WorldWideScience

Sample records for stretching vibration modes

  1. Stretching dependence of the vibration modes of a single-molecule Pt-H-2-Pt bridge

    DEFF Research Database (Denmark)

    Djukic, D.; Thygesen, Kristian Sommer; Untiedt, C.

    2005-01-01

    isotope substitution is obtained. The stretching dependence for each of the modes allows uniquely classifying them as longitudinal or transversal modes. The interpretation of the experiment in terms of a Pt-H-2-Pt bridge is verified by density-functional theory calculations for the stability, vibrational...

  2. Vibrational dephasing of the C-Br stretching modes in gauche and trans dibromoethane

    Science.gov (United States)

    Schwartz, M.; Moradi-Araghi, A.; Koehler, W. H.

    The isotropic Raman spectra of the gauche and trans C-Br stretching modes in 1,2-dibromoethane were studied as a function of temperature in the liquid phase. Isotropic dephasing times were found to be longer for the gauche conformer, and decreased at higher temperatures for both rotamers. Vibrational second moments were observed to be greater for the trans species. Application of the isolated binary collision model to this system could not reproduce the experimentally observed temperature dependence of τiso. Values of the modulation times obtained from the Kubo lineshape formalism are in qualitative agreement with Enskog hard-sphere collision times. This approach was also used to provide a qualitative explanation of the longer observed modulation times in the gauche conformer.

  3. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise

    Science.gov (United States)

    Parnis, J. Mark; Thompson, Matthew G. K.

    2004-01-01

    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  4. Simultaneous spectral and temporal analyses of kinetic energies in nonequilibrium systems: theory and application to vibrational relaxation of O-D stretch mode of HOD in water.

    Science.gov (United States)

    Jeon, Jonggu; Lim, Joon Hyung; Kim, Seongheun; Kim, Heejae; Cho, Minhaeng

    2015-05-28

    A time series of kinetic energies (KE) from classical molecular dynamics (MD) simulation contains fundamental information on system dynamics. It can also be analyzed in the frequency domain through Fourier transformation (FT) of velocity correlation functions, providing energy content of different spectral regions. By limiting the FT time span, we have previously shown that spectral resolution of KE evolution is possible in the nonequilibrium situations [Jeon and Cho, J. Chem. Phys. 2011, 135, 214504]. In this paper, we refine the method by employing the concept of instantaneous power spectra, extending it to reflect an instantaneous time-correlation of velocities with those in the future as well as with those in the past, and present a new method to obtain the instantaneous spectral density of KE (iKESD). This approach enables the simultaneous spectral and temporal resolution of KE with unlimited time precision. We discuss the formal and novel properties of the new iKESD approaches and how to optimize computational methods and determine parameters for practical applications. The method is specifically applied to the nonequilibrium MD simulation of vibrational relaxation of the OD stretch mode in a hydrated HOD molecule by employing a hybrid quantum mechanical/molecular mechanical (QM/MM) potential. We directly compare the computational results with the OD band population relaxation time profiles extracted from the IR pump-probe measurements for 5% HOD in water. The calculated iKESD yields the OD bond relaxation time scale ∼30% larger than the experimental value, and this decay is largely frequency-independent if the classical anharmonicity is accounted for. From the integrated iKESD over intra- and intermolecular bands, the major energy transfer pathways were found to involve the HOD bending mode in the subps range, then the internal modes of the solvent until 5 ps after excitation, and eventually the solvent intermolecular modes. Also, strong hydrogen

  5. Resonant interaction between hydrogen vibrational modes in AlSb:Se.

    Science.gov (United States)

    McCluskey, M D

    2009-04-03

    Vibrational modes and their interactions affect numerous physical processes in condensed-matter systems. In the present work, hydrogen vibrations in Se-doped AlSb were investigated with first-principles calculations. Vibrational frequencies were calculated for the longitudinal, transverse, wag (bending), and stretch modes of the Al-H complex. The Al-H stretch mode interacts with a combination mode involving a wag overtone and transverse fundamental. This resonant interaction yields vibrational states that are linear superpositions of the stretch mode and the combination mode. The spatial extent of such excitations is significantly larger than that of a local vibrational mode.

  6. Vibrations of stretched damped beams under non-ideal boundary ...

    Indian Academy of Sciences (India)

    Stretched beam vibrations; non-ideal boundary conditions; method of multiple time scales. 1. Introduction. Beams are frequently used as design models for vibration analysis. In such analysis, types of support conditions are important and have direct effect on the solutions and natural fre- quencies. Different types of supports ...

  7. Vibrational spectroscopy of Cm–C/Cb–Cb stretching vibrations of ...

    Indian Academy of Sciences (India)

    operator which conveniently describes stretching vibrations of biomolecules. For a copper tetramesityl porphyrin molecule, the higher excited vibrational levels are calculated by applying the U(2) algebraic approach. Keywords. Lie algebraic techniques; vibrational spectra; copper tetramesityl porphyrin. PACS Nos 31.65.

  8. Hydrogen local vibrational modes in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Matthew D. [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-06-01

    Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.

  9. Hydrogen local vibrational modes in semiconductors

    Science.gov (United States)

    McCluskey, Matthew Douglas

    Following a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient, exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen, the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the (111) direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, an anti-crossing is observed between the LVM and phonon modes.

  10. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    Science.gov (United States)

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  11. The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.

    Science.gov (United States)

    Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B

    2018-01-10

    While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (pstatic stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.

  12. Theoretical and experimental investigations of thickness- stretch modes in 1-3 piezoelectric composites

    International Nuclear Information System (INIS)

    Yang, Z T; Zeng, D P; He, M; Wang, H

    2015-01-01

    Bulk piezoelectric ceramics operating in thickness-stretch (TSt) modes have been widely used in acoustic-related devices. However, the fundamental TSt waves are always coupled with other modes, and the occurrence of these spurious modes in bulk piezoelectric ceramics affects its performance. To suppress the spurious modes, 1-3 piezoelectric composites are promising candidates. However, theoretical modeling of multiphase ceramic composite objects is very complex. In this study, a 1-3 piezoelectric composite sample and a bulk piezoelectric sample are fabricated. The electrical impedance of these two samples are compared. A simple analytical TSt vibration mode from the three dimensional equations of linear piezoelectricity is used to model the performance of 1-3 piezoelectric composites. The theoretical results agree well with the experimental results. (paper)

  13. Unexpected decoupling of stretching and bending modes in protein gels.

    Science.gov (United States)

    Gibaud, Thomas; Zaccone, Alessio; Del Gado, Emanuela; Trappe, Véronique; Schurtenberger, Peter

    2013-02-01

    We show that gels formed by arrested spinodal decomposition of protein solutions exhibit elastic properties in two distinct frequency domains, both elastic moduli exhibiting a remarkably strong dependence on volume fraction. Considering the large difference between the protein size and the characteristic length of the network we model the gels as porous media and show that the high and low frequency elastic moduli can be respectively attributed to stretching and bending modes. The unexpected decoupling of the two modes in the frequency domain is attributed to the length scale involved: while stretching mainly relates to the relative displacement of two particles, bending involves the deformation of a strand with a thickness of the order of a thousand particle diameters.

  14. Fuzzy Sliding Mode Control of Plate Vibrations

    Directory of Open Access Journals (Sweden)

    Manu Sharma

    2010-01-01

    Full Text Available In this paper, fuzzy logic is meshed with sliding mode control, in order to control vibrations of a cantilevered plate. Test plate is instrumented with a piezoelectric sensor patch and a piezoelectric actuator patch. Finite element method is used to obtain mathematical model of the test plate. A design approach of a sliding mode controller for linear systems with mismatched time-varying uncertainties is used in this paper. It is found that chattering around the sliding surface in the sliding mode control can be checked by the proposed fuzzy sliding mode control approach. With presented fuzzy sliding mode approach the actuator voltage time response has a smooth decay. This is important because an abrupt decay can excite higher modes in the structure. Fuzzy rule base consisting of nine rules, is generated from the sliding mode inequality. Experimental implementation of the control approach verify the theoretical findings. For experimental implementation, size of the problem is reduced using modal truncation technique. Modal displacements as well as velocities of first two modes are observed using real-time kalman observer. Real time implementation of fuzzy logic based control has always been a challenge because a given set of rules has to be executed in every sampling interval. Results in this paper establish feasibility of experimental implementation of presented fuzzy logic based controller for active vibration control.

  15. Does vibration counteract the static stretch-induced deficit on muscle force development?

    Science.gov (United States)

    Fernandes, Igor Alexandre; Kawchuk, Gregory; Bhambhani, Yagesh; Gomes, Paulo Sergio Chagas

    2013-09-01

    To determine the residual acute vibration-stretching effect on preactivation levels, short-latency stretch reflex, and performance during execution of drop jumps. Repeated measures. Eleven male recreational athletes performed a set of three 45cm drop jumps before and immediately after a 30s static stretching exercise with and without simultaneously imposed muscle vibration (45Hz, 5mm). Drop jump height, ground reaction forces and electromyographic data including Vastus Lateralis onset/levels of preactivation and short-latency stretch reflex were recorded. No changes were induced on drop jump height. However, stretching-induced decrements on ground reaction force peak and time to peak as well as an increment in contact time followed a delay in short-latency stretch reflex onset and a reduced preactivation level of Vastus Lateralis. Otherwise, when vibration was simultaneously imposed, there was no evidence of changes in high-speed force production variables or electromyographic recordings. Mechanical vibration, when applied simultaneously to static-stretching routines, appeared to be effective to counteract decreased musculotendinous unit stiffness-induced high-speed force production deficit during jumping performance. Copyright © 2012. Published by Elsevier Ltd.

  16. Warm-up effects from concomitant use of vibration and static stretching after cycling.

    Science.gov (United States)

    Yang, Wen-Wen; Liu, Chiang; Shiang, Tzyy-Yuang

    2017-04-01

    Static stretch is routinely used in traditional warm-up but impaired muscle performance. Combining vibration with static stretching as a feasible component may be an alternative to static stretching after submaximal aerobic exercise to improve jumping as well as flexibility. Therefore, the purpose of this study was to investigate and compare the effects of aerobic exercise, static stretching, and vibration with static stretching on flexibility and vertical jumping performance. A repeated measures experimental design was used in this study. Twelve participants randomly underwent 5 different warm-ups including cycling alone (C warm-up), static stretching alone (S warm-up), combining vibration with static stretching (VS warm-up), cycling followed by S (C+S warm-up), and cycling followed by VS (C+VS warm-up) on 5 separate days. Sit-and-reach, squat jump (SJ), and counter movement jump (CMJ) were measured for pre- and post- tests. The sit-and-reach scores after the S, VS, C+S and C+VS warm-ups were significantly enhanced (Pafter the C and C+VS warm-ups were significantly increased (Pafter the S warm-up (Pstretching after submaximal cycling exercise (C+VS warm-up) could be a feasible warm-up protocol to improve both flexibility and vertical jump performance, compared with the traditional warm-up (C+S warm-up).

  17. Vibrational mode analysis using maximum likelihood and maximum entropy

    International Nuclear Information System (INIS)

    Redondo, A.; Sinha, D.N.

    1993-01-01

    A simple algorithm is presented that uses the maximum likelihood and maximum entropy approaches to determine the vibrational modes of elastic bodies. This method assumes that the vibrational frequencies have been previously determined, but the modes to which they correspond are unknown. Although the method is illustrated through the analysis of simulated vibrational modes for a flat rectangular plate, it has broad applicability to any experimental technique in which spectral frequencies can be associated to specific modes by means of a mathematical model

  18. Multiscale studies on the nonlinear vibration of delaminated composite laminates-global vibration mode with micro buckles on the interfaces.

    Science.gov (United States)

    Xue, Jianghong; Xia, Fei; Ye, Jun; Zhang, Jianwen; Chen, Shuhua; Xiong, Ying; Tan, Zuyuan; Liu, Renhuai; Yuan, Hong

    2017-06-30

    This paper presents a multiscale approach to study the nonlinear vibration of fiber reinforced composite laminates containing an embedded, through-width delamination dividing the laminate into four sub-laminates. The equations of motion are established from macroscopic nonlinear mechanics for plates and shells and micro-mechanics of composite material to allow for the influences of large amplitude, membrane stretching in the neutral plane, and the interactions of the sublaminates. Analytical solutions obtained in this paper reveal that the interaction penalty at the interfaces plays a coupling effect between sublaminates, which eventually alters the vibration characters of the four-sublaminate lamina in macroscopic and microscopic mechanism. From a macro perspective, sub-laminates above and below the delamination vibrate in exactly the same mode in spite of their different stiffness and the four-sublaminate lamina has a consistent global vibration mode. In accompanying with the macro vibration, micro buckles occur on the interfaces of the delamination with amplitude about 10 -3 times of that of the global mode. It is found that the vibration frequency is an eigenvalue of the delaminated lamina determined only by the geometry of the delamination. Authentication of the multiscale study is fulfilled by comparing the analytical solutions with the FEA results.

  19. Dynamics of the OH stretching mode in crystalline Ba(ClO4)2.3H2O

    Science.gov (United States)

    Hutzler, Daniel; Brunner, Christian; Petkov, Petko St.; Heine, Thomas; Fischer, Sighart F.; Riedle, Eberhard; Kienberger, Reinhard; Iglev, Hristo

    2018-02-01

    The vibrational dynamics of the OH stretching mode in Ba(ClO4)2 trihydrate are investigated by means of femtosecond infrared spectroscopy. The sample offers plane cyclic water trimers in the solid phase that feature virtually no hydrogen bond interaction between the water molecules. Selective excitation of the symmetric and asymmetric stretching leads to fast population redistribution, while simultaneous excitation yields quantum beats, which are monitored via a combination tone that dominates the overtone spectrum. The combination of steady-state and time-resolved spectroscopy with quantum chemical simulations and general theoretical considerations gives indication of various aspects of symmetry breakage. The system shows a joint population lifetime of 8 ps and a long-lived coherence between symmetric and asymmetric stretching, which decays with a time constant of 0.6 ps.

  20. Acute static vibration-induced stretching enhanced muscle viscoelasticity but did not affect maximal voluntary contractions in footballers.

    Science.gov (United States)

    Jemni, Monèm; Mkaouer, Bessem; Marina, Michel; Asllani, Arben; Sands, William A

    2014-11-01

    The aim of this study was to compare the effects of acute vibration-enhanced static stretching and/or static stretching alone on the strength and flexibility of the hamstrings and quadriceps muscles. Twenty-one male footballers participated in this study (21.9 ± 1.8 years; 75.54 ± 7.3 kg; 178.7 ± 6.5 cm). The experiment started with 5 minutes standardized warm-up followed by (a) baseline flexibility pretest (Split Test); (b) maximal voluntary flexion and extension (isokinetic strength) of the knee; (c) Treatment or Sham involving 45-second stretch with or without vibration for the hamstring and quadriceps muscle groups with 10-second rest between; and (d) posttest repeating the measures of the pretest. Each player randomly performed both trials on separate occasions. The vibration device operated at 35 Hz with 2 mm amplitude. Stretching with vibration statistically increased hamstring flexibility by 7.8% (p ≤ 0.05) when compared with stretching without vibration. No statistical differences for hamstring or quadriceps strength were noted between treatment conditions. There was no statistical correlation between flexibility and strength measurements. In conclusion, flexibility increased with vibration-enhanced static stretching; however, no change was evident in the maximal voluntary contractions of the knee flexors and extensors.

  1. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    Science.gov (United States)

    Krasniqi, F. S.; Zhong, Y.; Epp, S. W.; Foucar, L.; Trigo, M.; Chen, J.; Reis, D. A.; Wang, H. L.; Zhao, J. H.; Lemke, H. T.; Zhu, D.; Chollet, M.; Fritz, D. M.; Hartmann, R.; Englert, L.; Strüder, L.; Schlichting, I.; Ullrich, J.

    2018-03-01

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91 Mn0.09 As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

  2. Resonance Raman studies of Co-O2 and O-O stretching vibrations in oxy-cobalt hemes.

    Science.gov (United States)

    Mackin, H C; Tsubaki, M; Yu, N T

    1983-03-01

    Strong evidence suggests that the stretching vibration of the bound oxygen can be perturbed by an accidentally degenerate porphyrin ring mode, resulting in two split frequencies. In the Co(II)(TpivPP) (pyridine) (18)O(2) complex, we demonstrate that the nu((18)O-(18)O) mode, after being shifted from its nu((16)O-(16)O) value at 1,156 cm(-1), undergoes a resonance interaction with the 1,080 cm(-1) porphyrin mode, giving rise to two lines at 1,067 and 1,089 cm(-1). In the O(2) complex of Co(II) mesoporphyrin IX-substituted sperm whale myoglobin, we observed a dramatic intensity increase at 1,132 cm(-1) upon (16)O(2) --> (18)O(2) substitution, which is due to the reappearance of the 1,132-cm(-1) porphyrin mode after the removal of resonance conditions. A decrease in O(2) binding affinity, caused by the proximal base tension, corresponds to an increase in the Co-O(2) stretching frequency. The nu(Co-O(2)) at 527 cm(-1) for the low affinity Co(II)(TpivPP)(1,2-Me(2)Im) O(2) complex is 11 cm(-1) higher than the 516-cm(-1) value for the high affinity complex (with N-MeIm replacing 1,2-Me(2)Im). However, in the corresponding iron complexes the reverse behavior is observed, i.e., the nu(Fe-O(2)) decreases for the (1,2-Me(2)Im) complex. There is a 24-cm(-1) difference in the Co-O(2) stretching frequencies between Co(II)(TpivPP)(N-MeIm)O(2) (at 516 cm(-1)) and oxy meso CoMb (at 540 cm(-1)), suggesting a protein induced distortion of the Co-O-O linkage. However, the values for nu(Fe-O(2)) are nearly identical between Fe(II)(TpivPP)(N-MeIm)O(2) (at 571 cm(-1)) and oxy Mb (at 573 cm(-1)), indicating that O(2) binds to myoglobin in the same manner as in the sterically unhindered "picket fence" complex. Evidence is presented that suggests the presence of two dioxygen stretching frequencies due to two different conformers in each of the N-MeIm and 1,2-Me(2)Im complex of oxy Co(II)(TpivPP).

  3. Resonance Raman Studies of Co—O2 and O—O Stretching Vibrations in Oxy-Cobalt Hemes

    Science.gov (United States)

    Mackin, Helen C.; Tsubaki, Motonari; Yu, Nai-Teng

    1983-01-01

    Strong evidence suggests that the stretching vibration of the bound oxygen can be perturbed by an accidentally degenerate porphyrin ring mode, resulting in two split frequencies. In the Co(II)(TpivPP) (pyridine) 18O2 complex, we demonstrate that the ν(18O—18O) mode, after being shifted from its ν(16O—16O) value at 1,156 cm-1, undergoes a resonance interaction with the 1,080 cm-1 porphyrin mode, giving rise to two lines at 1,067 and 1,089 cm-1. In the O2 complex of Co(II) mesoporphyrin IX-substituted sperm whale myoglobin, we observed a dramatic intensity increase at 1,132 cm-1 upon 16O2 → 18O2 substitution, which is due to the reappearance of the 1,132-cm-1 porphyrin mode after the removal of resonance conditions. A decrease in O2 binding affinity, caused by the proximal base tension, corresponds to an increase in the Co—O2 stretching frequency. The ν(Co—O2) at 527 cm-1 for the low affinity Co(II)(TpivPP)(1,2-Me2Im) O2 complex is 11 cm-1 higher than the 516-cm-1 value for the high affinity complex (with N-MeIm replacing 1,2-Me2Im). However, in the corresponding iron complexes the reverse behavior is observed, i.e., the ν(Fe—O2) decreases for the (1,2-Me2Im) complex. There is a 24-cm-1 difference in the Co—O2 stretching frequencies between Co(II)(TpivPP)(N-MeIm)O2 (at 516 cm-1) and oxy meso CoMb (at 540 cm-1), suggesting a protein induced distortion of the Co—O—O linkage. However, the values for ν(Fe—O2) are nearly identical between Fe(II)(TpivPP)(N-MeIm)O2 (at 571 cm-1) and oxy Mb (at 573 cm-1), indicating that O2 binds to myoglobin in the same manner as in the sterically unhindered “picket fence” complex. Evidence is presented that suggests the presence of two dioxygen stretching frequencies due to two different conformers in each of the N-MeIm and 1,2-Me2Im complex of oxy Co(II)(TpivPP). PMID:6838973

  4. Ultrafast Dynamics of Vibration-Cavity Polariton Modes

    Science.gov (United States)

    Owrutsky, Jeff; Dunkelberger, Adam; Fears, Kenan; Simpkins, Blake; Spann, Bryan

    Vibrational modes of polymers, liquids, and solvated compounds can couple to Fabry-Perot optical cavity modes, creating vibration-cavity polariton modes whose energy tunes with the cavity length and incidence angle. Here we report the pump-probe infrared spectroscopy of vibration-cavity polaritons in cavity-coupled W(CO)6. At very early times, we observe quantum beating between the two polariton states find an anomalously low degree of excitation. After the quantum beating, we directly observe spectroscopic signatures of excited-state absorption from both polariton modes and uncoupled reservoir modes. An analytical expression for cavity transmission reproduces these signatures. The upper polariton mode relaxes ten times more quickly than the uncoupled vibrational mode and the polariton lifetime depends on the angle of incidence of the infrared pulses. Coupling to an optical cavity gives a means of control of the lifetime of vibration-cavity polaritons and could have important implications for chemical reactivity in vibrationally excited molecules.

  5. Theoretical study of the C-H/O-H stretching vibrations in malonaldehyde

    Science.gov (United States)

    Pitsevich, G. A.; Malevich, A. E.; Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Sablinskas, V.; Balevicius, V.

    2015-06-01

    IR and Raman spectra of the malonaldehyde molecule and its deuterated analogues were calculated in the B3LYP/cc-pVQZ approximation. Anharmonicity effects were taken into account both in the context of a standard model of the second order perturbation theory and by constructing the potential energy surfaces (PES) with a limited number of dimensions using the Cartesian coordinates of the hydroxyl hydrogen atom and the stretching coordinates of С-Н, C-D, O-H, and O-D bonds. It was shown that in each of the two equivalent forms of the molecule, besides the global minimum, an additional local minimum at the PES is formed with the energy more than 3000 cm-1 higher than the energy in the global minimum. Calculations carried out by constructing the 2D and 3D PESs indicate a high anharmonicity level and multiple manifestations of the stretching О-Н vibrations, despite the fact that the model used does not take into account the splitting of the ground-state and excited vibrational energy levels. In particular, the vibration with the frequency 3258 cm-1 may be associated with proton transfer to the region of a local minimum of energy. Comparing the results obtained with the experimental data presented in the literature allowed us to propose a new variant of bands assignments in IR and Raman spectra of the molecule in the spectral region 2500-3500 cm-1.

  6. selective excitation of vibrational modes of polyatomic molecule

    Indian Academy of Sciences (India)

    Abstract. Mode-selective dynamics of triatomic molecule in the electronic ground state under continuous wave laser pulse is investigated for the discrete vibrational bound states. A non-perturbative approach has been used to analyse the vibrational couplings and dynamics of the molecule. Keywords. Polyatomic molecule ...

  7. Analysis of Excitation and Dead Vibration Modes of Quartz Resonators

    Directory of Open Access Journals (Sweden)

    Zi-Gui Huang

    2014-01-01

    Full Text Available This study uses the finite element method (FEM to analyze the excitation and dead vibration modes of two-dimensional quartz plates. We first simplify three-dimensional quartz plates with plane strain simplification and then compare the modes of the simplified three-dimensional plates to those of two-dimensional plates. We then analyze quartz vibrating elements of AT-cut plates and SC-cut plates. To understand the regularity of the resonance frequency of plates that are excitable by voltage loading, we compare the natural vibrations of quartz plates with the excitation frequency generated after the plates are excited by voltage loading.

  8. Vibration modes of a single plate with general boundary conditions

    Directory of Open Access Journals (Sweden)

    Phamová L.

    2016-06-01

    Full Text Available This paper deals with free flexural vibration modes and natural frequencies of a thin plate with general boundary conditions — a simply supported plate connected to its surroundings with torsional springs. Vibration modes were derived on the basis of the Rajalingham, Bhat and Xistris approach. This approach was originally used for a clamped thin plate, so its adaptation was needed. The plate vibration function was usually expressed as a single partial differential equation. This partial differential equation was transformed into two ordinary differential equations that can be solved in the simpler way. Theoretical background of the computations is briefly described. Vibration modes of the supported plate with torsional springs are presented graphically and numerically for three different values of stiffness of torsional springs.

  9. Vibrational Coupling Pathways in the CH Stretch Region of CH_3OH and CH_3OD as Revealed by IR and Ftmw-Ir Spectroscopies

    Science.gov (United States)

    Twagirayezu, Sylvestre; Wang, Xiaoliang; Perry, David S.; Neill, Justin L.; Muckle, Matt T.; Pate, Brooks H.; Xu, Li-Hong

    2011-06-01

    Infrared spectra of jet-cooled CH_3OD and CH_3OH in the CH stretch region are observed by coherence-converted population transfer Fourier transform microwave-infrared (CCPT-FTMW-IR) spectroscopy (E torsional species only) and by slit-jet single resonance spectroscopy (both A and E torsional species, CH_3OH only). Previously, we reported the analysis of ν_3 symmetric CH stretch region (2750-2900 Cm-1), and the present work extends the analysis to higher frequency (2900-3020 Cm-1). The overall observed spectra contain 17 interacting vibrational bands for CH_3OD and 28 for CH_3OH. The signs and magnitudes of the torsional tunneling splittings are deduced for three CH fundamentals (ν_3, ν_9, ν_2) of both molecules and are compared to a model calculation and to ab initio theory. The number and distribution of observed vibrational bands indicate that the CH stretch bright states couple first to doorway states that are binary combinations of bending modes. In the parts of the spectrum where doorway states are present, the observed density of coupled states is comparable to the total density of vibrational states in the molecule, but where there are no doorway states, only the CH stretch fundamentals are observed. A time-dependent interpretation of the present FTMW-IR spectra indicates a fast (˜ 200 fs) initial decay of the bright state followed by second, slower redistribution (˜ 1-3 ps). The qualitative agreement of the present data with the time-dependent experiments of Iwaki and Dlott provides further support for the similarity of the fastest vibrational relaxation processes in the liquid and gas phases. Twagirayezu, S.; Clasp, T. N.; Perry, D. S.; Neill, J. L.; Muckle, M. T.; Pate, B. H. J. Phys. Chem. A 2010, 114, 6818 Iwaki, L. K.; Dlott, D. D. J. Phys. Chem. A 2000, 104, 9101

  10. Evaluation of Bus Vibration Comfort Based on Passenger Crowdsourcing Mode

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2016-01-01

    Full Text Available Vibration comfort is an important factor affecting the quality of service (QoS of bus. In order to make people involved in supervising bus’s vibration comfort and improve passengers’ riding experience, a novel mode of passenger crowdsourcing is introduced. In this paper, comfort degree of bus vibration is calculated from bus’s vibration signals collected by passengers’ smartphones and sent through WiFi to the Boa web server which shows the vibration comfort on the LCD deployed in bus and maybe trigger alarm lamp when the vibration is beyond the threshold. Three challenges here have been overcome: firstly, space coordinate transformation algorithm is used to solve the constant drift of signals collected; secondly, a low-pass filter is designed to isolate gravity from signals real-timely via limited computing resources; thirdly, an embedded evaluation system is developed according to the calculation procedure specified by criterion ISO 2631-1997. Meanwhile, the model proposed is tested in a practical running environment, the vibration data in whole travel are recorded and analyzed offline. The results show that comfort degree of vibration obtained from the experimental system is identical with the truth, and this mode is proved to be effective.

  11. Customized shaping of vibration modes by acoustic metamaterial synthesis

    Science.gov (United States)

    Xu, Jiawen; Li, Shilong; Tang, J.

    2018-04-01

    Acoustic metamaterials have attractive potential in elastic wave guiding and attenuation over specific frequency ranges. The vast majority of related investigations are on transient waves. In this research we focus on stationary wave manipulation, i.e., shaping of vibration modes. Periodically arranged piezoelectric transducers shunted with inductive circuits are integrated to a beam structure to form a finite-length metamaterial beam. We demonstrate for the first time that, under a given operating frequency of interest, we can facilitate a metamaterial design such that this frequency becomes a natural frequency of the integrated system. Moreover, the vibration mode corresponding to this natural frequency can be customized and shaped to realize tailored/localized response distribution. This is fundamentally different from previous practices of utilizing geometry modification and/or feedback control to achieve mode tailoring. The metamaterial design is built upon the combinatorial effects of the bandgap feature and the effective resonant cavity feature, both attributed to the dynamic characteristics of the metamaterial beam. Analytical investigations based on unit-cell dynamics and modal analysis of the metamaterial beam are presented to reveal the underlying mechanism. Case illustrations are validated by finite element analyses. Owing to the online tunability of circuitry integrated, the proposed mode shaping technique can be online adjusted to fit specific requirements. The customized shaping of vibration modes by acoustic metamaterial synthesis has potential applications in vibration suppression, sensing enhancement and energy harvesting.

  12. laser photoacoustic spectra and vibrational modes of heroin ...

    Indian Academy of Sciences (India)

    Heroin, morphine and narcotine are very large molecules having 50, 40 and 53 atoms respectively. Moderately high resolution photoacoustic (PA) spectra have been recorded in 9.6 m and 10.6 m regions of CO2 laser. It is very difficult to assign the modes of vibrations for PA bands by comparison with conventional low ...

  13. selective excitation of vibrational modes of polyatomic molecule

    Indian Academy of Sciences (India)

    vnautiyal@himalaya.du.ac.in; sneh@del2.vsnl.net.in. MS received 3 September 2003; accepted 12 December 2003. Abstract. Mode-selective dynamics of triatomic molecule in the electronic ground state under continuous wave laser pulse is investigated for the discrete vibrational bound states. A non-perturbative approach ...

  14. CO 2 laser photoacoustic spectra and vibrational modes of heroin ...

    Indian Academy of Sciences (India)

    Heroin, morphine and narcotine are very large molecules having 50, 40 and 53 atoms respectively. Moderately high resolution photoacoustic (PA) spectra have been recorded in 9.6 m and 10.6 m regions of CO2 laser. It is very difficult to assign the modes of vibrations for PA bands by comparison with conventional low ...

  15. CO laser photoacoustic spectra and vibrational modes of heroin ...

    Indian Academy of Sciences (India)

    vibrations of these molecules for assignments of PA spectra. Keywords. Laser photoacoustic ... The assignment of these bands have been done in the light ofab initio calculations of normal mode frequencies. ..... a family of iteration methods called quasi-Newton methods which lead to very efficient geometry optimization.

  16. CO laser photoacoustic spectra and vibrational modes of heroin ...

    Indian Academy of Sciences (India)

    Abstract. Heroin, morphine and narcotine are very large molecules having 50, 40 and 53 atoms respectively. Moderately high resolution photoacoustic (PA) spectra have been recorded in 9.6 µm and 10.6 µm regions of CO2 laser. It is very difficult to assign the modes of vibrations for PA bands by comparison with ...

  17. Origin of the anomalous Fe-CO stretching mode in the CO complex of Ascaris hemoglobin.

    Science.gov (United States)

    Das, T K; Friedman, J M; Kloek, A P; Goldberg, D E; Rousseau, D L

    2000-02-01

    We report an unusually high frequency (543 cm(-)(1)) for an Fe-CO stretching mode in the CO complex of Ascaris suum hemoglobin as compared to vertebrate hemoglobins in which the frequency of the Fe-CO mode is much lower. A second Fe-CO stretching mode in Ascaris hemoglobin is observed at 515 cm(-1). We propose that these two Fe-CO stretching modes arise from two protein conformers corresponding to interactions of the heme-bound CO with the B10-tyrosine or the E7-glutamine residues. This postulate is supported by spectra from the B10-Tyr --> Phe mutant in which the 543 cm(-1) line is absent. Thus, a strong polar interaction, such as hydrogen bonding, of the CO with the distal B10 tyrosine residue is the dominant factor that causes this anomalously high frequency. Strong hydrogen bonding between O(2) and distal residues in the oxy complex of Ascaris hemoglobin has been shown to result in a rigid structure, rendering an extremely low oxygen off rate [Gibson, Q. H., and Smith, M. H. (1965) Proc. R. Soc. London B 163, 206-214]. In contrast, the CO off rate in Ascaris hemoglobin is very similar to that in sperm whale myoglobin. The high CO off rate relative to that of O(2) in Ascaris hemoglobin is attributed to a rapid equilibrium between the two conformations of the protein in the CO adduct, with the off rate being determined by the conformer with the higher rate.

  18. Instantaneous normal mode analysis for intermolecular and intramolecular vibrations of water from atomic point of view

    Science.gov (United States)

    Chen, Yu-Chun; Tang, Ping-Han; Wu, Ten-Ming

    2013-11-01

    By exploiting the instantaneous normal mode (INM) analysis for models of flexible molecules, we investigate intermolecular and intramolecular vibrations of water from the atomic point of view. With two flexible SPC/E models, our investigations include three aspects about their INM spectra, which are separated into the unstable, intermolecular, bending, and stretching bands. First, the O- and H-atom contributions in the four INM bands are calculated and their stable INM spectra are compared with the power spectra of the atomic velocity autocorrelation functions. The unstable and intermolecular bands of the flexible models are also compared with those of the SPC/E model of rigid molecules. Second, we formulate the inverse participation ratio (IPR) of the INMs, respectively, for the O- and H-atom and molecule. With the IPRs, the numbers of the three species participated in the INMs are estimated so that the localization characters of the INMs in each band are studied. Further, by the ratio of the IPR of the H atom to that of the O atom, we explore the number of involved OH bond per molecule participated in the INMs. Third, by classifying simulated molecules into subensembles according to the geometry of their local environments or their H-bond configurations, we examine the local-structure effects on the bending and stretching INM bands. All of our results are verified to be insensible to the definition of H-bond. Our conclusions about the intermolecular and intramolecular vibrations in water are given.

  19. Instantaneous normal mode analysis for intermolecular and intramolecular vibrations of water from atomic point of view.

    Science.gov (United States)

    Chen, Yu-Chun; Tang, Ping-Han; Wu, Ten-Ming

    2013-11-28

    By exploiting the instantaneous normal mode (INM) analysis for models of flexible molecules, we investigate intermolecular and intramolecular vibrations of water from the atomic point of view. With two flexible SPC/E models, our investigations include three aspects about their INM spectra, which are separated into the unstable, intermolecular, bending, and stretching bands. First, the O- and H-atom contributions in the four INM bands are calculated and their stable INM spectra are compared with the power spectra of the atomic velocity autocorrelation functions. The unstable and intermolecular bands of the flexible models are also compared with those of the SPC/E model of rigid molecules. Second, we formulate the inverse participation ratio (IPR) of the INMs, respectively, for the O- and H-atom and molecule. With the IPRs, the numbers of the three species participated in the INMs are estimated so that the localization characters of the INMs in each band are studied. Further, by the ratio of the IPR of the H atom to that of the O atom, we explore the number of involved OH bond per molecule participated in the INMs. Third, by classifying simulated molecules into subensembles according to the geometry of their local environments or their H-bond configurations, we examine the local-structure effects on the bending and stretching INM bands. All of our results are verified to be insensible to the definition of H-bond. Our conclusions about the intermolecular and intramolecular vibrations in water are given.

  20. Optically active vibrational modes of PPV derivatives on textile substrate

    International Nuclear Information System (INIS)

    Silva, M.A.T. da; Dias, I.F.L.; Santos, E.P. dos; Martins, A.A.; Duarte, J.L.; Laureto, E.; Reis, G.A. dos; Guimarães, P.S.S.; Cury, L.A.

    2013-01-01

    In this work, MEH-PPV and BDMO-PPV films were deposited by spin-coating on “dirty” textile substrates of canvas, nylon, canvas with resin, jeans and on glass and the temperature dependence of the optical properties of them was studied by photoluminescence and Raman (300 K) techniques. The temperature dependence of the energy, of the half line width at half height of the purely electronic peak, of the integrated PL intensity and of the Huang-Rhys factor, S=I (01) /I (00) , were obtained directly from the PL spectrum. For an analysis of the vibrational modes involved, Raman measurements were performed on substrates with and without polymers deposited and the results compared with those found in the literature. The films of MEH-PPV and BDMO-PPV showed optical properties similar to those films deposited on other substrates such as glass, metals, etc. It was observed an inversion of the first vibrational band in relation to the purely electronic peak with increasing temperature in the films deposited on nylon and canvas. The vibrational modes obtained by Raman were used to compose the simulation of the PL line shape of BDMO-PPV films on canvas and nylon, using a model proposed by Lin [29]. - Highlights: ► MEH-PPV and BDMO-PPV films were deposited by spin-coating on dirty textile. ► Their properties were studied by photoluminescence and Raman techniques. ► We observed inversion of first vibrational band in relation to purely electronic peak. ► Optically active vibrational modes of PPV derivatives were studied.

  1. Nonlinear terahertz coherent excitation of vibrational modes of liquids.

    Science.gov (United States)

    Allodi, Marco A; Finneran, Ian A; Blake, Geoffrey A

    2015-12-21

    We report the first coherent excitation of intramolecular vibrational modes via the nonlinear interaction of a TeraHertz (THz) light field with molecular liquids. A terahertz-terahertz-Raman pulse sequence prepares the coherences with a broadband, high-energy, (sub)picosecond terahertz pulse, that are then measured in a terahertz Kerr effect spectrometer via phase-sensitive, heterodyne detection with an optical pulse. The spectrometer reported here has broader terahertz frequency coverage, and an increased sensitivity relative to previously reported terahertz Kerr effect experiments. Vibrational coherences are observed in liquid diiodomethane at 3.66 THz (122 cm(-1)), and in carbon tetrachloride at 6.50 THz (217 cm(-1)), in exact agreement with literature values of those intramolecular modes. This work opens the door to 2D spectroscopies, nonlinear in terahertz field, that can study the dynamics of condensed-phase molecular systems, as well as coherent control at terahertz frequencies.

  2. Effect of hydrogen bonding on the infrared absorption intensity of OH stretch vibrations

    Science.gov (United States)

    Athokpam, Bijyalaxmi; Ramesh, Sai G.; McKenzie, Ross H.

    2017-05-01

    We consider how the infrared intensity of a hydrogen-bonded OH stretch varies from weak to strong H-bonds using a theoretical model. We obtain trends for the fundamental and overtone transition intensities as a function of the donor-acceptor distance, a common measure of H-bond strength. Building upon our earlier work using a two-diabatic state model, we introduce a Mecke function-based dipole moment for the H-bond and calculate transition moments using one-dimensional vibrational eigenstates along the H-atom transfer coordinate. The fundamental intensity is found to be over 20-fold enhanced for strong H-bonds, where non-Condon effects are significant. We analyse isotope effects, including the secondary geometric isotope effect. The first overtone intensity varies non-monotonically with H-bond strength; suppression occurs for weak bonds but strong enhancements are possible for strong H-bonds. We also study how these trends are affected by Mecke parameter variations. For a few specific dimers, we compare our results with earlier works.

  3. Experimental and theoretical model of reactivity and vibrational detection modes of triacetone triperoxide (TATP) and homologues

    Science.gov (United States)

    Pacheco-Londono, Leonardo C.; Primera-Pedrozo, Oliva M.; Hernandez-Rivera, Samuel P.

    2004-12-01

    Fully optimized molecular geometry, parameters of reactivity and vibrational spectra of triacetone triperoxide (TATP) and homologue organic peroxides were calculated using B3LYP/6-31G(d,p) method within the Density Functional Theory formalism. Infrared and Raman Spectroscopy were utilized to obtain vibrational spectra of the energetic compound. The model consists in the relation found between the Raman Shift location of the important symmetric stretch ν(O-O) of the organic peroxides and the reactivity of the organic peroxides. A good correlation between the band location in the series studied and the x-y plane polarizability component and the ionization energy was found. Gas phase IR absorption of TATP in air was used for developing stand-off detection schemes of the important organic peroxide in air. The sublimation properties of TATP were measured using two methods: Grazing Angle Probe-Fiber Coupled FTIR and gravimetric on stainless steel surfaces. Sublimation rates, loading concentration values and absorbance band areas were measured and modeled using the persistent IR vibrational signature of the ν(C-O) mode.

  4. Observation of Protein Structural Vibrational Mode Sensitivity to Ligand Binding

    Science.gov (United States)

    Niessen, Katherine; Xu, Mengyang; Snell, Edward; Markelz, Andrea

    2014-03-01

    We report the first measurements of the dependence of large-scale protein intramolecular vibrational modes on ligand binding. These collective vibrational modes in the terahertz (THz) frequency range (5-100 cm-1) are of great interest due to their predicted relation to protein function. Our technique, Crystals Anisotropy Terahertz Microscopy (CATM), allows for room temperature, table-top measurements of the optically active intramolecular modes. CATM measurements have revealed surprisingly narrowband features. CATM measurements are performed on single crystals of chicken egg-white lysozyme (CEWL) as well as CEWL bound to tri-N-acetylglucosamine (CEWL-3NAG) inhibitor. We find narrow band resonances that dramatically shift with binding. Quasiharmonic calculations are performed on CEWL and CEWL-3NAG proteins with CHARMM using normal mode analysis. The expected CATM response of the crystals is then calculated by summing over all protein orientations within the unit cell. We will compare the CATM measurements with the calculated results and discuss the changes which arise with protein-ligand binding. This work is supported by NSF grant MRI 2 grant DBI2959989.

  5. Alternative to traditional stretching methods for flexibility enhancement in well-trained combat athletes: local vibration versus whole-body vibration

    Science.gov (United States)

    2015-01-01

    This study aimed to compare the effect of local vibration (LV) and whole body vibration (WBV) on lower body flexibility and to assess whether vibration treatments were more effective than traditionally used static and dynamic stretching methods. Twenty-four well-trained male combat athletes (age: 22.7 ± 3.3 years) performed four exercise protocols – LV (30 Hz, 4 mm), WBV (30 Hz, 4 mm), static stretching (SS), and dynamic stretching (DS) – in four sessions of equal duration 48 hours apart in a randomized, balanced order. During a 15-minute recovery after each protocol, subjects performed the stand and reach test (S&R) at the 15th second and the 2nd, 4th, 6th, 8th, 10th and 15th minute. There was a similar change pattern in S&R scores across the 15-minute recovery after each protocol (p = 0.572), remaining significantly elevated throughout the recovery. A significant main protocol effect was found for absolute change in S&R scores relative to baseline (p = 0.015). These changes were statistically greater in LV than WBV and DS. Changes in SS were not significantly different from LV, but were consistently lower than LV with almost moderate effect sizes. After LV, a greater percentage of subjects increased flexibility above the minimum detectable change compared to other protocols. Subjects with high flexibility (n = 12) benefited more from LV compared with other methods (effect size ≥ 0.862). In conclusion, LV was an effective alternative exercise modality to acutely increase lower extremity flexibility for well-trained athletes compared with WBV and traditional stretching exercises. PMID:26424926

  6. Nonlinear Vibration and Mode Shapes of FG Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    Saeed Mahmoudkhani

    Full Text Available Abstract The nonlinear vibration and normal mode shapes of FG cylindrical shells are investigated using an efficient analytical method. The equations of motion of the shell are based on the Donnell’s non-linear shallow-shell, and the material is assumed to be gradually changed across the thickness according to the simple power law. The solution is provided by first discretizing the equations of motion using the multi-mode Galerkin’s method. The nonlinear normal mode of the system is then extracted using the invariant manifold approach and employed to decouple the discretized equations. The homotopy analysis method is finally used to determine the nonlinear frequency. Numerical results are presented for the backbone curves of FG cylindrical shells, nonlinear mode shapes and also the nonlinear invariant modal surfaces. The volume fraction index and the geometric properties of the shell are found to be effective on the type of nonlinear behavior and also the nonlinear mode shapes of the shell. The circumferential half-wave numbers of the nonlinear mode shapes are found to change with time especially in a thinner cylinder.

  7. Comparison of different ultrasonic vibration modes for post removal.

    Science.gov (United States)

    Braga, Neilor Mateus Antunes; Silva, Juliana Monteiro da; Carvalho-Júnior, Jacy Ribeiro de; Ferreira, Raquel Conceição; Saquy, Paulo César; Brito-Júnior, Manoel

    2012-01-01

    This in vitro study compared different ultrasonic vibration modes for intraradicular cast post removal. The crowns of 24 maxillary canines were removed, the roots were embedded in acrylic resin blocks, and the canals were treated endodontically. The post holes were prepared and root canal impressions were taken with self-cured resin acrylic. After casting, the posts were cemented with zinc phosphate cement. The samples were randomly distributed into 3 groups (n=8): G1: no ultrasonic vibration (control); G2: tip of the ultrasonic device positioned perpendicularly to core surface and close to the incisal edge; and G3: tip of the ultrasonic device positioned perpendicularly to core surface at cervical region, close to the line of cementation. An Enac OE-5 ultrasound unit with an ST-09 tip was used. All samples were submitted to the tensile test using an universal testing machine at a crosshead speed of 1 mm/min. Data were subjected to one-way ANOVA and Tukey's post-hoc tests (α=0.05). Mean values of the load to dislodge the posts (MPa) were: G1 = 4.6 (± 1.4) A; G2 = 2.8 (± 0.9) B, and G3= 0.9 (± 0.3) C. Therefore, the ultrasonic vibration applied with the tip of device close to the core's cervical area showed higher ability to reduce the retention of cast post to root canal.

  8. A novel vibration mode testing method for cylindrical resonators based on microphones.

    Science.gov (United States)

    Zhang, Yongmeng; Wu, Yulie; Wu, Xuezhong; Xi, Xiang; Wang, Jianqiu

    2015-01-16

    Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  9. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    Directory of Open Access Journals (Sweden)

    Yongmeng Zhang

    2015-01-01

    Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  10. High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2 a1 symmetry C-H stretching modes

    Science.gov (United States)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2016-07-01

    A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (˜60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm-1 and 3062.264 80(7) cm-1, respectively, which both agree within 5 cm-1 with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm-1 blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm-1) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions.

  11. Dispersion Relation of an OH-Stretching Vibration from Inelastic X-Ray Scattering

    Science.gov (United States)

    Winkler, Björn; Friedrich, Alexandra; Wilson, Dan J.; Haussühl, Eiken; Krisch, Michael; Bosak, Alexei; Refson, Keith; Milman, Victor

    2008-08-01

    We show that recent advances now allow us to measure the wave vector dependence of OH-stretching frequencies at energies around 400 meV by inelastic x-ray scattering using ID28@ESRF. We found a large, unexpected dispersion when we measured the dispersion relations of the hydrogen stretching frequencies of diaspore, α-AlOOH, where the hydrogen atoms participate in a hydrogen bond of intermediate strength. We can account for this behavior with density functional perturbation theory calculations and a simple model based on H-H interactions.

  12. Observation of the a_1 CH Stretching Modes of Phenyl Radical

    Science.gov (United States)

    Chang, Chih-Hsuan; Buckingham, Grant T.; Nesbitt, David J.

    2013-06-01

    High resolution spectroscopy for infrared rovibrational transitions in the CH stretching manifold of phenyl radical (C_6H_5) has been investigated in the slit-jet supersonic expansion at sub-Doppler resolution (60 MHz). Two new fundamental modes are observed and analyzed in this present study, corresponding to b-type structure originating from excitation of the fundamentals v_1 and v_2 mode. The band origins are determined to be 3073.96850(8) cm^{-1} and 3062.26480(7) cm^{-1}, respectively, which agree well with theoretical anharmonic scaling prediction within 5 cm^{-1} based on the B3LYP/6-311g++(3df,3dp) basis set, but shifted by 11 cm^{-1} from the corresponding experimental Ar-matrix's results of Ellison and coworkers. Intensities for the three bands are also analyzed, with the relative intensities between these three agreeing well with theoretical calculation. The physical interpretation of the inertia defect and perturbations of the band positions to explain the experimental observation and the frequencies shift. Anders. V. Friderichsen, Juliusz G. Radziszewski, Mark R. Nimols, Paul R. Winter, David C. Dayton, Donald E. David, and G. Barney Ellison, J. Am. Chem. Soc. 123, 1977 (2001)

  13. Single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser.

    Science.gov (United States)

    Peng, Di; Zhang, Zhiyao; Zeng, Zhen; Zhang, Lingjie; Lyu, Yanjia; Liu, Yong; Xie, Kang

    2018-03-19

    We demonstrate a single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser. The theoretical analysis and simulation results indicate that the dissipative soliton-based optical source with a flat spectrum relieves the envelope-induced signal distortion, and its high energy spectral density helps to improve the signal-to-noise ratio, both of which are favorable for simplifying the optical front-end architecture of a photonic time-stretch digitizer. By employing a homemade dissipative soliton-based passively mode-locked erbium-doped fiber laser in a single-shot photonic time-stretch digitizer, an effective number of bits of 4.11 bits under an effective sampling rate of 100 GS/s is experimentally obtained without optical amplification in the link and pulse envelope removing process.

  14. Vibration Therapy Is No More Effective Than the Standard Practice of Massage and Stretching for Promoting Recovery From Muscle Damage After Eccentric Exercise.

    Science.gov (United States)

    Fuller, Joel T; Thomson, Rebecca L; Howe, Peter R C; Buckley, Jonathan D

    2015-07-01

    The purpose of this study was to determine if vibration therapy is more effective than the standard treatment of stretching and massage for improving recovery of muscle strength and reducing muscle soreness after muscle damage induced by eccentric exercise. A randomized, single-blinded parallel intervention trial design was used. Research laboratory. Fifty untrained men aged 18 to 30 years completed the study. Participants performed 100 maximal eccentric muscle actions (ECCmax) of the right knee extensor muscles. For the next 7 days, 25 participants applied cycloidal vibration therapy to the knee extensors twice daily and 25 participants performed stretching and sports massage (SSM) twice daily. Changes in markers of muscle damage [peak isometric torque (PIT), serum creatine kinase (CK), and serum myoglobin (Mb)], muscle soreness (visual analog scale), and inflammation [serum C-reactive protein (CRP)] were assessed. After ECCmax, there was no difference in recovery of PIT and muscle soreness or serum CK, Mb, and CRP levels between vibration and SSM groups (P > 0.28). Cycloidal vibration therapy is no more effective than the standard practice of stretching and massage to promote muscle recovery after the performance of muscle-damaging exercise. Prescription of vibration therapy after maximal exercise involving eccentric muscle damage did not alleviate signs and symptoms of muscle damage faster than the standard prescription of stretching and massage.

  15. Spectrum of OH-stretching vibrations of water in a "floating" water bridge

    Science.gov (United States)

    Oshurko, V. B.; Ropyanoi, A. A.; Fedorov, A. N.; Fedosov, M. V.; Shelaeva, N. A.

    2012-11-01

    The axial distribution (over the cross section) of the spectra of the OH-stretching band of water in a water bridge is investigated using the Raman scattering method. It is found that the axial structure of the bridge is inhomogeneous: the core at the center of the bridge contains a larger amount of water with an "icelike" structure and a presumably larger number of H+ ions, while the outer layer probably consists of water with a larger number of OH- ions.

  16. Anharmonic bend-stretch coupling in neat liquid water

    NARCIS (Netherlands)

    Lindner, Joerg; Cringus, Dan; Pshenichnikov, Maxim S.; Voehringer, Peter

    2007-01-01

    Femtosecond mid-IR spectroscopy is used to study the vibrational relaxation dynamics in neat liquid water. By exciting the bending vibration and probing the stretching mode, it is possible to reliably determine the bending and librational lifetimes of water. The anharmonic coupling between the

  17. Vibration Mode Observation of Piezoelectric Disk-type Resonator by High Frequency Laser Doppler Vibrometer

    Science.gov (United States)

    Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji

    For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.

  18. Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Clark, Stewart J.

    2007-01-01

    We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...

  19. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several ongoing challenges in non-contacting blade vibration and stress measurement systems that can address closely spaced modes and blade-to-blade...

  20. Sensitivity analysis of the stiffness between the frame structure and the frequency and vibration mode

    Science.gov (United States)

    Chen, Wenyuan

    2018-03-01

    The modal parameters such as natural frequency and vibration mode of the frame structure of the layer stiffness sensitivity is inconsistent. This article focuses on the theoretical derivation of the frequency and mode of the frame structure layer stiffness of the first-order sensitivity. The numerical examples show that the frame structure of layer stiffness higher than with the first order sensitivity vibration frequency.

  1. Extended and localized vibrational modes in (1-3) Penrose-like piezocomposites

    Science.gov (United States)

    Montero de Espinosa, F.; Torres, M.

    1994-09-01

    Acoustic vibrational modes of piezocomposites with ceramic bars arranged at the vertices of both perfect Penrose tilings and random Penrose tilings have directly been observed by recording the corresponding standing vibration amplitude pattern. The random Penrose tiling exhibits similar although smoother spectrum than the perfect Penrose one. For both structures, the existence of extended and localized modes is shown. Resonances frequencies at the edges of the spectrum pseudogap correspond to localized and highly entropic modes. As expected, the modes are more localized in the random Penrose tiling case.

  2. Effects of Rippling Deformation and Mid-Plane Stretching on Non-linear Vibration for Embedded Carbon Nanotube

    DEFF Research Database (Denmark)

    Mehdipour, I.; Barari, Amin; Domairry, G.

    2012-01-01

    natural frequencies or mode shapes if a sufficiently precise theoretical model is used. The molecular dynamics (MD) method simulates CNTs accurately. However, MD simulation is limited to systems with a small number of atoms (say, less than 1016) and remains time-consuming and expensive (Yaghmaei and Rafii......-Tabar, 2009; Zhang et al., 2009; Gibson et al., 2007). For large-scale systems, continuum mechanics approach has widely and successfully modeled mechanical and vibrational characteristics of CNTs (Gibson et al., 2007; Fu et al., 2006; Ranjbartoreh et al., 2007). The continuum modeling approach needs much less...

  3. Vibrational Spectroscopy of the CCl[subscript 4] v[subscript 1] Mode: Theoretical Prediction of Isotopic Effects

    Science.gov (United States)

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…

  4. Identification of LDPE Grades Focusing on Specific CH2 Raman Vibration Modes

    Directory of Open Access Journals (Sweden)

    Richard Jumeau

    2013-01-01

    Full Text Available The possibilities of applications of vibrational spectroscopy techniques (Raman spectroscopy in the analysis and characterization of polymers are more and more used and accurate. In this paper, our purpose is to characterize Low Density Poly(Ethylene (LDPE grades by Raman spectroscopy and in particular with CH2 Raman vibration modes. With temperature measurements, we determine different amorphous and crystalline Raman assignments. From these results and on the basis of the evolution of CH2 bending Raman vibration modes, we develop a phenomenological model in correlation with Differential Scanning Calorimetry and in particular with crystalline lamella thickness determination.

  5. Sub-Doppler slit jet infrared spectroscopy of astrochemically relevant cations: Symmetric (ν1) and antisymmetric (ν6) NH stretching modes in ND2H2+

    Science.gov (United States)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2018-01-01

    Sub-Doppler infrared rovibrational transitions in the symmetric (v1) and antisymmetric (v6) NH stretch modes of the isotopomerically substituted ND2H2+ ammonium cation are reported for the first time in a slit jet discharge supersonic expansion spectrometer. The partially H/D substituted cation is generated by selective isotopic exchange of ND3 with H2O to form NHD2, followed by protonation with H3+ formed in the NHD2/H2/Ne slit-jet discharge expansion environment. Rotational assignment for ND2H2+ is confirmed rigorously by four line ground state combination differences, which agree to be within the sub-Doppler precision in the slit jet (˜9 MHz). Observation of both b-type (ν1) and c-type (ν6) bands enables high precision determination of the ground and vibrationally excited state rotational constants. From an asymmetric top Watson Hamiltonian analysis, the ground state constants are found to be A″ = 4.856 75(4) cm-1, B″ = 3.968 29(4) cm-1, and C″ = 3.446 67(6) cm-1, with band origins at 3297.5440(1) and 3337.9050(1) cm-1 for the v1 and v6 modes, respectively. This work permits prediction of precision microwave/mm-wave transitions, which should be invaluable in facilitating ongoing spectroscopic searches for partially deuterated ammonium cations in interstellar clouds and star-forming regions of the interstellar medium.

  6. Atomistic theory for the damping of vibrational modes in monoatomic gold chains

    DEFF Research Database (Denmark)

    Engelund, Mads; Brandbyge, Mads; Jauho, Antti-Pekka

    2009-01-01

    We develop a computational method for evaluating the damping of vibrational modes in monatomic metallic chains suspended between bulk crystals under external strain. The damping is due to the coupling between the chain and contact modes and the phonons in the bulk substrates. The geometry of the ...

  7. Accounting for intra-molecular vibrational modes in open quantum system description of molecular systems.

    Science.gov (United States)

    Roden, Jan; Strunz, Walter T; Whaley, K Birgitta; Eisfeld, Alexander

    2012-11-28

    Electronic-vibrational dynamics in molecular systems that interact with an environment involve a large number of degrees of freedom and are therefore often described by means of open quantum system approaches. A popular approach is to include only the electronic degrees of freedom into the system part and to couple these to a non-Markovian bath of harmonic vibrational modes that is characterized by a spectral density. Since this bath represents both intra-molecular and external vibrations, it is important to understand how to construct a spectral density that accounts for intra-molecular vibrational modes that couple further to other modes. Here, we address this problem by explicitly incorporating an intra-molecular vibrational mode together with the electronic degrees of freedom into the system part and using the Fano theory for a resonance coupled to a continuum to derive an "effective" bath spectral density, which describes the contribution of intra-molecular modes. We compare this effective model for the intra-molecular mode with the method of pseudomodes, a widely used approach in simulation of non-Markovian dynamics. We clarify the difference between these two approaches and demonstrate that the respective resulting dynamics and optical spectra can be very different.

  8. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  9. Anomalous vibrational modes in acetanilide: A F.D.S. incoherent inelastic neutron scattering study

    International Nuclear Information System (INIS)

    Barthes, M.; Moret, J.; Eckert, J.; Johnson, S.W.; Swanson, B.I.; Unkefer, C.J.

    1991-01-01

    The origin of the anomalous infra-red and Raman modes in acetanilide (C 6 H 5 NHCOCH 3 , or ACN), remains a subject of considerable controversy. One family of theoretical models involves Davydov-like solitons nonlinear vibrational coupling, or ''polaronic'' localized modes. An alternative interpretation of the extra-bands in terms of a Fermi resonance was proposed and recently the existence of slightly non-degenerate hydrogen atom configurations in the H-bond was suggested as an explanation for the anomalies. In this paper we report some new results on the anomalous vibrational modes in ACN that were obtained by inelastic incoherent neutron scattering (INS)

  10. Generation of three-mode nonclassical vibrational states of ions

    International Nuclear Information System (INIS)

    Nguyen Ba An; Truong Minh Duc

    2002-01-01

    We propose using eight lasers with appropriate orientations and conditions to generate stable trio coherent states of an ion in a three-dimensional isotropic trap. Seven lasers whose orientations are important should be detuned to the third lower sideband of the ion vibrational motion. The eighth laser whose direction is not important should be in resonance with the ionic transition

  11. Effects of two vibrational modes in the dissociative electron attachment to CF3Cl

    International Nuclear Information System (INIS)

    Tarana, Michal; Wielgus, Pawel; Roszak, Szczepan; Fabrikant, Ilya I.

    2009-01-01

    We present a study of multimode effects in dissociative electron attachment to CF 3 Cl molecules using a time-independent version of the local complex potential theory. Symmetric stretch C-Cl vibrations ν 3 and symmetric deformation (or so-called umbrella) vibrations ν 2 are included. The neutral and anion potential energy surfaces are calculated using the second-order Moeller-Plesset perturbation theory with an empirical adjustment of the vertical attachment energy. The final-state vibrational distribution in the CF 3 (ν 2 ) fragment is dominated by the ν 2 =2 state. We also find an increase in the total cross section as compared with the one-dimensional calculations. This is explained by an increase in the anion survival probability.

  12. Fourier Transform Absorption Spectroscopy of C_3 in the ν_3 Antisymmetric Stretch Mode Region

    Science.gov (United States)

    Vervloet, Michel; Martin-Drumel, Marie-Aline; Tokaryk, Dennis W.; Pirali, Olivier

    2017-06-01

    The C_3 molecule has been detected in a variety of astrophysical objects thanks to the well-known 4050 Å (A^1Π_u-X^1Σ ^+ _g) electronic transition as well as the two IR active modes of the electronic ground state: ν_2 (˜ 63.42 cm^{-1}) and ν_3 (˜ 2040.02 cm^{-1}). Previous laboratory data in the ν_3 region, obtained using diode laser spectroscopy and the photolysis of allene to produce C_3, permitted measurement of the fundamental (0,0,1)Σ-(0,0,0)Σ as well as the hot bands: (0,1,1)Π-(0,1,0)Π; (0,2,1)Σ-(0,2,0)Σ; (0,2,1)Δ-(0,2,0)Δ and provided insights on the anharmonicity of the (0,nν_2,1) vibrational pattern. We have recorded the absorption spectrum of C_3 in the 1800-2100 cm^{-1} region (at a resolution of 0.003 cm^{-1}) using the Bruker IFS 125 Fourier Transform spectrometer at the AILES beamline of Synchrotron SOLEIL. C_3 was produced in a DC discharge of methane heavily diluted in helium. The rovibrational temperature of C_3 produced in our discharge is noticeably higher than in Ref. [4], which allowed us to extend measurements to higher J values. More interestingly, we assigned new hot bands involving higher quanta of the ν_2 bending states: (0,nν_2,1) with n ranging from 0 to 5. Despite the absence of Q branches for these bands, which results in a possible ambiguous J-assignment of P and R lines, the large variety of data considered in this work, in addition to our experimental data and including observations of comet spectra, allows confident assignments. L. Gausset, G. Herzberg, A. Lagerqvist, B. Rosen, Astrophysical Journal, 45-81 (1965); T. F. Giesen et al., The Astrophysical Journal, 551, L181-L184 (2001) K. W. Hinkle, J. J. Keady, P. F. Bernath, Science, 241, 1319-1322 (1988) K. Kawaguchi et al., J. Chem. Phys., 91, 1953-1957 (1989)

  13. A Pictorial Visualization of Normal Mode Vibrations of the Fullerene (C[subscript 60]) Molecule in Terms of Vibrations of a Hollow Sphere

    Science.gov (United States)

    Dunn, Janette L.

    2010-01-01

    Understanding the normal mode vibrations of a molecule is important in the analysis of vibrational spectra. However, the complicated 3D motion of large molecules can be difficult to interpret. We show how images of normal modes of the fullerene molecule C[subscript 60] can be made easier to understand by superimposing them on images of the normal…

  14. Vibrational spectrum of CF4 isotopes in an algebraic model

    Indian Academy of Sciences (India)

    n this paper the stretching vibrational modes of CF4 isotopes are calculated up to first overtone using the one-dimensional vibron model for the first time. The model Hamiltonian so constructed seems to describe the C–F stretching modes accurately using a relatively small set of well-defined parameters.

  15. Power enhancing by reversing mode sequence in tuned mass-spring unit attached vibration energy harvester

    Directory of Open Access Journals (Sweden)

    Jae Eun Kim

    2013-07-01

    Full Text Available We propose a vibration energy harvester consisting of an auxiliary frequency-tuned mass unit and a piezoelectric vibration energy harvesting unit for enhancing output power. The proposed integrated system is so configured that its out-of-phase mode can appear at the lowest eigenfrequency unlike in the conventional system using a tuned unit. Such an arrangement makes the resulting system distinctive: enhanced output power at or near the target operating frequency and very little eigenfrequency separation, not observed in conventional eigenfrequency-tuned vibration energy harvesters. The power enhancement of the proposed system is theoretically examined with and without tip mass normalization or footprint area normalization.

  16. Effect of Post-Exercise Whole Body Vibration with Stretching on Mood State, Fatigue, and Soreness in Collegiate Swimmers

    Directory of Open Access Journals (Sweden)

    Justin J. Merrigan

    2017-01-01

    Full Text Available Static stretching (SS during whole body vibration (WBV has been suggested for exercise recovery. The purpose was to compare post-exercise self-ratings of fatigue (FAT, mood state (BAM, soreness (SOR, and perceived exertion (RPE between SS and WBV+SS in swimmers (9 women, mean ± SD: 19.3 ± 1.3 year, 171 ± 5.7 cm, 67.6 ± 7.2 kg, 26.6 ± 4.1 %body fat (%BF; 10 men, mean ± SD: 19.7 ± 1.0 year, 183 ± 5.5 cm, 77.1 ± 4.2 kg, 13.1 ± 2.2 %BF. Athletes were divided by sex, event (sprint, distance, and assigned to SS or WBV+SS. Both conditions consisted of SS performed on the WBV platform with or without WBV (50 Hz, 6 mm. Sessions consisted of: pre and post measures of BAM, FAT, SOR; the condition; and RPE. Mixed factorial ANOVA were run. A significant condition by pre/post interaction was observed (p = 0.035. Post hoc analyses showed WBV+SS elicited lower post-exercise ratings of FAT (p = 0.002 and the BAM affective states, of tension (p = 0.031, and fatigue (p = 0.087. RPE did not differ between conditions. Of interest is the decrease in tension and fatigue noted by the BAM. Mood state can be indicative of how athletes adapt to training volume and intensity.

  17. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode.

    Science.gov (United States)

    Mitchell, Deborah G; Johnson, Alan M; Johnson, Jeremy A; Judd, Kortney A; Kim, Kilyoung; Mayhew, Maurine; Powell, Amber L; Sevy, Eric T

    2008-02-14

    Relaxation of highly vibrationally excited 1,2-, 1,3-, and 1,4-difluorobenzne (DFB) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot DFB (E' approximately 41,000 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Collisions between hot DFB isomers and CO2 result in large amounts of rotational and translational energy transfer from the hot donors to the bath. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these states. The amount of translational energy gained by CO2 during collisions was determined using Doppler spectroscopy to measure the width of the absorption line for each transition. The energy transfer probability distribution function, P(E,E'), for the large DeltaE tail was obtained by resorting the state-indexed energy transfer probabilities as a function of DeltaE. P(E,E') was fit to a biexponential function to determine the average energy transferred in a single DFB/CO2 collision and fit parameters describing the shape of P(E,E'). P(E,E') fit parameters for DFB/CO2 and the previously studied C6F6/CO2 system are compared to various donor molecular properties. A model based on Fermi's Golden Rule indicates that the shape of P(E,E') is primarily determined by the low-frequency out-of-plane donor vibrational modes. A fractional mode population analysis is performed, which suggests that for energy transfer from DFB and C6F6 to CO2 the two key donor vibrational modes from which energy leaks out of the donor into the bath are nu11 and nu16. These "gateway" modes are some of the same modes determined to be the most efficient energy transfer modes by quantum scattering studies of benzene/He collisions.

  18. VSCF calculations for the intra- and intermolecular vibrational modes of the water dimer and its isotopologs

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, João G.S.; Barbosa, André G.H., E-mail: andre@vm.uff.br

    2016-11-10

    In this work we show how the VSCF method may be successfully used to describe all fundamental vibrational transitions of several isotopologs of water dimer. By expressing the normal mode displacements in terms of appropriate delocalized internal coordinates we are able to minimize the mode-mode coupling in the PES and thus yield PT2-VSCF frequencies in good agreement with the experiment. The use of curvilinear normal modes is of paramount importance to describe vibrational transitions of the very soft intermolecular modes. Within our approach the maximum calculated error for the (H{sub 2}O){sub 2} intermolecular frequencies are reduced from 311 cm{sup −1} (Cartesian normal modes) to just 56 cm{sup −1} (curvilinear normal modes). Plots of the diagonal intermolecular potential and of the vibrational wave function illustrate the remarkable effect of different coordinate systems. In conclusion, our PT2-VSCF calculations provide a fair anharmonic description of the fundamental transitions of water dimers.

  19. Multiple soft-mode vibrations of lead zirconate

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří; Ostapchuk, Tetyana; Buixaderas, Elena; Kadlec, Christelle; Kužel, Petr; Gregora, Ivan; Kroupa, Jan; Savinov, Maxim; Klíč, Antonín; Drahokoupil, Jan; Etxebarria, I.; Dec, J.

    2014-01-01

    Roč. 112, č. 19 (2014), "197601-1"-"197601-5" ISSN 0031-9007 R&D Projects: GA ČR GA13-15110S Institutional support: RVO:68378271 Keywords : antiferroelectric * soft mode * polarized spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.512, year: 2014

  20. Normal modes and the Duschinsky mixing of the ground- and excited-state vibrations of the green fluorescent protein chromophore

    Science.gov (United States)

    Gnanasekaran, Ramachandran

    2013-11-01

    Ground- and excited-state vibrational frequencies were calculated for the chromophore of the green fluorescent protein (GFP) using the complete active space self-consistent field (CASSCF) method and detailed normal-mode analyses were carried out for ground and excited states. The mixing of the vibrational modes between the different states was studied by applying the Duschinsky effect by the expressing excited-state normal modes in terms of the ground-state normal modes. It was found that the low-frequency vibrational modes in the vertical excited state play a significant role in structural adjustment.

  1. Mode-selective vibrational modulation of charge transport in organic electronic devices

    KAUST Repository

    Bakulin, Artem A.

    2015-08-06

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.

  2. Natural Frequencies and Vibrating Modes for a Magnetic Planetary Gear Drive

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2012-01-01

    Full Text Available In this paper, a dynamic model for a magnetic planetary gear drive is proposed. Based on the model, the dynamic equations for the magnetic planetary gear drive are given. From the magnetic meshing forces and torques between the elements for the drive system, the tangent and radial magnetic meshing stiffness is obtained. Using these equations, the natural frequencies and the modes of the magnetic planetary gear drive are investigated. The sensitivity of the natural frequencies to the system parameters is discussed. Results show that the pole pair number and the air gap have obvious effects on the natural frequencies. For the planetary gear number larger than two, the vibrations of the drive system include the torsion mode of the center elements, the translation mode of the center elements, and the planet modes. For the planetary gear number equal to two, the planet mode does not occur, the crown mode and the sun gear mode occur.

  3. Calculations of lattice vibrational mode lifetimes using Jazz: a Python wrapper for LAMMPS

    International Nuclear Information System (INIS)

    Gao, Y; Wang, H; Daw, M S

    2015-01-01

    Jazz is a new python wrapper for LAMMPS [1], implemented to calculate the lifetimes of vibrational normal modes based on forces as calculated for any interatomic potential available in that package. The anharmonic character of the normal modes is analyzed via the Monte Carlo-based moments approximation as is described in Gao and Daw [2]. It is distributed as open-source software and can be downloaded from the website http://jazz.sourceforge.net/. (paper)

  4. USE OF WHOLE-BODY VIBRATION AS A MODE OF WARMING UP BEFORE COUNTER MOVEMENT JUMP

    Directory of Open Access Journals (Sweden)

    Enrique G. Artero

    2007-12-01

    Full Text Available Whole-body vibration (WBV has been suggested to be particularly effective on the stretch-shortening cycle-based movements, such as the counter movement jump (CMJ test (Issurin, 2005. Nevertheless, the literature on short-term vibration exposure and lower limb explosive performance (measured by CMJ test is contradictory. Either transient improvements (Bosco et al., 2000; Cochrane and Stannard, 2005; Torvinen et al., 2002a or no effects (Torvinen et al., 2002b; Rittweger et al., 2003; Cormie et al., 2006 have been reported after a single WBV exposure ranging from 30 s to 10 min. The present study aimed at better characterizing the use of a single short bout of WBV as a mode of warming up before a CMJ test.A total of 114 university students (37 men, 77 women, aged 19.6 ± 2.0 years signed an informed consent form and volunteered to participate in the study. The study protocol was approved by the Review Committee for Research Involving Human Subjects of our center. Participants were asked to come to the laboratory in three occasions three days apart. First visit: familiarization session aiming to learn the CMJ technique and to experience the vibration stimulus. Second visit: the participants performed three consecutive CMJ with one min rest interval. No significant differences were observed among the jumps, and the highest score was retained. Third visit: the participants were exposed to a single short bout of WBV and immediately after they performed three CMJ with one min rest interval.An infrared contact timing platform (ERGO JUMP Plus - BOSCO SYSTEM, Byomedic, S.C.P., Barcelona, Spain was used to measure "flight" time (t during the vertical jump (accuracy 0.001 s. Maximum height achieved by the body centre of gravity (h was then estimated, i.e. h = g · t2 / 8, where g = 9.81 m/s2. In all occasions, the participants were instructed to abstain from strenuous exercise for the preceding 24 hours.Whole-body vibration was carried out on an oscillating

  5. Intermediate energy electron impact excitation of composite vibrational modes in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física ‘Gleb Wataghin,’ Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-990 Curitiba, Paraná (Brazil); Silva, G. B. da [Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.

  6. Casing Vibration Fault Diagnosis Based on Variational Mode Decomposition, Local Linear Embedding, and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yizhou Yang

    2017-01-01

    Full Text Available To diagnose mechanical faults of rotor-bearing-casing system by analyzing its casing vibration signal, this paper proposes a training procedure of a fault classifier based on variational mode decomposition (VMD, local linear embedding (LLE, and support vector machine (SVM. VMD is used first to decompose the casing signal into several modes, which are subsignals usually modulated by fault frequencies. Vibrational features are extracted from both VMD subsignals and the original one. LLE is employed here to reduce the dimensionality of these extracted features and make the samples more separable. Then low-dimensional data sets are used to train the multiclass SVM whose accuracy is tested by classifying the test samples. When the parameters of LLE and SVM are well optimized, this proposed method performs well on experimental data, showing its capacity of diagnosing casing vibration faults.

  7. Design of Interleaved Interdigitated Electrode Multilayer Piezoelectric Transformer utilizing Longitudinal and Thickness Mode Vibrations

    DEFF Research Database (Denmark)

    Rødgaard, Martin Schøler; Andersen, Thomas; Andersen, Michael A. E.

    2012-01-01

    -less topologies. One of the main advantages of the IDE’’s is that it enables the PT to operate in longitudinal vibration and thickness mode through the electromechanical coupling coefficient k33. This also permits the realization of the PT through a low build-up height (below 2-4mm), making the manufacturing much...

  8. Single mode optical fiber vibration sensor: design and development

    Science.gov (United States)

    Alanis-Carranza, L. E.; Alvarez-Chavez, J. A.; Perez-Sanchez, G. G.; Sierra-Calderon, A.; Rodriguez-Novelo, J. C.

    2016-09-01

    This work deals with the design and development of an SMF28-based vibration detector including the fiber segment, the data acquisition via an NI-USB-6212 card, the data processing code in Visual Basic and the signal spectrum obtained via Fourier analysis. The set-up consists of a regulated voltage source at 2.6V, 300mA, which serves as the power source for a 980nm semiconductor laser operating at 150mW which is fiber coupled into a 20m-piece of SMF-28 fiber. Perpendicular to such fiber the perturbations ranged from 1 to 100 kHz, coming from a DC motor at 12 Volts. At the detection stage, a simple analog filter and a commercial photo diode were employed for data acquisition, before a transimpedance amplification stage reconstructed the signal into the National Instruments data acquisition card. At the output, the signals Fourier transformation allows the signal to be displayed in a personal computer. The presentation will include a full electrical and optical characterization of the device and preliminary sensing results, which could be suitable for structural health monitoring applications.

  9. Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface.

    Science.gov (United States)

    Kim, Hun; Lim, Hee-Chang

    2015-06-04

    The objective of this study is to understand the mode pattern of the internal flow in a water droplet placed on a hydrophobic surface that periodically and vertically vibrates. As a result, a water droplet on a vibrating hydrophobic surface has a typical shape that depends on each resonance mode, and, additionally, we observed a diversified lobe size and internal flows in the water droplet. The size of each lobe at the resonance frequency was relatively greater than that at the neighboring frequencies, and the internal flow of the nth order mode was also observed in the flow visualization. In general, large symmetrical flow streams were generated along the vertical axis in each mode, with a large circulating movement from the bottom to the top, and then to the triple contact line along the droplet surface. In contrast, modes 2 and 4 generated a Y-shaped flow pattern, in which the flow moved to the node point in the lower part of the droplet, but modes 6 and 8 had similar patterns, with only a little difference. In addition, as a result of the PIV measurement, while the flow velocity of mode 4 was faster than that of model 2, those of modes 6 and 8 were almost similar.

  10. Energy trapping of thickness-shear vibration modes of elastic plates with functionally graded materials.

    Science.gov (United States)

    Wang, Ji; Yang, Jiashi; Li, Jiangyu

    2007-03-01

    Energy trapping has important applications in the design of thickness-shear resonators. Considerable efforts have been made for the effective utilization and improvement of energy trapping with variations of plate configurations, such as adding electrodes and contouring. As a new approach in seeking improved energy trapping feature, we analyze thickness-shear vibrations in an elastic plate with functionally graded material (FGM) of in-plane variation of mechanical properties, such as elastic constants and density. A simple and general equation governing the thickness-shear modes is derived from a variational analysis. A plate with piecewise constant material properties is analyzed as an example. It is shown that such a plate can support thickness-shear vibration modes with obvious energy trapping. Bechmann's number for the existence of only one trapped mode also can be determined accordingly.

  11. Imaging the surface stress and vibration modes of a microcantilever by laser beam deflection microscopy.

    Science.gov (United States)

    Tamayo, Javier; Pini, Valerio; Kosaka, Prisicila; Martinez, Nicolas F; Ahumada, Oscar; Calleja, Montserrat

    2012-08-10

    There is a need for noninvasive techniques for simultaneous imaging of the stress and vibration mode shapes of nanomechanical systems in the fields of scanning probe microscopy, nanomechanical biological and chemical sensors and the semiconductor industry. Here we show a novel technique that combines a scanning laser, the beam deflection method and digital multifrequency excitation and analysis for simultaneous imaging of the static out-of-plane displacement and the shape of five vibration modes of nanomechanical systems. The out-of-plane resolution is at least 100 pm Hz⁻¹/² and the lateral resolution, which is determined by the laser spot size, is 1-1.5 μm. The capability of the technique is demonstrated by imaging the residual surface stress of a microcantilever together with the shape of the first 22 vibration modes. The vibration behavior is compared with rigorous finite element simulations. The technique is suitable for major improvements in the imaging of liquids, such as higher bandwidth and enhanced spatial resolution.

  12. Recent Advances In Structural Vibration And Failure Mode Control In Mainland China: Theory, Experiments And Applications

    International Nuclear Information System (INIS)

    Li Hui; Ou Jinping

    2008-01-01

    A number of researchers have been focused on structural vibration control in the past three decades over the world and fruit achievements have been made. This paper introduces the recent advances in structural vibration control including passive, active and semiactive control in mainland China. Additionally, the co-author extends the structural vibration control to failure mode control. The research on the failure mode control is also involved in this paper. For passive control, this paper introduces full scale tests of buckling-restrained braces conducted to investigate the performance of the dampers and the second-editor of the Code of Seismic Design for Buildings. For active control, this paper introduces the HMD system for wind-induced vibration control of the Guangzhou TV tower. For semiactive control, the smart damping devices, algorithms for semi-active control, design methods and applications of semi-active control for structures are introduced in this paper. The failure mode control for bridges is also introduced

  13. Estimation of the mechanical properties of the eye through the study of its vibrational modes.

    Directory of Open Access Journals (Sweden)

    M Á Aloy

    Full Text Available Measuring the eye's mechanical properties in vivo and with minimally invasive techniques can be the key for individualized solutions to a number of eye pathologies. The development of such techniques largely relies on a computational modelling of the eyeball and, it optimally requires the synergic interplay between experimentation and numerical simulation. In Astrophysics and Geophysics the remote measurement of structural properties of the systems of their realm is performed on the basis of (helio-seismic techniques. As a biomechanical system, the eyeball possesses normal vibrational modes encompassing rich information about its structure and mechanical properties. However, the integral analysis of the eyeball vibrational modes has not been performed yet. Here we develop a new finite difference method to compute both the spheroidal and, specially, the toroidal eigenfrequencies of the human eye. Using this numerical model, we show that the vibrational eigenfrequencies of the human eye fall in the interval 100 Hz-10 MHz. We find that compressible vibrational modes may release a trace on high frequency changes of the intraocular pressure, while incompressible normal modes could be registered analyzing the scattering pattern that the motions of the vitreous humour leave on the retina. Existing contact lenses with embebed devices operating at high sampling frequency could be used to register the microfluctuations of the eyeball shape we obtain. We advance that an inverse problem to obtain the mechanical properties of a given eye (e.g., Young's modulus, Poisson ratio measuring its normal frequencies is doable. These measurements can be done using non-invasive techniques, opening very interesting perspectives to estimate the mechanical properties of eyes in vivo. Future research might relate various ocular pathologies with anomalies in measured vibrational frequencies of the eye.

  14. "Good Vibrations": A workshop on oscillations and normal modes

    Science.gov (United States)

    Barbieri, Sara; Carpineti, Marina; Giliberti, Marco; Rigon, Enrico; Stellato, Marco; Tamborini, Marina

    2016-05-01

    We describe some theatrical strategies adopted in a two hour workshop in order to show some meaningful experiments and the underlying useful ideas to describe a secondary school path on oscillations, that develops from harmonic motion to normal modes of oscillations, and makes extensive use of video analysis, data logging, slow motions and applet simulations. Theatre is an extremely useful tool to stimulate motivation starting from positive emotions. That is the reason why the theatrical approach to the presentation of physical themes has been explored by the group "Lo spettacolo della Fisica" (http://spettacolo.fisica.unimi.it) of the Physics Department of University of Milano for the last ten years (Carpineti et al., JCOM, 10 (2011) 1; Nuovo Cimento B, 121 (2006) 901) and has been inserted also in the European FP7 Project TEMI (Teaching Enquiry with Mysteries Incorporated, see http://teachingmysteries.eu/en) which involves 13 different partners coming from 11 European countries, among which the Italian (Milan) group. According to the TEMI guidelines, this workshop has a written script based on emotionally engaging activities of presenting mysteries to be solved while participants have been involved in nice experiments following the developed path.

  15. Optimal modal vibration suppression of a fluid-conveying pipe with a divergent mode

    Science.gov (United States)

    Lin, Yih-Hwang; Huang, Rui-Cheng; Chu, Chih-Liang

    2004-04-01

    This study deals with the divergence characteristics of pipes conveying fluid and explores the applicability of active modal vibration control for suppressing the associated excessive structural vibration. The Timoshenko beam theory is used to establish the system equation of motion. The analysis is based on the finite element method. Active modal control technique is developed in this work for pipes conveying fluid with a flow speed exceeding the critical one. Optimal independent modal space control (IMSC) is applied for the design. For pipes conveying super-critical flow speed, as considered in this work, the system's eigenvalues have both real and complex roots, which must be dealt with in a different way from what has been established in the literature. A weighting matrix with finite weights is applied for the control of complex modes, whereas a weighting matrix with an infinite weight is used for controlling the divergent mode, with roots being real. From this study, it is demonstrated that the control approach proposed in this work can ensure closed loop stability. The mode switching scheme of directing control to the mode which has higher modal response is found to be beneficial in reducing the overall structural vibration of the fluid-conveying pipe.

  16. The application of infrared synchrotron radiation to the study of interfacial vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Hirschmugl, C.J.; Williams, G.P.

    1992-12-31

    Synchrotron radiation provides an extremely bright broad-band source in the infrared which is ideally suited to the study of surface and interface vibrational modes in the range 50--3,000 cm{sup {minus}1}. Thus it covers the important range of molecule-substrate interactions, as well as overlapping with the more easily accessible near-ir region where molecular internal modes are found. Compared to standard broadband infrared sources such as globars, not only is it 1,000 times brighter, but its emittance matches the phase-space of the electrochemical cell leading to full utilization of this brightness advantage. In addition, the source is more stable even than water-cooled globars in vacuum for both short-term and long-term fluctuations. The authors summarize the properties of synchrotron radiation in the infrared, in particular pointing out the distinct differences between this and the x-ray region. They use experimental data in discussing important issues of signal to noise and address the unique problems and advantages of the synchrotron source. Thus they emphasize the important considerations necessary for developing new facilities. This analysis then leads to a discussion of phase-space matching to electrochemical cells, and to other surfaces in vacuum. Finally they show several examples of the application of infrared synchrotron radiation to surface vibrational spectroscopy. The examples are for metal crystal surfaces in ultra-high vacuum and include CO/Cu(100) and (111) and CO/K/Cu(100). The experiments show how the stability of the synchrotron source allows subtle changes in the background to be observed in addition to the discrete vibrational modes. These changes are due to electronic states induced by the adsorbate. In some cases the authors have seen interferences between these and the discrete vibrational modes, leading to a breakdown of the dipole selection rules, and the observation of additional modes.

  17. The application of infrared synchrotron radiation to the study of interfacial vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Hirschmugl, C.J.; Williams, G.P.

    1992-01-01

    Synchrotron radiation provides an extremely bright broad-band source in the infrared which is ideally suited to the study of surface and interface vibrational modes in the range 50--3,000 cm[sup [minus]1]. Thus it covers the important range of molecule-substrate interactions, as well as overlapping with the more easily accessible near-ir region where molecular internal modes are found. Compared to standard broadband infrared sources such as globars, not only is it 1,000 times brighter, but its emittance matches the phase-space of the electrochemical cell leading to full utilization of this brightness advantage. In addition, the source is more stable even than water-cooled globars in vacuum for both short-term and long-term fluctuations. The authors summarize the properties of synchrotron radiation in the infrared, in particular pointing out the distinct differences between this and the x-ray region. They use experimental data in discussing important issues of signal to noise and address the unique problems and advantages of the synchrotron source. Thus they emphasize the important considerations necessary for developing new facilities. This analysis then leads to a discussion of phase-space matching to electrochemical cells, and to other surfaces in vacuum. Finally they show several examples of the application of infrared synchrotron radiation to surface vibrational spectroscopy. The examples are for metal crystal surfaces in ultra-high vacuum and include CO/Cu(100) and (111) and CO/K/Cu(100). The experiments show how the stability of the synchrotron source allows subtle changes in the background to be observed in addition to the discrete vibrational modes. These changes are due to electronic states induced by the adsorbate. In some cases the authors have seen interferences between these and the discrete vibrational modes, leading to a breakdown of the dipole selection rules, and the observation of additional modes.

  18. Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes

    Science.gov (United States)

    Wang, Zhao; Yan, Hong; Li, Qibing; Xu, Kun

    2017-12-01

    The unified gas-kinetic scheme (UGKS) is a direct modeling method for both continuum and rarefied flow computations. In the previous study, the UGKS was developed for diatomic molecular simulations with translation and rotational motions. In this paper, a UGKS with non-equilibrium translational, rotational, and vibrational degrees of freedom, will be developed. The new scheme is based on the phenomenological gas dynamics model, where the translational, rotational, and vibrational modes get to the equilibrium with different time scales with the introduction of rotational and vibrational collision numbers. This new scheme is tested in a few cases, such as the homogeneous flow relaxation, shock structure, shock tube problem, and flow passing through a circular and semi-circular cylinders. The analytical and DSMC solutions are used for the validation of the UGKS, and reasonable agreements have been achieved.

  19. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Fischer, B M; Walther, M; Jepsen, P Uhd

    2002-01-01

    The far-infrared dielectric function of a wide range of organic molecules is dominated by vibrations involving a substantial fraction of the atoms forming the molecule and motion associated with intermolecular hydrogen bond vibrations. Due to their collective nature such modes are highly sensitive to the intra- and intermolecular structure and thus provide a unique fingerprint of the conformational state of the molecule and effects of its environment. We demonstrate the use of terahertz time-domain spectroscopy (THz-TDS) for recording the far-infrared (0.5-4.0 THz) dielectric function of the four nucleobases and corresponding nucleosides forming the building blocks of deoxyribose nucleic acid (DNA). We observe numerous distinct spectral features with large differences between the molecules in both frequency-dependent absorption coefficient and index of refraction. Assisted by results from density-functional calculations we interpret the origin of the observed resonances as vibrations of hydrogen bonds between the molecules

  20. Design for coupled-mode flutter and non-synchronous vibration in turbomachinery

    Science.gov (United States)

    Clark, Stephen Thomas

    This research presents the detailed investigation of coupled-mode flutter and non-synchronous vibration in turbomachinery. Coupled-mode flutter and non-synchronous vibration are two aeromechanical challenges in designing turbomachinery that, when present, can cause engine blade failure. Regarding flutter, current industry design practices calculate the aerodynamic loads on a blade due to a single mode. In response to these design standards, a quasi three-dimensional, reduced-order modeling tool was developed for identifying the aeroelastic conditions that cause multi-mode flutter. This tool predicts the onset of coupled-mode flutter reasonable well for four different configurations, though certain parameters were tuned to agree with experimentation. Additionally, the results of this research indicate that mass ratio, frequency separation, and solidity have an effect on critical rotor speed for flutter. Higher mass-ratio blades require larger rotational velocities before they experience coupled-mode flutter. Similarly, increasing the frequency separation between modes and raising the solidity increases the critical rotor speed. Finally, and most importantly, design guidelines were generated for defining when a multi-mode flutter analysis is required in practical turbomachinery design. Previous work has shown that industry computational fluid dynamics can approximately predict non-synchronous vibration (NSV), but no real understanding of frequency lock-in and blade limit-cycle amplitude exists. Therefore, to understand the causes of NSV, two different reduced-order modeling approaches were used. The first approach uses a van der Pol oscillator to model a non-linear fluid instability. The van der Pol model is then coupled to a structural degree of freedom. This coupled system exhibits the two chief properties seen in experimental and computational non-synchronous vibration. Under various conditions, the fluid instability and the natural structural frequency will lock

  1. An approach based on tool mode control for surface roughness reduction in high-frequency vibration cutting

    Science.gov (United States)

    Ostasevicius, V.; Gaidys, R.; Rimkeviciene, J.; Dauksevicius, R.

    2010-11-01

    The presented research work, aimed at deeper understanding of vibrational process during high-frequency vibration cutting, is accomplished by treating cutting tool as an elastic structure which is characterized by several modes of natural vibrations. An approach for surface quality improvement is proposed in this paper by taking into account that quality of machined surface is related to the intensity of tool-tip (cutting edge) vibrations. It is based on the excitation of a particular higher vibration mode of a turning tool, which leads to the reduction of deleterious vibrations in the machine-tool-workpiece system through intensification of internal energy dissipation in the tool material. The combined application of numerical analysis with accurate finite element model as well as different experimental methods during investigation of the vibration turning process allowed to determine that the most favorable is the second flexural vibration mode of the tool in the direction of vertical cutting force component. This mode is excited by means of piezoelectric transducer vibrating in axial tool direction at the corresponding natural frequency, thereby enabling minimization of surface roughness and tool wear.

  2. Mode coupling and multiquantum vibrational excitations in Feshbach-resonant positron annihilation in molecules

    Science.gov (United States)

    Gribakin, G. F.; Stanton, J. F.; Danielson, J. R.; Natisin, M. R.; Surko, C. M.

    2017-12-01

    The dominant mechanism of low-energy positron annihilation in polyatomic molecules is through positron capture in vibrational Feshbach resonances (VFR). In this paper, we investigate theoretically the effect of anharmonic terms in the vibrational Hamiltonian on positron annihilation rates. Such interactions enable positron capture in VFRs associated with multiquantum vibrational excitations, leading to enhanced annihilation. Mode coupling can also lead to faster depopulation of VFRs, thereby reducing their contribution to the annihilation rates. To analyze this complex picture, we use coupled-cluster methods to calculate the anharmonic vibrational spectra and dipole transition amplitudes for chloroform, chloroform-d1, 1,1-dichloroethylene, and methanol, and use these data to compute positron resonant annihilation rates for these molecules. Theoretical predictions are compared with the annihilation rates measured as a function of incident positron energy. The results demonstrate the importance of mode coupling in both enhancement and suppression of the VFR. There is also experimental evidence for the direct excitation of multimode VFR. Their contribution is analyzed using a statistical approach, with an outlook towards more accurate treatment of this phenomenon.

  3. Vortex-induced vibration of a tension leg platform tendon: Multi-mode limit cycle oscillations

    Science.gov (United States)

    Datta, Nabanita

    2017-12-01

    This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, analyzed using MATLAB. The tendon is subjected to a steady current load, which causes vortex-shedding downstream, leading to cross-flow vibrations. The magnitude of the excitation (lift and drag coefficients) depends on the vortex-shedding frequency. The resulting vibration is studied for possible resonant behavior. The excitation force is quantified empirically, the added mass by potential flow hydrodynamics, and the vibration by normal mode summation method. Non-linear viscous damping of the water is considered. The non-linear oscillations are studied by the phase-plane method, investigating the limit-cycle oscillations. The stable/unstable regions of the dynamic behavior are demarcated. The modal contribution to the total deflection is studied to establish the possibility of resonance of one of the wet modes with the vortex-shedding frequency.

  4. Site-selective detection of vibrational modes of an iron atom in a trinuclear complex

    Energy Technology Data Exchange (ETDEWEB)

    Faus, Isabelle, E-mail: faus@rhrk.uni-kl.de; Rackwitz, Sergej; Wolny, Juliusz A. [University of Kaiserslautern, Department of Physics (Germany); Banerjee, Atanu; Kelm, Harald; Krüger, Hans-Jörg [University of Kaiserslautern, Department of Chemistry (Germany); Schlage, Kai; Wille, Hans-Christian [DESY, PETRA III, P01 (Germany); Schünemann, Volker [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    Nuclear inelastic scattering (NIS) experiments on the trinuclear complex [{sup 57}Fe{L-N_4(CH_2Fc)_2} (CH{sub 3}CN){sub 2}](ClO{sub 4}){sub 2} have been performed. The octahedral iron ion in the complex was labelled with {sup 57}Fe and thereby exclusively the vibrational modes of this iron ion have been detected with NIS. The analysis of nuclear forward scattering (NFS) data yields a ferrous low-spin state for the {sup 57}Fe labelled iron ion. The simulation of the partial density of states (pDOS) for the octahedral low-spin iron(II) ion of the complex by density functional theory (DFT) calculations is in excellent agreement with the experimental pDOS of the complex determined from the NIS data obtained at 80 K. Thereby it was possible to assign almost each of the experimentally observed NIS bands to the corresponding molecular vibrational modes.

  5. Study of the vibrational modes of GaSb/AlSb (001 superlattices

    Directory of Open Access Journals (Sweden)

    D. Berdekas

    2009-01-01

    Full Text Available In the present work, we study the modes of vibration of small period (GaSbn/(AlSbn supelattices, n=1,2,3, grown along (001 direction. Any supelattice (SL is described by a three dimensional elementary cell several times bigger of the elementary cell of the zinc blend bulk constituents. The modes of vibration are calculated using a ten parameter (10 Valence Overlap Shell Model, with the interactions of the binaries GaSb and AlSb calculated with different parameter sets, for both short and long range forces. With the atomic displacements known, we calculated the Raman spectra, away of resonance conditions, based on the Bond Polarizability Model. Our results are in good agreement with the existing experimental data

  6. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes

    Directory of Open Access Journals (Sweden)

    Libo Zhao

    2016-06-01

    Full Text Available Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.

  7. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes.

    Science.gov (United States)

    Zhao, Libo; Hu, Yingjie; Wang, Tongdong; Ding, Jianjun; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde

    2016-06-06

    Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS) technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m³ to 900 kg/m³ and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.

  8. Identification of surface species by vibrational normal mode analysis. A DFT study

    Science.gov (United States)

    Zhao, Zhi-Jian; Genest, Alexander; Rösch, Notker

    2017-10-01

    Infrared spectroscopy is an important experimental tool for identifying molecular species adsorbed on a metal surface that can be used in situ. Often vibrational modes in such IR spectra of surface species are assigned and identified by comparison with vibrational spectra of related (molecular) compounds of known structure, e. g., an organometallic cluster analogue. To check the validity of this strategy, we carried out a computational study where we compared the normal modes of three C2Hx species (x = 3, 4) in two types of systems, as adsorbates on the Pt(111) surface and as ligands in an organometallic cluster compound. The results of our DFT calculations reproduce the experimental observed frequencies with deviations of at most 50 cm-1. However, the frequencies of the C2Hx species in both types of systems have to be interpreted with due caution if the coordination mode is unknown. The comparative identification strategy works satisfactorily when the coordination mode of the molecular species (ethylidyne) is similar on the surface and in the metal cluster. However, large shifts are encountered when the molecular species (vinyl) exhibits different coordination modes on both types of substrates.

  9. Contribution of acoustic modes to the density of vibrational states measured by inelastic scattering techniques

    International Nuclear Information System (INIS)

    Chumakov, A. I.; Bosak, A.; Rueffer, R.

    2009-01-01

    We consider the contribution of acoustic modes to the density of vibrational states measured by nuclear inelastic, inelastic x-ray, and inelastic neutron scattering. In nuclear and x-ray scattering, the low-energy part of the density of states (DOS) is compared with the contribution of acoustic modes to the generalized density of states. Different to that, in neutron scattering the DOS is compared with the contribution of acoustic modes to the true density of states. We argue that in general this is not correct and that similar to nuclear and x-ray scattering, the neutron data in most cases must also be compared with the contribution of acoustic modes to the generalized DOS. For neutron scattering, this contribution usually is smaller than the contribution to the true DOS. Thus, the comparison of the neutron data with the contribution of acoustic modes to the true DOS systematically overestimates the level of acoustic modes. However, an extrapolation of the neutron DOS to zero energy often exceeds even this overestimated level. In our eyes, even for glasses the manifold excess of the extrapolation of the neutron DOS to zero energy over the expected level of acoustic modes seems to be unreasonable even though in this case one can still argue on existing of additional soft modes. However, a similar excess observed also for crystalline samples clearly indicates an uncertainty of the absolute scale of the DOS measured by neutron scattering.

  10. Determinants of the heme-CO vibrational modes in the H-NOX family†

    Science.gov (United States)

    Tran, Rosalie; Weinert, Emily E.; Boon, Elizabeth M.; Mathies, Richard A.; Marletta, Michael A.

    2011-01-01

    The H-NOX family of proteins have important functions in gaseous ligand signaling in organisms from bacteria to humans, including nitric oxide (NO) sensing in mammals, and provide a model system for probing ligand selectivity in hemoproteins. A unique vibrational feature that is ubiquitous throughout the Heme-Nitric oxide/OXygen binding (H-NOX) family is the presence of a high C-O stretching frequency. To investigate the cause of this spectroscopic characteristic, the Fe-CO and C-O stretching frequencies were probed in the H-NOX domain from Thermoanaerobacter tengcongensis (Tt H-NOX) using resonance Raman (RR) spectroscopy. Four classes of heme pocket mutants were generated to assess the changes in stretching frequency: (i) the distal H-bonding network, (ii) the proximal histidine ligand, (iii) modulation of the heme conformation via Ile-5 and Pro-115, and (iv) the conserved Tyr-Ser-Arg (YxSxR) motif. These mutations revealed important electrostatic interactions that dampen the back-donation of the FeII dπ electrons into the CO π* orbitals. The most significant change occurred upon disruption of the H-bonds between the strictly conserved YxSxR motif and the heme propionate groups, producing two dominant CO-bound heme conformations. One conformer was structurally similar to Tt H-NOX WT; whereas the other displayed a decrease in ν(C-O) of up to ~70 cm−1 relative to the WT protein, with minimal changes in ν(Fe-CO). Taken together, these results show that the electrostatic interactions in the Tt H-NOX binding pocket are primarily responsible for the high ν(C-O) by decreasing the Fe dπ → CO π* back-donation, and suggest that the dominant mechanism by which this family modulates the FeII-CO bond likely involves the YxSxR motif. PMID:21714509

  11. Analytical Harmonic Vibrational Frequencies for the Green Fluorescent Protein Computed with ONIOM: Chromophore Mode Character and Its Response to Environment.

    Science.gov (United States)

    Thompson, Lee M; Lasoroski, Aurélie; Champion, Paul M; Sage, J Timothy; Frisch, Michael J; van Thor, Jasper J; Bearpark, Michael J

    2014-02-11

    A systematic comparison of different environmental effects on the vibrational modes of the 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) chromophore using the ONIOM method allows us to model how the molecule's spectroscopic transitions are modified in the Green Fluorescent Protein (GFP). ONIOM(QM:MM) reduces the expense of normal mode calculations when computing the majority of second derivatives only at the MM level. New developments described here for the efficient solution of the CPHF equations, including contributions from electrostatic interactions with environment charges, mean that QM model systems of ∼100 atoms can be embedded within a much larger MM environment of ∼5000 atoms. The resulting vibrational normal modes, their associated frequencies, and dipole derivative vectors have been used to interpret experimental difference spectra (GFPI2-GFPA), chromophore vibrational Stark shifts, and changes in the difference between electronic and vibrational transition dipoles (mode angles) in the protein environment.

  12. The glassy and supercooled state of elemental sulfur: Vibrational modes, structure metastability, and polymer content

    Science.gov (United States)

    Andrikopoulos, K. S.; Kalampounias, A. G.; Falagara, O.; Yannopoulos, S. N.

    2013-09-01

    We report a detailed investigation of vibrational modes, structure, and dynamics of elemental sulfur in the glassy and the supercooled state, using Raman scattering and ab initio calculations. Polarized Raman spectra are recorded - for sulfur quenched from 473 K - over a broad temperature range from 93 K to 273 K where the supercooled liquid crystallized. The temperature induced shifts of the majority of the vibrational modes are determined and compared with the corresponding ones of crystalline sulfur. Analysis of the reduced isotropic spectra showed that the structure of the quenched product is composed of eight member rings (S8) and polymeric chains (Sμ) with a relative fraction comparable to that of the parent liquid at 473 K. Low temperature spectra, where spectral line broadening due to thermal effects is limited, revealed that two different polymeric species are present in the glass with distinct vibrational frequencies. Their interpretation was assisted by ab initio calculations used to simulate the vibrational frequencies of polymeric chains S8k (k = 1, …, 7). Theoretical results exhibit an increasing breathing mode frequency for sulfur chains up to k = 2, although it remains constant beyond the above value. The polymeric content is metastable; heating the glass above its glass transition temperature, Tg, destabilizes the chains and drives them back to the more thermodynamically stable rings. This bond interchange mechanism provides the structural origin of a secondary relaxation process in supercooled sulfur reported long ago, which has been also considered as a complication in the correct fragility estimation of this material. Finally, the Boson peak of the glass was found to exhibit strong temperature dependence even at temperatures below Tg.

  13. Optimization of new magnetorheological fluid mount for vibration control of start/stop engine mode

    Science.gov (United States)

    Chung, Jye Ung; Phu, Do Xuan; Choi, Seung-Bok

    2015-04-01

    The technologies related to saving energy/or green vehicles are actively researched. In this tendency, the problem for reducing exhausted gas is in development with various ways. Those efforts are directly related to the operation of engine which emits exhausted gas. The auto start/stop of vehicle engine when a vehicle stop at road is currently as a main stream of vehicle industry resulting in reducing exhausted gas. However, this technology automatically turns on and off engine frequently. This motion induces vehicle engine to transmit vibration of engine which has large displacement, and torsional impact to chassis. These vibrations causing uncomfortable feeling to passengers are transmitted through the steering wheel and the gear knob. In this work, in order to resolve this vibration issue, a new proposed magnetorheological (MR) fluid based engine mount (MR mount in short) is presented. The proposed MR mount is designed to satisfy large damping force in various frequency ranges. It is shown that the proposed mount can have large damping force and large force ratio which is enough to control unwanted vibrations of engine start/stop mode.

  14. Smooth adaptive sliding mode vibration control of a flexible parallel manipulator with multiple smart linkages in modal space

    Science.gov (United States)

    Zhang, Quan; Li, Chaodong; Zhang, Jiantao; Zhang, Jianhui

    2017-12-01

    This paper addresses the dynamic model and active vibration control of a rigid-flexible parallel manipulator with three smart links actuated by three linear ultrasonic motors. To suppress the vibration of three flexible intermediate links under high speed and acceleration, multiple Lead Zirconium Titanate (PZT) sensors and actuators are collocated mounted on each link, forming a smart structure which can achieve self-sensing and self-actuating. The dynamic characteristics and equations of the flexible link incorporated with the PZT sensors and actuator are analyzed and formulated. The smooth adaptive sliding mode based active vibration control is proposed to suppress the vibration of the smart links, and the first and second modes of the three links are targeted to be suppressed in modal space to avoid the spillover phenomenon. Simulations and experiments are implemented to validate the effectiveness of the smart structures and the proposed control laws. Experimental results show that the vibration of the first mode around 92 Hz and the second mode around 240 Hz of the three smart links are reduced respectively by 64.98%, 59.47%, 62.28%, and 45.80%, 36.79%, 33.33%, which further verify the multi-mode vibration control ability of the smooth adaptive sliding mode control law.

  15. Raman scattering investigations on Co and Mn doped ZnO epitaxial films: local vibration modes and defect associated ferromagnetism

    Science.gov (United States)

    Cao, Qiang; Liu, Guolei; Yan, Shishen; Mei, Liangmo

    2014-03-01

    The studies of local vibration modes (LVMs) of Co or Mn substitution in wurtzite ZnO lattice have been rather limited, and evolution of LVM bound defects as well as associated ferromagnetism are still poorly understood.In this paper, Raman scattering spectroscopy has been performed on high quality Co and Mn doped ZnO epitaxial films, which were grown on Al2O3 (0001) by oxygen-plasma assisted molecular beam epitaxy. Raman measurements revealed two local vibration modes (LVMs) at 723 and 699 cm?1 due to the substitution of Co2+ in wurtzite ZnO lattice. The LVM at 723 cm?1 is found to be an elemental sensitive vibration mode for Co substitution. The LVM at 699cm-1 can be attributed to enrichment of Co2+ bound with oxygen vacancy, the cobalt?oxygen vacancy?cobalt complexes, which associated with ferromagnetism. It reveals two competitive local vibration modes (LVMs) at 712 and 523 cm-1 due to the substitution of Mn ions in wurtzite ZnO lattice. The LVM at 712cm-1 is found to be an elemental vibration mode of Mn substitution in wurtzite ZnO lattice, while the LVM at 523cm-1 can be attributed to the local vibration mode of acceptor bound Mn substitution in wurtzite ZnO lattice. the NSF Grant NO. 11374189 and 51231007.

  16. A new fuzzy sliding mode controller for vibration control systems using integrated-structure smart dampers

    Science.gov (United States)

    Dzung Nguyen, Sy; Kim, Wanho; Park, Jhinha; Choi, Seung-Bok

    2017-04-01

    Vibration control systems using smart dampers (SmDs) such as magnetorheological and electrorheological dampers (MRD and ERD), which are classified as the integrated structure-SmD control systems (ISSmDCSs), have been actively researched and widely used. This work proposes a new controller for a class of ISSmDCSs in which high accuracy of SmD models as well as increment of control ability to deal with uncertainty and time delay are to be expected. In order to achieve this goal, two formualtion steps are required; a non-parametric SmD model based on an adaptive neuro-fuzzy inference system (ANFIS) and a novel fuzzy sliding mode controller (FSMC) which can weaken the model error of the ISSmDCSs and hence provide enhanced vibration control performances. As for the formulation of the proposed controller, first, an ANFIS controller is desgned to identify SmDs using the improved control algorithm named improved establishing neuro-fuzzy system (establishing neuro-fuzzy system). Second, a new control law for the FSMC is designed via Lyapunov stability analysis. An application to a semi-active MRD vehicle suspension system is then undertaken to illustrate and evaluate the effectiveness of the proposed control method. It is demonstrated through an experimental realization that the FSMC proposed in this work shows superior vibration control performance of the vehicle suspension compared to other surveyed controller which have similar structures to the FSMC, such as fuzzy logic and sliding mode control.

  17. Vibrational echo spectral observables and frequency fluctuations of ...

    Indian Academy of Sciences (India)

    Deepak Ojha

    Abstract. Aqueous solution of a fluoride ion at 300K is studied using the method of ab initio molecular dynamics simulation. Instantaneous fluctuations in vibrational frequencies of local OD stretch modes of deuterated water are calculated using a time-series analysis of the simulated trajectory. The vibrational spectral.

  18. Experimental Study of Flexible Plate Vibration Control by Using Two-Loop Sliding Mode Control Strategy

    Science.gov (United States)

    Yang, Jingyu; Lin, Jiahui; Liu, Yuejun; Yang, Kang; Zhou, Lanwei; Chen, Guoping

    2017-08-01

    It is well known that intelligent control theory has been used in many research fields, novel modeling method (DROMM) is used for flexible rectangular active vibration control, and then the validity of new model is confirmed by comparing finite element model with new model. In this paper, taking advantage of the dynamics of flexible rectangular plate, a two-loop sliding mode (TSM) MIMO approach is introduced for designing multiple-input multiple-output continuous vibration control system, which can overcome uncertainties, disturbances or unstable dynamics. An illustrative example is given in order to show the feasibility of the method. Numerical simulations and experiment confirm the effectiveness of the proposed TSM MIMO controller.

  19. Enzyme activation and catalysis: characterisation of the vibrational modes of substrate and product in protochlorophyllide oxidoreductase.

    Science.gov (United States)

    Sytina, Olga A; Alexandre, Maxime T; Heyes, Derren J; Hunter, C Neil; Robert, Bruno; van Grondelle, Rienk; Groot, Marie Louise

    2011-02-14

    The light-dependent reduction of protochlorophyllide, a key step in the synthesis of chlorophyll, is catalyzed by the enzyme protochlorophyllide oxidoreductase (POR) and requires two photons (O. A. Sytina et al., Nature, 2008, 456, 1001-1008). The first photon activates the enzyme-substrate complex, a subsequent second photon initiates the photochemistry by triggering the formation of a catalytic intermediate. These two events are characterized by different spectral changes in the infra-red spectral region. Here, we investigate the vibrational frequencies of the POR-bound and unbound substrate, and product, and thus provide a detailed assignment of the spectral changes in the 1800-1250 cm(-1) region associated with the catalytic conversion of PChlide:NADPH:TyrOH into Chlide:NADP(+):TyrO(-). Fluorescence line narrowed spectra of the POR-bound Pchlide reveal a C=O keto group downshifted by more than 20 cm(-1) to a relatively low vibrational frequency of 1653 cm(-1), as compared to the unbound Pchlide, indicating that binding of the chromophore to the protein occurs via strong hydrogen bond(s). The frequencies of the C=C vibrational modes are consistent with a six-coordinated state of the POR-bound Pchlide, suggesting that there are two coordination interactions between the central Mg atom of the chromophore and protein residues, and/or a water molecule. The frequencies of the C=C vibrational modes of Chlide are consistent with a five-coordinated state, indicating a single interaction between the central Mg atom of the chromophore and a water molecule. Rapid-scan FTIR measurements on the Pchlide:POR:NADPH complex at 4 cm(-1) spectral resolution reveal a new band in the 1670 cm(-1) region. The FTIR spectra of the enzyme activation phase indicate involvement of a nucleotide-binding structural motif, and an increased exposure of the protein to solvent after activation.

  20. A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals

    Science.gov (United States)

    Guo, Wei; Tse, Peter W.

    2013-01-01

    Today, remote machine condition monitoring is popular due to the continuous advancement in wireless communication. Bearing is the most frequently and easily failed component in many rotating machines. To accurately identify the type of bearing fault, large amounts of vibration data need to be collected. However, the volume of transmitted data cannot be too high because the bandwidth of wireless communication is limited. To solve this problem, the data are usually compressed before transmitting to a remote maintenance center. This paper proposes a novel signal compression method that can substantially reduce the amount of data that need to be transmitted without sacrificing the accuracy of fault identification. The proposed signal compression method is based on ensemble empirical mode decomposition (EEMD), which is an effective method for adaptively decomposing the vibration signal into different bands of signal components, termed intrinsic mode functions (IMFs). An optimization method was designed to automatically select appropriate EEMD parameters for the analyzed signal, and in particular to select the appropriate level of the added white noise in the EEMD method. An index termed the relative root-mean-square error was used to evaluate the decomposition performances under different noise levels to find the optimal level. After applying the optimal EEMD method to a vibration signal, the IMF relating to the bearing fault can be extracted from the original vibration signal. Compressing this signal component obtains a much smaller proportion of data samples to be retained for transmission and further reconstruction. The proposed compression method were also compared with the popular wavelet compression method. Experimental results demonstrate that the optimization of EEMD parameters can automatically find appropriate EEMD parameters for the analyzed signals, and the IMF-based compression method provides a higher compression ratio, while retaining the bearing defect

  1. Effect of the boundary conditions and influence of the rotational inertia on the vibrational modes of an elastic ring.

    Science.gov (United States)

    Clauvelin, Nicolas; Olson, Wilma K; Tobias, Irwin

    2014-04-01

    We present the small-amplitude vibrations of a circular elastic ring with periodic and clamped boundary conditions. We model the rod as an inextensible, isotropic, naturally straight Kirchhoff elastic rod and obtain the vibrational modes of the ring analytically for periodic boundary conditions and numerically for clamped boundary conditions. Of particular interest are the dependence of the vibrational modes on the torsional stress in the ring and the influence of the rotational inertia of the rod on the mode frequencies and amplitudes. In rescaling the Kirchhoff equations, we introduce a parameter inversely proportional to the aspect ratio of the rod. This parameter makes it possible to capture the influence of the rotational inertia of the rod. We find that the rotational inertia has a minor influence on the vibrational modes with the exception of a specific category of modes corresponding to high-frequency twisting deformations in the ring. Moreover, some of the vibrational modes over or undertwist the elastic rod depending on the imposed torsional stress in the ring.

  2. Application of empirical mode decomposition method for characterization of random vibration signals

    Directory of Open Access Journals (Sweden)

    Setyamartana Parman

    2016-07-01

    Full Text Available Characterization of finite measured signals is a great of importance in dynamical modeling and system identification. This paper addresses an approach for characterization of measured random vibration signals where the approach rests on a method called empirical mode decomposition (EMD. The applicability of proposed approach is tested in one numerical and experimental data from a structural system, namely spar platform. The results are three main signal components, comprising: noise embedded in the measured signal as the first component, first intrinsic mode function (IMF called as the wave frequency response (WFR as the second component and second IMF called as the low frequency response (LFR as the third component while the residue is the trend. Band-pass filter (BPF method is taken as benchmark for the results obtained from EMD method.

  3. Raman scattering from ZnO incorporating Fe nanoparticles: Vibrational modes and low-frequency acoustic modes

    Energy Technology Data Exchange (ETDEWEB)

    Romcevic, N., E-mail: romcevi@ipb.ac.r [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Kostic, R.; Hadzic, B.; Romcevic, M. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Kuryliszyn-Kudelska, I.; Dobrowolski, W.D. [Institute of Physics PAS, Al. Lotnikow 32/46, 02/668 Warsaw (Poland); Narkiewicz, U.; Sibera, D. [Szcecin University of Tehnology, Institute of Chemical and Environmental Engineering, Puleskiego 10, 70-322 Szczecin, Warsaw (Poland)

    2010-10-08

    Research highlights: Nanocrystaline samples of ZnO(Fe) were synthesized by wet chemical method. Samples were characterized by X-ray diffraction to determine composition of the samples (ZnO, Fe{sub 2}O{sub 3}, ZnFe{sub 2}O{sub 4}) and the mean crystalline size (8-52 nm). Small amount (5 wt.%) of Fe{sub 2}O{sub 3} at the beginning of the synthesis results in forming of ZnFe{sub 2}O{sub 4} nanoparticles. Large amount (90 wt.%) of Fe{sub 2}O{sub 3} at the beginning of the synthesis results in forming Fe{sub 2}O{sub 3} nanoparticles. Both samples contain ZnO phase which is not registered by XRD, but is clearly seen in the Raman spectra. Main characteristics of experimental Raman spectrum in 200-1600 cm{sup -1} spectral region are: sharp peak at 436 cm{sup -1} and broad two-phonon structure at {approx}1150 cm{sup -1}, typical for ZnO; broad structure below 700 cm{sup -1} that has different position and shape in case of ZnFe{sub 2}O{sub 4} or Fe{sub 2}O{sub 3} nanoparticles. In low-frequency Raman spectra of ZnFe{sub 2}O{sub 4} nanoparticles registered peaks agree well with the calculated frequencies of acoustic phonons. As a result we identified (0,2), (0,0), (2,2) and (1,0) modes. - Abstract: Nanocrystaline samples of ZnO(Fe) were synthesized by wet chemical method. Samples were characterized by X-ray diffraction to determine composition of the samples (ZnO, Fe{sub 2}O{sub 3}, ZnFe{sub 2}O{sub 4}) and the mean crystalline size (8-52 nm). In this paper we report the experimental spectra of Raman scattering. Main characteristics of experimental Raman spectrum in 200-1600 cm{sup -1} spectral region are: sharp peak at 436 cm{sup -1} and broad two-phonon structure at {approx}1150 cm{sup -1}, typical for ZnO; broad structure below 700 cm{sup -1} that has different position and shape in case of ZnFe{sub 2}O{sub 4} or Fe{sub 2}O{sub 3} nanoparticles. Low-frequency Raman modes were measured and assigned according to confined acoustic vibrations of spherical nanoparticles

  4. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  5. Effects of phase and coupling between the vibrational modes on selective excitation in coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Patel, Vishesha; Malinovsky, Vladimir S.; Malinovskaya, Svetlana

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy has been a major tool of investigation of biological structures as it contains the vibrational signature of molecules. A quantum control method based on chirped pulse adiabatic passage was recently proposed for selective excitation of a predetermined vibrational mode in CARS microscopy [Malinovskaya and Malinovsky, Opt. Lett. 32, 707 (2007)]. The method utilizes the chirp sign variation at the peak pulse amplitude and gives a robust adiabatic excitation of the desired vibrational mode. Using this method, we investigate the impact of coupling between vibrational modes in molecules on controllability of excitation of the CARS signal. We analyze two models of two coupled two-level systems (TLSs) having slightly different transitional frequencies. The first model, featuring degenerate ground states of the TLSs, gives robust adiabatic excitation and maximum coherence in the resonant TLS for positive value of the chirp. In the second model, implying nondegenerate ground states in the TLSs, a population distribution is observed in both TLSs, resulting in a lack of selectivity of excitation and low coherence. It is shown that the relative phase and coupling between the TLSs play an important role in optimizing coherence in the desired vibrational mode and suppressing unwanted transitions in CARS microscopy.

  6. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    Science.gov (United States)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  7. Vibration energy harvesting based on integrated piezoelectric components operating in different modes.

    Science.gov (United States)

    Hu, Junhui; Jong, Januar; Zhao, Chunsheng

    2010-01-01

    To increase the vibration energy-harvesting capability of the piezoelectric generator based on a cantilever beam, we have proposed a piezoelectric generator that not only uses the strain change of piezoelectric components bonded on a cantilever beam, but also employs the weights at the tip of the cantilever beam to hit piezoelectric components located on the 2 sides of weights. A prototype of the piezoelectric generator has been fabricated and its characteristics have been measured and analyzed. The experimental results show that the piezoelectric components operating in the hit mode can substantially enhance the energy harvesting of the piezoelectric generator on a cantilever beam. Two methods are used and compared in the management of rectified output voltages from different groups of piezoelectric components. In one of them, the DC voltages from rectifiers are connected in series, and then the total DC voltage is applied to a capacitor. In another connection, the DC voltage from each group is applied to different capacitors. It is found that 22.3% of the harvested energy is wasted due to the series connection. The total output electric energy of our piezoelectric generator at nonresonance could be up to 43 nJ for one vibration excitation applied by spring, with initial vibration amplitude (0-p) of 18 mm and frequency of 18.5 Hz, when the rectified voltages from different groups of piezoelectric components are connected to their individual capacitors. In addition, the motion and impact of the weights at the tip of the cantilever beam are theoretically analyzed, which well explains the experimental phenomena and suggests the measures to improve the generator.

  8. Comparisons of the Structure of Water at Neat Oil/Water and Air/Water Interfaces as Determined by Vibrational Sum Frequency Generation

    National Research Council Canada - National Science Library

    Gragson, D

    1997-01-01

    We have employed vibrational sum frequency generation (VSFG) to investigate the structure of water at neat oil/water and air/water interfaces through the OH stretching modes of the interfacial water molecules...

  9. Determination of fuel assembly vibrational modes through analysis of incore detector noise

    International Nuclear Information System (INIS)

    Johnson, R.S.

    1986-01-01

    In order to better characterize fuel assembly vibration at Duke Power Company's Oconee Nuclear Station, incore noise data were acquired an analyzed from prompt responding detectors incorporated in the Oconee 2, Cycle 7 core. Duke Power Company began actively pursuing an inhouse Neutron Noise Analysis program for routine surveillance of reactor internals vibration in 1979. Noise data has since been acquired and analyzed for twelve cycles of operation for the three Oconee units. Duke Power's Oconee Unit 2 is a Babcock and Wilcoxs pressurized water reactor with a rate thermal power of 2568MW. For Oconee 2, Cycle 7 operation, two test assemblies, each employing a string of seven axially-spaced, prompt responding hafnium detectors, were included in the final core design. Incore detector noise data were obtained during Cycle 7 at approximately 281 and 430 effective full power days (EFPD). In addition to the incore test detector signals, noise signals from the upper and lower chambers of the four excore power range detectors were recorded to aid in the analysis. The comparison of RMS signal levels for each incore detector and the phase relationships between detector locations within two test assemblies identified the first four fuel assembly bending modes associated with fixed end conditions

  10. Mode shape and natural frequency identification for seismic analysis from background vibration

    International Nuclear Information System (INIS)

    Bhan, S.; Wozniak, Z.

    1986-10-01

    Background vibration in a CANDU plant can be used to determine the dynamic characteristics of major items of equipment, such as calandria, the fuelling machines and the primary heat transport pumps. These dynamic characteristics can then be used to verify the seismic response of the equipment which, at present, is based on theoretical models only. The feasibility and basic theory of this new approach (which uses accelerations measured at several points on a structure and does not require knowledge of the source of excitation) was established in Phase I of the study. This report is based on Phase II in which the methods of analysis developed in Phase I were improved and verified experimentally. A Fast Fourier Transform (FFT) algorithm was incorporated and an interactive curve fitting technique was developed to obtain the dynamic characteristics in the form of natural frequencies, mode shapes and damping ratios. The method is now available for use at a CANDU plant

  11. Quantum-Chemical Calculation and Visualization of the Vibrational Modes of Graphene in Different Points of the Brillouin Zone.

    Science.gov (United States)

    Lebedieva, Tetiana; Gubanov, Victor; Dovbeshko, Galyna; Pidhirnyi, Denys

    2015-12-01

    Different notations of graphene irreducible representations and optical modes could be found in the literature. The goals of this paper are to identify the correspondence between available notations, to calculate the optical modes of graphene in different points of the Brillouin zone, and to compare them with experimental data obtained by Raman and coherent anti-Stokes Raman scattering (CARS) spectroscopy. The mechanism of the resonance enhancement of vibration modes of the molecules adsorbed on graphene in CARS experiments is proposed. The possibility of appearance of the discrete breathing modes is discussed.

  12. Effect of combining passive muscle stretching and whole body vibration on spasticity and physical performance of children and adolescents with cerebral palsy.

    Science.gov (United States)

    Tupimai, Teeraporn; Peungsuwan, Punnee; Prasertnoo, Jitlada; Yamauchi, Juinichiro

    2016-01-01

    [Purpose] This study evaluated the immediate and short-term effects of a combination of prolonged passive muscle stretching (PMS) and whole body vibration (WBV) on the spasticity, strength and balance of children and adolescents with cerebral palsy. [Subjects and Methods] A randomized two-period crossover trial was designed. Twelve subjects with cerebral palsy aged 10.6 ± 2.4 years received both PMS alone as a control group (CG) and a combination of PMS and WBV as an experimental group (EG). After random allocation to the trial schedules of either EG-CG or CG-EG, CG received prolonged PMS while standing on a tilt-table for 40 minutes/day, and EG received prolonged PMS for 30 minutes, followed by 10 minutes WBV. Both CG and EG received the treatment 5 days/week for 6 weeks. [Results] Immediately after one treatment, EG resulted in better improvement in scores on the Modified Ashworth Scale than CG. After the 6-week intervention, EG also showed significantly decreased scores on the Modified Ashworth Scale compared to CG. Both CG and EG showed significantly reduced the performance times in the five times sit to stand test, and EG also showed significantly increased scores on the pediatric balance scale. [Conclusion] This study showed that 6 weeks of combined prolonged PMS and WBV had beneficial effects on the spasticity, muscle strength and balance of children and adolescents with CP.

  13. Vibrational Spectroscopy of the CCI[subscript 4]?[subscript 1] Mode: Effect of Thermally Populated Vibrational States

    Science.gov (United States)

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    In our previous article on CCl[subscript 4] in this "Journal," we presented an investigation of the fine structure of the symmetric stretch of carbon tetrachloride (CCl[subscript 4]) due to isotopic variations of chlorine in C[superscript 35]Cl[subscript x][superscript 37]Cl[subscript 4-x]. In this paper, we present an investigation of…

  14. Vibrational modes and strain in GaN/AlN quantum dot stacks: dependence on spacer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Fresneda, J.; Cros, A.; Llorens, J.M.; Garcia-Cristobal, A.; Cantarero, A. [Institut de Ciencia del Materials, Universitat de Valencia, 46071 Valencia (Spain); Amstatt, B.; Bellet-Amalric, E.; Daudin, B. [CEA-CNRS Group, Nanophysique et Semiconducteurs, DRFMC/SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2007-06-15

    We have investigated the influence of spacer thickness on the vibrational and strain characteristics of GaN/AlN quantum dot multilayers (QD). The Raman shift corresponding to the E{sub 2h} vibrational mode related to the QDs has been analyzed for AlN thicknesses ranging from 4.4 nm to 13 nm, while the amount of GaN deposited in each layer remained constant from sample to sample. It is shown that there is a rapid blue shift of the GaN vibrational mode with spacer thickness when its value is smaller than 7 nm while it remains almost constant for thicker spacers. A rapid increase of the Raman line-width in the thicker samples is also observed. The experimental behavior is discussed in comparison with the results of a theoretical model for the strain in the QDs. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Multi-mode electro-mechanical vibrations of a microtubule: In silico demonstration of electric pulse moving along a microtubule

    Czech Academy of Sciences Publication Activity Database

    Havelka, Daniel; Cifra, Michal; Kučera, Ondřej

    2014-01-01

    Roč. 104, č. 24 (2014), s. 243702 ISSN 0003-6951 R&D Projects: GA ČR(CZ) GAP102/11/0649 Institutional support: RVO:67985882 Keywords : Biophysical mechanism * Collective vibration mode * Electro-mechanical Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.302, year: 2014

  16. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Directory of Open Access Journals (Sweden)

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  17. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Science.gov (United States)

    Lourenço-Martins, Hugo; Kociak, Mathieu

    2017-10-01

    Recently, two reports [Krivanek et al. Nature (London) 514, 209 (2014), 10.1038/nature13870, Lagos et al. Nature (London) 543, 529 (2017), 10.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS). While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014), 10.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989), 10.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997), 10.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008), 10.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012), 10.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015), 10.1021/acsphotonics.5b00421].

  18. Alleviation of Motor Impairments in Patients with Cerebral Palsy: Acute Effects of Whole-body Vibration on Stretch Reflex Response, Voluntary Muscle Activation and Mobility

    Directory of Open Access Journals (Sweden)

    Anne Krause

    2017-08-01

    Full Text Available IntroductionIndividuals suffering from cerebral palsy (CP often have involuntary, reflex-evoked muscle activity resulting in spastic hyperreflexia. Whole-body vibration (WBV has been demonstrated to reduce reflex activity in healthy subjects, but evidence in CP patients is still limited. Therefore, this study aimed to establish the acute neuromuscular and kinematic effects of WBV in subjects with spastic CP.Methods44 children with spastic CP were tested on neuromuscular activation and kinematics before and immediately after a 1-min bout of WBV (16–25 Hz, 1.5–3 mm. Assessment included (1 recordings of stretch reflex (SR activity of the triceps surae, (2 electromyography (EMG measurements of maximal voluntary muscle activation of lower limb muscles, and (3 neuromuscular activation during active range of motion (aROM. We recorded EMG of m. soleus (SOL, m. gastrocnemius medialis (GM, m. tibialis anterior, m. vastus medialis, m. rectus femoris, and m. biceps femoris. Angular excursion was recorded by goniometry of the ankle and knee joint.ResultsAfter WBV, (1 SOL SRs were decreased (p < 0.01 while (2 maximal voluntary activation (p < 0.05 and (3 angular excursion in the knee joint (p < 0.01 were significantly increased. No changes could be observed for GM SR amplitudes or ankle joint excursion. Neuromuscular coordination expressed by greater agonist–antagonist ratios during aROM was significantly enhanced (p < 0.05.DiscussionThe findings point toward acute neuromuscular and kinematic effects following one bout of WBV. Protocols demonstrate that pathological reflex responses are reduced (spinal level, while the execution of voluntary movement (supraspinal level is improved in regards to kinematic and neuromuscular control. This facilitation of muscle and joint control is probably due to a reduction of spasticity-associated spinal excitability in favor of giving access for greater supraspinal input during voluntary motor

  19. Efficient Vibrational Energy Transfer through Covalent Bond in Indigo Carmine Revealed by Nonlinear IR Spectroscopy.

    Science.gov (United States)

    He, Xuemei; Yu, Pengyun; Zhao, Juan; Wang, Jianping

    2017-10-12

    Ultrafast vibrational relaxation and structural dynamics of indigo carmine in dimethyl sulfoxide were examined using femtosecond pump-probe infrared and two-dimensional infrared (2D IR) spectroscopies. Using the intramolecularly hydrogen-bonded C═O and delocalized C═C stretching modes as infrared probes, local structural and dynamical variations of this blue dye molecule were observed. Energy relaxation of the vibrationally excited C═O stretching mode was found to occur through covalent bond to the delocalized aromatic vibrational modes on the time scale of a few picoseconds or less. Vibrational quantum beating was observed in magic-angle pump-probe, anisotropy, and 2D IR cross-peak dynamics, showing an oscillation period of ca. 1010 fs, which corresponds to the energy difference between the C═O and C═C transition frequency (33 cm -1 ). This confirms a resonant vibrational energy transfer happened between the two vibrators. However, a more efficient energy-accepting mode of the excited C═O stretching was believed to be a nearby combination and/or overtone mode that is more tightly connected to the C═O species. On the structural aspect, dynamical-time-dependent 2D IR spectra reveal an insignificant inhomogeneous contribution to time-correlation relaxation for both the C═O and C═C stretching modes, which is in agreement with the generally believed structural rigidity of such conjugated molecules.

  20. Vibrational Relaxation of the Backbone and Base Modes in LacDNA Complexes by UV Resonance Raman Spectroscopy.

    Science.gov (United States)

    Muntean, Cristina M; Bratu, Ioan; Hernanz, Antonio

    2017-07-20

    Vibrational band shape analysis through time correlation function concept is widely used to obtain experimental information on the molecular dynamics of medium-size molecules in different environments. Interesting details are revealed by extending this technique to biomolecules such as functional groups of the nucleic acids in media approaching the physiological conditions. In this work a study into the UV resonance Raman (UVRR) vibrational half bandwidths of functional groups in LacDNA, upon lowering the pH (pH 6.4, pH 3.45) and in the presence of Mn 2+ and Ca 2+ ions, respectively, was of interest. The corresponding global relaxation times have been derived. Also, the 793 cm -1 UVRR band, corresponding to ν (backbone O-P-O, dT) oscillator of LacDNA in aqueous solutions, was selected for band shape-analysis. Vibrational relaxation appears as the dominant relaxation process for this mode, with vibrational dephasing being the most efficient for this oscillator. Current theories developed for vibrational dephasing have been applied to this profile, and relevant relaxation parameters have been obtained and discussed. To our knowledge this is the first study on DNA oligomers vibrational band shape analysis through time correlation function concept.

  1. Quantum chemical study of agonist-receptor vibrational interactions for activation of the glutamate receptor.

    Science.gov (United States)

    Kubo, M; Odai, K; Sugimoto, T; Ito, E

    2001-06-01

    To understand the mechanism of activation of a receptor by its agonist, the excitation and relaxation processes of the vibrational states of the receptor should be examined. As a first approach to this problem, we calculated the normal vibrational modes of agonists (glutamate and kainate) and an antagonist (6-cyano-7-nitroquinoxaline-2,3-dione: CNQX) of the glutamate receptor, and then investigated the vibrational interactions between kainate and the binding site of glutamate receptor subunit GluR2 by use of a semiempirical molecular orbital method (MOPAC2000-PM3). We found that two local vibrational modes of kainate, which were also observed in glutamate but not in CNQX, interacted through hydrogen bonds with the vibrational modes of GluR2: (i) the bending vibration of the amine group of kainate, interacting with the stretching vibration of the carboxyl group of Glu705 of GluR2, and (ii) the symmetric stretching vibration of the carboxyl group of kainate, interacting with the bending vibration of the guanidinium group of Arg485. We also found collective modes with low frequency at the binding site of GluR2 in the kainate-bound state. The vibrational energy supplied by an agonist may flow from the high-frequency local modes to the low-frequency collective modes in a receptor, resulting in receptor activation.

  2. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  3. New vibrational mode of the acoustic type in Nd(Pr)2 Cu O4 single crystals

    International Nuclear Information System (INIS)

    Fil', D.V.; Kolobov, I.G.; Fil', V.D.; Barilo, S.N.; Zhigunov, D.I.

    1995-01-01

    Sound velocities along main symmetry directions as well as their angle dependences in (100),(110)-type planes are measured in Nd(Pr) 2 Cu O 4 . Anomalies in the angle dependences are found, which are interpreted as a result of the interaction of elastic vibrations with an additional plane mode of the acoustic type. According to the proposed interpretation, the bare spectrum of the additional mode is two-dimensional, and the origin of the mode is connected with the electron degrees of freedom in the Cu O 2 -planes. A phenomenological model for description of acoustic mode spectra in the investigated systems is proposed. On the basis of the anion model of HTSC, a possible microscopic scenario of the appearance of the additional mode is analyzed. In the framework of the phenomenological model, the Debye temperatures are computed, which are in agreement with the specific heat data. The values of the components of the elastic moduli tensor are given

  4. High-power, multioutput piezoelectric transformers operating at the thickness-shear vibration mode.

    Science.gov (United States)

    Du, Jinlong; Hu, Junhui; Tseng, King Jet

    2004-05-01

    In this study, a piezoelectric transformer operating at the thickness shear vibration mode and with dual or triple outputs is proposed. It consists of a lead zirconate titanate (PZT) ceramic plate with a high mechanical quality factor Qm and a size of 120 x 20 x 4 mm3. The PZT ceramic plate is poled along the width direction. The electrodes of input and output parts are on the top and bottom surfaces of the ceramic plate and separated by narrow gaps. A new construction of support and lead wire connection is used for the transformer. At a temperature rise less than 20 degrees C and efficiency of 90%, the piezoelectric transformer with dual outputs has a maximum total output power of 169.8 W, with a power of 129.5 W in one output and 40.3 W in another. The one with triple outputs has a maximum total output power of 163.1 W, with a power of 36.9 W in the first output, 13.0 W in the second output and 113.2 W in the third output. The maximum efficiency of the piezoelectric transformer with dual outputs and triple outputs is 98% and 95.7%, respectively. The voltage gains of the transformers are less than one, and different outputs have different gains. Also, there is a driving frequency range in which the load resistance of one output has little effect on the voltage gain of another output.

  5. Theory of the normal modes of vibrations in the lanthanide type crystals

    Science.gov (United States)

    Acevedo, Roberto; Soto-Bubert, Andres

    2008-11-01

    For the lanthanide type crystals, a vast and rich, though incomplete amount of experimental data has been accumulated, from linear and non linear optics, during the last decades. The main goal of the current research work is to report a new methodology and strategy to put forward a more representative approach to account for the normal modes of vibrations for a complex N-body system. For illustrative purposes, the chloride lanthanide type crystals Cs2NaLnCl6 have been chosen and we develop new convergence tests as well as a criterion to deal with the details of the F-matrix (potential energy matrix). A novel and useful concept of natural potential energy distributions (NPED) is introduced and examined throughout the course of this work. The diagonal and non diagonal contributions to these NPED-values, are evaluated for a series of these crystals explicitly. Our model is based upon a total of seventy two internal coordinates and ninety eight internal Hooke type force constants. An optimization mathematical procedure is applied with reference to the series of chloride lanthanide crystals and it is shown that the strategy and model adopted is sound from both a chemical and a physical viewpoints. We can argue that the current model is able to accommodate a number of interactions and to provide us with a very useful physical insight. The limitations and advantages of the current model and the most likely sources for improvements are discussed in detail.

  6. Spatially resolved localized vibrational mode spectroscopy of carbon in liquid encapsulated Czochralski grown gallium arsenide wafers

    International Nuclear Information System (INIS)

    Yau, Waifan.

    1988-04-01

    Substitutional carbon on an arsenic lattice site is the shallowest and one of the most dominant acceptors in semi-insulating Liquid Encapsulated Czochralski (LEC) GaAs. However, the role of this acceptor in determining the well known ''W'' shape spatial variation of neutral EL2 concentration along the diameter of a LEC wafer is not known. In this thesis, we attempt to clarify the issue of the carbon acceptor's effect on this ''W'' shaped variation by measuring spatial profiles of this acceptor along the radius of three different as-grown LEC GaAs wafers. With localized vibrational mode absorption spectroscopy, we find that the profile of the carbon acceptor is relatively constant along the radius of each wafer. Average values of concentration are 8 x 10E15 cm -3 , 1.1 x 10E15 cm -3 , and 2.2 x 10E15 cm -3 , respectively. In addition, these carbon acceptor LVM measurements indicate that a residual donor with concentration comparable to carbon exists in these wafers and it is a good candidate for the observed neutral EL2 concentration variation. 22 refs., 39 figs

  7. Theory of the normal modes of vibrations in the lanthanide type crystals

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, Roberto [Instituto de Ciencias Basicas. Facultad de Ingenieria, Universidad Diego Portales, Avenida Ejercito 441, Santiago (Chile); Soto-Bubert, Andres, E-mail: roberto.acevedo@umayor.cl

    2008-11-01

    For the lanthanide type crystals, a vast and rich, though incomplete amount of experimental data has been accumulated, from linear and non linear optics, during the last decades. The main goal of the current research work is to report a new methodology and strategy to put forward a more representative approach to account for the normal modes of vibrations for a complex N-body system. For illustrative purposes, the chloride lanthanide type crystals Cs{sub 2}NaLnCl{sub 6} have been chosen and we develop new convergence tests as well as a criterion to deal with the details of the F-matrix (potential energy matrix). A novel and useful concept of natural potential energy distributions (NPED) is introduced and examined throughout the course of this work. The diagonal and non diagonal contributions to these NPED-values, are evaluated for a series of these crystals explicitly. Our model is based upon a total of seventy two internal coordinates and ninety eight internal Hooke type force constants. An optimization mathematical procedure is applied with reference to the series of chloride lanthanide crystals and it is shown that the strategy and model adopted is sound from both a chemical and a physical viewpoints. We can argue that the current model is able to accommodate a number of interactions and to provide us with a very useful physical insight. The limitations and advantages of the current model and the most likely sources for improvements are discussed in detail.

  8. Exact closed-form solution for the vibration modes of the Euler-Bernoulli beam with multiple open cracks

    Science.gov (United States)

    Caddemi, S.; Caliò, I.

    2009-11-01

    In this study, exact closed-form expressions for the vibration modes of the Euler-Bernoulli beam in the presence of multiple concentrated cracks are presented. The proposed expressions are provided explicitly as functions of four integration constants only, to be determined by the standard boundary conditions. The enforcement of the boundary conditions leads to explicit expressions of the natural frequency equations. Besides the evaluation of the natural frequencies, neither computational work nor recurrence expressions for the vibration modes are required. The cracks, that are not subjected to the closing phenomenon, are modelled as a sequence of Dirac's delta generalised functions in the flexural stiffness. The Eigen-mode governing equation is formulated over the entire domain of the beam without enforcement of any continuity conditions, which are already accounted for in the adopted flexural stiffness model. The vibration modes of beams with different numbers of cracks under different boundary conditions have been analysed by means of the proposed closed-form expressions in order to show their efficiency.

  9. Spectroscopy of C-H stretching overtones in dimethylacetylene, dimethylcadmium, and dimethylmercury

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares I., C.; Yamasaki, N.L.S.; Weitz, E. (Northwestern Univ., Evanston, IL (USA))

    1989-06-15

    The overtone spectra of a number of C-H stretching vibrations of dimethylacetylene, dimethylcadmium, and dimethylmercury were obtained by using intracavity dye laser photoacoustic spectroscopy. Transitions corresponding to the {Delta}{nu} = 5, 6, and 7 overtones of the C-H stretch are assigned by using the local-mode model. In addition, a number of local-mode-normal-mode combination bands have been identified. Local-mode harmonic frequencies ({omega}{sub e}) and anharmonicities ({omega}{sub e}x{sub e}) are obtained from Birge-Sponer plots. The line widths of the pure local-mode transitions are analyzed in terms of possible resonances with local-mode-normal-mode combination bands. Line widths in this series of compounds are compared to line widths in the M(CH{sub 3}){sub 4} and M(CH{sub 3}){sub 3} series.

  10. Research on Effective Electric-Mechanical Coupling Coefficient of Sandwich Type Piezoelectric Ultrasonic Transducer Using Bending Vibration Mode

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2015-01-01

    Full Text Available An analytical model on electromechanical coupling coefficient and the length optimization of a bending piezoelectric ultrasonic transducer are proposed. The piezoelectric transducer consists of 8 PZT elements sandwiched between four thin electrodes, and the PZT elements are clamped by a screwed connection between fore beam and back beam. Firstly, bending vibration model of the piezoelectric transducer is built based on the Timoshenko beam theory. Secondly, the analytical model of effective electromechanical coupling coefficient is built based on the bending vibration model. Energy method and electromechanical equivalent circuit method are involved in the modelling process. To validate the analytical model, sandwich type piezoelectric transducer example in second order bending vibration mode is analysed. Effective electromechanical coupling coefficient of the transducer is optimized with simplex reflection technique, and the optimized ratio of length of the transducers is obtained. Finally, experimental prototypes of the sandwich type piezoelectric transducers are fabricated. Bending vibration mode and impedance of the experimental prototypes are tested, and electromechanical coupling coefficient is obtained according to the testing results. Results show that the analytical model is in good agreement with the experimental model.

  11. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes

    Directory of Open Access Journals (Sweden)

    Darius Zizys

    2015-12-01

    Full Text Available The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.

  12. Resonance Raman studies of Escherichia coli sulfite reductase hemoprotein. 2. Fe4S4 cluster vibrational modes

    International Nuclear Information System (INIS)

    Madden, J.F.; Siegel, L.M.; Han, Sanghwa; Spiro, T.G.

    1989-01-01

    Resonance Raman (RR) spectra from the hemoprotein subunit of Escherichia coli sulfite reductase (SiR-HP) are examined in the low-frequency (200-500 cm -1 ) region where Fe-S stretching modes are expected. In spectra obtained with excitation in the siroheme Soret or Q bands, this region is dominated by siroheme modes. Modes assignable to the Fe 4 S 4 cluster are selectively enhanced, however, with excitation at 488.0 or 457.9 nm. The assignments are confirmed by observation of the expected frequency shifts in SiR-HP extracted from E. coli grown on 34 S-labeled sulfate. The mode frequencies and isotopic shifts resemble those seen in RR spectra of other Fe 4 S 4 proteins and analogues, but the breathing mode of the cluster at 342 cm -1 is higher than that observed in the other species. Spectra of various ligand complexes of SiR-HP reveal only slight sensitivity of the cluster terminal ligand modes to the presence of exogenous heme ligands, at variance with a model of ligand binding in a bridged mode between heme and cluster. Close examination of RR spectra obtained with siroheme Soret-band excitation reveals additional 34 S-sensitive features at 352 and 393 cm -1 . These may be attributed to a bridging thiolate ligand

  13. Abstract: Stoichiometry, Vibrational Modes and Structures of Molten Nb2O5-K2S2O7 Mixtures

    DEFF Research Database (Denmark)

    Boghosian, S.; Borup, F.; Berg, Rolf W.

    1998-01-01

    High temperature Raman spectroscopy is used tostudy the vibrational modes and structures of the Nb205-K2S207(0 < X(Nb2O5)<0.22) molten salt mixtures at 450-700 oC under static equilibria conditions. Band assignments and Raman band intensity correlations with complex stoichiometry are performed in...... in order to characterise the complex(es) formed. The determination of stoichiometry is done following a general procedure which is based on a simple formalism correlating measurements of relative Raman band intensities with the stoichiometry of solutes in molten salt solvents.......High temperature Raman spectroscopy is used tostudy the vibrational modes and structures of the Nb205-K2S207(0 X(Nb2O5)

  14. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    International Nuclear Information System (INIS)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-01-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice

  15. Infrared spectroscopy and Density Functional Theory of crystalline β-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (β CL-20) in the region of its C-H stretching vibrations.

    Science.gov (United States)

    Behler, K D; Pesce-Rodriguez, R; Cabalo, J; Sausa, R

    2013-10-01

    Molecular vibrational spectroscopy provides a useful tool for material characterization and model verification. We examine the CH stretching fundamental and overtones of energetic material β-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (β-CL-20) by Raman spectroscopy, Fourier Transform Infrared Spectroscopy, and Laser Photoacoustic Overtone Spectroscopy, and utilize Density Functional Theory to calculate the C-H bond energy of β-CL-20 in a crystal. The spectra reveal four intense and distinct features, whose analysis yields C-H stretching fundamental frequencies and anharmonicity values that range from 3137 to 3170 cm(-1) and 53.8 to 58.8 cm(-1), respectively. From these data, we estimate an average value of 42,700 cm(-1) (5.29 eV) for the C-H bond energy, a value that agrees with our quantum mechanical calculations. Published by Elsevier B.V.

  16. Hybrid PD and effective multi-mode positive position feedback control for slewing and vibration suppression of a smart flexible manipulator

    International Nuclear Information System (INIS)

    Lou, Jun-qiang; Wei, Yan-ding; Yang, Yi-ling; Xie, Feng-ran

    2015-01-01

    A hybrid control strategy for slewing and vibration suppression of a smart flexible manipulator is presented in this paper. It consists of a proportional derivative controller to realize motion control, and an effective multi-mode positive position feedback (EMPPF) controller to suppress the multi-mode vibration. Rather than treat each mode equally as the standard multi-mode PPF, the essence of the EMPPF is that control forces of different modes are applied according to the mode parameters of the respective modes, so the vibration modes with less vibration energy receive fewer control forces. Stability conditions for the close loop system are established through stability analysis. Optimal parameters of the EMPPF controller are obtained using the method of root locus analysis. The performance of the proposed strategy is demonstrated by simulation and experiments. Experimental results show that the first two vibration modes of the manipulator are effectively suppressed. The setting time of the setup descends approximately 55%, reaching 3.12 s from 5.67 s. (paper)

  17. Vibrational spectra of opal-based photonic crystals

    International Nuclear Information System (INIS)

    Dovbeshko, G; Fesenko, O; Boyko, V; Romanyuk, V; Moiseyenko, V; Gorelik, V; Dolgov, L; Kiisk, V; Sildos, I

    2012-01-01

    Synthetic silica opals were investigated by infrared and Raman spectroscopies. Vibrational modes associated with molecular groups of opal globules and admixtures were detected. Similarities in Raman and infrared spectra of synthetic opal with reference fused and α-quartz indicate the presence of amorphous phase in opal globules. Also some spectral bands designate on modified optical stretching vibrations at 1000-1200 cm −1 and bigger amount of Si-H defects in photonic crystal.

  18. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  19. Anharmonic Bend-Stretch Coupling in Water

    NARCIS (Netherlands)

    Lindner, Jörg; Vöhringer, Peter; Pshenichnikov, Maxim S.; Cringus, Dan; Wiersma, Douwe A.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne.; Weiner, Andrew M.

    2006-01-01

    Following excitation of the H-O-H bending mode of water molecules in solution the stretching mode region is monitored over its entire width. The anharmonic coupling between the two modes results in a substantial change of the transient stretch absorption that decays with the bend depopulation time.

  20. Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas

    Czech Academy of Sciences Publication Activity Database

    Aouani, H.; Šípová, Hana; Rahmani, M.; Navarro-Cia, M.; Hegnerová, Kateřina; Homola, Jiří; Hong, M.; Maier, S. A.

    2013-01-01

    Roč. 7, č. 1 (2013), s. 669-675 ISSN 1936-0851 R&D Projects: GA MŠk(CZ) LH11102 Institutional support: RVO:67985882 Keywords : plasmonic * nanoantenna * vibrational spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 12.033, year: 2013

  1. Testing techniques and comparisons between theory and test for vibration modes of ring stiffened truncated-cone shells.

    Science.gov (United States)

    Naumann, E. C.

    1972-01-01

    Vibration tests were carried out on truncated-cone shells with widely spaced ring stiffeners. The models were excited by an air shaker for LF modes and by small electrodynamic shakers for HF modes. The Novozhilov thin shell theory according to which a ring is an assembly of an arbitrary number of segments, each being a short truncated-cone shell of uniform thickness, is used in the analysis of the results. A mobile, noncontacting, displacement-sensitive sensor system developed by the author was used in the tests. Tests results are given for a free-free 60-deg cone and for a clamped-free 60-deg cone. The tests are characterized as having considerable value for the classification of prevalent multimode responses in shells of this type.

  2. Modeling and analysis of dual-output piezoelectric transformer operating at the thickness-shear vibration mode.

    Science.gov (United States)

    Du, Jinlong; Hu, Junhui; Tseng, King-Jet; Kai, Chen Shu; Siong, Goh Chee

    2006-03-01

    In our previous study, the multioutput piezoelectric transformer operating at the thickness-shear vibration mode was proposed and experimentally investigated. By designing a new construction of support and lead wire connection, a power density of 52.7 W/cm3 and a total output power of 169.8 W were achieved at a temperature rise less than 20 degrees C. In this work, a theoretical model was developed for the dual-output piezoelectric transformer operating at the thickness-shear vibration mode. The equivalent circuit parameters of the piezoelectric transformer were derived. Based on this, the impedance characteristics, equivalent inductance, capacitance ratio, voltage gain, and efficiency of the piezoelectric transformer were calculated. The theoretical results were verified by experimental data. Furthermore, the effect of the transformer size on the voltage gain, efficiency, output power and power density, and the effect of the load of one output on the voltage gain of another output were analyzed. Some useful guidelines were achieved by these analyses.

  3. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-21

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.

  4. [A study of phonon vibration like modes for aggregation structure in silicate melts by high temperature Raman spectrum].

    Science.gov (United States)

    Xu, Pei-Cang; Li, Ru-Bi; Shang, Tong-Ming; Zhou, Jian; Sun, Jian-Hua; You, Jing-Lin

    2010-05-01

    Silicate melts are special fractal dimension system that is metastable state of near-way order and far-way disorder. In this paper, the size of nanometer aggregation structure and the frequences of phonon vibration like mode in the low dimension silicate series (CaO-Al2O3-SiO2 and Na2-Al2O3-SiO2 series) synthesized via high temperature melting and sol gel methods were measured by means of small-angle X-ray scattering (SAXS), low wavenumber Raman spectrum (LWRS) and high temperature Raman spectrum (HTRS in situ measuring). The nanometer self-similarity aggregation structure(it's size is about a few nm to a few tens nm) and phonic phonon vibration like modes of low temperature silicate gel, high temperature silicate melts and it's quenching glasses phases were obtained. So a quantitative method by HTRS for measuring the aggregation size in the high temperature melts was established. The results showed that the aggregation size of the silicate melts is smaller at high temperature than at room temperature and the number of bridge oxygen in one Si-O tetrahedron in network structure units is decreasing at high temperature. This study work provides important theory and information for deliberating geochemistry characteristic, crystallization & evolution of natural magma and enhancing performance of low dimension silicate matelials.

  5. Satellites of Xe transitions induced by infrared active vibrational modes of CF4 and C2F6 molecules.

    Science.gov (United States)

    Alekseev, Vadim A; Schwentner, Nikolaus

    2011-07-28

    Absorption and luminescence excitation spectra of Xe/CF(4) mixtures were studied in the vacuum UV region at high resolution using tunable synchrotron radiation. Pressure-broadened resonance bands and bands associated with dipole-forbidden states of the Xe atom due to collision-induced breakdown of the optical selection rules are reported. The spectra display in addition numerous satellite bands corresponding to transitions to vibrationally excited states of a Xe-CF(4) collisional complex. These satellites are located at energies of Xe atom transition increased by one quantum energy in the IR active v(3) vibrational mode of CF(4) (v(3) = 1281 cm(-1)). Satellites of both resonance and dipole-forbidden transitions were observed. Satellites of low lying resonance states are spectrally broad bands closely resembling in shape their parent pressure-broadened resonance bands. In contrast, satellites of dipole-forbidden states and of high lying resonance states are spectrally narrow bands (FWHM ∼10 cm(-1)). The satellites of dipole-forbidden states are orders of magnitude stronger than transitions to their parent states due to collision-induced breakdown of the optical selection rules. These satellites are attributed to a coupling of dipole-forbidden and resonance states induced by the electric field of the transient CF(4) (v(3) = 0 ↔ v(3) = 1) dipole. Similar satellites are present in spectra of Xe/C(2)F(6) mixtures where these bands are induced by the IR active v(10) mode of C(2)F(6). Transitions to vibrationally excited states of Xe-CF(4)(C(2)F(6)) collision pairs were also observed in two-photon LIF spectra. © 2011 American Institute of Physics

  6. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.

    1985-01-01

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contact all of the TSPs. Noncontact results in an inactive TSP which can lead to detrimental flow induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values of damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimetnal quantities

  7. Coordenadas cartesianas moleculares a partir da geometria dos modos normais de vibração Molecular cartesian coordinates from vibrational normal modes geometry

    OpenAIRE

    Emílio Borges; João Pedro Braga; Jadson Cláudio Belchior

    2007-01-01

    A simple method to obtain molecular Cartesian coordinates as a function of vibrational normal modes is presented in this work. The method does not require the definition of special matrices, like the F and G of Wilson, neither of group theory. The Eckart's conditions together with the diagonalization of kinetic and potential energy are the only required expressions. This makes the present approach appropriate to be used as a preliminary study for more advanced concepts concerning vibrational ...

  8. Infrared laser spectroscopy of the n-propyl and i-propyl radicals: Stretch-bend Fermi coupling in the alkyl CH stretch region

    Science.gov (United States)

    Franke, Peter R.; Tabor, Daniel P.; Moradi, Christopher P.; Douberly, Gary E.; Agarwal, Jay; Schaefer, Henry F.; Sibert, Edwin L.

    2016-12-01

    The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite [CH3(CH2)3ONO] and i-butyl nitrite [(CH3)2CHCH2ONO], respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the CH stretching region. Several previously unreported bands are observed between 2800 and 3150 cm-1. The CH stretching modes observed above 3000 cm-1 are in excellent agreement with CCSD(T) anharmonic frequencies computed using second-order vibrational perturbation theory. However, between 2800 and 3000 cm-1, the spectra of n- and i-propyl radicals become congested and difficult to assign due to the presence of multiple anharmonic resonance polyads. To model the spectrally congested region, Fermi and Darling-Dennison resonances are treated explicitly using "dressed" Hamiltonians and CCSD(T) quartic force fields in the normal mode representation, and the agreement with experiment is less than satisfactory. Computations employing local mode effective Hamiltonians reveal the origin of the spectral congestion to be strong coupling between the high frequency CH stretching modes and the lower frequency CHn bending/scissoring motions. The most significant coupling is between stretches and bends localized on the same CH2/CH3 group. Spectral simulations using the local mode approach are in excellent agreement with experiment.

  9. Automatic vibration mode selection and excitation; combining modal filtering with autoresonance

    Science.gov (United States)

    Davis, Solomon; Bucher, Izhak

    2018-02-01

    Autoresonance is a well-known nonlinear feedback method used for automatically exciting a system at its natural frequency. Though highly effective in exciting single degree of freedom systems, in its simplest form it lacks a mechanism for choosing the mode of excitation when more than one is present. In this case a single mode will be automatically excited, but this mode cannot be chosen or changed. In this paper a new method for automatically exciting a general second-order system at any desired natural frequency using Autoresonance is proposed. The article begins by deriving a concise expression for the frequency of the limit cycle induced by an Autoresonance feedback loop enclosed on the system. The expression is based on modal decomposition, and provides valuable insight into the behavior of a system controlled in this way. With this expression, a method for selecting and exciting a desired mode naturally follows by combining Autoresonance with Modal Filtering. By taking various linear combinations of the sensor signals, by orthogonality one can "filter out" all the unwanted modes effectively. The desired mode's natural frequency is then automatically reflected in the limit cycle. In experiment the technique has proven extremely robust, even if the amplitude of the desired mode is significantly smaller than the others and the modal filters are greatly inaccurate.

  10. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I project successfully demonstrated that the advanced non-contacting stress measurement system (NSMS) was able to address closely spaced modes and...

  11. Transverse intrinsic localized modes in monatomic chain and in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hizhnyakov, V. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Klopov, M. [Department of Physics, Faculty of Science, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn (Estonia); Shelkan, A., E-mail: shell@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-03-06

    In this paper an analytical and numerical study of anharmonic vibrations of monatomic chain and graphene in transverse (perpendicular) with respect to the chain/plane direction is presented. Due to the lack of odd anharmonicities and presence of hard quartic anharmonicity for displacements in this direction, there may exist localized anharmonic transverse modes with the frequencies above the spectrum of the corresponding phonons. Although these frequencies are in resonance with longitudinal (chain) or in-plane (graphene) phonons, the modes can decay only due to a weak anharmonic process. Therefore the lifetime of these vibrations may be very long. E.g. in the chain, according to our theoretical and numerical calculations it may exceed 10{sup 10} periods. We call these vibrations as transverse intrinsic localized modes. - Highlights: • In a stretched monatomic chain, long-living nonlinear transverse localized modes may exist. • Transverse vibrations of a chain slowly decay due to creation of longitudinal phonons. • Lifetime of transverse vibrations of a chain may exceed billion periods of vibrations. • In stretched graphene, long-living out-of-plain localized vibrations may exist.

  12. Vibrations of alkali metal overlayers on metal surfaces

    International Nuclear Information System (INIS)

    Rusina, G G; Eremeev, S V; Borisova, S D; Echenique, P M; Chulkov, E V; Benedek, G

    2008-01-01

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation

  13. Complete assignment of the vibrational modes of C60 by inelastic neutron scattering spectroscopy and periodic-DFT.

    Science.gov (United States)

    Parker, Stewart F; Bennington, Stephen M; Taylor, Jon W; Herman, Henryk; Silverwood, Ian; Albers, Peter; Refson, Keith

    2011-05-07

    In this paper we exploit the complementarity of inelastic neutron scattering (INS), infrared and Raman spectroscopies with ab initio calculations to generate an updated assignment of the vibrational modes of C(60). We have carried out periodic-DFT calculations of the high temperature face centred cubic phase modelled as the standard structure and also of the low temperature simple cubic phase, the latter for the first time. Our assignment differs from all previous work, however, it is the only one that is able to successfully reproduce the INS spectrum in terms of both transition energies and intensities. In addition to the INS spectrum we are also able to quantitatively simulate the major features of the infrared and Raman spectra in the high temperature phase and the infrared spectrum in the low temperature phase. This journal is © the Owner Societies 2011

  14. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures

    Science.gov (United States)

    Treyssède, Fabien

    2018-01-01

    Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the

  15. Theoretical Study of Vibrationally Averaged Dipole Moments for the Ground and Excited C=O Stretching States of trans-Formic Acid

    Czech Academy of Sciences Publication Activity Database

    Paulson, L. O.; Kaminský, Jakub; Anderson, D. T.; Bouř, Petr; Kubelka, J.

    2010-01-01

    Roč. 6, č. 3 (2010), s. 817-827 ISSN 1549-9618 R&D Projects: GA ČR GA202/07/0732; GA AV ČR IAA400550702 Grant - others:CAREER(US) 0846140; AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : dipole moments * theoretical modelling * vibrational averaging Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.138, year: 2010

  16. H infinity controller design to a rigid-flexible satellite with two vibration modes

    International Nuclear Information System (INIS)

    De Souza, A G; De Souza, L C G

    2015-01-01

    The satellite attitude control system (ACS) design becomes more complex when the satellite structure has components like, flexible solar panels, antennas and mechanical manipulators. These flexible structures can interact with the satellite rigid parts during translational and/or rotational manoeuvre damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. This paper deals with the rigid-flexible satellite ACS design using the H infinity method. The rigid-flexible satellite is represented by a beam connected to a central rigid hub at one end and free at the other one. The equations of motions are obtained considering small flexible deformations and the Euler-Bernoulli hypothesis. The results of the simulations have shown that the H-infinity controller was able to control the rigid motion and suppress the vibrations. (paper)

  17. On Normal Modes of Vibrating 1-D Mechanical Systems with Discontinuous Properties

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Stachiv, Ivo; Wang, A. B.

    2012-01-01

    Roč. 19, č. 4 (2012), s. 265-270 ISSN 1537-6494 Institutional research plan: CEZ:AV0Z20760514 Keywords : dimensionless analysis * fundamental solution * normal modes Subject RIV: BI - Acoustics Impact factor: 0.701, year: 2012 http://www.tandfonline.com/doi/abs/10.1080/15376494.2011.642936

  18. Effect of CH stretching excitation on the reaction dynamics of F + CHD{sub 3} → DF + CHD{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiayue; Zhang, Dong; Chen, Zhen; Jiang, Bo [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Blauert, Florian [Dynamics at Surfaces, Faculty of Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen (Germany); Dai, Dongxu; Wu, Guorong, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Zhang, Donghui; Yang, Xueming, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-07-28

    The vibrationally excited reaction of F + CHD{sub 3}(ν{sub 1} = 1) → DF + CHD{sub 2} at a collision energy of 9.0 kcal/mol is investigated using the crossed-beams and time-sliced velocity map imaging techniques. Detailed and quantitative information of the CH stretching excitation effects on the reactivity and dynamics of the title reaction is extracted with the help of an accurate determination of the fraction of the excited CHD{sub 3} reagent in the crossed-beam region. It is found that all vibrational states of the CHD{sub 2} products observed in the ground-state reaction, which mainly involve the excitation of the umbrella mode of the CHD{sub 2} products, are severely suppressed by the CH stretching excitation. However, there are four additional vibrational states of the CHD{sub 2} products appearing in the excited-state reaction which are not presented in the ground-state reaction. These vibrational states either have the CH stretching excitation retained or involve one quantum excitation in the CH stretching and the excitation of the umbrella mode. Including all observed vibrational states, the overall cross section of the excited-state reaction is estimated to be 66.6% of that of the ground-state one. Experimental results also show that when the energy of CH stretching excitation is released during the reaction, it is deposited almost exclusively as the rovibrational energy of the DF products, with little portion in the translational degree of freedom. For vibrational states of the CHD{sub 2} products observed in both ground- and excited-state reactions, the CH stretching excitation greatly suppresses the forward scattered products, causing a noticeable change in the product angular distributions.

  19. Nonlinear vibration analysis of axially moving strings based on gyroscopic modes decoupling

    Science.gov (United States)

    Yang, Xiao-Dong; Wu, Hang; Qian, Ying-Jing; Zhang, Wei; Lim, C. W.

    2017-04-01

    A novel idea that applies the multiple scale analysis to a discretized decoupled system of gyroscopic continua is introduced and an axial moving string is treated as an example. First, the invariant manifold method is applied to the discretized ordinary differential equations of the axially moving string. Complex gyroscopic mode functions that agree well with true analytical results are obtained. The gyroscopic modes are subsequently used for the discretized ordinary differential equations with gyroscopic and nonlinear coupling terms that yield a gyroscopically decoupled system. Further the method of multiple scales is used to obtain the equations at a slow scale. This novel procedure is compared to solutions obtained by directly applying the classical multiple scale analysis to the gyroscopically coupled system without decoupling. The modal decoupled system analysis yields better frequency with comparing to the classic method. The proposed methodology provides a novel alternative for nonlinear dynamic analysis of gyroscopic continua.

  20. Control of input delayed pneumatic vibration isolation table using adaptive fuzzy sliding mode

    OpenAIRE

    Khazaee, Mostafa; Markazi, Amir H.D.

    2015-01-01

    AbstractPneumatic isolators are promising candidates for increasing the quality of accurate instruments. For this purpose, higher performance of such isolators is a prerequisite. In particular, the time-delay due to the air transmission is an inherent issue with pneumatic systems, which needs to be overcome using modern control methods. In this paper an adaptive fuzzy sliding mode controller is proposed to improve the performance of a pneumatic isolator in the low frequency range, i.e., where...

  1. Residual mode correction in calibrating nonlinear damper for vibration control of flexible structures

    Science.gov (United States)

    Sun, Limin; Chen, Lin

    2017-10-01

    Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.

  2. Effect of cobratoxin binding on the normal mode vibration within acetylcholine binding protein.

    Science.gov (United States)

    Bertaccini, Edward J; Lindahl, Erik; Sixma, Titia; Trudell, James R

    2008-04-01

    Recent crystal structures of the acetylcholine binding protein (AChBP) have revealed surprisingly small structural alterations upon ligand binding. Here we investigate the extent to which ligand binding may affect receptor dynamics. AChBP is a homologue of the extracellular component of ligand-gated ion channels (LGICs). We have previously used an elastic network normal-mode analysis to propose a gating mechanism for the LGICs and to suggest the effects of various ligands on such motions. However, the difficulties with elastic network methods lie in their inability to account for the modest effects of a small ligand or mutation on ion channel motion. Here, we report the successful application of an elastic network normal mode technique to measure the effects of large ligand binding on receptor dynamics. The present calculations demonstrate a clear alteration in the native symmetric motions of a protein due to the presence of large protein cobratoxin ligands. In particular, normal-mode analysis revealed that cobratoxin binding to this protein significantly dampened the axially symmetric motion of the AChBP that may be associated with channel gating in the full nAChR. The results suggest that alterations in receptor dynamics could be a general feature of ligand binding.

  3. Analysis of vibrating structures with localized nonlinearities using nonlinear normal modes

    International Nuclear Information System (INIS)

    Moussi, E.H.

    2013-01-01

    This work is a collaboration between EDF R and D and the Laboratory of Mechanics and Acoustics. The objective is to develop theoretical and numerical tools to compute nonlinear normal modes (NNMs) of structures with localized nonlinearities. We use an approach combining the harmonic balance and the asymptotic numerical methods, known for its robustness principally for smooth systems. Regularization techniques are used to apply this approach for the study of non-smooth problems. Moreover, several aspects of the method are improved to allow the computation of NNMs for systems with a high number of degrees of freedom (DOF). Finally, the method is implemented in Code-Aster, an open-source finite element solver developed by EDF R and D. The nonlinear normal modes of a two degrees-of-freedom system are studied and some original characteristics are observed. These observations are then used to develop a methodology for the study of systems with a high number of DOFs. The developed method is finally used to compute the NNMs for a model U-tube of a nuclear plant steam generator. The analysis of the NNMs reveals the presence of an interaction between an out-of-plane (low frequency) and an in-plane (high frequency) modes, a result also confirmed by the experiment. This modal interaction is not possible using linear modal analysis and confirms the interest of NNMs as a diagnostic tool in structural dynamics. (author) [fr

  4. Cold atmospheric-pressure plasma and bacteria: understanding the mode of action using vibrational microspectroscopy

    International Nuclear Information System (INIS)

    Kartaschew, Konstantin; Mischo, Meike; Bründermann, Erik; Havenith, Martina; Baldus, Sabrina; Awakowicz, Peter

    2016-01-01

    Cold atmospheric-pressure plasma show promising antimicrobial effects, however the detailed biochemical mechanism of the bacterial inactivation is still unknown. We investigated, for the first time, plasma-treated Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria with Raman and infrared microspectroscopy. A dielectric barrier discharge was used as a plasma source. We were able to detect several plasma-induced chemical modifications, which suggest a pronounced oxidative effect on the cell envelope, cellular proteins and nucleotides as well as a generation of organic nitrates in the treated bacteria. Vibrational microspectroscopy is used as a comprehensive and a powerful tool for the analysis of plasma interactions with whole organisms such as bacteria. Analysis of reaction kinetics of chemical modifications allow a time-dependent insight into the plasma-mediated impact. Investigating possible synergistic effects between the plasma-produced components, our observations strongly indicate that the detected plasma-mediated chemical alterations can be mainly explained by the particle effect of the generated reactive species. By changing the polarity of the applied voltage pulse, and hence the propagation mechanisms of streamers, no significant effect on the spectral results could be detected. This method allows the analysis of the individual impact of each plasma constituent for particular chemical modifications. Our approach shows great potential to contribute to a better understanding of plasma-cell interactions. (paper)

  5. Investigations of the barbell ultrasonic transducer operated in the full-wave vibrational mode.

    Science.gov (United States)

    Fu, Zhiqiang; Xian, Xiaojun; Lin, Shuyu; Wang, Chenghui; Hu, Wenxu; Li, Guozheng

    2012-07-01

    In this paper, the resonance frequency equation and expression of displacement amplitude magnifications of a full-wave barber ultrasonic horn are obtained. By discussing the relationships between the displacement amplitude magnifications and the geometrical dimensions, the optimized design of the horn for the largest magnification is proposed, which is helpful to improve the radiation power and the transfer efficiency of the acoustic energy of the ultrasonic oscillatory system. Based on the optimized design of the horn, we introduced a barbell ultrasonic transducer operated in the longitudinal full-wave vibrational model and obtained the resonance frequency equations. For comparison, the resonance frequencies of the full-wave barbell horn and the full-wave barbell transducer are also analyzed by finite element method (FEM). It is shown that the values obtained by theoretical analysis and FEM are in good agreement with experimental observations. We hope that the research of this paper is helpful for the use of the barbell horn and transducer in the applications such as ultrasonic liquid processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Spectral intensities in cubic systems. I. Progressions based upon parity vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, R.; Vasquez, S.O. [Department of Basic Chemistry, Faculty of Physical and Mathematical Sciences, University of Chile. Tupper 2069, Casilla 2777, Santiago, Chile (Chile); Meruane, T. [Department of Chemistry, Universidad Metropolitana de Ciencias de la Educacion. Av. J.P. Alessandri 774, Casilla 147, C. Santiago, Chile (Chile); Poblete, V. [Department of Nuclear Materials, Lo Aguirre, Comision Chilena de Energia Nuclear. Amunategui 95, Casilla 188-D, Santiago, Chile (Chile); Pozo, J. [Facultad de Ciencias de la Ingenieria. Universidad Diego Portales. Casilla 298-V, Santiago, Chile (Chile)

    1998-12-01

    The well-resolved emission and absorption spectra of centrosymmetric coordination compounds of the transition metal ions have been used widely to provide the experimental data against which to test theoretical models of vibronic intensities. With reference to the {sup 2} E{sub g} {yields} {sup 4} A{sub 2g} luminescence transition, at a perfect octahedral site in Cs{sub 2}SiF{sub 6}, over than one hundred vibronic lines are observed with line widths of a few wavenumber spread over some 3000 cm{sup -1}. This paper reports a through examination of both the electronic and vibrational factors, which influences the observed vibronic intensities of the various assigned and identified lines in the spectra of the MnF{sub 6} {sup 2-} complex ion in the Cs{sub 2}SiF{sub 6} cubic lattice. The origin and nature of higher order vibronic interactions are analysed on the basis of a symmetrized vibronic crystal field-ligand polarization model. (Author)

  7. O modelo AM1 na previsão de frequências vibracionais The vibration frequencies predicted by the AM1 model

    Directory of Open Access Journals (Sweden)

    João Carlos Silva Ramos

    1999-09-01

    Full Text Available We analyse vibrational frequencies of 168 compounds with the AM1 model concerning its experimentally observed gaseous frequencies. Stretching of CH, NH, OH and CO bonds, its related bending frequencies, and the CC frame movements are the studied vibrations. The results show problems with the AM1 vibrational splittings. Often symmetric stretching frequencies, like in CH3, CH2 and NH3, appear switched with the corresponding antisymmetrical ones. Among the studied vibrations many stretchings are overestimated, while bendings oscillate around experimental values. Fluorine stretchings, NN, OO, CH, double and triples CC bonds and cyclic hydrocarbon breathing modes are always overestimated while torsions, umbrella modes and OH/SH stretching are, in average, underestimated. Graphical analysis show that compounds with the lowest molecular masses are the ones with the largest difference to the experimental values. From our results it is not possible to fit confortably the calculated frequencies by a simple linear relationship of the type, n(obs=a*n(AM1. Better aggreement is obtained when different curves are adjusted for the stretching and bending modes, and when a complete linear function is used. Among our studies the best obtained statistical results are for CH, NH and OH. The conclusions obtained in this work will improve the AM1 calculated frequencies leading to accurate results for these properties.

  8. Study of vibrational modes and specific heat of wurtzite phase of BN

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Daljit, E-mail: daljit.jt@gmail.com; Sinha, M. M. [Department of Physics, SLIET, Longowal (India)

    2016-05-06

    In these days of nanotechnology the materials like BN is of utmost importance as in hexagonal phase it is among hardest materials. The phonon mode study of the materials is most important factor to find structural and thermodynamcal properties. To study the phonons de launey angular force (DAF) constant model is best suited as it involves many particle interactions. Therefore in this presentation we have studied the lattice dynamical properties and specific heat of BN in wurtzite phase using DAF model. The obtained results are in excellent agreement with existing results.

  9. Study of vibrational modes and specific heat of wurtzite phase of BN

    International Nuclear Information System (INIS)

    Singh, Daljit; Sinha, M. M.

    2016-01-01

    In these days of nanotechnology the materials like BN is of utmost importance as in hexagonal phase it is among hardest materials. The phonon mode study of the materials is most important factor to find structural and thermodynamcal properties. To study the phonons de launey angular force (DAF) constant model is best suited as it involves many particle interactions. Therefore in this presentation we have studied the lattice dynamical properties and specific heat of BN in wurtzite phase using DAF model. The obtained results are in excellent agreement with existing results.

  10. Control of input delayed pneumatic vibration isolation table using adaptive fuzzy sliding mode

    Directory of Open Access Journals (Sweden)

    Mostafa Khazaee

    Full Text Available AbstractPneumatic isolators are promising candidates for increasing the quality of accurate instruments. For this purpose, higher performance of such isolators is a prerequisite. In particular, the time-delay due to the air transmission is an inherent issue with pneumatic systems, which needs to be overcome using modern control methods. In this paper an adaptive fuzzy sliding mode controller is proposed to improve the performance of a pneumatic isolator in the low frequency range, i.e., where the passive techniques have obvious shortcomings. The main idea is to combine the adaptive fuzzy controller with adaptive predictor as a new time delay control technique. The adaptive fuzzy sliding mode control and the adaptive fuzzy predictor help to circumvent the input delay and nonlinearities in such isolators. The main advantage of the proposed method is that the closed-loop system stability is guaranteed under certain conditions. Simulation results reveal the effectiveness of the proposed method, compared with other existing time -delay control methods.

  11. Insight into the collective vibrational modes driving ultralow thermal conductivity of perovskite solar cells

    Science.gov (United States)

    Yue, Sheng-Ying; Zhang, Xiaoliang; Qin, Guangzhao; Yang, Jiayue; Hu, Ming

    2016-09-01

    The past few years have witnessed a rapid evolution of hybrid organic-inorganic perovskite solar cells as an unprecedented photovoltaic technology with both relatively low cost and high-power conversion. The fascinating physical and chemical properties of perovskites are benefited from their unique crystal structures represented by the general chemical formula A M X3 , where the A cations occupy the hollows formed by the M X3 octahedra and thus balance the charge of the entire network. Despite a vast amount of theoretical and experimental investigations have been dedicated to the structural stability, electrical, and optical properties of hybrid halide perovskite materials in relation to their applications in solar cells, the thermal transport property, another critical parameter to the design and optimization of relevant solar cell modules, receives less attention. In this paper, we evaluate the lattice thermal conductivity of a representative methylammonium lead triiodide perovskite (CH3NH3PbI3 ) with direct nonequilibrium ab initio molecular dynamics simulation. Resorting to full first-principles calculations, we illustrate the details of the mysterious vibration of the methylammonium cluster (CH3NH3+ ) and present an unambiguous picture of how the organic cluster interacting with the inorganic cage and how the collective motions of the organic cluster drags the thermal transport, which provide fundamental understanding of the ultralow thermal conductivity of CH3NH3PbI3 . We also reveal the strongly localized phonons associated with the internal motions of the CH3NH3+ cluster, which contribute little to the total thermal conductivity. The importance of the CH3NH3+ cluster to the structural instability is also discussed in terms of the unconventional dispersion curves by freezing the partial freedoms of the organic cluster. These results provide more quantitative description of organic-inorganic interaction and coupling dynamics from accurate first

  12. An assumed mode method and finite element method investigation of the coupled vibration in a flexible-disk rotor system with lacing wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shui-Ting; Huang, Hong-Wu [Hunan University, Changsha (China); Chiu, Yi-Jui; Yu, Guo-Fei [Xiamen University of Technology, Xiamen (China); Yang, Chia-Hao [Taipei Chengshih University of Science and Technology, Taipei (China); Jian, Sheng-Rui [I-Shou University, Kaohsiung (China)

    2017-02-15

    The Assumed mode method (AMM) and Finite element method (FEM) were used. Their results were compared to investigate the coupled shaft-torsion, disk-transverse, and blade-bending vibrations in a flexible-disk rotor system. The blades were grouped with a spring. The flexible-disk rotor system was divided into three modes of coupled vibrations: Shaft-disk-blade, disk-blade, and blade-blade. Two new modes of coupled vibrations were introduced, namely, lacing wires-blade and lacing wires-disk-blade. The patterns of change of the natural frequencies and mode shapes of the system were discussed. The results showed the following: first, mode shapes and natural frequencies varied, and the results of the AMM and FEM differed; second, numerical calculation results showed three influencing factors on natural frequencies, namely, the lacing wire constant, the lacing wire location, and the flexible disk; lastly, the flexible disk could affect the stability of the system as reflected in the effect of the rotational speed.

  13. An efficient approach to optimize the vibration mode of bar-type ultrasonic motors.

    Science.gov (United States)

    Zhu, Hua; Li, Zhirong; Zhao, Chunsheng

    2010-04-01

    The electromechanical coupled dynamic model of the stator of the bar-type ultrasonic motor is derived based on the finite element method. The dynamical behavior of the stator is analyzed via this model and the theoretical result agrees with the experimental result of the stator of the prototype motor very well. Both the structural design principles and the approaches to meet the requirements for the mode of the stator are discussed. Based on the pattern search algorithm, an optimal model to meet the design requirements is established. The numerical simulation results show that this optimal model is effective for the structural design of the stator. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Coordenadas cartesianas moleculares a partir da geometria dos modos normais de vibração Molecular cartesian coordinates from vibrational normal modes geometry

    Directory of Open Access Journals (Sweden)

    Emílio Borges

    2007-04-01

    Full Text Available A simple method to obtain molecular Cartesian coordinates as a function of vibrational normal modes is presented in this work. The method does not require the definition of special matrices, like the F and G of Wilson, neither of group theory. The Eckart's conditions together with the diagonalization of kinetic and potential energy are the only required expressions. This makes the present approach appropriate to be used as a preliminary study for more advanced concepts concerning vibrational analysis. Examples are given for diatomic and triatomic molecules.

  15. A second, low-frequency mode of vibration in the intact mammalian cochlea.

    Science.gov (United States)

    Lukashkin, Andrei N; Russell, Ian J

    2003-03-01

    The mammalian cochlea is a structure comprising a number of components connected by elastic elements. A mechanical system of this kind is expected to have multiple normal modes of oscillation and associated resonances. The guinea pig cochlear mechanics was probed using distortion components generated in the cochlea close to the place of overlap between two tones presented simultaneously. Otoacoustic emissions at frequencies of the distortion components were recorded in the ear canal. The phase behavior of the emissions reveals the presence of a nonlinear resonance at a frequency about a half octave below that of the high-frequency primary tone. The location of the resonance is level dependent and the resonance shifts to lower frequencies with increasing stimulus intensity. This resonance is thought to be associated with the tectorial membrane. The resonance tends to minimize input to the cochlear receptor cells at frequencies below the high-frequency primary and increases the dynamic load to the stereocilia of the receptor cells at the primary frequency when the tectorial membrane and reticular lamina move in counterphase.

  16. 'Good Vibrations': A workshop on oscillations and normal modes

    International Nuclear Information System (INIS)

    Barbieri, Sara R.; Carpineti, Marina; Giliberti, Marco; Stellato, Marco; Rigon, Enrico; Tamborini, Marina

    2015-01-01

    We describe some theatrical strategies adopted in a two hour workshop in order to show some meaningful experiments and the underlying useful ideas to describe a secondary school path on oscillations, that develops from harmonic motion to normal modes of oscillations, and makes extensive use of video analysis, data logging, slow motions and applet simulations. Theatre is an extremely useful tool to stimulate motivation starting from positive emotions. That is the reason why the theatrical approach to the presentation of physical themes has been explored by the group 'Lo spettacolo della Fisica' (http://spettacolo.fisica.unimi.it) of the Physics Department of University of Milano for the last ten years (Carpineti et al., JCOM, 10 (2011) 1; Nuovo Cimento B, 121 (2006) 901) and has been inserted also in the European FP7 Project TEMI (Teaching Enquiry with Mysteries Incorporated, see http://teachingmysteries.eu/en) which involves 13 different partners coming from 11 European countries, among which the Italian (Milan) group. According to the TEMI guidelines, this workshop has a written script based on emotionally engaging activities of presenting mysteries to be solved while participants have been involved in nice experiments following the developed path.

  17. Developing a Stretching Program.

    Science.gov (United States)

    Beaulieu, J E

    1981-11-01

    In brief: Although stretching exercises can prevent muscle injuries and enhance athletic performance, they can also cause injury. The author explains the four most common types of stretching exercises and explains why he considers static stretching the safest. He also sets up a stretching routine for runners. In setting up a safe stretching program, one should (1) precede stretching exercises with a mild warm-up; (2) use static stretching; (3) stretch before and after a workout; (4) begin with mild and proceed to moderate exercises; (5) alternate exercises for muscle groups; (6) stretch gently and slowly until tightness, not pain, is felt; and (7) hold the position for 30 to 60 seconds.

  18. Stretch Sensor Device

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for determining stretch values and movement of body parts, e.g. a foot, by analysing stretch data from a stretch sensor. By analysing data from the stretch sensor it is possible to determine stretch samples which are associated with particular motion phases...

  19. Analysis of changes of vibrational properties of water in the presence of disaccharides

    CERN Document Server

    Branca, C; Maisano, G; Migliardo, F; Romeo, G; Bennington, S M; Fak, B; Bellocco, E; Lagana', G

    2002-01-01

    Results of inelastic neutron scattering (INS) measurements performed by the MARI spectrometer (ISIS, UK) on aqueous solutions of sucrose and alpha,alpha-trehalose are reported. To get some insight into the effects of disaccharides on the hydrogen-bond network of water, we investigated the intramolecular O-H stretching modes. The obtained spectra show that, contrary to sucrose, the presence of trehalose affects significantly the pure-water O-H stretching mode. The observed changes can be related to the presence of heavier vibrating units, namely to the higher hydration number of trehalose with respect to sucrose. (orig.)

  20. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method.

    Science.gov (United States)

    Wu, Rongxing; Wang, Ji; Du, Jianke; Huang, Dejin; Yan, Wei; Hu, Yuantai

    2012-01-01

    We investigated the nonlinear vibrations of the coupled thickness-shear and flexural modes of quartz crystal plates with the nonlinear Mindlin plate equations, taking into consideration the kinematic and material nonlinearities. The nonlinear Mindlin plate equations for strongly coupled thickness- shear and flexural modes have been established by following Mindlin with the nonlinear constitutive relations and approximation procedures. Based on the long thickness-shear wave approximation and aided by corresponding linear solutions, the nonlinear equation of thickness-shear vibrations of quartz crystal plate has been solved by the combination of the Galerkin and homotopy analysis methods. The amplitude frequency relation we obtained showed that the nonlinear frequency of thickness-shear vibrations depends on the vibration amplitude, thickness, and length of plate, which is significantly different from the linear case. Numerical results from this study also indicated that neither kinematic nor material nonlinearities are the main factors in frequency shifts and performance fluctuation of the quartz crystal resonators we have observed. These efforts will result in applicable solution techniques for further studies of nonlinear effects of quartz plates under bias fields for the precise analysis and design of quartz crystal resonators. © 2012 IEEE

  1. Molecular Structures, Vibrational Spectroscopy, and Normal-Mode Analysis of M(2)(C&tbd1;CR)(4)(PMe(3))(4) Dimetallatetraynes. Observation of Strongly Mixed Metal-Metal and Metal-Ligand Vibrational Modes.

    Science.gov (United States)

    John, Kevin D.; Miskowski, Vincent M.; Vance, Michael A.; Dallinger, Richard F.; Wang, Louis C.; Geib, Steven J.; Hopkins, Michael D.

    1998-12-28

    The nature of the skeletal vibrational modes of complexes of the type M(2)(C&tbd1;CR)(4)(PMe(3))(4) (M = Mo, W; R = H, Me, Bu(t)(), SiMe(3)) has been deduced. Metrical data from X-ray crystallographic studies of Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) reveal that the core bond distances and angles are within normal ranges and do not differ in a statistically significant way as a function of the alkynyl substituent, indicating that their associated force constants should be similarly invariant among these compounds. The crystal structures of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and Mo(2)(C&tbd1;CBu(t)())(4)(PMe(3))(4) are complicated by 3-fold disorder of the Mo(2) unit within apparently ordered ligand arrays. Resonance-Raman spectra ((1)(delta-->delta) excitation, THF solution) of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and its isotopomers (PMe(3)-d(9), C&tbd1;CSiMe(3)-d(9), (13)C&tbd1;(13)CSiMe(3)) exhibit resonance-enhanced bands due to a(1)-symmetry fundamentals (nu(a) = 362, nu(b) = 397, nu(c) = 254 cm(-)(1) for the natural-abundance complex) and their overtones and combinations. The frequencies and relative intensities of the fundamentals are highly sensitive to isotopic substitution of the C&tbd1;CSiMe(3) ligands, but are insensitive to deuteration of the PMe(3) ligands. Nonresonance-Raman spectra (FT-Raman, 1064 nm excitation, crystalline samples) for the Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) compounds and for Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = H, D, Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) exhibit nu(a), nu(b), and nu(c) and numerous bands due to alkynyl- and phosphine-localized modes, the latter of which are assigned by comparisons to FT-Raman spectra of Mo(2)X(4)L(4) (X = Cl, Br, I; L = PMe(3), PMe(3)-d(9))(4) and Mo(2)Cl(4)(AsMe(3))(4). Valence force-field normal-coordinate calculations on the model compound Mo(2)(C&tbd1;CH)(4)P(4), using core force constants transferred from a calculation

  2. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  3. Two-dimensional analysis of spurious modes in aluminum nitride film resonators.

    Science.gov (United States)

    Gong, Xun; Han, Min; Shang, Xiaoli; Xiong, Jun; Duan, Jie; Sekimoto, Hitoshi

    2007-06-01

    In this paper, a hybrid method, which combines the traditional concept of guided waves and the finite element method (FEM), is proposed to analyze the spurious modes of aluminum nitride (AIN) film with electrodes. First, the guided wave modes in the plated area are obtained by 1-D FEM. Second, a mode-match method is used to satisfy the boundary conditions. The vibration of the film resonator is a superposition of all of the guided modes. With respect to an A1N film resonator, which is a thickness-stretch mode resonator, we have identified three families of spurious modes: extension, thickness-stretch, and thickness-shear. The spectrum of spurious modes is calculated and the influence of the spurious modes is discussed.

  4. Dispersion-corrected first-principles calculation of terahertz vibration, and evidence for weak hydrogen bond formation

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa

    2013-03-01

    A weak hydrogen bond (WHB) such as CH-O is very important for the structure, function, and dynamics in a chemical and biological system WHB stretching vibration is in a terahertz (THz) frequency region Very recently, the reasonable performance of dispersion-corrected first-principles to WHB has been proven. In this lecture, we report dispersion-corrected first-principles calculation of the vibrational absorption of some organic crystals, and low-temperature THz spectral measurement, in order to clarify WHB stretching vibration. The THz frequency calculation of a WHB crystal has extremely improved by dispersion correction. Moreover, the discrepancy in frequency between an experiment and calculation and is 10 1/cm or less. Dispersion correction is especially effective for intermolecular mode. The very sharp peak appearing at 4 K is assigned to the intermolecular translational mode that corresponds to WHB stretching vibration. It is difficult to detect and control the WHB formation in a crystal because the binding energy is very small. With the help of the latest intense development of experimental and theoretical technique and its careful use, we reveal solid-state WHB stretching vibration as evidence for the WHB formation that differs in respective WHB networks The research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 22550003).

  5. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei

    2014-06-04

    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  6. Multi-Mode Vibration Suppression in MIMO Systems by Extending the Zero Placement Input Shaping Technique: Applications to a 3-DOF Piezoelectric Tube Actuator

    Directory of Open Access Journals (Sweden)

    Yasser Al Hamidi

    2016-04-01

    Full Text Available Piezoelectric tube actuators are extensively used in scanning probe microscopes to provide dynamic scanning motions in open-loop operations. Furthermore, they are employed as micropositioners due to their high bandwidth, high resolution and ease of excitation. However, these piezoelectric micropositioners exhibit badly damped vibrations that occur when the input excites the dynamic response, which tends to degrade positioning accuracy and performance. This paper deals with vibrations’ feedforward control of a multi-degrees of freedom (DOF piezoelectric micropositioner in order to damp the vibrations in the direct axes and to reduce the cross-couplings. The novelty in this paper relative to the existing vibrations feedforward controls is the simplicity in design approach, the minimal number of shaper impulses for each input required to damp all modes of vibration at each output, and the account for the strong cross-couplings which only occur in multi-DOF cases. A generalization to a multiple degrees of freedom actuator is first proposed. Then simulation runs on a 3-DOF piezoelectric tube micropositioner have been effectuated to demonstrate the efficiency of the proposed method. Finally, experimental tests were carried out to validate and to confirm the predicted simulation.

  7. Dissimilar Dynamics of Coupled Water Vibrations

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Cringus, Dan; Pshenichnikov, Maxim S.

    2009-01-01

    Dissimilar dynamics of coupled stretch vibrations of a water molecule are revealed by two-dimensional, IR correlation spectroscopy. These are caused by essentially non-Gaussian fluctuations of the electric field exerted by the environment on the individual OH stretch vibrations. Non-Gaussian

  8. Robust vibration control at critical resonant modes using indirect-driven self-sensing actuation in mechatronic systems.

    Science.gov (United States)

    Hong, Fan; Pang, Chee Khiang

    2012-11-01

    This paper presents an improved indirect-driven self-sensing actuation circuit for robust vibration control of piezoelectrically-actuated flexible structures in mechatronic systems. The circuit acts as a high-pass filter and provides better self-sensing strain signals with wider sensing bandwidth and higher signal-to-noise ratio. An adaptive non-model-based control is used to compensate for the structural vibrations using the strain signals from the circuit. The proposed scheme is implemented in a PZT-actuated suspension of a commercial dual-stage hard disk drive. Experimental results show improvements of 50% and 75% in the vibration suppression at 5.4kHz and 21kHz respectively, compared to the conventional PI control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Effects of intermolecular interactions on absorption intensities of the fundamental and the first, second, and third overtones of OH stretching vibrations of methanol and t-butanol‑d9in n-hexane studied by visible/near-infrared/infrared spectroscopy.

    Science.gov (United States)

    Morisawa, Yusuke; Suga, Arisa

    2018-05-15

    Visible (Vis), near-infrared (NIR) and IR spectra in the 15,600-2500cm -1 region were measured for methanol, methanol-d 3 , and t-butanol-d 9 in n-hexane to investigate effects of intermolecular interaction on absorption intensities of the fundamental and the first, second, and third overtones of their OH stretching vibrations. The relative area intensities of OH stretching bands of free and hydrogen-bonded species were plotted versus the vibrational quantum number using logarithm plots (V=1-4) for 0.5M methanol, 0.5M methanol‑d 3 , and 0.5M t-butanol-d 9 in n-hexane. In the logarithm plots the relative intensities of free species yield a linear dependence irrespective of the solutes while those of hydrogen-bonded species deviate significantly from the linearity. The observed results suggest that the modifications in dipole moment functions of the OH bond induced by the formation of the hydrogen bondings change transient dipole moment, leading to the deviations of the dependences of relative absorption intensities on the vibrational quantum number from the linearity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  11. Stretching Safely and Effectively

    Science.gov (United States)

    ... of stretching before or after hitting the trail, ballet floor or soccer field. Before you plunge into ... ballistic stretching on strength and muscular fatigue of ballet dancers and resistance-trained women. Journal of Strength ...

  12. Full Article: Stoichiometry, Vibrational Modes and Structure of Molten Nb2O5-K2S2O7 Mixtures

    DEFF Research Database (Denmark)

    Boghosian, S.; Borup, F.; Berg, Rolf W.

    1998-01-01

    The dissolution reaction of Nb205 in pure molten K2S207 has been studied and high temperature Raman spectroscopy has been used for determining the vibrational and structural properties of the Nb(V) complex(es) formed according to the reaction Nb205 + n S207(2-) -> complex. By means of a recently...... of a possible structural model....

  13. Characteristic vibration patterns of odor compounds from bread-baking volatiles upon protein binding: density functional and ONIOM study and principal component analysis.

    Science.gov (United States)

    Treesuwan, Witcha; Hirao, Hajime; Morokuma, Keiji; Hannongbua, Supa

    2012-05-01

    As the mechanism underlying the sense of smell is unclear, different models have been used to rationalize structure-odor relationships. To gain insight into odorant molecules from bread baking, binding energies and vibration spectra in the gas phase and in the protein environment [7-transmembrane helices (7TMHs) of rhodopsin] were calculated using density functional theory [B3LYP/6-311++G(d,p)] and ONIOM [B3LYP/6-311++G(d,p):PM3] methods. It was found that acetaldehyde ("acid" category) binds strongly in the large cavity inside the receptor, whereas 2-ethyl-3-methylpyrazine ("roasted") binds weakly. Lys296, Tyr268, Thr118 and Ala117 were identified as key residues in the binding site. More emphasis was placed on how vibrational frequencies are shifted and intensities modified in the receptor protein environment. Principal component analysis (PCA) suggested that the frequency shifts of C-C stretching, CH(3) umbrella, C = O stretching and CH(3) stretching modes have a significant effect on odor quality. In fact, the frequency shifts of the C-C stretching and C = O stretching modes, as well as CH(3) umbrella and CH(3) symmetric stretching modes, exhibit different behaviors in the PCA loadings plot. A large frequency shift in the CH(3) symmetric stretching mode is associated with the sweet-roasted odor category and separates this from the acid odor category. A large frequency shift of the C-C stretching mode describes the roasted and oily-popcorn odor categories, and separates these from the buttery and acid odor categories.

  14. Near IR overtone spectral investigations of cyclohexanol using local mode model--evidence for variation of anharmonicity with concentration due to hydrogen bonding.

    Science.gov (United States)

    John, Usha; Nair, K P R

    2005-09-01

    The near infrared vibrational overtone absorption spectrum of liquid phase cyclohexanol in carbon tetrachloride in different concentrations are examined in the region Deltav=2, 3 and 4. The free and bonded OH local mode mechanical frequency values and anharmonicity values obtained from fitting the overtones are analysed. The observation supports the conclusions drawn from earlier experimental studies on anharmonicity variation of OH-stretching vibrations of alcohols due to intermolecular hydrogen bonding. Our observation is also in agreement with the ab initio calculations on water dimer and trimer. Mechanical anharmonicity of bonded OH-stretching bands tends to increase as a consequence of strong hydrogen bonding at higher concentrations.

  15. Fourier Analysis Of Vibrations Of Round Structures

    Science.gov (United States)

    Davis, Gary A.

    1990-01-01

    Fourier-series representation developed for analysis of vibrations in complicated, round structures like turbopump impellers. Method eliminates guesswork involved in characterization of shapes of vibrational modes. Easy way to characterize complicated modes, leading to determination of responsiveness of given mode to various forcing functions. Used in conjunction with finite-element numerical simulation of vibrational modes of structure.

  16. Noninvasive Vibrational Mode Spectroscopy of Ion Coulomb Crystals through Resonant Collective Coupling to an Optical Cavity Field

    DEFF Research Database (Denmark)

    Dantan, Aurélien; Marler, Joan; Albert, Magnus

    2010-01-01

    We report on a novel noninvasive method to determine the normal mode frequencies of ion Coulomb crystals in traps based on the resonance enhanced collective coupling between the electronic states of the ions and an optical cavity field at the single photon level. Excitations of the normal modes...... are observed through a Doppler broadening of the resonance. An excellent agreement with the predictions of a zero-temperature uniformly charged liquid plasma model is found. The technique opens up for investigations of the heating and damping of cold plasma modes, as well as the coupling between them....

  17. Phosphate vibrations as reporters of DNA hydration

    Science.gov (United States)

    Corcelli, Steven

    The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.

  18. Structural and vibrational study of a neurotransmitter molecule: Dopamine [4-(2-aminoethyl) benzene-1,2-diol

    Science.gov (United States)

    Jha, Omkant; Yadav, T. K.; Yadav, R. A.

    2018-01-01

    Structural and vibrational studies for the most stable conformer of dopamine {4-(2-Aminoethyl) benzene-1, 2-diol} have been carried out at the DFT/B3LYP/6-311 ++G** level using the Gaussian 09 software. The IR and Raman spectra have been recorded and analyzed in light of the computed vibrational parameters using the DFT and the PEDs computed with the help of the GAR2PED software. Some of the fundamentals have considerably changed frequencies in going from benzene to dopamine. Except the rocking and wagging modes of the NH2 group the other four modes are pure group modes. The rocking and wagging modes of the NH2 group show mixing with the other modes. The two Osbnd H stretching vibrations are highly localized modes. The Kekule phenyl ring stretching mode is found to remain almost unchanged. The HOMO-LUMO study suggests the existence of charge transfer within the molecule and the energy gap supports the pharmacological active property of the dopamine molecule. The NBO analysis has been carried out to understand the proper and improper hydrogen bonding.

  19. Evaluation of a silicon 5 MHz p–n diode actuator with a laterally vibrating extensional mode

    Science.gov (United States)

    Miyazaki, Fumito; Baba, Kazuki; Tanigawa, Hiroshi; Furutsuka, Takashi; Suzuki, Kenichiro

    2018-05-01

    In this paper, we describe p–n diode actuators that are laterally driven by the force induced in a depletion layer. The previously reported p–n diode actuators have been vertically driven. Because the resonant frequency depends on the thickness of the vibrating plate, the integration of resonators with different frequencies on a chip has been difficult. The resonators in this work are driven laterally by using length-extensional vibration. We have developed a compact model based on an analytical expression, in which p–n diode actuators are driven by the forces induced by the spread of the depletion layer. The deflection generated by the p–n diode actuators was proportional to the ratio of the depletion layer width to the resonator thickness as well as the position of the p–n junction. Good agreement of experimental results with the theory was confirmed by comparing the measured values for silicon p–n diode rectangular-plate actuators fabricated using a silicon-on-insulator (SOI) substrate. The displacement amplitude of the actuators was proportional to the DC bias, while the resonant frequency was independent of the DC bias. The latter characteristic is very different from that of widely used electrostatic actuators. Although the amplitude of the actuator measured in this work was very small, it is expected that the amplitude will increase greatly by increasing the doping of the p–n diode actuators.

  20. The toluene-Ar complex: S0 and S1 van der Waals modes, changes to methyl rotation, and torsion-van der Waals vibration coupling

    Science.gov (United States)

    Gascooke, Jason R.; Lawrance, Warren D.

    2013-02-01

    The methyl rotor and van der Waals vibrational levels in the S1 and S0 states of toluene-Ar have been investigated by the technique of two-dimensional laser induced fluorescence (2D-LIF). The S0 van der Waals and methyl rotor levels are reported for the first time, while improved S1 values are presented. The correlations seen in the 2D-LIF images between the S0 and S1 states lead to a reassignment of key features in the S1 ← S0 excitation spectrum. This reassignment reveals that there are significant changes in the methyl rotor levels in the complex compared with those in bare toluene, particularly at low m. The observed rotor energies are explained by the introduction of a three-fold, V3, term in the torsion potential (this term is zero in toluene) and a reduction in the height of the six-fold, V6, barriers in S0 and S1 from their values in bare toluene. The V3 term is larger in magnitude than the V6 term in both S0 and S1. The constants determined are |V3(S1)| = 33.4 ± 1.0 cm-1, |V3(S0)| = 20.0 ± 1.0 cm-1, V6(S1) = -10.7 ± 1.0 cm-1, and V6(S0) = -1.7 ± 1.0 cm-1. The methyl rotor is also found to couple with van der Waals vibration; specifically, the m″ = 2 rotor state couples with the combination level involving one quantum of the long axis bend and m″ = 1. The coupling constant is determined to be 1.9 cm-1, which is small compared with the values typically reported for torsion-vibration coupling involving ring modes.

  1. Stretched Wire Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  2. Lattice dynamics and vibration modes frequencies for substitutional impurities in InP, GaP and ZnS

    International Nuclear Information System (INIS)

    Vandevyver, Michel; Plumelle, Pierre.

    1977-01-01

    The model used is a rigid-ion model with an effective ionic charge including general interactions for nearest and next nearest neighbours and long range Coulomb interactions. It provides a good fit with available neutron data and with infrared absorption results for InP. In this model, no hypothesis is made a priori on the interatomic forces and the eleven parameters given by the model are used. A mathematical model which employs a Green's function technique in the mass defect and the nearest neighbour force constant defect approximation is used to calculate the lattice dynamics of the imperfect crystal. The frequencies of the local modes, the gap modes and the band modes, are given for isolated substitutional impurities. The same calculation is achieved for GaP and ZnS and the results are compared with infrared data [fr

  3. Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase.

    Science.gov (United States)

    Hwang, Kyo Seon; Lee, Sang-Myung; Eom, Kilho; Lee, Jeong Hoon; Lee, Yoon-Sik; Park, Jung Ho; Yoon, Dae Sung; Kim, Tae Song

    2007-11-30

    We report the nanomechanical microcantilevers operated in vibration modes (oscillation) with use of RNA aptamers as receptor molecules for label-free detection of hepatitis C virus (HCV) helicase. The nanomechanical detection principle is that the ligand-receptor binding on the microcantilever surface induces the dynamic response change of microcantilevers. We implemented the label-free detection of HCV helicase in the low concentration as much as 100 pg/ml from measuring the dynamic response change of microcantilevers. Moreover, from the recent studies showing that the ligand-receptor binding generates the surface stress on the microcantilever, we estimate the surface stress, on the oscillating microcantilevers, induced by ligand-receptor binding, i.e. binding between HCV helicase and RNA aptamer. In this article, it is suggested that the oscillating microcantilevers with use of RNA aptamers as receptor molecules may enable one to implement the sensitive label-free detection of very small amount of small-scale proteins.

  4. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    Science.gov (United States)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features

  5. Synthesis and characterization of p-xylylenediaminium bis(nitrate). Effects of the coordination modes of nitrate groups on their structural and vibrational properties

    Science.gov (United States)

    Gatfaoui, S.; Issaoui, N.; Brandán, Silvia Antonia; Roisnel, T.; Marouani, H.

    2018-01-01

    The p-xylylenediaminium bis(nitrate) compound have been synthesized and then, it was characterized by using Fourier Transform infrared (FT-IR) in the solid phase and, by using the Ultraviolet-Visible (UV-Visible) and Hydrogen and Carbon Nuclear Magnetic Resonance (1H- and 13C-NMR) spectra in aqueous solution and in dimethylsulfoxide solvent. In this work, two monodentate and bidentate coordination modes were considered for the nitrate ligands in both media in order to study the structural and vibrational properties of that salt. Hence, the natural bond orbital (NBO), atoms in molecules (AIM), Merz-Kollman (MK) charges, molecular electrostatic potentials (MEP) and frontier orbitals studies were performed for p-xylylenediaminium bis(nitrate) and their cation and anion species taking into account for the salt those two coordination modes for the nitrate ligands. The intermolecular interactions of this salt were also evaluated by Hirshfeld surface analysis. The B3LYP calculations performed by using the hybrid method and the 6-311G* and 6-311++G** basis sets generate monodentate and bidentate structures with Ci and C2 symmetries, respectively. The force fields and the force constants values for these two structures were also computed and their complete vibrational assignments were performed by using those both levels of theory. The strong band at 1536 cm-1, the bands between 2754 and 2547 cm-1 and the bands between 1779 and 1704 cm-1 support clearly the presence of the dimeric species while the IR bands at 1986/1856 cm-1 could justify the presence of the bidentate species in the solid phase.

  6. Millimeter and submillimeter wave spectroscopy of HNC and DNC in the vibrationally excited states

    Science.gov (United States)

    Okabayashi, Toshiaki; Tanimoto, Mitsutoshi

    1993-09-01

    The rotational transitions of hydrogen isocyanide (HNC) and deuterium isocyanide (DNC) in the vibrationally excited states as well as in the ground states were observed in the millimeter and submillimeter wave region. These compounds were generated in a dc glow discharge plasma containing hydrogen (or deuterium), nitrogen, and carbon atoms. The stretching vibrational modes, nu1 and nu3 states, were selectively excited in the discharge plasma; on the other hand, the bending mode nu2 state was thermally populated at the cell temperature. The precise rotational, centrifugal distortion and l-type doubling constants were obtained for all of the first vibrationally excited states as well as the ground states. The experimental equilibrium rotational constants Be are 45 496.7769(45) and 38 207.7217(105) MHz for HNC and DNC, respectively, where uncertainties correspond to one standard deviation. The equilibrium internuclear distances are also determined.

  7. The immediate effect of vibration therapy on flexibility in female ...

    African Journals Online (AJOL)

    The immediate effect of vibration therapy on flexibility in female junior elite gymnasts. ... Therefore, the aim of this study was to investigate the acute effects of vibration therapy on the flexibility of female gymnasts. A pre-test ... Keywords: Static stretching, vibration training, vibration therapy, acute effect, artistic gymnastics.

  8. Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure

    Science.gov (United States)

    Dimitrić Marković, Jasmina M.; Marković, Zoran S.; Milenković, Dejan; Jeremić, Svetlana

    2011-12-01

    This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm -1 wavenumber region. This region involves a combination of the C dbnd O, C2 dbnd C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm -1 range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm -1 is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy.

  9. A multireference perturbation study of the NN stretching frequency of trans-azobenzene in nπ* excitation and an implication for the photoisomerization mechanism.

    Science.gov (United States)

    Harabuchi, Yu; Ishii, Moe; Nakayama, Akira; Noro, Takeshi; Taketsugu, Tetsuya

    2013-02-14

    A multireference second-order perturbation theory is applied to calculate equilibrium structures and vibrational frequencies of trans-azobenzene in the ground and nπ* excited states, as well as the reaction pathways for rotation and inversion mechanism in the nπ* excited state. It is found that the NN stretching frequency exhibits a slight increase at the minimum energy structure in the nπ* state, which is explained by the mixing of the NN stretching mode with the CN symmetric stretching mode. We also calculate the NN stretching frequency at several selected structures along the rotation and inversion pathways in the nπ* state, and show that the frequency decreases gradually along the rotation pathway while it increases by ca. 300 cm(-1) along the inversion pathway. The frequencies and energy variations along the respective pathways indicate that the rotation pathway is more consistent with the experimental observation of the NN stretching frequency in nπ* excitation.

  10. Stretching: Does It Help?

    Science.gov (United States)

    Vardiman, Phillip; Carrand, David; Gallagher, Philip M.

    2010-01-01

    Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…

  11. Heterodyne laser-Doppler vibrometer with a slow-shear-mode Bragg cell for vibration measurements up to 1.2 GHz

    Science.gov (United States)

    Rembe, Christian; Boedecker, Sebastian; Dräbenstedt, Alexander; Pudewills, Fred; Siegmund, Georg

    2008-06-01

    Several new applications for optical ultra-high frequency (UHF) measurements have been evolved during the last decade by advancements in ultra-sonic filters and actuators as well as by the progress in micro- and nanotechnology. These new applications require new testing methods. Laser-based, non-influencing optical testing is the best choice. In this paper we present a laser-Doppler vibrometer for vibration measurements at frequencies up to 1.2 GHz. The frequency-shifter in the heterodyne interferometer is a slow-shear-mode Bragg cell. The light source in the interferometer is a green DPSS (diode pumped solid state) laser. At this wavelength the highest possible frequency shift between zero and first diffraction order is a few MHz above 300 MHz for a slow shear-mode Bragg cell and, therefore, the highest possible bandwidth of the laser-Doppler vibrometer should usually be around 300 MHz. A new optical arrangement and a novel signal processing of the digitized photo-detector signal is employed to expand the bandwidth to 1.2 GHz. We describe the utilized techniques and present the characterization of the new ultra-high-frequency (UHF) vibrometer. An example measurement on a surface acoustic wave (SAW) resonator oscillating at 262 MHz is also demonstrated. The light-power of the measurement beam can be switched on rapidly by a trigger signal to avoid thermal influences on the sample.

  12. Vibrational relaxation dynamics of SD molecules in As{sub 2}S{sub 3}: Observation of an anomalous isotope effect

    Energy Technology Data Exchange (ETDEWEB)

    Engholm, J.R.; Happek, U. [Univ. of Georgia, Athens, GA (United States); Rella, C.W. [Stanford Univ., CA (United States)] [and others

    1995-12-31

    It is generally assumed that the vibrational relaxation of molecular impurities in crystals and glasses mainly depends on the order of the decay process, with lower order processes leading to more rapid relaxation (a behavior that is known under the term {open_quotes}gap-law{close_quotes}). Here we present measurements that contradict this assumption. Using high intensity psec pulses of the Stanford FEL we measured the relaxation rate of the SD vibrational stretch mode (at a frequency of 1800 cm) by applying a pump-probe technique. We find relaxation rates on the order of 2x10{sup 9} sec{sup -1}, which are a factor of 2 lower than those found for the isotope molecule SH (at a frequency of about 2500 cm{sup - 1}) in the same host{sup 1}. We recall that the relaxation of the SD vibrational stretch mode is controlled by a lower order process as compared to the SH molecule, which is due to the smaller number of host vibrational quanta to match the energy of the stretch mode; a fact we have confirmed experimentally by temperature dependent relaxation measurements. Thus our remits are in marked contrast to the so-called {open_quotes}Gap-Law{close_quotes} and emphasize the importance of the molecule - host coupling in the relaxation dynamics.

  13. Dynamic stretching is effective as static stretching at increasing flexibility

    OpenAIRE

    Coons, John M.; Gould, Colleen E.; Kim, Jwa K.; Farley, Richard S.; Caputo, Jennifer L.

    2017-01-01

    This study examined the effect of dynamic and static (standard) stretching on hamstring flexibility. Twenty-five female volleyball players were randomly assigned to dynamic (n = 12) and standard (n = 13) stretching groups. The experimental group trained with repetitive dynamic stretching exercises, while the standard modality group trained with static stretching exercises. The stretching interventions were equivalent in the time at stretch and were performed three days a week for four weeks. ...

  14. Consistent assignment of the vibrations of symmetric and asymmetric ortho-disubstituted benzenes

    Science.gov (United States)

    Tuttle, William D.; Gardner, Adrian M.; Andrejeva, Anna; Kemp, David J.; Wakefield, Jonathan C. A.; Wright, Timothy G.

    2018-02-01

    The form of molecular vibrations, and changes in these, give valuable insights into geometric and electronic structure upon electronic excitation or ionization, and within families of molecules. Here, we give a description of the phenyl-ring-localized vibrational modes of the ground (S0) electronic states of a wide range of ortho-disubstituted benzene molecules including both symmetrically- and asymmetrically-substituted cases. We conclude that the use of the commonly-used Wilson or Varsányi mode labels, which are based on the vibrational motions of benzene itself, is misleading and ambiguous. In addition, we also find the use of the Mi labels for monosubstituted benzenes [A.M. Gardner, T.G. Wright. J. Chem. Phys. 135 (2011) 114305], or the recently-suggested labels for para-disubstituted benzenes [A. Andrejeva, A.M. Gardner, W.D. Tuttle, T.G. Wright, J. Molec. Spectrosc. 321, 28 (2016)] are not appropriate. Instead, we label the modes consistently based upon the Mulliken (Herzberg) method for the modes of ortho-difluorobenzene (pDFB) under Cs symmetry, since we wish the labelling scheme to cover both symmetrically- and asymmetrically-substituted molecules. By studying the vibrational wavenumbers from the same force field while varying the mass of the substituent, we are able to identify the corresponding modes across a wide range of molecules and hence provide consistent assignments. We assign the vibrations of the following sets of molecules: the symmetric o-dihalobenzenes, o-xylene and catechol (o-dihydroxybenzene); and the asymmetric o-dihalobenzenes, o-halotoluenes, o-halophenols and o-cresol. In the symmetrically-substituted species, we find a pair of in-phase and out-of-phase carbon-substituent stretches, and this motion persists in asymmetrically-substituted molecules for heavier substituents. When at least one of the substituents is light, then we find that these evolve into localized carbon-substituent stretches.

  15. Consistent assignment of the vibrations of symmetric and asymmetric meta-disubstituted benzenes

    Science.gov (United States)

    Kemp, David J.; Tuttle, William D.; Jones, Florence M. S.; Gardner, Adrian M.; Andrejeva, Anna; Wakefield, Jonathan C. A.; Wright, Timothy G.

    2018-04-01

    The assignment of vibrational structure in spectra gives valuable insights into geometric and electronic structure changes upon electronic excitation or ionization; particularly when such information is available for families of molecules. We give a description of the phenyl-ring-localized vibrational modes of the ground (S0) electronic states of sets of meta-disubstituted benzene molecules including both symmetrically- and asymmetrically-substituted cases. As in our earlier work on monosubstituted benzenes (Gardner and Wright, 2011), para-disubstituted benzenes (Andrejeva et al., 2016), and ortho-disubstituted benzenes (Tuttle et al., 2018), we conclude that the use of the commonly-used Wilson or Varsányi mode labels, which are based on the vibrational motions of benzene itself, is misleading and ambiguous. Instead, we label the phenyl-ring-localized modes consistently based upon the Mulliken (Herzberg) method for the modes of meta-difluorobenzene (mDFB) under Cs symmetry, since we wish the labelling scheme to cover both symmetrically- and asymmetrically-substituted molecules. By studying the vibrational wavenumbers obtained from the same force-field while varying the mass of the substituent, we are able to follow the evolving modes across a wide range of molecules and hence provide consistent assignments. We assign the vibrations of the following sets of molecules: the symmetric meta-dihalobenzenes, meta-xylene and resorcinol (meta-dihydroxybenzene); and the asymmetric meta-dihalobenzenes, meta-halotoluenes, meta-halophenols and meta-cresol. In the symmetrically-substituted species, we find two pairs of in-phase and out-of-phase carbon-substituent stretches, and this motion persists in asymmetrically-substituted molecules for heavier substituents; however, when at least one of the substituents is light, then we find that these evolve into localized carbon-substituent stretches.

  16. Influence of the lattice mismatch on the lattice vibration modes for InAs/GaSb superlattices

    Science.gov (United States)

    Aslan, Bulent; Korkmaz, Melih

    2016-01-01

    Raman scattering study on a group of InAs/GaSb superlattice (SL) samples where the strain is systematically changed from tensile to compressive regime is presented. The effect of the lattice mismatch between the substrate and the epitaxially grown SL layers on particularly the InSb-like interface phonon frequencies is revealed in the backscattering geometry. The higher order folded longitudinal acoustic (FLA) phonon modes are also observed for samples having different superlattice periodicity. An ideality factor is incorporated into the model used for predicting the FLA phonon frequencies to simply express the deviation in the average acoustic velocity in the SL from the one in the homogeneous medium with abrupt transition in the interfaces.

  17. Biocatalysis: Unmasked by stretching

    Science.gov (United States)

    Kharlampieva, Eugenia; Tsukruk, Vladimir V.

    2009-09-01

    The biocatalytic activity of enzyme-loaded responsive layer-by-layer films can be switched on and off by simple mechanical stretching. Soft materials could thus be used to trigger biochemical reactions under mechanical action, with potential therapeutic applications.

  18. Extracting and Applying SV-SV Shear Modes from Vertical Vibrator Data Across Geothermal Prospects Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, Bob [Bureau of Economic Geology

    2013-07-01

    This 3-year project was terminated at the end of Year 1 because the DOE Geothermal project-evaluation committee decided one Milestone was not met and also concluded that our technology would not be successful. The Review Panel recommended a ?no-go? decision be implemented by DOE. The Principal Investigator and his research team disagreed with the conclusions reached by the DOE evaluation committee and wrote a scientifically based rebuttal to the erroneous claims made by the evaluators. We were not told if our arguments were presented to the people who evaluated our work and made the ?no-go? decision. Whatever the case regarding the information we supplied in rebuttal, we received an official letter from Laura Merrick, Contracting Officer at the Golden Field Office, dated June 11, 2013 in which we were informed that project funding would cease and instructed us to prepare a final report before September 5, 2013. In spite of the rebuttal arguments we presented to DOE, this official letter repeated the conclusions of the Review Panel that we had already proven to be incorrect. This is the final report that we are expected to deliver. The theme of this report will be another rebuttal of the technical deficiencies claimed by the DOE Geothermal Review Panel about the value and accomplishments of the work we did in Phase 1 of the project. The material in this report will present images made from direct-S modes produced by vertical-force sources using the software and research findings we developed in Phase 1 that the DOE Review Panel said would not be successful. We made these images in great haste when we were informed that DOE Geothermal rejected our rebuttal arguments and still regarded our technical work to be substandard. We thought it was more important to respond quickly rather than to take additional time to create better quality images than what we present in this Final Report.

  19. The effect of cobalt substitution in crystal structure and vibrational modes of CuFe{sub 2}O{sub 4} powders obtained by polymeric precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.D.P.; Silva, F.C. [Departamento de Química, CCET, Universidade Federal do Maranhão, 65085-580 São Luís, MA (Brazil); Sinfrônio, F.S.M. [Departamento de Engenharia Elétrica, CCET, Universidade Federal do Maranhão, 65085-580 São Luís, MA (Brazil); Paschoal, A.R. [Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, CE (Brazil); Silva, E.N. [Departamento de Física, CCET, Universidade Federal do Maranhão, 65085-580 São Luís, MA (Brazil); Paschoal, C.W.A., E-mail: paschoal@ufma.br [Departamento de Física, CCET, Universidade Federal do Maranhão, 65085-580 São Luís, MA (Brazil); Department of Materials Science and Engineering, University of California Berkeley, 94720-1760 Berkeley, CA (United States); Department of Physics, University of California Berkeley, 94720-7300 Berkeley, CA (United States)

    2014-01-25

    Highlights: • We synthesized mixed spinels by polymeric precursor method. • We investigated the structural and vibrational properties of the mixed. • We investigated the synthesis condition effects in these properties. • We proposed a complete phonon description for CuFe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} spinels. -- Abstract: In this work Co–Cu mixed spinel Co{sub 1−x}Cu{sub x}Fe{sub 2}O{sub 4} powders were obtained by polymeric precursors method at several annealing temperatures between 700 and 1200 °C. The samples were characterized by means of X-ray powder diffraction, confirming the ideal inverse spinel structure for CoFe{sub 2}O{sub 4} sample and the tetragonal distorted inverse spinel structure for CuFe{sub 2}O{sub 4} sample. Based on FWHM evaluation, we estimated that crystallite sizes varies between 27 and 37 nm for the non-substituted samples. The optical-active modes were determined by infrared and Raman spectroscopies. The phonon spectra showed a local tetragonal distortion for mixed samples.

  20. Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers

    KAUST Repository

    Alfosail, Feras

    2016-10-15

    We investigate numerically the linear vibrations of inclined risers using the Galerkin approach. The riser is modeled as an Euler-Bernoulli beam accounting for the nonlinear mid-plane stretching and self-weight. After solving for the initial deflection of the riser due to self-weight, we use a Galerkin expansion employing 15 axially loaded beam mode shapes to solve the eigenvalue problem of the riser around the static equilibrium configuration. This yields the riser natural frequencies and corresponding exact mode shapes for various values of inclination angles and tension. The obtained results are validated against a boundary-layer analytical solution and are found to be in good agreement. This constitutes a basis to study the nonlinear forced vibrations of inclined risers.

  1. Vibrational relaxation of a triatomic molecular impurity: D{sub 2}O in vitreous As{sub 2}S{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Rella, C.W.; Schwettman, H.A. [Stanford Univ., CA (United States); Engholm, J.R. [Univ. of Georgia, Athens, GA (United States)] [and others

    1995-12-31

    Measurements of the relaxation of the D{sub 2}O stretch mode in vitreous As{sub 2}S{sub 3} are presented. Because the bending mode of the molecule offers an intra-molecular decay channel for the stretch mode, the decay scheme of the D{sub 2}O molecule is more complex than that of diatomic molecules. The asymmetric stretch mode of D{sub 2}O has a frequency of 2680 cm{sup -1}. To study the relaxation of this mode we applied a pump-probe technique, using intense psec; pulses of the Stanford Free Electron Laser. Due to the small cross-section of the vibrational mode, successful efforts were made to improve the signal to noise ratio by using a laser stabilization system and a tightly focused beam to increase the intensity, by averaging the signal with a kHz repetition rate and by using samples with an optimized D{sub 2}O concentration. A rapid relaxation rate on the order of 5 x 10{sup 9} sec{sup -1} at low temperature is found that increases with temperature. Recalling that the bending mode of the D{sub 2}O molecule has a frequency of 1170 cm{sup -1}, one would expect a decay in a third order process, involving two quanta of the bending mode plus a vibrational host quanta with a frequency of 340 cm{sup -1}, which coincides with a fundamental frequency of the pyramidal building blocks of the glassy As{sub 2}S{sub 3} host. Instead, we find from the temperature dependence of the relaxation rate that the D{sub 2}O stretching mode relaxes in a higher order process. This indicates that the relaxation dynamics of small molecules is more complex than generally assumed.

  2. Intrinsic chirality and prochirality at Air/R-(+)- and S-(-)-limonene interfaces: spectral signatures with interference chiral sum-frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Fu, Li; Zhang, Yun; Wei, Zhe-Hao; Wang, Hong-Fei

    2014-09-01

    We report in this work detailed measurements of the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050 cm(-1)) of the air/liquid interfaces of R-(+)-limonene and S-(-)-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the RS racemic mixture (50/50 equal amount mixture), show that the corresponding molecular groups of the R and S enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit a spectral signature from the chiral response of the Cα-H stretching mode, and a spectral signature from the prochiral response of the CH(2) asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-(+)-limonene to S-(-)-limonene surfaces, and disappears for the RS racemic mixture surface. While the prochiral spectral feature of the CH(2) asymmetric stretching mode is the same for R-(+)-limonene and S-(-)-limonene surfaces, and also surprisingly remains the same for the RS racemic mixture surface. Therefore, the structures of the R-(+)-limonene and the S-(-)-limonene at the liquid interfaces are nevertheless not mirror images to each other, even though the corresponding groups have the same tilt angle from the interfacial normal, i.e., the R-(+)-limonene and the S-(-)-limonene at the surface are diastereomeric instead of enantiomeric. These results provide detailed information in understanding the structure and chirality of molecular interfaces and demonstrate the sensitivity and potential of SFG-VS as a unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface. © 2014 Wiley Periodicals, Inc.

  3. Full dimensional Franck-Condon factors for the acetylene tilde{{A}} 1Au—{tilde{X}} {^1Σ _g^+} transition. I. Method for calculating polyatomic linear—bent vibrational intensity factors and evaluation of calculated intensities for the gerade vibrational modes in acetylene

    Science.gov (United States)

    Park, G. Barratt

    2014-10-01

    Franck-Condon vibrational overlap integrals for the tilde{A} {^1A_u}—{tilde{X}} {^1Σ _g^+} transition in acetylene have been calculated in full dimension in the harmonic normal mode basis. The calculation uses the method of generating functions first developed for polyatomic Franck-Condon factors by Sharp and Rosenstock [J. Chem. Phys. 41(11), 3453-3463 (1964)], and previously applied to acetylene by Watson [J. Mol. Spectrosc. 207(2), 276-284 (2001)] in a reduced-dimension calculation. Because the transition involves a large change in the equilibrium geometry of the electronic states, two different types of corrections to the coordinate transformation are considered to first order: corrections for axis-switching between the Cartesian molecular frames and corrections for the curvilinear nature of the normal modes at large amplitude. The angular factor in the wavefunction for the out-of-plane component of the trans bending mode, ν _4^' ' }, is treated as a rotation, which results in an Eckart constraint on the polar coordinates of the bending modes. To simplify the calculation, the other degenerate bending mode, ν _5^' ' }, is integrated in the Cartesian basis and later transformed to the constrained polar coordinate basis, restoring the conventional v and l quantum numbers. An updated tilde{A}-state harmonic force field obtained recently in the R. W. Field research group is evaluated. The results for transitions involving the gerade vibrational modes are in qualitative agreement with experiment. Calculated results for transitions involving ungerade modes are presented in Paper II of this series [G. B. Park, J. H. Baraban, and R. W. Field, "Full dimensional Franck-Condon factors for the acetylene tilde{A} {^1A_u}—{tilde{X}} {^1Σ _g^+} transition. II. Vibrational overlap factors for levels involving excitation in ungerade modes," J. Chem. Phys. 141, 134305 (2014)].

  4. The vibrational spectrum of alpha-AlOOH diaspore: an ab initio study with the CRYSTAL code.

    Science.gov (United States)

    Demichelis, R; Noel, Y; Civalleri, B; Roetti, C; Ferrero, M; Dovesi, R

    2007-08-09

    The vibrational spectrum of alpha-AlOOH diaspore has been calculated at the B3LYP level of theory with a double-zeta quality Gaussian-type basis set by using the periodic ab initio CRYSTAL code. Harmonic frequencies at the Gamma point and the corresponding 48 normal modes are analyzed and classified in terms of simple models (octahedra modes, hydrogen stretching, bending, rotations) by direct inspection of eigenvectors, graphical representation, and isotopic substitution. Hydrogen modes are fully separated from the octahedra modes appearing under 800 cm(-1); bending modes are located in the range of 1040-1290 cm(-1), whereas stretching modes appear at 3130-3170 cm(-1). The available experimental IR and Raman spectra are characterized by broad bands, in some cases as large as 800 cm(-1), and individual peaks are obtained by decomposing these bands in terms of Lorentz-Gauss product functions; such a fitting procedure is affected by a relatively large degree of arbitrariness. The comparison of our calculated data with the most complete sets of experimental data shows, nevertheless, a relatively good agreement for all but the H modes; the mean absolute differences for modes not involving H are 10.9 and 7.2 cm(-1) for the IR and the Raman spectra, respectively, the maximum differences being 15.5 and 18.2 cm(-1). For the H bending modes, differences increase to 30 and 37 cm(-1), and for the stretching modes, the calculated frequencies are about 200 cm(-1) higher than the experimental ones; this is not surprising, as anharmonicity is expected to red shift the OH stretching by about 150 cm(-1) in isolated OH groups and even more when the latter is involved in strong hydrogen bonds, as is the case here.

  5. Vibrational spectroscopy of triacetone triperoxide (TATP): Anharmonic fundamentals, overtones and combination bands

    Science.gov (United States)

    Brauer, Brina; Dubnikova, Faina; Zeiri, Yehuda; Kosloff, Ronnie; Gerber, R. Benny

    2008-12-01

    The vibrational spectrum of triacetone triperoxide (TATP) is studied by the correlation-corrected vibrational self-consistent field (CC-VSCF) method which incorporates anharmonic effects. Fundamental, overtone, and combination band frequencies are obtained by using a potential based on the PM3 method and yielding the same harmonic frequencies as DFT/cc-pVDZ calculations. Fundamentals and overtones are also studied with anharmonic single-mode (without coupling) DFT/cc-pVDZ calculations. Average deviations from experiment are similar for all methods: 2.1-2.5%. Groups of degenerate vibrations form regions of numerous combination bands with low intensity: the 5600-5800 cm -1 region contains ca. 70 overtones and combinations of CH stretches. Anharmonic interactions are analyzed.

  6. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    Science.gov (United States)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2014-02-01

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]- (FeRu) dissolved in D2O and formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4- (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm-1. The mixed-mode anharmonicities range from 2 to 14 cm-1. In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm-1. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.

  7. Efficient π electrons delocalization in prospective push pull non-linear optical chromophore 4-[N,N-dimethylamino]-4‧-nitro stilbene (DANS): A vibrational spectroscopic study

    Science.gov (United States)

    Vijayakumar, T.; Hubert Joe, I.; Reghunadhan Nair, C. P.; Jayakumar, V. S.

    2008-01-01

    A comprehensive investigation on the intramolecular charge transfer (ICT) of an efficient π-conjugated potential push-pull NLO chromophore, 4-[ N, N-dimethylamino]-4'-nitro stilbene (DANS), from a strong electron-donor group (dimethylamino- N(CH 3) 2) to a strong electron-acceptor group (nitro-NO 2) through the π-conjugated bridge ( trans-stilbene) has been carried out from their vibrational spectra. The NIR FT-Raman and FT-IR spectra supported by the density functional theory (DFT) quantum chemical computations have been employed to analyze the effects of intramolecular charge transfer on the geometries and the vibrational modes contributing to the linear electro-optic effect of the organic NLO material. It has been observed that the changes in the endocyclic and exocyclic angles result from the charge-transfer interaction of the phenyl ring and the amino group in the electron-donor side of the NLO chromophore. The strongest vibrational modes contributing to the electro-optic effect have been identified and examined from the concurrent IR and Raman activation of ν(C dbnd C/C-C) mode, ring C dbnd C stretching modes, in-plane deformation modes, nitro modes and the umbrella mode of methyl groups. Furthermore, the splitting of the vinyl stretching modes and the electronic effects such as hyperconjugation and backdonation on the methyl hydrogen atoms causing the decrease of stretching frequencies and infrared intensities have also been analyzed in detail. The effect of frontier orbitals transition of electron density transfer and the influence of planarity between the phenyl rings of the stilbene moiety on the first hyperpolarizability have also been discussed.

  8. Whole-body vibration as a mode of dyspnoea free physical activity: a community-based proof-of-concept trial.

    Science.gov (United States)

    Furness, Trentham; Joseph, Corey; Welsh, Liam; Naughton, Geraldine; Lorenzen, Christian

    2013-11-11

    The potential of whole-body vibration (WBV) as a mode of dyspnoea free physical activity for people with chronic obstructive pulmonary disease (COPD) is unknown among community-based settings. Furthermore, the acute effects of WBV on people with COPD have not been profiled in community-based settings. The aim of this community-based proof-of-concept trial was to describe acute effects of WBV by profiling subjective and objective responses to physical activity. Seventeen community-dwelling older adults with COPD were recruited to participate in two sessions; WBV and sham WBV (SWBV). Each session consisted of five one-minute bouts interspersed with five one-minute passive rest periods. The gravitational force was ~2.5 g for WBV and ~0.0 g for SWBV. Reliability of baseline dyspnoea, heart rate, and oxygen saturation was first established and then profiled for both sessions. Acute responses to both WBV and SWBV were compared with repeated measures analysis of variance and repeated contrasts. Small changes in dyspnoea and oxygen saturation lacked subjective and clinical meaningfulness. One session of WBV and SWBV significantly increased heart rate (p ≤ 0.02), although there was no difference among WBV and SWBV (p = 0.67). This community-based proof-of-concept trial showed that a session of WBV can be completed with the absence of dyspnoea for people with COPD. Furthermore, there were no meaningful differences among WBV and SWBV for heart rate and oxygen saturation. There is scope for long-term community-based intervention research using WBV given the known effects of WBV on peripheral muscle function and functional independence.

  9. Molecular-level mechanisms of vibrational frequency shifts in a polar liquid.

    Science.gov (United States)

    Morales, Christine M; Thompson, Ward H

    2011-06-16

    A molecular-level analysis of the origins of the vibrational frequency shifts of the CN stretching mode in neat liquid acetonitrile is presented. The frequency shifts and infrared spectrum are calculated using a perturbation theory approach within a molecular dynamics simulation and are in good agreement with measured values reported in the literature. The resulting instantaneous frequency of each nitrile group is decomposed into the contributions from each molecule in the liquid and by interaction type. This provides a detailed picture of the mechanisms of frequency shifts, including the number of surrounding molecules that contribute to the shift, the relationship between their position and relative contribution, and the roles of electrostatic and van der Waals interactions. These results provide insight into what information is contained in infrared (IR) and Raman spectra about the environment of the probed vibrational mode. © 2011 American Chemical Society

  10. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    Science.gov (United States)

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  11. Determination of the Oscillator Strengths for the Third and Fourth Vibrational Overtone Transitions in Simple Alcohols

    Science.gov (United States)

    Wallberg, Jens; Kjaergaard, Henrik G.

    2017-06-01

    Absolute measurements of the weak transitions require sensitive spectroscopic techniques. With our recently constructed pulsed cavity ring down (CRD) spectrometer, we have recorded the third and fourth vibrational overtone of the OH stretching vibration in a series of simple alcohols: methanol (MeOH), ethanol (EtOH), 1-propanol (1-PrOH), 2-propanol (2-PrOH) and tert-butanol (tBuOH). The CRD setup (in a flow cell configuration) is combined with a conventional FTIR spectrometer to determine the partial pressure of the alcohols from the fundamental transitions of the OH-stretching vibration. The oscillator strengths of the overtone transitions are determined from the integrated absorbances of the overtone spectra and the partial pressures. Furthermore, the oscillator strengths were calculated using vibrational local mode theory with energies and dipole moments calculated at CCSD(T)/aug-cc-pVTZ level of theory. We find a good agreement between the observed and calculated oscillator strengths across the series of alcohols.

  12. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  13. Communication: Reactivity borrowing in the mode selective chemistry of H + CHD3 → H2 + CD3

    Science.gov (United States)

    Ellerbrock, Roman; Manthe, Uwe

    2017-12-01

    Quantum state-resolved reaction probabilities for the H + CHD3 → H2 + CD3 reaction are calculated by accurate full-dimensional quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree approach and the quantum transition state concept. Reaction probabilities of various ro-vibrational states of the CHD3 reactant are investigated for vanishing total angular momentum. While the reactivity of the different vibrational states of CHD3 mostly follows intuitive patterns, an unusually large reaction probability is found for CHD3 molecules triply excited in the CD3 umbrella-bending vibration. This surprising reactivity can be explained by a Fermi resonance-type mixing of the single CH-stretch excited and the triple CD3 umbrella-bend excited vibrational states of CHD3. These findings show that resonant energy transfer can significantly affect the mode-selective chemistry of CHD3 and result in counter-intuitive reactivity patterns.

  14. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  15. Stretching the Border

    DEFF Research Database (Denmark)

    Horstmann, Alexander

    2014-01-01

    In this paper, I hope to add a complementary perspective to James Scott’s recent work on avoidance strategies of subaltern mountain people by focusing on what I call the refugee public. The educated Karen elite uses the space of exile in the Thai borderland to reconstitute resources and to re-ent......-based organizations succeed to stretch the border by establishing a firm presence that is supported by the international humanitarian economy in the refugee camps in Northwestern Thailand....

  16. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  17. Vibrationally quantum-state-specific dynamics of the reactions of CN radicals with organic molecules in solution

    Science.gov (United States)

    Rose, Rebecca A.; Greaves, Stuart J.; Oliver, Thomas A. A.; Clark, Ian P.; Greetham, Gregory M.; Parker, Anthony W.; Towrie, Michael; Orr-Ewing, Andrew J.

    2011-06-01

    The dynamics of reactions of CN radicals with cyclohexane, d12-cyclohexane, and tetramethylsilane have been studied in solutions of chloroform, dichloromethane, and the deuterated variants of these solvents using ultraviolet photolysis of ICN to initiate a reaction. The H(D)-atom abstraction reactions produce HCN (DCN) that is probed in absorption with sub-picosecond time resolution using ˜500 cm-1 bandwidth infrared (IR) pulses in the spectral regions corresponding to C-H (or C-D) and C≡N stretching mode fundamental and hot bands. Equivalent IR spectra were obtained for the reactions of CN radicals with the pure solvents. In all cases, the reaction products are formed at early times with a strong propensity for vibrational excitation of the C-H (or C-D) stretching (v3) and H-C-N (D-C-N) bending (v2) modes, and for DCN products there is also evidence of vibrational excitation of the v1 mode, which involves stretching of the C≡N bond. The vibrationally excited products relax to the ground vibrational level of HCN (DCN) with time constants of ˜130-270 ps (depending on molecule and solvent), and the majority of the HCN (DCN) in this ground level is formed by vibrational relaxation, instead of directly from the chemical reaction. The time-dependence of reactive production of HCN (DCN) and vibrational relaxation is analysed using a vibrationally quantum-state specific kinetic model. The experimental outcomes are indicative of dynamics of exothermic reactions over an energy surface with an early transition state. Although the presence of the chlorinated solvent may reduce the extent of vibrational excitation of the nascent products, the early-time chemical reaction dynamics in these liquid solvents are deduced to be very similar to those for isolated collisions in the gas phase. The transient IR spectra show additional spectroscopic absorption features centered at 2037 cm-1 and 2065 cm-1 (in CHCl3) that are assigned, respectively, to CN-solvent complexes and

  18. Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy

    Science.gov (United States)

    Kiefer, Johannes; Noack, Kristina; Bartelmess, Juergen; Walter, Christian; Dörnenburg, Heike; Leipertz, Alfred

    2010-02-01

    The spectroscopic discrimination of the two structurally similar polyunsaturated C 20 fatty acids (PUFAs) 5,8,11,14,17-eicosapentaenoic acid and 5,8,11,14-eicosatetraenoic acid (arachidonic acid) is shown. For this purpose their vibrational structures are studied by means of attenuated total reflection (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The fingerprint regions of the recorded spectra are found to be almost identical, while the C-H stretching mode regions around 3000 cm -1 show such significant differences as results of electronic and molecular structure alterations based on the different degree of saturation that both fatty acids can be clearly distinguished from each other.

  19. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids

    Science.gov (United States)

    Baranović, Goran; Šegota, Suzana

    2018-03-01

    Detailed vibrational assignments for twelve flavonoids (seven flavones (flavone, 3- and 5-hydroxyflavone, chrysin, apigenin, fisetin and luteolin) and five flavonols (galangin, kaempferol, quercetin, morin and myricetin)) have been made based on own and reported experimental data and calculations at the B3LYP/6-31 + G(d,p) level of theory. All the molecules are treated in a uniform way by using the same set of redundancy-free set of internal coordinates. A generalized harmonic mode mixing is used to corroborate the vibrational characteristics of this important class of molecules. Each flavonoid molecule can be treated from the vibrational point of view as made of relatively weakly coupled chromone and phenyl part. It has been shown that the strongest band around 1600 cm- 1 need not be attributable to the Cdbnd O stretching. The way the vibrations of any of the hydroxyl groups are mixed with ring vibrations and vibrations of other neighboring hydroxyl groups is rather involved. This imposes severe limitations on any attempt to describe normal modes of a flavonol in terms of hydroxyl or carbonyl group vibrations. The role of water molecules in the appearance of flavonoid IR spectra is emphasized. Knowing for the great affinity of phosphate groups in lipids towards water, the immediate consequence is a reasonable assumption that flavonoid lipid interactions is mediated by water.

  20. The hydrogen-bond network of water supports propagating optical phonon-like modes.

    Science.gov (United States)

    Elton, Daniel C; Fernández-Serra, Marivi

    2016-01-04

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal-transverse splitting, indicating the presence of coherent long-range dipole-dipole interactions, as in ice. Our results indicate the dynamics of liquid water have more similarities to ice than previously thought.

  1. Vibrational autoionization of state-selective jet-cooled methanethiol (CH3SH) investigated with infrared vacuum-ultraviolet photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Min; Sen, Zhitao; Pratt, S. T.; Lee, Yuan-Pern

    2017-11-21

    Vibrational autoionization of Rydberg states provides key information about nonadiabatic processes above an ionization threshold. We employed time-of-flight mass detection of CH3SH+ to record vibrational-state selective photo-ionization efficiency (PIE) spectra of jet-cooled methanethiol (CH3SH) on exciting CH3SH to a specific vibrationally excited state with an infrared (IR) laser, followed by excitation with a tunable laser in the vacuum-ultraviolet (VUV) region for ionization. Autoionizing Rydberg states assigned to the ns, np, nd and nf series are identified. When IR light at 2601 (ν3, SH stretching mode) and 2948 cm-12, CH3 symmetric stretching mode) was employed, the Rydberg series converged to the respective vibrationally excited (ν3 and ν2) states of CH3SH+. When IR light at 3014 cm-1 (overlapped ν19, CH3 antisymmetric stretching and CH2 antisymmetric stretching modes) was employed, two converging limits towards vibrationally excited states (ν1 and ν9) of CH3SH+ were observed. In contrast, when IR light at 2867 cm-1 (2ν10, overtone of CH3 deformation mode) and 2892 cm-1 (2ν4, overtone of CH2 scissoring mode) was employed, both Δν = -1 and Δν = -2 ionization transitions were observed; there is evidence for direct ionization from the initial state into the CH3SH+ (v4+ = 1) continuum. In all observed IR-VUV-PIE spectra, the ns and nd series show intensity greater than the other Rydberg series, which is consistent with the fact that the highest-occupied molecular orbital of CH3SH is a p-like lone pair orbital on the S atom. The quantum yields for autoionization of various vibrational excited states are discussed.

  2. Kontrola kvalitete stretch folije

    OpenAIRE

    Gržanić, Nino

    2016-01-01

    U završnom radu opisan je postupak ekstrudiranja i kontrole kvalitete stretch folije koji se koristi u firmi Bomark-Pak radi osiguravanja najbolje kvalitete. Kontrola kreče kod uvoza repromaterijala, nastavlja se kod izrade folije na stroju, te se glavni dio odvija nakon izrade gotovg proizvoda. U radu ćemo detaljno objasniti svaki pojedini korak, zašto se on vrši, te uz pomoć kojih mjernih instrumenata se izvršava.

  3. Vibrational Probes: From Small Molecule Solvatochromism Theory and Experiments to Applications in Complex Systems.

    Science.gov (United States)

    Błasiak, Bartosz; Londergan, Casey H; Webb, Lauren J; Cho, Minhaeng

    2017-04-18

    vibrational Stark effect theory has been considered to be quite appealing and, even in some cases, e.g., carbonyl stretch modes in amide, ester, ketone, and carbonate compounds or proteins, it works quantitatively well, which makes it highly useful in determining the strength of local electric field around the IR chromophore. However, noting that the vibrational frequency shift results from changes of solute-solvent intermolecular interaction potential along its normal coordinate, Pauli exclusion repulsion, polarization, charge transfer, and dispersion interactions, in addition to the electrostatic interaction between distributed charges of both vibrational chromophore and solvent molecules, are to be properly included in the theoretical description of vibrational solvatochromism. Since the electrostatic and nonelectrostatic intermolecular interaction components have distinctively different distance and orientation dependences, they affect the solvatochromic vibrational properties in a completely different manner. Over the past few years, we have developed a systematic approach to simulating vibrational solvatochromic data based on the effective fragment potential approach, one of the most accurate and rigorous theories on intermolecular interactions. We have further elucidated the interplay of local electric field with the general vibrational solvatochromism of small IR probes in either solvents or complicated biological systems, with emphasis on contributions from non-Coulombic intermolecular interactions to vibrational frequency shifts and fluctuations. With its rigorous foundation and close relation to quantitative interpretation of experimental data, this and related theoretical approaches and experiments will be of use in studying and quantifying the structure and dynamics of biomolecules with unprecedented time and spatial resolution when combined with time-resolved vibrational spectroscopy and chemically sensitive vibrational imaging techniques.

  4. Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers.

    Directory of Open Access Journals (Sweden)

    Yaotao Wang

    Full Text Available Polybutene-1 (PB-1, a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely "no cavitation" for the quenched sample with the thinnest lamellae where only shear yielding occurred, "cavitation with reorientation" for the samples stretched at lower temperatures and samples with thicker lamellae, and "cavitation without reorientation" for samples with thinner lamellae stretched at higher temperatures. The mode "cavitation with reorientation" occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of "cavitation without reorientation" appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae

  5. Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers.

    Science.gov (United States)

    Wang, Yaotao; Jiang, Zhiyong; Fu, Lianlian; Lu, Ying; Men, Yongfeng

    2014-01-01

    Polybutene-1 (PB-1), a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely "no cavitation" for the quenched sample with the thinnest lamellae where only shear yielding occurred, "cavitation with reorientation" for the samples stretched at lower temperatures and samples with thicker lamellae, and "cavitation without reorientation" for samples with thinner lamellae stretched at higher temperatures. The mode "cavitation with reorientation" occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of "cavitation without reorientation" appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae stretched at higher

  6. Experimental and theoretical study of the vibrational properties of diaspore (α-AlOOH)

    Science.gov (United States)

    Delattre, Simon; Balan, Etienne; Lazzeri, Michele; Blanchard, Marc; Guillaumet, Maxime; Beyssac, Olivier; Haussühl, Eiken; Winkler, Björn; Salje, Ekhard K. H.; Calas, Georges

    2012-02-01

    Vibrational properties of diaspore, α-AlOOH, have been re-investigated using room-temperature single-crystal Raman spectroscopy and low-temperature powder infrared (IR) transmission spectroscopy. First-principles harmonic calculations based on density functional theory provide a convincing assignment of the major Raman peaks and infrared absorption bands. The large width of the Raman band related to OH stretching modes is ascribed to mode-mode anharmonic coupling due to medium-strength H-bonding. Additional broadening in the powder IR spectrum arises from depolarization effects in powder particles. The temperature dependence of the IR spectrum provides a further insight into the anharmonic properties of diaspore. Based on their frequency and temperature behavior, narrow absorption features at ~2,000 cm-1 and anti-resonance at ~2,966 cm-1 in the IR spectrum are interpreted as overtones of fundamental bending bands.

  7. Thermal analysis and vibrational spectroscopic characterization of the boro silicate mineral datolite - CaBSiO4(OH)

    Science.gov (United States)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Lima, Rosa Malena Fernandes; Horta, Laura Frota Campos; Lopez, Andres

    2013-11-01

    The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700-775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm-1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm-1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm-1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.

  8. Acute effect of different stretching methods on flexibility and jumping performance in competitive artistic gymnasts.

    Science.gov (United States)

    Dallas, G; Smirniotou, A; Tsiganos, G; Tsopani, D; Di Cagno, A; Tsolakis, Ch

    2014-12-01

    The purpose of this study was to investigate the acute effects of 3 different warm up methods of stretching (static, proprioceptive neuromuscular facilitation, and stretching exercises on a Vibration platform) on flexibility and legs power-jumping performance in competitive artistic gymnasts. Eighteen competitive artistic gymnasts were recruited to participate in this study. Subjects were exposed to each of 3 experimental stretching conditions: static stretching (SS), proprioceptive neuromuscular facilitation stretching (PNF), and stretching exercises on a Vibration platform (S+V). Flexibility assessed with sit and reach test (S & R) and jumping performance with squat jump (SJ) and counter movement jump (CMJ) and were measured before, immediately after and 15 min after the interventions. Significant differences were observed for flexibility after all stretching conditions for S+V (+1.1%), SS (+5.7%) and PNF (+6.8%) (P=0.000), which remained higher 15 min after interventions (S+V (1.1%), SS (5.3%) and PNF (5.5%), respectively (P=0.000). PNF stretching increased flexibility in competitive gymnasts, while S+V maintained jumping performance when both methods were used as part of a warm-up procedure.

  9. Exact vibration analysis of variable thickness thick annular isotropic and FGM plates

    Science.gov (United States)

    Efraim, E.; Eisenberger, M.

    2007-02-01

    Annular plates are used in many engineering structures. In many cases variable thickness is used in order to save weight and improve structural characteristics. In recent years functionally graded materials (FGM) are used in many engineering applications. A FGM plate is an inhomogeneous composite made of two constituents (usually ceramic and metal), with both the composition and the material properties varying smoothly through the thickness of the plate. An optimal distribution of material properties may be obtained. The plate vibrations will have a strong bending-stretching coupling effect. The equations of motion including the effect of shear deformations using the first-order shear deformation theory are derived and solved exactly for various combinations of boundary conditions. The solution is obtained by using the exact element method. Exact vibration frequencies and modes are given for several examples for the first time.

  10. Parametric resonance in nonlinear vibrations of string under harmonic heating

    Science.gov (United States)

    López-Reyes, L. J.; Kurmyshev, E. V.

    2018-02-01

    In this paper, vibrations of thin stretched strings carrying an alternating electric current in a non-uniform magnetic field are described by nonlinear equations. Within the frame of a simplified model, we studied the combined effect of geometric nonlinearity and Joule heating acting opposite to each other. An equation including Joule heating only shows unlimited growth in oscillation amplitude near resonant frequencies. Nevertheless, a single mode approximation resulting in Mathieu-Duffing´s equation shows a double resonance with bounded oscillation amplitude. At zero external force, the response frequency of steady-state oscillations is equal to parametric modulation frequency in an interval near the resonant frequency; otherwise, the response frequency equals the natural frequency of the oscillator.

  11. Vibration mixer

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

    1983-01-01

    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  12. Torsion-rotation structure and quasi-symmetric-rotor behaviour for the CH3SH asymmetric CH3-bending and C-H stretching bands of E parentage

    Science.gov (United States)

    Lees, R. M.; Xu, Li-Hong; Guislain, B. G.; Reid, E. M.; Twagirayezu, S.; Perry, D. S.; Dawadi, M. B.; Thapaliya, B. P.; Billinghurst, B. E.

    2018-01-01

    High-resolution Fourier transform spectra of the asymmetric methyl-bending and methyl-stretching bands of CH3SH have been recorded employing synchrotron radiation at the FIR beamline of the Canadian Light Source. Analysis of the torsion-rotation structure and relative intensities has revealed the novel feature that for both bend and stretch the in-plane and out-of-plane modes behave much like a Coriolis-coupled l-doublet pair originating from degenerate E modes of a symmetric top. As the axial angular momentum K increases, the energies of the coupled "l = ±1" modes diverge linearly, with effective Coriolis ζ constants typical for symmetric tops. For the methyl-stretching states, separated at K = 0 by only about 1 cm-1, the assigned sub-bands follow a symmetric top Δ(K - l) = 0 selection rule, with only ΔK = -1 transitions observed to the upper l = -1 in-plane A‧ component and only ΔK = +1 transitions to the lower l = +1 out-of-plane A″ component. The K = 0 separation of the CH3-bending states is larger at 9.1 cm-1 with the l-ordering reversed. Here, both ΔK = +1 and ΔK = -1 transitions are seen for each l-component but with a large difference in relative intensity. Term values for the excited state levels have been fitted to J(J + 1) power-series expansions to obtain substate origins. These have then been fitted to a Fourier model to characterize the torsion-K-rotation energy patterns. For both pairs of vibrational states, the torsional energies display the customary oscillatory behaviour as a function of K and have inverted torsional splittings relative to the ground state. The spectra show numerous perturbations, indicating local resonances with the underlying bath of high torsional levels and vibrational combination and overtone states. The overall structure of the two pairs of bands represents a new regime in which the vibrational energy separations, torsional splittings and shifts due to molecular asymmetry are all of the same order, creating a

  13. Nature of the hyper-Raman active vibrations of lithium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Simon, G; Hehlen, B; Vacher, R; Courtens, E [Laboratoire des Colloides, Verres et Nanomateriaux (LCVN), UMR 5587 CNRS, University of Montpellier II, F-34095 Montpellier (France)], E-mail: bernard.hehlen@lcvn.univ-montp2.fr

    2008-04-16

    Hyper-Raman spectra of two lithium borate glasses, 4B{sub 2}O{sub 3}:Li{sub 2}O and 2B{sub 2}O{sub 3}:Li{sub 2}O, are compared to those of pure boron oxide glass, v-B{sub 2}O{sub 3}. A mode analysis is performed using a structural model based on the symmetry of the elementary structural units (ESUs) constituting the glasses. Most spectral components arise from internal vibrations of BO{sub 3} triangles, B{sub 3}O{sub 3} boroxol rings, and BO{sub 4} tetrahedra. In particular, a mode associated with stretching motions of BO{sub 4} units can be assigned to a vibration of F{sub 2} symmetry in the T{sub d} tetrahedral point group. The hyper-Raman scattering intensity of its transverse optic component appears to be proportional to the number of BO{sub 4} units in the glass. The boson peak observed in hyper-Raman scattering arises from external modes of rigid ESUs which correspond to librational motions coupled to their translations. The scattering strength of these modes strongly decreases with increasing Li concentration. In pure v-B{sub 2}O{sub 3}, external modes of boroxols presumably dominate this scattering. The decrease in the boroxol concentration in lithium borate glasses correlates with the apparent hardening of the boson peak.

  14. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles

    Directory of Open Access Journals (Sweden)

    Abdullah Serefoglu, Ufuk Sekir, Hakan Gür, Bedrettin Akova

    2017-03-01

    Full Text Available The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a non-stretching (control, (b static stretching of the quadriceps muscles, (c static stretching of the hamstring muscles, (d dynamic stretching of the quadriceps muscles, and (e dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05 differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05 following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG

  15. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles.

    Science.gov (United States)

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-03-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities

  16. Resonant vibration control of rotating beams

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2011-01-01

    Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....

  17. Characterization of a roof tile-shaped out-of-plane vibrational mode in aluminum-nitride-actuated self-sensing micro-resonators for liquid monitoring purposes

    Science.gov (United States)

    Kucera, Martin; Wistrela, Elisabeth; Pfusterschmied, Georg; Ruiz-Díez, Víctor; Manzaneque, Tomás; Luis Sánchez-Rojas, José; Schalko, Johannes; Bittner, Achim; Schmid, Ulrich

    2014-06-01

    This Letter reports on an advanced out-of-plane bending mode for aluminum-nitride (AlN)-actuated cantilevers. Devices of different thickness were fabricated and characterized by optical and electrical measurements in air and liquid media having viscosities up to 615 cP and compared to the classical out-of-plane bending and torsional modes. Finite element method eigenmode analyses were performed showing excellent agreement with the measured mode shapes and resonance frequencies. Quality factors (Q-factor) and the electrical behavior were evaluated as a function of the cantilever thickness. A very high Q-factor of about 197 was achieved in deionized water at a low resonance frequency of 336 kHz, being up to now, the highest quality factor reported for cantilever sensors in liquid media. Compared to the quality factor of the common fundamental out-of-plane bending mode, a 5 times higher Q-factor was achieved. Furthermore, the strain related conductance peak of the roof tile-shaped mode is superior. Compared to any out-of-plane bending mode, this combination of most beneficial properties is unique and make this mode superior for a large variety of resonator-based sensing applications.

  18. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2014-07-01

    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  19. Vibrational Spectroscopy of BENZENE-(WATER)_N Clusters with N=6,7

    Science.gov (United States)

    Tabor, Daniel P.; Sibert, Edwin; Kusaka, Ryoji; Walsh, Patrick S.; Zwier, Timothy S.

    2015-06-01

    The investigation of benzene-water clusters (Bz-(H_2O)_n) provides insight into the relative importance π-hydrogen bond interactions in cluster formation. Taking advantage of the higher resolution of current IR sources, isomer-specific resonant ion-dip infrared (RIDIR) spectra were recorded in the OH stretch region (3000-3750 cm-1). A local mode Hamiltonian for describing the OH stretch vibrations of water clusters is applied to Bz-(H_2O)_6 and Bz-(H_2O)_7 and compared with the RIDIR spectra. These clusters are the smallest water clusters in which three-dimensional H-bonded networks containing three-coordinate water molecules begin to be formed, and are therefore particularly susceptible to re-ordering or re-shaping in response to the presence of a benzene molecule. The spectrum of Bz-(H_2O)_6 is assigned to an inverted book structure while the major conformer of Bz-(H_2O)_7 is assigned to an S_4-derived inserted cubic structure in which the benzene occupies one corner of the cube. The local mode model is used to extract monomer Hamiltonians for individual water molecules, including stretch-bend Fermi resonance and intra-monomer couplings. The monomer Hamiltonians divide into sub-groups based on their local H-bonding architecture (DA, DDA, DAA) and the nature of their interaction with benzene.

  20. Dipole Correlation of the Electronic Structures of theConformations of Water Molecule Evolving Through theNormal Modes of Vibrations Between Angular (C2v to Linear(D∝h Shapes

    Directory of Open Access Journals (Sweden)

    Arindam Chakraborty

    2006-03-01

    Full Text Available In order to settle the issue of equivalence or non-equivalence of the two lone pairsof electrons on oxygen atom in water molecule, a quantum chemical study of the dipolecorrelation of the electronic structure of the molecule as a function of conformationsgenerated following the normal modes of vibrations between the two extremeconformations, C2v (∠HOH at 90o and D∝h (∠HOH at 180o, including the equilibrium one,has been performed. The study invokes quantum mechanical partitioning of moleculardipoles into bond moment and lone pair moment and localization of delocalized canonicalmolecular orbitals, CMO’s into localized molecular orbitals, LMO’s. An earlier suggestion,on the basis of photoelectron spectroscopy, that one lone pair is in p-type and the other is ins-type orbital of O atom of water molecule at its equilibrium shape, and also the qualitative“Squirrel Ears” structure are brought under serious scrutiny. A large number ofconformations are generated and the charge density matrix, dipole moment of eachconformation is computed in terms of the generated canonical molecular orbitals, CMO’sand then Sinanoğlu’s localization method is invoked to localize the CMO’s of eachconformation and the quantum mechanical hybridizations of all the bonds and lone pairs onO center are evaluated in terms of the localized molecular orbitals. Computed datademonstrate that the electronic structures i.e. two bond pairs and two lone pairs and itshybridization status of all conformations of water molecule are straightforward in terms ofthe LMO’s. It is further revealed that the pattern of orbital hybridization changescontinuously as a function of evolution of molecular shape. The close analysis of thegenerated LMO’s reveals that one lone pair is accommodated in a pure p orbital and anotherlone pair is in a hybrid

  1. Vibrational spectroscopic study of the copper silicate mineral ajoite (K,Na)Cu7AlSi9O24(OH)6·3H2O

    Science.gov (United States)

    Frost, Ray L.; Xi, Yunfei

    2012-06-01

    Ajoite (K,Na)Cu7AlSi9O24(OH)6·3H2O is a mineral named after the Ajo district of Arizona. Raman and infrared spectroscopy were used to characterise the molecular structure of ajoite. The structure of the mineral shows disorder which is reflected in the difficulty of obtaining quality Raman spectra. The Raman spectrum is characterised by a broad spectral profile with a band at 1048 cm-1 assigned to the ν1 (A1g) symmetric stretching vibration. Strong bands at 962, 1015 and 1139 cm-1 are assigned to the ν3 SiO4 antisymmetric stretching vibrations. Multiple ν4 SiO4 vibrational modes indicate strong distortion of the SiO4 tetrahedra. Multiple AlO and CuO stretching bands are observed. Raman spectroscopy and confirmed by infrared spectroscopy clearly shows that hydroxyl units are involved in the ajoite structure. Based upon the infrared spectra, water is involved in the ajoite structure, probably as zeolitic water.

  2. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  3. Quantum chemistry-based analysis of the vibrational spectra of five-coordinate metalloporphyrins [M(TPP)Cl].

    Science.gov (United States)

    Paulat, Florian; Praneeth, V K K; Näther, Christian; Lehnert, Nicolai

    2006-04-03

    Vibrational properties of the five-coordinate porphyrin complexes [M(TPP)(Cl)] (M = Fe, Mn, Co) are analyzed in detail. For [Fe(TPP)(Cl)] (1), a complete vibrational data set is obtained, including nonresonance (NR) Raman, and resonance Raman (RR) spectra at multiple excitation wavelengths as well as IR spectra. These data are completely assigned using density functional (DFT) calculations and polarization measurements. Compared to earlier works, a number of bands are reassigned in this one. These include the important, structure-sensitive band at 390 cm(-1), which is reassigned here to the totally symmetric nu(breathing)(Fe-N) vibration for complex 1. This is in agreement with the assignments for [Ni(TPP)]. In general, the assignments are on the basis of an idealized [M(TPP)]+ core with D(4h) symmetry. In this Work, small deviations from D(4h) are observed in the vibrational spectra and analyzed in detail. On the basis of the assignments of the vibrational spectra of 1, [Mn(TPP)(Cl)] (2), and diamagnetic [Co(TPP)(Cl)] (3), eight metal-sensitive bands are identified. Two of them correspond to the nu(M-N) stretching modes with B(1g) and Eu symmetries and are assigned here for the first time. The shifts of the metal sensitive modes are interpreted on the basis of differences in the porphyrin C-C, C-N, and M-N distances. Besides the porphyrin core vibrations, the M-Cl stretching modes also show strong metal sensitivity. The strength of the M-Cl bond in 1-3 is further investigated. From normal coordinate analysis (NCA), force constants of 1.796 (Fe), 0.932 (Mn), and 1.717 (Co) mdyn/A are obtained for 1-3, respectively. The weakness of the Mn-Cl bond is attributed to the fact that it only corresponds to half a sigma bond. Finally, RR spectroscopy is used to gain detailed insight into the nature of the electronically excited states. This relates to the mechanism of resonance enhancement and the actual nature of the enhanced vibrations. It is of importance that anomalous

  4. Acute Muscle Stretching and Shoulder Position Sense

    OpenAIRE

    Björklund, Martin; Djupsjöbacka, Mats; Crenshaw, Albert G

    2006-01-01

    Context: Stretching is common among athletes as a potential method for injury prevention. Stretching-induced changes in the muscle spindle properties are a suggested mechanism, which may imply reduced proprioception after stretching; however, little is known of this association.

  5. Vibrational Relaxation in Neat Crystals of Naphthalene by Picosecond CARS

    NARCIS (Netherlands)

    Hesp, Ben H.; Wiersma, Douwe A.

    1980-01-01

    Picosecond delayed CARS experiments on totally symmetric modes in naphthalene at 1.5 K are reported. The Raman lineshape of the vibrational excitons is lorentzian and vibrational relaxation can be surprisingly slow. The Raman lineshape of the Ag exciton level of the 766 cm-1 vibrational mode reveals

  6. CH Stretching Region: Computational Modeling of Vibrational Optical Activity

    Czech Academy of Sciences Publication Activity Database

    Hudecová, Jana; Profant, V.; Novotná, P.; Baumruk, V.; Urbanová, M.; Bouř, Petr

    2013-01-01

    Roč. 9, č. 7 (2013), s. 3096-3108 ISSN 1549-9618 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200550902 Institutional support: RVO:61388963 Keywords : density-functional theory * circular-dichroism spectra * N-methyl acetamide * alpha-pinene * Raman Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  7. Vibrations of stretched damped beams under non-ideal boundary ...

    Indian Academy of Sciences (India)

    A simply supported damped Euler–Bernoulli beam with immovable end conditions are considered. The concept of non-ideal boundary conditions is applied to the beam problem. In accordance, the boundaries are assumed to allow small deflections and moments. Approximate analytical solution of the problem is found ...

  8. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  9. Hydraulic fracture during epithelial stretching.

    Science.gov (United States)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells' cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  10. Internal vibrations in molecular crystals

    International Nuclear Information System (INIS)

    Howard, J.

    1984-01-01

    Recent developments in the understanding of the relative intensities of INS bands (polycrystalline samples) are described together with the observation of a fundamental transition at ca 380 MeV (C-H stretching mode) uncontaminated by overtone or combination bands. Recent work (>100 MeV) on strongly hydrogen bonded complexes (CrOHO and MFHF - ), which have high energy modes exhibiting significant dispersion, is also discussed

  11. Vibrational spectroscopy and analysis of pseudo-tetrahedral complexes with metal imido bonds.

    Science.gov (United States)

    Mehn, Mark P; Brown, Steven D; Jenkins, David M; Peters, Jonas C; Que, Lawrence

    2006-09-04

    A number of assignments have been previously posited for the metal-nitrogen stretch (nu(M-NR)), the N-R stretch (nu(MN-R)), and possible ligand deformation modes associated with terminally bound imides. Here we examine mononuclear iron(III) and cobalt(III) imido complexes of the monoanionic tridentate ligand [PhBP3] ([PhBP3] = [PhB(CH2PPh2)3]-) to clarify the vibrational features for these trivalent metal imides. We report the structures of [PhBP3]FeNtBu and [PhBP3]CoNtBu. Pseudo-tetrahedral metal imides of these types exhibit short bond lengths (ca. 1.65 A) and nearly linear angles about the M-N-C linkages, indicative of multiple bond character. Furthermore, these compounds give rise to intense, low-energy visible absorptions. Both the position and the intensity of the optical bands in the [PhBP3]MNR complexes depend on whether the substituent is an alkyl or aryl group. Excitation into the low-energy bands of [PhBP3]FeNtBu gives rise to two Raman features at 1104 and 1233 cm(-1), both of which are sensitive to 15N and 2H labeling. The isotope labeling suggests the 1104 cm(-1) mode has the greatest Fe-N stretching character, while the 1233 cm(-1) mode is affected to a lesser extent by (15)N substitution. The spectra of the deuterium-labeled imides further support this assertion. The data demonstrate that the observed peaks are not simple diatomic stretching modes but are extensively coupled to the vibrations of the ancillary organic group. Therefore, describing these complexes as simple diatomic or even triatomic oscillators is an oversimplification. Analogous studies of the corresponding cobalt(III) complex lead to a similar set of isotopically sensitive resonances at 1103 and 1238 cm(-1), corroborating the assignments made in the iron imides. Very minimal changes in the vibrational frequencies are observed upon replacement of cobalt(III) for iron(III), suggesting similar force constants for the two compounds. This is consistent with the previously proposed

  12. Soleus stretch reflex during cycling

    DEFF Research Database (Denmark)

    Grey, Michael James; Pierce, C. W.; Milner, T. E.

    2001-01-01

    the crank cycle, producing ankle dorsiflexion perturbations of similar trajectory. The stretch reflex was greatest during the power phase of the crank cycle and was decreased to the level of background EMG during recovery. Matched perturbations were induced under static conditions at the same crank angle...... active cycling as has been shown with the H-reflex. This lack of depression may reflect a decreased susceptibility of the stretch reflex to inhibition, possibly originating from presynaptic mechanisms....

  13. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.

    Science.gov (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W

    2016-10-07

    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  14. Analytical and experimental studies of natural vibrations modes of ring-stiffened truncated-cone shells with variable theoretical ring fixity

    Science.gov (United States)

    Naumann, E. C.; Catherines, D. S.; Walton, W. C., Jr.

    1971-01-01

    Experimental and analytical investigations of the vibratory behavior of ring-stiffened truncated-cone shells are described. Vibration tests were conducted on 60 deg conical shells having up to four ring stiffeners and for free-free and clamped-free edge constraints and 9 deg conical shells, for two thicknesses, each with two angle rings and for free-free, free-clamped, and clamped-clamped edge constraints. The analytical method is based on linear thin shell theory, employing the Rayleigh-Ritz method. Discrete rings are represented as composed of one or more segments, each of which is a short truncated-cone shell of uniform thickness. Equations of constraint are used to join a ring and shell along a circumferential line connection. Excellent agreement was obtained for comparisons of experimental and calculated frequencies.

  15. Vapor deposition of polystyrene thin films by intense laser vibrational excitation

    DEFF Research Database (Denmark)

    Bubb, D.M.; Papantonakis, M.R.; Horwitz, J.S.

    2002-01-01

    Polystyrene films were deposited using resonant infrared pulsed laser depositions (RIR-PLD). Thin films were grown on Si(1 1 1) wafers and NaCl substrates and analyzed by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The depositions were carried out...... in vacuum (10(-4)-10(-5) Torr) at wavelengths 3.28, 3.30, 3.42 and 3.48 mum which are resonant with CH2 stretching modes in the polymer. We also attempted to deposit a films using non-resonant infrared (RIR) excitation (2.90 mum). At this wavelength no films were deposited, and evidence for laser......-induced damage to the target can be seen. RIR-PLD is a fundamentally new approach to polymer thin film growth as the absorption of radiation resonant with vibrational modes allow the energy to be deposited into the polymer and transfers between macromolecules in such a way as to promote efficient, non...

  16. Alleviation of Buffet-Induced Vibration Using Piezoelectric Actuators

    National Research Council Canada - National Science Library

    Morgenstern, Shawn D

    2006-01-01

    .... The objective of this research was to determine the most critical natural modes of vibration for the F-16 ventral fin and design piezoelectric actuators capable of reducing buffet-induced ventral fin vibration...

  17. Intermittent But Not Continuous Static Stretching Improves Subsequent Vertical Jump Performance In Flexibility-Trained Athletes.

    Science.gov (United States)

    Bogdanis, Gregory C; Donti, Olyvia; Tsolakis, Charilaos; Smilios, Ilias; Bishop, David J

    2017-02-23

    This study examined changes in countermovement jump (CMJ) height after an intermittent or a continuous static stretching protocol of equal total duration. Sixteen male, elite-level gymnasts performed 90 s of intermittent (3 x 30 s with 30 s rest) or continuous stretching (90 s) of the quadriceps muscle. A single-leg stretching and jumping design was used, with the contra-lateral limb serving as a control. The same individuals performed both conditions with alternate legs in a randomized, counterbalanced order. One leg CMJ height was measured for the stretched and the control leg after warm-up, immediately after stretching, and at regular intervals for 10 min after stretching. Range of motion (ROM) of the hip and knee joints was measured before, after, and 10 min post-stretching. Compared to the control leg, intermittent stretching increased CMJ height by 8.1±2.0%, 4 min into recovery (+2.2±2.0 cm, 95%CI: 1.0-3.4 cm, p=0.001), while continuous stretching decreased CMJ height by 17.5±3.3% immediately after (-2.9±1.7 cm, 95%CI: -2.0 to -3.7 cm, p=0.001) and by 12.0±2.7% one min after stretching (-2.2±2.1 cm, 95%CI: -1.2 to -3.2 cm, p=0.001). The increases in hip (2.9 and 3.6, p=0.001. d=2.4) and knee joint ROM (5.1 and 6.1, p=0.001. d=0.85) after the intermittent and continuous stretching protocols were not different. The opposite effects of intermittent vs. continuous stretching on subsequent CMJ performance suggests that stretching mode is an important variable when examining the acute effects of static stretching on performance in flexibility-trained athletes.

  18. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  19. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles

    Science.gov (United States)

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-01-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities

  20. Time-resolved imaging of laser-induced vibrational wave packets in neutral and ionic states of iodomethane

    Science.gov (United States)

    Malakar, Y.; Kaderiya, B.; Zohrabi, M.; Pearson, W. L.; Ziaee, F.; Kananka Raju, P.; Ben-Itzhak, I.; Rolles, D.; Rudenko, A.

    2016-05-01

    Light-driven vibrational wave packets play an important role in molecular imaging and coherent control applications. Here we present the results of a pump-probe experiment characterizing laser-induced vibrational wave packets in both, neutral and ionic states of CH3 I (iodomethane), one of the prototypical polyatomic systems. Measuring yields and kinetic energies of all ionic fragments as a function of the time delay between two 25 fs, 800 nm pump and probe pulses, we map vibrational motion of the molecule, and identify the states involved by channel-resolved Fourier spectroscopy. In the Coulomb explosion channels we observe features with ~ 130 fs periodicity resulting from C-I symmetric stretch (ν3 mode) of the electronically excited cationic state. However the Fourier transform of the low-energy I+ ion yield produced by the dissociative ionization of CH3 I reveals the signatures of the same vibrational mode in the ground electronic states of both, neutral and cation, reflected in 65-70 fs oscillations. We observe the degeneration of the oscillatory structures from the cationic states within ~ 2 ps and discuss most likely reasons for this behavior. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. DOE. K. R. P. and W. L. P. supported by NSF Award No. IIA-143049.

  1. Vibrational properties of water molecules adsorbed in different zeolitic frameworks

    International Nuclear Information System (INIS)

    Crupi, V; Longo, F; Majolino, D; Venuti, V

    2006-01-01

    The perturbation of water 'sorbed' in samples of zeolites of different structural type, genesis, and cation composition (K-, Na-, Mg- and Ca-rich zeolites), namely the CHA framework of a synthetic K-chabazite, the LTA framework of synthetic Na-A and Mg50-A zeolites, and the NAT framework of a natural scolecite, has been studied by FTIR-ATR spectroscopy, in the -10 to +80 o C temperature range. The aim was to show how differences in the chemical composition and/or in the topology of the zeolite framework and, in particular, the possibility for the guest water molecules to develop guest-guest and/or host-guest interactions, lead to substantial differences in their vibrational dynamical properties. The spectra, collected in the O-H stretching and H 2 O bending mode regions, are complex, with multiple bands being observed. As far as water in the CHA and LTA frameworks is concerned, whose behaviour is governed by the balance of water-water, water-framework and water-extra-framework cations interactions, the assignment of the resolved components of the O-H stretching band has been discussed by fitting the band shapes into individual components attributed to H 2 O molecules engaged in different degrees of hydrogen bonding. A detailed quantitative picture of the connectivity pattern of water, as a function of temperature and according to the chemical and topological properties of the environment, is furnished. The H 2 O bending vibrational bands give additional information that perfectly agrees with the results obtained from the analysis of the O-H stretching spectral region. In the case of scolecite, a small-pored zeolite where water-water interactions are eliminated, the increased complexity observed in the infrared spectra in the O-H stretching and H 2 O bending regions was explained as due to the hydrogen bonding between the water molecules and the network, and also with the extra-framework cation. Furthermore, these observations have been correlated with the different

  2. Relationship Between Stretch Duration And Shoulder Musculature ...

    African Journals Online (AJOL)

    To date, studies focussing on the effect of stretching on flexibility have focused almost solely on the effect of chronic stretching rather than the effects of acute stretching performed immediately prior to physical activity. The effects of different static stretches were assessed on passive shoulder range of motion (ROM).

  3. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  4. Vibrational spectroscopy of ion exchange membranes

    Science.gov (United States)

    Kumari, Dunesh

    Infrared Spectroscopy (IR) and density functional theory (DFT) calculations were used to study Nafion, a sulfonated tetrafluoroethylene ionomer used as the electrolyte material of choice for polymer electrolyte membrane fuel cells (PEMFCs). A methodology is described for assignment of infrared peaks in terms of mechanically coupled internal coordinates of near neighbor functional groups. This work demonstrates (chapter 2--4) the use of ionomer functional group internal coordinate coupling analysis to assign two key Nafion peaks formerly assigned as the sulfonate symmetric stretch (1056 cm -1) and a COC (A) vibrational mode (971 cm-1). The experiments and theory complement each other to show that the dominate motions of the 1056 cm-1 and 971 cm-1 modes are attributed to the COC (A) and the sulfonate stretch respectively, exactly reverse of the convention used for decades. The salient point is that both peaks result from mechanically coupled internal coordinates of both functional groups. This explains why the 1056 cm-1 and 971 cm -1 peaks shift together with changes in the sulfonate group environment (i.e., ion exchange or membrane dehydration). The assignments, correlated with extensive literature data, and new data showing both peaks vanishing upon rigorous dehydration (i.e. conversion of a C3V deprotonated -SO3- to a C1 -SO3H) of the membrane, were based on the correlation of observed IR peaks with animations of mechanically coupled internal coordinates obtained by DFT calculations. Further, the above methodology was augmented with polarization modulated infrared reflection-adsorption spectroscopy (PM-IRRAS) to elucidate the Nafion ionomers functional groups that participate in self-assembly of Nafion onto Pt surfaces. A model for Nafion adsorption onto Pt shows that the Nafion side-chain sulfonate and CF3 co-adsorbates are structural components of the Nafion-Pt interface. The DFT-spectroscopy method of assigning peaks in terms of mechanically coupled internal

  5. The effect of static, ballistic, and proprioceptive neuromuscular facilitation stretching on vertical jump performance.

    Science.gov (United States)

    Bradley, Paul S; Olsen, Peter D; Portas, Matthew D

    2007-02-01

    The purpose of this study was to compare the acute effects of different modes of stretching on vertical jump performance. Eighteen male university students (age, 24.3 +/- 3.2 years; height, 181.5 +/- 11.4 cm; body mass, 78.1 +/- 6.4 kg; mean +/- SD) completed 4 different conditions in a randomized order, on different days, interspersed by a minimum of 72 hours of rest. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions: (a) control, (b) 10-minute static stretching, (c) 10-minute ballistic stretching, or (d) 10-minute proprioceptive neuromuscular facilitation (PNF) stretching. The subjects performed 3 trials of static and countermovement jumps prior to stretching and poststretching at 5, 15, 30, 45, and 60 minutes. Vertical jump height decreased after static and PNF stretching (4.0% and 5.1%, p 0.05). However, jumping performance had fully recovered 15 minutes after all stretching conditions. In conclusion, vertical jump performance is diminished for 15 minutes if performed after static or PNF stretching, whereas ballistic stretching has little effect on jumping performance. Consequently, PNF or static stretching should not be performed immediately prior to an explosive athletic movement.

  6. Atomic Stretch: Optimally bounded real-time stretching and beyond

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Nielsen, Jannik Boll

    2016-01-01

    Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color-modification, co......Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color...

  7. Effect of curvature on structures and vibrations of zigzag carbon ...

    Indian Academy of Sciences (India)

    By determining the correlation between vibrational modes of a graphene sheet and of the nanotube, we understand how rolling of the sheet results in mixing between modes and changes in vibrational spectrum of graphene. We find that the radial breathing mode softens with decreasing curvature. We estimate thermal ...

  8. Acute effects of unilateral static stretching on handgrip strength of the stretched and non-stretched limb.

    Science.gov (United States)

    Jelmini, Jacob D; Cornwell, Andrew; Khodiguian, Nazareth; Thayer, Jennifer; Araujo, And John

    2018-02-16

    To determine the effects of an acute bout of unilateral static stretching on handgrip strength of both the stretched and non-stretched limb. It was reasoned that if the non-stretched limb experienced a decrease in force output, further evidence for a neural mechanism to explain a post-stretch force reduction would be obtained as no mechanical adaptation would have occurred. Thirty participants performed maximum voluntary unilateral handgrip contractions of both limbs before and after stretching the finger flexors of the strength-dominant side only. Each trial was assessed for peak force, muscle activity (iEMG), and rate of force generation. Following the stretching bout, peak force and iEMG decreased by 4.4% (p = 0.001) and 6.4% (p = 0.000) respectively in the stretched limb only. However, rate of force generation was significantly impaired in both the stretched (- 17.3%; p = 0.000) and non-stretched limbs (- 10.8%; p = 0.003) 1 min post-stretch, and remained similarly depressed for both limbs 15 min later. Acute stretching negatively impacts rate of force generation more than peak force. Moreover, a reduced rate of force generation from the non-stretched limb indicates the presence of a cross-over inhibitory effect through the nervous system, which provides additional evidence for a neural mechanism.

  9. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    Energy Technology Data Exchange (ETDEWEB)

    Blancafort, Lluis [Institut de Quimica Computacional, Department de Quimica, Universitat de Girona, Campus de Montilivi, 17071 Girona (Spain); Gatti, Fabien [CTMM, Institut Charles Gerhardt Montpellier (UMR 5253), CC 1501, Universite Montpellier 2, 34095 Montpellier Cedex 05 (France); Meyer, Hans-Dieter [Theoretische Chemie, Ruprecht-Karls-Universitaet, Im Neuenheimer Feld 229, 69120 Heidelberg (Germany)

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  10. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    International Nuclear Information System (INIS)

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-01-01

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  11. Soleus stretch reflex during cycling

    DEFF Research Database (Denmark)

    Grey, Michael James; Pierce, C. W.; Milner, T. E.

    2001-01-01

    The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions durin...

  12. On the generalised stretch function

    Czech Academy of Sciences Publication Activity Database

    Kharlamov, Alexander A.; Filip, Petr

    2012-01-01

    Roč. 21, č. 4 (2012), s. 272-278 ISSN 1022-1344 R&D Projects: GA ČR GA103/09/2066 Institutional research plan: CEZ:AV0Z20600510 Keywords : molecular length * recurrence equations * rubber * strain * stretch functions Subject RIV: BK - Fluid Dynamics Impact factor: 1.606, year: 2012

  13. Optical tweezers stretching of chromatin

    NARCIS (Netherlands)

    Pope, L.H.; Bennink, Martin L.; Greve, Jan

    2003-01-01

    Recently significant success has emerged from exciting research involving chromatin stretching using optical tweezers. These experiments, in which a single chromatin fibre is attached by one end to a micron-sized bead held in an optical trap and to a solid surface or second bead via the other end,

  14. Biaxial stretching of polyethylene, (2)

    International Nuclear Information System (INIS)

    Sakami, Hiroshi; Iida, Shozo

    1976-01-01

    The mechanism of oriented crystallization in mutually perpendicular direction to each other was investigated on the crosslinked linear polyethylene stretched successively and biaxially above melting point of raw material. To investigate the mechanism, the shrinkage stress, the degree of polarization and DSC of the film at the fixed length were measured on the crystallization process. The behavior observed on crystallization could be divided into that in the first period and that in the second period. The first period showed the domain of highly oriented crystallization of the crosslinked molecular chain, and in the second period the fold type crystals grew with highly oriented crystals in the first period as nuclear. Therefore, the formation of bi-component crystal structure is supposed for the crystallization. The biaxially oriented crystallization proceeded as follows: the uniaxial orientation to MD was observed in the first stretching in the initial stage, and then the further processing by the second stretching at a right angle caused the fold type crystallization of molecular chain oriented to TD. The film stretched fully and biaxially could be considered to have the oriented crystalline structure in which highly oriented fibril crystals and fold type crystals distribute at random. (auth.)

  15. Free vibration of thick orthotropic plates using trigonometric shear deformation theory

    Directory of Open Access Journals (Sweden)

    Y. M Ghugal

    Full Text Available In this paper a trigonometric shear deformation theory is presented for the free vibration of thick orthotropic square and rectangular plates. In this displacement based theory the in-plane displacement field uses sinusoidal function in terms of thickness coordinate to include the shear deformation effect. The cosine function in terms of thickness coordinate is used in transverse displacement to include the effect of transverse normal strain. The most important feature of the theory is that the transverse shear stress can be obtained directly from the constitutive relations satisfying the shear stress free surface conditions on the top and bottom surfaces of the plate. Hence the theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Results obtained for frequency of bending mode, shear mode and thickness stretch mode of free vibration of simply supported orthotropic square and rectangular plates are compared with those of other refined theories and exact solution from theory of elasticity wherever applicable.

  16. Intramolecular Vibrational Energy Transfer and Bond-Selected Photochemistry in Liquids

    National Research Council Canada - National Science Library

    Crim, F

    2001-01-01

    .... In the gas phase experiments, one pulse excited the first overtone of the O-H stretching vibration in nitric acid and the second pulse probed the excited molecule by excitation to a dissociative...

  17. High-Resolution Rovibrational Spectroscopy of Jet-Cooled Phenyl Radical: The ν19 Out-of-Phase Symmetric CH Stretch

    Science.gov (United States)

    Buckingham, Grant T.; Chang, Chih-Hsuan; Nesbitt, David J.

    2013-10-01

    Phenyl radical has been studied via sub-Doppler infrared spectroscopy in a slit supersonic discharge expansion source, with assignments for the highest frequency b2 out-of-phase C-H symmetric stretch vibration (-19) unambiguously confirmed by ≤6 MHz (0.0002 cm-1) agreement with microwave ground state combination differences of McMahon et al. [Astrophys. J. 2003, 590, L61-64]. Least squares analysis of over 100 resolved rovibrational peaks in the sub-Doppler spectrum to a Watson Hamiltonian yields precision excited-state rotational constants and a vibrational band origin (-0 = 3071.8915(4) cm-1) consistent with a surprisingly small red-shift (0.9 cm-1) with respect to Ar matrix isolation studies of Ellison and co-workers [J. Am. Chem. Soc. 2001, 123, 1977]. Nuclear spin weights and inertial defects confirm the vibrationally averaged planarity and 2A1 rovibronic symmetry of phenyl radical, with analysis of the rotational constants consistent with a modest C2v distortion of the carbon backbone frame due to partial sp rehybridization of the σ C radical-center. Most importantly, despite the number of atoms (N = 11) and vibrational modes (3N - 6 = 27), phenyl radical exhibits a remarkably clean jet cooled high-resolution IR spectrum that shows no evidence of intramolecular vibrational relaxation (IVR) phenomena such as local or nonlocal perturbations due to strongly coupled nearby dark states. This provides strong support for the feasibility of high-resolution infrared spectroscopy in other aromatic hydrocarbon radical systems.

  18. High Resolution Rovibrational Spectroscopy of Jet-Cooled Phenyl Radical: the ν_{19} Out-Of Symmetric C-H Stretch

    Science.gov (United States)

    Buckingham, Grant T.; Chang, Chih-Hsuan; Nesbitt, David J.

    2013-06-01

    Phenyl radical has been studied via sub-Doppler infrared spectroscopy in a slit supersonic discharge expansion source, with assignments for the highest frequency b_{2} out-of-phase C-H symmetric stretch vibration (ν_{19}) unambiguously confirmed by ≤ 6 MHz (0.0002 cm^{-1}) agreement with microwave ground state combination differences of McMahon et al. [Astrophys. J. 590, L61-64 (2003)]. Least squares analysis of > 100 resolved rovibrational peaks in the sub-Doppler spectrum to a Watson Hamiltonian yields precision exited-state rotational constants and a vibrational band origin (ν_{0} = 3071.8915(4) cm^{-1}) consistent with a surprisingly small red-shift (0.9 cm^{-1}) with respect to Ar matrix isolation studies of Ellison and coworkers [J. Am. Chem. Soc. 123, 1977 (2001)]. Nuclear spin weights and inertial defects confirm the vibrationally averaged planarity and ^{2}A_{1} rovibronic symmetry of phenyl radical, with analysis of the rotational constants consistent with a modest C_{2v} distortion of the carbon backbone frame due to partial sp rehybridization of the σ C radical-center. Most importantly, despite the number of atoms (N = 11) and vibrational modes (3N-6 = 27), phenyl radical exhibits a remarkably clean jet cooled high resolution IR spectrum that shows no evidence of intramolecular vibrational relaxation (IVR) phenomena such as local or non-local perturbations due to strongly coupled nearby dark states. This provides strong support for the feasibility of high resolution infrared spectroscopy in other cyclic aromatic hydrocarbon radical systems.

  19. Effects of static-stretching and whole-body-vibration during warm-ups on bench-press kinematics in males and females college-aged. [Efectos de los estiramientos estáticos y vibraciones durante el calentamiento en los parámetros cinemáticos del press banca en hombres y mujeres estudiantes].

    Directory of Open Access Journals (Sweden)

    Esperanza Martín-Santana

    2015-10-01

    Full Text Available This study aimed to examine the effects of different specific warm-up protocols including static stretching (SS and whole body vibrations (WBV on kinematics and number of repetitions during a bench press set to failure in physically active male and female subjects. A secondary purpose was to analyze the role of sex on the warm-up induced effects. 24 participants (13 females and 11 males were randomly assigned to complete 3 experimental conditions in a cross-over design: SS, WBV and SS+WBV. After each condition, participants performed one bench-press set to volitional exhaustion with a load equivalent to the 60% of one-repetition maximum (1RM. No significant differences (P>0.05 were observed in number of repetitions, mean and maximal accelerative portion (AP, mean and maximal velocity, and lifting velocity time-course pattern. Males showed significantly higher values regarding number of repetitions achieved and maximal and mean lifting velocity. However, regarding the percentage of the concentric phase in which barbell is accelerated, there were no sex differences. In conclusion, no relevant difference in kinematics variables can be shown when applying any of these three different warm-up protocols, these results may be useful when designing training programs. We recommend the protocol SS due to the cost-benefit relationship. Resumen El objetivo de este estudio fue examinar el efecto de diferentes protocolos de calentamiento incluyendo estiramientos estáticos (EE y vibraciones de cuerpo entero (WBV en variables cinemáticas y número de repeticiones completadas en una serie de press banca realizada hasta el fallo muscular, en hombres y mujeres físicamente activos. Un segundo objetivo fue analizar el papel de la variable sexo en los efectos inducidos por el calentamiento. 24 participantes (13 mujeres y 11 hombres completaron, de forma aleatoria, 3 condiciones experimentales con un diseño cruzado: EE, WBV, y EE+WBV. Al terminar cada protocolo de

  20. Axisymmetric vibrations of thick shells of revolution

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)

  1. Vibration and DFT analysis of 2-methyl-3-nitrophenyl isocyanate and 4-methyl-2-nitrophenyl isocyanate

    Science.gov (United States)

    Tonannavar, J.; Prasannakumar, Sushanti; Savanur, J.; Yenagi, Jayashree

    2012-09-01

    Vibrational spectra of 2-methyl-3-nitrophenyl isocyanate and 4-methyl-2-nitrophenyl isocyanate, in the spectral region 4000-100 cm-1, have been measured and assigned. Conformational and harmonic frequency analyses have been performed at B3LYP/6-311G∗ level of calculations. The two stable conformers, cis and trans, have been computed for each of the molecules. It has been determined that the trans conformer has lower energy than the cis by 3.954 kJ/mol for 2-methyl-3-nitrophenyl isocyanate; whereas the cis conformer has lower energy than the trans by 10.230 kJ/mol for 4-methyl-2-nitrophenyl isocyanate. The vibration structure of 2-methyl-3-nitrophenyl isocyanate conforms to the combined behavior of its both conformers from which the deviation is shown by the structure of 4-methyl-2-nitrophenyl isocyanate which follows only the trans conformer. The occurrence of symmetric mode of the methyl group at higher frequency near 2944-20 cm-1 is attributed to the phenyl ring strain caused by the substituents. As for the other stretching and bending modes, mutually exclusive pattern appears to work for the molecules: The nitro group's non-coplanarity with the phenyl ring is more evident in 4-methyl-2-nitrophenyl isocyanate where the asymmetric mode was assigned to the band at 1569 cm-1, whereas the symmetric mode at lower frequency 1339 cm-1. Occasional doublet appearance of the strong asymmetric absorption near 2282 cm-1 due to isocyanate moiety has been observed in the present study and is assumed to arise from the torsional vibration motion of the moiety rendered by the small energy gap between the conformers of 2-methyl-3-nitrophenyl isocyanate.

  2. Secondary structure estimation and properties analysis of stretched Asian and Caucasian hair.

    Science.gov (United States)

    Zhou, A J; Liu, H L; Du, Z Q

    2015-02-01

    In this previous work, we investigated the secondary structure changes of stretched yak hairs by deconvolution, secondary derivation, and curve fitting and determined the number of bands and their positions in order to resolve the protein spectrum of Raman spectroscopy. The secondary structure estimation and properties analysis of stretched Asian and Caucasian hair were investigated by Fourier transform infrared spectroscopy, tensile curves, and measurement of density. The hairs were stretched, dried, and baked at ratios 20%, 40%, 60%, 80% and 100%. The analysis of the amide I band indicated that the transformation from α-helix to β-pleated structure occurred during the stretching process, which could be verified from the tensile analysis. The cysteine oxide in S-O vibration area exhibited that stretching led to the breakage of the disulfide bonds. When the stretching ratio of Caucasian hair was more than a certain ratio, the fiber macromolecular structure was destroyed because Caucasian hair had finer diameter and less medulla than Asian hair. The β turn was easier to retract compared with other conformations, resulted in the content increase. The density measurements revealed that the structure of Caucasian hair was indeed more destroyed than that of Asian hair. The cuticles characterization indicated the length of scales was stretched longer and the thickness became thinner. Caucasian hair tended to collapse to form small fragments at the early stage of stretching. With the increase in stretching ratio, the scales of Caucasian hair lifted up, then flaked off and the scale interval increased accordingly. Asian hair was more easily peeled off than Caucasian hair cuticles with the increase in stretching ratio. The secondary structure of Caucasian hair was destroyed more easily than that of Asian hair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Anomalous thermal response of silicene to uniaxial stretching

    Science.gov (United States)

    Hu, Ming; Zhang, Xiaoliang; Poulikakos, Dimos

    2013-05-01

    Silicene—the silicon counterpart of graphene—has a two-dimensional structure that leads to a host of interesting physical and chemical properties of significant utility. We report here an investigation with nonequilibrium molecular dynamics simulations of thermal transport in a single-layer silicene sheet under uniaxial stretching. We discovered that, contrary to its counterpart of graphene and despite the similarity of their honeycomb lattice structure, silicene exhibits an anomalous thermal response to tensile strain: The thermal conductivity of silicene and silicene nanoribbons first increases significantly with applied tensile strain rather than decreasing and then fluctuates at an elevated plateau. By quantifying the relative contribution from different phonon polarizations, we show first that the phonon transport in silicene is dominated by the out-of-plane flexural modes, similar to graphene. We attribute subsequently the unexpected and markedly different behavior of silicene to the interplay between two competing mechanisms governing heat conduction in a stretched silicene sheet, namely, (1) uniaxial stretching modulation in the longitudinal direction significantly depressing the phonon group velocities of longitudinal and transverse modes (phonon softening) and hindering heat conduction, and (2) phonon stiffening in the flexural modes counteracting the phonon softening effect and facilitating thermal transport. The abnormal behavior of the silicene sheet is further correlated to the unique deformation characteristics of its hexagonal lattice. Our study offers perspectives of modulating the thermal properties of low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.

  4. Infrared spectra of thin films of α-crystalline hexafluoroethane: a manifestation of resonant dipole-dipole interaction in the range of fundamental vibrational modes ν5 and ν10

    Science.gov (United States)

    Golubkova, O. S.; Kataeva, T. S.; Shchepkin, D. N.; Asfin, R. E.

    2017-06-01

    Infrared reflection-absorption spectra of thin films of α-crystalline hexafluoroethane deposited on a gold-plated copper mirror are measured at temperatures of 70 and 80 K. The bands corresponding to strong in the dipole absorption vibrations ν5 and ν10 have complex contours, the shape of which is explained in terms of the resonant dipole-dipole interaction between identical spectrally active molecules of the crystal. Splittings of the complex ν5 and ν10 bands are explained taking into account two effects: the Davydov splitting and the LO-TO splitting of the strong modes. Bands of the asymmetric 13C12CF6 isotopologue in the absorption spectrum of the crystal exhibit an anomalously large isotope shift as compared with the shift in the spectrum of free molecules. This anomaly is explained by intermolecular resonant dipole-dipole interaction of asymmetric 13C12CF6 isotopologue with molecules of the environment, consisting of the most abundant 12C2F6 isotopologue. The correctness of the given interpretation is confirmed calculating these three effects in the model of resonant dipole-dipole interaction.

  5. Improved assignments of the vibrational fundamental modes of ortho-, meta-, and para-xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas-phase infrared spectra for detection

    Science.gov (United States)

    Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.; Nguyen, Kiet T.; Williams, Stephen D.; Johnson, Timothy J.

    2017-12-01

    Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, high quality quantitative vapor-phase infrared spectra of all three isomers over the 6500 - 540 cm-1 range are reported. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C2v symmetry for ortho-xylene, and two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have Cs and C2 symmetry, and for para-xylene these conformers have C2v or C2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, an arbitrary choice to discuss the Cs conformer for meta-xylene and the C2v conformer for para-xylene is made. Integrated band intensities for all isomers are reported. Using the quantitative infrared data, the global warming potential values of each isomer are determined. Potential bands for atmospheric monitoring are also discussed.

  6. Vibration response of misaligned rotors

    Science.gov (United States)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  7. Wrinkling instability of an inhomogeneously stretched viscous sheet

    Science.gov (United States)

    Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.

    2017-07-01

    Motivated by the redrawing of hot glass into thin sheets, we investigate the shape and stability of a thin viscous sheet that is inhomogeneously stretched in an imposed nonuniform temperature field. We first determine the associated base flow by solving the long-time-scale stretching flow of a flat sheet as a function of two dimensionless parameters: the normalized stretching velocity α and a dimensionless width of the heating zone β . This allows us to determine the conditions for the onset of an out-of-plane wrinkling instability stated in terms of an eigenvalue problem for a linear partial differential equation governing the displacement of the midsurface of the sheet. We show that the sheet can become unstable in two regions that are upstream and downstream of the heating zone where the minimum in-plane stress is negative. This yields the shape and growth rates of the most unstable buckling mode in both regions for various values of the stretching velocity and heating zone width. A transition from stationary to oscillatory unstable modes is found in the upstream region with increasing β , while the downstream region is always stationary. We show that the wrinkling instability can be entirely suppressed when the surface tension is large enough relative to the magnitude of the in-plane stress. Finally, we present an operating diagram that indicates regions of the parameter space that result in a required outlet sheet thickness upon stretching while simultaneously minimizing or suppressing the out-of-plane buckling, a result that is relevant for the glass redraw method used to create ultrathin glass sheets.

  8. Time stretch and its applications

    Science.gov (United States)

    Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram

    2017-06-01

    Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.

  9. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  10. Triceps surae short latency stretch reflexes contribute to ankle stiffness regulation during human running.

    Directory of Open Access Journals (Sweden)

    Neil J Cronin

    Full Text Available During human running, short latency stretch reflexes (SLRs are elicited in the triceps surae muscles, but the function of these responses is still a matter of controversy. As the SLR is primarily mediated by Ia afferent nerve fibres, various methods have been used to examine SLR function by selectively blocking the Ia pathway in seated, standing and walking paradigms, but stretch reflex function has not been examined in detail during running. The purpose of this study was to examine triceps surae SLR function at different running speeds using Achilles tendon vibration to modify SLR size. Ten healthy participants ran on an instrumented treadmill at speeds between 7 and 15 km/h under 2 Achilles tendon vibration conditions: no vibration and 90 Hz vibration. Surface EMG from the triceps surae and tibialis anterior muscles, and 3D lower limb kinematics and ground reaction forces were simultaneously collected. In response to vibration, the SLR was depressed in the triceps surae muscles at all speeds. This coincided with short-lasting yielding at the ankle joint at speeds between 7 and 12 km/h, suggesting that the SLR contributes to muscle stiffness regulation by minimising ankle yielding during the early contact phase of running. Furthermore, at the fastest speed of 15 km/h, the SLR was still depressed by vibration in all muscles but yielding was no longer evident. This finding suggests that the SLR has greater functional importance at slow to intermediate running speeds than at faster speeds.

  11. BSDB: the Biomolecule Stretching Database

    Science.gov (United States)

    Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej

    2011-03-01

    Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).

  12. Stretching

    Science.gov (United States)

    ... this topic for: Teens Dehydration Safety Tips: Running Knee Injuries Repetitive Stress Injuries Sports and Exercise Safety Dealing With Sports Injuries Sports Center Strains and Sprains View more Partner Message About Us Contact Us ...

  13. Vibrational dynamics of thiocyanate and selenocyanate bound to horse heart myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Michał; Oh, Younjun; Park, Kwanghee; Lee, Jooyong; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of); Kwak, Kyung-Won [Department of Chemistry, Chung-Ang University, Seoul 156-756, SouthKorea (Korea, Republic of)

    2014-06-21

    The structure and vibrational dynamics of SCN- and SeCN-bound myoglobin have been investigated using polarization-controlled IR pump-probe measurements and quantum chemistry calculations. The complexes are found to be in low and high spin states, with the dominant contribution from the latter. In addition, the Mb:SCN high spin complex exhibits a doublet feature in the thiocyanate stretch IR absorption spectra, indicating two distinct molecular conformations around the heme pocket. The binding mode of the high spin complexes was assigned to occur through the nitrogen atom, contrary to the binding through the sulfur atom that was observed in myoglobin derived from Aplysia Limacina. The vibrational energy relaxation process has been found to occur substantially faster than those of free SCN{sup −} and SeCN{sup −} ions and neutral SCN- and SeCN-derivatized molecules reported previously. This supports the N-bound configurations of MbNCS and MbNCSe, because S- and Se-bound configurations are expected to have significantly long lifetimes due to the insulation effect by heavy bridge atom like S and Se in such IR probes. Nonetheless, even though their lifetimes are much shorter than those of corresponding free ions in water, the vibrational lifetimes determined for MbNCS and MbNCSe are still fairly long compared to those of azide and cyanide myoglobin systems studied before. Thus, thiocyanate and selenocyanate can be good local probes of local electrostatic environment in the heme pocket. The globin dependence on binding mode and vibrational dynamics is also discussed.

  14. Vibrational dynamics of thiocyanate and selenocyanate bound to horse heart myoglobin.

    Science.gov (United States)

    Maj, Michał; Oh, Younjun; Park, Kwanghee; Lee, Jooyong; Kwak, Kyung-Won; Cho, Minhaeng

    2014-06-21

    The structure and vibrational dynamics of SCN- and SeCN-bound myoglobin have been investigated using polarization-controlled IR pump-probe measurements and quantum chemistry calculations. The complexes are found to be in low and high spin states, with the dominant contribution from the latter. In addition, the Mb:SCN high spin complex exhibits a doublet feature in the thiocyanate stretch IR absorption spectra, indicating two distinct molecular conformations around the heme pocket. The binding mode of the high spin complexes was assigned to occur through the nitrogen atom, contrary to the binding through the sulfur atom that was observed in myoglobin derived from Aplysia Limacina. The vibrational energy relaxation process has been found to occur substantially faster than those of free SCN(-) and SeCN(-) ions and neutral SCN- and SeCN-derivatized molecules reported previously. This supports the N-bound configurations of MbNCS and MbNCSe, because S- and Se-bound configurations are expected to have significantly long lifetimes due to the insulation effect by heavy bridge atom like S and Se in such IR probes. Nonetheless, even though their lifetimes are much shorter than those of corresponding free ions in water, the vibrational lifetimes determined for MbNCS and MbNCSe are still fairly long compared to those of azide and cyanide myoglobin systems studied before. Thus, thiocyanate and selenocyanate can be good local probes of local electrostatic environment in the heme pocket. The globin dependence on binding mode and vibrational dynamics is also discussed.

  15. Vibrational spectroscopic analysis of the mineral crandallite CaAl3(PO4)2(OH)5·(H2O) from the Jenolan Caves, Australia.

    Science.gov (United States)

    Frost, Ray L; Xi, Yunfei; Palmer, Sara J; Pogson, Ross

    2011-11-01

    The mineral crandallite CaAl(3)(PO(4))(2)(OH)(5)·(H(2)O) has been identified in deposits found in the Jenolan Caves, New South Wales, Australia by using a combination of X-ray diffraction and Raman spectroscopic techniques. A comparison is made between the vibrational spectra of crandallite found in the Jenolan Caves and a standard crandallite. Raman and infrared bands are assigned to PO(4)(3-) and HPO(4)(2-) stretching and bending modes. The predominant features are the internal vibrations of the PO(4)(3-) and HPO(4)(2-) groups. A mechanism for the formation of crandallite is presented and the conditions for the formation are elucidated. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Vibrating minds

    CERN Multimedia

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  17. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  18. A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation

    Science.gov (United States)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.

    2000-01-01

    The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.

  19. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.

    2005-08-01

    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  20. Vibrational spectroscopy of Cm–C/Cb–Cb stretching vibrations of ...

    Indian Academy of Sciences (India)

    A comprehensive treatment to understand the spectroscopic features of microsize molecules is by far one of the most challenging aspects of current studies in chem- ical physics problems [1]. On the one side, experimental techniques are producing a rapidly increasing amount of data and clear evidence for intriguing ...

  1. [Structure analysis of disease-related proteins using vibrational spectroscopy].

    Science.gov (United States)

    Hiramatsu, Hirotsugu

    2014-01-01

    Analyses of the structure and properties of identified pathogenic proteins are important for elucidating the molecular basis of diseases and in drug discovery research. Vibrational spectroscopy has advantages over other techniques in terms of sensitivity of detection of structural changes. Spectral analysis, however, is complicated because the spectrum involves a substantial amount of information. This article includes examples of structural analysis of disease-related proteins using vibrational spectroscopy in combination with additional techniques that facilitate data acquisition and analysis. Residue-specific conformation analysis of an amyloid fibril was conducted using IR absorption spectroscopy in combination with (13)C-isotope labeling, linear dichroism measurement, and analysis of amide I band features. We reveal a pH-dependent property of the interacting segment of an amyloidogenic protein, β2-microglobulin, which causes dialysis-related amyloidosis. We also reveal the molecular mechanisms underlying pH-dependent sugar-binding activity of human galectin-1, which is involved in cell adhesion, using spectroscopic techniques including UV resonance Raman spectroscopy. The decreased activity at acidic pH was attributed to a conformational change in the sugar-binding pocket caused by protonation of His52 (pKa 6.3) and the cation-π interaction between Trp68 and the protonated His44 (pKa 5.7). In addition, we show that the peak positions of the Raman bands of the C4=C5 stretching mode at approximately 1600 cm(-1) and the Nπ-C2-Nτ bending mode at approximately 1405 cm(-1) serve as markers of the His side-chain structure. The Raman signal was enhanced 12 fold using a vertical flow apparatus.

  2. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  3. Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions

    International Nuclear Information System (INIS)

    Khachatrian, Ani; Dagdigian, Paul J.

    2010-01-01

    An investigation of laser-induced breakdown spectroscopy (LIBS) of polymers, both in bulk form and spin coated on Si wafers, with laser irradiation in the mid-infrared spectral region is presented. Of particular interest is whether the LIBS signals are enhanced when the laser wavelength is resonant with a fundamental vibrational transition of the polymer. Significant increases in the LIBS signals were observed for irradiation on hydride stretch fundamental transitions, and the magnitude of the enhancement showed a strong dependence on the mode excited. The role of the substrate was investigated by comparison of results for bulk and spin-coated samples. The polymers investigated were Nylon 12 and poly(vinyl alcohol-co-ethylene).

  4. Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study

    Science.gov (United States)

    Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad

    2018-02-01

    Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.

  5. Molecular couplings and energy exchange between DNA and water mapped by femtosecond infrared spectroscopy of backbone vibrations

    Directory of Open Access Journals (Sweden)

    Yingliang Liu

    2017-07-01

    Full Text Available Molecular couplings between DNA and water together with the accompanying processes of energy exchange are mapped via the ultrafast response of DNA backbone vibrations after OH stretch excitation of the water shell. Native salmon testes DNA is studied in femtosecond pump-probe experiments under conditions of full hydration and at a reduced hydration level with two water layers around the double helix. Independent of their local hydration patterns, all backbone vibrations in the frequency range from 940 to 1120 cm–1 display a quasi-instantaneous reshaping of the spectral envelopes of their fundamental absorption bands upon excitation of the water shell. The subsequent reshaping kinetics encompass a one-picosecond component, reflecting the formation of a hot ground state of the water shell, and a slower contribution on a time scale of tens of picoseconds. Such results are benchmarked by measurements with resonant excitation of the backbone modes, resulting in distinctly different absorption changes. We assign the fast changes of DNA absorption after OH stretch excitation to structural changes in the water shell which couple to DNA through the local electric fields. The second slower process is attributed to a flow of excess energy from the water shell into DNA, establishing a common heated ground state in the molecular ensemble. This interpretation is supported by theoretical calculations of the electric fields exerted by the water shell at different temperatures.

  6. Combination Bands of the Nonpolar OCS Dimer Involving Intermolecular Modes

    Science.gov (United States)

    Rezaei, M.; Oliaee, J. Norooz; Moazzen-Ahmadi, N.; McKellar, A. R. W.

    2012-06-01

    Spectra of the nonpolar carbonyl sulfide in the region of the OCS ν_1 fundamental band were observed in a supersonic slit-jet apparatus. The expansion gas was probed using radiation from a tunable diode laser employed in a rapid-scan signal averaging mode. Three bands centered at 2085.906, 2103.504, and 2114.979 cm-1 were observed and anlysed. The rotational assignment and fitting of the bands were made by fixing the lower state parameters to those for the ground state of nonpolar (OCS)_2, thus confirming that they were indeed combination bands of the of the most stable isomer of OCS dimer. The band centered at 2085.906 cm-1 is a combination of the forbidden A_g intramolecular mode plus the geared bend intermolecular mode and that centered at 2114.979 cm-1 is a combination of the allowed B_u intramolecular mode plus the intermolecular van der Waals stretch. The combination at 2103.504 cm-1 can be assigned as a band whose upper state involves four quanta of the intramolecular bend or the B_u intramolecular mode plus two quanta of the intermolecular torsional mode. Isotopic work is needed to conclusively identify the vibrational assignment of this band. Our experimental frequencies for the geared bend and van der Waals modes are in good agreement with a recent high level ab initio calculation by Brown et al. J. Brown, Xiao-Gang Wang, T. Carrington Jr. and Richard Dawes, Journal of Chemical Physics, submitted.

  7. Effect of stretching techniques on hamstring flexibility in female ...

    African Journals Online (AJOL)

    Flexibility can be achieved by a variety of stretching techniques and the benefits of stretching are known. However, controversy remains about the best type of stretching for achieving a particular goal or outcome. The four most basic stretches are static stretching, dynamic stretching, PNF hold-relax and PNF contract-relax ...

  8. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  9. Stretching of macromolecules and proteins

    International Nuclear Information System (INIS)

    Strick, T R; Dessinges, M-N; Charvin, G; Dekker, N H; Allemand, J-F; Bensimon, D; Croquette, V

    2003-01-01

    In this paper we review the biophysics revealed by stretching single biopolymers. During the last decade various techniques have emerged allowing micromanipulation of single molecules and simultaneous measurements of their elasticity. Using such techniques, it has been possible to investigate some of the interactions playing a role in biology. We shall first review the simplest case of a non-interacting polymer and then present the structural transitions in DNA, RNA and proteins that have been studied by single-molecule techniques. We shall explain how these techniques permit a new approach to the protein folding/unfolding transition

  10. Improved assignments of the vibrational fundamental modes of ortho -, meta -, and para -xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas-phase infrared spectra for detection

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.; Nguyen, Kiet T.; Williams, Stephen D.; Johnson, Timothy J.

    2017-07-25

    Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm-1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C2v symmetry for ortho-xylene, and two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have Cs and C2 symmetry, and for para-xylene these conformers have C2v or C2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the Cs conformer for meta-xylene and the C2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.

  11. Vibrational spectroscopy

    International Nuclear Information System (INIS)

    Fadini, A.

    1980-01-01

    We present 13 programs for the calculation of vibrational spectroscopic problems applied to small molecules with high symmetry. The programs are compiled for the well known programmable pocket calculator Texas Instruments SR-52. To the special problems, the mathematical formulas, input and output instructions, several numerical examples, literature and the programs with comments are given. Order n = 1: The force constants, isotopic vibrational frequencies and the vibrational amplitudes are calculated for the two mass system XY(Csub(infinitely v)). For the three mass system XY 2 (Dsub(infinitely h)) only the force constants and isotopic frequencies are calculated. Order n = 2: For the three mass systems XYZ(Csub(infinitely v)) and XY 2 (Csub(infinitely 2v)) the inverse matrices G of the kinetic energy are presented. For complete sets of data (with isotopic frequencies, Coriolis coupling constants etc.) the complete force constant matrices are calculated. For non complete sets of data one starts in most cases with diagonal force constant matrices. The complete force constant matrix F is calculated with a minimalisation approximation. The eigenvector matrices L result from the G - F - and N-matrices. The N-matrices are calculated from the G- and F-matrices or from the F- and L-matrices respectively. Order n = 3: The matrix G of the system XYZ(Csub(S)) is calculated. For higher orders n, the 'isotopic reduction method' for the calculation of single force constants of proper systems is described. (orig.) [de

  12. Study of complex modes

    International Nuclear Information System (INIS)

    Pastrnak, J.W.

    1986-01-01

    This eighteen-month study has been successful in providing the designer and analyst with qualitative guidelines on the occurrence of complex modes in the dynamics of linear structures, and also in developing computer codes for determining quantitatively which vibration modes are complex and to what degree. The presence of complex modes in a test structure has been verified. Finite element analysis of a structure with non-proportional dumping has been performed. A partial differential equation has been formed to eliminate possible modeling errors

  13. Hydrogen bond dynamics and vibrational spectral diffusion in ...

    Indian Academy of Sciences (India)

    Abstract. We present an ab initio molecular dynamics study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous solution of acetone at room temperature. It is found that the frequencies of OD bonds in the acetone hydration shell have a higher stretch frequency than those in the bulk water. Also, on ...

  14. PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION STRETCHING VERSUS STATIC STRETCHING ON SPRINTING PERFORMANCE AMONG COLLEGIATE SPRINTERS

    Directory of Open Access Journals (Sweden)

    Jayaram Maharjan

    2015-08-01

    Full Text Available Background: A warm-up is important part of preparation for sprinting. There is popularity of doing stretching as part of warm up before athletic activity. The static stretching and PNF stretching is performed by athletes but their effectiveness on sprinting performance is in state of debate. The objective is to determine the effect of static stretching and PNF stretching on sprinting performance in college sprinters and to compare the effects of PNF stretching over static stretching on sprinting performance in college sprinters. Method: A total of 100 subjects were taken for the study that fulfill the inclusion criteria and all were divided into group- A (static stretching and group- B (PNF stretching by simple random sampling method. Both the groups received 5 minutes of warm-up exercises. Pre-Post design was used, which consisted of running a 40-yard sprint immediately following 2 stretching conditions aimed at the lower limb muscles Results: In static stretching group sprint time changed from 6.55 with standard deviation of 0.93 to 6.12 with standard deviation of 1.02 (P.605. Conclusion: Hence both static stretching and PNF stretching can be performed before sprinting activity to improve the sprinting performance.

  15. Deviation from fluctuation-dissipation relation for driven superdiffusion: Polymer stretching as an example

    Science.gov (United States)

    Saito, Takuya

    2017-09-01

    We discuss a deviation of the fluctuation-dissipation relation (FDR) in a driven superdiffusive system as exemplified by polymer stretching. The superdiffusion is found by monitoring momentum transfer to a tracer, which is a conjugate observable with the position. Molecular-dynamics simulation demonstrates that the FDR deviates during the nonequilibrium transient process. We then propose nonequilibrium mode analysis for superdiffusion, which is a counterpart to that for driven subdiffusion. The mode analysis yields results that are in qualitative agreement with the simulation results, suggesting that the fluctuations of the stiffness in the system from initial equilibrium to stretching account for the FDR deviation.

  16. Studies of interstellar vibrationally-excited molecules

    International Nuclear Information System (INIS)

    Ziurys, L.M.; Snell, R.L.; Erickson, N.R.

    1986-01-01

    Several molecules thus far have been detected in the ISM in vibrationally-excited states, including H 2 , SiO, HC 3 N, and CH 3 CN. In order for vibrational-excitation to occur, these species must be present in unusually hot and dense gas and/or where strong infrared radiation is present. In order to do a more thorough investigation of vibrational excitation in the interstellar medium (ISM), studies were done of several mm-wave transitions originating in excited vibrational modes of HCN, an abundant interstellar molecule. Vibrationally-excited HCN was recently detected toward Orion-KL and IRC+10216, using a 12 meter antenna. The J=3-2 rotational transitions were detected in the molecule's lowest vibrational state, the bending mode, which is split into two separate levels, due to l-type doubling. This bending mode lies 1025K above ground state, with an Einstein A coefficient of 3.6/s. The J=3-2 line mode of HCN, which lies 2050K above ground state, was also observed toward IRC+10216, and subsequently in Orion-KL. Further measurements of vibrationally-excited HCN were done using a 14 meter telescope, which include the observations of the (0,1,0) and (0,2,0) modes towards Orion-KL, via their J=3-2 transitions at 265-267 GHz. The spectrum of the J=3-2 line in Orion taken with the 14 meter telescope, is shown, along with a map, which indicates that emission from vibrationally-excited HCN arises from a region probably smaller than the 14 meter telescope's 20 arcsec beam

  17. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  18. Contact angles on stretched solids

    Science.gov (United States)

    Mensink, Liz; Snoeijer, Jacco

    2017-11-01

    The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.

  19. A COMPARISION BETWEEN CROSSBODY STRETCH VERSUS SLEEPER STRETCH IN PERIARTHRITIS OF SHOULDER

    Directory of Open Access Journals (Sweden)

    Shaik Raheem Saheb

    2015-12-01

    Full Text Available Background: Recently Cross body stretch and Sleeper stretch are used to improve internal rotation Range of motion in Shoulder Pathologies. It was proposed to study the effect of cross body stretch and sleeper stretch in subjects with periarthritis of shoulder. Methods: 60 subjects with a mean age of 53 years having clinical diagnosis of Periarthritis of shoulder and full filled the inclusive criteria are taken. After the initial measurements, the subjects are randomly assigned into 2 stretching groups. Group-A performed the Sleeper stretch. Group-B performed a Cross body stretch. Both Groups performed the Stretch in Duration of 6weeks – once daily for 5 repetitions holding each stretch for 30 seconds for 5 days a week. Along with this technique conventional physiotherapy like IFT, overhead pulleys, Pendula exercises, Wall climbing exercises, mariners wheel exercises are performed. After the treatment, subjects were evaluated for their pain profile using visual analogue scale, Goniometer for measuring Range of motion. Results: For within group comparison we used Paired t-test analysis, For Between group comparison we used Independent t-test for statistical analysis. At the end of 6 weeks It was found that subjects treated with cross-body stretch showed significant improvement in terms of VAS scores and Range of motion scores (P=0.000 and patients treated with Sleeper stretch showed significant improvement in terms of VAS scores and Range of motion scores (P=0.000. When compared between Groups the VAS and Range of motion scores showed a significant improvement in Cross body stretch Group than the Sleeper stretch Group (P=0.000. Conclusion: It was concluded that both stretching techniques were found improvement in Range of motion and VAS and Cross-body Stretch showed more Significant improvement than the sleeper Stretch after 6 weeks treatment.

  20. Theoretical and experimental study of the C-H stretching overtones of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12 hexaazaisowurtzitane (CL20).

    Science.gov (United States)

    Cabalo, J; Sausa, R

    2013-09-19

    An understanding of how molecular environment and structure are reflected in optical absorption spectra offers a number of advantages, such as improved detection of materials or providing an easy means of distinguishing crystal polymorphs of the same molecular solid. This study advances this understanding by comparing near IR laser photoacoustic absorption measurements of the first C-H stretch overtones around 5975 cm(-1) of β-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL20) to simulated spectra using density functional calculations and the local mode model of C-H stretches. The calculations reveal that accounting for movement of charge throughout the model crystal unit cell with a pure quantum mechanical method in the calculation of the transition dipole moment is critical to matching the experimental data. Vibrational modes in a given molecule induce movement of charge in neighboring molecules, such that calculation of the transition dipole moment had to include the entire crystal unit cell. Movement of charge across the periodic boundary conditions (PBC) of the model needs to be accounted for to calculate a spectrum validated by the experimental measurement. The Hirshfeld population analysis minimizes discontinuities for movement of charge across the PBC.

  1. Communication: Mode specific quantum dynamics of the F + CHD{sub 3} → HF + CD{sub 3} reaction

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Ji; Song, Hongwei; Yang, Minghui, E-mail: yangmh@wipm.ac.cn, E-mail: juliana@unq.edu.ar, E-mail: uwe.manthe@uni-bielefeld.de [Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Palma, Juliana, E-mail: yangmh@wipm.ac.cn, E-mail: juliana@unq.edu.ar, E-mail: uwe.manthe@uni-bielefeld.de [Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Sáenz Peña 352, Bernal B1876BXD (Argentina); Manthe, Uwe, E-mail: yangmh@wipm.ac.cn, E-mail: juliana@unq.edu.ar, E-mail: uwe.manthe@uni-bielefeld.de [Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld (Germany); Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2016-05-07

    The mode specific reactivity of the F + CHD{sub 3} → HF + CD{sub 3} reaction is investigated using an eight-dimensional quantum dynamical model on a recently developed ab initio based full-dimensional potential energy surface. Our results indicate prominent resonance structures at low collision energies and absence of an energy threshold in reaction probabilities. It was also found that excitation of the C–D stretching or CD{sub 3} umbrella mode has a relatively small impact on reactivity. On the other hand, the excitation of the C–H vibration (v{sub 1}) in CHD{sub 3} is shown to significantly increase the reactivity, which, like several recent quasi-classical trajectory studies, is at odds with the available experimental data. Possible sources of the disagreement are discussed.

  2. Development of a sine-dwell ground vibration test (GVT) system

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2006-02-27

    Full Text Available Knowledge of the natural modes of vibration of a structure is required to solve or avoid vibration and flexibility problems in industrial, automotive, aerospace and civil engineering applications. All new aircraft must undergo a flutter clearance...

  3. Oriented single-crystal nuclear resonance vibrational spectroscopy of [Fe(TPP)(MI)(NO)]: quantitative assessment of the trans effect of NO.

    Science.gov (United States)

    Lehnert, Nicolai; Sage, J Timothy; Silvernail, Nathan; Scheidt, W Robert; Alp, E Ercan; Sturhahn, Wolfgang; Zhao, Jiyong

    2010-08-02

    This paper presents oriented single-crystal Nuclear Resonance Vibrational Spectroscopy (NRVS) data for the six-coordinate (6C) ferrous heme-nitrosyl model complex [(57)Fe(TPP)(MI)(NO)] (1; TPP(2-) = tetraphenylporphyrin dianion; MI = 1-methylimidazole). The availability of these data enables for the first time the detailed simulation of the complete NRVS data, including the porphyrin-based vibrations, of a 6C ferrous heme-nitrosyl, using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Importantly, the Fe-NO stretch is split by interaction with a porphyrin-based vibration into two features, observed at 437 and 472 cm(-1). The 437 cm(-1) feature is strongly out-of-plane (oop) polarized and shows a (15)N(18)O isotope shift of 8 cm(-1) and is therefore assigned to nu(Fe-NO). The admixture of Fe-N-O bending character is small. Main contributions to the Fe-N-O bend are observed in the 520-580 cm(-1) region, distributed over a number of in-plane (ip) polarized porphyrin-based vibrations. The main component, assigned to delta(ip)(Fe-N-O), is identified with the feature at 563 cm(-1). The Fe-N-O bend also shows strong mixing with the Fe-NO stretching internal coordinate, as evidenced by the oop NRVS intensity in the 520-580 cm(-1) region. Very accurate normal mode descriptions of nu(Fe-NO) and delta(ip)(Fe-N-O) have been obtained in this study. These results contradict previous interpretations of the vibrational spectra of 6C ferrous heme-nitrosyls where the higher energy feature at approximately 550 cm(-1) had usually been associated with nu(Fe-NO). Furthermore, these results provide key insight into NO binding to ferrous heme active sites in globins and other heme proteins, in particular with respect to (a) the effect of hydrogen bonding to the coordinated NO and (b) changes in heme dynamics upon NO coordination. [Fe(TPP)(MI)(NO)] constitutes an excellent model system for ferrous NO adducts of myoglobin (Mb) mutants where the distal histidine (His64

  4. Anharmonic Theoretical Vibrational Spectroscopy of Polypeptides.

    Science.gov (United States)

    Panek, Paweł T; Jacob, Christoph R

    2016-08-18

    Because of the size of polypeptides and proteins, the quantum-chemical prediction of their vibrational spectra presents an exceptionally challenging task. Here, we address one of these challenges, namely, the inclusion of anharmonicities. By performing the expansion of the potential energy surface in localized-mode coordinates instead of the normal-mode coordinates, it becomes possible to calculate anharmonic vibrational spectra of polypeptides efficiently and reliably. We apply this approach to calculate the infrared, Raman, and Raman optical activity spectra of helical alanine polypeptides consisting of up to 20 amino acids. We find that while anharmonicities do not alter the band shapes, simple scaling procedures cannot account for the different shifts found for the individual bands. This closes an important gap in theoretical vibrational spectroscopy by making it possible to quantify the anharmonic contributions and opens the door to a first-principles calculation of multidimensional vibrational spectra.

  5. Hot Ground Vibration Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  6. Anisotropic instability of a stretching film

    Science.gov (United States)

    Xu, Bingrui; Li, Minhao; Deng, Daosheng

    2017-11-01

    Instability of a thin liquid film, such as dewetting arising from Van der Waals force, has been well studied, and is typically characterized by formation of many droplets. Interestingly, a thin liquid film subjected to an applied stretching during a process of thermal drawing is evolved into an array of filaments, i.e., continuity is preserved along the direction of stretching while breakup occurs exclusively in the plane of cross section. Here, to understand this anisotropic instability, we build a physical model by considering both Van der Waals force and the effect of stretching. By using the linear instability analysis method and then performing a numerical calculation, we find that the growth rate of perturbations at the cross section is larger than that along the direction of stretching, resulting in the anisotropic instability of the stretching film. These results may provide theoretical guidance to achieve more diverse structures for nanotechnology.

  7. [Study on crystal growth and vibrational spectra of Yb(x) : KY(1-x) (WO4)2].

    Science.gov (United States)

    Liu, Jing-He; Zhang, Ying; Zhang, Li-Jie; Zeng, Fan-Ming; Wang, Cheng-Wei; Zhang, Xue-Jian

    2008-02-01

    Yb(x) : KY(1-x)W (x = 0.05)and KYbW crystals were grown by TSSG method. Both of the structure and spectral properties were compared. The condition for the crystal growth is: the rotation rate 10-15 r x min(-1), the pulling speed 1-2 d(-1), the growing period 10-15 d, cooling growing speed 0.05-0.1 degrees C x h(-1), and the cooling speed 20 degrees C x h(-1). X-ray powder diffraction analysis was performed for the crystal powder. They belong to beta-KYW structure with low thermal phase. The cell parameters of the two crystals were calculated, and they are respectively a1 = 1.063 nm, b1 = 1.034 nm, c1 = 0.755 nm, beta1 = 130.75 degrees, Z1 = 4 and a2 = 1.061 nm, b2 = 1.029 nm, c2 = 0.749 nm, beta2 = 130.65 degrees and Z2 = 4. The infrared spectrum and Raman spectrum of crystal were measured. The sample of Yb(x) : KY(1-x) W (x = 0.05) had stronger infrared absorption peaks at 925, 891, 840, 777 and 749 cm(-1), which were caused by stretching vibration. The sample of KYW had stronger infrared absorption peaks at 484 and 437 cm(-1) caused by bending vibration. The vibration modes were analysed and vibrational frequencies of vibratory activity was assigned. The two crystals had strong Raman activity. The vibration of WOOW and WOW exists from 200 to 1000 cm(-1).

  8. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  9. Vibrational and Thermal Properties of Oxyanionic Crystals

    Science.gov (United States)

    Korabel'nikov, D. V.

    2018-03-01

    The vibrational and thermal properties of dolomite and alkali chlorates and perchlorates were studied in the gradient approximation of density functional theory using the method of a linear combination of atomic orbitals (LCAO). Long-wave vibration frequencies, IR and Raman spectra, and mode Gruneisen parameters were calculated. Equation-of-state parameters, thermodynamic potentials, entropy, heat capacity, and thermal expansion coefficient were also determined. The thermal expansion coefficient of dolomite was established to be much lower than for chlorates and perchlorates. The temperature dependence of the heat capacity at T > 200 K was shown to be generally governed by intramolecular vibrations.

  10. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios.

    Science.gov (United States)

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-10-18

    To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.

  11. Strategy as stretch and leverage.

    Science.gov (United States)

    Hamel, G; Prahalad, C K

    1993-01-01

    Global competition is not just product versus product or company versus company. It is mind-set versus mind-set. Driven to understand the dynamics of competition, we have learned a lot about what makes one company more successful than another. But to find the root of competitiveness--to understand why some companies create new forms of competitive advantage while others watch and follow--we must look at strategic mind-sets. For many managers, "being strategic" means pursuing opportunities that fit the company's resources. This approach is not wrong, Gary Hamel and C.K. Prahalad contend, but it obscures an approach in which "stretch" supplements fit and being strategic means creating a chasm between ambition and resources. Toyota, CNN, British Airways, Sony, and others all displaced competitors with stronger reputations and deeper pockets. Their secret? In each case, the winner had greater ambition than its well-endowed rivals. Winners also find less resource-intensive ways of achieving their ambitious goals. This is where leverage complements the strategic allocation of resources. Managers at competitive companies can get a bigger bang for their buck in five basic ways: by concentrating resources around strategic goals; by accumulating resources more efficiently; by complementing one kind of resource with another; by conserving resources whenever they can; and by recovering resources from the market-place as quickly as possible. As recent competitive battles have demonstrated, abundant resources can't guarantee continued industry leadership.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Acoustical analysis of gear housing vibration

    Science.gov (United States)

    Seybert, A. F.; Wu, T. W.; Wu, X. F.; Oswald, Fred B.

    1991-01-01

    The modal and acoustical analysis of the NASA gear-noise rig is described. Experimental modal analysis techniques were used to determine the modes of vibration of the transmission housing. The resulting modal data were then used in a boundary element method (BEM) analysis to calculate the sound pressure and sound intensity on the surface of the housing as well as the radiation efficiency of each mode. The radiation efficiencies of the transmission housing modes are compared with theoretical results for finite, baffled plates. A method that uses the measured mode shapes and the BEM to predict the effect of simple structural changes on the sound radiation efficiency of the modes of vibration is also described.

  13. Free vibration characteristics of double-walled carbon nanotubes embedded in an elastic medium

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Lei, Xiao-Wen; Ni, Qing-Qing; Endo, Morinobu

    2010-01-01

    In this Letter, a theoretical analysis of the resonant vibration of double-walled carbon nanotubes (DWCNTs) and the DWCNTs embedded in an elastic medium is presented based on Euler-Bernoulli beam model and Winkler spring model. The vibration modes of DWCNTs are quite different from those of single-walled carbon nanotubes (SWCNTs). The resonant vibrations of DWCNTs are found to have in-phase and anti-phase modes, in which the deflections of the inner and outer nanotubes occur in the same and opposite directions, respectively. For the vibration of DWCNTs with the same harmonic numbers, the resonant frequencies of anti-phase mode are larger than the ones of in-phase mode. Moreover, influence of the surrounding medium on the resonant vibrations is investigated using the Winkler spring model. The results show that surrounding medium makes a strong impact on the vibration frequencies of in-phase mode, but little on those of anti-phase mode.

  14. The Transition from Hydrogen Bonding to Ionization in (HCI)n(NH3)n and (HCI)n(H2O)n Clusters: Consequences for Anharmonic Vibrational Spectroscopy

    Science.gov (United States)

    Chaban, Galina M.; Gerber, R. Benny; Janda, Kenneth C.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Anharmonic vibrational frequencies and intensities are calculated for 1:1 and 2:2 (HCl)(sub n)(NH3)(sub n) and (HCl)(sub n)(H2O)(sub n) complexes, employing the correlation-corrected vibrational self-consistent field method with ab initio potential surfaces at the MP2/TZP computational level. In this method, the anharmonic coupling between all vibrational modes is included, which is found to be important for the systems studied. For the 4:4 (HCl)(sub n)(H2O)(sub n) complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Just as the (HCl)(sub n)(NH3)(sub n) structure switches from hydrogen-bonded to ionic for n=2, the (HCl)(sub n)(H2O)(sub n) switches to ionic structure for n=4. For (HCl)2(H2O)2, the lowest energy structure corresponds to the hydrogen-bonded form. However, configurations of the ionic form are separated from this minimum by a barrier of less than an O-H stretching quantum. This suggests the possibility of experiments on ionization dynamics using infrared excitation of the hydrogen-bonded form. The strong cooperative effects on the hydrogen bonding, and concomitant transition to ionic bonding, makes an accurate estimate of the large anharmonicity crucial for understanding the infrared spectra of these systems. The anharmonicity is typically of the order of several hundred wave numbers for the proton stretching motions involved in hydrogen or ionic bonding, and can also be quite large for the intramolecular modes. In addition, the large cooperative effects in the 2:2 and higher order (HCl(sub n)(H2O)(sub n) complexes may have interesting implications for solvation of hydrogen halides at ice surfaces.

  15. Time-Stretch Accelerated Processor for Real-time, In-service, Signal Analysis

    DEFF Research Database (Denmark)

    Lonappan, Cejo K.; Buckley, Brandon W.; Adam, Jost

    2014-01-01

    We demonstrate real-time, in-service, digital signal analysis of 10 Gbit/s data using a 1.2 Tbit/s burst-mode digital processor. The processor comprises a time-stretch front-end and a custom data acquisition and real-time signal processing back- end. Experimental demonstration of real-time, in...

  16. Conformational, vibrational and DFT studies of a newly synthesized arylpiperazine-based drug and evaluation of its reactivity towards the human GABA receptor

    Science.gov (United States)

    Onawole, A. T.; Al-Ahmadi, A. F.; Mary, Y. S.; Panicker, C. Y.; Ullah, N.; Armaković, S.; Armaković, S. J.; Van Alsenoy, C.; Al-Saadi, A. A.

    2017-11-01

    This study reports a computational assessment of important biochemical properties and vibrational assignments for the synthesized 1-(4-(3-methoxy-4-nitrophenyl)piperazin-1-yl)ethanone (MNPE). MNPE is related to the commonly used arylpiperazine-based drugs that exhibit a wide range of pharmacological activities. The characterization of MNPE is based on the readily sighted 1363 cm-1 infrared band (associated with piperazine ring stretching), 1308 cm-1 Raman line (associated with the phenyl ring breathing), 1242 cm-1 Raman line and 1092 cm-1 infrared band (both associated with Csbnd N stretching) as key modes in its vibrational spectra. First principle calculations revealed that MNPE could exist in sixteen different plausible conformations, which were used as basis to understand the possible molecular docking mechanism of the molecule as an agonist in the human GABAA receptor. The best binding scenarios showed the presence of intramolecular hydrogen bonding in MNPE and was comparable with the most stable configuration. It was further evaluated for its reactivity properties by utilizing the concepts of Average Local Ionization Energies (ALIE) and Fukui functions. The autoxidation and hydrolysis degradation likelihood of MNPE estimated from the computed bond dissociation energies and radial distribution functions predicted that MNPE is to be readily biodegradable in aqueous solutions.

  17. Stretch due to Penile Prosthesis Reservoir Migration

    Directory of Open Access Journals (Sweden)

    E. Baten

    2016-03-01

    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  18. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shunli; Fu, Li; Gan, Wei; Wang, Hongfei

    2016-01-21

    In this report we show that the ability to measure the sub-1 cm-1 resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra (HR-BB-SFG-VS) of the –CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4’-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows for the first time the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral lineshapes in detail. The difference of the full width at half maxima (FWHM) of the imaginary and intensity SFG-VS spectra of the same vibrational mode is the signature of the Voigt lineshape and it measures the relative contribution to the overall lineshape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ±0.02 cm-1 peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm-1 and 21.6 ± 0.4 cm-1, respectively, for the –CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm-1 agrees quantitatively with a Voigt lineshape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm-1 and a inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm-1. These results shed new lights on the understanding and interpretation of the lineshapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general.

  19. Engine gearbox fault diagnosis using empirical mode ...

    Indian Academy of Sciences (India)

    This paper presents engine gearbox fault diagnosis based on empirical mode decomposition (EMD) and Naı¨ve Bayes algorithm. In this study, vibration signals from a gear box are acquired with healthy and different simulated faulty conditions of gear and bearing. The vibration signals are decomposed into a finite number ...

  20. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Li, Bo-Hong; Stassen, Erik

    2016-01-01

    in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined...... by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters...

  1. Effect of modified hold-relax stretching and static stretching on hamstring muscle flexibility.

    Science.gov (United States)

    Ahmed, Hashim; Iqbal, Amir; Anwer, Shahnawaz; Alghadir, Ahmad

    2015-02-01

    [Purpose] The aim of present study was to compare the effectiveness of modified hold-relax stretching and static stretching in improving the hamstring muscle flexibility. [Subjects and Methods] Forty-five male subjects with hamstring tightness were included in this study. The subjects were randomly placed into three groups: the modified hold-relax stretching, static stretching and control groups. The modified hold-relax stretching group performed 7 seconds of isometric contraction and then relaxed for 5 seconds, and this was repeated five times daily for five consecutive days. The static stretching group received 10 minutes of static stretching with the help of a pulley and weight system for five consecutive days. The control group received only moist heat for 20 minutes for five consecutive days. A baseline reading of passive knee extension (PKE) was taken prior to the intervention; rest measurements were taken immediate post intervention on day 1, day 3, day 5, and after a 1 week follow-up, i.e., at the 12th day. [Results] On comparing the baseline readings of passive knee extension (PKE), there was no difference noted between the three groups. On comparing the posttest readings on day 5 between the 3 groups, a significant difference was noted. However, post hoc analysis revealed an insignificant difference between the modified hold-relax stretching and static stretching groups. There was a significant difference between the static stretching and control groups and between the modified hold-relax stretching and control groups. [Conclusion] The results of this study indicate that both the modified hold-relax stretching technique and static stretching are equally effective, as there was no significant difference in improving the hamstring muscle flexibility between the two groups.

  2. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  3. Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces

    International Nuclear Information System (INIS)

    Jia, X L; Kitipornchai, S; Lim, C W; Yang, J

    2010-01-01

    This paper investigates the free vibration characteristics of micro-switches under combined electrostatic, intermolecular forces and axial residual stress, with an emphasis on the effect of geometric nonlinear deformation due to mid-plane stretching and the influence of Casimir force. The micro-switch considered in this study is made of either homogeneous material or non-homogeneous functionally graded material with two material phases. The Euler–Bernoulli beam theory with von Karman type nonlinear kinematics is applied in the theoretical formulation. The principle of virtual work is used to derive the nonlinear governing differential equation. The eigenvalue problem which describes free vibration of the micro-beam at its statically deflected state is then solved using the differential quadrature method. The natural frequencies and mode shapes of micro-switches for four different boundary conditions (i.e. clamped–clamped, clamped–simply supported, simply supported and clamped–free) are obtained. The solutions are validated through direct comparisons with experimental and other existing results reported in previous studies. A parametric study is conducted to show the significant effects of geometric nonlinearity, Casimir force, axial residual stress and material composition for the natural frequencies

  4. Vibrational, NMR and quantum chemical investigations of acetoacetanilde, 2-chloroacetoacetanilide and 2-methylacetoacetanilide

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Senthilkumari, S.; Mohan, S.

    2013-11-01

    The vibrational assignment and analysis of the fundamental modes of the compounds acetoacetanilide (AAA), 2-chloroacetoacetanilide (2CAAA) and 2-methylacetoacetanilide (2MAAA) have been performed. Density functional theory studies have been carried out with B3LYP method utilising 6-311++G** and cc-pVTZ basis sets to determine structural, thermodynamic and vibrational characteristics of the compounds and also to understand the influence of chloro and methyl groups on the characteristic frequencies of amide (sbnd CONHsbnd) group. Intramolecular hydrogen bond exists in acetoacetanilide and o-substituted acetoacetanilide molecules and the N⋯O distance is found to be around 2.7 Å. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecules were determined and the same have been calculated using the gauge independent atomic orbital (GIAO) method. The energies of the frontier molecular orbitals have been determined. In AAA, 2CAAA and 2MAAA molecules, the nN → πCO∗ interaction between the nitrogen lone pair and the amide Cdbnd O antibonding orbital gives strong stabilization of 64.75, 62.84 and 64.18 kJ mol-1, respectively. The blue shift in amide-II band of 2MAAA is observed by 45-50 cm-1 than that of AAA. The steric effect of ortho methyl group significantly operating on the Nsbnd H bond properties. The amide-III, the Csbnd N stretching mode of methyl and chloro substituted acetoacetanilide compounds are not affected by the substitution while the amide-V band, the Nsbnd H out of plane bending mode of 2-chloroacetoacetanilide compound is shifted to a higher frequency than that of AAA. The substituent chlorine plays significantly and the blue shift in o-substituted compounds than the parent in the amide-V vibration is observed. The amide-VI, Cdbnd O out of plane bending modes of 2MAAA and 2CAAA are significantly raised than that of AAA. A blue shift of amide-VI, Cdbnd O out of plane bending modes of 2MAAA and 2CAAA than AAA is observed.

  5. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    International Nuclear Information System (INIS)

    Mandal, Aritra; Tokmakoff, Andrei

    2015-01-01

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm −1 . We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions

  6. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    International Nuclear Information System (INIS)

    Shi, L.; Skinner, J. L.

    2015-01-01

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS

  7. Optimization design of high power ultrasonic circular ring radiator in coupled vibration.

    Science.gov (United States)

    Xu, Long; Lin, Shuyu; Hu, Wenxu

    2011-10-01

    This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Study of core support barrel vibration monitoring using ex-core neutron noise analysis and fuzzy logic algorithm

    Directory of Open Access Journals (Sweden)

    Robby Christian

    2015-03-01

    A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

  9. Vibrational characterization of pheomelanin and trichochrome F by Raman spectroscopy

    Science.gov (United States)

    Galván, Ismael; Jorge, Alberto; Solano, Francisco; Wakamatsu, Kazumasa

    2013-06-01

    We characterize for the first time the vibrational state of natural pheomelanin using Raman spectroscopy and model pigment synthesized from 5-S-cysteinyldopa. The shape of the Raman spectrum was very different from that of eumelanin. Four Raman bands were visible in the 500-2000 cm-1 wavenumber region about 500, 1150, 1490 and 2000 cm-1, which we assigned to the out-of-plane deformation and the stretching vibration of the phenyl rings, to the stretching vibration of C-N bonds or the stretching and wagging vibration of CH2, and to overtone or combination bands. Interestingly, we also show that the Raman spectrum of synthetic trichochrome F, a pigment that may be produced along with pheomelanin during pheomelanogenesis, is different from that of pheomelanin and similar to the spectrum of eumelanin. We could detect Raman signal of both eumelanin and pheomelanin in feathers and hairs where both pigments simultaneously occur without the need of isolating the pigment. This indicates that Raman spectroscopy represents a non-invasive method to detect pheomelanin and distinguish it from other pigments. This may be especially relevant to detect pheomelanin in animal skin including humans, where it has been associated with animal appearance and classification, human phototypes, prevention of skin diseases and cancer risk.

  10. Investing in a Large Stretch Press

    Science.gov (United States)

    Choate, M.; Nealson, W.; Jay, G.; Buss, W.

    1986-01-01

    Press for forming large aluminum parts from plates provides substantial economies. Study assessed advantages and disadvantages of investing in large stretch-forming press, and also developed procurement specification for press.

  11. Excluded Volume Effects in Gene Stretching

    OpenAIRE

    Lam, Pui-Man

    2002-01-01

    We investigate the effects excluded volume on the stretching of a single DNA in solution. We find that for small force F, the extension h is not linear in F but proportion to F^{\\chi}, with \\chi=(1-\

  12. Vibration immunity for a triangular Faraday current sensor

    Science.gov (United States)

    Fisher, Norman E.; Jackson, David A.

    1996-10-01

    We demonstrate a common-mode rejection scheme for a bulk- optic triangular Faraday current sensor that can eliminate optical noise induced by fiber-link vibration. The noise floor before applying common rejection was about 30 dB for a 100A Faraday signal and transceiver vibration levels of approximately 30 g. This was reduced to about 60 dB for the same vibration levels. The sensor's exploitation of Ampere's circuital law is also demonstrated.

  13. Vibrational characteristics of fast turbine-driven sets for NPP

    International Nuclear Information System (INIS)

    Monogarov, Yu.I.; Tomashevskij, A.V.; Kirilina, V.N.; Turapin, V.G.; Kvaktun, I.M.; Rogozina, N.V.; Borodulin, M.V.

    1993-01-01

    Vibrational characteristics of fast turbine-driven sets for NPPs are discussed. Results of vibrational tests of these turboaggregates, which include foundations dynamic tests (unloaded one) up to the insolation of aggregate foundations and shaft lead of the turbine aggregate at the final stage of installation as well as vibrational characteristics of the turbogenerator in start-up modes and under load are considered. Operational reliability of the K-1000-60/3000+TB-1000-type aggregates is noted

  14. Role of vibrational dynamics in resonant positron annihilation on molecules.

    Science.gov (United States)

    Jones, A C L; Danielson, J R; Natisin, M R; Surko, C M

    2013-05-31

    Vibrational Feshbach resonances are dominant features of positron annihilation for incident positron energies in the range of the molecular vibrations. Studies in relatively small molecules are described that elucidate the role of intramolecular vibrational energy redistribution into near-resonant multimode states, and the subsequent coupling of these modes to the positron continuum, in suppressing or enhancing these resonances. The implications for annihilation in other molecular species, and the necessary ingredients of a more complete theory of resonant positron annihilation, are discussed.

  15. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    International Nuclear Information System (INIS)

    Deibele, C.E.

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction

  16. DNA stretching on functionalized gold surfaces.

    OpenAIRE

    Zimmermann, R M; Cox, E C

    1994-01-01

    We describe a method for anchoring bacteriophage lambda DNA by one end to gold by Au-biotin-streptavidin-biotin-DNA bonds. DNA anchored to a microfabricated Au line could be aligned and stretched in flow and electric fields. The anchor was shown to resist a force of at least 11 pN, a linkage strong enough to allow DNA molecules of chromosome size to be stretched and aligned.

  17. Molecular and vibrational structure of diphenylether and its 4,4' -dibromo derivative. Infrared linear dichroism spectroscopy and density functional theory calculations

    DEFF Research Database (Denmark)

    Eriksen, Troels K; Karlsen, Eva; Spanget-Larsen, Jens

    2015-01-01

    The title compounds were investigated by means of Linear Dichroism (LD) IR spectroscopy on samples partially aligned in uniaxially stretched low-density polyethylene and by density functional theory calculations. Satisfactory overall agreement between observed and calculated vibrational wavenumbers...

  18. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    Science.gov (United States)

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P hamstring muscle strength at both the 60°/s and 180°/s test speeds (P 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249

  19. Comparison of two stretching methods and optimization of stretching protocol for the piriformis muscle.

    Science.gov (United States)

    Gulledge, Brett M; Marcellin-Little, Denis J; Levine, David; Tillman, Larry; Harrysson, Ola L A; Osborne, Jason A; Baxter, Blaise

    2014-02-01

    Piriformis syndrome is an uncommon diagnosis for a non-discogenic form of sciatica whose treatment has traditionally focused on stretching the piriformis muscle (PiM). Conventional stretches include hip flexion, adduction, and external rotation. Using three-dimensional modeling, we quantified the amount of (PiM) elongation resulting from two conventional stretches and we investigated by use of a computational model alternate stretching protocols that would optimize PiM stretching. Seven subjects underwent three CT scans: one supine, one with hip flexion, adduction, then external rotation (ADD stretch), and one with hip flexion, external rotation, then adduction (ExR stretch). Three-dimensional bone models were constructed from the CT scans. PiM elongation during these stretches, femoral neck inclination, femoral head anteversion, and trochanteric anteversion were measured. A computer program was developed to map PiM length over a range of hip joint positions and was validated against the measured scans. ExR and ADD stretches elongated the PiM similarly by approximately 12%. Femoral head and greater trochanter anteversion influenced PiM elongation. Placing the hip joints in 115° of hip flexion, 40° of external rotation and 25° of adduction or 120° of hip flexion, 50° of external rotation and 30° of adduction increased PiM elongation by 30-40% compared to conventional stretches (15.1 and 15.3% increases in PiM muscle length, respectively). ExR and ADD stretches elongate the PiM similarly and therefore may have similar clinical effectiveness. The optimized stretches led to larger increases in PiM length and may be more easily performed by some patients due to increased hip flexion. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Effects of proprioceptive neuromuscular facilitation stretching and static stretching on maximal voluntary contraction.

    Science.gov (United States)

    Miyahara, Yutetsu; Naito, Hisashi; Ogura, Yuji; Katamoto, Shizuo; Aoki, Junichiro

    2013-01-01

    This study was undertaken to investigate and compare the effects of proprioceptive neuromuscular facilitation (PNF) stretching and static stretching on maximal voluntary contraction (MVC). Thirteen male university students (age, 20 ± 1 years; height, 172.2 ± 4.6 cm; weight, 68.4 ± 6.7 kg; mean ± SD) completed 3 different conditions on 3 nonconsecutive days in randomized order: static stretching (SS), PNF stretching (PNF), and no stretching (control, CON). Each condition consisted of a 5-minute rest accompanied by one of the following activities: (a) control, (b) SS, or (c) PNF stretching. The hip flexion range of motion (ROM) was evaluated immediately before and after the activity. The MVC of knee flexion was then measured. Surface electromyography was recorded from the biceps femoris and vastus lateralis muscles during MVC tests and stretching. Although increases in ROM were significantly greater after PNF than after SS (p < 0.01), the decreases in MVC were similar between the 2 treatments. These results suggest that, although PNF stretching increases ROM more than SS, PNF stretching and SS is detrimental to isometric maximal strength.

  1. Vibrational spectra of nickel metalloporphyrins: An algebraic approach

    Indian Academy of Sciences (India)

    ... molecules. In view of the considerable amount of experimental activity in this area, one needs theoretical models within which to interpret experimental data. Using Lie algebraic method, the vibrational energy levels of nickel metalloporphyrins like Ni(OEP), Ni porphyrin and Ni(TPP) are calculated for 16 vibrational modes.

  2. Quantum coherent control of the vibrational dynamics of a ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... Abstract. We simulate adaptive feedback control to coherently shape a femtosecond infrared laser ... The objective was to show that an arbitrarily chosen upper vibrational level, in the ground electronic state ... 2. Theory. A model was developed to describe the kinetics of a single vibrational mode of a poly-.

  3. Ab initio study of fast small-amplitude vibrations as functions of slow large-amplitude motions in CD3OH and comparison to CH3OH

    Science.gov (United States)

    Reid, Elias M.; Xu, Li-Hong; Lees, R. M.

    2017-12-01

    Ab initio quantum chemical calculations generating a two-dimensional map of the energy surface and vibrational frequencies have been carried out for CD3OH and CH3OH over ranges of the torsional angle γ and the OH bend angle ρ. We have explored the frequency variation of the fast small-amplitude asymmetric ν2 and ν9 Csbnd D and Csbnd H stretching modes of E parentage as functions of the slow large-amplitude γ and ρ coordinates associated with the torsional and OH-bending modes that would form a degenerate e pair in the ρ = 0° limit of COH linearity. The Gaussian09 program package was employed to calculate minimized energies, structures and Hessians on a grid of points with γ varying from 120° to 180° from the top to the bottom of the torsional potential barrier and ρ varying from 0° at linearity up to a 100° bend. The energies, average frequencies and frequency differences for each species have been fitted to a model combining Fourier expansions in the torsional angle with power-series in the OH-bend angle (Thapaliya et al., 2015) and the expansion constants are presented and compared for the two isotopologues. The conical intersection points of degeneracy between the ν2 and ν9 frequencies have been located for CD3OH, close to those known for CH3OH (Dawadi and Perry, 2014). For CD3OH, Csbnd D stretching frequencies calculated along the IRC torsional path from top to bottom of the barrier have been fitted to a high-order local mode model for comparison with earlier results for CH3OH (Xu, 2000), and A-E torsional splittings have been predicted for the three Csbnd D stretches.

  4. Comparison of active stretching technique and static stretching technique on hamstring flexibility.

    Science.gov (United States)

    Meroni, Roberto; Cerri, Cesare Giuseppe; Lanzarini, Carlo; Barindelli, Guido; Morte, Giancesare Della; Gessaga, Viviana; Cesana, Gian Carlo; De Vito, Giovanni

    2010-01-01

    To compare a passive and an active stretching technique to determine which one would produce and maintain the greatest gain in hamstring flexibility. To determine whether a passive or an active stretching technique results in a greater increase in hamstring flexibility and to compare whether the gains are maintained. Randomized controlled trial. Institutional. Sixty-five volunteer healthy subjects completed the enrollment questionnaire, 33 completed the required 75% of the treatment after 6 weeks, and 22 were assessed 4 weeks after the training interruption. A 6-week stretching program with subjects divided into 2 groups with group 1 performing active stretching exercises and group 2 performing passive stretching exercises. Range of motion (ROM) was measured after 3 and 6 weeks of training and again 4 weeks after the cessation of training and compared with the initial measurement. After 3 weeks of training, the mean gain in group 1 (active stretching) on performing the active knee extension range of motion (AKER) test was 5.7 degrees, whereas the mean gain in group 2 (passive stretching) was 3 degrees (P = .015). After 6 weeks of training, the mean gain in group 1 was 8.7 degrees , whereas the mean gain in group 2 was 5.3 degrees (P = .006). Twenty-two subjects were reassessed 4 weeks after the cessation of the training with the maintained gain of ROM in group 1 being 6.3 degrees , whereas the maintained gain in group 2 was 0.1 degrees (P = .003). Active stretching produced the greater gain in the AKER test, and the gain was almost completely maintained 4 weeks after the end of the training, which was not seen with the passive stretching group. Active stretching was more time efficient compared with the static stretching and needed a lower compliance to produce effects on flexibility.

  5. Structural, intramolecular hydrogen bonding and vibrational studies ...

    Indian Academy of Sciences (India)

    The harmonic oscillator model of aromaticity (HOMA) index elucidated the impact of hydrogen bond- ing in the ring. Intramolecular hydrogen bonding energy has been calculated from topological study. The low wavenumber vibrational modes obtained from experimental FT-Raman spectrum also supported the presence.

  6. How to determine local stretching and tension in a flow-stretched DNA molecule

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Marie, Rodolphe; Kristensen, Anders

    2016-01-01

    We determine the nonuniform stretching of and tension in amega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead...

  7. Nonlinear vibration of an axially loaded beam carrying rigid bodies

    Directory of Open Access Journals (Sweden)

    O. Barry

    2016-12-01

    Full Text Available This paper investigates the nonlinear vibration due to mid-plane stretching of an axially loaded simply supported beam carrying multiple rigid masses. Explicit expressions and closed form solutions of both linear and nonlinear analysis of the present vibration problem are presented for the first time. The validity of the analytical model is demonstrated using finite element analysis and via comparison with the result in the literature. Parametric studies are conducted to examine how the nonlinear frequency and frequency response curve are affected by tension, rotational inertia, and number of intermediate rigid bodies.

  8. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems. Written for: Students in mechanical or structural engineering. Keywords: Nonlinear Vibrations, Bifurcations, Chaotic Vibrations, Vibrations and Stability....

  9. Human response to vibration

    National Research Council Canada - National Science Library

    Mansfield, Neil J

    2005-01-01

    .... Vibration measurements and standards are also addressed. This book meets the needs of those requiring knowledge of human response to vibration in order to make practical improvements to physical working environments...

  10. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems. Written for: Students in mechanical or structural engineering. Keywords: Nonlinear Vibrations, Bifurcations, Chaotic Vibrations, Vibrations and Stability.......About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...

  11. CURRENT CONCEPTS IN MUSCLE STRETCHING FOR EXERCISE AND REHABILITATION

    Science.gov (United States)

    2012-01-01

    Stretching is a common activity used by athletes, older adults, rehabilitation patients, and anyone participating in a fitness program. While the benefits of stretching are known, controversy remains about the best type of stretching for a particular goal or outcome. The purpose of this clinical commentary is to discuss the current concepts of muscle stretching interventions and summarize the evidence related to stretching as used in both exercise and rehabilitation. PMID:22319684

  12. CURRENT CONCEPTS IN MUSCLE STRETCHING FOR EXERCISE AND REHABILITATION

    OpenAIRE

    Page, Phil

    2012-01-01

    Stretching is a common activity used by athletes, older adults, rehabilitation patients, and anyone participating in a fitness program. While the benefits of stretching are known, controversy remains about the best type of stretching for a particular goal or outcome. The purpose of this clinical commentary is to discuss the current concepts of muscle stretching interventions and summarize the evidence related to stretching as used in both exercise and rehabilitation.

  13. Isotopic labeling as a tool to establish intramolecular vibrational coupling: The reaction of 2-propanol on Mo(110)

    International Nuclear Information System (INIS)

    Uvdal, P.; Wiegand, B.C.; Serafin, J.G.; Friend, C.M.

    1992-01-01

    The reactions of 2-propanol on Mo(110) were investigated using temperature programmed reaction, high resolution electron energy loss, and x-ray photoelectron spectroscopies. 2-Propanol forms 2-propoxide upon adsorption at 120 K on Mo(110). The 2-propoxide intermediate deoxygenates via selective γ C--H bond scission to eliminate propene as well as C--O bond hydrogenolysis to form trace amounts of propane. The C--O bond of 2-propoxide is estimated to be nearly perpendicular to the surface. Selective isotopic labeling was used to establish the coupling between the C--O stretch and modes associated with the hydrocarbon framework. The degree of coupling was strongly affected by bonding to the surface, primarily due to weakening of the C--O bond when 2-propoxide is bound to Mo(110). Selective isotopic labeling was, therefore, essential in making vibrational assignments and in identifying key reaction steps. Only a small kinetic isotope effect was observed during reaction of (CD 3 )(CH 3 )CHOH, consistent with a substantial component of C--O bond breaking in the transition state for propene elimination. Coupling of the C--O stretch to motion of the methyl group is also suggested to be important in the transition state for propene elimination

  14. Molecular and vibrational structure of 2,2'-dihydroxybenzophenone

    DEFF Research Database (Denmark)

    Birklund Andersen, Kristine; Langgård, M.; Spanget-Larsen, Jens

    1999-01-01

    2,2'-dihydroxybenzophenone (DHBP) contains similar bifold intramolecular H-bonding as the psoriatic drug anthralin, but because of steric interference the phenolic rings are twisted in a propeller-like manner, resulting in a molecular structure of C2 symmetry. In contrast to the case of C2v...... anthralin, the description of the vibrational structure of the compound is thus complicated by the circumstance that moment directions for transitions polarized perpendicular to the C2 axis (z) are not uniquely determined by symmetry, but can take any direction in the xy plane. The molecular vibrations...... of DHBP were investigated by IR polarization spectroscopy on samples aligned in stretched polyethylene. The observed Linear Dichroic (LD) absorbance curves, corresponding to absorbance measured with the electric vector of the sample beam parallel (U) and perpendicular (V) to the stretching direction, were...

  15. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  16. Vibration of plates

    CERN Document Server

    Chakraverty, Snehashish

    2008-01-01

    Plates are integral parts of most engineering structures and their vibration analysis is required for safe design. This work provides a comprehensive introduction to vibration theory and analysis of two-dimensional plates. It offers information on vibration problems along with a discussion of various plate geometries and boundary conditions.

  17. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  18. Summary of the stretching tectonics research

    International Nuclear Information System (INIS)

    Yu Dagan

    1994-01-01

    The rise of stretching tectonics is established on the basis of recent structural geology theory, the establishment of metamorphic nucleus complex structural model on one hand plays an important promoting art to the development of stretching structure, on the other hand, it needs constant supplement and perfection in practice. Metamorphic nucleus complex is the carrier of comparatively deep geological information in vertical section of the crust and has wide distribution in the era of south China. Evidently, it can be taken as the 'key' to understanding the deep and studying the basement, Strengthening the study will play the important promoting role to the deep prospecting. The study of stretching tectonics is not only limited within the range of structure and metamorphism, but combine with the studies of sedimentation, magmatism, metamorphism and mineralization, thus form a new field of tectonic geology of self-developing system

  19. Optofluidic time-stretch microscopy: recent advances

    Science.gov (United States)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  20. Optofluidic time-stretch quantitative phase microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Bias of purine stretches in sequenced chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Soumpasis, Dikeos Mario; Brunak, Søren

    2002-01-01

    We examined more than 700 DNA sequences (full length chromosomes and plasmids) for stretches of purines (R) or pyrimidines (Y) and alternating YR stretches; such regions will likely adopt structures which are different from the canonical B-form. Since one turn of the DNA helix is roughly 10 bp, we...... measured the fraction of each genome which contains purine (or pyrimidine) tracts of lengths of 10 by or longer (hereafter referred to as 'purine tracts'), as well as stretches of alternating pyrimidines/purine ('pyr/pur tracts') of the same length. Using this criteria, a random sequence would be expected...... to contain 1.0% of purine tracts and also 1.0% of the alternating pyr/pur tracts. In the vast majority of cases, there are more purine tracts than would be expected from a random sequence, with an average of 3.5%, significantly larger than the expectation value. The fraction of the chromosomes containing pyr...

  2. Bias of purine stretches in sequenced chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Soumpasis, Dikeos Mario; Brunak, Søren

    2002-01-01

    We examined more than 700 DNA sequences (full length chromosomes and plasmids) for stretches of purines (R) or pyrimidines (Y) and alternating YR stretches; such regions will likely adopt structures which are different from the canonical B-form. Since one turn of the DNA helix is roughly 10 bp, we...... to contain 1.0% of purine tracts and also 1.0% of the alternating pyr/pur tracts. In the vast majority of cases, there are more purine tracts than would be expected from a random sequence, with an average of 3.5%, significantly larger than the expectation value. The fraction of the chromosomes containing pyr......, in eukaryotes there is an abundance of long stretches of purines or alternating purine/pyrimidine tracts, which cannot be explained in this way; these sequences are likely to play an important role in eukaryotic chromosome organisation....

  3. Anisotropic dewetting on stretched elastomeric substrates.

    Science.gov (United States)

    Qiao, L; He, L H

    2008-08-01

    We study the instability of a very thin liquid film resting on a uniformly stretched soft elastomeric substrate driven by van der Waals forces. A linear stability analysis shows that the critical fluctuation wavelength in the tensile direction is larger than those in the other directions. The magnitudes of the critical wavelengths are adjustable in the sense that they depend on the principal stretch of the substrate. For example, when the principal stretch of the substrate varies from 1.0 (unstretched) to 3.0, the range of the critical wavelength in the tensile direction increases by 7.0% while that normal to the tensile direction decreases by 8.7%. Therefore, the phenomenon may find potential applications in creating tunable topographically patterned surfaces with nano- to microscale features.

  4. Vibrational modes and Structure of Niobium(V) Oxosulfato Complexes in the Molten Nb2O5-K2S2O7-K2SO4 System Studied by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Paulsen, Andreas L.; Borup, Flemming; Berg, Rolf W.

    2010-01-01

    for the binary Nb2O5-K2S2O7 molten system indicate that the dissolution of Nb2O5 proceeds with consumption of S2O7 leading to the formation of a NbV oxosulfato complex according to Nb2O5 + nS2O7 --> C2n-; a simple formalism exploiting the relative Raman band intensities is used for determining the stoichiometric...... for the NbV oxosulfato complexes pertain to NbdO modes: (i) at 937 cm-1 for the mono-oxo NbdO mode of NbO(SO4)3; (ii) at 958 cm-1 for the mono-oxo NbdO mode of NbO(SO4)4S2O7; and (iii) at 926 cm-1 for the symmetric dioxo Nb(=O)2 mode of NbO2(SO4)2....

  5. Structural Characteristics of Rotate Vector Reducer Free Vibration

    Directory of Open Access Journals (Sweden)

    Chuan Chen

    2017-01-01

    Full Text Available For RV reducer widely used in robots, vibration significantly affects its performance. A lumped parameter model is developed to investigate free vibration characteristics without and with gyroscopic effects. The dynamic model considers key factors affecting vibration such as involute and cycloid gear mesh stiffness, crankshaft bending stiffness, and bearing stiffness. For both nongyroscopic and gyroscopic systems, free vibrations are examined and compared with each other. Results reveal the specific structure of vibration modes for both systems, which results from symmetry structure of RV reducer. According to vibration of the central components, vibration modes of two systems can be classified into three types, rotational, translational, and planetary component modes. Different from nongyroscopic system, the eigenvalues with gyroscopic effects are complex-valued and speed-dependent. The eigenvalue for a range of carrier speeds is obtained by numerical simulation. Divergence and flutter instability is observed at speeds adjacent to critical speeds. Furthermore, the work studies effects of key factors, which include crankshaft eccentricity and the number of pins, on eigenvalues. Finally, experiment is performed to verify the effectiveness of the dynamic model. The research of this paper is helpful for the analysis on free vibration and dynamic design of RV reducer.

  6. Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes.

    Science.gov (United States)

    Dey, Arghya; Mondal, Sohidul Islam; Sen, Saumik; Ghosh, Debashree; Patwari, G Naresh

    2014-12-14

    The red-shifts in the acetylenic C-H stretching vibration of C-H∙∙∙X (X = O, N) hydrogen-bonded complexes increase with an increase in the basicity of the Lewis base. Analysis of various components of stabilization energy suggests that the observed red-shifts are correlated with the electrostatic component of the stabilization energy, while the dispersion modulates the stabilization energy.

  7. Comparison of the local binding motifs in the imidazolium-based ionic liquids [EMIM][BF{sub 4}] and [EMMIM][BF{sub 4}] through cryogenic ion vibrational predissociation spectroscopy: Unraveling the roles of anharmonicity and intermolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; Johnson, Mark A., E-mail: mark.johnson@yale.edu, E-mail: mccoy@chemistry.ohio-state.edu [Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520 (United States); McCoy, Anne B., E-mail: mark.johnson@yale.edu, E-mail: mccoy@chemistry.ohio-state.edu [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-02-14

    We clarify the role of the critical imidazolium C{sub (2)}H position (the central C between N atoms in the heterocycle) in the assembly motif of the [EMIM][BF{sub 4}] ionic liquid by analyzing the vibrational spectra of the bare EMIM{sup +} ion as well as that of the cationic [EMIM]{sub 2}[BF{sub 4}]{sup +} (EMIM{sup +} = 1-ethyl-3-methylimidazolium, C{sub 6}H{sub 11}N{sub 2}{sup +}) cluster. Vibrational spectra of the cold, mass-selected ions are obtained using cryogenic ion vibrational predissociation of weakly bound D{sub 2} molecules formed in a 10 K ion trap. The C{sub (2)}H behavior is isolated by following the evolution of key vibrational features when the C{sub (2)} hydrogen, the proposed binding location of the anion to the imidazolium ring, is replaced by either deuterium or a methyl group (i.e., in the EMMIM{sup +} analogue). Strong features in the ring CH stretching region of the bare ion are traced to Fermi resonances with overtones of lower frequency modes. Upon incorporation into the EMIM{sup +} ⋅ ⋅ ⋅ BF{sub 4}{sup −} ⋅ ⋅ ⋅ EMIM{sup +} ternary complex, the C{sub (2)}H oscillator strength is dramatically increased, accounting for the much more complicated patterns derived from the EMIM{sup +} ring CH stretches in the light isotopomer, which are strongly suppressed in the deuterated analogue. Further changes in the spectra that occur when the C{sub (2)}H is replaced by a methyl group are consistent with BF{sub 4}{sup −} attachment directly to the imidazolium ring in an arrangement that maximizes the electrostatic interaction between the molecular ions.

  8. The effect of vibration noise in space relevant experiments.

    Science.gov (United States)

    Fossum, Knut R; Johnsson, Anders; Iversen, Tor-Henning

    2002-07-01

    The experiments performed were initiated as a part of the post-flight investigations after the "PROTO" experiment performed on IML-1. The present experiments were performed with protoplasts prepared using the same standard isolation procedures as for the IML-1. The protoplasts were vibrated for 24 h with and without air bubbles in the protoplast cultivation bags and in the range of 1 to 20 Hz with 4 mm amplitude. The vibrations were found to have a negative effect on the viability of the protoplasts in bags without air bubbles and the vibration threshold seemed to lie around 20 Hz. Air bubbles are likely to cause cavitation-like conditions, thus increasing the mechanical strain on the free-floating protoplasts. During the 30 days microgravity mode on the ISS, mechanical vibrations would not be expected to have a significant influence on potential protoplast experiments. Experiments with durations overlapping the rendezvous and reboost mode may be exposed to critical vibration levels.

  9. Efficiency of Nearly Periodic Structures for Mitigation of Ground Vibration

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Peplow, Andrew; Bucinskas, Paulius

    2017-01-01

    Periodic structures are known to produce passbands and stopbands for propagation of vibration energy within the frequency domain. Sources vibrating harmonically at a frequency within a passband can lead to propagation of energy through propagating modes over long distances. However, sources...... vibrating at a frequency within a stopband excite only nearfields in the form of attenuating and evanescent modes, and the energy decays with distance. The decay phenomena are due to destructive interference of waves reflected and scattered by interfaces or obstacles placed periodically within or between...... the repeated cells of the structure. For a truly periodic structure, the vibration level within a stopband goes toward zero after infinitely many repetitions of the cell. For example, employing a two-dimensional model, Andersen [1] found that stopbands for ground vibration in the low-frequency range can...

  10. Flow of nanofluid by nonlinear stretching velocity

    Science.gov (United States)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    Main objective in this article is to model and analyze the nanofluid flow induced by curved surface with nonlinear stretching velocity. Nanofluid comprises water and silver. Governing problem is solved by using homotopy analysis method (HAM). Induced magnetic field for low magnetic Reynolds number is not entertained. Development of convergent series solutions for velocity and skin friction coefficient is successfully made. Pressure in the boundary layer flow by curved stretching surface cannot be ignored. It is found that magnitude of power-law index parameter increases for pressure distibutions. Magnitude of radius of curvature reduces for pressure field while opposite trend can be observed for velocity.

  11. Lattice stretching bistability and dynamic heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Savin, A. V.; Zolotaryuk, A. V.

    2012-01-01

    A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second......-neighbor coupling. Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least...

  12. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  13. Electrical anharmonicity and dampings contributions to Cl-H → stretching band in gaseous (CH3)2O…HCl complex: Quantum dynamic study and prediction of the temperature effects

    Science.gov (United States)

    Rekik, Najeh; Alshammari, Majid F.

    2017-06-01

    In a previous work (Rekik et al., 2017), we demonstrated the ability of a simple anharmonic model of the dipole moment function of the X-H stretching band to explain a set of spectroscopic features of hydrogen bonding formation. Within the context of this model, we have shown that the origins of the broadening of the X - H → stretching band is attributed to large terms in the expansion of the autocorrelation functions due to the electrical anharmonicity. However, the question remained as to the ability of this model to treat the more complex situation in which we take into account the relaxation mechanisms that look at the effect of the surroundings and thereby gives rise to signatures of the medium to the X - H → stretching band lineshapes. Thus, in the present study, we investigated this situation by envisaging that the direct relaxation mechanism is due to the coupling between the fluctuating local electric field and the dipole moment of the complex as rationalized by Rosh and Ratner and the indirect damping resulting from the interaction of the X - H → stretch with its environment via the H-bond bridge mode. Theoretical experiments show that mixing of all these effects results in a speard and complicated structure. Using an ensemble of physically sound parameters as input into this approach, we have captured the main features in the experimental Cl - H → band in gaseous (CH3)2O…HCl complex and shown that the direct relaxation entrains a broadening of the spectra and is capable of qualitatively capturing the main features in the experimental spectra and quantitatively capturing the characteristic time scale of the vibrational dynamics of the Cl - H → stretching band. Furthermore, due to the decent agreement obtained between the theoretical and experimental line shapes at 226 K, the evolution of the IR spectra with the varaiation of temperature is proposed. The findings gained herein underscore the utility of combining simultaneously the effects of

  14. Vibration analysis of low-aspect ratio rotating blade modeled as a ...

    African Journals Online (AJOL)

    ... example is given to show the vibration characteristics of the rotating blade. Natural frequencies, corresponding mode shapes and the free vibration response are determined. Induced stresses related to the mode shapes are computed, and nature of these stresses are compared to actual datafrom the aviation industry.

  15. Immediate effects of quantified hamstring stretching: hold-relax proprioceptive neuromuscular facilitation versus static stretching.

    Science.gov (United States)

    Puentedura, Emilio J; Huijbregts, Peter A; Celeste, Shelley; Edwards, Dale; In, Alastair; Landers, Merrill R; Fernandez-de-Las-Penas, Cesar

    2011-08-01

    To compare the immediate effects of a hold-relax proprioceptive neuromuscular facilitation stretching (HR-PNF) versus static stretch (SS) on hamstring flexibility in healthy, asymptomatic subjects. Thirty subjects (13 female; mean age 25.7 ± 3.0, range 22-37) without excessive hamstring muscle flexibility were randomly assigned to one of two stretch groups: HR-PNF or SS. The left leg was treated as a control and did not receive any intervention. The right leg was measured for ROM pre- and post-stretch interventions, with subjects receiving randomly assigned interventions one week apart. Data were analyzed with a 3 (intervention: HR-PNF, SS, control) × 2 (time: pre and post) factorial ANOVA with repeated measures and appropriate post-hoc analyses. A significant interaction was observed between intervention and time for hamstring extensibility, F(2,58) = 25.229, p < .0005. Main effect of intervention for the tested leg was not significant, p = .782 indicating that there was no difference between the two stretch conditions. However, main effect for time was significant (p < .0005), suggesting that hamstring extensibility (for both stretching conditions) after intervention was greater than before. No significant differences were found when comparing the effectiveness of HR-PNF and SS techniques. Both stretching methods resulted in significant immediate increases in hamstring length. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Rotors fault detection using vibration methods

    Directory of Open Access Journals (Sweden)

    Andrzej GRZADZIELA

    2009-01-01

    Full Text Available Ships’ propulsion plant usually works in a hard environment caused by static forces and permanent dynamic loads. Basic elements of propulsion systems are rotation machines like gas turbine engines, gear boxes, propulsion shafts etc. Another loads coming from technological faults of rotation machines like misalignment, unbalancing or resonance. Exciding of tolerated values of shaft alignments or unbalancing can cause a damage of radial and thrust bearings in relative short time. Similar situation is occurred when the mode or modes of rotors natural resonances are in the range of operational speed. The paper compares three methods of calculating and recognizing modes of rotors’ natural frequencies using laboratory model of rotational machine. Results of FEM modeling, modal hammers measurements and synchronous vibration measurement show that free stop-down process is an interesting area for the vibration diagnosing of rotational machines.

  17. Vibrational characteristics and wear of fuel rods

    International Nuclear Information System (INIS)

    Schmugar, K.L.

    1977-01-01

    Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude

  18. Acute Effects of Static vs. Ballistic Stretching on Strength and Muscular Fatigue Between Ballet Dancers and Resistance-Trained Women.

    Science.gov (United States)

    Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V

    2016-11-01

    Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.

  19. Anti-vibration gloves?

    Science.gov (United States)

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.

  20. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  1. Resonance Raman detection of iron-ligand vibrations in cyano(pyridine)(octaethylporphinato)iron(III): Effects of pyridine basicity on the Fe-CN bond strength

    International Nuclear Information System (INIS)

    Uno, Tadayuki; Hatano, Keiichiro; Nishimura, Yoshifumi; Arata, Yoji

    1988-01-01

    The influence of axial ligand basicity on the bonding of iron(III) in cyano adducts of octaethylporphyrin has been studied by resonance Raman spectroscopy. In a six-coordinate ferric low-spin complex, cyano(pyridine)(octaethylporphinato)iron(III), Fe(OEP)(CN)(py), Raman lines at 449 and 191 cm -1 were assigned to the ν(Fe-CN) and ν(Fe-py) stretching modes, respectively. When pyridine was displaced with its derivatives, py-X, where X = 4-cyano, 3-acetyl, 3-methyl, 4-methyl, 3,4-dimethyl, and 4-dimethylamino, the ν(Fe-CN) stretching frequency was found to decrease in the complex with a high pyridine basicity. It was concluded that the stronger the trans pyridine basicity, the weaker the iron-carbon (cyanide) bond. A clear frequency shift was observed in the ν 4 model, though most of the porphyrin vibrations were insensitive to the ligand substitution. The frequency of the ν 4 mode, which is the C a -N(pyrrole) breathing vibration of the porphyrin skeleton, was found to increase with an increase in pyridine basicity. This is contrary to what was found in ferrous low-spin hemes as CO complexes. The ν 4 shift in the CN complexes was explained in terms of forward π donation; donation of electrons from the porphyrin π orbital to the d π vacancy of the low-spin iron(III) weakened the C a -N(pyrrole) bonds and hence decreased the ν 4 frequency. 32 references, 8 figures

  2. Realistic searches on stretched exponential networks

    Indian Academy of Sciences (India)

    Vol. 71, No. 2. — journal of. August 2008 physics pp. 313–317. Realistic searches on stretched exponential networks. PARONGAMA SEN. Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road,. Kolkata 700 009, India .... [4] S Milgram, Psychology Today 1, 60 (1967). J Travers and S Milgram, ...

  3. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  4. Cloud Network Helps Stretch IT Dollars

    Science.gov (United States)

    Collins, Hilton

    2012-01-01

    No matter how many car washes or bake sales schools host to raise money, adding funds to their coffers is a recurring problem. This perpetual financial difficulty makes expansive technology purchases or changes seem like a pipe dream for school CIOs and has education technologists searching for ways to stretch money. In 2005, state K-12 school…

  5. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    on steel grade, on the rolling direction as well as on the loading rate. Stretch zones ... This interaction is demonstrated at a fracture surface as a bounded transition between initiatory crack (e.g., fatigue) and either ... The materials examined in this study are three grades of thin automotive steel sheets: XSG,. HR 45 and DP.

  6. Fractional behaviour at cyclic stretch-bending

    NARCIS (Netherlands)

    Emmens, W.C.; van den Boogaard, Antonius H.; Kazantzis, A.V.; de Hosson, J.Th.M.; Kolleck, R

    2010-01-01

    The fractional behaviour at cyclic stretch-bending has been studied by performing tensile tests at long specimens that are cyclically bent at the same time, on mild steel, dual-phase steel, stainless steel, aluminium and brass. Several types of fracture are observed, these are discussed, as are the

  7. Vibration monitoring with artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.

    1991-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural network to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected from operating machinery. Two neural networks algorithms were used in our project: the Recirculation algorithm for data compression and the Backpropagation algorithm to perform the actual classification of the patterns. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results to date are very encouraging

  8. Tuneable vibration absorber design to suppress vibrations: An application in boring manufacturing process

    Science.gov (United States)

    Moradi, H.; Bakhtiari-Nejad, F.; Movahhedy, M. R.

    2008-11-01

    Dynamic vibration absorbers are used to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges, etc. Tuneable vibration absorbers (TVA) are also used as semi-active controllers. In this paper, the application of a TVA for suppression of chatter vibrations in the boring manufacturing process is presented. The boring bar is modeled as a cantilever Euler-Bernoulli beam and the TVA is composed of mass, spring and dashpot elements. In addition, the effect of spring mass is considered in this analysis. After formulation of the problem, the optimum specifications of the absorber such as spring stiffness, absorber mass and its position are determined using an algorithm based on the mode summation method. The analog-simulated block diagram of the system is developed and the effects of various excitations such as step, ramp, etc. on the absorbed system are simulated. In addition, chatter stability is analyzed in dominant modes of boring bar. Results show that at higher modes, larger critical widths of cut and consequently more material removal rate (MRR) can be achieved. In the case of self-excited vibration, which is associated with a delay differential equation, the optimum absorber suppresses the chatter and increases the limit of stability.

  9. Vibrational Spectra of Oxo-Centered Trinuclear Carboxylate Complexes

    Science.gov (United States)

    Chaisa-Ard, Nittayaporn

    1990-01-01

    Available from UMI in association with The British Library. The work presented in this thesis has been undertaken with an aim of studying vibrational spectroscopy of oxo -centered trinuclear carboxylate complexes. Resonance Raman spectra of the mixed-metal complex (Fe_2NiO(OOCCH_3 )_6(C_5H _5N)_3) (C _5H_5N) and of the complex (Fe_3O(OOCCH _3)_6(C_5 H_5N)_3) NO_3 have been recorded with different exciting lines. Mode assignments of these complexes have been made in conjunction with previously reported electronic diffuse reflectance spectra. For the (Fe_2 NiO(OOCCH_3)_6 (C_5H_5N) _3) (C_5H _5N) complex we found two components of the vibration nu_ {rm as}(Fe_2NiO) and we assigned the higher frequency as the A_1 component while the lower is the B_2 component. For the (Fe_3O(OOCCH _3)_6(C _5H_5N)_3 ) NO_3 complex we found that there is only a single band at 570 cm^{ -1} and it is visible only with the use of exciting lines below 15500 cm^{-1} . We assigned this band to nu_ {rm as}(Fe_3O), doubly degenerate (E^'). Infrared spectra of (Cr_3O(OOCCH _3)_6(H _2O)_3) Cl.6H _2O were carried out at room and low temperature and inelastic neutron scattering spectra at 20 K. INS spectra of the (Cr_3O(OOCCH _3)_6(H_2 O)_3) Cl.6H_2 O and three related complexes with the Fe _3^{III} and mixed-valence Fe_2^{III}Fe ^{II} cluster show a large number of well-resolved peaks throughout the frequency range of conventional vibrational spectroscopy, and the frequencies agree with IR and Raman measurements. As a result the mode assignments in this series of compounds can be reassessed. Synthesis and characterisation of the guanidinium salt of the mu_3-oxo hexapropionato trifluoro chromium(III) complex, (Cr_3O(OOCC _2H_5) _6F_3) (C(NH _2)_3) _2 have been done. Elemental analysis was satisfactory. Mode assignments were studied by spectroscopic methods, and the Cr-F stretching frequency was found. Finally, the structure determination was done by X-ray crystallography. The space group was found

  10. Vibrational quasi-continuum in unimolecular multiphoton dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Fernandez, P.; Gonzalez-Diaz, P.F.

    1987-04-01

    The vibrational quasi-continuum of the boron trifluoride molecule has been qualitatively studied and the formalism extended to treat N-normal-mode molecules. The anharmonic potential curves for the BF/sub 3/ normal modes have been calculated, and the computed anharmonicity constants have been tested against the fundamental frequencies. The potential curve of the wagging mode has been simulated by an internal rotation of one of the fluoride atoms. The vibrational-energy levels and wave functions have been calculated applying second-order perturbation theory. The quasi-continuum energy levels of BF/sub 3/ have been obtained by means of a method based in forming adequate linear combinations of wave functions belonging to the N-1 modes resulting from removing the i.r.-active mode;the associated energies have been minimized using a constrained minimization procedure. It has been found that the energy pattern of the N-1 vibrational modes possesses an energy density high enough for constituting a vibrational heat bath and, finally, it has been verified that the ''fictitious'' pattern of the active mode is included in the pattern of the N-1 modes.

  11. EFFECTIVENESS OF PNF STRETCHING AND CYCLIC STRETCHING OF CALF TIGHTNESS ON COLLEGE GOING GIRLS

    Directory of Open Access Journals (Sweden)

    Ashlesha Sirari

    2015-06-01

    Full Text Available Background: Flexibility helps with injury prevention, the reduction of soreness following a workout, and a general sense of well-being. There are different stretching techniques and protocols for improvements in calf extensibility and flexibility. The purpose of the study was to investigate the effectiveness of two techniques i.e. CYCLIC and PNF stretching which improves calf flexibility. This study was done to find the effectiveness of calf Cyclic and PNF stretching technique to improve calf flexibility. Methods: 30 subjects with age group 21-22 years were randomly allocated to 2 groups equally. Group 1(n=15 were given CYCLIC and group 2(n=15 were given PNF stretching technique. Plantar flexion was used to measure the calf tightness which was done before and after the treatment. Treatment was given for 7 days and on the 7th day the calf tightness was again measured. Results: The mean difference of the CYCLIC is 4.6 and mean difference of PNF is 4.7 which indicate that CYCLIC and PNF both are effective to improve calf flexibility but PNF is more effective than CYCLIC to improve calf flexibility. Conclusion: The neurophysiological basis of PNF, stating that the excitatory efficient of the neuromuscular spindle or the inhibitory afferent of the Golgi tendon organ (GTO or both are responsible for the effects. During PNF stretch and isometric contraction of stretched agonists for extended period may cause activation of its neuromuscular spindle. The increase in tension created during the isometric contraction of the pre – lengthened agonist contracts concentrically. Both the fascia & the spindle of the agonist adjust to the nearly lengthened position. These impulses travel via causing post synaptic inhibition of the motor neuron to agonist increasing the tension from the GTO. These impulses can override the impulses coming from the neuromuscular spindles arousing the muscle to reflexly resist to the change in length, thus helping in lengthening

  12. Controlled Terahertz Birefringence in Stretched Poly(lactic acid) Films Investigated by Terahertz Time-Domain Spectroscopy and Wide-Angle X-ray Scattering.

    Science.gov (United States)

    Iwasaki, Hotsumi; Nakamura, Madoka; Komatsubara, Nozomu; Okano, Makoto; Nakasako, Masayoshi; Sato, Harumi; Watanabe, Shinichi

    2017-07-20

    We report a correlation between the dielectric property and structure of stretched poly(lactic acid) (PLA) films, revealed by polarization-sensitive terahertz time-domain spectroscopy and two-dimensional (2D) wide-angle X-ray scattering (WAXS). The experiments evidence that the dielectric function of the PLA film becomes more anisotropic with increasing draw ratio (DR). This behavior is explained by a classical Lorentz oscillator model assuming polarization-dependent absorption. The birefringence can be systematically altered from 0 to 0.13 by controlling DR. The combination of terahertz spectroscopy and 2D WAXS measurement reveals a clear correlation between the birefringence in the terahertz frequency domain and the degree of orientation of the PLA molecular chains. These findings imply that the birefringence is a result of the orientation of the PLA chains with anisotropic macromolecular vibration modes. Because of a good controllability of the birefringence, polymer-based materials will provide an attractive materials system for phase retarders in the terahertz frequency range.

  13. Passive Stretch Versus Active Stretch on Intervertebral Movement in Non - Specific Neck Pain

    International Nuclear Information System (INIS)

    Abd El - Aziz, A.H.; Amin, D.I.; Moustafa, I.

    2016-01-01

    Neck pain is one of the most common and painful musculoskeletal conditions. Point prevalence ranges from 6% to 22% and up to 38% of the elderly population, while lifetime prevalence ranges from 14,2% to 71%. Up till now no randomized study showed the effect between controversy of active and passive stretch on intervertebral movement. The purpose: the current study was to investigate the effect of the passive and active stretch on intervertebral movement in non - specific neck pain. Material and methods: Forty five subjects from both sexes with age range between 18 and 30 years and assigned in three groups, group I (15) received active stretch, ultrasound and TENS. Group II (15) received passive stretch, ultrasound and TENS. Group III (15) received ultrasound and TENS. The radiological assessment was used to measure rotational and translational movement of intervertebral movement before and after treatment. Results: MANOVA test was used for radiological assessment before and after treatment there was significant increase in intervertebral movement in group I as p value =0.0001. Conclusion: active stretch had a effect in increasing the intervertebral movement compared to the passive stretch

  14. Vibrationally resolved electronic spectra including vibrational pre-excitation: Theory and application to VIPER spectroscopy

    Science.gov (United States)

    von Cosel, Jan; Cerezo, Javier; Kern-Michler, Daniela; Neumann, Carsten; van Wilderen, Luuk J. G. W.; Bredenbeck, Jens; Santoro, Fabrizio; Burghardt, Irene

    2017-10-01

    Vibrationally resolved electronic absorption spectra including the effect of vibrational pre-excitation are computed in order to interpret and predict vibronic transitions that are probed in the Vibrationally Promoted Electronic Resonance (VIPER) experiment [L. J. G. W. van Wilderen et al., Angew. Chem., Int. Ed. 53, 2667 (2014)]. To this end, we employ time-independent and time-dependent methods based on the evaluation of Franck-Condon overlap integrals and Fourier transformation of time-domain wavepacket autocorrelation functions, respectively. The time-independent approach uses a generalized version of the FCclasses method [F. Santoro et al., J. Chem. Phys. 126, 084509 (2007)]. In the time-dependent approach, autocorrelation functions are obtained by wavepacket propagation and by the evaluation of analytic expressions, within the harmonic approximation including Duschinsky rotation effects. For several medium-sized polyatomic systems, it is shown that selective pre-excitation of particular vibrational modes leads to a redshift of the low-frequency edge of the electronic absorption spectrum, which is a prerequisite for the VIPER experiment. This effect is typically most pronounced upon excitation of modes that are significantly displaced during the electronic transition, such as ring distortion modes within an aromatic π-system. Theoretical predictions as to which modes show the strongest VIPER effect are found to be in excellent agreement with experiment.

  15. Effects of ultrasonic vibrations in micro-groove turning.

    Science.gov (United States)

    Zhang, Chen; Guo, Ping; Ehmann, Kornel F; Li, Yingguang

    2016-04-01

    Ultrasonic vibration cutting is an efficient cutting process for mechanical micro-machining. This process can generate intricate surface textures with different geometric characteristics. Micro-grooves/micro-channels are among the most frequently encountered micro-structures and, as such, are the focus of this paper. The effectiveness of both the linear and ultrasonic elliptical vibration-assisted machining technique in micro-groove turning is analyzed and discussed in the paper. The paper first investigates the mechanisms of micro-groove generation induced by the linear and elliptical vibration modes. A simplified cutting force analysis method is given to compare the effectiveness of the two modes in micro-groove turning. The surface roughness of the generated micro-grooves is analyzed next and theoretical expressions are given for the two cases. Finally, micro-groove turning experiments are conducted to compare the influences of the two vibration modes on the cutting forces and the surface roughness. The experimental results show that linear vibration-assisted micro-groove turning leads to better surface roughness as compared to the elliptical vibration-assisted case, while elliptical vibration-assisted micro-groove turning shows advantages in terms of decreasing the cutting forces. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. How to Stretch Your Ankle After a Sprain

    Science.gov (United States)

    ... Ankle After A Sprain How to Stretch Your Ankle After A Sprain Page Content You should perform the following stretches ... Consider these home exercises when recuperating from an ankle sprain. Perform them twice per day. While seated, bring ...

  17. Calculation of vibrational frequencies through a variational reduced-coupling approach.

    Science.gov (United States)

    Scribano, Yohann; Benoit, David M

    2007-10-28

    In this study, we present a new method to perform accurate and efficient vibrational configuration interaction computations for large molecular systems. We use the vibrational self-consistent field (VSCF) method to compute an initial description of the vibrational wave function of the system, combined with the single-to-all approach to compute a sparse potential energy surface at the chosen ab initio level of theory. A Davidson scheme is then used to diagonalize the Hamiltonian matrix built on the VSCF virtual basis. Our method is applied to the computation of the OH-stretch frequency of formic acid and benzoic acid to demonstrate the efficiency and accuracy of this new technique.

  18. Dependence of inhomogeneous vibrational linewidth broadening on attractive forces from local liquid number densities

    International Nuclear Information System (INIS)

    George, S.M.; Harris, C.B.

    1982-01-01

    The dependence of inhomogeneous vibrational linewidth broadening on attractive forces form slowly varying local liquid number densities is examined. The recently developed Schweizer--Chandler theory of vibrational dephasing is used to compute absolute inhomogeneous broadening linewidths. The computed linewidths are compared to measured inhomogeneous broadening linewidths determined using picosecond vibrational dephasing experiments. There is a similarity between correlations of the Schweizer--Chandler and George--Auweter--Harris predicted inhomogeneous broadening linewidths and the measured inhomogeneous broadening linewidths. For the methyl stretches under investigation, this correspondence suggests that the width of the number density distribution in the liquid determines the relative inhomogeneous broadening magnitudes

  19. Development of an innovative device for ultrasonic elliptical vibration cutting.

    Science.gov (United States)

    Zhou, Ming; Hu, Linhua

    2015-07-01

    An innovative ultrasonic elliptical vibration cutting (UEVC) device with 1st resonant mode of longitudinal vibration and 3rd resonant mode of bending vibration was proposed in this paper, which can deliver higher output power compared to previous UEVC devices. Using finite element method (FEM), resonance frequencies of the longitudinal and bending vibrations were tuned to be as close as possible in order to excite these two vibrations using two-phase driving voltages at a single frequency, while wave nodes of the longitudinal and bending vibrations were also adjusted to be as coincident as possible for mounting the device at a single fixed point. Based on the simulation analysis results a prototype device was fabricated, then its vibration characteristics were evaluated by an impedance analyzer and a laser displacement sensor. With two-phase sinusoidal driving voltages both of 480 V(p-p) at an ultrasonic frequency of 20.1 kHz, the developed prototype device achieved an elliptical vibration with a longitudinal amplitude of 8.9 μm and a bending amplitude of 11.3 μm. The performance of the developed UEVC device is assessed by the cutting tests of hardened steel using single crystal diamond tools. Experimental results indicate that compared to ordinary cutting process, the tool wear is reduced significantly by using the proposed device. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Vibrating fuel grapple. [LMFBR

    Science.gov (United States)

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  1. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    Directory of Open Access Journals (Sweden)

    Veronica Vaida

    2008-01-01

    Full Text Available Atmospheric chemical reactions are often initiated by ultraviolet (UV solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical reactions. Experimental and theoretical O–H intensities of several carboxylic acids, alcohols, and peroxides are presented. The importance of combination bands in spectra at chemically relevant energies is examined in the context of atmospheric photochemistry. Candidate systems for overtone-initiated chemistry are provided, and their lowest energy barrier for reaction and the minimum quanta of O–H stretch required for reaction are calculated. We conclude with a discussion of the major pathways available for overtone-induced reactions in the atmosphere.

  2. Structure, vibrations, and hydrogen bond parameters of dibenzotetraaza[14]annulene

    Science.gov (United States)

    Gawinkowski, S.; Eilmes, J.; Waluk, J.

    2010-07-01

    Geometry and vibrational structure of dibenzo[ b, i][1,4,8,11]tetraaza[14]annulene (TAA) have been studied using infrared and Raman spectroscopy combined with quantum-chemical calculations. The assignments were proposed for 106 out of the total of 108 TAA vibrations, based on comparison of the theoretical predictions with the experimental data obtained for the parent molecule and its isotopomer in which the NH protons were replaced by deuterons. Reassignments were suggesteded for the NH stretching and out-of-plane vibrations. The values of the parameters of the intramolecular NH⋯N hydrogen bonds were analysed in comparison with the corresponding data for porphyrin and porphycene, molecules with the same structural motif, a cavity composed of four nitrogen atoms and two inner protons. Both experiment and calculations suggest that the molecule of TAA is not planar and is present in a trans tautomeric form, with the protons located on the opposite nitrogen atoms.

  3. Dispersion-managed semiconductor mode-locked ring laser.

    Science.gov (United States)

    Resan, Bojan; Archundia, Luis; Delfyett, Peter J; Alphonse, Gerard

    2003-08-01

    A novel breathing-mode external sigma-ring-cavity semiconductor mode-locked laser is developed. Intracavity pulse compression and stretching produce linearly chirped pulses with an asymmetric exponential temporal profile. External dispersion compensation reduces the pulse duration to 274 fs (within 10% of the bandwidth limit).

  4. Simulation of Anomalous Regional Climate Events with a Variable Resolution Stretched Grid GCM

    Science.gov (United States)

    Fox-Rabinovitz, Michael S.

    1999-01-01

    The stretched-grid approach provides an efficient down-scaling and consistent interactions between global and regional scales due to using one variable-resolution model for integrations. It is a workable alternative to the widely used nested-grid approach introduced over a decade ago as a pioneering step in regional climate modeling. A variable-resolution General Circulation Model (GCM) employing a stretched grid, with enhanced resolution over the US as the area of interest, is used for simulating two anomalous regional climate events, the US summer drought of 1988 and flood of 1993. The special mode of integration using a stretched-grid GCM and data assimilation system is developed that allows for imitating the nested-grid framework. The mode is useful for inter-comparison purposes and for underlining the differences between these two approaches. The 1988 and 1993 integrations are performed for the two month period starting from mid May. Regional resolutions used in most of the experiments is 60 km. The major goal and the result of the study is obtaining the efficient down-scaling over the area of interest. The monthly mean prognostic regional fields for the stretched-grid integrations are remarkably close to those of the verifying analyses. Simulated precipitation patterns are successfully verified against gauge precipitation observations. The impact of finer 40 km regional resolution is investigated for the 1993 integration and an example of recovering subregional precipitation is presented. The obtained results show that the global variable-resolution stretched-grid approach is a viable candidate for regional and subregional climate studies and applications.

  5. Transparent conducting film: Effect of mechanical stretching to ...

    Indian Academy of Sciences (India)

    Administrator

    posite was fixed to a tabletop clamp and unidirectionally stretched after cutting the paper support at two opposite sides. To hold the film under the stretched condition, both edges of stretched CNT-mat/transparent-film composite was then adhered to a PMMA substrate by epoxy glue and both the sheet resistance and the ...

  6. Effects of dynamic stretches on Isokinetic hamstring and Quadriceps ...

    African Journals Online (AJOL)

    In conclusion, dynamic stretches have positive effects on muscle strength, H/Q ratios and ROM. Therefore, dynamic stretches may increase performance and reduce the risk of injury to athletes. Keywords: Quadriceps; Hamstrings; Muscles Isokinetic; Dynamic stretches. South African Journal for Research in Sport, Physical ...

  7. Stretched cell cycle model for proliferating lymphocytes

    Science.gov (United States)

    Dowling, Mark R.; Kan, Andrey; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Wellard, Cameron J.; Markham, John F.; Hodgkin, Philip D.

    2014-01-01

    Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics. PMID:24733943

  8. On the bi-dimensional variational decomposition applied to nonstationary vibration signals for rolling bearing crack detection in coal cutters

    International Nuclear Information System (INIS)

    Jiang, Yu; Li, Zhixiong; Zhang, Chao; Peng, Z; Hu, Chao

    2016-01-01

    This work aims to detect rolling bearing cracks using a variational approach. An original method that appropriately incorporates bi-dimensional variational mode decomposition (BVMD) into discriminant diffusion maps (DDM) is proposed to analyze the nonstationary vibration signals recorded from the cracked rolling bearings in coal cutters. The advantage of this variational decomposition based diffusion map (VDDM) method in comparison to the current DDM is that the intrinsic vibration mode of the crack can be filtered into a limited bandwidth in the frequency domain with an estimated central frequency, thus discarding the interference signal components in the vibration signals and significantly improving the crack detection performance. In addition, the VDDM is able to simultaneously process two-channel sensor signals to reduce information leakage. Experimental validation using rolling bearing crack vibration signals demonstrates that the VDDM separated the raw signals into four intrinsic modes, including one roller vibration mode, one roller cage vibration mode, one inner race vibration mode, and one outer race vibration mode. Hence, reliable fault features were extracted from the outer race vibration mode, and satisfactory crack identification performance was achieved. The comparison between the proposed VDDM and existing approaches indicated that the VDDM method was more efficient and reliable for crack detection in coal cutter rolling bearings. As an effective catalyst for rolling bearing crack detection, this newly proposed method is useful for practical applications. (paper)

  9. String Stretching, Frequency Modulation, and Banjo Clang

    OpenAIRE

    Politzer, David

    2014-01-01

    The banjo’s floating bridge, string break angle, and flexible drumhead all contribute to substantial audio range frequency modulation. From the world of electronic music synthesis, it is known that modulating higher frequency sounds with lower acoustic frequencies leads to metallic and bell-like tone. The mechanics of the banjo does just that quite naturally, modulating fundamentals and harmonics with the motion of the bridge. In technical terms, with a floating bridge, string stretching is f...

  10. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    The stretch zone of automotive steel sheets. L' AMBRIŠKO1,∗ and L PEŠEK2. 1Institute of Structural Engineering, Faculty of Civil Engineering,. Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic. 2Department of Materials Science, Faculty of Metallurgy,. Technical University of Košice, Letná 9, ...

  11. Spontaneous bending of pre-stretched bilayers.

    Science.gov (United States)

    DeSimone, Antonio

    2018-01-01

    We discuss spontaneously bent configurations of pre-stretched bilayer sheets that can be obtained by tuning the pre-stretches in the two layers. The two-dimensional nonlinear plate model we use for this purpose is an adaptation of the one recently obtained for thin sheets of nematic elastomers, by means of a rigorous dimensional reduction argument based on the theory of Gamma-convergence (Agostiniani and DeSimone in Meccanica. doi:10.1007/s11012-017-0630-4, 2017, Math Mech Solids. doi:10.1177/1081286517699991, arXiv:1509.07003, 2017). We argue that pre-stretched bilayer sheets provide us with an interesting model system to study shape programming and morphing of surfaces in other, more complex systems, where spontaneous deformations are induced by swelling due to the absorption of a liquid, phase transformations, thermal or electro-magnetic stimuli. These include bio-mimetic structures inspired by biological systems from both the plant and the animal kingdoms.

  12. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  13. Stretch Moduli of Ribonucleotide Embedded Short DNAs

    Science.gov (United States)

    Chiu, Hsiang-Chih; Koh, Kyung Duk; Riedo, Elisa; Storici, Francesca

    2013-03-01

    Understanding the mechanical properties of DNA is essential to comprehending the dynamics of many cellular functions. DNA deformations are involved in many mechanisms when genetic information needs to be stored and used. In addition, recent studies have found that Ribonucleotides (rNMPs) are among the most common non-standard nucleotides present in DNA. The presences of rNMPs in DNA might cause mutation, fragility or genotoxicity of chromosome but how they influence the structure and mechanical properties of DNA remains unclear. By means of Atomic Force Microscopy (AFM) based single molecule spectroscopy, we measure the stretch moduli of double stranded DNAs (dsDNA) with 30 base pairs and 5 equally embedded rNMPs. The dsDNAs are anchored on gold substrate via thiol chemistry, while the AFM tip is used to pick up and stretch the dsDNA from its free end through biotin-streptavidin bonding. Our preliminary results indicate that the inclusion of rNMPs in dsDNA might significantly change its stretch modulus, which might be important in some biological processes.

  14. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility

    Science.gov (United States)

    Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890

  15. Local Environment and Interactions of Liquid and Solid Interfaces Revealed by Spectral Line Shape of Surface Selective Nonlinear Vibrational Probe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shun-Li; Fu, Li; Chase, Zizwe A.; Gan, Wei; Wang, Hong-Fei

    2016-11-10

    Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group has been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.

  16. The monopole and quadrupole vibrations of a hot nucleus

    International Nuclear Information System (INIS)

    Okolowicz, J.; Drozdz, S.; Ploszajczak, M.; Caurier, E.

    1989-03-01

    An extended time-dependent Hartree-Fock approach has been applied to a description of the isoscalar giant monopole and quadrupole vibration modes in the excited nuclear system at finite temperature. The temperature dependence of the resonance characteristics is established for both modes. In anticipation of some anharmonic effects the principle of regularity and single-valuedness has been used to extract the energies of the collective modes. (orig.)

  17. Chains of benzenes with lithium-atom adsorption: Vibrations and spontaneous symmetry breaking

    OpenAIRE

    Ortiz, Yenni P.; Stegmann, Thomas; Klein, Douglas J.; Seligman, Thomas H.

    2016-01-01

    We study effects of different configurations of adsorbates on the vibrational modes as well as symmetries of polyacenes and poly-p-phenylenes focusing on lithium atom adsorption. We found that the spectra of the vibrational modes distinguish the different configurations. For more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essentially followed by the adsorbate. On poly-p-phenylenes we found that lithium adsorption reduces and often eli...

  18. Reduced Near-Resonant Vibrational Coupling at the Surfaces of Liquid Water and Ice.

    Science.gov (United States)

    Smit, Wilbert J; Versluis, Jan; Backus, Ellen H G; Bonn, Mischa; Bakker, Huib J

    2018-02-26

    We study the resonant interaction of the OH stretch vibrations of water molecules at the surfaces of liquid water and ice using heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy. By studying different isotopic mixtures of H 2 O and D 2 O, we vary the strength of the interaction, and we monitor the resulting effect on the HD-SFG spectrum of the OH stretch vibrations. We observe that the near-resonant coupling effects are weaker at the surface than in the bulk, both for water and ice, indicating that for both phases of water the OH vibrations are less strongly delocalized at the surface than in the bulk.

  19. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  20. Model Indepedent Vibration Control

    OpenAIRE

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  1. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  2. Handbook Of Noise And Vibration

    International Nuclear Information System (INIS)

    1995-12-01

    This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.

  3. Development of vibrational analysis for detection of antisymmetric shells

    CERN Document Server

    Esmailzadeh-Khadem, S; Rezaee, M

    2002-01-01

    In this paper, vibrational behavior of bodies of revolution with different types of structural faults is studied. Since vibrational characteristics of structures are natural properties of system, the existence of any structural faults causes measurable changes in these properties. Here, this matter is demonstrated. In other words, vibrational behavior of a body of revolution with no structural faults is analyzed by two methods of I) numerical analysis using super sap software, II) Experimental model analysis, and natural frequencies and mode shapes are obtained. Then, different types of cracks are introduced in the structure, and analysis is repeated and the results are compared. Based on this study, one may perform crack detection by measuring the natural frequencies and mode shapes of the samples and comparing with reference information obtained from the vibration analysis of the original structure with no fault.

  4. Development of vibrational analysis for detection of antisymmetric shells

    International Nuclear Information System (INIS)

    Esmailzadeh Khadem, S.; Mahmoodi, M.; Rezaee, M.

    2002-01-01

    In this paper, vibrational behavior of bodies of revolution with different types of structural faults is studied. Since vibrational characteristics of structures are natural properties of system, the existence of any structural faults causes measurable changes in these properties. Here, this matter is demonstrated. In other words, vibrational behavior of a body of revolution with no structural faults is analyzed by two methods of I) numerical analysis using super sap software, II) Experimental model analysis, and natural frequencies and mode shapes are obtained. Then, different types of cracks are introduced in the structure, and analysis is repeated and the results are compared. Based on this study, one may perform crack detection by measuring the natural frequencies and mode shapes of the samples and comparing with reference information obtained from the vibration analysis of the original structure with no fault

  5. Regional Climate Simulation with a Variable Resolution Stretch Grid GCM: The 1998 Summer Drought

    Science.gov (United States)

    Fox-Rabinovitz, Michael; Stein, Uri; Takacs, Lawrence; Govindaraju, Ravi; Suarez, Max

    1999-01-01

    The variable resolution stretched grid(SG) GCM based on the Goddard Earth Observing System (GEOS) GCM, has been developed and tested in a regional climate simulation mode. The GEOS SG-GCM is used for simulation of the 1988 summer drought over the U.S. Midwest. Within the stretched grid, the region of interest with a uniform about 60 km resolution is a rectangle over the U.S. Outside the region, the grid intervals increase or stretch with a constant stretching factor (as a geometric progression). The results of two-month simulation for the anomalous climate event of the U.S. drought of 1988, are validated against data analysis fields and diagnostics. The event has been chosen by the Project to Inter-compare Regional Climate Simulations(PIRCS). The efficient regional down-scaling as well as the positive impact of fine regional resolution, are obtained. More specifically, the precipitation, 500 hPa, and low-level jet patterns and characteristics are well represented in the simulation. The SG-concept appeared to be a promising candidate for regional and subregional climate studies and applications.

  6. Implausibility of the vibrational theory of olfaction.

    Science.gov (United States)

    Block, Eric; Jang, Seogjoo; Matsunami, Hiroaki; Sekharan, Sivakumar; Dethier, Bérénice; Ertem, Mehmed Z; Gundala, Sivaji; Pan, Yi; Li, Shengju; Li, Zhen; Lodge, Stephene N; Ozbil, Mehmet; Jiang, Huihong; Penalba, Sonia F; Batista, Victor S; Zhuang, Hanyi

    2015-05-26

    The vibrational theory of olfaction assumes that electron transfer occurs across odorants at the active sites of odorant receptors (ORs), serving as a sensitive measure of odorant vibrational frequencies, ultimately leading to olfactory perception. A previous study reported that human subjects differentiated hydrogen/deuterium isotopomers (isomers with isotopic atoms) of the musk compound cyclopentadecanone as evidence supporting the theory. Here, we find no evidence for such differentiation at the molecular level. In fact, we find that the human musk-recognizing receptor, OR5AN1, identified using a heterologous OR expression system and robustly responding to cyclopentadecanone and muscone, fails to distinguish isotopomers of these compounds in vitro. Furthermore, the mouse (methylthio)methanethiol-recognizing receptor, MOR244-3, as well as other selected human and mouse ORs, responded similarly to normal, deuterated, and (13)C isotopomers of their respective ligands, paralleling our results with the musk receptor OR5AN1. These findings suggest that the proposed vibration theory does not apply to the human musk receptor OR5AN1, mouse thiol receptor MOR244-3, or other ORs examined. Also, contrary to the vibration theory predictions, muscone-d30 lacks the 1,380- to 1,550-cm(-1) IR bands claimed to be essential for musk odor. Furthermore, our theoretical analysis shows that the proposed electron transfer mechanism of the vibrational frequencies of odorants could be easily suppressed by quantum effects of nonodorant molecular vibrational modes. These and other concerns about electron transfer at ORs, together with our extensive experimental data, argue against the plausibility of the vibration theory.

  7. Nanoscale piezoelectric vibration energy harvester design

    Science.gov (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  8. Vibrations in deformed nuclei

    International Nuclear Information System (INIS)

    Aprahamian, A.

    1992-01-01

    Quadrupole oscillations around a deformed shape give rise to vibrations in deformed nuclei. Single phonon vibrations of K = 0 (β) and K = 2 (γ) are a systematic feature in deformed nuclei, but the existence of multi-phonon vibrations had remained an open question until the recently reported results in 168 Er. In this nucleus, a two-phonon K = 4(γγ) band was observed at approximately 2.5 times the energy of the single γ vibration. The authors have studied several deformed rare-earth nuclei using the ( 4 He,2n) reaction in order to map out the systematic behavior of these multi-phonon vibrations. Recently, they have identified a similar K = 4 band in 154 Gd

  9. The Relevance of Stretch Intensity and Position: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Nikos eApostolopoulos

    2015-08-01

    Full Text Available Stretching exercises to increase the range of motion (ROM of joints have been used by sports coaches and medical professionals for improving performance and rehabilitation. The ability of connective and muscular tissues to change their architecture in response to stretching is important for their proper function, repair and performance. Given the dearth of relevant data in the literature, this review examined two key elements of stretching: stretch intensity and stretch position; and their significance to ROM, delayed onset muscle soreness (DOMS, and inflammation in different populations. A search of three databases, Pub-Med, Google Scholar, and Cochrane Reviews, identified 152 articles, which were subsequently categorized into four groups; athletes (n = 24, clinical (n = 29, elderly (n = 12, and general population (n = 87. The use of different populations facilitated a wider examination of the stretching components and their effects. All 152 articles incorporated information regarding duration, frequency and stretch position, whereas only 79 referred to the intensity of stretching and 22 of these 79 studies were deemed high quality. It appears that the intensity of stretching is relatively under-researched, and the importance of body position and its influence on stretch intensity, is largely unknown. In conclusion, this review has highlighted areas for future research, including stretch intensity and position and their effect on musculo-tendinous tissue, in relation to the sensation of pain, delayed onset muscle soreness, inflammation, as well as muscle health and performance

  10. Hamstring Stiffness Returns More Rapidly After Static Stretching Than Range of Motion, Stretch Tolerance, and Isometric Peak Torque.

    Science.gov (United States)

    Hatano, Genki; Suzuki, Shigeyuki; Matsuo, Shingo; Kataura, Satoshi; Yokoi, Kazuaki; Fukaya, Taizan; Fujiwara, Mitsuhiro; Asai, Yuji; Iwata, Masahiro

    2017-12-18

    Hamstring injuries are common, and lack of hamstring flexibility may predispose to injury. Static stretching increases range of motion (ROM) but also results in reduced muscle strength after stretching. The effects of stretching on the hamstring muscles and the duration of these effects remain unclear. To determine the effects of static stretching on the hamstrings and the duration of these effects. Randomized crossover study. University laboratory. Twenty-four healthy volunteers. We measured the torque-angle relationship (ROM, passive torque (PT) at the onset of pain, and passive stiffness) and isometric muscle force using an isokinetic dynamometer. After a 60-minute rest, the ROM of the dynamometer was set at maximum tolerable intensity; this position was maintained for 300 seconds while static passive torque (SPT) was measured continuously. We remeasured the torque-angle relationship and isometric muscle force after rest periods of 10, 20, and 30 minutes. Change in SPT during stretching; changes in ROM, PT at the onset of pain, passive stiffness, and isometric muscle force before stretching compared with 10, 20, and 30 minutes after stretching. SPT decreased significantly during stretching. Passive stiffness decreased significantly 10 and 20 minutes after stretching, but there was no significant pre- vs. post-stretching difference after 30 minutes. PT at the onset of pain and ROM increased significantly after stretching at all rest intervals, while isometric muscle force decreased significantly after all rest intervals. The effect of static stretching on passive stiffness of the hamstrings was not maintained as long as the changes in ROM, stretch tolerance, and isometric muscle force. Therefore, frequent stretching is necessary to improve the viscoelasticity of the muscle-tendon unit. Muscle force was decreased for 30 minutes after stretching; this should be considered prior to activities requiring maximal muscle strength.

  11. Investigation of Vibration Reduction through Structural Optimization.

    Science.gov (United States)

    1980-07-01

    energy calculations (Equation 13) were beyond the scope of this study. However, by using the Direct Mctrix Abstraction Program ( DMAP ) capability in NASTRAN ...Fuselage vertical bending 26.96 29.47 6th Skid mode 29.04 - 25 The AH-lG elastic-line NASTRAN model (including the DMAP ALTER procedure developed for...energy method for reducing vibration response, primarily via structural stiffness changes, using NASTRAN beam-element repre- sentation of the WI-G with

  12. Vibration of helical springs in cross water flow

    International Nuclear Information System (INIS)

    Axisa, F.; Brunet, G.

    1987-05-01

    The purpose of this paper is to present new experimental data on vortex-shedding induced vibration on helical springs subjected to cross-flows. Intense locked-in vibration were observed on the natural modes of axial displacement. A simplified model is tentatively proposed to interpret the experimental data which is based on an analogy with vortex-shedding as observed on straight tube rows

  13. Vibrational dynamics of solid poly(ethylene oxide)

    OpenAIRE

    Krishnan, M.; Balasubramanian, S.

    2003-01-01

    Molecular dynamics (MD) simulations of crystalline poly(ethylene oxide) (PEO) have been carried out in order to study its vibrational properties. The vibrational density of states has been calculated using a normal mode analysis (NMA) and also through the velocity autocorrelation function of the atoms. Results agree well with experimental spectroscopic data. System size effects in the crystalline state, studied through a comparison between results for 16 unit cells and that for one unit cell ...

  14. SHORT DURATIONS OF STATIC STRETCHING WHEN COMBINED WITH DYNAMIC STRETCHING DO NOT IMPAIR REPEATED SPRINTS AND AGILITY

    OpenAIRE

    Del P. Wong; Anis Chaouachi; Patrick W.C. Lau; David G. Behm

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performe...

  15. Ultrasound source using a rectangular vibrating plate combined with rigid walls

    Science.gov (United States)

    Sato, Ryo; Asami, Takuya; Miura, Hikaru

    2017-07-01

    Ultrasound sources that use a stripe-mode rectangular vibrating plate radiate strong ultrasound waves in the air. In this study, we investigated the design strategy for combining the vibrating plate with rigid walls and evaluated the intense ultrasound waves radiated by the sound source. First, we examined the design method for a rectangular transverse vibrating plate with both ends fixed and the vibration amplitude distribution of the vibrating plate. Second, we measured the sound pressure distribution in the formation of the standing wave field. Finally, we clarified the relationship between the input power and sound pressure of the standing wave field antinodes.

  16. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers

    Science.gov (United States)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao

    2015-09-01

    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  17. Torsion - Vibration Couplings in the CH{_3}OO{\\cdot} Radical

    Science.gov (United States)

    Huang, Meng; Miller, Terry A.; McCoy, Anne B.; Hsu, Kuo-Hsiang; Huang, Yu-Hsuan; Lee, Yuan-Pern

    2016-06-01

    A partially rotationally resolved infrared spectrum of CH{_3}OO{\\cdot} in the CH stretch region has been reported. The rotational contour of the {ν_2} CH stretch band in the experimental spectrum can be simulated with an asymmetric rotor model. The simulation shows good agreement with the experimental spectrum except that the broadening of the Q-branch in the experimental spectrum remains unexplained. This broadening is likely due to the sequence band transitions from the torsionally excited levels populated at room temperature to combination levels involving the CH stretch and the same number of torsional quanta. A four dimension model involving three CH stretches and the CH{_3} torsion is applied to the CH{_3}OO{\\cdot} radical to obtain the frequencies and intensities of the vibrational transitions in the CH stretch region. Based on these calculations, the torsional sequence bands are calculated to be slightly shifted from the origin band, because of the couplings between the CH stretches and CH{_3} torsion, thereby causing the apparent broadening observed for the {ν_2} fundamental. Due to the accidental degeneracy of two different CH stretch and CH{_3} torsion combination levels which differ by one quantum in the torsional excitation, the frequencies of the torsional sequence bands will be very sensitive to details of the potential, which makes the shifts difficult to precisely predict with electronic structure calculations. Complementary analyses are now underway for the other two CH stretch vibrational bands, {ν_1} and {ν_9}. K.-H. Hsu, Y.-H. Huang, Y.-P. Lee, M. Huang, T. A. Miller and A. B. McCoy J. Phys. Chem. A, in press, DOI: 10.1021/acs.jpca.5b12334

  18. Soft mode of lead zirconate

    International Nuclear Information System (INIS)

    Pan'ko, G.F.; Prisedskij, V.V.; Klimov, V.V.

    1983-01-01

    Anisotropic diffusional scattering of electrons on PbZrO 3 crystal in the temperature range of phase transition has been recorded. As a result of its analysis it has been established that in lead zirconate the rotational vibrational mode G 25 plays the role of soft mode. The experiment is carried out using PbZrO 3 monocrystals in translucent electron microscope EhM-200, operating in the regime of microdiffraction at accelerating voltage of 150 kV and beam current 50 μA; sample preparation is realized using the method of shearing and fragmentation

  19. Closed-form solutions for free vibration of rectangular FGM thin plates resting on elastic foundation

    Science.gov (United States)

    Xu, T. F.; Xing, Y. F.

    2016-12-01

    This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material (FGM) thin plates subjected to initially in-plane loads and with an elastic foundation. Based on classical thin plate theory, the governing differential equations are derived using Hamilton's principle. A neutral surface is used to eliminate stretching-bending coupling in FGM plates on the basis of the assumption of constant Poisson's ratio. The resulting governing equation of FGM thin plates has the same form as homogeneous thin plates. The separation-of-variables method is adopted to obtain solutions for the free vibration problems of rectangular FGM thin plates with separable boundary conditions, including, for example, clamped plates. The obtained normal modes and frequencies are in elegant closed forms, and present formulations and solutions are validated by comparing present results with those in the literature and finite element method results obtained by the authors. A parameter study reveals the effects of the power law index n and aspect ratio a/ b on frequencies.

  20. Silicon Micromachined Sensor for Broadband Vibration Analysis

    Science.gov (United States)

    Gutierrez, Adolfo; Edmans, Daniel; Cormeau, Chris; Seidler, Gernot; Deangelis, Dave; Maby, Edward

    1995-01-01

    The development of a family of silicon based integrated vibration sensors capable of sensing mechanical resonances over a broad range of frequencies with minimal signal processing requirements is presented. Two basic general embodiments of the concept were designed and fabricated. The first design was structured around an array of cantilever beams and fabricated using the ARPA sponsored multi-user MEMS processing system (MUMPS) process at the Microelectronics Center of North Carolina (MCNC). As part of the design process for this first sensor, a comprehensive finite elements analysis of the resonant modes and stress distribution was performed using PATRAN. The dependence of strain distribution and resonant frequency response as a function of Young's modulus in the Poly-Si structural material was studied. Analytical models were also studied. In-house experimental characterization using optical interferometry techniques were performed under controlled low pressure conditions. A second design, intended to operate in a non-resonant mode and capable of broadband frequency response, was proposed and developed around the concept of a cantilever beam integrated with a feedback control loop to produce a null mode vibration sensor. A proprietary process was used to integrat a metal-oxide semiconductor (MOS) sensing device, with actuators and a cantilever beam, as part of a compatible process. Both devices, once incorporated as part of multifunction data acquisition and telemetry systems will constitute a useful system for NASA launch vibration monitoring operations. Satellite and other space structures can benefit from the sensor for mechanical condition monitoring functions.