐sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca2+ induced a robust store‐operated Ca2+ entry (SOCE) in fast‐ and slow‐twitch fibres, reducing [Ca2+]t‐sys to fibre types. Abruptly introducing internal solutions with 1 mm Mg2+ and [Ca2+]cyto (28 nm–1.3 μm) to Ca2+‐depleted fibres generated t‐system Ca2+ uptake rates

  17. A quantitative description of tubular system Ca(2+) handling in fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Cully, Tanya R; Edwards, Joshua N; Murphy, Robyn M; Launikonis, Bradley S

    2016-06-01

    Current methods do not allow a quantitative description of Ca(2+) movements across the tubular (t-) system membrane without isolating the membranes from their native skeletal muscle fibre. Here we present a fluorescence-based method that allows determination of the t-system [Ca(2+) ] transients and derivation of t-system Ca(2+) fluxes in mechanically skinned skeletal muscle fibres. Differences in t-system Ca(2+) -handling properties between fast- and slow-twitch fibres from rat muscle are resolved for the first time using this new technique. The method can be used to study Ca(2+) handling of the t-system and allows direct comparisons of t-system Ca(2+) transients and Ca(2+) fluxes between groups of fibres and fibres from different strains of animals. The tubular (t-) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca(2+) gradient and exchanges Ca(2+) between the extracellular and intracellular environments. Little is known of the Ca(2+) -handling properties of the t-system as the small Ca(2+) fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t-system-trapped rhod-5N inside skinned fibres from rat and [Ca(2+) ]t-sys , allowing confocal measurements of Ca(2+) -dependent changes in rhod-5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca(2+) ] transients in the t-system ([Ca(2+) ]t-sys (t)). Furthermore, t-system Ca(2+) -buffering power was determined so that t-system Ca(2+) fluxes could be derived from [Ca(2+) ]t-sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca(2+) induced a robust store-operated Ca(2+) entry (SOCE) in fast- and slow-twitch fibres, reducing [Ca(2+) ]t-sys to fibre types. Abruptly introducing internal solutions with 1 mm Mg(2+) and [Ca(2+) ]cyto (28 nm-1.3 μm) to Ca(2+) -depleted fibres generated t-system Ca(2+) uptake rates dependent on [Ca(2

  18. Effects of hypothyroidism on myosin heavy chain composition and fibre types of fast skeletal muscles in a small marsupial, Antechinus flavipes.

    Science.gov (United States)

    Zhong, Wendy W H; Withers, Kerry W; Hoh, Joseph F Y

    2010-04-01

    Effects of drug-induced hypothyroidism on myosin heavy chain (MyHC) content and fibre types of fast skeletal muscles were studied in a small marsupial, Antechinus flavipes. SDS-PAGE of MyHCs from the tibialis anterior and gastrocnemius revealed four isoforms, 2B, 2X, 2A and slow, in that order of decreasing abundance. After 5 weeks treatment with methimazole, the functionally fastest 2B MyHC significantly decreased, while 2X, 2A and slow MyHCs increased. Immunohistochemistry using monospecific antibodies to each of the four MyHCs revealed decreased 2b and 2x fibres, and increased 2a and hybrid fibres co-expressing two or three MyHCs. In the normally homogeneously fast superficial regions of these muscles, evenly distributed slow-staining fibres appeared, resembling the distribution of slow primary myotubes in fast muscles during development. Hybrid fibres containing 2A and slow MyHCs were virtually absent. These results are more detailed but broadly similar to the earlier studies on eutherians. We hypothesize that hypothyroidism essentially reverses the effects of thyroid hormone on MyHC gene expression of muscle fibres during myogenesis, which differ according to the developmental origin of the fibre: it induces slow MyHC expression in 2b fibres derived from fast primary myotubes, and shifts fast MyHC expression in fibres of secondary origin towards 2A, but not slow, MyHC.

  19. Rigor force responses of permeabilized fibres from fast and slow skeletal muscles of aged rats.

    Science.gov (United States)

    Plant, D R; Lynch, G S

    2001-09-01

    1. Ageing is generally associated with a decline in skeletal muscle mass and strength and a slowing of muscle contraction, factors that impact upon the quality of life for the elderly. The mechanisms underlying this age-related muscle weakness have not been fully resolved. The purpose of the present study was to determine whether the decrease in muscle force as a consequence of age could be attributed partly to a decrease in the number of cross-bridges participating during contraction. 2. Given that the rigor force is proportional to the approximate total number of interacting sites between the actin and myosin filaments, we tested the null hypothesis that the rigor force of permeabilized muscle fibres from young and old rats would not be different. 3. Permeabilized fibres from the extensor digitorum longus (fast-twitch; EDL) and soleus (predominantly slow-twitch) muscles of young (6 months of age) and old (27 months of age) male F344 rats were activated in Ca2+-buffered solutions to determine force-pCa characteristics (where pCa = -log(10)[Ca2+]) and then in solutions lacking ATP and Ca2+ to determine rigor force levels. 4. The rigor forces for EDL and soleus muscle fibres were not different between young and old rats, indicating that the approximate total number of cross-bridges that can be formed between filaments did not decline with age. We conclude that the age-related decrease in force output is more likely attributed to a decrease in the force per cross-bridge and/or decreases in the efficiency of excitation-contraction coupling.

  20. Dihydrotestosterone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intact mouse skeletal muscle fibres.

    Science.gov (United States)

    Hamdi, M M; Mutungi, G

    2010-02-01

    It is generally believed that steroid hormones have both genomic and non-genomic (rapid) actions. Although the latter form an important component of the physiological response of these hormones, little is known about the cellular signalling pathway(s) mediating these effects and their physiological functions in adult mammalian skeletal muscle fibres. Therefore, the primary aim of this study was to investigate the non-genomic actions of dihydrotestosterone (DHT) and their physiological role in isolated intact mammalian skeletal muscle fibre bundles. Our results show that treating the fibre bundles with physiological concentrations of DHT increases both twitch and tetanic contractions in fast twitch fibres. However, it decreases them in slow twitch fibres. These changes in force are accompanied by an increase in the phosphorylation of MAPK/ERK1/2 in both fibre types and that of regulatory myosin light chains in fast twitch fibres. Both effects were insensitive to inhibitors of Src kinase, androgen receptor, insulin-like growth factor 1 receptor and platelet-derived growth factor receptor. However, they were abolished by the MAPK/ERK1/2 kinase inhibitor PD98059 and the epidermal growth factor (EGF) receptor inhibitor tyrphostin AG 1478. In contrast, testosterone had no effect on force and increased the phosphorylation of ERK1/2 in slow twitch fibres only. From these results we conclude that sex steroids have non-genomic actions in isolated intact mammalian skeletal muscle fibres. These are mediated through the EGF receptor and one of their main physiological functions is the enhancement of force production in fast twitch skeletal muscle fibres.

  1. Motor unit activation patterns during concentric wrist flexion in humans with different muscle fibre composition.

    Science.gov (United States)

    Søgaard, K; Christensen, H; Fallentin, N; Mizuno, M; Quistorff, B; Sjøgaard, G

    1998-10-01

    Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role.

  2. Muscle Contraction.

    Science.gov (United States)

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  3. Distribution of fast myosin heavy chain-based muscle fibres in the gluteus medius of untrained horses: mismatch between antigenic and ATPase determinants

    Science.gov (United States)

    LINNANE, LINDA; SERRANO, A. L.; RIVERO, J. L. L.

    1999-01-01

    The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in muscle biopsies from the gluteus medius of adult untrained horses by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies and standard myofibrillar ATPase (mATPase) histochemistry. Percutaneous needle biopsies were taken at 3 depths (20, 40 and 60 mm) from 4 4-y-old Andalusian stallions. The percentage of ‘pure’ I MHC fibres increased whereas that for pure IIX MHC fibres decreased from the most superficial to the deepest sampling site. Within the fast fibres, types IIA and IIAX MHC-classified fibres were proportionately more abundant in the deepest sampling site than in the superficial region of the muscle. The immunohistochemical and histochemical characterisation of a large number of single fibres (n=1375) was compared and correlated on a fibre-to-fibre basis. The results showed that 40% of the fibres analysed were pure type I (expressing only MHC-I); they showed correct matching between their antigenic and mATPase determinants. In contrast, within the fast fibres, a considerable proportion of fibres were found showing a mismatch between their immunohistochemical and mATPase profiles. The most common mismatched fibre phenotypes comprised fibres displaying coexpression of both fast MHCs when analysed by immunocytochemistry, but showing an mATPase profile similar to typical IIX fibres (moderate mATPase reaction after preincubation at pH 4.4). Considered altogether, the total mismatched fibres represented only 4.2% of the whole fast fibre population in the superficial region of the muscle, but their proportion increased to 15.6% and 38.4% in the middle and deep regions, respectively, of gluteus medius. It is concluded that a considerable number of hybrid fast MHC IIAX fibres are present in the gluteus medius of untrained horses, suggesting that equine type II fibres have probably been misclassified in

  4. Dihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres.

    Science.gov (United States)

    Wendowski, Oskar; Redshaw, Zoe; Mutungi, Gabriel

    2017-02-01

    Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast-twitch muscle) and the soleus (a slow-twitch muscle) of adult mice of different ages (range 100-900 days old) were used to investigate the effects of ageing and dihydrotestosterone (DHT) treatment on protein synthesis as well as the expression and function of two amino acid transporters; the sodium-coupled neutral amino acid transporter (SNAT) 2, and the sodium-independent L-type amino-acid transporter (LAT) 2. At all ages investigated, protein synthesis was always higher in the slow-twitch than in the fast-twitch muscle fibres and decreased with age in both fibre types. However, the decline was greater in the fast-twitch than in the slow-twitch fibres and was accompanied by a reduction in the expression of SNAT2 and LAT2 at the protein level. Again, the decrease in the expression of the amino acid transporters was greater in the fast-twitch than in the slow-twitch fibres. In contrast, ageing had no effect on SNAT2 and LAT2 expressions at the mRNA level. Treating the muscle fibre bundles with physiological concentrations (~2 nM) of DHT for 1 h completely reversed the effects of ageing on protein synthesis and the expression of SNAT2 and LAT2 protein in both fibre types. From the observations that ageing is accompanied by a reduction in protein synthesis and transporter expression and that these effects are reversed by DHT treatment, we conclude that sarcopenia arises from an age-dependent reduction in protein synthesis caused, in part, by the lack of or by the low bioavailability of the male sex steroid, DHT.

  5. Upper motor neurone modulation of the structure of the terminal cisternae in rat skeletal muscle fibres.

    Science.gov (United States)

    Dulhunty, A F; Gage, P W; Valois, A A

    1981-12-23

    There are fewer indentations on the flat surfaces of terminal cisternae in soleus (slow-twitch) than in extensor digitorum longus (EDL, fast-twitch) muscle fibres of rats. Following mid-thoracic spinal cord transection, there is an increase in the number of indentations in soleus fibres but no change in EDL fibres. The increase in the numbers of indentations after spinal cord transections is correlated with changes in the contractile and charge movement properties of the soleus fibres so that they resemble normal EDL fibres. The indentations appear to have an important role in excitation-contraction coupling.

  6. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men.

    Science.gov (United States)

    Zoladz, J A; Semik, D; Zawadowska, B; Majerczak, J; Karasinski, J; Kolodziejski, L; Duda, K; Kilarski, W M

    2005-01-01

    Muscle fibre profile area (Af), volume density (Vv), capillary-to-fibre ratio (CF) and number of capillaries per fibre square millimetre (CD) were determined from needle biopsies of vastus lateralis of twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background. Seven subjects were untrained students (group A), nine were national and sub-national level endurance athletes (group B) with the background of 7.8+/-2.9 years of specialised training, and eight subjects were sprint-power athletes (group C) with 12.8+/-8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase. Capillaries were visualized and counted using CD31 antibodies against endothelial cells. There were significant differences in the Vv of type I and type II muscle fibres in both trained groups, B (51.8%; 25.6%) and C (50.5%; 26.4%). However, in untrained group A that was treated as a reference group, the difference between Vv of type I and type II fibres was less prominent, nevertheless statistically significant (42.1%; 35.1%). There was also a significant difference in CF: 1.9 in group A and 2.1 in groups B and C. The number of capillaries per mm2 (CD) was 245 (group A), 308 (group B) and 325 (group C). Significant differences (Pski-jumping, volleyball, soccer and modern dance.

  7. Comparative Statistical Mechanics of Muscle and Non-Muscle Contractile Systems: Stationary States of Near-Equilibrium Systems in A Linear Regime

    Directory of Open Access Journals (Sweden)

    Yves Lecarpentier

    2017-10-01

    Full Text Available A. Huxley’s equations were used to determine the mechanical properties of muscle myosin II (MII at the molecular level, as well as the probability of the occurrence of the different stages in the actin–myosin cycle. It was then possible to use the formalism of statistical mechanics with the grand canonical ensemble to calculate numerous thermodynamic parameters such as entropy, internal energy, affinity, thermodynamic flow, thermodynamic force, and entropy production rate. This allows us to compare the thermodynamic parameters of a non-muscle contractile system, such as the normal human placenta, with those of different striated skeletal muscles (soleus and extensor digitalis longus as well as the heart muscle and smooth muscles (trachea and uterus in the rat. In the human placental tissues, it was observed that the kinetics of the actin–myosin crossbridges were considerably slow compared with those of smooth and striated muscular systems. The entropy production rate was also particularly low in the human placental tissues, as compared with that observed in smooth and striated muscular systems. This is partly due to the low thermodynamic flow found in the human placental tissues. However, the unitary force of non-muscle myosin (NMII generated by each crossbridge cycle in the myofibroblasts of the human placental tissues was similar in magnitude to that of MII in the myocytes of both smooth and striated muscle cells. Statistical mechanics represents a powerful tool for studying the thermodynamics of all contractile muscle and non-muscle systems.

  8. Comparative data from young men and women on masseter muscle fibres, function and facial morphology

    DEFF Research Database (Denmark)

    Tuxen, A.; Bakke, M.; Pinholt, E. M.

    1999-01-01

    The primary aim was to relate information about masseter muscle fibres and function to aspects of facial morphology in a group of healthy young men. The secondary aim was to investigate possible sex differences using data previously obtained from a comparable group of age-matched, healthy women......, and the tissue examined for myosin ATPase activity. Further, the cross-sectional areas of the different fibre types were measured. In spite of using age-matched healthy men and women with a full complement of teeth, statistically significant sex differences were found among measures related to muscle function...... and some measures of facial morphology. Thus data from men and women should not be pooled uncritically. The greater bite force in men than women corresponded with the greater diameter and cross-sectional area of type II fibres. Further, the males had more anteriorly inclined mandibles and shorter anterior...

  9. Lion (Panthera leo) and caracal (Caracal caracal) type IIx single muscle fibre force and power exceed that of trained humans.

    Science.gov (United States)

    Kohn, Tertius A; Noakes, Timothy D

    2013-03-15

    This study investigated for the first time maximum force production, shortening velocity (Vmax) and power output in permeabilised single muscle fibres at 12°C from lion, Panthera leo (Linnaeus 1758), and caracal, Caracal caracal (Schreber 1776), and compared the values with those from human cyclists. Additionally, the use and validation of previously frozen tissue for contractile experiments is reported. Only type IIx muscle fibres were identified in the caracal sample, whereas type IIx and only two type I fibres were found in the lion sample. Only pure type I and IIa, and hybrid type IIax fibres were identified in the human samples - there were no pure type IIx fibres. Nevertheless, compared with all the human fibre types, the lion and caracal fibres were smaller (Plion: 3008±151 μm(2), caracal: 2583±221 μm(2)). On average, the felid type IIx fibres produced significantly greater force (191-211 kN m(-2)) and ~3 times more power (29.0-30.3 kN m(-2) fibre lengths s(-1)) than the human IIax fibres (100-150 kN m(-2), 4-11 kN m(-2) fibre lengths s(-1)). Vmax values of the lion type IIx fibres were also higher than those of human type IIax fibres. The findings suggest that the same fibre type may differ substantially between species and potential explanations are discussed.

  10. (−)-EPICATECHIN IMPROVES MITOCHONDRIAL RELATED PROTEIN LEVELS AND AMELIORATES OXIDATIVE STRESS IN DYSTROPHIC DELTA SARCOGLYCAN NULL MOUSE STRIATED MUSCLE

    Science.gov (United States)

    Ramirez-Sanchez, Israel; De los Santos, Sergio; Gonzalez-Basurto, Silvia; Canto, Patricia; Mendoza-Lorenzo, Patricia; Palma-Flores, Carlos; Ceballos-Reyes, Guillermo; Villarreal, Francisco; Zentella-Dehesa, Alejandro; Coral-Vazquez, Ramon

    2014-01-01

    Muscular dystrophies (MD) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD and likely represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (−)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild type or δ-SG null 2.5 month old male mice were treated via oral gavage with either water (control animals) or Epi (1 mg/kg, twice/day) for 2 weeks. Results evidence a significant normalization of total protein carbonylation, recovery of reduced/oxidized glutathione (GSH/GSSG ratio) and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in protein levels for thiolredoxin, glutathione peroxidase, superoxide dismutase 2, catalase and mitochondrial endpoints. Furthermore, we evidence decreases in heart and skeletal muscle fibrosis, accompanied with an improvement in skeletal muscle function with treatment. These results warrant the further investigation of Epi as a potential therapeutic agent to mitigate MD associated muscle degeneration. PMID:25284161

  11. In situ hybridisation of a large repertoire of muscle-specific transcripts in fish larvae: the new superficial slow-twitch fibres exhibit characteristics of fast-twitch differentiation.

    Science.gov (United States)

    Chauvigné, F; Ralliere, C; Cauty, C; Rescan, P Y

    2006-01-01

    Much of the present information on muscle differentiation in fish concerns the early embryonic stages. To learn more about the maturation and the diversification of the fish myotomal fibres in later stages of ontogeny, we investigated, by means of in situ hybridisation, the developmental expression of a large repertoire of muscle-specific genes in trout larvae from hatching to yolk resorption. At hatching, transcripts for fast and slow muscle protein isoforms, namely myosins, tropomyosins, troponins and myosin binding protein C were present in the deep fast and the superficial slow areas of the myotome, respectively. During myotome expansion that follows hatching, the expression of fast isoforms became progressively confined to the borders of the fast muscle mass, whereas, in contrast, slow muscle isoform transcripts were uniformly expressed in all the slow fibres. Transcripts for several enzymes involved in oxidative metabolism such as citrate synthase, cytochrome oxidase component IV and succinate dehydrogenase, were present throughout the whole myotome of hatching embryos but in later stages became concentrated in slow fibre as well as in lateral fast fibres. Surprisingly, the slow fibres that are added externally to the single superficial layer of the embryonic (original) slow muscle fibres expressed not only slow twitch muscle isoforms but also, transiently, a subset of fast twitch muscle isoforms including MyLC1, MyLC3, MyHC and myosin binding protein C. Taken together these observations show that the growth of the myotome of the fish larvae is associated with complex patterns of muscular gene expression and demonstrate the unexpected presence of fast muscle isoform-expressing fibres in the most superficial part of the slow muscle.

  12. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture

    DEFF Research Database (Denmark)

    Higginson, James; Wackerhage, Henning; Woods, Niall

    2002-01-01

    A and mitogen-activated protein kinase kinase (MEK1/2) blockade with U0126 upon myosin heavy chain (MHC) isoform mRNA levels and activities of metabolic enzymes after 1 day, 3 days and 7 days of treatment in primary cultures of spontaneously twitching rat skeletal muscle. U0126 treatment significantly decreased......Activation of either the calcineurin or the extracellular signal-regulated kinase (ERK1/2) pathway increases the percentage of slow fibres in vivo suggesting that both pathways can regulate fibre phenotypes in skeletal muscle. We investigated the effect of calcineurin blockade with cyclosporin...

  13. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type

    Science.gov (United States)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik D; Saltin, Bengt; Ørtenblad, Niels

    2011-01-01

    Abstract Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, = 68 ± 5 ml kg−1 min−1, mean ± SD) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former contained more intramyofibrillar and subsarcolemmal glycogen than the latter. In highly glycogen-depleted fibres, the remaining small intermyofibrillar and subsarcolemmal glycogen particles were often found to cluster in groupings. In the recovery period, when the athletes received either a carbohydrate-rich meal or only water the impaired resynthesis of glycogen with water alone was associated primarily with intramyofibrillar glycogen. In conclusion, after prolonged high-intensity exercise the depletion of glycogen is dependent on subcellular localization. In addition, the localization of glycogen appears to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. PMID:21486810

  14. Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis.

    Science.gov (United States)

    Gosker, Harry R; Zeegers, Maurice P; Wouters, Emiel F M; Schols, Annemie M W J

    2007-11-01

    Skeletal muscle dysfunction is a common feature in chronic obstructive pulmonary disease (COPD) which is associated with intrinsic muscular abnormalities. One of the most consistently reported alterations is a shift from fibre type I to II in the vastus lateralis of these patients. Surprisingly, the relationship between this shift and the severity and phenotype of COPD remains unclear. A study was conducted to determine whether vastus lateralis muscle fibre type proportions are associated with COPD disease severity and to provide reference values for the proportions of fibre types in the vastus lateralis in COPD. A systematic review and a meta-analysis were conducted in which muscle fibre type data and markers of disease severity were collected from the literature. The forced expiratory volume in 1 s (FEV(1)), the ratio of FEV(1) to forced vital capacity (FVC) and body mass index were positively associated with the proportion of type I fibres in COPD. A proportion of 51% for vastus lateralis fibre type I and 13% for fibre type IIX were calculated from the combined data as normal values for patients with typical GOLD stage 3-4 COPD aged 60-70 years. Based on these reference values, a proportion of fibre type I 29% were defined as pathologically abnormal. This review sheds new light on the relationship between skeletal muscle abnormalities and important hallmarks of the disease in severe COPD, and identifies absence of data in GOLD stages 1-2. This review also provides reference values on fibre type composition for diagnostic purposes in COPD.

  15. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.

    Science.gov (United States)

    Bruton, Joseph D; Place, Nicolas; Yamada, Takashi; Silva, José P; Andrade, Francisco H; Dahlstedt, Anders J; Zhang, Shi-Jin; Katz, Abram; Larsson, Nils-Göran; Westerblad, Håkan

    2008-01-01

    Skeletal muscle often shows a delayed force recovery after fatiguing stimulation, especially at low stimulation frequencies. In this study we focus on the role of reactive oxygen species (ROS) in this fatigue-induced prolonged low-frequency force depression. Intact, single muscle fibres were dissected from flexor digitorum brevis (FDB) muscles of rats and wild-type and superoxide dismutase 2 (SOD2) overexpressing mice. Force and myoplasmic free [Ca(2+)] ([Ca(2+)](i)) were measured. Fibres were stimulated at different frequencies before and 30 min after fatigue induced by repeated tetani. The results show a marked force decrease at low stimulation frequencies 30 min after fatiguing stimulation in all fibres. This decrease was associated with reduced tetanic [Ca(2+)](i) in wild-type mouse fibres, whereas rat fibres and mouse SOD2 overexpressing fibres instead displayed a decreased myofibrillar Ca(2+) sensitivity. The SOD activity was approximately 50% lower in wild-type mouse than in rat FDB muscles. Myoplasmic ROS increased during repeated tetanic stimulation in rat fibres but not in wild-type mouse fibres. The decreased Ca(2+) sensitivity in rat fibres could be partially reversed by application of the reducing agent dithiothreitol, whereas the decrease in tetanic [Ca(2+)](i) in wild-type mouse fibres was not affected by dithiothreitol or the antioxidant N-acetylcysteine. In conclusion, we describe two different causes of fatigue-induced prolonged low-frequency force depression, which correlate to differences in SOD activity and ROS metabolism. These findings may have clinical implications since ROS-mediated impairments in myofibrillar function can be counteracted by reductants and antioxidants, whereas changes in SR Ca(2+) handling appear more resistant to interventions.

  16. A Muscle Fibre Conduction Velocity Tracking ASIC for Local Fatigue Monitoring.

    Science.gov (United States)

    Koutsos, Ermis; Cretu, Vlad; Georgiou, Pantelis

    2016-12-01

    Electromyography analysis can provide information about a muscle's fatigue state by estimating Muscle Fibre Conduction Velocity (MFCV), a measure of the travelling speed of Motor Unit Action Potentials (MUAPs) in muscle tissue. MFCV better represents the physical manifestations of muscle fatigue, compared to the progressive compression of the myoelectic Power Spectral Density, hence it is more suitable for a muscle fatigue tracking system. This paper presents a novel algorithm for the estimation of MFCV using single threshold bit-stream conversion and a dedicated application-specified integrated circuit (ASIC) for its implementation, suitable for a compact, wearable and easy to use muscle fatigue monitor. The presented ASIC is implemented in a commercially available AMS 0.35 [Formula: see text] CMOS technology and utilizes a bit-stream cross-correlator that estimates the conduction velocity of the myoelectric signal in real time. A test group of 20 subjects was used to evaluate the performance of the developed ASIC, achieving good accuracy with an error of only 3.2% compared to Matlab.

  17. Moderate exercise of rainbow trout induces only minor differences in fatty acid profile, texture, white muscle fibres and proximate chemical composition of fillets

    DEFF Research Database (Denmark)

    Rasmussen, Richard Skøtt; Heinrich, Maike Timm; Hyldig, Grethe

    2011-01-01

    when the lipid content in the fillet increased (R2≥0.85, Pb1·10−6). Fillet texture measured instrumentally as shear force (g) after 72 h of ice storage did not differ between the two experimental groups, and neither did the content of lipid, protein or dry matter in the fillet. Muscle fibre sizes have...... a possible role in textural characteristics and were determined by histological analyses of white, glycolytic muscle tissue. These data showed that although differences in average fibre diameters were small (excF: 75.04 (s.d.=48.96)μm; ctrlF: 74.50 (46.21)μm) the general fibre size distribution differed...... significantly among the two groups (Pb0.01). Moreover, moderate exercise induced small but significant changes in fibre circularity (excF: circ.=0.724; ctrlF:=0.720, Pb0.05) but neither muscle fibre diameter nor circularity was significantly related to fillet texture. Altogether, the results suggest...

  18. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    Science.gov (United States)

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these muscles is such that it might be difficult (particularly in the older animals) to cut a transverse section through all the fibres contained in the muscle; some fibres might not enter the plane of section. Results on muscle fibre number in these muscles at different ages may therefore be misleading.

  19. Effects of ageing on single muscle fibre contractile function following short-term immobilisation

    DEFF Research Database (Denmark)

    Hvid, Lars G; Ørtenblad, Niels; Aagaard, Per

    2011-01-01

    Very little attention has been given to the combined effect of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile...

  20. Plasticity of the transverse tubules following denervation and subsequent reinnervation in rat slow and fast muscle fibres.

    Science.gov (United States)

    Takekura, Hiroaki; Tamaki, Hiroyuki; Nishizawa, Tomie; Kasuga, Norikatsu

    2003-01-01

    We have studied the effects of short term denervation followed by reinnervation on the ultrastructure of the membrane systems and on the content of and distribution of key proteins involved in calcium regulation of fast-twitch (FT) extensor digitorum longus (EDL) and slow-twitch (ST) soleus (SOL) muscle fibres. Ischiadic nerve freezing resulted in total lack of neuromuscular transmission for 3 days followed by a slow recovery, but no decline in twitch force elicited by direct stimulation. The latter measurements indicate no significant atrophy within this time frame. The membrane systems of skeletal muscle fibres were visualized using Ca92+)-K3Fe(CN)6-OsO4 techniques and observed using a high voltage electron microscope. [3H]nitrendipine binding was used to detect levels of dihydropyridine receptor (DHPR) expression. The Ca2+ pumping free sarcoplasmic reticulum domains were not affected by the denervation, but the Ca2+ release domains were dramatically increased, particularly in the FT-EDL muscle fibres. The increase is evidenced by a doubling up of the areas of contacts between SR and transverse (t-) tubules, so that in place of the normal triadic arrangement, pentadic and heptadic junctions, formed by multiple interacting layers of ST and t-tubules are seen. Frequency of pentads and heptads increases and declines in parallel to the denervation and reinnervation but with a delay. Immunofluorecence and electron microscopy observations show presence of DHPR and ryanodine receptor clusters at pentads and heptads junctions. A significant (P muscle fibres indicating that overexpression of DHPRs accompanies the build up extra junctional contacts. The results indicate that denervation reversibly affects the domains of the membrane systems involved in excitation-contraction coupling.

  1. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training.

    Science.gov (United States)

    Wyckelsma, Victoria L; Levinger, Itamar; McKenna, Michael J; Formosa, Luke E; Ryan, Michael T; Petersen, Aaron C; Anderson, Mitchell J; Murphy, Robyn M

    2017-06-01

    Ageing is associated with an upregulation of mitochondrial dynamics proteins mitofusin 2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) in human skeletal muscle with the increased abundance of Mfn2 being exclusive to type II muscle fibres. These changes occur despite a similar content of mitochondria, as measured by COXIV, NDUFA9 and complexes in their native states (Blue Native PAGE). Following 12 weeks of high-intensity training (HIT), older adults exhibit a robust increase in mitochondria content, while there is a decline in Mfn2 in type II fibres. We propose that the upregulation of Mfn2 and MiD49 with age may be a protective mechanism to protect against mitochondrial dysfunction, in particularly in type II skeletal muscle fibres, and that exercise may have a unique protective effect negating the need for an increased turnover of mitochondria. Mitochondrial dynamics proteins are critical for mitochondrial turnover and maintenance of mitochondrial health. High-intensity interval training (HIT) is a potent training modality shown to upregulate mitochondrial content in young adults but little is known about the effects of HIT on mitochondrial dynamics proteins in older adults. This study investigated the abundance of protein markers for mitochondrial dynamics and mitochondrial content in older adults compared to young adults. It also investigated the adaptability of mitochondria to 12 weeks of HIT in older adults. Both older and younger adults showed a higher abundance of mitochondrial respiratory chain subunits COXIV and NDUFA9 in type I compared with type II fibres, with no difference between the older adults and young groups. In whole muscle homogenates, older adults had higher mitofusin-2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) contents compared to the young group. Also, older adults had higher levels of Mfn2 in type II fibres compared with young adults. Following HIT in older adults, MiD49 and Mfn2 levels were not different in whole

  2. Normalization of cell responses in cat striate cortex

    Science.gov (United States)

    Heeger, D. J.

    1992-01-01

    Simple cells in the striate cortex have been depicted as half-wave-rectified linear operators. Complex cells have been depicted as energy mechanisms, constructed from the squared sum of the outputs of quadrature pairs of linear operators. However, the linear/energy model falls short of a complete explanation of striate cell responses. In this paper, a modified version of the linear/energy model is presented in which striate cells mutually inhibit one another, effectively normalizing their responses with respect to stimulus contrast. This paper reviews experimental measurements of striate cell responses, and shows that the new model explains a significantly larger body of physiological data.

  3. Does the sequence of onset of rigor mortis depend on the proportion of muscle fibre types and on intra-muscular glycogen content?

    Science.gov (United States)

    Kobayashi, M; Takatori, T; Nakajima, M; Saka, K; Iwase, H; Nagao, M; Niijima, H; Matsuda, Y

    1999-01-01

    We examined the postmortem changes in the levels of ATP, glycogen and lactic acid in two masticatory muscles and three leg muscles of rats. The proportion of fibre types of the muscles was determined with NIH image software. The ATP levels in the white muscles did not decrease up to 1 h after death, and the ATP levels 1 and 2 h after death in the white muscles were higher than those in the red muscles with a single exception. The glycogen level at death and 1 h after death and the lactic acid level 1 h after death in masticatory muscles were lower than in the leg muscles. It is possible that the differences in the proportion of muscle fibre types and in glycogen level in muscles influences the postmortem change in ATP and lactic acid, which would accelerate or retard rigor mortis of the muscles.

  4. Immunocytochemical electron microscopic study and western blot analysis of paramyosin in different invertebrate muscle cell types of the fruit fly Drosophila melanogaster, the earthworm Eisenia foetida, and the snail Helix aspersa.

    Science.gov (United States)

    Royuela, M; García-Anchuelo, R; Arenas, M I; Cervera, M; Fraile, B; Paniagua, R

    1996-04-01

    The presence and distribution pattern of paramyosin have been examined in different invertebrate muscle cell types by means of Western blot analysis and electron microscopy immunogold labelling. The muscles studied were: transversely striated muscle with continuous Z lines (flight muscle from Drosophila melanogaster), transversely striated muscle with discontinuous Z lines (heart muscle from the snail Helix aspersa), obliquely striated body wall muscle from the earthworm Eisenia foetida, and smooth muscles (retractor muscle from the snail and pseudoheart outer muscular layer from the earthworm). Paramyosin-like immunoreactivity was localized in thick filaments of all muscles studied. Immunogold particle density was similar along the whole thick filament length in insect flight muscle but it predominated in filament tips of fusiform thick filaments in both snail heart and earthworm body wall musculature when these filaments were observed in longitudinal sections. In obliquely sectioned thick filaments, immunolabelling was more abundant at the sites where filaments disappeared from the section. These results agree with the notion that paramyosin extended along the whole filament length, but that it can only be immunolabelled when it is not covered by myosin. In all muscles examined, immunolabelling density was lower in cross-sectioned myofilaments than in longitudinally sectioned myofilaments. This suggests that paramyosin does not form a continuous filament. The results of a semiquantitative analysis of paramyosin-like immunoreactivity indicated that it was more abundant in striated than in smooth muscles, and that, within striated muscles, transversely striated muscles contain more paramyosin than obliquely striated muscles.

  5. The ‘Goldilocks Zone’ from a redox perspective - Adaptive versus deleterious responses to oxidative stress in striated muscle

    Directory of Open Access Journals (Sweden)

    Rick J Alleman

    2014-09-01

    Full Text Available Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system’s position on the ‘hormetic curve’ is governed by the source and temporality of reactive oxygen species (ROS production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g. months to years inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome.

  6. The effects of beta-adrenoceptor activation on contraction in isolated fast- and slow-twitch skeletal muscle fibres of the rat.

    OpenAIRE

    Cairns, S. P.; Dulhunty, A. F.

    1993-01-01

    1. The aim of the experiments was to examined the effects of beta-adrenoceptor activation on twitch and tetanic contractions in fast- and slow-twitch mammalian skeletal muscle fibres. Isometric force was recorded from bundles of intact fibres isolated from the normal and denervated slow-twitch soleus and normal fast-twitch sternomastoid muscles of the rat. 2. Terbutaline (10 microM), a beta 2-adrenoceptor agonist, induced an average 15% potentiation of peak twitch and peak tetanic force in no...

  7. A physico-mathematical analysis of elliptical nerve and muscle fibres

    International Nuclear Information System (INIS)

    Bonsignori, F.

    1977-01-01

    In the framework of the tridimensional core conductor model, the current flow field of an elliptical nerve or muscle fibre in a volume conductor is studied. As the quasi-static conditions are valid, the Laplace equation applies. Expressions for the intracellular and extra cellular potential fields and the membrane current are exactly derived. As a limit the solutions for the circular case are recovered. Finally a sketch of an approximate method of calculation is outlined and the first elliptical correction to the usual membrane current is evaluated

  8. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies...... from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1......alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented...

  9. Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 degrees C and 15 degrees C: implications for muscle fatigue.

    Science.gov (United States)

    Knuth, S T; Dave, H; Peters, J R; Fitts, R H

    2006-09-15

    Historically, an increase in intracellular H(+) (decrease in cell pH) was thought to contribute to muscle fatigue by direct inhibition of the cross-bridge leading to a reduction in velocity and force. More recently, due to the observation that the effects were less at temperatures closer to those observed in vivo, the importance of H(+) as a fatigue agent has been questioned. The purpose of this work was to re-evaluate the role of H(+) in muscle fatigue by studying the effect of low pH (6.2) on force, velocity and peak power in rat fast- and slow-twitch muscle fibres at 15 degrees C and 30 degrees C. Skinned fast type IIa and slow type I fibres were prepared from the gastrocnemius and soleus, respectively, mounted between a force transducer and position motor, and studied at 15 degrees C and 30 degrees C and pH 7.0 and 6.2, and fibre force (P(0)), unloaded shortening velocity (V(0)), force-velocity, and force-power relationships determined. Consistent with previous observations, low pH depressed the P(0) of both fast and slow fibres, less at 30 degrees C (4-12%) than at 15 degrees C (30%). However, the low pH-induced depressions in slow type I fibre V(0) and peak power were both significantly greater at 30 degrees C (25% versus 9% for V(0) and 34% versus 17% for peak power). For the fast type IIa fibre type, the inhibitory effect of low pH on V(0) was unaltered by temperature, while for peak power the inhibition was reduced at 30 degrees C (37% versus 18%). The curvature of the force-velocity relationship was temperature sensitive, and showed a higher a/P(0) ratio (less curvature) at 30 degrees C. Importantly, at 30 degrees C low pH significantly depressed the ratio of the slow type I fibre, leading to less force and velocity at peak power. These data demonstrate that the direct effect of low pH on peak power in both slow- and fast-twitch fibres at near-in vivo temperatures (30 degrees C) is greater than would be predicted based on changes in P(0), and that the

  10. Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity.

    Science.gov (United States)

    Elworthy, Stone; Hargrave, Murray; Knight, Robert; Mebus, Katharina; Ingham, Philip W

    2008-06-01

    The zebrafish embryo develops a series of anatomically distinct slow twitch muscle fibres that characteristically express genes encoding lineage-specific isoforms of sarcomeric proteins such as MyHC and troponin. We show here that different subsets of these slow fibres express distinct members of a tandem array of slow MyHC genes. The first slow twitch muscle fibres to differentiate, which are specified by the activity of the transcription factor Prdm1 (also called Ubo or Blimp1) in response to Hedgehog (Hh) signalling, express the smyhc1 gene. Subsequently, secondary slow twitch fibres differentiate in most cases independently of Hh activity. We find that although some of these later-forming fibres also express smyhc1, others express smyhc2 or smyhc3. We show that the smyhc1-positive fibres express the ubo (prdm1) gene and adopt fast twitch fibre characteristics in the absence of Prdm1 activity, whereas those that do not express smyhc1 can differentiate independently of Prdm1 function. Conversely, some smyhc2-expressing fibres, although independent of Prdm1 function, require Hh activity to form. The adult trunk slow fibres express smyhc2 and smyhc3, but lack smyhc1 expression. The different slow fibres in the craniofacial muscles variously express smyhc1, smyhc2 and smyhc3, and all differentiate independently of Prdm1.

  11. Skeletal Muscle Fibre-Specific Knockout of p53 Does Not Reduce Mitochondrial Content or Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Ben Stocks

    2017-12-01

    Full Text Available Tumour protein 53 (p53 has been implicated in the regulation of mitochondrial biogenesis in skeletal muscle, with whole-body p53 knockout mice displaying impairments in basal mitochondrial content, respiratory capacity, and enzyme activity. This study aimed to determine the effect of skeletal muscle-specific loss of p53 on mitochondrial content and enzyme activity. Mitochondrial protein content, enzyme activity and mRNA profiles were assessed in skeletal muscle of 8-week-old male muscle fibre-specific p53 knockout mice (p53 mKO and floxed littermate controls (WT under basal conditions. p53 mKO and WT mice displayed similar content of electron transport chain proteins I-V and citrate synthase enzyme activity in skeletal muscle. In addition, the content of proteins regulating mitochondrial morphology (MFN2, mitofillin, OPA1, DRP1, FIS1, fatty acid metabolism (β-HAD, ACADM, ACADL, ACADVL, carbohydrate metabolism (HKII, PDH, energy sensing (AMPKα2, AMPKβ2, and gene transcription (NRF1, PGC-1α, and TFAM were comparable in p53 mKO and WT mice (p > 0.05. Furthermore, p53 mKO mice exhibited normal mRNA profiles of targeted mitochondrial, metabolic and transcriptional proteins (p > 0.05. Thus, it appears that p53 expression in skeletal muscle fibres is not required to develop or maintain mitochondrial protein content or enzyme function in skeletal muscle under basal conditions.

  12. S-glutathionylation of troponin I (fast) increases contractile apparatus Ca2+ sensitivity in fast-twitch muscle fibres of rats and humans.

    Science.gov (United States)

    Mollica, J P; Dutka, T L; Merry, T L; Lamboley, C R; McConell, G K; McKenna, M J; Murphy, R M; Lamb, G D

    2012-03-15

    Oxidation can decrease or increase the Ca2+ sensitivity of the contractile apparatus in rodent fast-twitch (type II) skeletal muscle fibres, but the reactions and molecular targets involved are unknown. This study examined whether increased Ca2+ sensitivity is due to S-glutathionylation of particular cysteine residues. Skinned muscle fibres were directly activated in heavily buffered Ca2+ solutions to assess contractile apparatus Ca2+ sensitivity. Rat type II fibres were subjected to S-glutathionylation by successive treatments with 2,2′-dithiodipyridine (DTDP) and glutathione (GSH), and displayed a maximal increase in pCa50 (−log10 [Ca2+] at half-maximal force) of ∼0.24 pCa units, with little or no effect on maximum force or Hill coefficient. Partial similar effect was produced by exposure to oxidized gluthathione (GSSG, 10 mM) for 10 min at pH 7.1, and near-maximal effect by GSSG treatment at pH 8.5. None of these treatments significantly altered Ca2+ sensitivity in rat type I fibres. Western blotting showed that both the DTDP–GSH and GSSG–pH 8.5 treatments caused marked S-glutathionylation of the fast troponin I isoform (TnI(f)) present in type II fibres, but not of troponin C (TnC) or myosin light chain 2. Both the increased Ca2+ sensitivity and glutathionylation of TnI(f) were blocked by N-ethylmaleimide (NEM). S-nitrosoglutathione (GSNO) also increased Ca2+ sensitivity, but only in conditions where it caused S-glutathionylation of TnI(f). In human type II fibres from vastus lateralis muscle, DTDP–GSH treatment also caused similar increased Ca2+ sensitivity and S-glutathionylation of TnI(f). When the slow isoform of TnI in type I fibres of rat was partially substituted (∼30%) with TnI(f), DTDP–GSH treatment caused a significant increase in Ca2+ sensitivity (∼0.08 pCa units). TnIf in type II fibres from toad and chicken muscle lack Cys133 present in mammalian TnIf, and such fibres showed no change in Ca2+ sensitivity with DTDP–GSH nor any S

  13. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men

    Directory of Open Access Journals (Sweden)

    W. M. Kilarski

    2011-08-01

    Full Text Available Muscle fibre profile area (Af, volume density (Vv, capillary-to-fibre ratio (CF and number of capillaries per fibre square millimetre (CD were determined from needle biopsies of vastus lateralis of twenty-four male volunteers (mean ± SD: age 25.4±5.8 years, height 178.6±5.5 cm, body mass 72.1±7.7 kg of different training background. Seven subjects were untrained students (group A, nine were national and sub-national level endurance athletes (group B with the background of 7.8±2.9 years of specialised training, and eight subjects were sprint-power athletes (group C with 12.8±8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase. Capillaries were visualized and counted using CD31 antibodies against endothelial cells. There were significant differences in the Vv of type I and type II muscle fibres in both trained groups, B (51.8%; 25.6% and C (50.5%; 26.4%. However, in untrained group A that was treated as a reference group, the difference between Vv of type I and type II fibres was less prominent, nevertheless statistically significant (42.1%; 35.1%. There was also a significant difference in CF: 1.9 in group A and 2.1 in groups B and C. The number of capillaries per mm2 (CD was 245 (group A, 308 (group B and 325 (group C. Significant differences (P<0.05 in CF and CD, were found only between group A (1.9; 245 and both groups of trained men, B and C (2.1; 308 and 325. However, endurance athletes (group B, such as long-distance runners, cyclists and cross country skiers, did not differ from the athletes representing short term, high power output sports (group C such as ice hockey, karate, ski-jumping, volleyball, soccer and modern dance.

  14. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels

    2014-01-01

    In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator...... of sarcoplasmic reticulum Ca(2+) release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca(2+) ([Ca(2+)]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz...... in tetanic [Ca(2+)]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca(2+)]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca(2+) release critically depends on energy supply from...

  15. Local depletion of glycogen with supra-maximal exercise in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Gejl, Kasper Degn; Ørtenblad, Niels; Andersson, Erik

    2017-01-01

    importance to muscle function. The present study was designed to investigate the depletion of these three sub-cellular glycogen compartments during repeated supra-maximal exercise in elite athletes. Ten elite cross-country skiers (age: 25 ± 4 yrs., VO2 max : 65 ± 4 ml kg(-1) min(-1) , mean ± SD) performed...... four ∼4-minute supra-maximal sprint time trials (STT 1-4) with 45 min recovery. The sub-cellular glycogen volumes in m. triceps brachii were quantified from electron microscopy images before and after both STT 1 and STT 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type I...... fibres (-52% [-89:-15%]) than type 2 fibres (-15% [-52:22%]) (P = 0.02), while the depletion of intermyofibrillar glycogen (main effect: -19% [-33:0], P = 0.006) and subsarcolemmal glycogen (main effect: -35% [-66:0%], P = 0.03) was similar between fibre types. In contrast, only intermyofibrillar...

  16. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres

    Science.gov (United States)

    Widrick, J. J.; Knuth, S. T.; Norenberg, K. M.; Romatowski, J. G.; Bain, J. L.; Riley, D. A.; Karhanek, M.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.; hide

    1999-01-01

    1. Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. 2. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 +/- 0. 02 vs. 0.99 +/- 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 +/- 0.02 vs. 0.64 +/- 0.02 fibre lengths s-1) than pre-flight type I fibres. 3. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. 4. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. 5. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (microN (fibre length) s-1). 6. The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. 7. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact

  17. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release in rat fast- and slow-twitch skinned muscle fibres.

    Science.gov (United States)

    Talon, S; Huchet-Cadiou, C; Léoty, C

    1999-11-01

    Inositol 1,4,5-trisphosphate (InsP3), an intracellular messenger, induces Ca2+ release in various types of cells, particularly smooth muscle cells. Its role in skeletal muscle, however, is controversial. The present study shows that the application of InsP3 to rat slow- and fast-twitch saponin-skinned fibres induced contractile responses that were not related to an effect of InsP3 on the properties of the contractile proteins. The amplitude of the contractures was dependent upon the Ca(2+)-loading period, and was larger in slow- than in fast-twitch muscle. In both types of skeletal muscle, these responses, unlike caffeine contractures, were not inhibited by ryanodine (100 microM), but were abolished by heparin (20 micrograms.ml-1). In soleus muscle, the concentration of heparin required to inhibit the response by 50% (IC50) was 5.7 micrograms.ml-1, a similar value to that obtained previously in smooth muscle. Furthermore, the results show that in slow-twitch muscle, the InsP3 contractures have a "bell-shaped" dependency on the intracellular Ca2+ concentration. These results show that InsP3 receptors should be present in skeletal muscle. Thus, it is possible that InsP3 participates in the regulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle, particularly in slow-twitch fibres.

  18. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    OpenAIRE

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these mus...

  19. Functional effects of the DCM mutant Gly159Asp troponin C in skinned muscle fibres

    DEFF Research Database (Denmark)

    Preston, Laura C; Lipscomb, Simon; Robinson, Paul

    2006-01-01

    We recently reported a dilated cardiomyopathy (DCM) causing mutation in a novel disease gene, TNNC1, which encodes cardiac troponin C (TnC). We have determined how this mutation, Gly159Asp, affects contractile regulation when incorporated into muscle fibres. Endogenous troponin in rabbit skinned...

  20. Composition and cross-sectional area of muscle fibre types in relation to daily gain and lean and fat content of carcass in Landrace and Yorkshire pigs

    Directory of Open Access Journals (Sweden)

    M. RUUSUNEN

    2008-12-01

    Full Text Available The muscle fibre-type properties of longissimus were compared between Landrace and Yorkshire breeds and between the sexes in an attempt to shed light on the relationship of these histochemical parameters to animal growth and carcass composition. Muscle fibres were classified into three groups, type I, type IIA and type IIB, using the myosin ATPase method. At a given live weight, the cross-sectional area of type I fibres (CSA I was smaller (p

  1. Bones, Muscles, and Joints: The Musculoskeletal System

    Science.gov (United States)

    ... Skeletal muscles are called striated (pronounced: STRY-ay-ted) because they are made up of fibers that ... blood through your body. When we smile and talk, muscles are helping us communicate, and when we ...

  2. Effect of ascorbic acid on fatigue of skeletal muscle fibres in long term cold exposed sprague dawley rats

    International Nuclear Information System (INIS)

    Rashid, A.; Ayub, M.

    2011-01-01

    On exposure to prolonged cold temperature, the body responds for effective heat production both by shivering and non-shivering thermo genesis. Cold exposure increases the production of reactive oxygen species which influence the sarcoplasmic reticulum Ca/sup ++/ release from the skeletal muscles and affect their contractile properties. The role of ascorbic acid supplementation on force of contraction during fatigue of cold exposed skeletal muscles was evaluated in this study. Method: Ninety healthy, male Sprague Dawley rats were randomly divided into three groups of control, cold exposed, and cold exposed with ascorbic acid 500 mg/L supplementation mixed in drinking water. Group II and III were given cold exposure by keeping their cages in ice-filled tubs for 1 hr/day for one month. After one month, the extensor digitorum longus muscle was dissected out and force of contraction during fatigue in the skeletal muscle fibres was analysed on a computerised data acquisition system. Results: The cold exposed group showed a significant delay in the force of contraction during fatigue of skeletal muscle fibres compared to control group. Group III showed easy fatigability and a better force of contraction than the cold exposed group. Conclusions: Ascorbic acid increases the force of contraction and decreases resistance to fatigue in the muscles exposed to chronic cold. (author)

  3. Culturing muscle fibres in hanging drop: a novel approach to solve an old problem.

    Science.gov (United States)

    Archacka, Karolina; Pozzobon, Michela; Repele, Andrea; Rossi, Carlo Alberto; Campanella, Michelangelo; De Coppi, Paolo

    2014-02-01

    The satellite cells (SCs) associated with muscle fibres play a key role in postnatal growth and regeneration of skeletal muscle. Commonly used methods of isolation and in vitro culture of SCs lead to the mixture of their subpopulations that exist within muscle. To solve this problem, we used the well established technique, the hanging drop system, to culture SCs in a three-dimensional environment and thus, to monitor them in their original niche. Using hanging drop technique, we were able to culture SCs associated with the fibre at least for 9 days with one transfer of fibres to the fresh drops. In comparison, in the classical method of myofibres culture, that is, on the dishes coated with Matrigel, SCs leave the fibres within 3 days after the isolation. Cells cultured in both systems differed in expression of Pax7 and MyoD. While almost all cells cultured in adhesion system expressed MyoD before the fifth day of the culture, the majority of SCs cultured in hanging drop still maintained expression of Pax7 and were not characterised by the presence of MyoD. Among the cells cultured with single myofibre for up to 9 days, we identified two different subclones of SCs: low proliferative clone and high proliferative clone, which differed in proliferation rate and membrane potential. The hanging drop enables the myofibres to be kept in suspension for at least 9 days, and thus, allows SCs and their niche to interact each other for prolonged time. In a consequence, SCs cultured in hanging drop maintain expression of Pax7 while those cultured in a traditional adhesion culture, that is, devoid of signals from the original niche, activate and preferentially undergo differentiation as manifested by expression of MyoD. Thus, the innovative method of SCs culturing in the hanging drop system may serve as a useful tool to study the fate of different subpopulations of these cells in their anatomical location and to determine reciprocal interactions between them and their niche.

  4. Sensitivity of the amplitude of the single muscle fibre action potential to microscopic volume conduction parameters

    NARCIS (Netherlands)

    Alberts, B.A.; Rutten, Wim; Wallinga, W.; Boom, H.B.K.

    1988-01-01

    A microscopic model of volume conduction was applied to examine the sensitivity of the single muscle fibre action potential to variations in parameters of the source and of the volume conductor, such as conduction velocity, intracellular conductivity and intracellular volume fraction. The model

  5. Overview of the Muscle Cytoskeleton

    Science.gov (United States)

    Henderson, Christine A.; Gomez, Christopher G.; Novak, Stefanie M.; Mi-Mi, Lei; Gregorio, Carol C.

    2018-01-01

    Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. PMID:28640448

  6. Evolutionary adaptation of muscle power output to environmental temperature: force-velocity characteristics of skinned fibres isolated from antarctic, temperate and tropical marine fish.

    Science.gov (United States)

    Johnston, I A; Altringham, J D

    1985-09-01

    Single fast fibres were isolated from the myotomal muscles of icefish (Chaenocephalus aceratus Lönnberg, Antarctica), North Sea Cod (Gadus morhua L.) and Pacific Blue Marlin (Makaira nigricans Wakiya, Hawaii). Fibres were chemically skinned with the non-ionic detergent Brij-58. Maximum tensions (Po, kN m-2) developed at the characteristic body temperature of each species are 231 for icefish (-1 degree C), 187 for cod (8 degrees C) and 156 for marlin (20 degrees C). At 0 degree C Po is 7 times higher for fibres from the icefish than from the marlin. Fibres from icefish and cod failed to relax completely following activations at temperatures above approximately 12 degrees C. The resultant post-contraction force is associated with a proportional increase in stiffness, suggesting the formation of a population of Ca-insensitive cross bridges. At 10 degrees C there is little interspecific variation in unloaded contraction velocity (Vmax) among the three species. Vmax (muscle lengths s-1) at normal body temperatures are 0.9 for icefish (-1 degree C), 1.0 for cod (8 degrees C) and 3.4 for marlin (20 degrees C). The force-velocity (P-V) relationship becomes progressively more curved with increasing temperature for all three species. Maximum power output for the fast muscle fibres from the Antarctic species at -1 degree C is around 60% of that of the tropical fish at 20 degrees C. Evolutionary temperature compensation of muscle power output appears largely to involve differences in the ability of cross bridges to generate force.

  7. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    Science.gov (United States)

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Heterogeneous recruitment of quadriceps muscle portions and fibre types during moderate intensity knee-extensor exercise: effect of thigh occlusion

    DEFF Research Database (Denmark)

    Krustrup, Peter; Söderlund, Karin; Relu, Mihai U.

    2009-01-01

    temperature increase (DeltaT(m)) in RF was 0.52+/-0.09 degrees C, which was 57% and 73% higher (Pmuscle CP in slow twitch (ST) and fast......The involvement of quadriceps femoris muscle portions and fibre type recruitment was studied during submaximal knee-extensor exercise without and with thigh occlusion (OCC) and compared with responses during intense exercise. Six healthy male subjects performed 90-s of moderate exercise without...... twitch (FT) fibres was 81% and 91% of resting levels, respectively, with lower (Pfibres had CP levels below mean-1 SD, respectively, with corresponding values for FT fibres being 41...

  9. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age.

    Science.gov (United States)

    Gannon, Joan; Doran, Philip; Kirwan, Anne; Ohlendieck, Kay

    2009-11-01

    The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age.

  10. Impact of a nickel-reduced stainless steel implant on striated muscle microcirculation: a comparative in vivo study.

    Science.gov (United States)

    Kraft, C N; Burian, B; Perlick, L; Wimmer, M A; Wallny, T; Schmitt, O; Diedrich, O

    2001-12-05

    The impairment of skeletal muscle microcirculation by a biomaterial may have profound consequences. With moderately good physical and corrosion characteristics, implant-quality stainless steel is particularly popular in orthopedic surgery. However, due to the presence of a considerable amount of nickel in the alloy, concern has been voiced in respect to local tissue responses. More recently a stainless steel alloy with a significant reduction of nickel has become commercially available. We, therefore, studied in vivo nutritive perfusion and leukocytic response of striated muscle to this nickel-reduced alloy, and compared these results with those of the materials conventional stainless steel and titanium. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, we could demonstrate that reduction of the nickel quantity in a stainless steel implant has a positive effect on local microvascular parameters. Although the implantation of a conventional stainless steel sample led to a distinct and persistent activation of leukocytes combined with disruption of the microvascular endothelial integrity, marked leukocyte extravasation, and considerable venular dilation, animals with a nickel-reduced stainless steel implant showed only a moderate increase of these parameters, with a clear tendency of recuperation. Titanium implants merely caused a transient increase of leukocyte-endothelial cell interaction within the first 120 min, and no significant change in macromolecular leakage, leukocyte extravasation, or venular diameter. Pending biomechanical and corrosion testing, nickel-reduced stainless steel may be a viable alternative to conventional implant-quality stainless steel for biomedical applications. Concerning tolerance by the local vascular system, titanium currently remains unsurpassed. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 404-412, 2001

  11. Altered fast- and slow-twitch muscle fibre characteristics in female mice with a (S248F) knock-in mutation of the brain neuronal nicotinic acetylcholine receptor.

    Science.gov (United States)

    Cannata, David J; Finkelstein, David I; Gantois, Ilse; Teper, Yaroslav; Drago, John; West, Jan M

    2009-01-01

    We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

  12. Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism

    Science.gov (United States)

    Hamdi, M M; Mutungi, G

    2011-01-01

    Abstract Dihydrotestosterone (DHT) has acute/non-genomic actions in adult mammalian skeletal muscles whose physiological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the acute/non-genomic effects of DHT on amino acid uptake as well as the cellular signal transduction events underlying these actions in mouse fast- and slow-twitch skeletal muscle fibre bundles. 14C-Labelled amino acids were used to investigate the effects of DHT and testosterone (T) on amino acid uptake and pharmacological interventions were used to determine the cellular signal transduction events mediating these actions. While T had no effect on the uptake of isoleucine (Ile) and α-methylaminoisobutyric acid (MeAIB) in both fibre types, DHT increased their uptake in the fast-twitch fibre bundles. This effect was reversed by inhibitors of protein translation, the epidermal growth factor receptor (EGFR), system A, system L, mTOR and MEK. However, it was relatively insensitive to inhibitors of transcription, androgen receptors and PI3K/Akt. Additionally, DHT treatment increased the expression of LAT2 and the phosphorylation of the EGFR in the fast-twitch fibre bundles and that of ERK1/2, RSK1/2 and ATF2 in both fibre types. Also, it decreased the phosphorylation of eEF2 and increased the incorporation of Ile into proteins in both fibre types. Most of these effects were reversed by EGFR and MEK inhibitors. From these findings we suggest that another physiological function of the acute/non-genomic actions of DHT in isolated mammalian skeletal muscle fibres is to stimulate amino acid uptake. This effect is mediated through the EGFR and involves the activation of the MAPK pathway and an increase in LAT2 expression. PMID:21606113

  13. Fibre composition and enzyme activities in six muscles of the Swedish reindeer (Rangifer tarandus tarandus

    Directory of Open Access Journals (Sweden)

    K-H. Kiessling

    1983-05-01

    Full Text Available Six skeletal muscles have been studied as regards fibre properties and enzyme activities. The muscles are cranial part of M. gluteobiceps, M. semitendinosus, M. semimembranosus, M. longissimus dorsi, M. brachiocephalicus and M. sternocephalicus. Two histochemical methods were used for fibre identification, one based on myosin ATPase activities after preincubation at pH 4.3 and 4.6 and the other on oxidative capacity measured as NADH dehydrogenase activity. The two methods gave slightly differing results but allowed the general conclusion that of the three fibre types (I, II A and II B the type II B fibres, which are fast-twitch, glycolytic, make up some 40 - 60 % (mean 50 % of the muscles. Type I fibres, which are slow-twitch, oxidative, account for 30% of the total muscle volume in the two neck muscles but for only 20% or less in the rest. The third type, II A, which is fast-twitch, oxidative, glycolytic, accounts for only 20% of the volume in the neck muscles but as much as 40% in M. longissimus dorsi. Oxidative capacity is high throughout. This is valid also to the capacity to oxidize fatty acids, though reaching only half the activity previously found in the Svalbard reindeer (Kiessling and Kiessling, 1983. Lactate dehydrogenase activity is comparatively low in all muscles. The high respiratory chain activity and fatty acid oxidation and the low lactate dehydrogenase activities do not fit at all well with the high content of type II B fibres in the muscles. This high II B content is also unexpected when considering the activity pattern of the reindeer. An altogether different role for the type II B fibres, besides the traditional one, is therefore discussed.Fibersammansåttning och enzymaktiviteter i sex muskler från svensk tamren (Rangifer tarandus tarandus.Abstract in Swedish / Sammandrag: Sex skelettmuskler har undersokts med avseende på fiberegenskaper och enzymaktiviteter. De sex musklerna år kranial del av M. gluteobiceps. M

  14. Seasonal changes in isoform composition of giant proteins of thick and thin filaments and titin (connectin) phosphorylation level in striated muscles of bears (Ursidae, Mammalia).

    Science.gov (United States)

    Salmov, N N; Vikhlyantsev, I M; Ulanova, A D; Gritsyna, Yu V; Bobylev, A G; Saveljev, A P; Makariushchenko, V V; Maksudov, G Yu; Podlubnaya, Z A

    2015-03-01

    Seasonal changes in the isoform composition of thick and thin filament proteins (titin, myosin heavy chains (MyHCs), nebulin), as well as in the phosphorylation level of titin in striated muscles of brown bear (Ursus arctos) and hibernating Himalayan black bear (Ursus thibetanus ussuricus) were studied. We found that the changes that lead to skeletal muscle atrophy in bears during hibernation are not accompanied by a decrease in the content of nebulin and intact titin-1 (T1) isoforms. However, a decrease (2.1-3.4-fold) in the content of T2 fragments of titin was observed in bear skeletal muscles (m. gastrocnemius, m. longissimus dorsi, m. biceps) during hibernation. The content of the stiffer N2B titin isoform was observed to increase relative to the content of its more compliant N2BA isoform in the left ventricles of hibernating bears. At the same time, in spite of the absence of decrease in the total content of T1 in the myocardium of hibernating brown bear, the content of T2 fragments decreased ~1.6-fold. The level of titin phosphorylation only slightly increased in the cardiac muscle of hibernating brown bear. In the skeletal muscles of brown bear, the level of titin phosphorylation did not vary between seasons. However, changes in the composition of MyHCs aimed at increasing the content of slow (I) and decreasing the content of fast (IIa) isoforms of this protein during hibernation of brown bear were detected. Content of MyHCs I and IIa in the skeletal muscles of hibernating Himalayan black bear corresponded to that in the skeletal muscles of hibernating brown bear.

  15. Lactate/H+ transport kinetics in rat skeletal muscle related to fibre type and changes in transport capacity

    DEFF Research Database (Denmark)

    Juel; Pilegaard

    1998-01-01

    muscles, muscles of old rats and rats that had been subjected to high-intensity training, endurance training, repeated exposure to hypoxia, and hypothyroid or hyperthyroid treatments. The lactate/H+ transport capacity of red muscles was greater than that of white muscles, and this difference...... and hypothyroidism was due to a decrease in Vmax. The denervation-induced decline in lactate/H+ transport capacity resulted from both an increased Km and a reduced Vmax. The present data show that muscle type differences and most changes in the lactate/H+ transport capacity are mediated by modifications in Vmax......, which is expected to represent the number of membrane transporter molecules. Km is unaffected by most treatments and appears to be independent of fibre type....

  16. Influence of end-joint methods on magnetization loss in striated helical conductors

    International Nuclear Information System (INIS)

    Kim, Woo Seok; Kim, Yung Il; Choi, Kyeong Dal; Lee, Ji Kwang

    2013-01-01

    To reduce the magnetization loss of a coated conductor, the striation and the transposition have to be accomplished for magnetic decoupling. The loss reduction effect in incomplete as well as complete striated YBCO CCs was reported in previous research. At the case of the incomplete striated sample, the end region of the sample is non-striated. So, it is not jointed with each other. In power applications, the joint is needed because current leads must be connected with HTS coils. In this research, the influence of end-joint methods with copper and superconducting joint on magnetization loss in striated YBCO CC and spiral winding samples are presented and compared with non-striated measured result.

  17. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  18. Can fast-twitch muscle fibres be selectively recruited during lengthening contractions? Review and applications to sport movements.

    Science.gov (United States)

    Chalmers, Gordon R

    2008-01-01

    Literature examining the recruitment order of motor units during lengthening (eccentric) contractions was reviewed to determine if fast-twitch motor units can be active while lower threshold slow-twitch motor units are not active. Studies utilizing surface electromyogram (EMG) amplitude, single motor unit activity, spike amplitude-frequency analyses, EMG power spectrum, mechanomyographic, and phosphocreatine-to-creatine ratio (PCr/Cr) techniques were reviewed. Only single motor unit and PCr/Cr data were found to be suitable to address the goals of this review. Nine of ten single motor unit studies, examining joint movement velocities up to 225 degrees/s and forces up to 53% of a maximum voluntary contraction, found that the size principle of motor unit recruitment applied during lengthening contractions. Deviation from the size principle was demonstrated by one study examining movements within a small range of low velocities and modest forces, although other studies examining similar low forces and lengthening velocities reported size-ordered recruitment. The PCr/Cr data demonstrated the activation of all fibre types in lengthening maximal contractions. Most evidence indicates that for lengthening contractions of a wide range of efforts and speeds, fast-twitch muscle fibres cannot be selectively recruited without activity of the slow-twitch fibres of the same muscle.

  19. Tetanic Ca2+ transient differences between slow- and fast-twitch mouse skeletal muscle fibres: a comprehensive experimental approach.

    Science.gov (United States)

    Calderón, Juan C; Bolaños, Pura; Caputo, Carlo

    2014-12-01

    One hundred and eighty six enzymatically dissociated murine muscle fibres were loaded with Mag-Fluo-4 AM, and adhered to laminin, to evaluate the effect of modulating cytosolic Ca(2+) buffers and sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA), mitochondria, and Na(+)/Ca(2+) exchanger (NCX) on the differential tetanic Ca(2+) transient kinetics found in different fibre types. Tetanic Ca(2+) transients were classified as morphology type I (MT-I) or type II (MT-II) according to their shape. The first peak of the MT-I (n = 25) and MT-II (n = 23) tetanic Ca(2+) transients had an amplitude (∆F/F) of 0.41 ± 0.03 and 0.83 ± 0.05 and a rise time (ms) of 1.35 and 0.98, respectively. MT-I signals had a time constant of decay (τ1, ms) of 75.9 ± 4.2 while MT-II transients showed a double exponential decay with time constants of decay (τ1 and τ2, ms) of 18.3 ± 1.4 and 742.2 ± 130.3. Sarcoendoplasmic reticulum Ca(2+) ATPase inhibition demonstrated that the decay phase of the tetanic transients mostly rely on SERCA function. Adding Ca(2+) chelators in the AM form to MT-I fibres changed the morphology of the initial five peaks to a MT-II one, modifying the decay phase of the signal in a dose-dependent manner. Mitochondria and NCX function have a minor role in explaining differences in tetanic Ca(2+) transients among fibre types but still help in removing Ca(2+) from the cytosol in both MT-I and MT-II fibres. Cytoplasmic Ca(2+) buffering capacity and SERCA function explain most of the different kinetics found in tetanic Ca(2+) transients from different fibre types, but mitochondria and NCX have a measurable role in shaping tetanic Ca(2+) responses in both slow and fast-twitch muscle fibre types. We provided experimental evidence on the mechanisms that help understand the kinetics of tetanic Ca(2+) transients themselves and explain kinetic differences found among fibre types.

  20. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70. RESULTS: In ACT and RES, but not in END, a fibre type specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II>I) was found for HSP27 in subjects from ACT (6 of 12...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training...

  1. The effects of inorganic phosphate and arsenate on both passive muscle visco-elasticity and maximum Ca2+ activated tension in chemically skinned rat fast and slow twitch muscle fibres.

    Science.gov (United States)

    Mutungi, Gabriel

    2003-01-01

    The effects of adding either 25 mM inorganic phosphate (Pi) or its structural analogue arsenate (ASi) on both the maximum Ca2+ activated tension (Po) and passive muscle visco-elasticity (P2 tension) were investigated at 10 degrees C, using segments of single, chemically skinned rat muscle fibres. Whilst the results confirmed some previous findings on the effects of Pi on Po, they also showed that the addition of 25 mM ASi led to a large (approximately 50%) but completely reversible depression of Po in both the fast and slow twitch rat muscle fibres. Moreover, the depression of Po by ASi was greater at low than at high pH values. Examined in the presence of Dextran T-500, the passive tension and sarcomere length responses to a ramp stretch were found to be qualitatively and quantitatively similar to those previously reported in intact rat muscle fibres. Thus, the tension response to a ramp stretch, in the presence and absence of either 25 mM Pi or ASi, consisted of a viscous (P1), a visco-elastic (P2) and an elastic (P3) tension. However, the addition of either 25 mM Pi or ASi led to approximately 15-18% increase in the amplitude of the visco-elastic (P2) tension but had little or no effect on the amplitudes of the other two tension components (viscous, P1 and elastic, P3 tensions). Furthermore, neither compound significantly altered the relaxation rate of the passive muscle visco-elasticity (P2 tension). These results show that Po (arising from cycling cross-bridges) and passive muscle visco-elasticity (P2 tension) are affected differently by both Pi and ASi and suggest that they may not share a common structural basis. The possibility that passive muscle visco-elasticity (P2 tension) arises from the gap-(titin) filament (as suggested previously by Mutungi and Ranatunga, 1996b J Physiol 496: 827-837) and that Pi and ASi increase its amplitude by interacting with the PEVK region of the filament are discussed.

  2. Effects of a myosin-II inhibitor (N-benzyl-p-toluene sulphonamide, BTS) on contractile characteristics of intact fast-twitch mammalian muscle fibres.

    Science.gov (United States)

    Pinniger, G J; Bruton, J D; Westerblad, H; Ranatunga, K W

    2005-01-01

    We have examined the effects of N-benzyl-p-toluene sulphonamide (BTS), a potent and specific inhibitor of fast muscle myosin-II, using small bundles of intact fibres or single fibres from rat foot muscle. BTS decreased tetanic tension reversibly in a concentration-dependent manner with half-maximal inhibition at approximately approximately 2 microM at 20 degrees C. The inhibition of tension with 10 microM BTS was marked at the three temperatures examined (10, 20 and 30 degrees C), but greatest at 10 degrees C. BTS decreased active muscle stiffness to a lesser extent than tetanic tension indicating that not all of the tension inhibition was due to a reduced number of attached cross-bridges. BTS-induced inhibition of active tension was not accompanied by any change in the free myoplasmic Ca2+ transients. The potency and specificity of BTS make it a very suitable myosin inhibitor for intact mammalian fast muscle and should be a useful tool for the examination of outstanding questions in muscle contraction.

  3. Associations of the variation in the porcine myogenin gene with muscle fibre characteristics, lean meat production and meat quality traits.

    Science.gov (United States)

    Kim, J M; Choi, B D; Kim, B C; Park, S S; Hong, K C

    2009-04-01

    Pig breeding is aimed at improving lean meat production ability as well as meat quality, and muscle fibre characteristics may be important for enhancing these traits. Therefore, new molecular markers have been demanded for selecting lean meat production ability and meat quality in live animals. Myogenin belongs to the MyoD gene family, and is a candidate gene responsible for muscle fibre characteristics. We identified a new single nucleotide polymorphism (SNP) site in the 5' upstream region of the myogenin gene (nucleotides C and T). A total of 252 pigs of three breeds were genotyped by polymerase chain reaction-restriction fragment length polymorphism using BspCNI. Additionally, they were genotyped for the previously detected MspI site in the 3'-flanking region (alleles A and B). The CCBB diplotype had the highest frequency over breeds, followed by TCBB and CCAB. The other diplotypes were not found in studied pigs. Association analysis performed for the markers found that the TCBB diplotype has desirable effects on the total number of fibres (p lean meat production ability with good meat quality.

  4. The GLUT4 density in slow fibres is not increased in athletes. How does training increase the GLUT4 pool originating from slow fibres?

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Beck-Nielsen, H

    2001-01-01

    % of the fraction in the control group. Thus, GLUT4 originating from slow-twitch fibres was increased by 30% (Pincreases slow-twitch fibre GLUT4 expression by means of an elevated slow-twitch fibre mass in human skeletal muscle.......The influence of training on GLUT4 expression in slow- and fast-twitch skeletal muscle fibres was studied in male endurance-trained athletes and control subjects. The trained state was ensured by elevated maximal oxygen uptake (29%), as well as citrate synthase (60%) and 3-hydroxy......-acyl-CoA dehydrogenase (38%) activities in muscle biopsy samples of the vastus lateralis. GLUT4 densities in slow- and fast-twitch fibres were measured by the use of a newly developed, sensitive method combining immunohistochemistry with morphometry, and no effect of training was found. GLUT4 density was higher in slow...

  5. THE CAPILLARY PATTERN IN HUMAN MASSETER MUSCLE DURING AGEING

    Directory of Open Access Journals (Sweden)

    Erika Cvetko

    2013-10-01

    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  6. Interpretation of the function of the striate cortex

    Science.gov (United States)

    Garner, Bernardette M.; Paplinski, Andrew P.

    2000-04-01

    Biological neural networks do not require retraining every time objects move in the visual field. Conventional computer neural networks do not share this shift-invariance. The brain compensates for movements in the head, body, eyes and objects by allowing the sensory data to be tracked across the visual field. The neurons in the striate cortex respond to objects moving across the field of vision as is seen in many experiments. It is proposed, that the neurons in the striate cortex allow continuous angle changes needed to compensate for changes in orientation of the head, eyes and the motion of objects in the field of vision. It is hypothesized that the neurons in the striate cortex form a system that allows for the translation, some rotation and scaling of objects and provides a continuity of objects as they move relative to other objects. The neurons in the striate cortex respond to features which are fundamental to sight, such as orientation of lines, direction of motion, color and contrast. The neurons that respond to these features are arranged on the cortex in a way that depends on the features they are responding to and on the area of the retina from which they receive their inputs.

  7. An in vivo model for studying the dynamics of intracellular free calcium changes in slow- and fast-twitch muscle fibres.

    Science.gov (United States)

    Bátkai, S; Rácz, I B; Ivanics, T; Tóth, A; Hamar, J; Slaaf, D W; Reneman, R S; Ligeti, L

    1999-10-01

    The understanding of the regulation of the free cytosolic [Ca2+] ([Ca2+]i) in skeletal muscle is hampered by the lack of techniques for quantifying free [Ca2+]i in muscle fibres in situ. We describe a model for studying the dynamics of free [Ca2+]i in the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus (SOL) muscles of the rat in vivo using caffeine superfusion to induce changes in free [Ca2+]i. We assumed that differences in sensitivity between the two muscle types for this substance reflect differences in intracellular Ca2+ handling in the fibres of which these muscles consist. The Indo-1 ratiometric method, using intravital microscopy with incident light, was adapted to measure free [Ca2+]i in vivo. Fluorescence images were collected by means of a digital camera. Caffeine superfusion at 37 degrees C for 2 min, at concentrations of 1, 2, 5, 10 or 20 mmol/l, induced a concentration-dependent increase in free [Ca2+]i and revealed differences in caffeine sensitivity between the muscle types, with the SOL being more sensitive. In a separate set of experiments the contracture threshold, as assessed by topical application of caffeine, was determined in both muscle types. EDL had a higher threshold for developing contracture than SOL. These finding are in agreement with previous in vitro studies. We may conclude that the dynamics of free [Ca2+]i can be assessed reliably in intact mammalian muscle in vivo.

  8. A novel conserved isoform of the ubiquitin ligase UFD2a/UBE4B is expressed exclusively in mature striated muscle cells.

    Directory of Open Access Journals (Sweden)

    Andrew L Mammen

    Full Text Available Yeast Ufd2p was the first identified E4 multiubiquitin chain assembly factor. Its vertebrate homologues later referred to as UFD2a, UBE4B or E4B were also shown to have E3 ubiquitin ligase activity. UFD2a function in the brain has been well established in vivo, and in vitro studies have shown that its activity is essential for proper condensation and segregation of chromosomes during mitosis. Here we show that 2 alternative splice forms of UFD2a, UFD2a-7 and -7/7a, are expressed sequentially during myoblast differentiation of C2C12 cell cultures and during cardiotoxin-induced regeneration of skeletal muscle in mice. UFD2a-7 contains an alternate exon 7, and UFD2a-7/7a, the larger of the 2 isoforms, contains an additional novel exon 7a. Analysis of protein or mRNA expression in mice and zebrafish revealed that a similar pattern of isoform switching occurs during developmental myogenesis of cardiac and skeletal muscle. In vertebrates (humans, rodents, zebrafish, UFD2a-7/7a is expressed only in mature striated muscle. This unique tissue specificity is further validated by the conserved presence of 2 muscle-specific splicing regulatory motifs located in the 3' introns of exons 7 and 7a. UFD2a interacts with VCP/p97, an AAA-type ATPase implicated in processes whose functions appear to be regulated, in part, through their interaction with one or more of 15 previously identified cofactors. UFD2a-7/7a did not interact with VCP/p97 in yeast 2-hybrid experiments, which may allow the ATPase to bind cofactors that facilitate its muscle-specific functions. We conclude that the regulated expression of these UFD2a isoforms most likely imparts divergent functions that are important for myogenisis.

  9. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  10. The striated MR nephrogram, not a reflection of pathology

    Energy Technology Data Exchange (ETDEWEB)

    Trout, Andrew T.; Care, Marguerite M.; Towbin, Alexander J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology - MLC 5031, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Division of Biostatistics and Epidemiology, Cincinnati, OH (United States)

    2015-10-15

    We have intermittently observed low signal striations in the kidneys on delayed post-contrast MR exams of the spine. While we suspected these striations were due to concentrated gadolinium, the clinical importance of this finding was uncertain. To describe the striated MR nephrogram (low signal striations in the kidney) and assess its clinical relevance. Retrospective review of delayed post-contrast MRIs of the spine (mean: 45 min after contrast administration). The presence of the striated MR nephrogram was correlated with imaging parameters (field strength, time since contrast), and findings (gadolinium in the bladder, inferior vena cava and aorta diameters) and with clinical factors (history of renal disease, laboratory values). Seven hundred seventy-three exams performed on 229 patients, 8.3 ± 5.3 years of age, were reviewed. The striated MR nephrogram was observed in 102/773 examinations (13.2%) and was present on at least one study in 54/229 patients (23.6%). The presence of striations was associated with the specific magnet on which the exam was performed (P < 0.01) but not with magnet field strength. Serum creatinine was minimally lower in patients with striations (0.43 ± 0.12 vs. 0.49 ± 0.18 mg/dL, P = 0.002), but no other clinical or historical data, including time from contrast administration (P = 0.54), fluid status (P = 0.17) and clinical history of renal disease (P = 0.14), were predictive of the presence of striations. The striated MR nephrogram was observed in 13% of delayed post-contrast MR exams of the spine. Precipitating factors are unclear, but the striated nephrogram does not appear to be a marker of clinically apparent renal dysfunction. (orig.)

  11. MicroRNAs promote skeletal muscle differentiation of mesodermal iPSC-derived progenitors

    NARCIS (Netherlands)

    Giacomazzi, G. (Giorgia); Holvoet, B. (Bryan); Trenson, S. (Sander); Caluwé, E. (Ellen); Kravic, B. (Bojana); Grosemans, H. (Hanne); Cortés-Calabuig, Á. (Álvaro); Deroose, C.M. (Christophe M.); D. Huylebroeck (Danny); Hashemolhosseini, S. (Said); S. Janssens (Stefan); McNally, E. (Elizabeth); Quattrocelli, M. (Mattia); Sampaolesi, M. (Maurilio)

    2017-01-01

    textabstractMuscular dystrophies (MDs) are often characterized by impairment of both skeletal and cardiac muscle. Regenerative strategies for both compartments therefore constitute a therapeutic avenue. Mesodermal iPSC-derived progenitors (MiPs) can regenerate both striated muscle types

  12. Muscle contraction duration and fibre recruitment influence blood flow and oxygen consumption independent of contractile work during steady-state exercise in humans.

    Science.gov (United States)

    Richards, Jennifer C; Crecelius, Anne R; Kirby, Brett S; Larson, Dennis G; Dinenno, Frank A

    2012-06-01

    We tested the hypothesis that, among conditions of matched contractile work, shorter contraction durations and greater muscle fibre recruitment result in augmented skeletal muscle blood flow and oxygen consumption ( ) during steady-state exercise in humans. To do so, we measured forearm blood flow (FBF; Doppler ultrasound) during 4 min of rhythmic hand-grip exercise in 24 healthy young adults and calculated forearm oxygen consumption ( ) via blood samples obtained from a catheter placed in retrograde fashion into a deep vein draining the forearm muscle. In protocol 1 (n = 11), subjects performed rhythmic isometric hand-grip exercise at mild and moderate intensities during conditions in which time-tension index (isometric analogue of work) was held constant but contraction duration was manipulated. In this protocol, shorter contraction durations led to greater FBF (184 ± 25 versus 164 ± 25 ml min(-1)) and (23 ± 3 versus 17 ± 2 ml min(-1); both P flow. Our collective data indicate that, among matched workloads, shorter contraction duration and greater muscle fibre recruitment augment FBF and during mild-intensity forearm exercise, and that muscle blood flow is more closely related to metabolic cost ( ) rather than contractile work per se during steady-state exercise in humans.

  13. Inward flux of lactate⁻ through monocarboxylate transporters contributes to regulatory volume increase in mouse muscle fibres.

    Directory of Open Access Journals (Sweden)

    Michael I Lindinger

    Full Text Available Mouse and rat skeletal muscles are capable of a regulatory volume increase (RVI after they shrink (volume loss resultant from exposure to solutions of increased osmolarity and that this RVI occurs mainly by a Na-K-Cl-Cotransporter (NKCC-dependent mechanism. With high-intensity exercise, increased extracellular osmolarity is accompanied by large increases in extracellular [lactate⁻]. We hypothesized that large increases in [lactate⁻] and osmolarity augment the NKCC-dependent RVI response observed with a NaCl (or sucrose-induced increase in osmolarity alone; a response that is dependent on lactate⁻ influx through monocarboxylate transporters (MCTs. Single mouse muscle fibres were isolated and visualized under light microscopy under varying osmolar conditions. When solution osmolarity was increased by adding NaLac by 30 or 60 mM, fibres lost significantly less volume and regained volume sooner compared to when NaCl was used. Phloretin (MCT1 inhibitor accentuated the volume loss compared to both NaLac controls, supporting a role for MCT1 in the RVI response in the presence of elevated [lactate⁻]. Inhibition of MCT4 (with pCMBS resulted in a volume loss, intermediate to that seen with phloretin and NaLac controls. Bumetanide (NKCC inhibitor, in combination with pCMBS, reduced the magnitude of volume loss, but volume recovery was complete. While combined phloretin-bumetanide also reduced the magnitude of the volume loss, it also largely abolished the cell volume recovery. In conclusion, RVI in skeletal muscle exposed to raised tonicity and [lactate⁻] is facilitated by inward flux of solute by NKCC- and MCT1-dependent mechanisms. This work demonstrates evidence of a RVI response in skeletal muscle that is facilitated by inward flux of solute by MCT-dependent mechanisms. These findings further expand our understanding of the capacities for skeletal muscle to volume regulate, particularly in instances of raised tonicity and lactate

  14. Twitchin can regulate the ATPase cycle of actomyosin in a phosphorylation-dependent manner in skinned mammalian skeletal muscle fibres.

    Science.gov (United States)

    Avrova, Stanislava V; Rysev, Nikita A; Matusovsky, Oleg S; Shelud'ko, Nikolay S; Borovikov, Yurii S

    2012-05-01

    The effect of twitchin, a thick filament protein of molluscan muscles, on the actin-myosin interaction at several mimicked sequential steps of the ATPase cycle was investigated using the polarized fluorescence of 1.5-IAEDANS bound to myosin heads, FITC-phalloidin attached to actin and acrylodan bound to twitchin in the glycerol-skinned skeletal muscle fibres of mammalian. The phosphorylation-dependent multi-step changes in mobility and spatial arrangement of myosin SH1 helix, actin subunit and twitchin during the ATPase cycle have been revealed. It was shown that nonphosphorylated twitchin inhibited the movements of SH1 helix of the myosin heads and actin subunits and decreased the affinity of myosin to actin by freezing the position and mobility of twitchin in the muscle fibres. The phosphorylation of twitchin reverses this effect by changing the spatial arrangement and mobility of the actin-binding portions of twitchin. In this case, enhanced movements of SH1 helix of the myosin heads and actin subunits are observed. The data imply a novel property of twitchin incorporated into organized contractile system: its ability to regulate the ATPase cycle in a phosphorylation-dependent fashion by changing the affinity and spatial arrangement of the actin-binding portions of twitchin. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia

    Directory of Open Access Journals (Sweden)

    Richard T. Jaspers

    2014-07-01

    Full Text Available Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH (10% air/90%N2 saturated water. We analyzed cross-sectional area (CSA, succinate dehydrogenase (SDH activity, capillarization, myonuclear density, myoglobin (Mb concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001. Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001. In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus.

  16. Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres.

    Science.gov (United States)

    Ross, Jacob A; Pearson, Adam; Levy, Yotam; Cardel, Bettina; Handschin, Christoph; Ochala, Julien

    2017-06-01

    Muscle fibres are multinucleated cells, with each nucleus controlling the protein synthesis in a finite volume of cytoplasm termed the myonuclear domain (MND). What determines MND size remains unclear. In the present study, we aimed to test the hypothesis that the level of expression of the transcriptional coactivator PGC-1α and subsequent activation of the mitochondrial biogenesis are major contributors. Hence, we used two transgenic mouse models with varying expression of PGC-1α in skeletal muscles. We isolated myofibres from the fast twitch extensor digitorum longus (EDL) and slow twitch diaphragm muscles. We then membrane-permeabilised them and analysed the 3D spatial arrangements of myonuclei. In EDL muscles, when PGC-1α is over-expressed, MND volume decreases; whereas, when PGC-1α is lacking, no change occurs. In the diaphragm, no clear difference was noted. This indicates that PGC-1α and the related mitochondrial biogenesis programme are determinants of MND size. PGC-1α may facilitate the addition of new myonuclei in order to reach MND volumes that can support an increased mitochondrial density. J. Cell. Physiol. 232: 1270-1274, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle

    DEFF Research Database (Denmark)

    Christiansen, Danny; Murphy, Robyn M; Bangsbo, Jens

    2018-01-01

    AIM: This study explored the effects of blood flow restriction (BFR) on mRNA responses of PGC-1α (total, 1α1, and 1α4) and Na+ ,K+ -ATPase isoforms (NKA; α1-3 , β1-3 , and FXYD1) to an interval running session, and determined if these effects were related to increased oxidative stress, hypoxia......). A muscle sample was collected before (Pre) and after exercise (+0h, +3h) to quantify mRNA, indicators of oxidative stress (HSP27 protein in type I and II fibres, and catalase and HSP70 mRNA), metabolites, and α-AMPK Thr172 /α-AMPK, ACC Ser221 /ACC, CaMKII Thr287 /CaMKII, and PLBSer16 /PLB ratios in type I...... of oxidative stress and type-I fibre ACC Ser221 /ACC ratio, but dissociated from muscle hypoxia, lactate, and CaMKII signalling. CONCLUSION: Blood flow restriction augmented exercise-induced increases in muscle FXYD1 and PGC-1α mRNA in men. This effect was related to increased oxidative stress and fibre type...

  18. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  19. Esterase profile of human masseter muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Vilmann, H

    1988-01-01

    The esterase profile of fresh human masseter muscle was investigated by use of histochemistry and electrophoresis. The histochemical methods included reactions for alpha-naphthyl esterase, myofibrillar ATPase, reverse myofibrillar ATPase and succinic dehydrogenase. In frozen sections of the muscle...... the coloured reaction product for esterases was present both as a diffuse sarcoplasmic coloration and as distinct granules. The intensity of diffuse reaction was used to classify the muscle fibres as strongly, moderately and weakly reacting. The fibres with strong esterase activity belonged to Type I and ii......C. iM and Type II A fibres showed a moderate esterase reaction and Type II B fibres had a low activity. The electrophoretic gels stained for esterase activity showed that the human masseter muscle possesses a slow migrating double band with high enzyme activity and a cascade of faster migrating...

  20. A novel electrical model of nerve and muscle using Pspice

    CERN Document Server

    Peasgood, W; Lam, C K; Armstrong, A G; Wood, W

    2003-01-01

    In this work, a model is developed to simulate the biological processes involved in nerve fibre transmission and subsequent muscle contraction. The model has been based on approximating biological structure and function to electrical circuits and as such was implemented on an electronics simulation software package called Pspice. Models of nerve, the nerve-muscle interface and muscle fibre have been implemented. The time dependent ionic properties of the nerve and muscle membranes have been simulated using the Hodgkin-Huxley equations and for the muscle fibre, the implementation of the Huxley sliding filament theory for muscular contraction. The results show that nerve may be considered as a fractal transmission line and that the amplitude of the nerve membrane depolarization is dependent on the dimensions of the fibre. Additionally, simulation of the nerve-muscle interface allows the fractal nerve model to be connected to the muscle fibre model and it is shown that a two sarcomere molecular simulation can pr...

  1. Isolation and individual electrical stimulation of single smooth-muscle cells from the urinary bladder of the pig

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron); J.C. Romijn (Johannes); D.J. Griffiths (Derek)

    1987-01-01

    textabstractIn contrast to striated muscle, measurements on strips of smooth muscle cannot be uniquely interpreted in terms of an array of contractile units. Therefore scaling down to the single-cell level is necessary to gain detailed understanding of the contractile process in this type of muscle.

  2. Striated muscle fiber size, composition and capillary density in diabetes in relation to neuropathy and muscle strength

    DEFF Research Database (Denmark)

    Andreassen, Christer Swan; Jensen, Jacob Malte; Jakobsen, Johannes

    2014-01-01

    study was to evaluate histologic properties and capillarization of diabetic skeletal muscle in relation to DPN and muscle strength. METHODS: Twenty type 1 and 20 type 2 diabetic (T1D and T2D, respectively) patients underwent biopsy of the gastrocnemic muscle, isokinetic dynamometry at the ankle...... between muscle fiber diameter, muscle fiber type distribution, or capillary density and degree of neuropathy or muscle strength for either patient group. Muscle fiber diameter and the proportion of Type II fibers were greater for T1D patients than both T2D patients and controls. The T2D patients had fewer...

  3. Coupling between skeletal muscle fiber size and capillarization is maintained during healthy aging.

    Science.gov (United States)

    Barnouin, Yoann; McPhee, Jamie S; Butler-Browne, Gillian; Bosutti, Alessandra; De Vito, Giuseppe; Jones, David A; Narici, Marco; Behin, Anthony; Hogrel, Jean-Yves; Degens, Hans

    2017-08-01

    As muscle capillarization is related to the oxidative capacity of the muscle and the size of muscle fibres, capillary rarefaction may contribute to sarcopenia and functional impairment in older adults. Therefore, it is important to assess how ageing affects muscle capillarization and the interrelationship between fibre capillary supply with the oxidative capacity and size of the fibres. Muscle biopsies from healthy recreationally active young (22 years; 14 men and 5 women) and older (74 years; 22 men and 6 women) people were assessed for muscle capillarization and the distribution of capillaries with the method of capillary domains. Oxidative capacity of muscle fibres was assessed with quantitative histochemistry for succinate dehydrogenase (SDH) activity. There was no significant age-related reduction in muscle fibre oxidative capacity. Despite 18% type II fibre atrophy (P = 0.019) and 23% fewer capillaries per fibre (P age and sex. Based on SDH, the maximal oxygen consumption supported by a capillary did not differ significantly between young and old people. The similar quantitative and qualitative distribution of capillaries within muscle from healthy recreationally active older people and young adults indicates that the age-related capillary rarefaction, which does occur, nevertheless maintains the coupling between skeletal muscle fibre size and capillarization during healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  4. Muscle as a “Mediator“ of Systemic Metabolism

    Science.gov (United States)

    Baskin, Kedryn K.; Winders, Benjamin R.; Olson, Eric N.

    2015-01-01

    Skeletal and cardiac muscles play key roles in the regulation of systemic energy homeostasis and display remarkable plasticity in their metabolic responses to caloric availability and physical activity. In this Perspective we discuss recent studies highlighting transcriptional mechanisms that govern systemic metabolism by striated muscles. We focus on the participation of the Mediator complex in this process, and suggest that tissue-specific regulation of Mediator subunits impacts metabolic homeostasis. PMID:25651178

  5. Ionic currents and charge movements in organ-cultured rat skeletal muscle.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1984-12-01

    The middle of the fibre voltage-clamp technique was used to measure ionic currents and non-linear charge movements in intact, organ-cultured (in vitro denervated) mammalian fast-twitch (rat extensor digitorum longus) muscle fibres. Muscle fibres organ cultured for 4 days can be used as electrophysiological and morphological models for muscles in vivo denervated for the same length of time. Sodium currents in organ-cultured muscle fibres are similar to innervated fibres except that in the temperature range 0-20 degrees C (a) in the steady state, the voltage distribution of inactivation in cultured fibres is shifted negatively some 20 mV; (b) at the same temperature and membrane potential, the time constant of inactivation in cultured fibres is about twice that of innervated fibres. Potassium currents in innervated and cultured fibres at 15 degrees C can be fitted with the Hodgkin-Huxley n variable raised to the second power. Despite the large range we would estimate that the maximum value of the steady-state potassium conductance of cultured fibres is about one-half that of innervated fibres. The estimated maximum amount of charge moved in cultured fibre is about one-third that in innervated fibres. Compared to innervated fibres, culturing doubles the kinetics of the decay phase of charge movement. The possibility of a negative shift of the voltage distribution of charge movements in cultured fibres is discussed.

  6. Histological study of rat masseter muscle following experimental occlusal alteration.

    Science.gov (United States)

    Nishide, N; Baba, S; Hori, N; Nishikawa, H

    2001-03-01

    It has been suggested that occlusal interference results in masticatory muscle dysfunction. In our previous study, occlusal interference reduced the rat masseter energy level during masticatory movements. The purpose of this study was to investigate the histological alterations of rat masseter muscles following experimental occlusal alteration with unilateral bite-raising. A total of eight male adult Wistar rats were equally divided into control and experimental groups. The experimental rats wore bite-raising splints on the unilateral upper molar. However, 4 weeks after the operation, the anterior deep masseter muscles were removed and then stained for succinic acid dehydrogenase (SDH), haematoxylin eosin (HE) and myofibrillar ATPase. Most of the muscle fibres in experimental rats remained intact, although partial histological changes were observed, such as extended connective tissue, appearance of inflammatory cells in the muscle fibres and existence of muscle fibres with central nuclei and central cores. Moreover, the fibre area-fibre frequency histograms of experimental muscle indicated a broad pattern than that of controls. These results indicated that occlusal interference caused histological changes in masseter muscles and that this may be related to the fact that the masseter energy level was reduced during masticatory movements in unilateral bite-raised rats.

  7. The influence of stress on substrate utilization in skeletal muscle fibres of reindeer (Rangifer tarandus L

    Directory of Open Access Journals (Sweden)

    B. Essén-Gustavsson

    1984-05-01

    Full Text Available Moderate stress in connection with handling, sampling and herding of reindeer caused a very pronounced depletion of glycogen in mainly type IIA and IIB fibres. Also intramuscular triglyceride levels decreased but mainly in type I fibres. Muscle lactate levéls increased in all animals but not to the levels found in pigs exposed to stress or exertion. Reindeer muscles appeared to have a great capacity to oxidize both carbohydrates and lipids. All animals showed increased Cortisol, urea and AS AT values. A marked depletion of glycogen and lipids in many of the fibres may be a factor involved in the development of skeletal muscle degeneration in connection with mental stress and exertion as there seems to be a correlation between high ASAT values and substrate depleted musclefibres. A connection may therefore exist between high instramuscular substrate stores and the ability of a muscle to tolerate stress.Av stress påverkat substratutnyttjande i skelettmuskelfibrer hos renAbstract in Swedish / Sammanfattning: Måttlig stress betingad av hantering, provtagning och drivning av ren orsakade en mycket kraftig minskning av muskelglykogen i fråmst typ IIA och typ IIB fibrer. Aven triglycerider minskade framfor allt i typ I fibrer. Muskellaktatnivåerna okade i samtliga undersokta djur, men inte till nivåer som ses hos gris utsatta for stress eller fysisk anstrångning.Renens muskler uppvisade en mycket hog kapacitet att oxidera, forbranna, både kolhydrat och fett. Alla djur uppvisade forhojda Cortisol, urea och ASAT varden. Den mycket kraftiga tomningen av kolhydrat och fett i många muskelfibrer kan vara en faktor medverkande till muskeldegeneration i samband med mental stress och anstrangning då hoga ASAT-vården synes vara korrelerade till uttomda muskelfibrer. Ett samband mellan hog instramuskulår substratupplagring och formåga att tåla stress kan således foreligga.Stressin vaikuttaneen poron substraattihyvåk-sikåytto luurangon lihaksiston

  8. Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone.

    Science.gov (United States)

    Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki

    2017-06-15

    Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy.

  9. Effect of Age and Sex on Histomorphometrical Characteristics of Two Muscles of Laticauda Lambs

    Directory of Open Access Journals (Sweden)

    Salvatore Velotto

    2010-01-01

    Full Text Available The aim of the present experiment was to determine the effect of sex and age on histochemical and morphometric characteristics of muscle fibres (myocytes in lambs born by single, twin, triplet and quadruplet birth. Thirty lambs were slaughtered at 60 days of age; thirty were weaned at 60 days and fed until 120 days with flakes (60% and food supplements, and then slaughtered. Muscle tissues were obtained from two muscles, namely m. semitendinosus and m. longissimus dorsi of all lambs. For each fibre type, area perimeter and diameter (maximum and minimum were measured and slow-twitch oxidative fibres, fast-twitch glycolytic fibres, fast-twitch oxidative-glycolytic fibres were histochemically differentiated. The muscles were stained for myosin ATPase, and succinic dehydrogenase. At 60 days, females had fibres larger than males, whereas the opposite was observed at 120 days. Besides, at 60 days, the lambs born by single birth had fibres larger than those born by multiple birth, whereas the opposite was observed at 120 days. Single lambs were heavier than twin lambs and multiple lambs. Fast-twitch glycolytic fibres had the largest size, followed by slow-twitch oxidative and fast-twitch oxidative glycolytic fibres. The dimensions of fibre types in m. longissimus dorsi were larger than in m. semitendinosus (P < 0.001.These muscle fibre characteristics are thought to be important factors influencing meat quality, which is often related to metabolic and contractile properties as determined by the muscle fibre type distribution.

  10. Changes in myonuclear domain size do not precede muscle hypertrophy during prolonged resistance-type exercise training.

    Science.gov (United States)

    Snijders, T; Smeets, J S J; van Kranenburg, J; Kies, A K; van Loon, L J C; Verdijk, L B

    2016-02-01

    Muscle fibre hypertrophy is accompanied by an increase in myonuclear number, an increase in myonuclear domain size or both. It has been suggested that increases in myonuclear domain size precede myonuclear accretion and subsequent muscle fibre hypertrophy during prolonged exercise training. In this study, we assessed the changes in muscle fibre size, myonuclear and satellite cell content throughout 12 weeks of resistance-type exercise training in young men. Twenty-two young men (23 ± 1 year) were assigned to a progressive, 12-weeks resistance-type exercise training programme (3 sessions per week). Muscle biopsies from the vastus lateralis muscle were taken before and after 2, 4, 8 and 12 weeks of exercise training. Muscle fibre size, myonuclear content, myonuclear domain size and satellite cell content were assessed by immunohistochemistry. Type I and type II muscle fibre size increased gradually throughout the 12 weeks of training (type I: 18 ± 5%, type II: 41 ± 6%, P muscle fibres. No changes in type I and type II myonuclear domain size were observed at any time point throughout the intervention. Satellite cell content increased significantly over time in both type I and type II muscle fibres (P muscle fibre hypertrophy during prolonged resistance-type exercise training in vivo in humans. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  11. Osteopontin deficiency delays inflammatory infiltration and the onset of muscle regeneration in a mouse model of muscle injury

    Directory of Open Access Journals (Sweden)

    Kitipong Uaesoontrachoon

    2013-01-01

    Osteopontin is secreted by skeletal muscle myoblasts and stimulates their proliferation. Expression of osteopontin in skeletal muscle is upregulated in pathological conditions including Duchenne muscular dystrophy, and recent evidence suggests that osteopontin might influence the course of this disease. The current study was undertaken to determine whether osteopontin regulates skeletal muscle regeneration. A whole muscle autografting model of regeneration in osteopontin-null and wild-type mice was used. Osteopontin expression was found to be strongly upregulated in wild-type grafts during the initial degeneration and subsequent early regeneration phases that are observed in this model. Grafted muscle from osteopontin-null mice degenerated more slowly than that of wild-type mice, as determined by histological assessment, fibre diameter and fibre number. The delayed degeneration in osteopontin-null grafts was associated with a delay in neutrophil and macrophage infiltration. Centrally nucleated (regenerating muscle fibres also appeared more slowly in osteopontin-null grafts than in wild-type grafts. These results demonstrate that osteopontin plays a non-redundant role in muscle remodelling following injury.

  12. Muscle glycogen depletion patterns during draught work in Standardbred horses.

    Science.gov (United States)

    Gottlieb, M

    1989-03-01

    Muscle fibre recruitment was investigated during draught loaded exercise by studying glycogen depletion patterns from histochemical stains of muscle biopsies from the gluteus and semitendinosus muscles. Three Standardbred trotters performed several intervals of draught loaded exercise on a treadmill with 34 kp at a trot (7 m/sec) and with 34 and 80 kp, respectively at a walk (2m/sec). Exercise was continued until the horses were unwilling to continue. Glycogen depletion was seen in all three fibre types when trotting with 34 kp for 5 or 10 mins. When an equal weight resistance was pulled at a walk, glycogen depletion was first seen in type I fibres only, then followed by a small percentage of type IIA fibres after at least 1 h. When 80 kp was pulled at a walk both type I and IIA fibres showed glycogen depletion, and after at least 30 mins exercise a small percentage of type IIB fibres was also depleted. These results indicate that the muscle fibres are depleted, in order, from type I through IIA to IIB as the intensity or duration of draught work increases.

  13. Muscle assembly: a titanic achievement?

    Science.gov (United States)

    Gregorio, C C; Granzier, H; Sorimachi, H; Labeit, S

    1999-02-01

    The formation of perfectly aligned myofibrils in striated muscle represents a dramatic example of supramolecular assembly in eukaryotic cells. Recently, considerable progress has been made in deciphering the roles that titin, the third most abundant protein in muscle, has in this process. An increasing number of sarcomeric proteins (ligands) are being identified that bind to specific titin domains. Titin may serve as a molecular blueprint for sarcomere assembly and turnover by specifying the precise position of its ligands within each half-sarcomere in addition to functioning as a molecular spring that maintains the structural integrity of the contracting myofibrils.

  14. Histochemistry profile of the biceps brachii muscle fibres of capuchin monkeys (Cebus apella, Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    CHF Bortoluci

    Full Text Available A general analysis of the behaviour of “Cebus” shows that when this primate moves position to feed or perform another activity, it presents different ways of locomotion. This information shows that the brachial biceps muscle of this animal is frequently used in their locomotion activities, but it should also be remembered that this muscle is also used for other development activities like hiding, searching for objects, searching out in the woods, and digging in the soil. Considering the above, it was decided to research the histoenzimologic characteristics of the brachial biceps muscle to observe whether it is better adpted to postural or phasic function. To that end, samples were taken from the superficial and deep regions, the inserts proximal (medial and lateral and distal brachial biceps six capuchin monkeys male and adult, which were subjected to the reactions of m-ATPase, NADH-Tr. Based on the results of these reactions fibres were classified as in Fast Twitch Glycolitic (FG, Fast Twitch Oxidative Glycolitic (FOG and Slow Twitc (SO. In general, the results, considering the muscle as a whole, show a trend of frequency FOG> FG> SO. The data on the frequency were studied on three superficial regions FOG=FG>SO; the deep regions of the inserts proximal FOG=FG=SO and inserting the distal FOG>FG=SO. In conclusion, the biceps brachii of the capuchin monkey is well adapted for both postural and phasic activities.

  15. Histochemistry profile of the biceps brachii muscle fibres of capuchin monkeys (Cebus apella, Linnaeus, 1758).

    Science.gov (United States)

    Bortoluci, C H F; Simionato, L H; Rosa Junior, G M; Oliveira, J A; Lauris, J R P; Moraes, L H R; Rodrigues, A C; Andreo, J C

    2014-08-01

    A general analysis of the behaviour of "Cebus" shows that when this primate moves position to feed or perform another activity, it presents different ways of locomotion. This information shows that the brachial biceps muscle of this animal is frequently used in their locomotion activities, but it should also be remembered that this muscle is also used for other development activities like hiding, searching for objects, searching out in the woods, and digging in the soil. Considering the above, it was decided to research the histoenzimologic characteristics of the brachial biceps muscle to observe whether it is better adpted to postural or phasic function. To that end, samples were taken from the superficial and deep regions, the inserts proximal (medial and lateral) and distal brachial biceps six capuchin monkeys male and adult, which were subjected to the reactions of m-ATPase, NADH-Tr. Based on the results of these reactions fibres were classified as in Fast Twitch Glycolitic (FG), Fast Twitch Oxidative Glycolitic (FOG) and Slow Twitc (SO). In general, the results, considering the muscle as a whole, show a trend of frequency FOG> FG> SO. The data on the frequency were studied on three superficial regions FOG=FG>SO; the deep regions of the inserts proximal FOG=FG=SO and inserting the distal FOG>FG=SO. In conclusion, the biceps brachii of the capuchin monkey is well adapted for both postural and phasic activities.

  16. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Directory of Open Access Journals (Sweden)

    Martin Flück

    2014-01-01

    Full Text Available We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL and soleus (SOL muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS and subjected to fibre typing and measures for costameric (FAK and FRNK, mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1, and MHCI protein and RNA content. Mean cross-sectional area (MCSA of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05≤P<0.10. FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P=0.029. SOL muscle demonstrated a specific reduction in UCP3 content (-23%; P = 0.012. Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading.

  17. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Science.gov (United States)

    Li, Ruowei; Linnehan, Richard M.; Castells, Josiane; Tesch, Per; Gustafsson, Thomas

    2014-01-01

    We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (−23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading. PMID:25313365

  18. Histomorphometrical aspects of the postnatal development of masticatory muscle in the muscular dystrophic mouse

    DEFF Research Database (Denmark)

    Vilmann, H; Kirkeby, S

    1991-01-01

    amount of connective tissue between the fibres. The histomorphometrical observations revealed an increase in mean size of the fibres with age, both in normal and dystrophic masticatory muscles. The fibre size variance which has been shown to be a reliable parameter for description of degree of affection...... criteria to separate dystrophic muscles from normal muscles at birth. From 2 weeks onwards marked differences between the affected and unaffected muscles appeared, as the affected fibres from this age are rounded with marked variations in size. Central nucleation is frequent and there is an increased...

  19. New kids on the block: The Popeye domain containing (POPDC) protein family acting as a novel class of cAMP effector proteins in striated muscle.

    Science.gov (United States)

    Brand, Thomas; Schindler, Roland

    2017-12-01

    The cyclic 3',5'-adenosine monophosphate (cAMP) signalling pathway constitutes an ancient signal transduction pathway present in prokaryotes and eukaryotes. Previously, it was thought that in eukaryotes three effector proteins mediate cAMP signalling, namely protein kinase A (PKA), exchange factor directly activated by cAMP (EPAC) and the cyclic-nucleotide gated channels. However, recently a novel family of cAMP effector proteins emerged and was termed the Popeye domain containing (POPDC) family, which consists of three members POPDC1, POPDC2 and POPDC3. POPDC proteins are transmembrane proteins, which are abundantly present in striated and smooth muscle cells. POPDC proteins bind cAMP with high affinity comparable to PKA. Presently, their biochemical activity is poorly understood. However, mutational analysis in animal models as well as the disease phenotype observed in patients carrying missense mutations suggests that POPDC proteins are acting by modulating membrane trafficking of interacting proteins. In this review, we will describe the current knowledge about this gene family and also outline the apparent gaps in our understanding of their role in cAMP signalling and beyond. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A re-examination of the biphasic theory of skeletal muscle growth.

    Science.gov (United States)

    Levine, A S; Hegarty, P V

    1977-01-01

    Because of the importance of fibre diameter measurements it was decided to re-evaluate the biphasic theory of skeletal muscle growth and development. This theory proposes an initial memophasic distribution of muscle fibres which changes to a biphasic distribution during development. The theory is based on observations made on certain muscles in mice, where two distinct populations of fibre diameters (20 and 40 micronm) contribute to the biphasic distribution. In the present investigation corss sections of frozen biceps brachii of mice in rigor mortis were examined. The rigor state was used to avoid complications produced by thaw-rigor contraction. The diameters of the outermost and innermost fibres were found to be significantly different. However, if the outer and inner fibres were combined to form one group, no significant difference between this group and other random groups was found. The distributions of all groups were monophasic. The diameters of isolated fibres from mice and rats also displayed a monophasic distribution. This evidence leads to the conclusion that the biphasic theory of muscle growth is untenable. Some of the variables which may occur in fibre size and shape are discussed. Images Fig. 1 PMID:858691

  1. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    International Nuclear Information System (INIS)

    Rai, Mamta; Nongthomba, Upendra

    2013-01-01

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization

  2. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Mamta; Nongthomba, Upendra, E-mail: upendra@mrdg.iisc.ernet.in

    2013-10-15

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization.

  3. Muscle differentiation in a colonial ascidian: organisation, gene expression and evolutionary considerations

    Directory of Open Access Journals (Sweden)

    Burighel Paolo

    2009-09-01

    Full Text Available Abstract Background Ascidians are tunicates, the taxon recently proposed as sister group to the vertebrates. They possess a chordate-like swimming larva, which metamorphoses into a sessile adult. Several ascidian species form colonies of clonal individuals by asexual reproduction. During their life cycle, ascidians present three muscle types: striated in larval tail, striated in the heart, and unstriated in the adult body-wall. Results In the colonial ascidian Botryllus schlosseri, we investigated organisation, differentiation and gene expression of muscle beginning from early buds to adults and during zooid regression. We characterised transcripts for troponin T (BsTnT-c, adult muscle-type (BsMA2 and cytoplasmic-type (BsCA1 actins, followed by in situ hybridisation (ISH on sections to establish the spatio-temporal expression of BsTnT-c and BsMA2 during asexual reproduction and in the larva. Moreover, we characterised actin genomic sequences, which by comparison with other metazoans revealed conserved intron patterns. Conclusion Integration of data from ISH, phalloidin staining and TEM allowed us to follow the phases of differentiation of the three muscle kinds, which differ in expression pattern of the two transcripts. Moreover, phylogenetic analyses provided evidence for the close relationship between tunicate and vertebrate muscle genes. The characteristics and plasticity of muscles in tunicates are discussed.

  4. Myosin heavy chain composition of single fibres from m. biceps brachii of male body builders

    DEFF Research Database (Denmark)

    Klitgaard, H; Zhou, M.-Y.; Richter, Erik

    1990-01-01

    The myosin heavy chain (MHC) composition of single fibres from m. biceps brachii of young sedentary men (28 +/- 0.4 years, mean +/- SE, n = 4) and male body builders (25 +/- 2.0 years, n = 4) was analysed with a sensitive one-dimensional electrophoretic technique. Compared with sedentary men...... expression of MHC isoforms within histochemical type II fibres of human skeletal muscle with body building. Furthermore, in human skeletal muscle differences in expression of MHC isoforms may not always be reflected in the traditional histochemical classification of types I, IIa, IIb and IIc fibres....

  5. Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat.

    Science.gov (United States)

    Murphy, Robyn M; Larkins, Noni T; Mollica, Janelle P; Beard, Nicole A; Lamb, Graham D

    2009-01-15

    Whilst calsequestrin (CSQ) is widely recognized as the primary Ca2+ buffer in the sarcoplasmic reticulum (SR) in skeletal muscle fibres, its total buffering capacity and importance have come into question. This study quantified the absolute amount of CSQ isoform 1 (CSQ1, the primary isoform) present in rat extensor digitorum longus (EDL) and soleus fibres, and related this to their endogenous and maximal SR Ca2+ content. Using Western blotting, the entire constituents of minute samples of muscle homogenates or segments of individual muscle fibres were compared with known amounts of purified CSQ1. The fidelity of the analysis was proven by examining the relative signal intensity when mixing muscle samples and purified CSQ1. The CSQ1 contents of EDL fibres, almost exclusively type II fibres, and soleus type I fibres [SOL (I)] were, respectively, 36 +/- 2 and 10 +/- 1 micromol (l fibre volume)(-1), quantitatively accounting for the maximal SR Ca2+ content of each. Soleus type II [SOL (II)] fibres (approximately 20% of soleus fibres) had an intermediate amount of CSQ1. Every SOL (I) fibre examined also contained some CSQ isoform 2 (CSQ2), which was absent in every EDL and other type II fibre except for trace amounts in one case. Every EDL and other type II fibre had a high density of SERCA1, the fast-twitch muscle sarco(endo)plasmic reticulum Ca2+-ATPase isoform, whereas there was virtually no SERCA1 in any SOL (I) fibre. Maximal SR Ca2+ content measured in skinned fibres increased with CSQ1 content, and the ratio of endogenous to maximal Ca2+ content was inversely correlated with CSQ1 content. The relative SR Ca2+ content that could be maintained in resting cytoplasmic conditions was found to be much lower in EDL fibres than in SOL (I) fibres (approximately 20 versus >60%). Leakage of Ca2+ from the SR in EDL fibres could be substantially reduced with a SR Ca2+ pump blocker and increased by adding creatine to buffer cytoplasmic [ADP] at a higher level, both results

  6. Intradural lipoma

    International Nuclear Information System (INIS)

    Schubert, F.

    1996-01-01

    An intradural lipoma consists of a localized collection of fat within the intradural space of the spinal canal. Microscopically, spinal lipomas consist of a homogeneous mass of adult adipose tissue (rarely, brown fat or mixed yellow and brown fat) that exhibits no evidence of malignancy. The fat is divided into lobules by thick connective-tissue strands which may be associated with smooth muscle fibres. Striated muscle fibres, angiomatous elements, calcification and ossification are less common. A case of intradural lipoma is presented and it is shown how both computer tomography and magnetic resonance imaging (MRI) assisted in an accurate diagnosis of this pathology. MR is the imaging modality of choice as it allows to fully evaluate the extent of the lipoma and its relationship to the neural placode, spinal cord and roots of the cord and/or cauda equina. 4 refs., 5 figs

  7. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles - Possible role in rescuing cellular energy homeostasis

    NARCIS (Netherlands)

    ter Veld, F; Jeneson, JAL; Nicolay, K

    Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single-

  8. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  9. Pronounced limb and fibre type differences in subcellular lipid droplet content and distribution in elite skiers before and after exhaustive exercise.

    Science.gov (United States)

    Koh, Han-Chow E; Nielsen, Joachim; Saltin, Bengt; Holmberg, Hans-Christer; Ørtenblad, Niels

    2017-09-01

    Although lipid droplets in skeletal muscle are an important energy source during endurance exercise, our understanding of lipid metabolism in this context remains incomplete. Using transmission electron microscopy, two distinct subcellular pools of lipid droplets can be observed in skeletal muscle - one beneath the sarcolemma and the other between myofibrils. At rest, well-trained leg muscles of cross-country skiers contain 4- to 6-fold more lipid droplets than equally well-trained arm muscles, with a 3-fold higher content in type 1 than in type 2 fibres. During exhaustive exercise, lipid droplets between the myofibrils but not those beneath the sarcolemma are utilised by both type 1 and 2 fibres. These findings provide insight into compartmentalisation of lipid metabolism within skeletal muscle fibres. Although the intramyocellular lipid pool is an important energy store during prolonged exercise, our knowledge concerning its metabolism is still incomplete. Here, quantitative electron microscopy was used to examine subcellular distribution of lipid droplets in type 1 and 2 fibres of the arm and leg muscles before and after 1 h of exhaustive exercise. Intermyofibrillar lipid droplets accounted for 85-97% of the total volume fraction, while the subsarcolemmal pool made up 3-15%. Before exercise, the volume fractions of intermyofibrillar and subsarcolemmal lipid droplets were 4- to 6-fold higher in leg than in arm muscles (P exercise, intermyofibrillar lipid droplet volume fraction was 53% lower (P = 0.0082) in both fibre types in arm, but not leg muscles. This reduction was positively associated with the corresponding volume fraction prior to exercise (R 2  = 0.84, P exercise-induced change in the subsarcolemmal pool could be detected. These findings indicate clear differences in the subcellular distribution of lipid droplets in the type 1 and 2 fibres of well-trained arm and leg muscles, as well as preferential utilisation of the intermyofibrillar pool

  10. Proton magnetic resonance spectroscopy ((1H-MRS reveals geniculocalcarine and striate area degeneration in primary glaucoma.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Glaucoma is a collection of neurodegenerative diseases that affect both the retina and the central visual pathway. We investigated whether metabolites' concentrations changed in the geniculocalcarine (GCT and the striate area of occipital lobe by proton magnetic resonance spectroscopy ((1H-MRS, suggesting neurodegeneration of the central visual pathway in primary glaucoma. METHODOLOGY/PRINCIPAL FINDINGS: 20 patients with glaucoma in both eyes were paired with 20 healthy volunteers in same gender and an age difference less than 3 years. All the participants were examined by MR imaging including T1 Flair, T2 FSE and (1H-MRS. The T1 intensity and T2 intensity of their GCTs and striate areas were measured. The ratio of N-acetylaspartate (NAA/Creatine (Cr, Choline (Cho/Cr, glutamine and glutamate (Glx/Cr were derived by multi-voxels (1H-MRS in the GCT and the striate area of each brain hemisphere. The T1 intensity and T2 intensity had no difference between the groups. Significant decreases in NAA/Cr and Cho/Cr but no difference in Glx/Cr was found between the groups in both the GCT and the striate area. CONCLUSIONS/SIGNIFICANCE: Primary glaucoma affects metabolites' concentrations in the GCT and the striate area suggesting there is ongoing neurodegenerative process.

  11. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    OpenAIRE

    Golub, Aleksander S.; Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po...

  12. 1H-NMR and HPLC studies of the changes involved in volume regulation in the muscle fibres of the crab, Hemigrapsus edwardsi.

    Science.gov (United States)

    Bedford, J J; Smith, R A; Thomas, M; Leader, J P

    1991-01-01

    1. The process of cell volume readjustment, during adaptation to salinity changes, in muscle fibres of the euryhaline New Zealand shore crab, Hemigrapsus edwardsi, involve large changes in the amounts of free amino acid. 2. These are taurine, proline, alanine, arginine, glutamic acid, glycine and serine. 3. These changes may be quantified by High Performance Liquid Chromatography, and qualitatively demonstrated by proton nuclear magnetic resonance spectroscopy.

  13. The giant protein titin regulates the length of the striated muscle thick filament.

    Science.gov (United States)

    Tonino, Paola; Kiss, Balazs; Strom, Josh; Methawasin, Mei; Smith, John E; Kolb, Justin; Labeit, Siegfried; Granzier, Henk

    2017-10-19

    The contractile machinery of heart and skeletal muscles has as an essential component the thick filament, comprised of the molecular motor myosin. The thick filament is of a precisely controlled length, defining thereby the force level that muscles generate and how this force varies with muscle length. It has been speculated that the mechanism by which thick filament length is controlled involves the giant protein titin, but no conclusive support for this hypothesis exists. Here we show that in a mouse model in which we deleted two of titin's C-zone super-repeats, thick filament length is reduced in cardiac and skeletal muscles. In addition, functional studies reveal reduced force generation and a dilated cardiomyopathy (DCM) phenotype. Thus, regulation of thick filament length depends on titin and is critical for maintaining muscle health.

  14. A second look into fibre typing--relation to meat quality.

    Science.gov (United States)

    Lefaucheur, L

    2010-02-01

    Despite intensive research, a large variation in meat quality is still observed in most meat producing species. It is widely accepted that myofibre type composition is an important source of variation in meat quality. However, the identification of specific and universal relationships between myofibre characteristics, growth performance and meat quality traits remains a challenge. After the presentation of recent knowledge underlying fibre typing, this review describes the involvements of Ca2+-dependent mechanisms, and the energy state of the myofibres in the control of contractile and metabolic properties, with a special attention to the AMP-activated protein kinase pathway and mitochondrial compartment. In order to identify muscle components which could mask specific relationships between fibre type composition and meat quality, an analysis of the interactions between myofibres and other muscle cellular components is presented. After a brief description of myogenesis, the significance of the total number of fibres, myofibre cross-sectional area and fibre type composition for growth performance and meat quality is presented. Then, some genetic and environmental factors are proposed as possible tools to control meat quality trough the modulation of fibre type characteristics. Finally, a conclusion makes the point on bottlenecks still preventing the identification of specific relationships between fibre characteristics, growth performance and meat quality, and suggests future perspectives such as direct selection on fibre traits and study of correlated responses, the development of in vitro approaches using cell cultures, manipulation of myogenesis during the fetal period, and the production and use of genetically modified animals.

  15. Alpha-adrenergic receptors in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rattigan, S; Appleby, G J; Edwards, S J

    1986-01-01

    Sarcolemma-enriched preparations from muscles rich in slow oxidative red fibres contained specific binding sites for the alpha 1 antagonist, prazosin (e.g. soleus Kd 0.13 nM, Bmax 29 fmol/mg protein). Binding sites for prazosin were almost absent from white muscle. Displacement of prazosin bindin...... adrenergic receptors are present on the sarcolemma of slow oxidative red fibres of rat skeletal muscle. The presence provides the mechanistic basis for apparent alpha-adrenergic effects to increase glucose and oxygen uptake in perfused rat hindquarter....

  16. Alterations in the muscle-to-capillary interface in patients with different degrees of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Abdel-Halim Samy M

    2010-07-01

    Full Text Available Abstract Background It is hypothesized that decreased capillarization of limb skeletal muscle is implicated in the decreased exercise tolerance in COPD patients. We have recently demonstrated decreased number of capillaries per muscle fibre (CAF but no changes in CAF in relation to fibre area (CAFA, which is based on the diffusion distance between the capillary and muscle fibre. The aim of the current study is to investigate the muscle-to-capillary interface which is an important factor involved in oxygen supply to the muscle that has previously been suggested to be a more sensitive marker for changes in the capillary bed compared to CAF and CAFA. Methods 23 COPD patients and 12 age-matched healthy subjects participated in the study. Muscle-to-capillary interface was assessed in muscle biopsies from the tibialis anterior muscle using the following parameters: 1 The capillary-to-fibre ratio (C:Fi which is defined as the sum of the fractional contributions of all capillary contacts around the fibre 2 The ratio between C:Fi and the fibre perimeter (CFPE-index 3 The ratio between length of capillary and fibre perimeter (LC/PF which is also referred to as the index of tortuosity. Exercise capacity was determined using the 6-min walking test. Results A positive correlation was found between CFPE-index and ascending disease severity with CFPE-index for type I fibres being significantly lower in patients with moderate and severe COPD. Furthermore, a positive correlation was observed between exercise capacity and CFPE-index for both type I and type IIa fibres. Conclusion It can be concluded that the muscle-to-capillary interface is disturbed in the tibialis anterior muscle in patients with COPD and that interface is strongly correlated to increased disease severity and to decreased exercise capacity in this patient group.

  17. Influence of muscle geometry on shortening speed of fibre, aponeurosis and muscle

    NARCIS (Netherlands)

    Zuurbier, C. J.; Huijing, P. A.

    1992-01-01

    The influence of muscle geometry on muscle shortening of the gastrocnemius medialis muscle (GM) of the rat was studied. Using cinematography, GM geometry was studied during isokinetic concentric activity at muscle lengths ranging from 85 to 105% of the optimum muscle length. The shortening speed of

  18. Grafting of a Single Donor Myofibre Promotes Hypertrophy in Dystrophic Mouse Muscle

    Science.gov (United States)

    Boldrin, Luisa; Morgan, Jennifer E.

    2013-01-01

    Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells, are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the host muscle environment. PMID:23349935

  19. Type grouping in skeletal muscles after experimental reinnervation: another explanation

    NARCIS (Netherlands)

    Vleggeert-lankamp, C.L.A.M.; de Ruiter, G.C.W.; Wolfs, J.F.C.; Pêgo, A.P.; Feirabend, H.K.P.; Lakke, E.A.J.F.; Malessy, M.J.A.

    2005-01-01

    Type grouping signifies clustering of muscle fibres of the same metabolic type, and is a frequent finding in reinnervated muscles. To elucidate the mechanism behind it, the rat sciatic nerve was either autografted or grafted with hollow synthetic nerve grafts. Twelve weeks later the number and fibre

  20. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans.

    Directory of Open Access Journals (Sweden)

    Peter Steinbacher

    Full Text Available PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2. Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak. Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.

  1. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans.

    Science.gov (United States)

    Steinbacher, Peter; Feichtinger, René G; Kedenko, Lyudmyla; Kedenko, Igor; Reinhardt, Sandra; Schönauer, Anna-Lena; Leitner, Isabella; Sänger, Alexandra M; Stoiber, Walter; Kofler, Barbara; Förster, Holger; Paulweber, Bernhard; Ring-Dimitriou, Susanne

    2015-01-01

    PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.

  2. Importance of contraction history on muscle force of porcine urinary bladder smooth muscle.

    Science.gov (United States)

    Menzel, Robin; Böl, Markus; Siebert, Tobias

    2017-02-01

    The purpose of this study was to provide a comprehensive dataset of porcine urinary bladder smooth muscle properties. Particularly, the history dependence of force production, namely force depression (FD) following shortening and force enhancement (FE) following stretch, was analysed. During active micturition, the circumference of the urinary bladder changes enormously. Thus, FD might be an important phenomenon during smooth muscle contraction. Electrically stimulated, intact urinary bladder strips from pigs (n = 10) were suspended in an aerated-filled organ bath, and different isometric, isotonic, and isokinetic contraction protocols were performed to determine the force-length and the force-velocity relation. FD and FE were assessed in concentric and eccentric contractions with different ramp lengths and ramp velocities. Bladder smooth muscles exhibit considerable amounts of FD and FE. The amount of FD increased significantly with ramp length, while FE did not change. However, FE and FD were independent of ramp velocity. The results imply that smooth muscle bladder strips exhibit similar muscle properties and history-dependent behaviour compared to striated muscles. The provided dataset of muscle properties is important for bladder modelling as well as for the analyses and interpretation of dynamic bladder filling and voiding.

  3. Effect of chronic ethanol ingestion and exercise training on skeletal muscle in rat.

    Science.gov (United States)

    Vila, L; Ferrando, A; Voces, J; Cabral de Oliveira, C; Prieto, J G; Alvarez, A I

    2001-09-01

    The aim of this study was to investigate the interactive effects of exercise training and chronic ethanol consumption on metabolism, capillarity, and myofibrillar composition in rat limb muscles. Male Wistar rats were treated in separate groups as follows: non exercised-control; ethanol (15%) in animals' drinking water for 12 weeks; exercise training in treadmill and ethanol administration plus exercise for 12 weeks. Ethanol administration decreased capillarity and increased piruvate kinase and lactate dehydrogenase activities in white gastrocnemius; in plantaris muscle, ethanol increased citrate synthase activity and decreased cross-sectional area of type I, IIa, and IIb fibres. Exercise increased capillarity in all four limb muscles and decreased type I fibre area in plantaris. The decreased capillarity effect induced by ethanol in some muscles, was ameliorated when alcohol was combined with exercise. While alcoholic myopathy affects predominantly type IIb fibres, ethanol administration and aerobic exercise in some cases can affect type I and type IIa fibre areas. The exercise can decrease some harmful effects produced by ethanol in the muscle, including the decrease in the fibre area and capillary density.

  4. Increased technetium uptake is not equivalent to muscle necrosis: scintigraphic, morphological and intramuscular pressure analyses of sore muscles after exercise

    Science.gov (United States)

    Crenshaw, A. G.; Friden, J.; Hargens, A. R.; Lang, G. H.; Thornell, L. E.

    1993-01-01

    A scintigraphic technique employing technetium pyrophosphate uptake was used to identify the area of skeletal muscle damage in the lower leg of four runners 24 h after an ultramarathon footrace (160 km). Most of the race had been run downhill which incorporated an extensive amount of eccentric work. Soreness was diffuse throughout the posterior region of the lower leg. In order to interpret what increased technetium uptake reflects and to express extreme endurance related damages, a biopsy was taken from the 3-D position of abnormal uptake. In addition, intramuscular pressures were determined in the deep posterior compartment. Scintigraphs revealed increased technetium pyrophosphate uptake in the medial portion of the gastrocnemius muscle. For 3698 fibres analysed, 33 fibres (1%) were necrotic, while a few other fibres were either atrophic or irregular shaped. A cluster of necrotic fibres occurred at the fascicular periphery for one subject and fibre type grouping occurred for another. Ultrastructural analysis revealed Z-line streaming near many capillaries and variously altered subsarcolemmal mitochondria including some with paracrystalline inclusions. The majority of the capillaries included thickened and irregular shaped endothelial cells. Intramuscular pressures of the deep posterior compartment were slightly elevated (12-15 mmHg) for three of the four subjects. Increased technetium uptake following extreme endurance running does not just reflect muscle necrosis but also subtle fibre abnormalities. Collectively, these pathological findings are attributed to relative ischaemia occurring during the race and during pre-race training, whereas, intramuscular pressure elevations associated with muscle soreness are attributed to mechanical stress caused by extensive eccentric work during the race.

  5. CD133+ cells derived from skeletal muscles of Duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability.

    Science.gov (United States)

    Meng, Jinhong; Muntoni, Francesco; Morgan, Jennifer

    2018-05-12

    Cell-mediated gene therapy is a possible means to treat muscular dystrophies like Duchenne muscular dystrophy. Autologous patient stem cells can be genetically-corrected and transplanted back into the patient, without causing immunorejection problems. Regenerated muscle fibres derived from these cells will express the missing dystrophin protein, thus improving muscle function. CD133+ cells derived from normal human skeletal muscle contribute to regenerated muscle fibres and form muscle stem cells after their intra-muscular transplantation into an immunodeficient mouse model. But it is not known whether CD133+ cells derived from DMD patient muscles have compromised muscle regenerative function. To test this, we compared CD133+ cells derived from DMD and normal human muscles. DMD CD133+ cells had a reduced capacity to undergo myogenic differentiation in vitro compared with CD133+ cells derived from normal muscle. In contrast to CD133+ cells derived from normal human muscle, those derived from DMD muscle formed no satellite cells and gave rise to significantly fewer muscle fibres of donor origin, after their intra-muscular transplantation into an immunodeficient, non-dystrophic, mouse muscle. DMD CD133+ cells gave rise to more clones of smaller size and more clones that were less myogenic than did CD133+ cells derived from normal muscle. The heterogeneity of the progeny of CD133+ cells, combined with the reduced proliferation and myogenicity of DMD compared to normal CD133+ cells, may explain the reduced regenerative capacity of DMD CD133+ cells. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The pelvic floor muscles: muscle thickness in healthy and urinary-incontinent women measured by perineal ultrasonography with reference to the effect of pelvic floor training. Estrogen receptor studies

    DEFF Research Database (Denmark)

    Bernstein, Inge Thomsen

    1997-01-01

    demonstrated that the striated periurethral muscles and the pelvic floor muscles are of paramount importance for the closure function. This emphasizes the importance of well-functioning pelvic floor muscles to obtain continence, and probably explains the rationale for the effect of pelvic floor training...... in treating urinary incontinence. This study presents a review of the literature on female urinary incontinence, continence mechanisms, pelvic floor muscles, and pelvic floor training. Furthermore, a review of the literature on estrogen receptors in the pelvic floor muscles is given. Perineal ultrasonography...... the effect of pelvic floor training. Additionally, a study of the Pelvic floor muscles was performed to assess the presence of estrogen receptors. Muscle thickness seems to decrease with age. In women over age 60 years, a significantly thinner pelvic floor muscle was found compared to younger women...

  7. The oculomotor system of decapod cephalopods: eye muscles, eye muscle nerves, and the oculomotor neurons in the central nervous system.

    Science.gov (United States)

    Budelmann, B U; Young, J Z

    1993-04-29

    Fourteen extraocular eye muscles are described in the decapods Loligo and Sepioteuthis, and thirteen in Sepia; they are supplied by four eye muscle nerves. The main action of most of the muscles is a linear movement of the eyeball, only three muscles produce strong rotations. The arrangement, innervation and action of the decapod eye muscles are compared with those of the seven eye muscles and seven eye muscle nerves in Octopus. The extra muscles in decapods are attached to the anterior and superior faces of the eyes. At least, the anterior muscles, and presumably also the superior muscles, are concerned with convergent eye movements for binocular vision during fixation and capture of prey by the tentacles. The remaining muscles are rather similar in the two cephalopod groups. In decapods, the anterior muscles include conjunctive muscles; these cross the midline and each presumably moves both eyes at the same time during fixation. In the squids Loligo and Sepioteuthis there is an additional superior conjunctive muscle of perhaps similar function. Some of the anterior muscles are associated with a narrow moveable plate, the trochlear cartilage; it is attached to the eyeball by trochlear membranes. Centripetal cobalt fillings showed that all four eye muscle nerves have fibres that originate from somata in the ipsilateral anterior lateral pedal lobe, which is the oculomotor centre. The somata of the individual nerves show different but overlapping distributions. Bundles of small presumably afferent fibres were seen in two of the four nerves. They do not enter the anterior lateral pedal lobe but run to the ventral magnocellular lobe; some afferent fibres enter the brachio-palliovisceral connective and run perhaps as far as the palliovisceral lobe.

  8. Differential response of early and late phases of skeletal muscle regeneration to exogenous supply of testosterone and insulin

    International Nuclear Information System (INIS)

    Qazi, I.; Riaz, S.

    2005-01-01

    Effect of insulin and testosterone, separately and in combination on the regeneration of skeletal fibres within intact extensor digitorum longus (EDL) muscle grafts was studied in mice. It was found that intraperitoneal supply of 2 mg/100 g body weight/day of testosterone accelerated skeletal muscle regeneration within ten days of grafting. The regenerated muscle fibres in such grafts attained significantly higher % recovery of average cross-sectional area (ACSA) than in the controls grafts. Later on, provision of the hormone did not further promote growth of the regenerated muscle fibres. In the insulin-supplemented animals (2 units/100 g body weight/day) the grafts showed hyperplasia and atrophy of the regenerating muscle fibres during the first and the last study periods, respectively. Histological and morphometric analysis of 20-day old EDL muscle regenerates that were supplied with either insulin or testosterone during the first 10-days of transplantation followed by hormone administration in reverse sequence revealed valuable differences. Supply of testosterone and then insulin escalated the process of regeneration and growth so that the ACSA of the regenerated muscle fibres in such grafts turned out to be significantly higher that in the corresponding stages of control, or when only insulin and only testosterone were administered. Reverse sequence of the administration of the hormones exerted negative effects and the regenerated muscle fibres showed various levels of atrophy. These results indicate the importance of identification of particular phases of the process of skeletal muscle regeneration that may be more responsive to anabolic agents. Proper sequence of administration of the hormones to promote the regeneration of skeletal muscle fibres in whole EDL muscle autotransplants is also explained. (author)

  9. Validity of Estimation of Pelvic Floor Muscle Activity from Transperineal Ultrasound Imaging in Men.

    Directory of Open Access Journals (Sweden)

    Ryan E Stafford

    Full Text Available To investigate the relationship between displacement of pelvic floor landmarks observed with transperineal ultrasound imaging and electromyography of the muscles hypothesised to cause the displacements.Three healthy men participated in this study, which included ultrasound imaging of the mid-urethra, urethra-vesical junction, ano-rectal junction and bulb of the penis. Fine-wire electromyography electrodes were inserted into the puborectalis and bulbocavernosus muscles and a transurethral catheter electrode recorded striated urethral sphincter electromyography. A nasogastric sensor recorded intra-abdominal pressure. Tasks included submaximal and maximal voluntary contractions, and Valsalva. The relationship between each of the parameters measured from ultrasound images and electromyography or intra-abdominal pressure amplitudes was described with nonlinear regression.Strong, non-linear relationships were calculated for each predicted landmark/muscle pair for submaximal contractions (R2-0.87-0.95. The relationships between mid-urethral displacement and striated urethral sphincter electromyography, and bulb of the penis displacement and bulbocavernosus electromyography were strong during maximal contractions (R2-0.74-0.88. Increased intra-abdominal pressure prevented shortening of puborectalis, which resulted in weak relationships between electromyography and anorectal and urethravesical junction displacement during all tasks.Displacement of landmarks in transperineal ultrasound imaging provides meaningful measures of activation of individual pelvic floor muscles in men during voluntary contractions. This method may aid assessment of muscle function or feedback for training.

  10. Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for cross-bridge induced thin filament activation

    Science.gov (United States)

    Vandenboom, Rene; Hannon, James D; Sieck, Gary C

    2002-01-01

    We tested the hypothesis that force-velocity history modulates thin filament activation, as assessed by the rate of force redevelopment after shortening (+dF/dtR). The influence of isotonic force on +dF/dtR was assessed by imposing uniform amplitude (2.55 to 2.15 μm sarcomere−1) but different speed releases to intact frog muscle fibres during fused tetani. Each release consisted of a contiguous ramp- and step-change in length. Ramp speed was changed from release to release to vary fibre shortening speed from 1.00 (2.76 ± 0.11 μm half-sarcomere−1 s−1) to 0.30 of maximum unloaded shortening velocity (Vu), thereby modulating isotonic force from 0 to 0.34 Fo, respectively. The step zeroed force and allowed the fibre to shorten unloaded for a brief period of time prior to force redevelopment. Although peak force redevelopment after different releases was similar, +dF/dtR increased by 81 ± 6% (P < 0.05) as fibre shortening speed was reduced from 1.00 Vu. The +dF/dtR after different releases was strongly correlated with the preceding isotonic force (r = 0.99, P < 0.001). Results from additional experiments showed that the slope of slack test plots produced by systematically increasing the step size that followed each ramp were similar. Thus, isotonic force did not influence Vu (mean: 2.84 ± 0.10 μm half-sarcomere−1 s−1, P < 0.05). We conclude that isotonic force modulates +dF/dtR independent of change in Vu, an outcome consistent with a cooperative influence of attached cross-bridges on thin filament activation that increases cross-bridge attachment rate without alteration to cross-bridge detachment rate. PMID:12205189

  11. Increased recovery rates of phosphocreatine and inorganic phosphate after isometric contraction in oxidative muscle fibres and elevated hepatic insulin resistance in homozygous carriers of the A-allele of FTO rs9939609

    DEFF Research Database (Denmark)

    Grunnet, Louise Groth; Brøns, Charlotte; Jacobsen, Stine

    2009-01-01

    9939609 A-allele was associated with elevated fasting blood glucose and plasma insulin, hepatic insulin resistance and shorter recovery halftimes of phosphocreatine (PCr) and inorganic phosphate (Pi) after exercise in a primarily type I muscle. These relationships - except for fasting insulin - remained...... or mitochondrially encoded genes in skeletal muscle during rest. Conclusion. Increased energy efficiency - and potentially increased mitochondrial coupling - as suggested by faster recovery rates of PCr and Pi in oxidative muscle fibres may contribute to the increased risk of obesity and type 2 diabetes...

  12. Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro.

    Science.gov (United States)

    Kim, Kyoungtae; Keller, Thomas C S

    2002-01-07

    Smooth muscle cells use an actin-myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.

  13. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor

    International Nuclear Information System (INIS)

    Zijta, F.M.; Froeling, M.; Paardt, M.P. van der; Bipat, S.; Nederveen, A.J.; Stoker, J.; Lakeman, M.M.E.; Montauban van Swijndregt, A.D.; Strijkers, G.J.

    2011-01-01

    To prospectively determine the feasibility of diffusion tensor imaging (DTI) with fibre tractography as a tool for the three-dimensional (3D) visualisation of normal pelvic floor anatomy. Five young female nulliparous subjects (mean age 28 ± 3 years) underwent DTI at 3.0T. Two-dimensional diffusion-weighted axial spin-echo echo-planar (SP-EPI) pulse sequence of the pelvic floor was performed, with additional T2-TSE multiplanar sequences for anatomical reference. Fibre tractography for visualisation of predefined pelvic floor and pelvic wall muscles was performed offline by two observers, applying a consensus method. Three eigenvalues (λ1, λ2, λ3), fractional anisotropy (FA) and mean diffusivity (MD) were calculated from the fibre trajectories. In all subjects fibre tractography resulted in a satisfactory anatomical representation of the pubovisceral muscle, perineal body, anal - and urethral sphincter complex and internal obturator muscle. Mean FA values ranged from 0.23 ± 0.02 to 0.30 ± 0.04, MD values from 1.30 ± 0.08 to 1.73 ± 0.12 x 10- 3 mm 2 /s. Muscular structures in the superficial layer of the pelvic floor could not be satisfactorily identified. This study demonstrates the feasibility of visualising the complex three-dimensional pelvic floor architecture using 3T-DTI with fibre tractography. DTI of the deep female pelvic floor may provide new insights into pelvic floor disorders. (orig.)

  14. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor

    Energy Technology Data Exchange (ETDEWEB)

    Zijta, F.M. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Onze Lieve Vrouwe Gasthuis, Department of Radiology, Amsterdam (Netherlands); Froeling, M. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Eindhoven University of Technology, Biomedical NMR, Department of Biomedical Engineering, Eindhoven (Netherlands); Paardt, M.P. van der; Bipat, S.; Nederveen, A.J.; Stoker, J. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Lakeman, M.M.E. [University of Amsterdam, Department of Gynaecology, Academic Medical Center, Amsterdam (Netherlands); Montauban van Swijndregt, A.D. [Onze Lieve Vrouwe Gasthuis, Department of Radiology, Amsterdam (Netherlands); Strijkers, G.J. [Eindhoven University of Technology, Biomedical NMR, Department of Biomedical Engineering, Eindhoven (Netherlands)

    2011-06-15

    To prospectively determine the feasibility of diffusion tensor imaging (DTI) with fibre tractography as a tool for the three-dimensional (3D) visualisation of normal pelvic floor anatomy. Five young female nulliparous subjects (mean age 28 {+-} 3 years) underwent DTI at 3.0T. Two-dimensional diffusion-weighted axial spin-echo echo-planar (SP-EPI) pulse sequence of the pelvic floor was performed, with additional T2-TSE multiplanar sequences for anatomical reference. Fibre tractography for visualisation of predefined pelvic floor and pelvic wall muscles was performed offline by two observers, applying a consensus method. Three eigenvalues ({lambda}1, {lambda}2, {lambda}3), fractional anisotropy (FA) and mean diffusivity (MD) were calculated from the fibre trajectories. In all subjects fibre tractography resulted in a satisfactory anatomical representation of the pubovisceral muscle, perineal body, anal - and urethral sphincter complex and internal obturator muscle. Mean FA values ranged from 0.23 {+-} 0.02 to 0.30 {+-} 0.04, MD values from 1.30 {+-} 0.08 to 1.73 {+-} 0.12 x 10-{sup 3} mm{sup 2}/s. Muscular structures in the superficial layer of the pelvic floor could not be satisfactorily identified. This study demonstrates the feasibility of visualising the complex three-dimensional pelvic floor architecture using 3T-DTI with fibre tractography. DTI of the deep female pelvic floor may provide new insights into pelvic floor disorders. (orig.)

  15. Automated image segmentation of haematoxylin and eosin stained skeletal muscle cross-sections

    DEFF Research Database (Denmark)

    Liu, F; Mackey, AL; Srikuea, R

    2013-01-01

    of two major steps: (1) A learning-based seed detection method to find the geometric centres of the muscle fibres, and (2) a colour gradient repulsive balloon snake deformable model that adopts colour gradient in Luv colour space. Automatic quantification of muscle fibre cross-sectional areas using...

  16. Regulation and role of hormone-sensitive lipase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2004-01-01

    the effects of contractions and adrenaline on HSL activity are partially additive. In line with the view that the two stimuli act by different mechanisms, training increases contraction-mediated HSL activation but diminishes adrenaline-mediated HSL activation in muscle. In conclusion, HSL is present...... fibre types, being higher in oxidative fibres than in glycolytic fibres. When analysed under conditions optimal for HSL, neutral lipase activity in muscle can be stimulated by adrenaline as well as by contractions. These increases are abolished by the presence of anti-HSL antibody during analysis....... Moreover, immunoprecipitation with affinity-purified anti-HSL antibody causes similar reductions in muscle HSL protein concentration and in measured neutral lipase responses to contractions. The immunoreactive HSL in muscle is stimulated by adrenaline via beta-adrenergic activation of c...

  17. FibreBags vs. FibreCaps for acid and neutral detergent fibre analysis

    OpenAIRE

    Koivisto , Jason

    2003-01-01

    International audience; A new procedure for determining acid detergent fibre and neutral detergent fibre (ADF and NDF) was developed to reduce the need for filtration and to allow for batch processing of forage samples. The FibreBag system is an economically necessary evolution of the earlier FibreCap system. The purpose of this enquiry was to determine if the FibreBag is a suitable replacement for the FibreCap. The FibreBag method produced very similar results to the FibreCap system of analy...

  18. Development of rigor mortis is not affected by muscle volume.

    Science.gov (United States)

    Kobayashi, M; Ikegaya, H; Takase, I; Hatanaka, K; Sakurada, K; Iwase, H

    2001-04-01

    There is a hypothesis suggesting that rigor mortis progresses more rapidly in small muscles than in large muscles. We measured rigor mortis as tension determined isometrically in rat musculus erector spinae that had been cut into muscle bundles of various volumes. The muscle volume did not influence either the progress or the resolution of rigor mortis, which contradicts the hypothesis. Differences in pre-rigor load on the muscles influenced the onset and resolution of rigor mortis in a few pairs of samples, but did not influence the time taken for rigor mortis to reach its full extent after death. Moreover, the progress of rigor mortis in this muscle was biphasic; this may reflect the early rigor of red muscle fibres and the late rigor of white muscle fibres.

  19. Human skeletal muscle glycogen utilization in exhaustive exercise

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik Daa

    2011-01-01

    Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis...... to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. ....... that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, VO2 max = 68 ± 5 ml kg-1 min-1, mean ± SD...

  20. Allergic Interstitial Nephritis Manifesting as a Striated Nephrogram

    Directory of Open Access Journals (Sweden)

    Irfan Moinuddin

    2015-01-01

    Full Text Available Allergic interstitial nephritis (AIN is an underdiagnosed cause of acute kidney injury (AKI. Guidelines suggest that AIN should be suspected in a patient who presents with an elevated serum creatinine and a urinalysis that shows white cells, white cell casts, or eosinophiluria. Drug-induced AIN is suspected if AKI is temporally related to the initiation of a new drug. However, patients with bland sediment and normal urinalysis can also have AIN. Currently, a definitive diagnosis of AIN is made by renal biopsy which is invasive and fraught with risks such as bleeding, infection, and hematoma. Additionally, it is frequently unclear when a kidney biopsy should be undertaken. We describe a biopsy proven case of allergic interstitial nephritis which manifested on contrast enhanced Magnetic Resonance Imaging (MRI as a striated nephrogram. Newer and more stable macrocyclic gadolinium contrast agents have a well-demonstrated safety profile. Additionally, in the presentation of AKI, gadolinium contrast agents are safe to administer in patients who demonstrate good urine output and a downtrending creatinine. We propose that the differential for a striated nephrogram may include AIN. In cases in which the suspicion for AIN is high, this diagnostic consideration may be further characterized by contrast enhanced MRI.

  1. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles.

    Science.gov (United States)

    Wernig, A; Zweyer, M; Irintchev, A

    2000-01-15

    1. Pretreatment of muscles with ionising radiation enhances tissue formation by transplanted myoblasts but little is known about the effects on muscle function. We implanted myoblasts from an expanded, male-donor-derived, culture (i28) into X-ray irradiated (16 Gy) or irradiated and damaged soleus muscles of female syngeneic mice (Balb/c). Three to 6 months later the isometric contractile properties of the muscles were studied in vitro, and donor nuclei were visualised in muscle sections with a Y chromosome-specific DNA probe. 2. Irradiated sham-injected muscles had smaller masses than untreated solei and produced less twitch and tetanic force (all by about 18 %). Injection of 106 myoblasts abolished these deficiencies and innervation appeared normal. 3. Cryodamage of irradiated solei produced muscle remnants with few (1-50) or no fibres. Additional myoblast implantation led to formation of large muscles (25 % above normal) containing numerous small-diameter fibres. Upon direct electrical stimulation, these muscles produced considerable twitch (53 % of normal) and tetanic forces (35 % of normal) but innervation was insufficient as indicated by weak nerve-evoked contractions and elevated ACh sensitivity. 4. In control experiments on irradiated muscles, reinnervation was found to be less complete after botulinum toxin paralysis than after nerve crush indicating that proliferative arrest of irradiated Schwann cells may account for the observed innervation deficits. 5. Irradiation appears to be an effective pretreatment for improving myoblast transplantation. The injected cells can even produce organised contractile tissue replacing whole muscle. However, impaired nerve regeneration limits the functional performance of the new muscle.

  2. Effect of thoracic x-irradiation on glucose-6-phosphate dehydrogenase activity of the pectoral muscle of guinea pig

    International Nuclear Information System (INIS)

    Bhatavdekar, J.M.; Shah, V.C.

    1981-01-01

    The histochemical distribution of glucose-6-phosphate dehydrogenase (G6PD) was observed in the major pectoral muscle of a guinea pig that had received 240 R thoracic X-irradiation. The irradiation effects were studied at 24, 48 and 72 hrs after X-irradiation. Type I fibres of the pectoral muscle were deeply stained showing high activity whereas type II fibres demonstrated minimum enzyme activity. The intermediate fibres had medium levels of G6PD activity. Type II fibres showed more staining at 24 and 48 hrs as compared with control muscle. However, at 72 hrs all three fibre types showed a marked inhibition of G6PD activity. The significance of these changes suggests that muscle G6PD metabolism generally altered after irradiation, but the specific nature of these changes and their causes still remain unclear. (author)

  3. Morphometry, ultrastructure, myosin isoforms, and metabolic capacities of the "mini muscles" favoured by selection for high activity in house mice.

    Science.gov (United States)

    Guderley, Helga; Houle-Leroy, Philippe; Diffee, Gary M; Camp, Dana M; Garland, Theodore

    2006-07-01

    Prolonged selective breeding of mice (Mus musculus) for high levels of voluntary wheel running has favoured an unusual phenotype ("mini muscles"), apparently caused by a single Mendelian recessive allele, in which most hind-limb muscles are markedly reduced in mass, but have increased mass-specific activities of mitochondrial enzymes. We examined whether these changes reflect changes in fibre size, number or ultrastructure in normal and "mini-muscle" mice within the two (of four) selectively bred lines (lab designations L3 and L6) that exhibit the phenotype at generations 26 and 27. In both lines, the gastrocnemius and plantaris muscles are smaller in mass (by >50% and 20%, respectively) in affected individuals. The mass-specific activities of mitochondrial enzymes in the gastrocnemius and plantaris muscles were increased in the mini phenotype in both lines, with stronger effects in the gastrocnemius muscle. In the gastrocnemius, the % myosin heavy chain (MHC) IIb was reduced by 50% in L3 and by 30% in L6, whereas the % MHC IIa and I were higher, particularly in L3. Fibre number in the plantaris muscle did not significantly differ between mini and normal muscles, although muscle mass was a significant positive correlate of fibre number. Small fibres were more abundant in mini than normal muscles in L3. Mitochondrial volume density was significantly higher in mini than normal muscle fibres in L3, but not in L6. Microscopy revealed a surprising attribute of the mini muscles: an abundance of small, minimally differentiated, myofibril-containing cells positioned in a disorderly fashion, particularly in the surface layer. We hypothesise that these unusual cells may be satellite cells or type IIb fibres that did not complete their differentiation. Together, these observations suggest that mice with the mini phenotype have reduced numbers of type IIb fibres in many of their hind-limb muscles, leading to a decrease in mass and an increase in mass-specific aerobic capacity

  4. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation.

    Science.gov (United States)

    Pette, Dirk; Sketelj, Janez; Skorjanc, Dejan; Leisner, Elmi; Traub, Irmtrud; Bajrović, Fajko

    2002-01-01

    Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.

  5. Histological study of human sublingual gland with special emphasis on intercalated and striated ducts

    International Nuclear Information System (INIS)

    Rana, R.; Minhas, L.A.; Mubarik, A.

    2012-01-01

    Objective: To study the histomorphological characteristics of human sublingual gland, specially of intercalated and striated ducts. Study design: Descriptive study Place and duration of study: Army Medical College from Jan 2002 to Dec 2002 Materials and methods: Fifteen sublingual glands (right and left) from postmortem cases were obtained from District Headquarter Hospital Rawalpindi, within twelve hours of death. Five micrometer thick sections were made and stained with Haematoxylin and Eosin (H and E). Morphology of intercalated and striated ducts was studied and their number was counted. Results: The mean number of intercalated ducts in the right gland 'a'and 'b' parts, and in the left gland 'a' and 'b' parts was 1.45+-0.14, 1.39+-.009, 1.31+-0.11 and 1.18+-0.10 respectively. The mean diameter of intercalated ducts in the same parts was 19.76+-0.44 micro m, 20.6+-0.53 micro m, 20.34+-0.49 micro m and 19.84+-0.98 micro m respectively. The mean number of striated ducts in the right gland ''a'' and ''b'' parts, and in the left gland ''a'' and ''b'' parts was 0.55+-.008, 0.57+-.008, 0.80+-0.14 and 0.80+-0.14 while mean diameter of striated ducts in the right gland ''a'' and ''b'' parts, and in the left gland ''a'' and ''b'' parts was 49.90+-4.70 micro m, 53.23+-2.50 micro m, 61.68+-3.93 micro m and 57.73+-2.85 micro m respectively. Conclusion: The difference between the mean number and diameter of the ducts of right and left glands was statistically insignificant. (author)

  6. Effect of ageing on the myosin heavy chain composition of the human sternocleidomastoid muscle.

    Science.gov (United States)

    Meznaric, M; Eržen, I; Karen, P; Cvetko, E

    2018-03-01

    The myosin heavy chain (MyHC) composition of ageing limb muscles is transformed into a slower phenotype and expresses fast-twitch fibre type atrophy, presumably due to age-related motor unit remodelling and a change in the patterns of physical activity. It is not known if ageing affects the sternocleidomastoid muscle (SCM) in a similar way. The goal of the study was to analyze the MyHC composition and the size of muscle fibres in the ageing SCM by immunohistochemical methods and quantitative analysis and stereology using our own software for morphometry. We hypothesize that with ageing the MyHC composition of SCM transforms similarly as in ageing limb muscles, but the size of the muscle fibres is less effected as in limb muscles. The study was performed on the autopsy samples of the SCM in 12 older males. The results were compared with those published in our previous study on 15 young adult males. An ageing SCM transforms into a slower MyHC profile: the percentage of slow-twitch fibres is enhanced (numerical proportion 44.6 vs. 31.5%, Pfibres is diminished (numerical proportion 14.1 vs. 26.8%, Pfast-twitch fibres expressing MyHC-2a and 2x is smaller (50.6 vs. 63.5%, Pfibres expressing the fastest myosin isoform MyHC-2x is smaller too (19.0 vs. 34.5%, Pfibres expressing the fastest MyHC-2x provide circumstantial evidence for: (i) more fast-twitch than slow-twitch motor units being lost; and (ii) reinnervation by the surviving motor units. There appears to be no significant influence on muscle fibre size, which is congruent with relatively unchanged SCM activity during life. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Differential satellite cell density of type I and II fibres with lifelong endurance running in old men

    DEFF Research Database (Denmark)

    Mackey, Abigail; Karlsen, A; Couppé, C

    2014-01-01

    AIM: To investigate the influence of lifelong endurance running on the satellite cell pool of type I and type II fibres in healthy human skeletal muscle. METHODS: Muscle biopsies were collected from 15 healthy old trained men (O-Tr) who had been running 43 ± 16 (mean ± SD) kilometres a week for 28...... ± 9 years. Twelve age-matched untrained men (O-Un) and a group of young trained and young untrained men were recruited for comparison. Frozen sections were immunohistochemically stained for Pax7, type I myosin and laminin, from which fibre area, the number of satellite cells, and the relationship......-Un. A strong positive relationship between fibre size and satellite cell content was detected in trained individuals. In line with a history of myofibre repair, a greater number of fibres with centrally located myonuclei were detected in O-Tr. CONCLUSION: Lifelong endurance training (i) does not deplete...

  8. Extracellular adenosine initiates rapid arteriolar vasodilation induced by a single skeletal muscle contraction in hamster cremaster muscle.

    Science.gov (United States)

    Ross, G A; Mihok, M L; Murrant, C L

    2013-05-01

    Recent studies suggest that adenosine (ADO) can be produced extracellularly in response to skeletal muscle contraction. We tested the hypothesis that a single muscle contraction produces extracellular ADO rapidly enough and in physiologically relevant concentrations to be able to contribute to the rapid vasodilation that occurs at the onset of muscle contraction. We stimulated four to five skeletal muscle fibres in the anaesthetized hamster cremaster preparation in situ and measured the change in diameter of arterioles at a site of overlap with the stimulated muscle fibres before and after a single contraction (stimulus frequencies: 4, 20 and 60 Hz; 250 ms train duration). Muscle fibres were stimulated in the absence and presence of non-specific ADO membrane receptor antagonists 8-phenyltheophylline (8-PT, 10(-6) M) or xanthine amine congener (XAC, 10(-6) M) or an inhibitor of an extracellular source of ADO, ecto-5'-nucleotidase inhibitor α,β-methylene adenosine 5'-diphosphate (AMPCP, 10(-5) M). We observed that the dilatory event at 4 s following a single contraction was significantly inhibited at all stimulus frequencies by an average of 63.9 ± 2.6% by 8-PT. The 20-s dilatory event that occurred at 20 and 60 Hz was significantly inhibited by 53.6 ± 2.6 and 73.8 ± 2.3% by 8-PT and XAC respectively. Further, both the 4- and 20-s dilatory events were significantly inhibited by AMPCP by 78.6 ± 6.6 and 67.1 ± 1.5%, respectively, at each stimulus frequency tested. Our data show that ADO is produced extracellularly during a single muscle contraction and that it is produced rapidly enough and in physiologically relevant concentrations to contribute to the rapid vasodilation in response to muscle contraction. © 2013 The Authors Acta Physiologica © 2013 Scandinavian Physiological Society.

  9. IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice.

    Science.gov (United States)

    Lynch, G S; Cuffe, S A; Plant, D R; Gregorevic, P

    2001-04-01

    Although insulin-like growth factor-I (IGF-I) has been proposed for use by patients suffering from muscle wasting conditions, few studies have investigated the functional properties of dystrophic skeletal muscle following IGF-I treatment. 129P1 ReJ-Lama2(dy) (129 ReJ dy/dy) dystrophic mice suffer from a deficiency in the structural protein, laminin, and exhibit severe muscle wasting and weakness. We tested the hypothesis that 4 weeks of IGF-I treatment ( approximately 2 mg/kg body mass, 50 g/h via mini-osmotic pump, subcutaneously) would increase the mass and force producing capacity of skeletal muscles from dystrophic mice. IGF-I treatment increased the mass of the extensor digitorum longus (EDL) and soleus muscles of dystrophic mice by 20 and 29%, respectively, compared with untreated dystrophic mice (administered saline-vehicle only). Absolute maximum force (P(o)) of the EDL and soleus muscle was increased by 40 and 32%, respectively, following IGF-I treatment. Specific P(o) (sP(o)) was increased by 23% in the EDL muscles of treated compared with untreated mice, but in the soleus muscle sP(o) was unchanged. IGF-I treatment increased the proportion of type IIB and type IIA fibres and decreased the proportion of type I fibres in the EDL muscles of dystrophic mice. In the soleus muscles of dystrophic mice, IGF-I treatment increased the proportion of type IIA fibres and decreased the proportion of type I fibres. Average fibre cross-sectional area was increased in the EDL and soleus muscles of treated compared with untreated mice. We conclude that IGF-I treatment ameliorates muscle wasting and improves the functional properties of skeletal muscles of dystrophic mice. The findings have important implications for the role of IGF-I in ameliorating muscle wasting associated with the muscular dystrophies.

  10. Nandrolone decanoate treatment affects sarcoplasmic reticulum Ca(2+) ATPase function in skinned rat slow- and fast-twitch fibres.

    Science.gov (United States)

    Bouhlel, Aicha; Joumaa, Wissam H; Léoty, Claude

    2003-09-01

    The effects of anabolic-androgenic steroid administration on the function of the sarcoplasmic reticulum (SR) pump were investigated in chemically skinned fibres from the extensor digitorum longus (EDL) and soleus muscles of sedentary rats. Twenty male rats were divided into two groups, one group received an intramuscular injection of nandrolone decanoate (15 mg x kg(-1)) weekly for 8 weeks, the second received similar weekly doses of vehicle (sterile peanut oil). Compared with control muscles, nandrolone decanoate treatment reduced SR Ca(2+) loading in EDL and soleus fibres by 49% and 29%, respectively. In control and treated muscles, the rate of Ca(2+) leakage depended on the quantity of Ca(2+) loaded. Furthermore, for similar SR Ca(2+) contents, the Ca(2+) leakage rate was not significantly modified by nandrolone decanoate treatment. Nandrolone decanoate treatment thus affects Ca (2+) uptake by the SR in a fibre-type dependent manner.

  11. Altered cross-bridge properties in skeletal muscle dystrophies

    Directory of Open Access Journals (Sweden)

    Aziz eGuellich

    2014-10-01

    Full Text Available Force and motion generated by skeletal muscle ultimately depends on the cyclical interaction of actin with myosin. This mechanical process is regulated by intracellular Ca2+ through the thin filament-associated regulatory proteins i.e.; troponins and tropomyosin. Muscular dystrophies are a group of heterogeneous genetic affections characterized by progressive degeneration and weakness of the skeletal muscle as a consequence of loss of muscle tissue which directly reduces the number of potential myosin cross-bridges involved in force production. Mutations in genes responsible for skeletal muscle dystrophies have been shown to modify the function of contractile proteins and cross-bridge interactions. Altered gene expression or RNA splicing or post-translational modifications of contractile proteins such as those related to oxidative stress, may affect cross-bridge function by modifying key proteins of the excitation-contraction coupling. Micro-architectural change in myofilament is another mechanism of altered cross-bridge performance. In this review, we provide an overview about changes in cross-bridge performance in skeletal muscle dystrophies and discuss their ultimate impacts on striated muscle function.

  12. Sarcoglycan complex in masseter and sternocleidomastoid muscles of baboons: an immunohistochemical study

    Directory of Open Access Journals (Sweden)

    G. Cutroneo

    2015-06-01

    Full Text Available The sarcoglycan complex consists of a group of single-pass transmembrane glycoproteins that are essential to maintain the integrity of muscle membranes. Any mutation in each sarcoglycan gene causes a series of recessive autosomal dystrophin-positive muscular dystrophies. Negative fibres for sarcoglycans have never been found in healthy humans and animals. In this study, we have investigated whether the social ranking has an influence on the expression of sarcoglycans in the skeletal muscles of healthy baboons. Biopsies of masseter and sternocleidomastoid muscles were processed for confocal immunohistochemical detection of sarcoglycans. Our findings showed that baboons from different social rankings exhibited different sarcoglycan expression profiles. While in dominant baboons almost all muscles were stained for sarcoglycans, only 55% of muscle fibres showed a significant staining. This different expression pattern is likely to be due to the living conditions of these primates. Sarcoglycans which play a key role in muscle activity by controlling contractile forces may influence the phenotype of muscle fibres, thus determining an adaptation to functional conditions. We hypothesize that this intraspecies variation reflects an epigenetic modification of the muscular protein network that allows baboons to adapt progressively to a different social status.

  13. Caspase-12 ablation preserves muscle function in the mdx mouse

    Science.gov (United States)

    Moorwood, Catherine; Barton, Elisabeth R.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin. Several downstream consequences of dystrophin deficiency are triggers of endoplasmic reticulum (ER) stress, including loss of calcium homeostasis, hypoxia and oxidative stress. During ER stress, misfolded proteins accumulate in the ER lumen and the unfolded protein response (UPR) is triggered, leading to adaptation or apoptosis. We hypothesized that ER stress is heightened in dystrophic muscles and contributes to the pathology of DMD. We observed increases in the ER stress markers BiP and cleaved caspase-4 in DMD patient biopsies, compared with controls, and an increase in multiple UPR pathways in muscles of the dystrophin-deficient mdx mouse. We then crossed mdx mice with mice null for caspase-12, the murine equivalent of human caspase-4, which are resistant to ER stress. We found that deleting caspase-12 preserved mdx muscle function, resulting in a 75% recovery of both specific force generation and resistance to eccentric contractions. The compensatory hypertrophy normally found in mdx muscles was normalized in the absence of caspase-12; this was found to be due to decreased fibre sizes, and not to a fibre type shift or a decrease in fibrosis. Fibre central nucleation was not significantly altered in the absence of caspase-12, but muscle fibre degeneration found in the mdx mouse was reduced almost to wild-type levels. In conclusion, we have identified heightened ER stress and abnormal UPR signalling as novel contributors to the dystrophic phenotype. Caspase-4 is therefore a potential therapeutic target for DMD. PMID:24879640

  14. Striated Muscle as Implantation Site for Transplanted Pancreatic Islets

    Directory of Open Access Journals (Sweden)

    Daniel Espes

    2011-01-01

    Full Text Available Islet transplantation is an attractive treatment for selected patients with brittle type 1 diabetes. In the clinical setting, intraportal transplantation predominates. However, due to extensive early islet cell death, the quantity of islets needed to restore glucose homeostasis requires in general a minimum of two donors. Moreover, the deterioration of islet function over time results in few insulin-independent patients after five-year followup. Specific obstacles to the success of islet transplantation include site-specific concerns for the liver such as the instant blood mediated inflammatory reaction, islet lipotoxicity, low oxygen tension, and poor revascularization, impediments that have led to the developing interest for alternative implantation sites over recent years. Within preclinical settings, several alternative sites have now been investigated and proven favorable in various aspects. Muscle is considered a very promising site and has physiologically properties and technical advantages that could make it optimal for islet transplantation.

  15. Meat physical quality and muscle fibre properties of rabbit meat as affected by the sire breed, season, parity order and gender in an organic production system

    Directory of Open Access Journals (Sweden)

    A. Dalle Zotte

    2016-06-01

    Full Text Available The aim of the study was to evaluate some meat physical quality and muscle fibre properties of rabbit meat when considering 2 sire breeds (SB: Vienna Blue [VB]; Burgundy Fawn [BF]; both coloured and slow-growing breeds, several parity orders (P: 1, 2, ≥3, gender (G, and 2 slaughter seasons (SS: spring, summer in an organic production system. The effect of storage time (ST at frozen state (2 mo at –20°C of Longissimus lumborum (LL meat was also evaluated. Animals were slaughtered when they reached 2.8 kg of live weight. Then, pH and L*a*b* colour values of Biceps femoris (BF and LL muscles, water loss and Warner-Bratzler shear force of LL and hind leg (HL meat, and the fibre typing and enzymatic activity of LL muscle were analysed. LL meat from females showed higher b* values than males (0.04 vs. –1.25; P<0.05. Significant (P<0.05 SB×P, SB×G and P×G interactions were observed for the b* value of LL: VB and BF crossbreds presented a higher b* value when born as P≥3 and P2 respectively, VB females showed higher b* value than VB males, and P2 and P≥3 produced males with a significantly lower b* value. HL thawing losses were significantly (P<0.05 higher in rabbits slaughtered in summer than in those slaughtered in spring, whereas the opposite result was obtained for LL meat (P<0.01. Cooking loss of LL meat was significantly lower in P2 group than P≥3 group (P<0.05. The lactate dehydrogenase activity in LL muscle was higher in VB than in BF crossbreds (930 vs. 830 IU; P<0.05, albeit not supported by differences in fibre type distribution. The ST significantly (P<0.01 reduced pH, a* and b* colour values, and increased lightness of LL meat. It was concluded that the crossbreeds derived from VB and BF genotypes and farmed organically did not show remarkable sexual dimorphism, considering their elder slaughter age than rabbits reared under intensive conditions. Physical quality of meat was mainly affected by slaughter season, indicating

  16. Topography of Striate-Extrastriate Connections in Neonatally Enucleated Rats

    Directory of Open Access Journals (Sweden)

    Robyn J. Laing

    2013-01-01

    Full Text Available It is known that retinal input is necessary for the normal development of striate cortex and its corticocortical connections, but there is little information on the role that retinal input plays in the development of retinotopically organized connections between V1 and surrounding visual areas. In nearly all lateral extrastriate areas, the anatomical and physiological representation of the nasotemporal axis of the visual field mirrors the representation of this axis in V1. To determine whether the mediolateral topography of striate-extrastriate projections is preserved in neonatally enucleated rats, we analyzed the patterns of projections resulting from tracer injections placed at different sites along the mediolateral axis of V1. We found that the correlation between the distance from injection sites to the lateral border of V1 and the distance of the labeling patterns in area 18a was strong in controls and much weaker in enucleates. Data from pairs of injections in the same animal revealed that the separation of area 18a projection fields for a given separation of injection sites was more variable in enucleated than in control rats. Our analysis of single and double tracer injections suggests that neonatal bilateral enucleation weakens, but not completely abolishes, the mediolateral topography in area 18a.

  17. Isolated abscess in superior rectus muscle in a child

    Directory of Open Access Journals (Sweden)

    Sushank Ashok Bhalerao

    2015-01-01

    Full Text Available Pyomyositis is a primary bacterial infection of striated muscles nearly always caused by Staphylococcus aureus. Development of the intramuscular abscess involving the extra-ocular muscles (EOMs remains an extremely rare process. We herein present a case of isolated EOM pyomyositis involving superior rectus muscle in a 2-year male child who was referred with complaints of swelling in left eye (LE and inability to open LE since last 1-month. Orbital computed tomography (CT scan showed a well-defined, hypo-dense, peripheral rim-enhancing lesion in relation to left superior rectus muscle suggestive of left superior rectus abscess. The abscess was drained through skin approach. We concluded that pyomyositis of EOM should be considered in any patient presenting with acute onset of orbital inflammation and characteristic CT or magnetic resonance imaging features. Management consists of incision and drainage coupled with antibiotic therapy.

  18. Myosin heavy chain profile of equine gluteus medius muscle following prolonged draught-exercise training and detraining.

    Science.gov (United States)

    Serrano, A L; Rivero, J L

    2000-04-01

    Fourteen 4-year old Andalusian mares were used to examine the plasticity of myosin heavy chain (MHC) composition in horse skeletal muscle with heavy draught-exercise training and detraining. Seven horses underwent a training programme based on carriage exercises for 8 months. Afterwards, they were kept in paddocks for 3 months. The remaining seven animals were used as control horses. Three gluteus medius muscle biopsies were removed at depths of 20, 40 and 60 mm from each horse before (month 0), during the training (months 3 and 8) and after detraining (month 11). Myosin heavy chain composition was analysed by electrophoresis and immunohistochemically with anti-MHC monoclonal antibodies. Fibre areas, oxidative capacity and capillaries were studied histochemically. After 8 months of training, MHC-IIX and IIX fibres decreased whereas MHC-I and type I and I + IIA fibres increased. Neither MHC-IIA nor the percentage of IIA fibres changed when the data were considered as a whole, but the proportion of MHC-IIA increased in the superficial region of the muscle after 8 months of training. Mean areas of type II fibres were not affected by training and detraining, but the cross-sectional of type I fibres increased after 3 month of training and not further increases were recorded afterward. The percentage of high-oxidative capacity fibres and the number of capillaries per mm2 increased with training. Most of these muscular adaptations reverted after detraining. These results indicate that long term draught-exercise training induces a reversible transition of MHC composition in equine muscle in the order IIX --> IIA --> I. The physiological implication of these changes is an impact on the velocity of shortening and fatigue resistance of muscle fibres.

  19. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle.

    Science.gov (United States)

    Baylor, S M; Hollingworth, S

    2003-08-15

    Experiments were carried out to compare the amplitude and time course of Ca2+ release from the sarcoplasmic reticulum (SR) in intact slow-twitch and fast-twitch mouse fibres. Individual fibres within small bundles were injected with furaptra, a low-affinity, rapidly responding Ca2+ indicator. In response to a single action potential at 16 degrees C, the peak amplitude and half-duration of the change in myoplasmic free [Ca2+] (Delta[Ca2+]) differed significantly between fibre types (slow-twitch: peak amplitude, 9.4 +/- 1.0 microM (mean +/- S.E.M.); half-duration, 7.7 +/- 0.6 ms; fast-twitch: peak amplitude 18.5 +/- 0.5 microM; half-duration, 4.9 +/- 0.3 ms). SR Ca2+ release was estimated from Delta[Ca2+] with a computational model that calculated Ca2+ binding to the major myoplasmic Ca2+ buffers (troponin, ATP and parvalbumin); buffer concentrations and reaction rate constants were adjusted to reflect fibre-type differences. In response to an action potential, the total concentration of released Ca2+ (Delta[CaT]) and the peak rate of Ca2+ release ((d/dt)Delta[CaT]) differed about 3-fold between the fibre types (slow-twitch: Delta[CaT], 127 +/- 7 microM; (d/dt)Delta[CaT], 70 +/- 6 microM ms-1; fast-twitch: Delta[CaT], 346 +/- 6 microM; (d/dt)Delta[CaT], 212 +/- 4 microM ms-1). In contrast, the half-duration of (d/dt)Delta[CaT] was very similar in the two fibre types (slow-twitch, 1.8 +/- 0.1 ms; fast-twitch, 1.6 +/- 0.0 ms). When fibres were stimulated with a 5-shock train at 67 Hz, the peaks of (d/dt)Delta[CaT] in response to the second and subsequent shocks were much smaller than that due to the first shock; the later peaks, expressed as a fraction of the amplitude of the first peak, were similar in the two fibre types (slow-twitch, 0.2-0.3; fast-twitch, 0.1-0.3). The results support the conclusion that individual SR Ca2+ release units function similarly in slow-twitch and fast-twitch mammalian fibres.

  20. A three-dimensional study of the musculotendinous and neurovascular architecture of the gracilis muscle: application to functional muscle transfer.

    Science.gov (United States)

    Fattah, A Y; Ravichandiran, K; Zuker, R M; Agur, A M R

    2013-09-01

    Muscle transfer is used to restore function typically using a single vector of contraction. Although its use with two independently functional muscular units has been employed, in order to refine this concept we endeavoured to detail the intramuscular anatomy of gracilis, a muscle commonly used for transfer. A novel method to capture intramuscular fibre bundle and neurovascular arrangement was used to create a three-dimensional (3D) digital model that allowed for accurate representation of the relationships between all the intramuscular structures to facilitate flap planning. Twenty gracilis muscles were harvested from 15 cadavers. All components of the muscle were digitised using a Microscribe G2 Digitiser. The data were exported to the 3D animation software Autodesk(®) Maya(®) 2012 whereupon it was rendered into a 3D model that can be exported as static images or videos. Neurovascular anatomy and muscle architecture were analysed from these models, and fibre bundle length, pennation angle and physiological cross-sectional area were calculated from digitised data. The muscle is composed of a variable number of distinct longitudinal segments with muscle fibres spiralling onto the tendon. The main artery to the muscle has three main intramuscular patterns of distribution. The venae comitantes drain discrete zones without intramuscular macroscopic anastomoses. The minor pedicles form an anastomotic chain along the anterior border of the muscle and all vessels were biased to the deep surface. The nerve is related to the vessels in a variable manner and both run between longitudinal muscular compartments. The digitisation technique may be used to advance knowledge of intramuscular architecture and it demonstrated that the gracilis muscle is comprised of four to seven muscular compartments, each representing a functional unit that may theoretically be differentially activated and could be harnessed for more sophisticated muscle transfers. Copyright © 2013 British

  1. Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury.

    Science.gov (United States)

    Smith, H K; Plyley, M J; Rodgers, C D; McKee, N H

    1999-07-01

    The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.

  2. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne

    2007-01-01

    BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...... caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  3. Cytoskeleton, L-type Ca2+ and stretch activated channels in injured skeletal muscle

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2013-07-01

    Full Text Available The extra-sarcomeric cytoskeleton (actin microfilaments and anchoring proteins is involved in maintaining the sarco-membrane stiffness and integrity and in turn the mechanical stability and function of the intra- and sub-sarcoplasmic proteins. Accordingly, it regulates Ca2+ entry through the L-type Ca2+ channels and the mechano-sensitivity of the stretch activated channels (SACs. Moreover, being intra-sarcomeric cytoskeleton bound to costameric proteins and other proteins of the sarcoplasma by intermediate filaments, as desmin, it integrates the properties of the sarcolemma with the skeletal muscle fibres contraction. The aim of this research was to compare the cytoskeleton, SACs and the ECC alterations in two different types of injured skeletal muscle fibres: by muscle denervation and mechanical overload (eccentric contraction. Experiments on denervation were made in isolated Soleus muscle of male Wistar rats; forced eccentric-contraction (EC injury was achieved in Extensor Digitorum Longus muscles of Swiss mice. The method employed conventional intracellular recording with microelectrodes inserted in a single fibre of an isolated skeletal muscle bundle. The state of cytoskeleton was evaluated by recording SAC currents and by evaluating the resting membrane potential (RMP value determined in current-clamp mode. The results demonstrated that in both injured skeletal muscle conditions the functionality of L-type Ca2+ current, ICa, was affected. In parallel, muscle fibres showed an increase of the resting membrane permeability and of the SAC current. These issues, together with a more depolarized RMP are an index of altered cytoskeleton. In conclusion, we found a symilar alteration of ICa, SAC and cytoskeleton in both injured skeletal muscle conditions.

  4. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...

  5. The expression of the skeletal muscle force-length relationship in vivo: a simulation study.

    Science.gov (United States)

    Winter, Samantha L; Challis, John H

    2010-02-21

    The force-length relationship is one of the most important mechanical characteristics of skeletal muscle in humans and animals. For a physiologically realistic joint range of motion and therefore range of muscle fibre lengths only part of the force-length curve may be used in vivo, i.e. only a section of the force-length curve is expressed. A generalised model of a mono-articular muscle-tendon complex was used to examine the effect of various muscle architecture parameters on the expressed section of the force-length relationship for a 90 degrees joint range of motion. The parameters investigated were: the ratio of tendon resting length to muscle fibre optimum length (L(TR):L(F.OPT)) (varied from 0.5 to 11.5), the ratio of muscle fibre optimum length to average moment arm (L(F.OPT):r) (varied from 0.5 to 5), the normalised tendon strain at maximum isometric force (c) (varied from 0 to 0.08), the muscle fibre pennation angle (theta) (varied from 0 degrees to 45 degrees) and the joint angle at which the optimum muscle fibre length occurred (phi). The range of values chosen for each parameter was based on values reported in the literature for five human mono-articular muscles with different functional roles. The ratios L(TR):L(F.OPT) and L(F.OPT):r were important in determining the amount of variability in the expressed section of the force-length relationship. The modelled muscle operated over only one limb at intermediate values of these two ratios (L(TR):L(F.OPT)=5; L(F.OPT):r=3), whether this was the ascending or descending limb was determined by the precise values of the other parameters. It was concluded that inter-individual variability in the expressed section of the force-length relationship is possible, particularly for muscles with intermediate values of L(TR):L(F.OPT) and L(F.OPT):r such as the brachialis and vastus lateralis. Understanding the potential for inter-individual variability in the expressed section is important when using muscle models to

  6. Clinical classification of cancer cachexia: phenotypic correlates in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Neil Johns

    Full Text Available BACKGROUND: Cachexia affects the majority of patients with advanced cancer and is associated with a reduction in treatment tolerance, response to therapy, and duration of survival. One impediment towards the effective treatment of cachexia is a validated classification system. METHODS: 41 patients with resectable upper gastrointestinal (GI or pancreatic cancer underwent characterisation for cachexia based on weight-loss (WL and/or low muscularity (LM. Four diagnostic criteria were used >5%WL, >10%WL, LM, and LM+>2%WL. All patients underwent biopsy of the rectus muscle. Analysis included immunohistochemistry for fibre size and type, protein and nucleic acid concentration, Western blots for markers of autophagy, SMAD signalling, and inflammation. FINDINGS: Compared with non-cachectic cancer patients, patients with LM or LM+>2%WL, mean muscle fibre diameter was reduced by about 25% (p = 0.02 and p = 0.001 respectively. No significant difference in fibre diameter was observed if patients had WL alone. Regardless of classification, there was no difference in fibre number or proportion of fibre type across all myosin heavy chain isoforms. Mean muscle protein content was reduced and the ratio of RNA/DNA decreased in patients with either >5%WL or LM+>2%WL. Compared with non-cachectic patients, SMAD3 protein levels were increased in patients with >5%WL (p = 0.022 and with >10%WL, beclin (p = 0.05 and ATG5 (p = 0.01 protein levels were increased. There were no differences in phospho-NFkB or phospho-STAT3 levels across any of the groups. CONCLUSION: Muscle fibre size, biochemical composition and pathway phenotype can vary according to whether the diagnostic criteria for cachexia are based on weight loss alone, a measure of low muscularity alone or a combination of the two. For intervention trials where the primary end-point is a change in muscle mass or function, use of combined diagnostic criteria may allow identification of a more

  7. Muscle contraction and force

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Risbo, Jens; Pierzynowski, Stefan G.

    2008-01-01

    Muscle contraction studies often focus solely on myofibres and the proteins known to be involved in the processes of sarcomere shortening and cross-bridge cycling, but skeletal muscle also comprises a very elaborate ancillary network of capillaries, which not only play a vital role in terms...... of nutrient delivery and waste product removal, but are also tethered to surrounding fibres by collagen "wires". This paper therefore addresses aspects of the ancillary network of skeletal muscle at both a microscopic and functional level in order to better understand its role holistically as a considerable...

  8. Properties of Ca2+ release induced by clofibric acid from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Endo, Makoto

    2001-01-01

    To characterize the effect of clofibric acid (Clof) on the Ca2+ release mechanism in the sarcoplasmic reticulum (SR) of skeletal muscle, we analysed the properties of Clof-induced Ca2+ release under various conditions using chemically skinned skeletal muscle fibres of the mouse.Clof (>0.5 mM) released Ca2+ from the SR under Ca2+-free conditions buffered with 10 mM EGTA (pCa >8).Co-application of ryanodine and Clof at pCa >8 but not ryanodine alone reduced the Ca2+ uptake capacity of the SR. Thus, Ca2+ release induced by Clof at pCa >8 must be a result of the activation of the ryanodine receptor (RyR).At pCa >8, (i) Clof-induced Ca2+ release was inhibited by adenosine monophosphate (AMP), (ii) the inhibitory effect of Mg2+ on the Clof-induced Ca2+ release was saturated at about 1 mM, and (iii) Clof-induced Ca2+ release was not inhibited by procaine (10 mM). These results indicate that Clof may activate the RyR-Ca2+ release channels in a manner different from Ca2+-induced Ca2+ release (CICR).In addition to this unique mode of opening, Clof also enhanced the CICR mode of opening of RyR-Ca2+ release channels.Apart from CICR, a high concentration of Ca2+ might also enhance the unique mode of opening by Clof.These results suggest that some features of Ca2+ release activated by Clof are similar to those of physiological Ca2+ release (PCR) in living muscle cells and raise the possibility that Clof may be useful in elucidating the mechanism of PCR in skeletal muscle. PMID:11606311

  9. Mechanisms Explaining Muscle Fatigue and Muscle Pain in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a Review of Recent Findings.

    Science.gov (United States)

    Gerwyn, Morris; Maes, Michael

    2017-01-01

    Here, we review potential causes of muscle dysfunction seen in many patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) such as the effects of oxidative and nitrosative stress (O&NS) and mitochondrial impairments together with reduced heat shock protein production and a range of metabolic abnormalities. Several studies published in the last few years have highlighted the existence of chronic O&NS, inflammation, impaired mitochondrial function and reduced heat shock protein production in many patients with ME/CFS. These studies have also highlighted the detrimental effects of chronically elevated O&NS on muscle functions such as reducing the time to muscle fatigue during exercise and impairing muscle contractility. Mechanisms have also been revealed by which chronic O&NS and or impaired heat shock production may impair muscle repair following exercise and indeed the adaptive responses in the striated muscle to acute and chronic increases in physical activity. The presence of chronic O&NS, low-grade inflammation and impaired heat shock protein production may well explain the objective findings of increased muscle fatigue, impaired contractility and multiple dimensions of exercise intolerance in many patients with ME/CFS.

  10. Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration.

    Science.gov (United States)

    Attia, Mohamed; Maurer, Marie; Robinet, Marieke; Le Grand, Fabien; Fadel, Elie; Le Panse, Rozen; Butler-Browne, Gillian; Berrih-Aknin, Sonia

    2017-12-01

    Myasthenia gravis (MG) is a neuromuscular disease caused in most cases by anti-acetyl-choline receptor (AChR) autoantibodies that impair neuromuscular signal transmission and affect skeletal muscle homeostasis. Myogenesis is carried out by muscle stem cells called satellite cells (SCs). However, myogenesis in MG had never been explored. The aim of this study was to characterise the functional properties of myasthenic SCs as well as their abilities in muscle regeneration. SCs were isolated from muscle biopsies of MG patients and age-matched controls. We first showed that the number of Pax7+ SCs was increased in muscle sections from MG and its experimental autoimmune myasthenia gravis (EAMG) mouse model. Myoblasts isolated from MG muscles proliferate and differentiate more actively than myoblasts from control muscles. MyoD and MyoG were expressed at a higher level in MG myoblasts as well as in MG muscle biopsies compared to controls. We found that treatment of control myoblasts with MG sera or monoclonal anti-AChR antibodies increased the differentiation and MyoG mRNA expression compared to control sera. To investigate the functional ability of SCs from MG muscle to regenerate, we induced muscle regeneration using acute cardiotoxin injury in the EAMG mouse model. We observed a delay in maturation evidenced by a decrease in fibre size and MyoG mRNA expression as well as an increase in fibre number and embryonic myosin heavy-chain mRNA expression. These findings demonstrate for the first time the altered function of SCs from MG compared to control muscles. These alterations could be due to the anti-AChR antibodies via the modulation of myogenic markers resulting in muscle regeneration impairment. In conclusion, the autoimmune attack in MG appears to have unsuspected pathogenic effects on SCs and muscle regeneration, with potential consequences on myogenic signalling pathways, and subsequently on clinical outcome, especially in the case of muscle stress.

  11. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise

    Science.gov (United States)

    Gundersen, Kristian

    2011-01-01

    Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine

  12. A physiologically based, multi-scale model of skeletal muscle structure and function

    Directory of Open Access Journals (Sweden)

    Oliver eRöhrle

    2012-09-01

    Full Text Available Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle's response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modelling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle's response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modelling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibres and their grouping. Together with a well-established model of motor unit recruitment, the electro-physiological behaviour of single muscle fibres within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenisation. The effect of homogenisation has been investigated by varying the number of embedded skeletal muscle fibres and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the Tibialis Anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modelling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behaviour ranging from motor unit recruitment to force generation and fatigue.

  13. Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions.

    Science.gov (United States)

    Lindinger, Michael I; Leung, Matthew; Trajcevski, Karin E; Hawke, Thomas J

    2011-06-01

    Controversy exists as to whether mammalian skeletal muscle is capable of volume regulation in response to changes in extracellular osmolarity despite evidence that muscle fibres have the required ion transport mechanisms to transport solute and water in situ. We addressed this issue by studying the ability of skeletal muscle to regulate volume during periods of induced hyperosmotic stress using single, mouse extensor digitorum longus (EDL) muscle fibres and intact muscle (soleus and EDL). Fibres and intact muscles were loaded with the fluorophore, calcein, and the change in muscle fluorescence and width (single fibres only) used as a metric of volume change. We hypothesized that skeletal muscle exposed to increased extracellular osmolarity would elicit initial cellular shrinkage followed by a regulatory volume increase (RVI) with the RVI dependent on the sodium–potassium–chloride cotransporter (NKCC). We found that single fibres exposed to a 35% increase in extracellular osmolarity demonstrated a rapid, initial 27–32% decrease in cell volume followed by a RVI which took 10-20 min and returned cell volume to 90–110% of pre-stimulus values. Within intact muscle, exposure to increased extracellular osmolarity of varying degrees also induced a rapid, initial shrinkage followed by a gradual RVI, with a greater rate of initial cell shrinkage and a longer time for RVI to occur with increasing extracellular tonicities. Furthermore, RVI was significantly faster in slow-twitch soleus than fast-twitch EDL. Pre-treatment of muscle with bumetanide (NKCC inhibitor) or ouabain (Na+,K+-ATPase inhibitor), increased the initial volume loss and impaired the RVI response to increased extracellular osmolarity indicating that the NKCC is a primary contributor to volume regulation in skeletal muscle. It is concluded that mouse skeletal muscle initially loses volume then exhibits a RVI when exposed to increases in extracellular osmolarity. The rate of RVI is dependent on the

  14. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  15.  Age-related changes of skeletal muscles: physiology, pathology and regeneration

    Directory of Open Access Journals (Sweden)

    Aleksandra Ławniczak

    2012-06-01

    Full Text Available  This review provides a short presentation of the aging-related changes of human skeletal muscles. The aging process is associated with the loss of skeletal muscle mass (sarcopenia and strength. This results from fibre atrophy and apoptosis, decreased regeneration capacity, mitochondrial dysfunction, gradual reduction of the number of spinal cord motor neurons, and local and systemic metabolic and hormonal alterations. The latter involve age-related decrease of the expression and activity of some mitochondrial and cytoplasmic enzymes, triacylglycerols and lipofuscin accumulation inside muscle fibres, increased proteolytic activity, insulin resistance and decreased serum growth hormone and IGF-1 concentrations. Aging of the skeletal muscles is also associated with a decreased number of satellite cells and their proliferative activity. The age-related reduction of skeletal muscle mass and function may be partially prevented by dietary restriction and systematic physical exercises.

  16. Reflexive contraction of the levator palpebrae superioris muscle to involuntarily sustain the effective eyelid retraction through the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle: verification with evoked electromyography.

    Science.gov (United States)

    Ban, Ryokuya; Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Midori; Yuzuriha, Shunsuke

    2010-01-01

    We have proposed a hypothetical mechanism to involuntarily sustain the effective eyelid retraction, which consists of not only voluntary but also reflexive contractions of the levator palpebrae superior muscle (LPSM). Voluntary contraction of fast-twitch fibres of the LPSM stretches the mechanoreceptors in Mueller's muscle to evoke trigeminal proprioception, which induces continuous reflexive contraction of slow-twitch fibres of the LPSM through the trigeminal proprioceptive nerve fibres innervating the mechanoreceptors in Mueller's muscle via the oculomotor neurons, as a tonic trigemino-oculomotor reflex. In the common skeletal mixed muscles, electrical stimulation of the proprioceptive nerve, which apparently connects the mechanoreceptors in muscle spindles to the motoneurons, induces the electromyographic response as the Hoffmann reflex. To verify the presence of the trigemino-oculomotor reflex, we confirmed whether intra-operative electrical simulation of the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle evokes an electromyographic response in the LPSM under general anaesthesia in 12 patients. An ipsilateral, phasic, short-latency response (latency: 2.8+/-0.3 ms) was induced in the ipsilateral LPSM in 10 of 12 subjects. As successful induction of the short-latency response in the ipsilateral LPSM corresponds to the Hoffmann reflex in the common skeletal mixed muscles, the present study is the first electromyographic verification of the presence of the monosynaptic trigemino-oculomotor reflex to induce reflexive contraction of the LPSM. The presence of the trigemino-oculomotor reflex may elucidate the unexplainable blepharoptosis due to surgery, trauma and tumour, all of which may damage the trigeminal proprioceptive nerve fibres to impair the trigemino-oculomotor reflex. Copyright (c) 2008. Published by Elsevier Ltd.

  17. Contrôle hormonal des caractéristiques des fibres musculaires après la naissance

    OpenAIRE

    Cassar-Malek, Isabelle; Listrat, Anne; Picard, Brigitte

    1998-01-01

    Après la naissance, la croissance et les propriétés contractiles et métaboliques des fibres musculaires sont soumises à une régulation endocrinienne complexe. A l’exception des glucocorticoïdes, la plupart des hormones présente une action anabolique sur le tissu musculaire. Leur influence sur les caractéristiques des fibres est cependant très différente. Ainsi, les hormones somatotropes affectent peu la composition en fibres des muscles. La GH, comme l’IGF-1, régulerait cependant l’expression...

  18. Chronic progressive external ophthalmoplegia: II. A qualitative and quantitative electronmicroscopy study of skeletal muscles

    Directory of Open Access Journals (Sweden)

    Elza Dias-Tosta

    1988-06-01

    Full Text Available This study quantifies the maior electron microscopic changes in limb muscle biopsies from 31 out of 34 patients with the syndrome of chronic progressive external ophthalmoplegia. Patients were divided into three clinical groups - A 10 sporadic cases with muscle weakness only; B 9 familial cases with muscle weakness only; C 15 cases with muscle weakness and one or more of the following features: pigmentary retinopathy, cerebellar ataxia, pyramidal signs and peripheral neuropathy. Electron microscopic mitochondrial abnormalities were found in all groups (8 patients from group A, 3 from group B, 14 from group C. Quantitative measurements of certain muscle fibre constituents, using a point-counting technique, revealed decreased myofibril volume-fractions and increased volume-fractions of mitochondria, glycogen and lipid in some biopsies from each group. Mitochondrial volume-fractions correlated positively with lipid content, the proportion of type 1 fibres, and the percentage of fibres with increased oxidative enzyme activity. The three groups defined clinically showed no significant differences in terms of the relative proportions of these measured constituents.

  19. Effect of the bendiocarb on the ultrastructure of rabbit skeletal muscle

    Directory of Open Access Journals (Sweden)

    Katarína Holovská

    2017-01-01

    Full Text Available Bendiocarb belongs to the group of carbamate insecticides that inhibit acetylcholinesterase. In agriculture, it is used to control a variety of insects, therefore it is important to examine every potential aspect of its toxicology. The aim of this study was to observe the effect of bendiocarb on the ultrastructure of the skeletal muscle in rabbits. Rabbits in all experimental groups received capsules of bendiocarb (96% Bendiocarb, Bayer, Germany per os daily at a dose of 5 mg/kg body weight. Samples of skeletal muscles were collected on days 10 and 20. On day 10 of the experiment, muscle fibres were not affected consistently. The observed changes were moderate and focal. Electron microscopy revealed dilatation of sarcoplasmic reticulum, and myofilament disorganization. On day 20 of the experiment, the ultrastructural changes in muscle fibres were more intense and more frequent. The most important alteration was the disruption of the sarcomeres due to the lysis of both thick and thin myofilaments. However, in the unchanged regions of muscle fibres a prominent mitochondrial swelling was observed. Many mitochondria lacked cristae and thus appeared as large membrane-bound cytoplasmic vesicles. The results presented in this study indicate that bendiocarb affects the ultrastructure of skeletal muscles. The intensity of damage (dissolution of myofilaments and disruption of sarcomeres was related to the duration of administration of bendiocarb.

  20. PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY

    Directory of Open Access Journals (Sweden)

    Ida Eržen

    2011-05-01

    Full Text Available The present contribution provides an overview of stereological methods applied in the skeletal muscle research at the Institute of Anatomy of the Medical Faculty in Ljubljana. Interested in skeletal muscle plasticity we studied three different topics: (i expression of myosin heavy chain isoforms in slow and fast muscles under experimental conditions, (ii frequency of satellite cells in young and old human and rat muscles and (iii capillary supply of rat fast and slow muscles. We analysed the expression of myosin heavy chain isoforms within slow rat soleus and fast extensor digitorum longus muscles after (i homotopic and heterotopic transplantation of both muscles, (ii low frequency electrical stimulation of the fast muscle and (iii transposition of the fast nerve to the slow muscle. The models applied were able to turn the fast muscle into a completely slow muscle, but not vice versa. One of the indicators for the regenerative potential of skeletal muscles is its satellite cell pool. The estimated parameters, number of satellite cells per unit fibre length, corrected to the reference sarcomere length (Nsc/Lfib and number of satellite cells per number of nuclei (myonuclei and satellite cell nuclei (Nsc/Nnucl indicated that the frequency of M-cadherin stained satellite cells declines in healthy old human and rat muscles compared to young muscles. To access differences in capillary densities among slow and fast muscles and slow and fast muscle fibres, we have introduced Slicer and Fakir methods, and tested them on predominantly slow and fast rat muscles. Discussing three different topics that require different approach, the present paper reflects the three decades of the development of stereological methods: 2D analysis by simple point counting in the 70's, the disector in the 80's and virtual spatial probes in the 90's. In all methods the interactive computer assisted approach was utilised.

  1. Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes?

    DEFF Research Database (Denmark)

    Larsen, Steen; Ara, I; Rabøl, R

    2009-01-01

    and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsies from arm and leg were obtained. Fibre type, as well as O(2) flux capacity of saponin-permeabilised muscle fibres were measured, the latter by high resolution respirometry, in patients with type 2 diabetes...

  2. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  3. Properties of hemp fibre polymer composites - An optimisation of fibre properties using novel defibration methods and fibre characterisation

    DEFF Research Database (Denmark)

    Thygesen, Anders

    2006-01-01

    Characterization of hemp fibres was carried out with fibres obtained with low handling damage and defibration damage to get an indication of how strong cellulose based fibres that can be produced from hemp. Comparison was made with hemp yarn producedunder traditional conditions where damage...... obtained by steam explosion of hemp fibres prior defibrated with pectin degrading enzymes. The S2 layer in the fibre wall of the hemp fibres consisted of1-4 cellulose rich and lignin poor concentric layers constructed of ca. 100 nm thick lamellae. The microfibril angle showed values in the range 0......-10° for the main part of the S2-layer and 70-90° for the S1-layer. The microfibrils that are mainly parallelwith the fibre axis explain the high fibre stiffness, which in defibrated hemp fibres reached 94 GPa. The defibrated hemp fibres had higher fibre stiffness (88-94 GPa) than hemp yarn (60 GPa), which...

  4. MRI in occipital lobe infarcts: classification by involvement of the striate cortex

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, M. [Department of Radiology, Kumamoto University School of Medicine, Kumamoto (Japan)]|[Department of Radiology, Kumamoto Rousai Hospital, Kumamoto (Japan); Korogi, Y.; Takahashi, M. [Department of Radiology, Kumamoto University School of Medicine, Kumamoto (Japan); Kido, T.; Ikeda, O.; Morishita, S. [Department of Radiology, Kumamoto Rousai Hospital, Kumamoto (Japan)

    1998-11-01

    We reviewed the MRI studies of 25 patients with occipital lobe infarcts to clarify the distribution of infarcts in the posterior cerebral arterial territory, focussing on their relationship to the striate cortex. Visual field defects and MRI findings were also correlated in 16 patients. On coronal and/or sagittal images, the distribution of the infarct and its relationship to the striate cortex were classified. Involvement of the cortex of both upper and lower lips of the calcarine fissure was observed in 10 patients, and involvement of the lower lip alone in 15. The upper cortical lesions were always accompanied by lower cortical lesions. The visual field defects were complete hemianopia in nine patients, superior quadrantanopia in six and hemianopia with a preserved temporal crescent in one. All patients with superior quadrantanopia had involvement of the lower cortex alone; there were no cases of inferior quadrantanopia. The characteristic vascular anatomy, and poor development of the collateral circulation in the lower cortical area, may explain the vulnerability of this area to infarcts. (orig.) With 6 figs., 21 refs.

  5. Artificial muscle: facts and fiction.

    Science.gov (United States)

    Schaub, Marcus C

    2011-12-19

    Mechanical devices are sought to support insufficient or paralysed striated muscles including the failing heart. Nickel-titanium alloys (nitinol) present the following two properties: (i) super-elasticity, and (ii) the potential to assume different crystal structures depending on temperature and/or stress. Starting from the martensite state nitinol is able to resume the austenite form (state of low potential energy and high entropy) even against an external resistance. This one-way shape change is deployed in self-expanding vascular stents. Heating induces the force generating transformation from martensite to the austenite state while cooling induces relaxation back to the martensite state. This two-way shape change oscillating between the two states may be used in cyclically contracting support devices of silicon-coated nitinol wires. Such a contractile device sutured to the right atrium has been tested in vitro in a bench model and in vivo in sheep. The contraction properties of natural muscles, specifically of the myocardium, and the tight correlation with ATP production by oxidative phosphorylation in the mitochondria is briefly outlined. Force development by the nitinol device cannot be smoothly regulated as in natural muscle. Its mechanical impact is forced onto the natural muscle regardless of the actual condition with regard to metabolism and Ca2+-homeostasis. The development of artificial muscle on the basis of nitinol wires is still in its infancy. The nitinol artificial muscle will have to prove its viability in the various clinical settings.

  6. [Changes in titin and myosin heavy chain isoform composition in skeletal muscles of Mongolian gerbil (Meriones unguiculatus) after 12-day spaceflight].

    Science.gov (United States)

    Okuneva, A D; Vikhliantsev, I M; Shpagina, M D; Rogachevskiĭ, V V; Khutsian, S S; Poddubnaia, Z A; Grigor'ev, A I

    2012-01-01

    Changes of titin and myosin heavy chain isoform composition in skeletal muscles (m. soleus, m. gastrocnemius, m. tibialis anterior, m. psoas major) in Mongolian Gerbil (Meriones unguiculatus ) were investigated after 12-day spaceflight on board of Russian space vehicle "Foton-M3". In m. psoas and m. soleus in the gerbils from "Flight" group the expected increase in the content of fast myosin heavy chain isoforms (IIxd and IIa, respectively) were observed. No significant differences were found in the content of IIxd and IIa isoforms of myosin heavy chain in m. tibialis anterior in the gerbils from control group as compared to that in "Flight" group. An unexpected increase in the content of slow myosin heavy chain I isoform and a decrease in the content of fast IIx/d isoform in m. gastrocnemius of the gerbils from "Flight" group were observed. In skeletal muscles of the gerbils from "Flight" group the relative content of titin N2A-isoform was reduced (by 1,2-1,7 times), although the content of its NT-isoform, which was revealed in striated muscles of mammals in our experiments earlier, remained the same. When the content of titin N2A-isoform was decreased, no predictable abnormalities in sarcomeric structure and contractile ability of skeletal muscles in the gerbils from "Flight" group were found. An assumption on the leading role of titin NT-isoform in maintenance of structural and functional properties of striated muscles of mammals was made.

  7. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans

    DEFF Research Database (Denmark)

    Ara, I; Larsen, S; Stallknecht, Bente Merete

    2011-01-01

    was that fat oxidation during exercise might be differentially preserved in leg and arm muscles after weight loss.Methods:Indirect calorimetry was used to calculate fat and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsy samples were obtained from musculus...... deltoideus (m. deltoideus) and m. vastus lateralis muscles. Fibre-type composition, enzyme activity and O(2) flux capacity of saponin-permeabilized muscle fibres were measured, the latter by high-resolution respirometry.Results:During the graded exercise tests, peak fat oxidation during leg cycling...... and the relative workload at which it occurred (FatMax) were higher in PO and O than in C. During arm cranking, peak fat oxidation was higher in O than in C, and FatMax was higher in O than in PO and C. Similar fibre-type composition was found between groups. Plasma adiponectin was higher in PO than in C and O...

  8. Muscles, exercise and obesity

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Febbraio, Mark A

    2012-01-01

    During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines....... The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within...... the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal...

  9. Charge movements and transverse tubular ultrastructure in organ cultured skeletal muscle.

    Science.gov (United States)

    Cullen, M J; Hollingworth, S; Marshall, M W; Robson, E

    1990-04-01

    A study was made of charge movements and the transverse tubular systems in rat EDL and soleus muscle fibres maintained for up to five days in organ culture. In the cultured EDL muscle the maximum amount of charge moved was about one third of that in innervated muscle. Charge movements in innervated soleus fibres are small, less than 10 nC/microF, and difficult to resolve. They remain small following organ culturing. The ultrastructural study examined the concentration of junctional feet because of their proposed key role in excitation-contraction coupling. The general architecture of the triads and the spacing of the feet in both muscle types was largely unchanged by culturing. In cultured EDL muscles the small changes in feet concentration did not parallel the large fall in charge movement. The results reported here support a previous conclusion that, in mammalian muscle, there is not a simple relation between charge and feet. The stimulation of cultured soleus muscles with a fast twitch pattern of electrical activity produced no observable changes in morphology.

  10. Fibre tracking

    International Nuclear Information System (INIS)

    Gaillard, J.M.

    1994-03-01

    A large-size scintillating plastic fibre tracking detector was built as part of the upgrade of the UA2 central detector at the SPS proton-antiproton collider. The cylindrical fibre detector of average radius of 40 cm consisted of 60000 plastic fibres with an active length of 2.1 m. One of the main motivations was to improve the electron identification. The fibre ends were bunched to be coupled to read-out systems of image intensifier plus CCD, 32 in total. The quality and the reliability of the UA2 fibre detector performance exceeded expectations throughout its years of operation. A few examples of the use of image intensifiers and of scintillating fibres in biological instrumentation are described. (R.P.) 11 refs., 15 figs., 2 tabs

  11. Plasticity of human skeletal muscle: gene expression to in vivo function.

    Science.gov (United States)

    Harridge, Stephen D R

    2007-09-01

    Human skeletal muscle is a highly heterogeneous tissue, able to adapt to the different challenges that may be placed upon it. When overloaded, a muscle adapts by increasing its size and strength through satellite-cell-mediated mechanisms, whereby protein synthesis is increased and new nuclei are added to maintain the myonuclear domain. This process is regulated by an array of mechanical, hormonal and nutritional signals. Growth factors, such as insulin-like growth factor I (IGF-I) and testosterone, are potent anabolic agents, whilst myostatin acts as a negative regulator of muscle mass. Insulin-like growth factor I is unique in being able to stimulate both the proliferation and the differentiation of satellite cells and works as part of an important local repair and adaptive mechanism. Speed of movement, as characterized by maximal velocity of shortening (V(max)), is regulated primarily by the isoform of myosin heavy chain (MHC) contained within a muscle fibre. Human fibres can express three MHCs: MHC-I, -IIa and -IIx, in order of increasing V(max) and maximal power output. Training studies suggest that there is a subtle interplay between the MHC-IIa and -IIx isoforms, with the latter being downregulated by activity and upregulated by inactivity. However, switching between the two main isoforms appears to require significant challenges to a muscle. Upregulation of fast gene programs is caused by prolonged disuse, whilst upregulation of slow gene programs appears to require significant and prolonged activity. The potential mechanisms by which alterations in muscle composition are mediated are discussed. The implications in terms of contractile function of altering muscle phenotype are discussed from the single fibre to the whole muscle level.

  12. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    Science.gov (United States)

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-01-01

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143

  13. An Accessory Muscle of Pectoral Region: A Case Report

    Science.gov (United States)

    Bannur, B.M.; Mallashetty, Nagaraj; Endigeri, Preetish

    2013-01-01

    Among the variations of pectoral muscles, this case appears to be unique in the literature. This was a case of an accessory pectoral muscle which was located between pectoralis major and pectoralis minor muscles, which was discovered during a routine anatomy dissection. The accessory muscle originated from 6th and 7th ribs at costo-chondral junction, which travelled supero-laterally and inserted by fusing with fibres of pectoralis minor. This unusual muscle holds importance for surgeons while they perform dissectomies, in avoiding complications. PMID:24179919

  14. Fragmented esophageal smooth muscle contraction segments on high resolution manometry: a marker of esophageal hypomotility.

    Science.gov (United States)

    Porter, R F; Kumar, N; Drapekin, J E; Gyawali, C P

    2012-08-01

    Esophageal peristalsis consists of a chain of contracting striated and smooth muscle segments on high resolution manometry (HRM). We compared smooth muscle contraction segments in symptomatic subjects with reflux disease to healthy controls. High resolution manometry Clouse plots were analyzed in 110 subjects with reflux disease (50 ± 1.4 years, 51.5% women) and 15 controls (27 ± 2.1 years, 60.0% women). Using the 30 mmHg isobaric contour tool, sequences were designated fragmented if either smooth muscle contraction segment was absent or if the two smooth muscle segments were separated by a pressure trough, and failed if both smooth muscle contraction segments were absent. The discriminative value of contraction segment analysis was assessed. A total of 1115 swallows were analyzed (reflux group: 965, controls: 150). Reflux subjects had lower peak and averaged contraction amplitudes compared with controls (P value to HRM analysis. Specifically, fragmented smooth muscle contraction segments may be a marker of esophageal hypomotility. © 2012 Blackwell Publishing Ltd.

  15. Passive Muscle-Tendon Unit Gearing is Joint Dependent in Human Medial Gastrocnemius

    Directory of Open Access Journals (Sweden)

    Emma F Hodson-Tole

    2016-03-01

    Full Text Available Skeletal muscles change length and develop force both passively and actively. Gearing allows muscle fibre length changes to be uncoupled from those of the whole muscle-tendon unit. During active contractions this process allows muscles to operate at mechanically favorable conditions for power or economical force production. Here we ask whether gearing is constant in passive muscle; determining the relationship between fascicle and muscle-tendon unit length change in the bi-articular medial gastrocnemius and investigating the influence of whether motion occurs at the knee or ankle joint. Specifically, the same muscle-tendon unit length changes were elicited by rotating either the ankle or knee joint whilst simultaneously measuring fascicle lengths in proximal and distal muscle regions using B-mode ultrasound. In both the proximal and distal muscle region, passive gearing values differed depending on whether ankle or knee motion occurred. Fascicle length changes were greater with ankle motion, likely reflecting anatomical differences in proximal and distal passive tendinous tissues, as well as shape changes of the adjacent mono-articular soleus. This suggests that there is joint-dependent dissociation between the mechanical behaviour of muscle fibres and the muscle-tendon unit during passive joint motions that may be important to consider when developing accurate models of bi-articular muscles.

  16. The Influence of Fibre Content on the Performance of Steel Fibre ...

    African Journals Online (AJOL)

    The Influence of Fibre Content on the Performance of Steel Fibre Refractory Concrete. ... Little information is available on the effect of fibre content on refractory performance and in particular resistance to thermal shock. This study has examined the influence of fibre content of stainless steel melt extract fibres on the ...

  17. Measuring anisotropic muscle stiffness properties using elastography.

    Science.gov (United States)

    Green, M A; Geng, G; Qin, E; Sinkus, R; Gandevia, S C; Bilston, L E

    2013-11-01

    Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ = 0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Effects of BTS (N-benzyl-p-toluene sulphonamide), an inhibitor for myosin-actin interaction, on myofibrillogenesis in skeletal muscle cells in culture.

    Science.gov (United States)

    Kagawa, Maiko; Sato, Naruki; Obinata, Takashi

    2006-11-01

    Actin filaments align around myosin filaments in the correct polarity and in a hexagonal arrangement to form cross-striated structures. It has been postulated that this myosin-actin interaction is important in the initial phase of myofibrillogenesis. It was previously demonstrated that an inhibitor of actin-myosin interaction, BDM (2,3-butanedione monoxime), suppresses myofibril formation in muscle cells in culture. However, further study showed that BDM also exerts several additional effects on living cells. In this study, we further examined the role of actin-myosin interaction in myofibril assembly in primary cultures of chick embryonic skeletal muscle by applying a more specific inhibitor, BTS (N-benzyl-p-toluene sulphonamide), of myosin ATPase and actin-myosin interaction. The assembly of sarcomeric structures from myofibrillar proteins was examined by immunocytochemical methods with the application of BTS to myotubes just after fusion. Addition of BTS (10-50 microM) significantly suppressed the organization of actin and myosin into cross-striated structures. BTS also interfered in the organization of alpha-actinin, C-protein (or MyBP-C), and connectin (or titin) into ordered striated structures, though the sensitivity was less. Moreover, when myotubes cultured in the presence of BTS were transferred to a control medium, sarcomeric structures were formed in 2-3 days, indicating that the inhibitory effect of BTS on myotubes is reversible. These results show that actin-myosin interaction plays a critical role in the process of myofibrillogenesis.

  19. Oxidation of lignin in hemp fibres by laccase: effects on mechanical properties of hemp fibres and unidirectional fibre/epoxy composites

    DEFF Research Database (Denmark)

    Liu, Ming; Baum, Andreas; Odermatt, Jürgen

    2017-01-01

    Laccase activity catalyzes oxidation and polymerization of phenols. The effect of laccase treatment on the mechanical properties of hemp fibres and hemp fibre/epoxy composites was examined. Laccase treatment on top of 0.5% EDTA + 0.2% endo-polygalacturonase (EPG) treatments increased the mechanical...... properties of hemp fibres and fibre/epoxy composites. Comparing all fibre treatments, composites with 0.5% EDTA + 0.2% EPG + 0.5% laccase treated fibres had highest stiffness of 42 GPa and highest ultimate tensile strength (UTS) of 326 MPa at a fibre volume content of 50%. The thermal resistance of hemp...... hemp fibres and their composites were due to laccase catalyzed polymerization of lignin moieties in hemp fibres....

  20. Fibre Length Reduction in Natural Fibre-Reinforced Polymers during Compounding and Injection Moulding—Experiments Versus Numerical Prediction of Fibre Breakage

    Directory of Open Access Journals (Sweden)

    Katharina Albrecht

    2018-03-01

    Full Text Available To establish injection-moulded, natural fibre-reinforced polymers in the automotive industry, numerical simulations are important. To include the breakage behaviour of natural fibres in simulations, a profound understanding is necessary. In this study, the length and width reduction of flax and sisal fibre bundles were analysed experimentally during compounding and injection moulding. Further an optical analysis of the fibre breakage behaviour was performed via scanning electron microscopy and during fibre tensile testing with an ultra-high-speed camera. The fibre breakage of flax and sisal during injection moulding was modelled using a micromechanical model. The experimental and simulative results consistently show that during injection moulding the fibre length is not reduced further; the fibre length was already significantly reduced during compounding. For the mechanical properties of a fibre-reinforced composite it is important to overachieve the critical fibre length in the injection moulded component. The micromechanical model could be used to predict the necessary fibre length in the granules.

  1. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    Science.gov (United States)

    Hopmann, Ch.; Weber, M.; van Haag, J.; Schöngart, M.

    2015-05-01

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material's properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.

  2. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    International Nuclear Information System (INIS)

    Hopmann, Ch.; Weber, M.; Haag, J. van; Schöngart, M.

    2015-01-01

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material’s properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA

  3. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Haag, J. van; Schöngart, M. [Institute of Plastics Processing (IKV) at RWTH Aachen University, Pontstr. 49, 52062 Aachen (Germany)

    2015-05-22

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material’s properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.

  4. Objectivity of two methods of differentiating fibre types and repeatability of measurements by application of the TEMA image analysis system.

    Science.gov (United States)

    Henckel, P; Ducro, B; Oksbjerg, N; Hassing, L

    1998-01-01

    The objectivity of two of the most widely used methods for differentiation of fibre types, i.e. 1) the myosin ATP-ase method (Brooke and Kaiser, 1970a,b) and 2) the combined method, by which the myosin ATP-ase reaction is used to differentiate between fast and slow twitch fibres and NADH-tetrazolium reductase activity is used to identify the subgroups of fast twitch fibres (Ashmore and Doerr, 1970, Peter et al., 1972), was assessed in muscle samples from horses, calves and pigs. We also assessed the objectivity of the alpha-amylase-PAS preparation for the visualisation of capillaries (Andersen, 1975) in these species. For the purpose of reducing the time costs of histochemical analysis of muscle samples, we have developed an interactive image analysis system which is described. All analyses are performed on this system. In accordance with several other investigations, differences between the two methods of differentiating fibre types were found only for the relative distribution of the fast-twitch fibre subgroups (p 87%), the impact of differences in pre-requisites (varied degrees of overlap between the fibre types) for performing the differentiation by the combined method raises a question of the reliability of this method. Apparently, no general rules for comparison of results of distribution of the two subgroups of fast twitch fibres by the two methods are applicable. The alpha-amylase-PAS method was found to be a fairly objective method to identify capillaries in muscles from horses, calves and pigs. However, as capillarity described in combination with other traits to give an indication of diffusion characteristics is significantly influenced by person, it is recommended that the same person perform all the analysis of a project. In addition to the methodological results in this study, we have shown that by application of the TEMA image analysis system, which is more rapid compared with the time-consuming traditional method for evaluation of histochemical

  5. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle

    DEFF Research Database (Denmark)

    Christiansen, Danny; Murphy, Robyn M; Bangsbo, Jens

    2018-01-01

    ). A muscle sample was collected before (Pre) and after exercise (+0h, +3h) to quantify mRNA, indicators of oxidative stress (HSP27 protein in type I and II fibres, and catalase and HSP70 mRNA), metabolites, and α-AMPK Thr172 /α-AMPK, ACC Ser221 /ACC, CaMKII Thr287 /CaMKII, and PLBSer16 /PLB ratios in type I...

  6. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle

    Science.gov (United States)

    Baldwin, K. M.; Haddad, F.

    2001-01-01

    The goal of this mini-review is to summarize findings concerning the role that different models of muscular activity and inactivity play in altering gene expression of the myosin heavy chain (MHC) family of motor proteins in mammalian cardiac and skeletal muscle. This was done in the context of examining parallel findings concerning the role that thyroid hormone (T(3), 3,5,3'-triiodothyronine) plays in MHC expression. Findings show that both cardiac and skeletal muscles of experimental animals are initially undifferentiated at birth and then undergo a marked level of growth and differentiation in attaining the adult MHC phenotype in a T(3)/activity level-dependent fashion. Cardiac MHC expression in small mammals is highly sensitive to thyroid deficiency, diabetes, energy deprivation, and hypertension; each of these interventions induces upregulation of the beta-MHC isoform, which functions to economize circulatory function in the face of altered energy demand. In skeletal muscle, hyperthyroidism, as well as interventions that unload or reduce the weight-bearing activity of the muscle, causes slow to fast MHC conversions. Fast to slow conversions, however, are seen under hypothyroidism or when the muscles either become chronically overloaded or subjected to intermittent loading as occurs during resistance training and endurance exercise. The regulation of MHC gene expression by T(3) or mechanical stimuli appears to be strongly regulated by transcriptional events, based on recent findings on transgenic models and animals transfected with promoter-reporter constructs. However, the mechanisms by which T(3) and mechanical stimuli exert their control on transcriptional processes appear to be different. Additional findings show that individual skeletal muscle fibers have the genetic machinery to express simultaneously all of the adult MHCs, e.g., slow type I and fast IIa, IIx, and IIb, in unique combinations under certain experimental conditions. This degree of

  7. Strain in shock-loaded skeletal muscle and the time scale of muscular wobbling mass dynamics.

    Science.gov (United States)

    Christensen, Kasper B; Günther, Michael; Schmitt, Syn; Siebert, Tobias

    2017-10-16

    In terrestrial locomotion, muscles undergo damped oscillations in response to limb impacts with the ground. Muscles are also actuators that generate mechanical power to allow locomotion. The corresponding elementary contractile process is the work stroke of an actin-myosin cross-bridge, which may be forcibly detached by superposed oscillations. By experimentally emulating rat leg impacts, we found that full activity and non-fatigue must meet to possibly prevent forcible cross-bridge detachment. Because submaximal muscle force represents the ordinary locomotor condition, our results show that forcible, eccentric cross-bridge detachment is a common, physiological process even during isometric muscle contractions. We also calculated the stiffnesses of the whole muscle-tendon complex and the fibre material separately, as well as Young's modulus of the latter: 1.8 MPa and 0.75 MPa for fresh, fully active and passive fibres, respectively. Our inferred Young's modulus of the tendon-aponeurosis complex suggests that stiffness in series to the fibre material is determined by the elastic properties of the aponeurosis region, rather than the tendon material. Knowing these stiffnesses and the muscle mass, the complex' eigenfrequency for responses to impacts can be quantified, as well as the size-dependency of this time scale of muscular wobbling mass dynamics.

  8. Skeletal muscle and hormonal adaptation to physical training in the rat

    DEFF Research Database (Denmark)

    Henriksson, J; Svedenhag, J; Richter, Erik

    1985-01-01

    The main purpose of the present study was to test the hypothesis that adrenergic stimulation of muscle fibres during exercise is a major stimulus for the training-induced enhancement of skeletal muscle respiratory capacity. Therefore, Sprague-Dawley rats either underwent bilateral surgical ablati...

  9. Cardiac troponin T and fast skeletal muscle denervation in ageing.

    Science.gov (United States)

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan

    2017-10-01

    Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii

  10. Inactivation of the infragranular striate cortex broadens orientation tuning of supragranular visual neurons in the cat.

    Science.gov (United States)

    Allison, J D; Bonds, A B

    1994-01-01

    Intracortical inhibition is believed to enhance the orientation tuning of striate cortical neurons, but the origin of this inhibition is unclear. To examine the possible influence of ascending inhibitory projections from the infragranular layers of striate cortex on the orientation selectivity of neurons in the supragranular layers, we measured the spatiotemporal response properties of 32 supragranular neurons in the cat before, during, and after neural activity in the infragranular layers beneath the recorded cells was inactivated by iontophoretic administration of GABA. During GABA iontophoresis, the orientation tuning bandwidth of 15 (46.9%) supragranular neurons broadened as a result of increases in response amplitude to stimuli oriented about +/- 20 degrees away from the preferred stimulus angle. The mean (+/- SD) baseline orientation tuning bandwidth (half width at half height) of these neurons was 13.08 +/- 2.3 degrees. Their mean tuning bandwidth during inactivation of the infragranular layers increased to 19.59 +/- 2.54 degrees, an increase of 49.7%. The mean percentage increase in orientation tuning bandwidth of the individual neurons was 47.4%. Four neurons exhibited symmetrical changes in their orientation tuning functions, while 11 neurons displayed asymmetrical changes. The change in form of the orientation tuning functions appeared to depend on the relative vertical alignment of the recorded neuron and the infragranular region of inactivation. Neurons located in close vertical register with the inactivated infragranular tissue exhibited symmetric changes in their orientation tuning functions. The neurons exhibiting asymmetric changes in their orientation tuning functions were located just outside the vertical register. Eight of these 11 neurons also demonstrated a mean shift of 6.67 +/- 5.77 degrees in their preferred stimulus orientation. The magnitude of change in the orientation tuning functions increased as the delivery of GABA was prolonged

  11. Prenatal Co 60-irradiation effects on visual acuity, maturation of the fovea in the retina, and the striate cortex of squirrel monkey offspring

    International Nuclear Information System (INIS)

    Ordy, J.M.; Brizzee, K.R.; Young, R.

    1982-01-01

    In the present study, foveal striate cortex depth increased significantly from 1400 μm to 1650 μm by 90 days, whereas prenatal 100 rad exposure resulted in a significant reduction of foveal striate cortex thickness at 90 days of age. From birth to 90 days, cell packing density decreased, whereas overall neuropil density increased in both control and 100 rad exposed offspring. Regarding the effects of prenatal radiation on Meynert cells, there was a significant difference in the time course of early postnatal spine frequency reduction on apical dendrites of Meynert cells, particularly in laminae V and IV. It seems possible that the significant differences in the time course of perinatal increases and subsequent decreases of spines and synapses on such pyramidal neurons as Meynert cells in the deep layers of the striate cortex may play an important role in the development of binocular acuity. Future follow-up studies will be essential from 90 days to 1 and 2 years to determine the extent of recovery from, and persistence of visual acuity impairments in relation to structural alterations in the foveal projection of the retino-geniculo-striate system of diurnal primates. (orig./MG)

  12. Actin Nemaline Myopathy Mouse Reproduces Disease, Suggests Other Actin Disease Phenotypes and Provides Cautionary Note on Muscle Transgene Expression

    Science.gov (United States)

    Ravenscroft, Gianina; Jackaman, Connie; Sewry, Caroline A.; McNamara, Elyshia; Squire, Sarah E.; Potter, Allyson C.; Papadimitriou, John; Griffiths, Lisa M.; Bakker, Anthony J.; Davies, Kay E.; Laing, Nigel G.; Nowak, Kristen J.

    2011-01-01

    Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ∼30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations. PMID:22174871

  13. Myosin heavy chain composition of the human sternocleidomastoid muscle

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Karen, Petr; Eržen, I.

    2012-01-01

    Roč. 194, č. 5 (2012), s. 467-472 ISSN 0940-9602 R&D Projects: GA MŠk(CZ) MEB090910; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : immunohistochemistry * MyHC isoforms * muscle fibre types * sternocleidomastoid muscle Subject RIV: FH - Neurology Impact factor: 1.960, year: 2012

  14. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Science.gov (United States)

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Generation of a vascularized organoid using skeletal muscle as the inductive source.

    LENUS (Irish Health Repository)

    Messina, Aurora

    2005-09-01

    The technology required for creating an in vivo microenvironment and a neovasculature that can grow with and service new tissue is lacking, precluding the possibility of engineering complex three-dimensional organs. We have shown that when an arterio-venous (AV) loop is constructed in vivo in the rat groin, and placed inside a semisealed chamber, an extensive functional vasculature is generated. To test whether this unusually angiogenic environment supports the survival and growth of implanted tissue or cells, we inserted various preparations of rat and human skeletal muscle. We show that after 6 weeks incubation of muscle tissue, the chamber filled with predominantly well-vascularized recipient-derived adipose tissue, but some new donor-derived skeletal muscle and connective tissue were also evident. When primary cultured myoblasts were inserted into the chamber with the AV loop, they converted to mature striated muscle fibers. Furthermore, we identify novel adipogenesis-inducing properties of skeletal muscle. This represents the first report of a specific three-dimensional tissue grown on its own vascular supply.

  16. Shrinkage Behaviour of Fibre Reinforced Concrete with Recycled Tyre Polymer Fibres

    Directory of Open Access Journals (Sweden)

    Marijana Serdar

    2015-01-01

    Full Text Available Different types of fibres are often used in concrete to prevent microcracking due to shrinkage, and polypropylene fibres are among the most often used ones. If not prevented, microcracks can lead to the development of larger cracks as drying shrinkage occurs, enabling penetration of aggressive substances from the environment and reducing durability of concrete structures. The hypothesis of the present research is that polypropylene fibres, used in concrete for controlling formation of microcracks due to shrinkage, can be replaced with recycled polymer fibres obtained from end-of-life tyres. To test the hypothesis, concrete mixtures containing polypropylene fibres and recycled tyre polymer fibres were prepared and tested. Experimental programme focused on autogenous, free, and restrained shrinkage. It was shown that PP fibres can be substituted with higher amount of recycled tyre polymer fibres obtaining concrete with similar shrinkage behaviour. The results indicate promising possibilities of using recycled tyre polymer fibres in concrete products. At the same time, such applications would contribute to solving the problem of waste tyre disposal.

  17. Stress concentrations in an impregnated fibre bundle with random fibre packing

    OpenAIRE

    Swolfs, Y.; Gorbatikh, L.; Romanov, V.; Orlova, S.; Lomov, S. V.; Verpoest, I.

    2013-01-01

    The stress redistribution after a single fibre break is a fundamental issue in longitudinal strength models for unidirectional composites. Current models assume hexagonal or square fibre packings. In the present work, random fibre packings were modelled using 3D finite element analysis and compared to ordered fibre packings. Significant differences in the stress redistribution are found. Compared to square and hexagonal packings, random fibre packings result in smaller stress concentration fa...

  18. Blast Resistance of Slurry Infiltrated Fibre Concrete with Waste Steel Fibres from Tires

    Directory of Open Access Journals (Sweden)

    Drdlová Martina

    2018-01-01

    Full Text Available The utilization of waste steel fibres (coming from the recycling process of the old tires in production of blast resistant cement based panels was assessed. Waste fibres were incorporated in slurry infiltrated fibre concrete (SIFCON, which is a special type of ultra-highperformance fibre reinforced concrete with high fibre content. The technological feasibility (i.e. suitability of the waste fibres for SIFCON technology was assessed using homogeneity test. Test specimens were prepared with three volume fractions (5; 7.5 and 10 % by vol. of waste unclassified fibres. SIFCON with industrial steel fibres (10% by vol. and ultra-highperformance fibre concrete with industrial fibres were also cast and tested for comparison purposes. Quasi-static mechanical properties were determined. Real blast tests were performed on the slab specimens (500x500x40 mm according to the modified methodology M-T0-VTU0 10/09. Damage of the slab, the change of the ultrasound wave velocity propagation in the slab specimen before and after the blast load in certain measurement points, the weight of fragments and their damage potential were evaluated and compared. Realized tests confirmed the possibility of using the waste fibres for SIFCON technology. The obtained results indicate, that the usage of waste fibres does not significantly reduce the values of SIFCON flexural and compressive strength at quasi-static load - the values were comparable to the specimens with industrially produced fibres. With increasing fibre content, the mechanical parameters are increasing as well. Using of the waste fibres reduces fragmentation of SIFCON at blast load due to the fibre size parameters. Using of low diameter fibres means more fibres in the matrix and thus better homogeneity of the whole composite with less unreinforced areas. Regarding the blast tests, the specimen with waste steel fibres showed the best resistance and outperformed also the specimen with commercial fibres. Using of

  19. Role of skeletal muscle in lung development.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Gugic, Dijana; Saraga-Babic, Mirna; Kablar, Boris

    2012-07-01

    Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.

  20. Reconstruction of the muscle system in Antygomonas sp. (Kinorhyncha, Cyclorhagida) by means of phalloidin labeling and cLSM.

    Science.gov (United States)

    Müller, Monika C M; Schmidt-Rhaesa, Andreas

    2003-05-01

    In the present investigation the entire muscle system of the cyclorhagid kinorhynch Antygomonas sp. was three-dimensionally reconstructed from whole mounts by means of FITC-phalloidin labeling and confocal scanning microscopy. With this technique, which proved to be especially useful for microscopically small species, we wanted to reinvestigate and supplement the findings obtained by histological and electron microscopical methods. The organization of the major muscle systems can be summarized as follows: 1) All muscle fibers, apart from the intestinal ones, the spine, and the mouth cone muscles, show a cross-striated pattern; 2) Dorsal longitudinal muscle fibers as well as segmentally arranged dorsoventral fibers occur from segment III to XIII; 3) Diagonal muscle fibers are located laterally in segments III to X; 4) Two rings of circular fibers are present in segment II, forming the closing apparatus in Cyclorhagida. Further circular muscles are present in segment I, forming the mouth cone and the eversible introvert, and in the pharyngeal bulb. Copyright 2003 Wiley-Liss, Inc.

  1. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.

    Science.gov (United States)

    Divet, Alexandra; Huchet-Cadiou, Corinne

    2002-08-01

    The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.

  2. Effects of striated laser tracks on thermal fatigue resistance of cast iron samples with biomimetic non-smooth surface

    International Nuclear Information System (INIS)

    Tong, Xin; Zhou, Hong; Liu, Min; Dai, Ming-jiang

    2011-01-01

    In order to enhance the thermal fatigue resistance of cast iron materials, the samples with biomimetic non-smooth surface were processed by Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser. With self-controlled thermal fatigue test method, the thermal fatigue resistance of smooth and non-smooth samples was investigated. The effects of striated laser tracks on thermal fatigue resistance were also studied. The results indicated that biomimetic non-smooth surface was benefit for improving thermal fatigue resistance of cast iron sample. The striated non-smooth units formed by laser tracks which were vertical with thermal cracks had the best propagation resistance. The mechanisms behind these influences were discussed, and some schematic drawings were introduced to describe them.

  3. An Electron Microscopic Study of the Irradiation Effects on the Striated Duct Cells of the Submandibular Gland in Rats

    International Nuclear Information System (INIS)

    Lee, Kyu Chan; Lee, Sang Rae

    1990-01-01

    The purpose of this study was to investigate the effects of irradiation on the striated duct cells of the rat submandibular gland ductal tissues which control the characteristics of saliva. For this study, the experimental group was composed of 36 irradiated Sprague Dawley strain rats divided into 8 subgroups- 1 hour, 2 hours, 3 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours after irradiation. 4 non-irradiated rats were used as the control group. The experimental animals were singly irradiated with a dose of 18 Gy gamma ray to their head and neck region by the Co-6-teletherapy unit and sacrificed after each experimental duration. The specimens were examined with a light microscope with an H-E stain and with a transmission electron microscope. The results of this study were as follows. 1. In the light micrograph, a severe atrophic change occurred in the striated duct cells at 2 hours after irradiation and gradual recovery occurred from 6 hours after irradiation. 2. The nuclear chromosomes of the striated duct cells were changed granular at 2 hours after irradiation. Recovery was observed at 6 hours after irradiation. Nuclear bodies were also observed from 3 hours after irradiation. 3. The mitochondria of the striated duct cells had indistinct cristae at 2 hours after irradiation, and were degenerated or swollen at 3 hours after irradiation. They recovered, however, from 6 hours, with an increasing number at 48 hours a regular arrangement was observed at 72 hours after irradiation. 4. The microvilli showed atrophic changes at 2 hours after irradiation and were almost lost at 3 hours after irradiation. They were observed again from 48 hours after irradiation. 5. The rough endoplasmic reticulum and golgi body were not apparent at 1 hours after irradiation and were dilated with degeneration 2 hours after, but intact rough endoplasmic reticulum were observed from 3 hours after irradiation and developed well at 24 hours after irradiation. By the result of this

  4. Fibre-concrete container

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the fibre-concrete container for radioactive wastes is described. The fibre container is made of fibre-concrete that contains cement, aggregate, sand, filter, flame-silica, super-plastificator, water and scattered metal fibres. The fibre-concrete container has a dice shape with outer dimension 1.7 x 1.7 x 1.7 m. It is mounted of a container body, a container cover and two caps. Total weight of container is 4,240 kg, maximum weight of loaded container do not must exceed 15,000 kg. The physical and mechanical properties of the fibre-concrete container are described in detail. The fibre-concrete container manufactured for storing of low and intermediate radioactive wastes. A fibre-concrete container utilization to store of radioactive wastes solves these problems: increase of stability of stored packages of radioactive waste; watertightness within 300 years at least; static stability of bearing space; better utilization of bearing spaces; insulation of radioactive waste in a case of seismic and geological event; increase of fire resistance; and transport of radioactive waste

  5. Effects of a prior high-intensity knee-extension exercise on muscle recruitment and energy cost: a combined local and global investigation in humans.

    Science.gov (United States)

    Layec, Gwenael; Bringard, Aurélien; Le Fur, Yann; Vilmen, Christophe; Micallef, Jean-Paul; Perrey, Stéphane; Cozzone, Patrick J; Bendahan, David

    2009-06-01

    The effects of a priming exercise bout on both muscle energy production and the pattern of muscle fibre recruitment during a subsequent exercise bout are poorly understood. The purpose of the present study was to determine whether a prior exercise bout which is known to increase O(2) supply and to induce a residual acidosis could alter energy cost and muscle fibre recruitment during a subsequent heavy-intensity knee-extension exercise. Fifteen healthy subjects performed two 6 min bouts of heavy exercise separated by a 6 min resting period. Rates of oxidative and anaerobic ATP production, determined with (31)P-magnetic resonance spectroscopy, and breath-by-breath measurements of pulmonary oxygen uptake were obtained simultaneously. Changes in muscle oxygenation and muscle fibre recruitment occurring within the quadriceps were measured using near-infrared spectroscopy and surface electromyography. The priming heavy-intensity exercise increased motor unit recruitment (P exercise bout but did not alter muscle energy cost. We also observed a reduced deoxygenation time delay, whereas the deoxygenation amplitude was increased (P exercise led to an increased recruitment of motor units in the early part of the second bout of heavy exercise. Considering the increased oxidative cost and the unaltered energy cost, one could suggest that our results illustrate a reduced metabolic strain per fibre.

  6. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging

    Directory of Open Access Journals (Sweden)

    Lisa Staunton

    2011-01-01

    Full Text Available Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  7. Abnormal muscle membrane function in fibromyalgia patients and its relationship to the number of tender points

    NARCIS (Netherlands)

    Klaver-Krol, E.G.; Zwarts, M.J.; ten Klooster, Peter M.; Rasker, Johannes J.

    2012-01-01

    Objective. Fibromyalgia (FM) is a disorder characterised by chronic widespreadpain in soft tissues, especially in muscles. Previous research has demonstrateda higher muscle fibre conduction velocity (CV) in painful muscles of FM patients. The primary goal of this study was to investigate whether

  8. Fibre illumination system

    DEFF Research Database (Denmark)

    2012-01-01

    Source: EP2426402A The invention relates to a fibre illumination module and system for the collection and delivery of daylight for illumination purposes. The fibre illumination module comprises a plurality of collector elements, each collector element comprising an input fibre having a first end......-directional arrangement. The fibre illumination system comprises a fibre illumination module of the above-mentioned type. By the invention, daylight may be exploited for the illumination of remote interior spaces of buildings in order to save energy, and improve the well-being of users in both housing and working...

  9. Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice

    Science.gov (United States)

    Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (Pglycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (PGlycogen synthase activity was 12% higher (Pglycogen branching enzyme activity was 70% lower (Pglycogen breakdown, glycogen phosphorylase, had 62% lower activity (Pglycogen debranching enzyme expression was 50% higher (Pglycogen (Pglycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; Pglycogen but reduced amounts of liver glycogen. PMID:24626262

  10. Lactate per se improves the excitability of depolarized rat skeletal muscle by reducing the Cl- conductance

    DEFF Research Database (Denmark)

    de Paoli, Frank Vincenzo; Ørtenblad, Niels; Pedersen, Thomas Holm

    2010-01-01

    Studies on rats have shown that lactic acid can improve excitability and function of depolarized muscles. The effect has been related to the ensuing reduction in intracellular pH causing inhibition of muscle fibre Cl- channels. Since, however, several carboxylic acids with structural similarities...... to lactate can inhibit muscle Cl- channels it is possible that lactate per se can increase muscle excitability by exerting a direct effect on these channels. We therefore examined effects of lactate on the function of intact muscles and skinned fibres together with effects on pH and Cl- conductance....... In muscles where extracellular compound action potentials (M-waves) and tetanic force response to excitation were reduced by 82±4 and 83±2 %, respectively, by depolarization with 11 mM extracellular K+, both M-waves and force exhibited an up to 4-fold increase when 20 mM lactate was added. This effect...

  11. Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites

    Science.gov (United States)

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.

  12. Attenuated muscle regeneration is a key factor in dysferlin-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Chiu, Yen-Hui; Hornsey, Mark A; Klinge, Lars

    2009-01-01

    in a mouse model of dysferlinopathy, with delayed removal of necrotic fibres, an extended inflammatory phase and delayed functional recovery. Satellite cell activation and myoblast fusion appear normal, but there is a reduction in early neutrophil recruitment in regenerating and also needle wounded muscle...... kinase levels and a prominent inflammatory infiltrate. We have observed that dysferlinopathy patient biopsies show an excess of immature fibres and therefore investigated the role of dysferlin in muscle regeneration. Using notexin-induced muscle damage, we have shown that regeneration is attenuated...... with the sarcolemma dysferlin is also involved in the release of chemotactic agents. Reduced neutrophil recruitment results in incomplete cycles of regeneration in dysferlinopathy which combines with the membrane repair deficit to ultimately trigger dystrophic pathology. This study reveals a novel pathomechanism...

  13. Entropic elasticity in the generation of muscle Force - A theoretical model

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2002-01-01

    A novel simplified structural model of sarcomeric force production in striate muscle is presented. Using some simple assumptions regarding the distribution of myosin spring lengths at different sliding velocities it is possible to derive a very simple expression showing the main components...... of the experimentally observed force-velocity relationship of muscle: nonlinearity during contraction (Hill, 1938), maximal force production during stretching equal to two times the isometric force (Katz, 1939), yielding at high stretching velocity, slightly concave force-extension relationship during sudden length......-bridges are explored [linear, power function and worm-like chain (WLC) model based], and it is shown that the best results are obtained if the individual myosin-spring forces are modelled using a WLC model, thus hinting that entropic elasticity could be the main source of force in myosin undergoing the conformational...

  14. Surgical desensitisation of the mechanoreceptors in Müller's muscle relieves chronic tension-type headache caused by tonic reflexive contraction of the occipitofrontalis muscle in patients with aponeurotic blepharoptosis.

    Science.gov (United States)

    Matsuo, Kiyoshi; Ban, Ryokuya

    2013-02-01

    Proprioceptively innervated intramuscular connective tissues in Müller's muscle function as exterior mechanoreceptors to induce reflex contraction of the levator and occipitofrontalis muscles. In aponeurotic blepharoptosis, since the levator aponeurosis is disinserted from the tarsus, stretching of the mechanoreceptors in Müller's muscle is increased even on primary gaze to induce phasic and tonic reflexive contraction of the occipitofrontalis muscle. It was hypothesised that in certain patients with aponeurotic blepharoptosis, the presence of tonic reflexive contraction of the occipitofrontalis muscle due to the sensitised mechanoreceptors in Müller's muscle, can cause chronic tension-type headache (CTTH) associated with occipitofrontalis tenderness. To verify this hypothesis, this study evaluated (1) what differentiates patients with CTTH from patients without CTTH, (2) how pharmacological contraction of Müller's smooth muscle fibres as a method for desensitising the mechanoreceptors in Müller's muscle affects electromyographic activity of the frontalis muscle, and (3) how surgical aponeurotic reinsertion to desensitise the mechanoreceptors in Müller's muscle electromyographically or subjectively affects activities of the occipitofrontalis muscle or CTTH. It was found that patients had sustained CTTH when light eyelid closure did not markedly reduce eyebrow elevation. However, pharmacological contraction of Müller's smooth muscle fibres or surgery to desensitise the mechanoreceptor electromyographically reduced the tonic contraction of the occipitofrontalis muscle on primary gaze and subjectively relieved aponeurotic blepharoptosis-associated CTTH. Over-stretching of the mechanoreceptors in Müller's muscle on primary gaze may induce CTTH due to tonic reflexive contraction of the occipitofrontalis muscle. Therefore, surgical desensitisation of the mechanoreceptors in Müller's muscle appears to relieve CTTH.

  15. Physical activity counteracts tumor cell growth in colon carcinoma C26-injected muscles: an interim report

    Directory of Open Access Journals (Sweden)

    Charlotte Hiroux

    2016-06-01

    Full Text Available Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis.

  16. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging

    OpenAIRE

    Jayasinghe, Isuru D.; Munro, Michelle; Baddeley, David; Launikonis, Bradley S.; Soeller, Christian

    2014-01-01

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres...

  17. Striated nephrogram as an incidental finding in MRI examination of children; Streifiges Nephrogramm als Zufallsbefund nach Kontrastmittelgabe bei Kindern in der MRT

    Energy Technology Data Exchange (ETDEWEB)

    Strocka, S.; Sorge, I.; Ritter, L.; Hirsch, F.W. [Leipzig Univ. (Germany). Dept. of Pediatric Radiology

    2016-01-15

    A highly striated contrast pattern of the kidneys occasionally appears in abdominal MRI examinations of children following the administration of gadolinium. As this phenomenon is well known but has not yet been explicitly described in literature, we investigated how frequently and in which clinical context this occurred. 855 abdominal MRI examinations with contrast media of 362 children between 2006 and 2014 were analysed retrospectively. A striated renal parenchyma was found in a total of nine children and eleven examinations (1.3 % of examinations) and did only occur at a field strength of 3 Tesla. Of these children, seven had previously had tumors and chemotherapy. In two children there was no evidence of a previously serious condition with medications or a kidney disease. All of them had a normal renal function. A noticeably striated nephrogram in the later phase of an MRI examination following administration of gadolinium may appear as an incidental finding in examinations at 3 Tesla without pathological relevance.

  18. Expression of Na+/HCO3- co-transporter proteins (NBCs) in rat and human skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Kristensen, Michael; Juel, Carsten

    2004-01-01

    AIM: Sodium/bicarbonate co-transport (NBC) has been suggested to have a role in muscle pH regulation. We investigated the presence of NBC proteins in rat and human muscle samples and the fibre type distribution of the identified NBCs. METHODS AND RESULTS: Western blotting of muscle homogenates...... the T-tubules. The two NBCs localized in muscle have distinct fibre type distributions. CONCLUSIONS: Skeletal muscle possesses two variants of the sodium/bicarbonate co-transporter (NBC) isoforms, which have been called NBCe1 and NBCe2....... and sarcolemmal membranes (sarcolemmal giant vesicles) were used to screen for the presence of NBCs. Immunohistochemistry was used for the subcellular localization. The functional test revealed that approximately half of the pH recovery in sarcolemmal vesicles produced from rat muscle is mediated by bicarbonate...

  19. Influence of genotype on contractile protein differentiation in different bovine muscles during foetal life

    OpenAIRE

    Gagnière , Hélène; Ménissier , François; Geay , Yves; Picard , Brigitte

    2000-01-01

    International audience; The purpose of this work was to compare muscle fibre differentiation in two genetic types: "normal charolais" and double-muscled (DM) "INRA 95" cattles displaying muscle hypertrophy. Six muscles with different contractile and metabolic characteristics in adult animal: Masseter, Diaphragma (Di), Biceps femoris (BF), Longissimus thoracis, Semitendinosus and Cutaneus trunci (CT) were excised from 60 to 260-day-old fœtuses of both genotypes. These muscles present different...

  20. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...

  1. Muscle glycogen stores and fatigue

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Westerblad, Håkan; Nielsen, Joachim

    2013-01-01

      Studies performed at the beginning of the last century revealed the importance of carbohydrate as a fuel during exercise, and the importance of muscle glycogen on performance has subsequently been confirmed in numerous studies. However, the link between glycogen depletion and impaired muscle...... function during fatigue is not well understood and a direct cause-and-effect relationship between glycogen and muscle function remains to be established. The use of electron microscopy has revealed that glycogen is not homogeneously distributed in skeletal muscle fibres, but rather localized in distinct...... pools. Furthermore, each glycogen granule has its own metabolic machinery with glycolytic enzymes and regulating proteins. One pool of such glycogenolytic complexes is localized within the myofibrils in close contact with key proteins involved in the excitation-contraction coupling and Ca2+ release from...

  2. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    Science.gov (United States)

    2008-04-01

    PT, Zhang, CY, Wu, Z, Boss, O et al. (2002). Transcriptional co-activator PGC-1 alpha drives the formation of slow - twitch muscle fibres . Nature...Calcineurin and CaMK signaling pathways in fast -to- slow fiber type transformation of cultured mouse skeletal muscle fibers Xiaodong Mu, PhD The John...Surgery”). 3. Ectopic bone formation in fast and slow skeletal muscle (Meszaros L., “Influence of vascularity on muscle regeneration, fibrosis and

  3. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Polarisation reflectometry of anisotropic optical fibres

    Science.gov (United States)

    Konstantinov, Yurii A.; Kryukov, Igor'I.; Pervadchuk, Vladimir P.; Toroshin, Andrei Yu

    2009-11-01

    Anisotropic, polarisation-maintaining fibres have been studied using a reflectometer and integrated optic polariser. Linearly polarised pulses were launched into the fibre under test at different angles between their plane of polarisation and the main optical axis of the fibre. A special procedure for the correlation analysis of these reflectograms is developed to enhance the reliability of the information about the longitudinal optical uniformity ofanisotropic fibres.

  4. Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available Abaca fibre reinforced PP composites were fabricated with different fibre loadings (20, 30, 40, 50wt% and in some cases 35 and 45 wt%. Flax and jute fibre reinforced PP composites were also fabricated with 30 wt% fibre loading. The mechanical properties, odour emission and structure properties were investigated for those composites. Tensile, flexural and Charpy impact strengths were found to increase for fibre loadings up to 40 wt% and then decreased. Falling weight impact tests were also carried out and the same tendency was observed. Owing to the addition of coupling agent (maleated polypropylene -MAH-PP, the tensile, flexural and falling weight impact properties were found to increase in between 30 to 80% for different fibre loadings. When comparing jute and flax fibre composites with abaca fibre composites, jute fibre composites provided best tensile properties but abaca fibre polypropylene composites were shown to provide best notch Charpy and falling weight impact properties. Odours released by flax fibre composites were smaller than jute and abaca fibre composites.

  5. Lactate Accumulation in Muscle and Blood during Submaximal Exercise

    Science.gov (United States)

    1981-09-21

    exercise, fast and slow twitch fibers Short title: Lactate in muscle and blood P.A. Tesch, W.L. Daniels and D.S. Sharp Exercise Physiology Division, U.S...KIRBY, R.L. & BELCASTRO, A.N. 1978. Relationship between slow - twitch muscle fibres and lactic acid removal. Can J Appl Sports Sci 3:160-162. BRODAL, P...oxygen uptake (Karlsson 1971, Knuttgen & Saltin 1972). It is generally agreed that the main muscle fiber type to be recruited below this level is the slow

  6. Metabolic activity in striate and extrastriate cortex in the hooded rat: contralateral and ipsilateral eye input

    International Nuclear Information System (INIS)

    Thurlow, G.A.; Cooper, R.M.

    1988-01-01

    The extent of changes in glucose metabolism resulting from ipsilateral and contralateral eye activity in the posterior cortex of the hooded rat was demonstrated by means of the C-14 2-deoxyglucose autoradiographic technique. By stimulating one eye with square wave gratings and eliminating efferent activation from the other by means of enucleation or intraocular TTX injection, differences between ipsilaterally and contralaterally based visual activity in the two hemispheres were maximized. Carbon-14 levels in layer IV of autoradiographs of coronal sections were measured and combined across sections to form right and left matrices of posterior cortex metabolic activity. A difference matrix, formed by subtracting the metabolic activity matrix of cortex contralateral to the stimulated eye from the ipsilateral depressed matrix, emphasized those parts of the visual cortex that received monocular visual input. The demarcation of striate cortex by means of cholinesterase stain and the examination of autoradiographs from sections cut tangential to the cortical surface aided in the interpretation of the difference matrices. In striate cortex, differences were maximal in the medial monocular portion, and the lateral or binocular portion was shown to be divided metabolically into a far lateral contralaterally dominant strip along the cortical representation of the vertical meridian, and a more medial region of patches of more or less contralaterally dominant binocular input. Lateral peristriate differences were less than those of striate cortex, and regions of greater and lesser monocular input could be distinguished. We did not detect differences between the two hemispheres in either anterior or medial peristriate areas

  7. Physiology of Normal Esophageal Motility

    OpenAIRE

    Goyal, Raj K; Chaudhury, Arun

    2008-01-01

    The esophagus consists of two different parts. In humans, the cervical esophagus is composed of striated muscles and the thoracic esophagus is composed of phasic smooth muscles. The striated muscle esophagus is innervated by the lower motor neurons and peristalsis in this segment is due to sequential activation of the motor neurons in the nucleus ambiguus. Both primary and secondary peristaltic contractions are centrally mediated. The smooth muscle of esophagus is phasic in nature and is inne...

  8. Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse.

    Science.gov (United States)

    Rooney, Mary F; Porter, Richard K; Katz, Lisa M; Hill, Emmeline W

    2017-01-01

    Variation in the myostatin (MSTN) gene has been reported to be associated with race distance, body composition and skeletal muscle fibre composition in the horse. The aim of the present study was to test the hypothesis that MSTN variation influences mitochondrial phenotypes in equine skeletal muscle. Mitochondrial abundance and skeletal muscle fibre types were measured in whole muscle biopsies from the gluteus medius of n = 82 untrained (21 ± 3 months) Thoroughbred horses. Skeletal muscle fibre type proportions were significantly (p T (C) and the SINE insertion 227 bp polymorphism (I). Evaluation of mitochondrial complex activities indicated higher combined mitochondrial complex I+III and II+III activities in the presence of the C-allele / I allele (p ≤ 0.05). The restoration of complex I+III and complex II+III activities following addition of exogenous coenzyme Q1 (ubiquinone1) (CoQ1) in vitro in the TT/NN (homozygous T allele/homozygous no insertion) cohort indicated decreased coenzyme Q in these animals. In addition, decreased gene expression in two coenzyme Q (CoQ) biosynthesis pathway genes (COQ4, p ≤ 0.05; ADCK3, p ≤ 0.01) in the TT/NN horses was observed. This study has identified several mitochondrial phenotypes associated with MSTN genotype in untrained Thoroughbred horses and in addition, our findings suggest that nutritional supplementation with CoQ may aid to restore coenzyme Q activity in TT/NN horses.

  9. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation–contraction coupling in mammalian skeletal muscle

    Science.gov (United States)

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver

    2016-01-01

    Key points Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation–contraction coupling (ECC) of mammalian skeletal muscle remains unknown.We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+‐sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue.We demonstrate that CB1Rs are not connected to the inositol 1,4,5‐trisphosphate pathway either in myotubes or in adult muscle fibres.By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein‐mediated way in adult skeletal muscle fibres but not in myotubes.These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. Abstract Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R‐mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+‐sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5‐trisphosphate (IP3)‐mediated Ca2+ transients, nor did they alter excitation–contraction coupling. By contrast, in isolated muscle fibres of wild‐type mice, although CB1R agonists did not evoke IP3

  10. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle.

    Science.gov (United States)

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver; Csernoch, László

    2016-12-15

    Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation-contraction coupling (ECC) of mammalian skeletal muscle remains unknown. We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca 2+ -sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue. We demonstrate that CB1Rs are not connected to the inositol 1,4,5-trisphosphate pathway either in myotubes or in adult muscle fibres. By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca 2+ release and sarcoplasmic reticulum Ca 2+ ATPase during ECC in a G i/o protein-mediated way in adult skeletal muscle fibres but not in myotubes. These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R-mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca 2+ -sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5-trisphosphate (IP 3 )-mediated Ca 2+ transients, nor did they alter excitation-contraction coupling. By contrast, in isolated muscle fibres of wild-type mice, although CB1R agonists did not evoke IP 3 -mediated Ca 2

  11. Untitled

    Indian Academy of Sciences (India)

    The muscularis is found only in the floor of the buccal cavity and consists of inner circular and outer longitudinal fibres. All the fibres are striated. There are two oral valves. The maxillary oral valve consists of mucosa dorsally and ventrally, made of Stratified epithelium with submucosa bet- ween (Pl. XV, Fig. 4). The mucosa ...

  12. Mechanical and histological characterization of the abdominal muscle. A previous step to modelling hernia surgery.

    Science.gov (United States)

    Hernández, B; Peña, E; Pascual, G; Rodríguez, M; Calvo, B; Doblaré, M; Bellón, J M

    2011-04-01

    The aims of this study are to experimentally characterize the passive elastic behaviour of the rabbit abdominal wall and to develop a mechanical constitutive law which accurately reproduces the obtained experimental results. For this purpose, tissue samples from New Zealand White rabbits 2150±50 (g) were mechanically tested in vitro. Mechanical tests, consisting of uniaxial loading on tissue samples oriented along the craneo-caudal and the perpendicular directions, respectively, revealed the anisotropic non-linear mechanical behaviour of the abdominal tissues. Experiments were performed considering the composite muscle (including external oblique-EO, internal oblique-IO and transverse abdominis-TA muscle layers), as well as separated muscle layers (i.e., external oblique, and the bilayer formed by internal oblique and transverse abdominis). Both the EO muscle layer and the IO-TA bilayer demonstrated a stiffer behaviour along the transversal direction to muscle fibres than along the longitudinal one. The fibre arrangement was measured by means of a histological study which confirmed that collagen fibres are mainly responsible for the passive mechanical strength and stiffness. Furthermore, the degree of anisotropy of the abdominal composite muscle turned out to be less pronounced than those obtained while studying the EO and IO-TA separately. Moreover, a phenomenological constitutive law was used to capture the measured experimental curves. A Levenberg-Marquardt optimization algorithm was used to fit the model constants to reproduce the experimental curves. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex.

    Science.gov (United States)

    Allison, J D; Smith, K R; Bonds, A B

    2001-01-01

    A sinusoidal mask grating oriented orthogonally to and superimposed onto an optimally oriented base grating reduces a cortical neuron's response amplitude. The spatial selectivity of cross-orientation suppression (XOR) has been described, so for this paper we investigated the temporal properties of XOR. We recorded from single striate cortical neurons (n = 72) in anesthetized and paralyzed cats. After quantifying the spatial and temporal characteristics of each cell's excitatory response to a base grating, we measured the temporal-frequency tuning of XOR by systematically varying the temporal frequency of a mask grating placed at a null orientation outside of the cell's excitatory orientation domain. The average preferred temporal frequency of the excitatory response of the neurons in our sample was 3.8 (+/- 1.5 S.D.) Hz. The average cutoff frequency for the sample was 16.3 (+/- 1.7) Hz. The average preferred temporal frequency (7.0 +/- 2.6 Hz) and cutoff frequency (20.4 +/- 6.9 Hz) of the XOR were significantly higher. The differences averaged 1.1 (+/- 0.6) octaves for the peaks and 0.3 (+/- 0.4) octaves for the cutoffs. The XOR mechanism's preference for high temporal frequencies suggests a possible extrastriate origin for the effect and could help explain the low-pass temporal-frequency response profile displayed by most striate cortical neurons.

  14. Early decrease in dietary protein:energy ratio by fat addition and ontogenetic changes in muscle growth mechanisms of rainbow trout: short- and long-term effects.

    Science.gov (United States)

    Alami-Durante, Hélène; Cluzeaud, Marianne; Duval, Carine; Maunas, Patrick; Girod-David, Virginia; Médale, Françoise

    2014-09-14

    As the understanding of the nutritional regulation of muscle growth mechanisms in fish is fragmentary, the present study aimed to (1) characterise ontogenetic changes in muscle growth-related genes in parallel to changes in muscle cellularity; (2) determine whether an early decrease in dietary protein:energy ratio by fat addition affects the muscle growth mechanisms of rainbow trout (Oncorhynchus mykiss) alevins; and (3) determine whether this early feeding of a high-fat (HF) diet to alevins had a long-term effect on muscle growth processes in juveniles fed a commercial diet. Developmental regulation of hyperplasia and hypertrophy was evidenced at the molecular (expression of myogenic regulatory factors, proliferating cell nuclear antigen and myosin heavy chains (MHC)) and cellular (number and diameter of white muscle fibres) levels. An early decrease in dietary protein:energy ratio by fat addition stimulated the body growth of alevins but led to a fatty phenotype, with accumulation of lipids in the anterior part, and less caudal muscle when compared at similar body weights, due to a decrease in both the white muscle hyperplasia and maximum hypertrophy of white muscle fibres. These HF diet-induced cellular changes were preceded by a very rapid down-regulation of the expression of fast-MHC. The present study also demonstrated that early dietary composition had a long-term effect on the subsequent muscle growth processes of juveniles fed a commercial diet for 3 months. When compared at similar body weights, initially HF diet-fed juveniles indeed had a lower mean diameter of white muscle fibres, a smaller number of large white muscle fibres, and lower expression levels of MyoD1 and myogenin. These findings demonstrated the strong effect of early feed composition on the muscle growth mechanisms of trout alevins and juveniles.

  15. The influence of capillarization on satellite cell pool expansion and activation following exercise-induced muscle damage in healthy young men.

    Science.gov (United States)

    Nederveen, Joshua P; Joanisse, Sophie; Snijders, Tim; Thomas, Aaron C Q; Kumbhare, Dinesh; Parise, Gianni

    2018-03-15

    Skeletal muscle stem cells (satellite cells) play a crucial role in repair and remodelling of muscle in response to exercise. Satellite cells are in close spatial proximity to muscle capillaries and therefore may be influenced by them. In this study, we describe the activation and expansion of the satellite cell pool in response to eccentric contraction-induced muscle damage in individuals with significantly different levels of muscle capillarization. Individuals with greater capillarization and capacity for muscle perfusion demonstrated enhanced activation and/or expansion of the satellite cell pool allowing for an accelerated recovery of muscle function. These results provide insight into the critical relationship between muscle capillarization and satellite cells during skeletal muscle repair. Factors that determine the skeletal muscle satellite cell (SC) response remain incompletely understood. It is known, however, that SC activation status is closely related to the anatomical relationship between SCs and muscle capillaries. We investigated the impact of muscle fibre capillarization on the expansion and activation status of SCs following a muscle-damaging exercise protocol in healthy young men. Twenty-nine young men (21 ± 0.5 years) performed 300 unilateral eccentric contractions (180 deg s -1 ) of the knee extensors. Percutaneous muscle biopsies from the vastus lateralis and blood samples from the antecubital vein were taken prior to (Pre) exercise and at 6, 24, 72 and 96 h of post-exercise recovery. A comparison was made between subjects who had a relative low mixed muscle capillary-to-fibre perimeter exchange index (CFPE; Low group) and high mixed muscle CFPE index (High group) at baseline. Type I and type II muscle fibre size, myonuclear content, capillarization, and SC response were determined via immunohistochemistry. Overall, there was a significant correlation (r = 0.39; P < 0.05) between the expansion of SC content (change in total Pax7

  16. An elderly-onset limb girdle muscular dystrophy type 1B (LGMD1B) with pseudo-hypertrophy of paraspinal muscles.

    Science.gov (United States)

    Furuta, Mitsuru; Sumi-Akamaru, Hisae; Takahashi, Masanori P; Hayashi, Yukiko K; Nishino, Ichizo; Mochizuki, Hideki

    2016-09-01

    Mutations in LMNA, encoding A-type lamins, lead to diverse disorders, collectively called "laminopathies," which affect the striated muscle, cardiac muscle, adipose tissue, skin, peripheral nerve, and premature aging. We describe a patient with limb-girdle muscular dystrophy type 1B (LGMD1B) carrying a heterozygous p.Arg377His mutation in LMNA, in whom skeletal muscle symptom onset was at the age of 65 years. Her weakness started at the erector spinae muscles, which showed marked pseudo-hypertrophy even at the age of 72 years. Her first episode of syncope was at 44 years; however, aberrant cardiac conduction was not revealed until 60 years. The p.Arg377His mutation has been previously reported in several familial LMNA-associated myopathies, most of which showed muscle weakness before the 6th decade. This is the first report of pseudo-hypertrophy of paravertebral muscles in LMNA-associated myopathies. The pseudo-hypertrophy of paravertebral muscles and the elderly-onset of muscle weakness make this case unique and reportable. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Creep properties of discontinuous fibre composites with partly creeping fibres

    International Nuclear Information System (INIS)

    Bilde-Soerensen, J.B.; Lilholt, H.

    1977-05-01

    In a previous report (RISO-M-1810) the creep properties of discontinuous fibre composites with non-creeping fibres were analyzed. In the present report this analysis is extended to include the case of discontinuous composites with partly creeping fibres. It is shown that the creep properties of the composite at a given strain rate, epsilonsub(c), depend on the creep properties of the matrix at a strain rate higher than epsilonsub(c), and on the creep properties of the fibres at epsilonsub(c). The composite creep law is presented in a form which permits a graphical determination of the composite creep curve. This can be constructed on the basis of the matrix and the fibre creep curves by vector operations in a log epsilon vs. log sigma diagram. The matrix contribution to the creep strength can be evaluated by a simple method. (author)

  18. HIIT Augments Muscle Carnosine in the Absence of Dietary Beta-Alanine Intake.

    Science.gov (United States)

    Salles Painelli, Vitor de; Nemezio, Kleiner Márcio; Jéssica, Ana; Franchi, Mariana; Andrade, Isabel; Riani, Luiz Augusto; Saunders, Bryan; Sale, Craig; Harris, Roger Charles; Gualano, Bruno; Artioli, Guilherme Giannini

    2018-06-21

    Cross-sectional studies suggest that training can increase muscle carnosine (MCarn), although longitudinal studies have failed to confirm this. A lack of control for dietary β-alanine intake or muscle fibre type shifting may have hampered their conclusions. The purpose of the present study was to investigate the effects of high-intensity interval training (HIIT) on MCarn. Twenty vegetarian men were randomly assigned to a control (CON; n=10) or HIIT (n=10) group. HIIT was carried out on a cycle ergometer for 12 weeks, with progressive volume (6-12 series) and intensity (140-170% lactate threshold [LT]). MCarn was quantified in whole-muscle and individual fibres; expression of selected genes (CARNS, CNDP2, ABAT, TauT and PAT1) and muscle buffering capacity in vitro (βmin vitro) were also determined. Exercise tests were performed to evaluate total work done (TWD), VO2max, ventilatory thresholds (VT) and LT. TWD, VT, LT, VO2max and βmin vitro were improved in the HIIT group (all P0.05). MCarn (in mmol·kg dry muscle) increased in the HIIT (15.8±5.7 to 20.6±5.3; p=0.012) but not the CON group (14.3±5.3 to 15.0±4.9; p=0.99). In type I fibres, MCarn increased in the HIIT (from 14.4±5.9 to 16.8±7.6; p=0.047) but not the CON group (from 14.0±5.5 to 14.9±5.4; p=0.99). In type IIa fibres, MCarn increased in the HIIT group (from 18.8±6.1 to 20.5±6.4; p=0.067) but not the CON group (from 19.7±4.5 to 18.8±4.4; p=0.37). No changes in gene expression were shown. In the absence of any dietary intake of β-alanine, HIIT increased MCarn content. The contribution of increased MCarn to the total increase in βmin vitro appears to be small.

  19. Aligned flax fibre/polylactate composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Thygesen, Anders

    2008-01-01

    The potential of biocomposites in engineering applications is demonstrated by using aligned flax fibre/polylactate composites as a materials model system. The failure stress of flax fibres is measured by tensile testing of single fibres and fibre bundles. For both fibre configurations, it is found...... that failure stress is decreased by increasing the tested fibre volume. Based on two types of flax fibre preforms: carded sliver and unidirectional non-crimp fabric, aligned flax fibre/polylactate composites were fabricated with variable fibre content. The volumetric composition and tensile properties...... of the composite were measured. For composites with a fibre content of 37 % by volume, stiffness is about 20 GPa and failure stress is about 180 MPa. The tensile properties of the composites are analysed with a modified rule of mixtures model, which includes the effect of porosity. The experimental results...

  20. The influence of temperature on the distribution and intensity of the reaction product in rat muscle fibers obtained with the histochemical method for myosin ATPase

    DEFF Research Database (Denmark)

    Kirkeby, S; Tuxen, A

    1989-01-01

    The influence of temperature in the incubation medium on the localization and intensity of myosin ATPase was investigated in striated muscles from the rat using a conventional histochemical technique. It was found that the enzyme reaction was temperature-dependent since the activity in some fibers...... was raised and in others was depressed by alteration of the incubation temperature. There was no obvious correlation between the temperature sensitivity of ATPase in the muscle fibers and their activity for succinic dehydrogenase. It is proposed that the histochemical method for myosin ATPase can be used...

  1. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    Science.gov (United States)

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  2. Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin 2.

    Science.gov (United States)

    Burns, David P; Rowland, Jane; Canavan, Leonie; Murphy, Kevin H; Brannock, Molly; O'Malley, Dervla; O'Halloran, Ken D; Edge, Deirdre

    2017-09-01

    What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg -1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 μg kg -1 ) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal

  3. New generation of optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Dianov, E M; Semjonov, S L; Bufetov, I A [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-01-31

    The growing need for information in contemporary society is the motivating force behind the development of fibre optics in general and optical fibre communications in particular. Intensive research effort has been concentrated on designing new types of optical fibres and extending their application field. This paper reviews results of research on new types of optical fibres: bismuthdoped active fibres, multicore fibres and hollow-core fibres, which can be used as key components of systems that ensure further increase in optical information transfer rate. (invited paper)

  4. Adipophilin distribution and colocalization with lipid droplets in skeletal muscle.

    LENUS (Irish Health Repository)

    Shaw, Christopher S

    2009-05-01

    Intramyocellular lipids (IMCL) are stored as discrete lipid droplets which are associated with a number of proteins. The lipid droplet-associated protein adipophilin (the human orthologue of adipose differentiation-related protein) is ubiquitously expressed and is one of the predominant lipid droplet-proteins in skeletal muscle. The aim of this study was to investigate the subcellular distribution of adipophilin in human muscle fibres and to measure the colocalization of adipophilin with IMCL. Muscle biopsies from six lean male cyclists (BMI 23.4 +\\/- 0.4, aged 31 +\\/- 2 years, W (max) 346 +\\/- 8) were stained for myosin heavy chain type 1, IMCL, adipophilin and mitochondria using immunofluorescence and viewed with widefield and confocal fluorescence microscopy. The present study shows that like IMCL, the adipophilin content is ~twofold greater in type I skeletal muscle fibres and is situated in the areas between the mitochondrial network. Colocalization analysis demonstrated that 61 +\\/- 2% of IMCL contain adipophilin. Although the majority of adipophilin is contained within IMCL, 36 +\\/- 4% of adipophilin is not associated with IMCL. In conclusion, this study indicates that the IMCL pool is heterogeneous, as the majority but not all IMCL contain adipophilin.

  5. Mechanical Property Analysis on Sandwich Structured Hybrid Composite Made from Natural Fibre, Glass Fibre and Ceramic Fibre Wool Reinforced with Epoxy Resin

    Science.gov (United States)

    Bharat, K. R.; Abhishek, S.; Palanikumar, K.

    2017-06-01

    Natural fibre composites find wide range of applications and usage in the automobile and manufacturing industries. They find lack in desired properties, which are required for present applications. In current scenario, many developments in composite materials involve the synthesis of Hybrid composite materials to overcome some of the lacking properties. In this present investigation, two sandwich structured hybrid composite materials have been made by reinforcing Aloe Vera-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and Sisal fibre-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and its mechanical properties such as Tensile, Flexural and Impact are tested and analyzed. The test results from the two samples are compared and the results show that sisal fibre reinforced hybrid composite has better mechanical properties than aloe vera reinforced hybrid composite.

  6. Guava ( L. Powder as an Antioxidant Dietary Fibre in Sheep Meat Nuggets

    Directory of Open Access Journals (Sweden)

    Arun K. Verma

    2013-06-01

    Full Text Available This study was conducted to explore the antioxidant potential and functional value of guava (Psidium guajava L. powder in muscle foods. Guava powder was used as a source of antioxidant dietary fibre in sheep meat nuggets at two different levels i.e., 0.5% (Treatment I and 1.0% (Treatment II and its effect was evaluated against control. Guava powder is rich in dietary fibre (43.21%, phenolics (44.04 mg GAE/g and possesses good radical scavenging activity as well as reducing power. Incorporation of guava powder resulted in significant decrease (p<0.05 in pH of emulsion and nuggets, emulsion stability, cooking yield and moisture content of nuggets while ash and moisture content of emulsion were increased. Total phenolics, total dietary fibre (TDF and ash content significantly increased (p<0.05 in nuggets with added guava powder. Product redness value was significantly improved (p<0.05 due to guava powder. Textural properties did not differ significantly except, springiness and shear force values. Guava powder was found to retard lipid peroxidation of cooked sheep meat nuggets as measured by TBARS number during refrigerated storage. Guava powder did not affect sensory characteristics of the products and can be used as source of antioxidant dietary fibre in meat foods.

  7. Effects of dantrolene and its derivatives on Ca2+ release from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Hosoya, Takamitsu; Aoyama, Hiroshi; Kihara, Yasutaka; Suzuki, Masaaki; Endo, Makoto

    2001-01-01

    We analysed the effect of dantrolene (Dan) and five newly synthesized derivatives (GIFs) on Ca2+ release from the sarcoplasmic reticulum (SR) of mouse skeletal muscle.In intact muscles, GIF-0185 reduced the size of twitch contraction induced by electrical stimulation to the same extent as Dan. GIF-0082, an azido-functionalized Dan derivative, also inhibited twitch contraction, although the extent of inhibition was less than that of Dan and of GIF-0185.In skinned fibres, Dan inhibited Ca2+-induced Ca2+ release (CICR) under Mg2+-free conditions at room temperature. In contrast, GIF-0082 and GIF-0185 showed no inhibitory effect on CICR under the same conditions.Dan-induced inhibition of CICR was not affected by the presence of GIF-0082, whereas it was diminished in the presence of GIF-0185.GIF-0082 and GIF-0185 significantly inhibited clofibric acid (Clof)-induced Ca2+ release, as did Dan.Several Dan derivatives other than GIF-0082 and GIF-0185 showed an inhibitory effect on twitch tension but not on the CICR mechanism. All of these derivatives inhibited Clof-induced Ca2+ release.The magnitudes of inhibition of Clof-induced Ca2+ release by all Dan derivatives were well correlated with those of twitch inhibition. This supports the notion that the mode of Clof-induced opening of the RyR-Ca2+ release channel may be similar to that of physiological Ca2+ release (PCR).These results indicate that the difference in opening modes of the RyR-Ca2+ release channel is recognized by certain Dan derivatives. PMID:11606312

  8. Skeletal muscle growth dynamics and the influence of first-feeding diet in Atlantic cod larvae (Gadus morhua L.

    Directory of Open Access Journals (Sweden)

    Tu A. Vo

    2016-11-01

    Full Text Available Dynamics between hypertrophy (increase in cell size and hyperplasia (increase in cell numbers of white and red muscle in relation to body size [standard length (SL], and the influence of the first-feeding diets on muscle growth were investigated in Atlantic cod larvae (Gadus morhua. Cod larvae were fed copepod nauplii or rotifers of different nutritional qualities from 4 to 29 days post hatching (dph, Artemia nauplii from 20 to 40 dph and a formulated diet from 36 to 60 dph. The short period of feeding with cultivated copepod nauplii had a positive effect on both muscle hyperplasia and hypertrophy after the copepod/rotifer phase (19 dph, and a positive long term effect on muscle hypertrophy (60 dph. The different nutritional qualities of rotifers did not significantly affect muscle growth. We suggest here a model of the dynamics between hyperplasia and hypertrophy of red and white muscle fibre cells in relation to cod SL (4 to 30 mm, where the different red and white muscle growth phases clearly coincided with different metamorphosis stages in cod larvae. These shifts could be included as biomarkers for the different stages of development during metamorphosis. The main dietary muscle effect was that hypertrophic growth of red muscle fibres was stronger in cod larvae that were fed copepods than in larvae that were fed rotifers, both in relation to larval age and size. Red muscle fibres are directly involved in larval locomotory performance, but may also play an important role in the larval myogenesis. This can have a long term effect on growth potential and fish performance.

  9. Anatomical and Physiological Characteristics of the Ferret Lateral Rectus Muscle and Abducena Nucleus

    Science.gov (United States)

    2007-01-25

    from the ferret LR Slow Resistant group is larger than the typically powerful Fast Fatigable motor units in the cat. Whole Muscle Contractile...623-632, 1990. 21. HESS A and PILAR G. SLOW FIBRES IN THE EXTRAOCULAR MUSCLES OF THE CAT. J Physiol 169: 780-798, 1963. 22. Jacoby J, Chiarandini DJ...were split between the LR and retractor bulbi (RB) muscle slips. In addition to individual motor units, the whole LR muscle was evaluated for twitch

  10. Influence of fibre design and curvature on crosstalk in multi-core fibre

    International Nuclear Information System (INIS)

    Egorova, O N; Astapovich, M S; Semjonov, S L; Dianov, E M; Melnikov, L A; Salganskii, M Yu; Mishkin, S N; Nishchev, K N

    2016-01-01

    We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores. (fiber optics)

  11. Influence of fibre design and curvature on crosstalk in multi-core fibre

    Energy Technology Data Exchange (ETDEWEB)

    Egorova, O N; Astapovich, M S; Semjonov, S L; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Melnikov, L A [Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, Saratov (Russian Federation); Salganskii, M Yu [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Mishkin, S N; Nishchev, K N [N.P. Ogarev Mordovia State University, Physics and Chemistry Institute, Saransk (Russian Federation)

    2016-03-31

    We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores. (fiber optics)

  12. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    Science.gov (United States)

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  13. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse

    DEFF Research Database (Denmark)

    Xu, H; Christmas, P; Wu, X R

    1994-01-01

    -linked Duchenne and Becker muscular dystrophies. We have examined M-laminin expression in mice with autosomal recessive muscular dystrophy caused by the mutation dy. The heavy chain of M-laminin was undetectable in skeletal muscle, heart muscle, and peripheral nerve by immunofluorescence and immunoblotting......M-laminin is a major member of the laminin family of basement membrane proteins. It is prominently expressed in striated muscle and peripheral nerve. M-laminin is deficient in patients with the autosomal recessive Fukuyama congenital muscular dystrophy but is normal in patients with the sex...... tissue from dy/dy mice, suggesting that M-laminin heavy-chain mRNA may be produced at very low levels or is unstable. Information about the chromosomal localization of the M heavy-chain in human and mouse suggests that a mutation in the M-chain gene causes the muscular dystrophy in dy/dy mice. The dy...

  14. Effect of tibial bone resection on the development of fast- and slow-twitch skeletal muscles in foetal sheep.

    Science.gov (United States)

    West, J M; Williams, N A; Luff, A R; Walker, D W

    2000-04-01

    To determine if longitudinal bone growth affects the differentiation of fast- and slow-twitch muscles, the tibial bone was sectioned at 90 days gestation in foetal sheep so that the lower leg was permanently without structural support. At 140 days (term is approximately 147 days) the contractile properties of whole muscles, activation profiles of single fibres and ultrastructure of fast- and slow-twitch muscles from the hindlimbs were studied. The contractile and activation profiles of the slow-twitch soleus muscles were significantly affected by tibial bone resection (TIBX). The soleus muscles from the TIBX hindlimbs showed: (1) a decrease in the time to peak of the twitch responses from 106.2 +/- 10.7 ms (control, n = 4) to 65.1 +/- 2.48 ms (TIBX, n = 5); (2) fatigue profiles more characteristic of those observed in the fast-twitch muscles: and (3) Ca2+ - and Sr2+ -activation profiles of skinned fibres similar to those from intact hindlimbs at earlier stages of gestation. In the FDL, TIBX did not significantly change whole muscle twitch contraction time, the fatigue profile or the Ca2+ - and Sr2+ -activation profiles of skinned fibres. Electron microscopy showed an increased deposition of glycogen in both soleus and FDL muscles. This study shows that the development of the slow-twitch phenotype is impeded in the absence of the physical support normally provided by the tibial bone. We suggest that longitudinal stretch is an important factor in allowing full expression of the slow-twitch phenotype.

  15. Revisiting the anatomy and biomechanics of the anconeus muscle and its role in elbow stability.

    Science.gov (United States)

    Pereira, Barry P

    2013-07-01

    Recent studies have designated the anconeus muscle as an option for use as a pedicled flap for covering soft tissue defects about the elbow, with reported minimal risk of morbidity. This has raised the question as to the importance of the anconeus muscle and as to whether this is truly an accessory muscle that can be sacrificed, or whether the anconeus muscle significantly contributes to elbow and forearm stability? This study revisits the anatomy and biomechanics of the anconeus muscle and aims to investigate the neuromuscular compartments of the anconeus muscle and to determine the changes in the muscle length, fibre length and moment arm over a range of elbow flexion angles for each compartment. An anatomical study on 8 human cadavers (51-77 years of age) was done and a 2-dimensional kinematic elbow model developed to determine changes in the muscle length and moment arm of the muscle related to changes in elbow flexion angles. The muscle was modelled with two possible lines of action, one along the posterior and another on the anterior edge of the muscle as they had different muscle fibre lengths (posterior: average of 32 mm, anterior: average of 20 mm). The anterior edge also had an aponeurosis which was 70% of its length. From 0 to 120° elbow flexion, the length of the posterior and anterior edges increased with a maximum change recorded at 90° elbow flexion (31.7±1.0 mm and 65.3±1.4 mm, respectively). The moment arm is 14-mm at 0° flexion, but between the posterior and anterior edges it decreases at different rates with increasing elbow flexion angle. Beyond 80°, the anterior edge behaves as an elbow flexor, while the posterior edge remains an elbow extensor. The study demonstrates that the anconeus muscle has two neuromuscular compartments each with distinct intramuscular innervations and muscle fibre lengths. The posterior and deep aspect of the muscle functions as an elbow extensor decreasing in influence with increasing elbow flexion angle. The

  16. Fibre-Related Dietary Patterns: Socioeconomic Barriers to Adequate Fibre Intake in Polish Adolescents. A Short Report.

    Science.gov (United States)

    Krusinska, Beata; Kowalkowska, Joanna; Wadolowska, Lidia; Wuenstel, Justyna Weronika; Slowinska, Malgorzata Anna; Niedzwiedzka, Ewa

    2017-06-10

    There is no complete explanation for the association between socioeconomic status (SES), fibre, and whole diet described by dietary patterns. The aim of this short report was to increase the understanding of adolescent dietary patterns related to fibre in their social context. A cross-sectional study was conducted involving 1176 adolescents aged 13-18 years from central and north-eastern Poland. The overall SES was composed of five single factors: place of residence, self-declared economic situation of family, self-declared economic situation of household, paternal and maternal education. The consumption frequency of nine dietary fibre sources was collected using Block's questionnaire and was expressed in points. Fibre dietary patterns (DPs) were drawn by cluster analysis and odds ratios (ORs) adjusted for age, sex, and BMI were calculated. Three fibre-related DPs were identified: "High-fibre" (mean frequency of total fibre intake 22.7 points; range: 0-36), "Average-fibre" (17.7 points), "Low-fibre" (14.6 points). The "High-fibre" DP was characterized by a relatively higher frequency consumption of white bread, fruit, fruit or vegetable juices, potatoes, green salad and prepared vegetables, and a moderate frequency consumption of high-fibre or bran cereals and wholegrain bread compared to the "Low-fibre" DP. The "Average-fibre" DP was characterized by a relatively higher frequency consumption of wholegrain bread and high-fibre or bran cereals and a moderate frequency consumption of fruit, fruit or vegetable juices, green salad and prepared vegetables compared to the "Low-fibre" DP. Less likely to adhere to the "High-fibre" DP were adolescents with low SES (OR: 0.55, 95% CI: 0.39-0.77) or average SES (0.58, 95% CI: 0.41-0.81) in comparison with high SES (reference) as a result of elementary or secondary paternal or maternal education, rural residence, and lower household economic situation. Similar associations were found for the "Average-fibre" DP. Low and average

  17. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Science.gov (United States)

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  18. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Michael P Housley

    2016-06-01

    Full Text Available Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD, lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  19. Influence of fibre orientation on the performance of steel fibre-reinforced concrete

    OpenAIRE

    Grünewald, Steffen; Laranjeira de Oliveira, Filipe; Walraven, Joost; Aguado de Cea, Antonio; Molins i Borrell, Climent

    2012-01-01

    The performance of fibre-reinforced materials in the hardened state depends on the material behaviour, the production method and influences related to the structure. The position and the orientation of fibres in a structure can differ from the homogenous distribution and the random orientation in a mixer. Due to the flow of the concrete, fibres are able to orient which makes the prediction of the structural behaviour of fibre-reinforced concrete more complex, but it also offers the potential ...

  20. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  1. Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; Andersen, Jesper L.

    2004-01-01

    growth factor (VEGF), a known target gene for hypoxia inducible factor 1 (HIF-1). We hypothesised that prolonged exposure to high altitude increases muscle capillary density and that this can be explained by an enhanced HIF-1alpha expression inducing an increase in VEGF expression. We measured mRNA...... or VEGF mRNA was not changed with prolonged hypoxic exposure in SLR, and both genes were similarly expressed in SLR and HAN. In SLR, whole body mass, mean muscle fibre area and capillary to muscle fibre ratio remained unchanged during acclimatization. The capillary to fibre ratio was lower in HAN than...... in SLR (2.4+/-0.1 vs 3.6+/-0.2; PRNA expression and capillary density are not significantly increased by 8 weeks of exposure to high altitude and are not increased in Aymara high-altitude natives compared with sea level residents....

  2. Naturally Protected Muscle Phenotypes: Development of Novel Treatment Strategies for Duchenne Muscular Dystrophy

    OpenAIRE

    Dowling, Paul; Doran, Philip; Lohan, James; Culligan, Kevin; Ohlendieck, Kay

    2004-01-01

    Primary abnormalities in the dystrophin gene underlie x-linked muscular dystrophy. However, the absence of the dystrophin isoform Dp427 does not necessarily result in a severe dystrophic phenotype in all muscle groups. Distal mdx muscles, namely extraocular and toe fibres, appear to represent a protected phenotype in muscular dystrophy. Thus, a comparative analysis of affected versus naturally protected muscle cells should lead to a greater knowledge of the molecular pathogenes...

  3. Hemp fibres: Enzymatic effect of microbial processing on fibre bundle structure

    DEFF Research Database (Denmark)

    Thygesen, Anders; Liu, Ming; Meyer, Anne S.

    2013-01-01

    The effects of microbial pretreatment on hemp fibres were evaluated after microbial retting using the white rot fungi Ceriporiopsis subvermispora and Phlebia radiata Cel 26 and water retting. Based on chemical composition, P. radiata Cel 26 showed the highest selectivity for pectin and lignin...... degradation and lowest cellulose loss (14%) resulting in the highest cellulose content (78.4%) for the treated hemp fibres. The pectin and lignin removal after treatment with P. radiata Cel 26 were of the order 82% and 50%, respectively. Aligned epoxy-matrix composites were made from hemp fibres defibrated...... with the microbial retting to evaluate the effects on their ultrastructure. SEM microscopy of the composites showed low porosity on the fibre surfaces after defibration with P. radiata Cel 26 and C. subvermispora indicating good epoxy polymer impregnation. In contrast, fibres treated by water retting and the raw...

  4. Vibrated and self-compacting fibre reinforced concrete: experimental investigation on the fibre orientation

    Science.gov (United States)

    Conforti, A.; Plizzari, G. A.; Zerbino, R.

    2017-09-01

    In addition to the fibre type and content, the residual properties of fibre reinforced concrete are influenced by fibre orientation. Consequently, the performance fibre reinforced concrete can be affected by its fresh properties (workability, flowing capacity) and by casting and compaction processes adopted. This paper focuses on the study of the orientation of steel or macro-synthetic fibres in two materials characterized by very different fresh properties: vibrated and self-compacting concrete. Four rectangular slabs 1800 mm long, 925 mm wide and 100 mm high were produced changing concrete and fibre type. From each slab, eighteen small prisms (550 mm long) were firstly cut either orthogonal or parallel to casting direction and, secondly, notched and tested in bending according to EN 14651. Experimental results showed that the toughness properties of a thin slab significantly varies both in vibrated and self-compacting concrete, even if in case of self-compacting concrete this variation resulted higher. Steel fibres led to greater variability of results compared to polymer one, underlining a different fibre orientation. A discussion on the relative residual capacity measured on the prisms sawn from the slabs and the parameters obtained from standard specimens is performed.

  5. FHL1 activates myostatin signalling in skeletal muscle and promotes atrophy

    OpenAIRE

    Kemp, P; Lee, JY; lori, O; Wells, D

    2015-01-01

    Myostatin is a TGFβ family ligand that reduces muscle mass. In cancer cells, TGFβ signalling is increased by the protein FHL1. Consequently, FHL1 may promote signalling by myostatin. We therefore tested the ability of FHL1 to regulate myostatin function. FHL1 increased the myostatin activity on a SMAD reporter and increased myostatin dependent myotube wasting. In mice, independent expression of myostatin reduced fibre diameter whereas FHL1 increased fibre diameter, both consistent with previo...

  6. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater

    International Nuclear Information System (INIS)

    Wei Bin; Cao Hailin; Song Shenhua

    2011-01-01

    Research highlights: → BFRP degradation process in seawater environment was first investigated. → The mass gain change includes two effects: absorption and extraction. → The interfacial adhesion of BFRP is bigger than GFRP. → After treated, the bending strength of BFRP is lower than GFRP. → Reducing the Fe 2+ in the basalt fibre could lead to a higher stability of BFRP. - Abstract: Epoxy resins reinforced, respectively, by basalt fibres and glass fibres were treated with a seawater solution for different periods of time. Both the mass gain ratio and the strength maintenance ratio of the composites were examined after the treatment. The fracture surfaces were characterized using scanning electron microscopy. The tensile and bending strengths of the seawater treated samples showed a decreasing trend with treating time. In general, the anti-seawater corrosion property of the basalt fibre reinforced composites was almost the same as that of the glass fibre reinforced ones. Based on the experimental results, possible corrosion mechanisms were explored, indicating that an effective lowering of the Fe 2+ content in the basalt fibre could lead to a higher stability for the basalt fibre reinforced composites in a seawater environment.

  7. Zebrafish integrin-linked kinase is required in skeletal muscles for strengthening the integrin-ECM adhesion complex.

    NARCIS (Netherlands)

    Postel, R.; Vakeel, P.; Topczewski, J.; Knoll, R.; Bakkers, J.

    2008-01-01

    Mechanical instability of skeletal muscle cells is the major cause of congenital muscular dystrophy. Here we show that the zebrafish lost-contact mutant, that lacks a functional integrin-linked kinase (ilk) gene, suffers from mechanical instability of skeletal muscle fibres. With genetic and

  8. Morphological and functional analyses of skeletal muscles from an immunodeficient animal model of limb-girdle muscular dystrophy type 2E.

    Science.gov (United States)

    Giovannelli, Gaia; Giacomazzi, Giorgia; Grosemans, Hanne; Sampaolesi, Maurilio

    2018-02-24

    Limb-girdle muscular dystrophy type 2E (LGMD2E) is caused by mutations in the β-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscles. β-Sarcoglycan-deficient (Sgcb-null) mice develop severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. In this study we performed morphological (histological and cellular characterization) and functional (isometric tetanic force and fatigue) analyses in dystrophic mice. Comparison studies were carried out in 1-month-old (clinical onset of the disease) and 7-month-old control mice (C57Bl/6J, Rag2/γc-null) and immunocompetent and immunodeficient dystrophic mice (Sgcb-null and Sgcb/Rag2/γc-null, respectively). We found that the lack of an immunological system resulted in an increase of calcification in striated muscles without impairing extensor digitorum longus muscle performance. Sgcb/Rag2/γc-null muscles showed a significant reduction of alkaline phosphate-positive mesoangioblasts. The immunological system counteracts skeletal muscle degeneration in the murine model of LGMD2E. Muscle Nerve, 2018. © 2018 The Authors. Muscle & Nerve Published by Wiley Periodicals, Inc.

  9. Software for muscle fibre type classification and analysis

    Czech Academy of Sciences Publication Activity Database

    Karen, Petr; Števanec, M.; Smerdu, V.; Cvetko, E.; Kubínová, Lucie; Eržen, I.

    2009-01-01

    Roč. 53, č. 2 (2009), s. 87-95 ISSN 1121-760X R&D Projects: GA MŠk(CZ) LC06063; GA MŠk(CZ) MEB090910 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscle fiber types * myosin heavy chain isoforms * image processing Subject RIV: JC - Computer Hardware ; Software Impact factor: 0.886, year: 2009

  10. Muscle satellite cells are activated after exercise to exhaustion in Thoroughbred horses.

    Science.gov (United States)

    Kawai, M; Aida, H; Hiraga, A; Miyata, H

    2013-07-01

    Although satellite cells are well known as muscle stem cells capable of adding myonuclei during muscle repair and hypertrophy, the response of satellite cells in horse muscles to a run to exhaustion is still unknown. To investigate the time course of satellite cell activation in Thoroughbred horse muscle after running to exhaustion. We hypothesised that this type of intense exercise would induce satellite cell activation in skeletal muscle similar to a resistance exercise. Nine de-trained Thoroughbred horses (6 geldings and 3 mares) aged 3-6 years were studied. Biopsy samples were taken from the gluteus medius muscle of the horses before and 1 min, 3 h, 1 day, 3 days, 1 week and 2 weeks after a treadmill run to exhaustion. The numbers of satellite cells for each fibre type were determined by using immunofluorescence staining. Total RNA was extracted from these samples, and the expressions of interleukin (IL)-6, paired box transcriptional factor (Pax) 7, myogenic differentiation 1 (MyoD), myogenin, proliferating cell nuclear antigen (PCNA), insulin-like growth factor (IGF)-I and hepatocyte growth factor (HGF) mRNA were analysed using real-time reverse transcription-PCR. The numbers of satellite cells were significantly increased in type I and IIa fibres at 1 week and in type IIa/x fibre at 2 weeks post exercise. The expression of IL-6 mRNA increased significantly by 3 h post exercise. The expression of PCNA mRNA also increased by 1 day after running, indicating that running can initiate satellite cell proliferation. The expression of Pax7, MyoD, myogenin, IGF-I and HGF mRNA peaked at 1 week post exercise. Satellite cell activation and proliferation could be enhanced after a run to exhaustion without detectable injury as assessed by the histochemical analysis. Understanding the response of satellite cell activation to running exercise provides fundamental information about the skeletal muscle adaptation in Thoroughbred horses. © 2012 EVJ Ltd.

  11. Alterations of cAMP-dependent signaling in dystrophic skeletal muscle

    Directory of Open Access Journals (Sweden)

    Rüdiger eRudolf

    2013-10-01

    Full Text Available Autonomic regulation processes in striated muscles are largely mediated by cAMP/PKA-signaling. In order to achieve specificity of signaling its spatial-temporal compartmentation plays a critical role. We discuss here how specificity of cAMP/PKA-signaling can be achieved in skeletal muscle by spatio-temporal compartmentation. While a microdomain containing PKA type I in the region of the neuromuscular junction is important for post-synaptic, activity-dependent stabilization of the nicotinic acetylcholine receptor, PKA type I and II microdomains in the sarcomeric part of skeletal muscle are likely to play different roles, including the regulation of muscle homeostasis. These microdomains are due to specific A-kinase anchoring proteins, like rapsyn and myospryn. Importantly, recent evidence indicates that compartmentation of the cAMP/PKA-dependent signaling pathway and pharmacological activation of cAMP production are aberrant in different skeletal muscles disorders. Thus, we discuss here their potential as targets for palliative treatment of certain forms of dystrophy and myasthenia. Under physiological conditions, the neuropeptide, α-calcitonin-related peptide, as well as beta-adrenergic agonists are the most-mentioned natural triggers for activating cAMP/PKA signaling in skeletal muscle. While the precise domains and functions of these first messengers are still under investigation, agonists of β2-adrenoceptors clearly exhibit anabolic activity under normal conditions and reduce protein degradation during atrophic periods. Past and recent studies suggest direct sympathetic innervation of skeletal muscle fibers. In summary, the organization and roles of cAMP-dependent signaling in skeletal muscle are increasingly understood, revealing crucial functions in processes like nerve-muscle interaction and muscle trophicity.

  12. The Chemical Composition of Grape Fibre

    Directory of Open Access Journals (Sweden)

    Jolana Karovičová

    2015-05-01

    Full Text Available Dietary fibres from cereals are much more used than dietary fibres from fruits; however, dietary fibres from fruits have better quality. In recent years, for economic and environmental reasons, there has been a growing pressure to recover and exploit food wastes. Grape fibre is used to fortify baked goods, because the fibre can lower blood sugar, cut cholesterol and may even prevent colon cancer. Grape pomace is a functional ingredient in bakery goods to increase total phenolic content and dietary fibre in nourishment. The aim of this study was to determine the chemical composition of commercial fibres, obtained from different Grape sources concerning their chemical properties such as moisture, ash, fat, protein, total dietary fibre. The chemical composition of Grape fibre is known to vary depending on the Grape cultivar, growth climates, and processing conditions. The obliged characteristics of the fibre product are: total dietary fibre content above 50%, moisture lower than 9%, low content of lipids, a low energy value and neutral flavour and taste. Grape pomace represents a rich source of various high-value products such as ethanol, tartrates and malates, citric acid, Grape seed oil, hydrocolloids and dietary fibre. Used commercial Grape fibres have as a main characteristic, the high content of total dietary fibre. Amount of total dietary fibre depends on the variety of Grapes. Total dietary fibre content (TDF in our samples of Grape fibre varied from 56.8% to 83.6%. There were also determined low contents of moisture (below 9%. In the samples of Grape fibre were determined higher amount of protein (8.6 - 10.8%, mineral (1.3 - 3.8% and fat (2.8 - 8.6%. This fact opens the possibility of using both initial by-products as ingredients in the food industry, due to the effects associated with the high total dietary fibre content.

  13. Microgel polymer composite fibres

    OpenAIRE

    Kehren, Dominic

    2014-01-01

    In this thesis some novel ideas and advancements in the field of polymer composite fibres, specifically microgel-based polymer composite fibres have been achieved. The main task was to investigate and understand the electrospinning process of microgels and polymers and the interplay of parameter influences, in order to fabricate reproducible and continuously homogenous composite fibres. The main aim was to fabricate a composite material which combines the special properties of polymer fibres ...

  14. Histological analysis of thelohaniasis in white-clawed crayfish Austropotamobius pallipes complex

    Directory of Open Access Journals (Sweden)

    Quaglio F.

    2011-09-01

    Full Text Available From 2004 to 2006, a parasitological survey aimed at the detection of the microsporidian parasite Thelohania contejeani Henneguy was carried out on 177 wild white-clawed crayfish (Austropotamobius pallipes complex captured in six streams and rivers of the province of Belluno in north-eastern Italy. Microscopical examination of the skeletal muscles, and histological analysis applying different histochemical stains to full transverse and sagittal sections of the cephalothorax and abdomen were carried out. Transmission electron microscopy (TEM was also conducted on the parasites recovered during the survey. Out of 177 crayfish examined, Thelohania contejeani (Microsporidia, Thelohaniidae was present in only one crayfish from the Vena d’oro creek. The parasite was detected in the skeletal muscles in several developmental stages, including mature spores, which represented the most common stage recovered. Sporophorous vesicles were also present. Histological examination revealed that the fibres of the skeletal, cardiac and intestinal muscles were filled with spores. Melanin infiltrations were focally present in the infected striated muscles. The gill phagocytic nephrocytes were engulfed by small masses of spores. Among the staining techniques applied, Crossman’s trichrome stain represented the most effective method of detecting T. contejeani.

  15. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik

    2003-01-01

    , as well as a honeycomb bandgap fibre and the first analysis of semi-periodic layered air-hole fibres. Using the modelling framework established as a basis, we provide an analysis of microbend loss, by regarding displacement of a fibre core as a stationary stochastic process, inducing mismatch between......In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...

  16. Membrane-stabilizing copolymers confer marked protection to dystrophic skeletal muscle in vivo

    Directory of Open Access Journals (Sweden)

    Evelyne M Houang

    Full Text Available Duchenne muscular dystrophy (DMD is a fatal disease of striated muscle deterioration. A unique therapeutic approach for DMD is the use of synthetic membrane stabilizers to protect the fragile dystrophic sarcolemma against contraction-induced mechanical stress. Block copolymer-based membrane stabilizer poloxamer 188 (P188 has been shown to protect the dystrophic myocardium. In comparison, the ability of synthetic membrane stabilizers to protect fragile DMD skeletal muscles has been less clear. Because cardiac and skeletal muscles have distinct structural and functional features, including differences in the mechanism of activation, variance in sarcolemma phospholipid composition, and differences in the magnitude and types of forces generated, we speculated that optimized membrane stabilization could be inherently different. Our objective here is to use principles of pharmacodynamics to evaluate membrane stabilization therapy for DMD skeletal muscles. Results show a dramatic differential effect of membrane stabilization by optimization of pharmacodynamic-guided route of poloxamer delivery. Data show that subcutaneous P188 delivery, but not intravascular or intraperitoneal routes, conferred significant protection to dystrophic limb skeletal muscles undergoing mechanical stress in vivo. In addition, structure-function examination of synthetic membrane stabilizers further underscores the importance of copolymer composition, molecular weight, and dosage in optimization of poloxamer pharmacodynamics in vivo.

  17. Surface analysis of glass fibres using XPS and AFM: case study of glass fibres recovered from the glass fibre reinforced polymer using chemical recycling

    Science.gov (United States)

    Nzioka, A. M.; Kim, Y. J.

    2018-01-01

    In this study, we present the results of an experimental study of the use of the X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) to characterise the coatings of the recovered E - glass fibres. The recovered E - glass fibres were obtained using chemical recycling process coupled with ultrasound cavitation. The objective of this study was to analyse the impact of chemical recycling and the ultrasound cavitation process on the sizing properties of the recovered fibres. We obtained the recovered fibres and sized using 1 wt% 3 - aminopropyltriethoxysilane (APS). Part of the sized fibres was washed with acetone and analysed all the sample fibres using AFM and XPS. Results showed the different composition of sizing after extraction using acetone. We compared the results of this study with that of virgin clean glass fibres.

  18. Fibre recruitment and shape changes of knee ligaments during motion: as revealed by a computer graphics-based model.

    Science.gov (United States)

    Lu, T W; O'Connor, J J

    1996-01-01

    A computer graphics-based model of the knee ligaments in the sagittal plane was developed for the simulation and visualization of the shape changes and fibre recruitment process of the ligaments during motion under unloaded and loaded conditions. The cruciate and collateral ligaments were modelled as ordered arrays of fibres which link attachment areas on the tibia and femur. Fibres slacken and tighten as the ligament attachment areas on the bones rotate and translate relative to each other. A four-bar linkage, composed of the femur, tibia and selected isometric fibres of the two cruciates, was used to determine the motion of the femur relative to the tibia during passive (unloaded) movement. Fibres were assumed to slacken in a Euler buckling mode when the distances between their attachments are less than chosen reference lengths. The ligament shape changes and buckling patterns are demonstrated with computer graphics. When the tibia is translated anteriorly or posteriorly relative to the femur by muscle forces and external loads, some ligament fibres tighten and are recruited progressively to transmit increasing shear forces. The shape changes and fibre recruitment patterns predicted by the model compare well qualitatively with experimental results reported in the literature. The computer graphics approach provides insight into the micro behaviour of the knee ligaments. It may help to explain ligament injury mechanisms and provide useful information to guide the design of ligament replacements.

  19. Fast and slow myosins as markers of muscle injury.

    Science.gov (United States)

    Guerrero, M; Guiu-Comadevall, M; Cadefau, J A; Parra, J; Balius, R; Estruch, A; Rodas, G; Bedini, J L; Cussó, R

    2008-07-01

    The diagnosis of muscular lesions suffered by athletes is usually made by clinical criteria combined with imaging of the lesion (ultrasonography and/or magnetic resonance) and blood tests to detect the presence of non-specific muscle markers. This study was undertaken to evaluate injury to fast and slow-twitch fibres using specific muscle markers for these fibres. Blood samples were obtained from 51 non-sports people and 38 sportsmen with skeletal muscle injury. Western blood analysis was performed to determine fast and slow myosin and creatine kinase (CK) levels. Skeletal muscle damage was diagnosed by physical examination, ultrasonography and magnetic resonance and biochemical markers. The imaging tests were found to be excellent for detecting and confirming grade II and III lesions. However, grade I lesions were often unconfirmed by these techniques. Grade I lesions have higher levels of fast myosin than slow myosin with a very small increase in CK levels. Grade II and III lesions have high values of both fast and slow myosin. The evaluation of fast and slow myosin in the blood 48 h after the lesion occurs is a useful aid for the detection of type I lesions in particular, since fast myosin is an exclusive skeletal muscle marker. The correct diagnosis of grade I lesions can prevent progression of the injury in athletes undergoing continual training sessions and competitions, thus aiding sports physicians in their decision making.

  20. Biological durability and oxidative potential of man-made vitreous fibres as compared to crocidolite asbestos fibres

    Energy Technology Data Exchange (ETDEWEB)

    Hippeli, S.; Dornisch, K.; Elstner, E.F. [Lehrstuhl fuer Phytopathologie, Technische Univ. Muenchen-Weihenstephan, Freising-Weihenstephan (Germany); Wiethege, T.; Mueller, K.M. [Berufsgenossenschaftliche Kliniken Bergmannsheil, Universitaetsklinik, Inst. fuer Pathologie, Bochum (Germany); Gillissen, A. [Medizinische Universitaetsklinik und Poliklinik II, Kardiologie, Pneumologie, Bonn (Germany)

    2001-08-01

    In this study we investigated relationships between redox properties and biodurability of crocidolite asbestos fibres and three different man-made vitreous fibres (MMVF): traditional stone wool fibres (MMVF 21), glass fibres (MMVF 11) and refractory ceramic fibres (RCF). Each fibre type was incubated up to 22 weeks in four different incubation media: gamble solution (GS) pH 5.0 and pH 7.4, representing blood plasma without proteins, and surfactant-like solution (SLS) pH 5.0 and pH 7.4. During incubation time aliquots of incubation mixtures were removed and analysed in a biochemical model reaction, mimicking activated phagocytes. In addition, changes of fibre morphology and chemical composition were examined using SEM- and EDX-technology. In the presence of crocidolite asbestos fibres and MMVF 21 the formation of OH-radicals according to the Haber-Weiss sequence could be demonstrated, whereas MMVF 11 and RCF showed no reactivity. Crocidolite asbestos fibres exhibited a significant higher activity compared with the stone wool fibres at the onset of incubation. The oxidative capacities of these fibre types were shown to depend on both specific surface area and iron content. The oxidative potentials of crocidolite asbestos fibres as well as MMVF 21 were not constant during incubation over several weeks in each incubation medium. The reactivities showed sinoidal curves including reactivities much higher than those at the onset of incubation time. These irregular changes of oxidative capacity may be explained by changes of the redox state of fibre surface-complexed iron. Furthermore our results showed clear differences between incubation of fibres in GS and SLS, respectively, indicating that phospholipids play an important part in fibre dissolution behaviour and oxidative reactivity. (orig.)

  1. Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species.

    Science.gov (United States)

    Bonnet, M; Cassar-Malek, I; Chilliard, Y; Picard, B

    2010-07-01

    The lean-to-fat ratio, that is, the relative masses of muscle and adipose tissue, is a criterion for the yield and quality of bovine carcasses and meat. This review describes the interactions between muscle and adipose tissue (AT) that may regulate the dynamic balance between the number and size of muscle v. adipose cells. Muscle and adipose tissue in cattle grow by an increase in the number of cells (hyperplasia), mainly during foetal life. The total number of muscle fibres is set by the end of the second trimester of gestation. By contrast, the number of adipocytes is never set. Number of adipocytes increases mainly before birth until 1 year of age, depending on the anatomical location of the adipose tissue. Hyperplasia concerns brown pre-adipocytes during foetal life and white pre-adipocytes from a few weeks after birth. A decrease in the number of secondary myofibres and an increase in adiposity in lambs born from mothers severely underfed during early pregnancy suggest a balance in the commitment of a common progenitor into the myogenic or adipogenic lineages, or a reciprocal regulation of the commitment of two distinct progenitors. The developmental origin of white adipocytes is a subject of debate. Molecular and histological data suggested a possible transdifferentiation of brown into white adipocytes, but this hypothesis has now been challenged by the characterization of distinct precursor cells for brown and white adipocytes in mice. Increased nutrient storage in fully differentiated muscle fibres and adipocytes, resulting in cell enlargement (hypertrophy), is thought to be the main mechanism, whereby muscle and fat masses increase in growing cattle. Competition or prioritization between adipose and muscle cells for the uptake and metabolism of nutrients is suggested, besides the successive waves of growth of muscle v. adipose tissue, by the inhibited or delayed adipose tissue growth in bovine genotypes exhibiting strong muscular development. This

  2. In vivo measurements of the triceps surae complex architecture in man: implications for muscle function

    NARCIS (Netherlands)

    Maganaris, C.N.; Baltzopoulos, V.; Sargeant, A.J.

    1998-01-01

    1. The objectives of this study were to (1) quantify experimentally in vivo changes in pennation angle, fibre length and muscle thickness in the triceps surae complex in man in response to changes in ankle position and isometric plantarflexion moment and (2) compare changes in the above muscle

  3. Effects of physical activity and inactivity on muscle fatigue

    Directory of Open Access Journals (Sweden)

    Gregory C. Bogdanis

    2012-05-01

    Full Text Available The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fibre composition, neuromuscular characteristics high energy metabolite stores, buffering capacity, ionic regulation, capillarization and mitochondrial density. Muscle fiber type transformation during exercise training is usually towards the intermediate type IIA at the expense of both type I and type IIx myosin heavy chain isoforms. High intensity training results in increases of both glycolyic and oxidative enzymes, muscle capilarization, improved phosphocreatine resynthesis and regulation of K+, H+ and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fibre cross-sectional area, decreased oxidative capacity and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high intensity exercise training in patients with different health conditions to demonstrate the powerful effect exercise on health and well

  4. Pure chiral optical fibres.

    Science.gov (United States)

    Poladian, L; Straton, M; Docherty, A; Argyros, A

    2011-01-17

    We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.

  5. The relationship between critical flux and fibre movement induced by bubbling in a submerged hollow fibre system.

    Science.gov (United States)

    Wicaksana, F; Fan, A G; Chen, V

    2005-01-01

    Bubbling has been used to enhance various processes. In this paper we deal with the effect of bubbling on submerged hollow fibre membranes, where bubbling is applied to prevent severe membrane fouling. Previous work with submerged hollow fibres has observed that significant fibre movement can be induced by bubbling and that there is a qualitative relationship between fibre movement and filtration performance. Therefore, the aim of the present research has been to analyse the link between bubbling, fibre movement and critical flux, identified as the flux at which the transmembrane pressure (TMP) starts to rise. Tests were performed on vertical isolated fibres with a model feed of yeast suspension. The fibres were subject to steady bubbling from below. The parameters of interest were the fibre characteristics, such as tightness, diameter and length, as well as feed concentration. The results confirmed that the critical fluxes are affected by the fibre characteristics and feed concentration. Higher critical flux values can be achieved by using loose fibres, smaller diameters and longer fibres. The enhancement is partially linked to fibre movement and this is confirmed by improved performance when fibres are subject to mechanical movement in the absence of bubbling.

  6. Altered mitochondrial regulation in quadriceps muscles of patients with COPD

    DEFF Research Database (Denmark)

    Naimi, Ashley I; Bourbeau, Jean; Perrault, Helene

    2011-01-01

    Evidence exists for locomotor muscle impairment in patients with chronic obstructive pulmonary disease (COPD), including fiber type alterations and reduced mitochondrial oxidative capacity. In this study high-resolution respirometry was used to quantify oxygen flux in permeabilized fibres from bi...

  7. A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues.

    Science.gov (United States)

    Li, Kewei; Ogden, Ray W; Holzapfel, Gerhard A

    2018-01-01

    Recently, micro-sphere-based methods derived from the angular integration approach have been used for excluding fibres under compression in the modelling of soft biological tissues. However, recent studies have revealed that many of the widely used numerical integration schemes over the unit sphere are inaccurate for large deformation problems even without excluding fibres under compression. Thus, in this study, we propose a discrete fibre dispersion model based on a systematic method for discretizing a unit hemisphere into a finite number of elementary areas, such as spherical triangles. Over each elementary area, we define a representative fibre direction and a discrete fibre density. Then, the strain energy of all the fibres distributed over each elementary area is approximated based on the deformation of the representative fibre direction weighted by the corresponding discrete fibre density. A summation of fibre contributions over all elementary areas then yields the resultant fibre strain energy. This treatment allows us to exclude fibres under compression in a discrete manner by evaluating the tension-compression status of the representative fibre directions only. We have implemented this model in a finite-element programme and illustrate it with three representative examples, including simple tension and simple shear of a unit cube, and non-homogeneous uniaxial extension of a rectangular strip. The results of all three examples are consistent and accurate compared with the previously developed continuous fibre dispersion model, and that is achieved with a substantial reduction of computational cost. © 2018 The Author(s).

  8. Picture frame fibres in a carrier of the trait for malignant hyperpyrexia

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, H; Badenhorst, M [University of the Witwatersrand, Johannesburg (South Africa). Department of Physiology; Heffron, J J.A. [University of the Witwatersrand, Johannesburg (South Africa). Department of Physiological Chemistry

    1975-11-01

    A member of a family which was known to be susceptible to malignant hyperpyrexia, who was identified as a carrier by the presence of an elevated serum creatinephosphokinase, has been investigated further. Muscle was examined biochemically, and the study included the sarcoplasmic ATPase-activity, actinomycin, Mg2+ ATPase activity, ATP, phosphocreatine and glucose-6-phosphate. In addition, the calcium uptake by the sarcoplasmic reticulum was studied. The histochemical analysis of the muscle revealed the presence of a new fibre type characterized by a dense rim of ATPase activity, which gives the impression of a 'picture-frame'. Ultramicroscopic study revealed changes in the mitochondria and areas of myofibrillar disruption with swelling of the sarcoplasmic reticulum.

  9. Picture frame fibres in a carrier of the trait for malignant hyperpyrexia

    International Nuclear Information System (INIS)

    Isaacs, H.; Badenhorst, M.; Heffron, J.J.A.

    1975-01-01

    A member of a family which was known to be susceptible to malignant hyperpyrexia, who was identified as a carrier by the presence of an elevated serum creatinephosphokinase, has been investigated further. Muscle was examined biochemically, and the study included the sarcoplasmic ATPase-activity, actinomycin, Mg2+ ATPase activity, ATP, phosphocreatine and glucose-6-phosphate. In addition, the calcium uptake by the sarcoplasmic reticulum was studied. The histochemical analysis of the muscle revealed the presence of a new fibre type characterized by a dense rim of ATPase activity, which gives the impression of a 'picture-frame'. Ultramicroscopic study revealed changes in the mitochondria and areas of myofibrillar disruption with swelling of the sarcoplasmic reticulum

  10. From nanoparticles to fibres: effect of dispersion composition on fibre properties

    Science.gov (United States)

    Schirmer, Katharina S. U.; Esrafilzadeh, Dorna; Thompson, Brianna C.; Quigley, Anita F.; Kapsa, Robert M. I.; Wallace, Gordon G.

    2015-06-01

    A polyvinyl alcohol (PVA)-stabilized polypyrrole nanodispersion has been optimised for conductivity and processability by decreasing the quantity of PVA before and after synthesis. A reduction of PVA before synthesis leads to the formation of particles with a slight increase in dry particle diameter (51 ± 6 to 63 ± 3 nm), and conversely a reduced hydrodynamic diameter. Conductivity of the dried nanoparticle films was not measureable after a reduction of PVA prior to synthesis. Using filtration of particles after synthesis, PVA content was sufficiently reduced to achieve dried thin film conductivity of 2 S cm-1, while the electroactivity of the dispersed particles remained unchanged. The as-synthesized and PVA-reduced polypyrrole particles were successfully spun into all-nanoparticle fibres using a wet-extrusion approach without the addition of any polymer or gel matrix. Using nanoparticles as a starting material is a novel approach, which allowed the production of macro-scale fibres that consisted entirely of polypyrrole nanoparticles. Fibres made from PVA-reduced polypyrrole showed higher electroactivity compared to fibres composed of the dispersion high in PVA. The mechanical properties of the fibres were also improved by reducing the amount of PVA present, resulting in a stronger, more ductile and less brittle fibre, which could find potential application in various fields.

  11. Advanced Fibre Based Energy Storage

    Science.gov (United States)

    Reid, Daniel Oliver

    New energy storage devices are required to enable future technologies. With the rise of wearable consumer and medical devices, a suitable flexible and wearable means of storing electrical energy is required. Fibre-based devices present a possible method of achieving this aim. Fibres are inherently more flexible than their bulk counterparts, and as such can be employed to form the electrodes of flexible batteries and capacitors. They also present a facile possibility for incorporation into many fabrics and clothes, further boosting their potential for use in wearable devices. Electrically conducting fibres were produced from a dispersion of carbon nanomaterials in a room temperature ionic liquid. Coagulation of this dispersion was achieved through manual injection into aqueous solutions of xanthan gum. The limitations of this method are highlighted by very low ultimate tensile strengths of these fibres, in the order of 3 MPa, with high variation within all of the fibres. Fibres were also produced via scrolling of bi-component films containing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly(vinyl alcohol) (PVA). Chemical treatments were employed to impart water compatibility to these fibres, and their electrochemical, physical and electrical properties were analysed. Fibres were wet spun from two PEDOT:PSS sources, in several fibre diameters. The effect of chemical treatments on the fibres were investigated and compared. Short 5 min treatment times with dimethyl sulfoxide (DMSO) on 20 mum fibres produced from Clevios PH1000 were found to produce the best overall treatment. Up to a six-fold increase in electrical conductivity resulted, reaching 800 S cm-1, with up to 40 % increase in specific capacitance and no loss of mechanical strength (55 F g-1 and 150 MPa recorded). A wet spinning system to produce PEDOT:PSS fibres containing functionalised graphenes and carbon nanotubes, as well as birnessite nanotubes was subsequently developed

  12. DETECTORS: scintillating fibres

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the continual search for improved detection techniques, new materials are continually proving profitable. A good example is scintillating plastic fibres - tiny transparent threads sometimes finer than a human hair which transmit light. The narrowness and flexibility of these fibres was a major breakthrough for endoscopy - non-invasive techniques for viewing the otherwise inaccessible in surgery or machine inspection. In a more sophisticated form, these fibres find ready application in communications technology, where the goal is to transmit information rather than electrical power, replacing conventional and unwieldy current-carrying wire conductors. In particle physics, fibres have long been used to take the tiny scintillations produced when high energy particles hit fluorescent materials and 'conduct' them to photosensitive detectors some distance away

  13. Study of the striated nature of a glow discharge

    International Nuclear Information System (INIS)

    Hernandez A, M.

    1995-01-01

    In an investigation in progress here, plasma diagnostics and detection of standing and moving striations is being made in a discharge in Argon at pressures of 2 x 10 -1 to 9 x 10 -1 mb and currents of 2 to 9 m-amp inside an discharge tube. Measurement of the temperature of the electrons, the concentration of electrons and the plasma potential are obtained in different places of the discharge by the double probe method, together with the computation system reported in [1]. In similar way an experimental work of the striated column in a discharge plasma to find the regimen of appearance of the standing and moving striations show some properties of moving striations (frequency and velocity) and standing striations. Two different oscilations are observed in motion in contrary directions along the discharge tube with a photomultiplier. (Author)

  14. Distal mdx muscle groups exhibiting up-regulation of utrophin and rescue of dystrophin-associated glycoproteins exemplify a protected phenotype in muscular dystrophy

    Science.gov (United States)

    Dowling, Paul; Culligan, Kevin; Ohlendieck, Kay

    2002-02-01

    Unique unaffected skeletal muscle fibres, unlike necrotic torso and limb muscles, may pave the way for a more detailed understanding of the molecular pathogenesis of inherited neuromuscular disorders and help to develop new treatment strategies for muscular dystrophies. The sparing of extraocular muscle in Duchenne muscular dystrophy is mostly attributed to the special protective properties of extremely fast-twitching small-diameter fibres, but here we show that distal muscles also represent a particular phenotype that is more resistant to necrosis. Immunoblot analysis of membranes isolated from the well established dystrophic animal model mdx shows that, in contrast to dystrophic limb muscles, the toe musculature exhibits an up-regulation of the autosomal dystrophin homologue utrophin and a concomitant rescue of dystrophin-associated glycoproteins. Thus distal mdx muscle groups provide a cellular system that naturally avoids myofibre degeneration which might be useful in the search for naturally occurring compensatory mechanisms in inherited skeletal muscle diseases.

  15. Special fibres and components

    DEFF Research Database (Denmark)

    Bunge, C.-A.; Woyessa, Getinet; Bremer, K.

    2017-01-01

    In this chapter we present more specific fibre types for particular applications. Starting with the multi-core fibre, which can be used as a substitution for ordinary SI-POF transmission fibres, but with better bending losses, over the ever increasing range of micro-structured POF for diverse sen...

  16. Characterization of muscle contraction with second harmonic generation microscopy

    Science.gov (United States)

    Prent, Nicole

    Muscle cells have the ability to change length and generate force due to orchestrated action of myosin nanomotors that cause sliding of actin filaments along myosin filaments in the sarcomeres, the fundamental contractile units, of myocytes. The correlated action of hundreds of sarcomeres is needed to produce the myocyte contractions. This study probes the molecular structure of the myofilaments and investigates the movement correlations between sarcomeres during contraction. In this study, second harmonic generation (SHG) microscopy is employed for imaging striated myocytes. Myosin filaments in striated myocytes inherently have a nonzero second-order susceptibility, [special characters omitted] and therefore generate efficient SHG. Employing polarization-in polarization-out (PIPO) SHG microscopy allows for the accurate determination of the characteristic ratio, [special characters omitted] in birefringent myocytes, which describes the structure of the myosin filament. Analysis shows that the b value at the centre of the myosin filament, where the nonlinear dipoles are better aligned, is slightly lower than the value at the edges of the filament, where there is more disorder in orientation of the nonlinear dipoles from the myosin heads. Forced stretching of myocytes resulted in an SHG intensity increase with the elongation of the sarcomere. SHG microscopy captured individual sarcomeres during contraction, allowing for the measurement of sarcomere length (SL) and SHG intensity (SI) fluctuations. The fluctuations also revealed higher SHG intensity in elongated sarcomeres. The sarcomere synchronization model (SSM) for contracting and quiescent myocytes was developed, and experimentally verified for three cases (isolated cardiomyocyte, embryonic chicken cardiomyocyte, and larva myocyte). During contraction, the action of SLs and SIs between neighbouring sarcomeres partially correlated, whereas in quiescent myocytes the SLs show an anti-correlation and the SIs have no

  17. Mechanical processing of bast fibres: The occurrence of damage and its effect on fibre structure

    DEFF Research Database (Denmark)

    Hänninen, Tuomas; Thygesen, Anders; Mehmood, Shahid

    2012-01-01

    Currently, separation processes used for natural fibres for composite reinforcing textiles cause a significant amount of damage to the fibres. Microscopic analysis showed that industrially processed flax (Linum usitassimium L.) fibres contained significantly more defects than green or retted ones...... to heterogeneous reactivity. Analogous findings were observed in hemp (Cannabis sativa L.) fibre damaged in the laboratory under controlled conditions, emphasising the need to develop extraction and separation processes that minimise mechanical damage to the fibres....

  18. Fundamentals of fibre-reinforced soil engineering

    CERN Document Server

    Shukla, Sanjay Kumar

    2017-01-01

    This book is intended to serve as a one-stop reference on fibre-reinforced soils. Over the past 30-35 years, the engineering behaviour of randomly distributed/oriented fibre-reinforced soil, also called simply fibre-reinforced soil, has been investigated in detail by researchers and engineers worldwide. Waste fibres (plastic waste fibres, old tyre fibres, etc.) create disposal and environmental problems. Utilization of such fibres in construction can help resolve these concerns. Research studies and some field applications have shown that the fibres can be utilized in large quantities in geotechnical and civil engineering applications in a cost-effective and environmentally friendly manner. This book covers a complete description of fibres, their effects when included within a soil or other similar materials such as the fly ash, and their field applications. It gives a detailed view of fibre-reinforced soil engineering. The book will be useful to students, professional, and researchers alike, and can also ser...

  19. Terminology and classification of muscle injuries in sport: The Munich consensus statement

    Science.gov (United States)

    Mueller-Wohlfahrt, Hans-Wilhelm; Haensel, Lutz; Mithoefer, Kai; Ekstrand, Jan; English, Bryan; McNally, Steven; Orchard, John; van Dijk, C Niek; Kerkhoffs, Gino M; Schamasch, Patrick; Blottner, Dieter; Swaerd, Leif; Goedhart, Edwin; Ueblacker, Peter

    2013-01-01

    Objective To provide a clear terminology and classification of muscle injuries in order to facilitate effective communication among medical practitioners and development of systematic treatment strategies. Methods Thirty native English-speaking scientists and team doctors of national and first division professional sports teams were asked to complete a questionnaire on muscle injuries to evaluate the currently used terminology of athletic muscle injury. In addition, a consensus meeting of international sports medicine experts was established to develop practical and scientific definitions of muscle injuries as well as a new and comprehensive classification system. Results The response rate of the survey was 63%. The responses confirmed the marked variability in the use of the terminology relating to muscle injury, with the most obvious inconsistencies for the term strain. In the consensus meeting, practical and systematic terms were defined and established. In addition, a new comprehensive classification system was developed, which differentiates between four types: functional muscle disorders (type 1: overexertion-related and type 2: neuromuscular muscle disorders) describing disorders without macroscopic evidence of fibre tear and structural muscle injuries (type 3: partial tears and type 4: (sub)total tears/tendinous avulsions) with macroscopic evidence of fibre tear, that is, structural damage. Subclassifications are presented for each type. Conclusions A consistent English terminology as well as a comprehensive classification system for athletic muscle injuries which is proven in the daily practice are presented. This will help to improve clarity of communication for diagnostic and therapeutic purposes and can serve as the basis for future comparative studies to address the continued lack of systematic information on muscle injuries in the literature. What are the new things Consensus definitions of the terminology which is used in the field of muscle injuries

  20. Attenuated increase in maximal force of rat medial gastrocnemius muscle after concurrent peak power and endurance training

    NARCIS (Netherlands)

    Furrer, R.; Jaspers, R.T.; Baggerman, H.L.; Bravenboer, N.; Lips, P.; de Haan, A.

    2013-01-01

    Improvement of muscle peak power and oxidative capacity are generally presumed to be mutually exclusive. However, this may not be valid by using fibre type-specific recruitment. Since rat medial gastrocnemius muscle (GM) is composed of high and low oxidative compartments which are recruited task

  1. Fun with Optical Fibres

    Science.gov (United States)

    Alti, Kamlesh

    2017-01-01

    Optical fibres play a very crucial role in today's technologies. Academic courses in optical fibres start at the undergraduate level. Nevertheless, student's curiosity towards optical fibres starts from the school level. In this paper, some fun experiments have been designed for both school and college students, which have some concrete…

  2. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) with chronic cough and preserved muscle stretch reflexes: evidence for selective sparing of afferent Ia fibres.

    Science.gov (United States)

    Infante, Jon; García, Antonio; Serrano-Cárdenas, Karla M; González-Aguado, Rocío; Gazulla, José; de Lucas, Enrique M; Berciano, José

    2018-04-25

    The aim of this study was to describe five patients with cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) with chronic cough and preserved limb muscle stretch reflexes. All five patients were in the seventh decade of age, their gait imbalance having been initiated in the fifth decade. In four patients cough antedated gait imbalance between 15 and 29 years; cough was spasmodic and triggered by variable factors. Established clinical picture included severe hypopallesthesia predominating in the lower limbs with postural imbalance, and variable degree of cerebellar axial and appendicular ataxia, dysarthria and horizontal gaze-evoked nystagmus. Upper- and lower-limb tendon jerks were preserved, whereas jaw jerk was absent. Vestibular function testing showed bilateral impairment of the vestibulo-ocular reflex. Nerve conduction studies demonstrated normal motor conduction parameters and absence or severe attenuation of sensory nerve action potentials. Somatosensory evoked potentials were absent or severely attenuated. Biceps and femoral T-reflex recordings were normal, while masseter reflex was absent or attenuated. Sympathetic skin responses were normal. Cranial MRI showed vermian and hemispheric cerebellar atrophy predominating in lobules VI, VII and VIIa. We conclude that spasmodic cough may be an integral part of the clinical picture in CANVAS, antedating the appearance of imbalance in several decades and that sparing of muscle spindle afferents (Ia fibres) is probably the pathophysiological basis of normoreflexia.

  3. Magnesium Coated Bioresorbable Phosphate Glass Fibres: Investigation of the Interface between Fibre and Polyester Matrices

    Directory of Open Access Journals (Sweden)

    Xiaoling Liu

    2013-01-01

    Full Text Available Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg2+ in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM. The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM and X-ray diffraction (XRD analysis, respectively. The roughness of the coatings was seen to increase from 40±1 nm to 80±1 nm. The mechanical properties (tensile strength and modulus of fibre with coatings decreased with increased magnesium coating thickness.

  4. From nanoparticles to fibres: effect of dispersion composition on fibre properties

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, Katharina S. U.; Esrafilzadeh, Dorna; Thompson, Brianna C.; Quigley, Anita F.; Kapsa, Robert M. I.; Wallace, Gordon G., E-mail: gwallace@uow.edu.au [University of Wollongong, ARC Centre for Electromaterials Science and Intelligent Polymer Research Institute (Australia)

    2015-06-15

    A polyvinyl alcohol (PVA)-stabilized polypyrrole nanodispersion has been optimised for conductivity and processability by decreasing the quantity of PVA before and after synthesis. A reduction of PVA before synthesis leads to the formation of particles with a slight increase in dry particle diameter (51 ± 6 to 63 ± 3 nm), and conversely a reduced hydrodynamic diameter. Conductivity of the dried nanoparticle films was not measureable after a reduction of PVA prior to synthesis. Using filtration of particles after synthesis, PVA content was sufficiently reduced to achieve dried thin film conductivity of 2 S cm{sup −1}, while the electroactivity of the dispersed particles remained unchanged. The as-synthesized and PVA-reduced polypyrrole particles were successfully spun into all-nanoparticle fibres using a wet-extrusion approach without the addition of any polymer or gel matrix. Using nanoparticles as a starting material is a novel approach, which allowed the production of macro-scale fibres that consisted entirely of polypyrrole nanoparticles. Fibres made from PVA-reduced polypyrrole showed higher electroactivity compared to fibres composed of the dispersion high in PVA. The mechanical properties of the fibres were also improved by reducing the amount of PVA present, resulting in a stronger, more ductile and less brittle fibre, which could find potential application in various fields.

  5. From nanoparticles to fibres: effect of dispersion composition on fibre properties

    International Nuclear Information System (INIS)

    Schirmer, Katharina S. U.; Esrafilzadeh, Dorna; Thompson, Brianna C.; Quigley, Anita F.; Kapsa, Robert M. I.; Wallace, Gordon G.

    2015-01-01

    A polyvinyl alcohol (PVA)-stabilized polypyrrole nanodispersion has been optimised for conductivity and processability by decreasing the quantity of PVA before and after synthesis. A reduction of PVA before synthesis leads to the formation of particles with a slight increase in dry particle diameter (51 ± 6 to 63 ± 3 nm), and conversely a reduced hydrodynamic diameter. Conductivity of the dried nanoparticle films was not measureable after a reduction of PVA prior to synthesis. Using filtration of particles after synthesis, PVA content was sufficiently reduced to achieve dried thin film conductivity of 2 S cm −1 , while the electroactivity of the dispersed particles remained unchanged. The as-synthesized and PVA-reduced polypyrrole particles were successfully spun into all-nanoparticle fibres using a wet-extrusion approach without the addition of any polymer or gel matrix. Using nanoparticles as a starting material is a novel approach, which allowed the production of macro-scale fibres that consisted entirely of polypyrrole nanoparticles. Fibres made from PVA-reduced polypyrrole showed higher electroactivity compared to fibres composed of the dispersion high in PVA. The mechanical properties of the fibres were also improved by reducing the amount of PVA present, resulting in a stronger, more ductile and less brittle fibre, which could find potential application in various fields

  6. GLUT4 expression in human muscle fibres is not correlated with intracellular triglyceride (TG) content. Is TG a maker or a marker of insulin resistance?

    DEFF Research Database (Denmark)

    Gaster, M; Ottosen, P D; Vach, W

    2003-01-01

    diabetic subjects, and young lean controls. TG density was significantly higher in slow compared to fast fibres in all studied subjects (pslow twitch fibres of obese diabetic subjects compared to obese (p...We have recently reported a progressive decline in the expression of glucose transporter isoform 4 (GLUT4) from control subjects through obese non-diabetics to obese type 2 diabetic subjects, indicating that the reduced GLUT4 in slow twitch fibres could be secondary to obesity. In this study we...... densities in slow and fast fibres did not correlate with the corresponding GLUT4 density in the same fibres in our study groups (p>0.05). Plasma TG and FFA did not correlate with GLUT4 expression in slow or fast fibres (p>0.05). In conclusion, TG content was increased in diabetic slow fibres with a reduced...

  7. Muscle intermediate filaments and their links to membranes and membranous organelles

    International Nuclear Information System (INIS)

    Capetanaki, Yassemi; Bloch, Robert J.; Kouloumenta, Asimina; Mavroidis, Manolis; Psarras, Stelios

    2007-01-01

    Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival

  8. Fibre Bragg grating and no-core fibre sensors

    CERN Document Server

    Daud, Suzairi

    2018-01-01

    This book focuses on the development and set-up of fibre Bragg grating (FBG) and no-core fibre (NCF) sensors. It discusses the properties of the sensors and modelling of the resulting devices, which include electronic, optoelectronic, photovoltaic, and spintronic devices. In addition to providing detailed explanations of the properties of FBG and NCF sensors, it features a wealth of instructive illustrations and tables, helping to visualize the respective devices’ functions.

  9. Sputter etching of polymer fibres

    International Nuclear Information System (INIS)

    Carter, G.; Hill, A.E.; Nobes, M.J.; Jeffries, R.; Simmens, S.C.

    1979-01-01

    Fibres of polyamide, polyester and an aromatic polyamide (Kevlar) have been subjected to Ar + ion bombardment erosion in an ion accelerator or an rf discharge system. In the case of the former two polymers, cones are observed to develop upon the fibre surface and these are associated with etch protection resulting from the presence of particles of titanium dioxide pigment. This effect is absent in the third, unpigmented, fibre. In all cases ripple structures with a habit transverse to the fibre axes and of wavelength of approximately 1000 Angstrom are gradually developed during ion bombardment. It is suggested that this morphology results from an underlying periodicity of the fibre structure either inherent in the fibre structure or induced by the irradiation. (author)

  10. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  11. Comparative anatomy of the cheek muscles within the Centromochlinae subfamily (Ostariophysi, Siluriformes, Auchenipteridae).

    Science.gov (United States)

    Sarmento-Soares, Luisa Maria; Porto, Marcovan

    2006-02-01

    Glanidium melanopterum Miranda Ribeiro, a typical representative of the subfamily Centromochlinae (Siluriformes: Auchenipteridae), is herein described myologically and compared to other representative species within the group, Glanidium ribeiroi, G. leopardum, Tatia neivai, T. intermedia, T. creutzbergi, Centromochlus heckelii, and C. existimatus. The structure of seven pairs of striated cephalic muscles was compared anatomically: adductor mandibulae, levator arcus palatini, dilatator operculi, adductor arcus palatini, extensor tentaculi, retractor tentaculi, and levator operculi. We observed broad adductor mandibulae muscles in both Glanidium and Tatia, catfishes with depressed heads and smaller eyes. Similarities between muscles were observed: the presence of a large aponeurotic insertion for the levator arcus palatini muscle; an adductor arcus palatini muscle whose origin spread over the orbitosphenoid, pterosphenoid, and parasphenoid; and the extensor tentaculi muscle broadly attached to the autopalatine. There is no retractor tentaculi muscle in either the Glanidium or Tatia species. On the other hand, in Centromochlus, with forms having large eyes and the tallest head, the adductor mandibulae muscles are slim; there is a thin aponeurotic or muscular insertion for the levator arcus palatini muscle; the adductor arcus palatini muscle originates from a single osseous process, forming a keel on the parasphenoid; the extensor tentaculi muscle is loosely attached to the autopalatine, permitting exclusive rotating and sliding movements between this bone and the maxillary. The retractor tentaculi muscle is connected to the maxilla through a single tendon, so that both extensor and retractor tentaculi muscles contribute to a wide array of movements of the maxillary barbels. A discussion on the differences in autopalatine-maxillary movements among the analyzed groups is given. (c) 2005 Wiley-Liss, Inc.

  12. Fibre Bragg Grating and Long Period Grating Sensors in Polymer Optical Fibres

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar

    mechanisms in polymer fibres using a CO2 laser. One is etching and the other one is perturbation of the microstructured region. After inscription of LPGs, the concept of a biocompatible distributed medical endoscope is presented, where an all-plastic LPG based device is produced. A transducer pod is made...... of applications and pushing the limits. The first part of the work focuses on the fabrication of FBGs in polymer optical fibres. FBGs are a periodic perturbation of the refractive index of the optical fibre core which act as a wavelength specific reflector. The fibres used are made of Polymethyl methacrylate....... In this system a high power CO2 laser is used for the inscription. An LPG is also a periodic perturbation of the guided core mode in fibre, but unlike FBG which reflects the core mode, the LPG couples the core mode to a cladding mode outside the core. We have shown that the LPG grating can be formed through two...

  13. Fibre Concrete 2017

    Science.gov (United States)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  14. Muscle pathology in myotonic dystrophy: light and electron microscopic investigation in eighteen patients.

    Science.gov (United States)

    Nadaj-Pakleza, A; Lusakowska, A; Sułek-Piątkowska, A; Krysa, W; Rajkiewicz, M; Kwieciński, H; Kamińska, A

    2011-05-01

    Myotonic dystrophy (DM) is the most common muscular dystrophy in adults. Two known genetic subtypes include DM1 (myotonic dystrophy type 1) and DM2 (myotonic dystrophy type 2). Genetic testing is considered as the only reliable diagnostic criterion in myotonic dystrophies. Relatively little is known about DM1 and DM2 myopathology. Thus, the aim of our study was to characterise light and electron microscopic features of DM1 and DM2 in patients with genetically proven types of the disease. We studied 3 DM1 cases and 15 DM2 cases from which muscle biopsies were taken for diagnostic purposes during the period from 1973 to 2006, before genetic testing became available at our hospital. The DM1 group included 3 males (age at biopsy 15-19). The DM2 group included 15 patients (5 men and 10 women, age at biopsy 26-60). The preferential type 1 fibre atrophy was seen in all three DM1 cases in light microscopy, and substantial central nucleation was present in two biopsies. Electron microscopy revealed central nuclei in all three examined muscle biopsies. No other structural or degenerative changes were detected, probably due to the young age of our patients. Central nucleation, prevalence of type 2 muscle fibres, and the presence of pyknotic nuclear clumps were observed in DM2 patients in light microscopy. Among the ultrastructural abnormalities observed in our DM2 group, the presence of internal nuclei, severely atrophied muscle fibres, and lipofuscin accumulation were consistent findings. In addition, a variety of ultrastructural abnormalities were identified by us in DM2. It appears that no single ultrastructural abnormality is characteristic for the DM2 muscle pathology. It seems, however, that certain constellations of morphological changes might be indicative of certain types of myotonic dystrophy.

  15. Recent applications of X-ray microanalysis in muscle pathology

    International Nuclear Information System (INIS)

    Wroblewski, R.; Edstrom, L.

    1984-01-01

    X-ray microanalysis of single muscle fibres visualized in the scanning- and scanning-transmission mode of electron microscopy has been applied to human muscle biopsies to quantify changes of intracellular elements in different muscle disorders. To detect elements representing diffusible ions, cryofixation and cryosectioning was performed and analyses were conducted on freeze-dried cryosections 6μm thick. Changes in the concentration of elements were found to differentiate certain muscular disorders. A large increase in sodium (Na) and chlorine (Cl), and a decrease in potassium (K) was typical of myotubular myopathy, while a moderate increase in Na and Cl was found in central core disease and nemaline myopathy

  16. Characterisation of Flax Fibres and Flax Fibre Composites. Being cellulose based sources of materials

    DEFF Research Database (Denmark)

    Aslan, Mustafa

    -melting temperature polyethylene terephthalate (LPET) filaments were aligned in assemblies of different fibre weight fractions in the range 0.24 to 0.83 to manufacture unidirectional composites using two different consolidation pressures of 1.67 and 4.10 MPa. The maximum attainable fibre volume fraction is found...... to be 47% for the low pressure composites, whereas it is found to be 60% for the high pressure composites. The stiffness of the flax fibre/LPET composites is measured to be in the range 16 to 33 GPa depending on the volumetric composition of the composites. The high pressure composites are found to have...... a similar microstructure at low fibre weight fractions. However, when the fibre content is increased, a difference in porosity content can be observed from the composite cross sections. The nominal tensile strength of the unidirectional flax fibre/LPET composites is measured in the range 180 to 340 MPa...

  17. Analysis of glass fibre sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    Glass fibre reinforced polymer composites are widely used for industrial and engineering applications which include construction, aerospace, automotive and wind energy industry. During the manufacturing glass fibres, they are surface-treated with an aqueous solution. This process and the treated...... surfaces are called sizing. The sizing influences the properties of the interface between fibres and a matrix, and subsequently affects mechanical properties of composites. In this work the sizing of commercially available glass fibres was analysed so as to study the composition and chemical structures....... Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  18. ELASTICITY of SHORT FIBRE REINFORCED POLYAMIDE: MORPHOLOGICAL AND NUMERICAl ANALYSIS OF FIBRE ORIENTATION EFFECTS

    Directory of Open Access Journals (Sweden)

    Francesca Cosmi

    2010-10-01

    Full Text Available The fatigue behaviour of injection moulded short fibre reinforced polymers depends upon fibre orientation, as shown in experiments conducted with notched specimens injected through different injection gates. The different fatigue behaviour is mainly related to the different local elastic properties, as determined by the different fibre orientation patterns, resulting into different strain distributions. In order to quantify the relationship between fibre orientation and elastic constants, the Cell Method was applied to volumes extracted from the specimens, reconstructed by micro-tomography.

  19. [Mathematical anatomy: muscles according to Stensen].

    Science.gov (United States)

    Andrault, Raphaële

    2010-01-01

    In his Elementorum Myologiae Specimen, Steno geometrizes "the new fabric of muscles" and their movement of contraction, so as to refute the main contemporary hypothesis about the functioning of the muscles. This physiological refutation relies on an abstract representation of the muscular fibre as a parallelepiped of flesh transversally linked to the tendons. Those two features have been comprehensively studied. But the method used by Steno, as well as the way he has chosen to present his physiological results, have so far been neglected. Yet, Steno's work follows a true synthetic order, which he conceives as a tool to separate uncertain anatomical "elements" from the certain ones. We will show that the true understanding of this "more geometrico" order is the only way to avoid frequent misconceptions of the scientific aim pursued by Steno, which is neither to give a mathematical explanation of the functioning of the muscles, nor to reduce the muscles to some mathematical shapes.

  20. Evaluation of human muscle in vivo by potassium radiometric measuring

    International Nuclear Information System (INIS)

    Sousa, Wanderson de P.

    2000-01-01

    Potassium is an essential element to the human metabolism and is present in all living cells, mainly in the striated muscular fibers. K-40 is one of the natural potassium isotopes with mass percentage of 0,0118% . This isotope emits beta particle and gamma rays with 1460 keV. The energy of K-40 photon and its uniform distribution within the human body allows its in vivo measurement. The objective of this study is to optimize this technique and evaluate the possibility of its medical application in order to quantify muscle increase during recovering procedures. Subjects of both sexes measured until this moment were divided into two groups. Subjects of Group 1 do not exercise routinely and subjects of Group 2 does. In Group 1 the average potassium mass, muscle mass and potassium concentration were (101±16)g of K, (20±3)kg of muscle and (1,3±0,3)g of K/kg of body mass, respectively, while in Group 2 average values were (125±38)g of K, (25±8)kg of muscle and (1,7±0,2)g of K/kg of body mass. The comparison between average values shows a clear difference, which allows to correlate a higher K mass with routine body activity. The technique has shown enough sensitivity for this application. (author)

  1. Concrete workability and fibre content

    OpenAIRE

    Vikan, Hedda

    2007-01-01

    Research report Parameters influencing the workability of fibre concrete and maximum fibre content are given in this state of the art report along with the range of fibre types available on today’s market. The study reveales that new placing techniques and production methods are crucial in order to increase fibre content and concrete strength. Achieving the same mechanical properties as traditionally reinforced concrete will probably also demand changes of the matrix. Finally, reco...

  2. Insulation Characteristics of Sisal Fibre/Epoxy Composites

    Directory of Open Access Journals (Sweden)

    A. Shalwan

    2017-01-01

    Full Text Available Using natural fibres in civil engineering is the aim of many industrial and academics sectors to overcome the impact of synthetic fibres on environments. One of the potential applications of natural fibres composites is to be implemented in insulation components. Thermal behaviour of polymer composites based on natural fibres is recent ongoing research. In this article, thermal characteristics of sisal fibre reinforced epoxy composites are evaluated for treated and untreated fibres considering different volume fractions of 0–30%. The results revealed that the increase in the fibre volume fraction increased the insulation performance of the composites for both treated and untreated fibres. More than 200% insulation rate was achieved at the volume fraction of 20% of treated sisal fibres. Untreated fibres showed about 400% insulation rate; however, it is not recommended to use untreated fibres from mechanical point of view. The results indicated that there is potential of using the developed composites for insulation purposes.

  3. Luminescent Solar Concentrators with Fibre Geometry

    NARCIS (Netherlands)

    Edelenbosch, O.Y.; Fisher, M.; Patrignani, L.; Sark, W.G.J.H.M. van; Chatten, A.J.

    2013-01-01

    The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear

  4. Multi-tasking role of the mechanosensing protein Ankrd2 in the signaling network of striated muscle.

    Directory of Open Access Journals (Sweden)

    Anna Belgrano

    Full Text Available Ankrd2 (also known as Arpp together with Ankrd1/CARP and DARP are members of the MARP mechanosensing proteins that form a complex with titin (N2A/calpain 3 protease/myopalladin. In muscle, Ankrd2 is located in the I-band of the sarcomere and moves to the nucleus of adjacent myofibers on muscle injury. In myoblasts it is predominantly in the nucleus and on differentiation shifts from the nucleus to the cytoplasm. In agreement with its role as a sensor it interacts both with sarcomeric proteins and transcription factors.Expression profiling of endogenous Ankrd2 silenced in human myotubes was undertaken to elucidate its role as an intermediary in cell signaling pathways. Silencing Ankrd2 expression altered the expression of genes involved in both intercellular communication (cytokine-cytokine receptor interaction, endocytosis, focal adhesion, tight junction, gap junction and regulation of the actin cytoskeleton and intracellular communication (calcium, insulin, MAPK, p53, TGF-β and Wnt signaling. The significance of Ankrd2 in cell signaling was strengthened by the fact that we were able to show for the first time that Nkx2.5 and p53 are upstream effectors of the Ankrd2 gene and that Ankrd1/CARP, another MARP member, can modulate the transcriptional ability of MyoD on the Ankrd2 promoter. Another novel finding was the interaction between Ankrd2 and proteins with PDZ and SH3 domains, further supporting its role in signaling. It is noteworthy that we demonstrated that transcription factors PAX6, LHX2, NFIL3 and MECP2, were able to bind both the Ankrd2 protein and its promoter indicating the presence of a regulatory feedback loop mechanism.In conclusion we demonstrate that Ankrd2 is a potent regulator in muscle cells affecting a multitude of pathways and processes.

  5. HIPPI and Fibre Channel

    International Nuclear Information System (INIS)

    Tolmie, D.E.

    1992-01-01

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background

  6. Kenaf-and hemp-reinforced natural fibre composites

    International Nuclear Information System (INIS)

    Sharifah Hanisah Aziz

    2003-01-01

    The main aim of this research is to combine hemp and kenaf fibres with thermosetting resin matrices to produce sustainable composites and to investigate their mechanical properties. The matirces used in this work are based on either unsaturated polyester resins or cashew nut shell liquid (CNSL). The latter can be polymerised to form a phenolic-based natural resin. Four types of differently formulated polyester resins provided by Scott Bader Ltd, a UK-based resin company, were used to assess the effect of resin formulation on the properties of natural fibre composites. CSNL resins were used because CNSL is a sustainable resource and these resins are compatible with natural fibres. Kenaf, which is extensively grown in the Far East including Malaysia, has been identified as a bast (stem) fibre with significant market potential. Hemp is a United Kingdom-grown bast fibre with strong potential as a natural fibre reinforcement. In order to improve matrix to fibre adhesion, the fibres were treated with 6 % NaOH solution before being made into composites. The composites were fabricated using unidirectional and randomly oriented fibres to assess the effect of fibre alignment on the properties of the composites. The effect of moulding pressure on the fibre volume fraction and mechanical properties was also investigated. Kenaf and hemp fibre composites were successfully hot-pressed with polyester and CNSL resin matrices. Kenaf-CNSL (treated long fibre) composites possess the highest flexural modulus (MOE) at 16.7 GPa and flexural strength (MOR) at 165.4 MPa indicating good matrix to fibre adhesion. Generally, the treated fibre composites gave higher MOE and MOR values compared to the untreated composites. However, the work of fracture values were generally higher for the untreated fibre composites. among the four types of polyester used, the molecular structure of polyester B, modified to make it more polar in nature, resulted in the best performance with treated long kenaf

  7. Optical fibre laser velocimetry: a review

    International Nuclear Information System (INIS)

    Charrett, Thomas O H; James, Stephen W; Tatam, Ralph P

    2012-01-01

    The applications of optical fibre technology to laser velocimetry are diverse and often critical to their successful implementation, particularly in harsh environments. Applications range from the use of optical fibres for beam delivery and scattered light collection, aiding the miniaturization of instrument probes, to the use of imaging fibre bundles for imaging the flow field in planar velocimetry systems. Optical fibre techniques have also been used in signal processing, for example fibre frequency shifters, and optical fibre devices such as amplifiers and lasers have been exploited. This paper will review the use of optical fibres in point-wise laser velocimetry techniques such as laser Doppler velocimetry and laser transit anemometry, as well as in planar measurement techniques such as particle imaging velocimetry and planar Doppler velocimetry. (topical review)

  8. Muscles and their myokines.

    Science.gov (United States)

    Pedersen, Bente Klarlund

    2011-01-15

    In the past, the role of physical activity as a life-style modulating factor has been considered as that of a tool to balance energy intake. Although it is important to avoid obesity, physical inactivity should be discussed in a much broader context. There is accumulating epidemiological evidence that a physically active life plays an independent role in the protection against type 2 diabetes, cardiovascular diseases, cancer, dementia and even depression. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an 'exercise factor', which could be released from skeletal muscle during contraction and mediate some of the exercise-induced metabolic changes in other organs such as the liver and the adipose tissue. We have suggested that cytokines or other peptides that are produced, expressed and released by muscle fibres and exert autocrine, paracrine or endocrine effects should be classified as 'myokines'. Given that skeletal muscle is the largest organ in the human body, our discovery that contracting skeletal muscle secretes proteins sets a novel paradigm: skeletal muscle is an endocrine organ producing and releasing myokines, which work in a hormone-like fashion, exerting specific endocrine effects on other organs. Other myokines work via paracrine mechanisms, exerting local effects on signalling pathways involved in muscle metabolism. It has been suggested that myokines may contribute to exercise-induced protection against several chronic diseases.

  9. Fatigue processes in thermoplastic fibres; Les mecanismes de fatigue dans les fibres thermoplastiques

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Ramirez, J.M.

    2004-09-15

    The present study examines and compares the behaviour of the two types of PA66 fibres and two types of PET fibres under fatigue loading up to failure, and the correlation between the fibres (nano)structures and their structural heterogeneities, with fatigue lifetimes. Several techniques have been used to analyze the materials, such as scanning electron microscopy (SEM), microanalysis (EDS), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and micro-Raman spectroscopy. A meticulous analysis by scanning electron microscopy of the fracture morphology of fibres broken in tension and in fatigue, as well as a study of the fatigue life, were undertaken. The fatigue process occurs when the cyclic load amplitude is sufficiently large, however a condition for fatigue failure is that the minimum load each cycle must be lower than a threshold stress level. Failure under fatigue conditions leads to distinctive fracture morphologies which are very different from those seen after tensile or creep failure and this allows easy identification of the fatigue process. The fibres have been analyzed in the as received state and after fatigue failure in order to observe the microstructural changes resulting from the fatigue loading. The results will be compared with those obtained for fibres loaded under conditions where the fatigue process was hindered. The role of the microstructure of the fibres in determining fatigue will be discussed in this work and the possibility of improving their resistance to fatigue or eliminating the fatigue process will be discussed. (author)

  10. Evaluation of the female pelvic floor in pelvic organ prolapse using 3.0-Tesla diffusion tensor imaging and fibre tractography

    Energy Technology Data Exchange (ETDEWEB)

    Zijta, F.M. [University of Amsterdam, Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands); Onze Lieve Vrouwe Gasthuis, Amsterdam and Department of Radiology, Amsterdam (Netherlands); Academic Medical Center, Department of Radiology, Amsterdam, AZ (Netherlands); Lakeman, M.M.E.; Roovers, J.P. [University of Amsterdam the Netherlands and Biomedical NMR, Amsterdam and Department of Gynaecology, Academic Medical Centre, Amsterdam (Netherlands); Froeling, M. [University of Amsterdam, Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands); Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven (Netherlands); Paardt, M.P. van der; Borstlap, C.S.V.; Bipat, S.; Nederveen, A.J.; Stoker, J. [University of Amsterdam, Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands); Montauban van Swijndregt, A.D. [Onze Lieve Vrouwe Gasthuis, Amsterdam and Department of Radiology, Amsterdam (Netherlands); Strijkers, G.J. [Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven (Netherlands)

    2012-12-15

    To prospectively explore the clinical application of diffusion tensor imaging (DTI) and fibre tractography in evaluating the pelvic floor. Ten patients with pelvic organ prolapse, ten with pelvic floor symptoms and ten asymptomatic women were included. A two-dimensional (2D) spin-echo (SE) echo-planar imaging (EPI) sequence of the pelvic floor was acquired. Offline fibre tractography and morphological analysis of pelvic magnetic resonance imaging (MRI) were performed. Inter-rater agreement for quality assessment of fibre tracking results was evaluated using weighted kappa ({kappa}). From agreed tracking results, eigen values ({lambda}1, {lambda}2, {lambda}3), mean diffusivity (MD) and fractional anisotropy (FA) were calculated. MD and FA values were compared using ANOVA. Inter-rater reliability of DTI parameters was interpreted using the intra-class correlation coefficient (ICC). Substantial inter-rater agreement was found ({kappa} = 0.71 [95% CI 0.63-0.78]). Four anatomical structures were reliably identified. Substantial inter-rater agreement was found for MD and FA (ICC 0.60-0.91). No significant differences between groups were observed for anal sphincter, perineal body and puboperineal muscle. A significant difference in FA was found for internal obturator muscle between the prolapse group and the asymptomatic group (0.27 {+-} 0.05 vs 0.22 {+-} 0.03; P = 0.015). DTI with fibre tractography permits identification of part of the clinically relevant pelvic structures. Overall, no significant differences in DTI parameters were found between groups. circle Diffusion tensor MRI offers new insights into female pelvic floor problems. (orig.)

  11. Erbium-doped twin-core fibre narrow-band filter for fibre lasers

    Czech Academy of Sciences Publication Activity Database

    Peterka, Pavel; Kaňka, Jiří

    2001-01-01

    Roč. 33, 4/5 (2001), s. 571-581 ISSN 0306-8919. [Optical Waveguide Theory and Numerical Modelling /8./. Prague, 26.05.2000-27.05.2000] R&D Projects: GA ČR GA102/99/M057; GA ČR GA102/99/0393; GA AV ČR IAC2067902 Grant - others:EU COST(XE) OC 265.10 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibre lasers * optical fibre filters * optical fibre couplers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.706, year: 2001 http://www.ufe.cz/~peterka/opera/OQE_Peterka01_fulltext.pdf

  12. Study of injection moulded long glass fibre-reinforced polypropylene and the effect on the fibre length and orientation distribution

    Science.gov (United States)

    Parveeen, B.; Caton-Rose, P.; Costa, F.; Jin, X.; Hine, P.

    2014-05-01

    Long glass fibre (LGF) composites are extensively used in manufacturing to produce components with enhanced mechanical properties. Long fibres with length 12 to 25mm are added to a thermoplastic matrix. However severe fibre breakage can occur in the injection moulding process resulting in shorter fibre length distribution (FLD). The majority of this breakage occurs due to the melt experiencing extreme shear stress during the preparation and injection stage. Care should be taken to ensure that the longer fibres make it through the injection moulding process without their length being significantly degraded. This study is based on commercial 12 mm long glass-fibre reinforced polypropylene (PP) and short glass fibre Nylon. Due to the semi-flexiable behaviour of long glass fibres, the fibre orientation distribution (FOD) will differ from the orientation distribution of short glass fibre in an injection molded part. In order to investigate the effect the change in fibre length has on the fibre orientation distribution or vice versa, FOD data was measured using the 2D section image analyser. The overall purpose of the research is to show how the orientation distribution chnages in an injection moulded centre gated disc and end gated plaque geometry and to compare this data against fibre orientation predictions obtained from Autodesk Moldflow Simulation Insight.

  13. Plasma treatment of carbon fibres and glass-fibre-reinforced polyesters at atmospheric pressure for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Toftegaard, Helmuth Langmaack

    2014-01-01

    Atmospheric pressure plasma treatment is useful for adhesion improvement, because cleaning, roughening and addition of polar functional groups can be expected at the surfaces. Its possible applications in the wind energy industry include plasma treatment of fibres and fibre-reinforced polymer...... composites before assembling them to build wind turbine blades. In the present work, unsized carbon fibres are continuously treated using a dielectric barrier discharge plasma in helium at atmospheric pressure, and carbon fibre reinforced epoxy composite plates are manufactured for the mechanical test....... The plasma treatment improved fracture toughness, indicating that adhesion between the fibres and the epoxy was enhanced by the treatment. In addition, glass-fibre-reinforced polyester plates are treated using a gliding arc and an ultrasound enhanced dielectric barrier discharge, improving the wettability...

  14. Effect of Age and Sex on Histomorphometrical Characteristics of Two Muscles of Laticauda Lambs

    OpenAIRE

    Salvatore Velotto; Ettore Varricchio; Maria Rosa Di Prisco; Tommaso Stasi; Antonio Crasto

    2010-01-01

    The aim of the present experiment was to determine the effect of sex and age on histochemical and morphometric characteristics of muscle fibres (myocytes) in lambs born by single, twin, triplet and quadruplet birth. Thirty lambs were slaughtered at 60 days of age; thirty were weaned at 60 days and fed until 120 days with flakes (60%) and food supplements, and then slaughtered. Muscle tissues were obtained from two muscles, namely m. semitendinosus and m. longissimus dorsi of all lambs. For ea...

  15. Random distributed feedback fibre lasers

    Energy Technology Data Exchange (ETDEWEB)

    Turitsyn, Sergei K., E-mail: s.k.turitsyn@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Babin, Sergey A. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Churkin, Dmitry V. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Vatnik, Ilya D.; Nikulin, Maxim [Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Podivilov, Evgenii V. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation)

    2014-09-10

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  16. Random distributed feedback fibre lasers

    International Nuclear Information System (INIS)

    Turitsyn, Sergei K.; Babin, Sergey A.; Churkin, Dmitry V.; Vatnik, Ilya D.; Nikulin, Maxim; Podivilov, Evgenii V.

    2014-01-01

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  17. Artificial control of muscle by endoneural multi electrode stimulation and sensing

    NARCIS (Netherlands)

    Rutten, Wim; Bouwman, R.L.M.

    1991-01-01

    Artificial electrical stimulation of motor nerves for muscle control can be made selective by using intrafascicular micro electrode arrays which contact many individual or small groups of nerve fibres. If at the same time te electrode arrays could record afferent information from the stimulated

  18. Comparison of collagen fibre architecture between slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi.

    Science.gov (United States)

    Nakamura, Y N; Iwamoto, H; Tabata, S; Ono, Y

    2003-07-01

    1. Collagen fibre architectures of perimysium and endomysium in the slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi were compared. 2. Type I and III collagens were distributed in both perimysium and endomysium as indicated by their positive immunohistochemical reactions to polyclonal antibodies. 3. Cells invested by endomysium with no myofibres were larger in the cranial part because of the presence of larger slow-twitch myofibres. The honeycomb structure of endomysium was divided into several parts by thick perimysium. 4. The thick perimysial collagen fibres with parallel fibrils, which were interconnected by the loose reticular fibrils and thin fibres, were more numerous and thicker in the cranial part than the caudal. 5. Thick endomysial sidewall of cells in the cranial part was composed of a rougher reticulum of slightly thicker collagen fibrils compared with the thin sidewall in the caudal part. 6. These results indicated that both perimysial constitutions of collagen fibres and endomysial collagen fibrils had attained much larger growth in the slow-twitch cranial part than the fast-twitch caudal in broiler latissimus dorsi muscle.

  19. Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo.

    Science.gov (United States)

    Wang, XinGang; Ono, Yosuke; Tan, Swee Chuan; Chai, Ruth JinFen; Parkin, Caroline; Ingham, Philip W

    2011-10-01

    Sox6 has been proposed to play a conserved role in vertebrate skeletal muscle fibre type specification. In zebrafish, sox6 transcription is repressed in slow-twitch progenitors by the Prdm1a transcription factor. Here we identify sox6 cis-regulatory sequences that drive fast-twitch-specific expression in a Prdm1a-dependent manner. We show that sox6 transcription subsequently becomes derepressed in slow-twitch fibres, whereas Sox6 protein remains restricted to fast-twitch fibres. We find that translational repression of sox6 is mediated by miR-499, the slow-twitch-specific expression of which is in turn controlled by Prdm1a, forming a regulatory loop that initiates and maintains the slow-twitch muscle lineage.

  20. The Chemical Composition of Grape Fibre

    OpenAIRE

    Jolana Karovičová; Zlatica Kohajdová; Lucia Minarovičová; Veronika Kuchtová

    2015-01-01

    Dietary fibres from cereals are much more used than dietary fibres from fruits; however, dietary fibres from fruits have better quality. In recent years, for economic and environmental reasons, there has been a growing pressure to recover and exploit food wastes. Grape fibre is used to fortify baked goods, because the fibre can lower blood sugar, cut cholesterol and may even prevent colon cancer. Grape pomace is a functional ingredient in bakery goods to increase total phenolic content and di...