WorldWideScience

Sample records for stretching mode contributes

  1. Unexpected decoupling of stretching and bending modes in protein gels.

    Science.gov (United States)

    Gibaud, Thomas; Zaccone, Alessio; Del Gado, Emanuela; Trappe, Véronique; Schurtenberger, Peter

    2013-02-01

    We show that gels formed by arrested spinodal decomposition of protein solutions exhibit elastic properties in two distinct frequency domains, both elastic moduli exhibiting a remarkably strong dependence on volume fraction. Considering the large difference between the protein size and the characteristic length of the network we model the gels as porous media and show that the high and low frequency elastic moduli can be respectively attributed to stretching and bending modes. The unexpected decoupling of the two modes in the frequency domain is attributed to the length scale involved: while stretching mainly relates to the relative displacement of two particles, bending involves the deformation of a strand with a thickness of the order of a thousand particle diameters.

  2. The stretch reflex and the contributions of C David Marsden.

    Science.gov (United States)

    Bhattacharyya, Kalyan B

    2017-01-01

    The stretch reflex or myotatic reflex refers to the contraction of a muscle in response to its passive stretching by increasing its contractility as long as the stretch is within physiological limits. For ages, it was thought that the stretch reflex was of short latency and it was synonymous with the tendon reflex, subserving the same spinal reflex arc. However, disparities in the status of the two reflexes in certain clinical situations led Marsden and his collaborators to carry out a series of experiments that helped to establish that the two reflexes had different pathways. That the two reflexes are dissociated has been proved by the fact that the stretch reflex and the tendon reflex, elicited by stimulation of the same muscle, have different latencies, that of the stretch reflex being considerably longer. They hypothesized that the stretch reflex had a transcortical course before it reached the spinal motor neurons for final firing. Additionally, the phenomenon of stimulus-sensitive cortical myoclonus lent further evidence to the presence of the transcortical loop where the EEG correlate preceded the EMG discharge. This concept has been worked out by later neurologists in great detail, and the general consensus is that indeed, the stretch reflex is endowed with a conspicuous transcortical component.

  3. The stretch reflex and the contributions of C David Marsden

    Directory of Open Access Journals (Sweden)

    Kalyan B Bhattacharyya

    2017-01-01

    Full Text Available The stretch reflex or myotatic reflex refers to the contraction of a muscle in response to its passive stretching by increasing its contractility as long as the stretch is within physiological limits. For ages, it was thought that the stretch reflex was of short latency and it was synonymous with the tendon reflex, subserving the same spinal reflex arc. However, disparities in the status of the two reflexes in certain clinical situations led Marsden and his collaborators to carry out a series of experiments that helped to establish that the two reflexes had different pathways. That the two reflexes are dissociated has been proved by the fact that the stretch reflex and the tendon reflex, elicited by stimulation of the same muscle, have different latencies, that of the stretch reflex being considerably longer. They hypothesized that the stretch reflex had a transcortical course before it reached the spinal motor neurons for final firing. Additionally, the phenomenon of stimulus-sensitive cortical myoclonus lent further evidence to the presence of the transcortical loop where the EEG correlate preceded the EMG discharge. This concept has been worked out by later neurologists in great detail , and the general consensus is that indeed, the stretch reflex is endowed with a conspicuous transcortical component.

  4. Mode Contributions to the Casimir Effect

    Science.gov (United States)

    Intravaia, F.; Henkel, C.

    2010-04-01

    Applying a sum-over-modes approach to the Casimir interaction between two plates with finite conductivity, we isolate and study the contributions of surface plasmons and Foucault (eddy current) modes. We show in particular that for the TE-polarization eddy currents provide a repulsive force that cancels, at high temperatures, the Casimir free energy calculated with the plasma model.

  5. Origin of the anomalous Fe-CO stretching mode in the CO complex of Ascaris hemoglobin.

    Science.gov (United States)

    Das, T K; Friedman, J M; Kloek, A P; Goldberg, D E; Rousseau, D L

    2000-02-01

    We report an unusually high frequency (543 cm(-)(1)) for an Fe-CO stretching mode in the CO complex of Ascaris suum hemoglobin as compared to vertebrate hemoglobins in which the frequency of the Fe-CO mode is much lower. A second Fe-CO stretching mode in Ascaris hemoglobin is observed at 515 cm(-1). We propose that these two Fe-CO stretching modes arise from two protein conformers corresponding to interactions of the heme-bound CO with the B10-tyrosine or the E7-glutamine residues. This postulate is supported by spectra from the B10-Tyr --> Phe mutant in which the 543 cm(-1) line is absent. Thus, a strong polar interaction, such as hydrogen bonding, of the CO with the distal B10 tyrosine residue is the dominant factor that causes this anomalously high frequency. Strong hydrogen bonding between O(2) and distal residues in the oxy complex of Ascaris hemoglobin has been shown to result in a rigid structure, rendering an extremely low oxygen off rate [Gibson, Q. H., and Smith, M. H. (1965) Proc. R. Soc. London B 163, 206-214]. In contrast, the CO off rate in Ascaris hemoglobin is very similar to that in sperm whale myoglobin. The high CO off rate relative to that of O(2) in Ascaris hemoglobin is attributed to a rapid equilibrium between the two conformations of the protein in the CO adduct, with the off rate being determined by the conformer with the higher rate.

  6. Theoretical and experimental investigations of thickness- stretch modes in 1-3 piezoelectric composites

    International Nuclear Information System (INIS)

    Yang, Z T; Zeng, D P; He, M; Wang, H

    2015-01-01

    Bulk piezoelectric ceramics operating in thickness-stretch (TSt) modes have been widely used in acoustic-related devices. However, the fundamental TSt waves are always coupled with other modes, and the occurrence of these spurious modes in bulk piezoelectric ceramics affects its performance. To suppress the spurious modes, 1-3 piezoelectric composites are promising candidates. However, theoretical modeling of multiphase ceramic composite objects is very complex. In this study, a 1-3 piezoelectric composite sample and a bulk piezoelectric sample are fabricated. The electrical impedance of these two samples are compared. A simple analytical TSt vibration mode from the three dimensional equations of linear piezoelectricity is used to model the performance of 1-3 piezoelectric composites. The theoretical results agree well with the experimental results. (paper)

  7. Stretching dependence of the vibration modes of a single-molecule Pt-H-2-Pt bridge

    DEFF Research Database (Denmark)

    Djukic, D.; Thygesen, Kristian Sommer; Untiedt, C.

    2005-01-01

    isotope substitution is obtained. The stretching dependence for each of the modes allows uniquely classifying them as longitudinal or transversal modes. The interpretation of the experiment in terms of a Pt-H-2-Pt bridge is verified by density-functional theory calculations for the stability, vibrational...

  8. Vibrational dephasing of the C-Br stretching modes in gauche and trans dibromoethane

    Science.gov (United States)

    Schwartz, M.; Moradi-Araghi, A.; Koehler, W. H.

    The isotropic Raman spectra of the gauche and trans C-Br stretching modes in 1,2-dibromoethane were studied as a function of temperature in the liquid phase. Isotropic dephasing times were found to be longer for the gauche conformer, and decreased at higher temperatures for both rotamers. Vibrational second moments were observed to be greater for the trans species. Application of the isolated binary collision model to this system could not reproduce the experimentally observed temperature dependence of τiso. Values of the modulation times obtained from the Kubo lineshape formalism are in qualitative agreement with Enskog hard-sphere collision times. This approach was also used to provide a qualitative explanation of the longer observed modulation times in the gauche conformer.

  9. Muscle progenitor cells proliferation doesn't sufficiently contribute to maintaining stretched soleus muscle mass during gravitational unloading

    Science.gov (United States)

    Tarakina, M. V.; Turtikova, O. V.; Nemirovskaya, T. L.; Kokontcev, A. A.; Shenkman, B. S.

    Skeletal muscle work hypertrophy is usually connected with muscle progenitor satellite cells (SC) activation with subsequent incorporation of their nuclei into myofibers. Passive stretch of unloaded muscle was earlier established to prevent atrophic processes and is accompanied by enhanced protein synthesis. We hypothesized that elimination of SC proliferation capacity by γ-irradiation would partly avert stretched muscle fiber capability to maintain their size under the conditions of gravitational unloading. To assess the role of muscle progenitor (satellite) cells in development of passive stretch preventive effect SC proliferation was suppressed by local exposing to ionized radiation (2500 rad), subsequent hindlimb suspension or hindlimb suspension with concomitant passive stretch were carried out. Reduction of myofiber cross-sectional area and decrease in myonuclei number accompanying unloaded muscle atrophy were completely abolished by passive stretch both in irradiated and sham-treated animals. We conclude that SC did not make essential contribution to passive stretch preventive action under the conditions of simulated weightlessness.

  10. Observation of the a_1 CH Stretching Modes of Phenyl Radical

    Science.gov (United States)

    Chang, Chih-Hsuan; Buckingham, Grant T.; Nesbitt, David J.

    2013-06-01

    High resolution spectroscopy for infrared rovibrational transitions in the CH stretching manifold of phenyl radical (C_6H_5) has been investigated in the slit-jet supersonic expansion at sub-Doppler resolution (60 MHz). Two new fundamental modes are observed and analyzed in this present study, corresponding to b-type structure originating from excitation of the fundamentals v_1 and v_2 mode. The band origins are determined to be 3073.96850(8) cm^{-1} and 3062.26480(7) cm^{-1}, respectively, which agree well with theoretical anharmonic scaling prediction within 5 cm^{-1} based on the B3LYP/6-311g++(3df,3dp) basis set, but shifted by 11 cm^{-1} from the corresponding experimental Ar-matrix's results of Ellison and coworkers. Intensities for the three bands are also analyzed, with the relative intensities between these three agreeing well with theoretical calculation. The physical interpretation of the inertia defect and perturbations of the band positions to explain the experimental observation and the frequencies shift. Anders. V. Friderichsen, Juliusz G. Radziszewski, Mark R. Nimols, Paul R. Winter, David C. Dayton, Donald E. David, and G. Barney Ellison, J. Am. Chem. Soc. 123, 1977 (2001)

  11. Single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser.

    Science.gov (United States)

    Peng, Di; Zhang, Zhiyao; Zeng, Zhen; Zhang, Lingjie; Lyu, Yanjia; Liu, Yong; Xie, Kang

    2018-03-19

    We demonstrate a single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser. The theoretical analysis and simulation results indicate that the dissipative soliton-based optical source with a flat spectrum relieves the envelope-induced signal distortion, and its high energy spectral density helps to improve the signal-to-noise ratio, both of which are favorable for simplifying the optical front-end architecture of a photonic time-stretch digitizer. By employing a homemade dissipative soliton-based passively mode-locked erbium-doped fiber laser in a single-shot photonic time-stretch digitizer, an effective number of bits of 4.11 bits under an effective sampling rate of 100 GS/s is experimentally obtained without optical amplification in the link and pulse envelope removing process.

  12. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise

    Science.gov (United States)

    Parnis, J. Mark; Thompson, Matthew G. K.

    2004-01-01

    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  13. Dynamics of the OH stretching mode in crystalline Ba(ClO4)2.3H2O

    Science.gov (United States)

    Hutzler, Daniel; Brunner, Christian; Petkov, Petko St.; Heine, Thomas; Fischer, Sighart F.; Riedle, Eberhard; Kienberger, Reinhard; Iglev, Hristo

    2018-02-01

    The vibrational dynamics of the OH stretching mode in Ba(ClO4)2 trihydrate are investigated by means of femtosecond infrared spectroscopy. The sample offers plane cyclic water trimers in the solid phase that feature virtually no hydrogen bond interaction between the water molecules. Selective excitation of the symmetric and asymmetric stretching leads to fast population redistribution, while simultaneous excitation yields quantum beats, which are monitored via a combination tone that dominates the overtone spectrum. The combination of steady-state and time-resolved spectroscopy with quantum chemical simulations and general theoretical considerations gives indication of various aspects of symmetry breakage. The system shows a joint population lifetime of 8 ps and a long-lived coherence between symmetric and asymmetric stretching, which decays with a time constant of 0.6 ps.

  14. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Ladouceur, Michel; Andersen, Jacob B.

    2001-01-01

    1. The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. 2. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h(-1) with the left ankle...... attached to a portable stretching device. The soleus stretch reflex was elicited by applying small amplitude (approximately 8 deg) dorsiflexion perturbations 200 ms after heel contact. 3. Short and medium latency responses were observed with latencies of 55 +/- 5 and 78 +/- 6 ms, respectively. The short...... the hypothesis that, during walking the medium latency component of the stretch reflex resulting from an unexpected perturbation is contributed to by group II muscle afferents....

  15. Triceps surae short latency stretch reflexes contribute to ankle stiffness regulation during human running.

    Directory of Open Access Journals (Sweden)

    Neil J Cronin

    Full Text Available During human running, short latency stretch reflexes (SLRs are elicited in the triceps surae muscles, but the function of these responses is still a matter of controversy. As the SLR is primarily mediated by Ia afferent nerve fibres, various methods have been used to examine SLR function by selectively blocking the Ia pathway in seated, standing and walking paradigms, but stretch reflex function has not been examined in detail during running. The purpose of this study was to examine triceps surae SLR function at different running speeds using Achilles tendon vibration to modify SLR size. Ten healthy participants ran on an instrumented treadmill at speeds between 7 and 15 km/h under 2 Achilles tendon vibration conditions: no vibration and 90 Hz vibration. Surface EMG from the triceps surae and tibialis anterior muscles, and 3D lower limb kinematics and ground reaction forces were simultaneously collected. In response to vibration, the SLR was depressed in the triceps surae muscles at all speeds. This coincided with short-lasting yielding at the ankle joint at speeds between 7 and 12 km/h, suggesting that the SLR contributes to muscle stiffness regulation by minimising ankle yielding during the early contact phase of running. Furthermore, at the fastest speed of 15 km/h, the SLR was still depressed by vibration in all muscles but yielding was no longer evident. This finding suggests that the SLR has greater functional importance at slow to intermediate running speeds than at faster speeds.

  16. Default mode contributions to automated information processing.

    Science.gov (United States)

    Vatansever, Deniz; Menon, David K; Stamatakis, Emmanuel A

    2017-11-28

    Concurrent with mental processes that require rigorous computation and control, a series of automated decisions and actions govern our daily lives, providing efficient and adaptive responses to environmental demands. Using a cognitive flexibility task, we show that a set of brain regions collectively known as the default mode network plays a crucial role in such "autopilot" behavior, i.e., when rapidly selecting appropriate responses under predictable behavioral contexts. While applying learned rules, the default mode network shows both greater activity and connectivity. Furthermore, functional interactions between this network and hippocampal and parahippocampal areas as well as primary visual cortex correlate with the speed of accurate responses. These findings indicate a memory-based "autopilot role" for the default mode network, which may have important implications for our current understanding of healthy and adaptive brain processing.

  17. Comparing contribution of flexural and planar modes to thermodynamic properties

    Science.gov (United States)

    Mann, Sarita; Rani, Pooja; Jindal, V. K.

    2017-05-01

    Graphene, the most studied and explored 2D structure has unusual thermal properties such as negative thermal expansion, high thermal conductivity etc. We have already studied the thermal expansion behavior and various thermodynamic properties of pure graphene like heat capacity, entropy and free energy. The results of thermal expansion and various thermodynamic properties match well with available theoretical studies. For a deeper understanding of these properties, we analyzed the contribution of each phonon branch towards the total value of the individual property. To compute these properties, the dynamical matrix was calculated using VASP code where the density functional perturbation theory (DFPT) is employed under quasi-harmonic approximation in interface with phonopy code. It is noticed that transverse mode has major contribution to negative thermal expansion and all branches have almost same contribution towards the various thermodynamic properties with the contribution of ZA mode being the highest.

  18. Short-latency stretch reflexes do not contribute to premature calf muscle activity during the stance phase of gait in spastic patients

    NARCIS (Netherlands)

    Niet, M. de; Latour, H.; Hendricks, H.T.; Geurts, A.C.H.; Weerdesteijn, V.G.M.

    2011-01-01

    de Niet M, Latour H, Hendricks H, Geurts AC, Weerdesteyn V. Short-latency stretch reflexes do not contribute to premature calf muscle activity during the stance phase of gait in spastic patients. OBJECTIVE: To identify whether a relationship exists between stretch and activity of the calf muscles

  19. Evidence for a supraspinal contribution to the human quadriceps long-latency stretch reflex

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, N.; Grey, Michael James; Sinkjær, Thomas

    2006-01-01

    of the pre-contracted quadriceps muscle to magnetic stimulation of the contralateral motor cortex was quantified. Transcranial magnetic stimulation (TMS) was applied to elicit a compound motor evoked potential (MEP) in the target muscle rectus femoris (RF), in the vastus lateralis (VL), vastus medialis (VM......) and biceps femoris (BF). The MEP and SR were elicited either in combination or separately. When applied in combination the delay between the SR and the MEP varied from 0 to 150 ms in steps of 4, 5 and 10 ms. Somatosensory evoked potentials (SEPs) were recorded from four subjects during the imposed stretch...

  20. Fourier Transform Absorption Spectroscopy of C_3 in the ν_3 Antisymmetric Stretch Mode Region

    Science.gov (United States)

    Vervloet, Michel; Martin-Drumel, Marie-Aline; Tokaryk, Dennis W.; Pirali, Olivier

    2017-06-01

    The C_3 molecule has been detected in a variety of astrophysical objects thanks to the well-known 4050 Å (A^1Π_u-X^1Σ ^+ _g) electronic transition as well as the two IR active modes of the electronic ground state: ν_2 (˜ 63.42 cm^{-1}) and ν_3 (˜ 2040.02 cm^{-1}). Previous laboratory data in the ν_3 region, obtained using diode laser spectroscopy and the photolysis of allene to produce C_3, permitted measurement of the fundamental (0,0,1)Σ-(0,0,0)Σ as well as the hot bands: (0,1,1)Π-(0,1,0)Π; (0,2,1)Σ-(0,2,0)Σ; (0,2,1)Δ-(0,2,0)Δ and provided insights on the anharmonicity of the (0,nν_2,1) vibrational pattern. We have recorded the absorption spectrum of C_3 in the 1800-2100 cm^{-1} region (at a resolution of 0.003 cm^{-1}) using the Bruker IFS 125 Fourier Transform spectrometer at the AILES beamline of Synchrotron SOLEIL. C_3 was produced in a DC discharge of methane heavily diluted in helium. The rovibrational temperature of C_3 produced in our discharge is noticeably higher than in Ref. [4], which allowed us to extend measurements to higher J values. More interestingly, we assigned new hot bands involving higher quanta of the ν_2 bending states: (0,nν_2,1) with n ranging from 0 to 5. Despite the absence of Q branches for these bands, which results in a possible ambiguous J-assignment of P and R lines, the large variety of data considered in this work, in addition to our experimental data and including observations of comet spectra, allows confident assignments. L. Gausset, G. Herzberg, A. Lagerqvist, B. Rosen, Astrophysical Journal, 45-81 (1965); T. F. Giesen et al., The Astrophysical Journal, 551, L181-L184 (2001) K. W. Hinkle, J. J. Keady, P. F. Bernath, Science, 241, 1319-1322 (1988) K. Kawaguchi et al., J. Chem. Phys., 91, 1953-1957 (1989)

  1. MODE OF PRODUCTION ANS EDUCATION: QUESTIONS ON THE MODE OF LIFE: A CONTRIBUTION OF LEON TROTSKY

    Directory of Open Access Journals (Sweden)

    Celi Zulke Taffarel

    2009-06-01

    Full Text Available The text addresses the importance of consideration of the contribution of Leon Trotsky - when you look at the issue of mode of life resulting from the general production of existence - to think clearly articulate an educational proposal for the construction of socialist history project. The need to think the human based on the question of cultural activists, on the fight for a policy of cultural formation.

  2. Cyclic mechanical stretch contributes to network development of osteocyte-like cells with morphological change and autophagy promotion but without preferential cell alignment in rat.

    Science.gov (United States)

    Inaba, Nao; Kuroshima, Shinichiro; Uto, Yusuke; Sasaki, Muneteru; Sawase, Takashi

    2017-09-01

    Osteocytes play important roles in controlling bone quality as well as preferential alignment of biological apatite c -axis/collagen fibers. However, the relationship between osteocytes and mechanical stress remains unclear due to the difficulty of three-dimensional (3D) culture of osteocytes in vitro . The aim of this study was to investigate the effect of cyclic mechanical stretch on 3D-cultured osteocyte-like cells. Osteocyte-like cells were established using rat calvarial osteoblasts cultured in a 3D culture system. Cyclic mechanical stretch (8% amplitude at a rate of 2 cycles min -1 ) was applied for 24, 48 and 96 consecutive hours. Morphology, cell number and preferential cell alignment were evaluated. Apoptosis- and autophagy-related gene expression levels were measured using quantitative PCR. 3D-cultured osteoblasts became osteocyte-like cells that expressed osteocyte-specific genes such as Dmp1 , Cx43 , Sost , Fgf23 and RANKL , with morphological changes similar to osteocytes. Cell number was significantly decreased in a time-dependent manner under non-loaded conditions, whereas cyclic mechanical stretch significantly prevented decreased cell numbers with increased expression of anti-apoptosis-related genes. Moreover, cyclic mechanical stretch significantly decreased cell size and ellipticity with increased expression of autophagy-related genes, LC3b and atg7 . Interestingly, preferential cell alignment did not occur, irrespective of mechanical stretch. These findings suggest that an anti-apoptotic effect contributes to network development of osteocyte-like cells under loaded condition. Spherical change of osteocyte-like cells induced by mechanical stretch may be associated with autophagy upregulation. Preferential alignment of osteocytes induced by mechanical load in vivo may be partially predetermined before osteoblasts differentiate into osteocytes and embed into bone matrix.

  3. High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2 a1 symmetry C-H stretching modes

    Science.gov (United States)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2016-07-01

    A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (˜60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm-1 and 3062.264 80(7) cm-1, respectively, which both agree within 5 cm-1 with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm-1 blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm-1) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions.

  4. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    International Nuclear Information System (INIS)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-01-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice

  5. Contribution of acoustic modes to the density of vibrational states measured by inelastic scattering techniques

    International Nuclear Information System (INIS)

    Chumakov, A. I.; Bosak, A.; Rueffer, R.

    2009-01-01

    We consider the contribution of acoustic modes to the density of vibrational states measured by nuclear inelastic, inelastic x-ray, and inelastic neutron scattering. In nuclear and x-ray scattering, the low-energy part of the density of states (DOS) is compared with the contribution of acoustic modes to the generalized density of states. Different to that, in neutron scattering the DOS is compared with the contribution of acoustic modes to the true density of states. We argue that in general this is not correct and that similar to nuclear and x-ray scattering, the neutron data in most cases must also be compared with the contribution of acoustic modes to the generalized DOS. For neutron scattering, this contribution usually is smaller than the contribution to the true DOS. Thus, the comparison of the neutron data with the contribution of acoustic modes to the true DOS systematically overestimates the level of acoustic modes. However, an extrapolation of the neutron DOS to zero energy often exceeds even this overestimated level. In our eyes, even for glasses the manifold excess of the extrapolation of the neutron DOS to zero energy over the expected level of acoustic modes seems to be unreasonable even though in this case one can still argue on existing of additional soft modes. However, a similar excess observed also for crystalline samples clearly indicates an uncertainty of the absolute scale of the DOS measured by neutron scattering.

  6. Simultaneous spectral and temporal analyses of kinetic energies in nonequilibrium systems: theory and application to vibrational relaxation of O-D stretch mode of HOD in water.

    Science.gov (United States)

    Jeon, Jonggu; Lim, Joon Hyung; Kim, Seongheun; Kim, Heejae; Cho, Minhaeng

    2015-05-28

    A time series of kinetic energies (KE) from classical molecular dynamics (MD) simulation contains fundamental information on system dynamics. It can also be analyzed in the frequency domain through Fourier transformation (FT) of velocity correlation functions, providing energy content of different spectral regions. By limiting the FT time span, we have previously shown that spectral resolution of KE evolution is possible in the nonequilibrium situations [Jeon and Cho, J. Chem. Phys. 2011, 135, 214504]. In this paper, we refine the method by employing the concept of instantaneous power spectra, extending it to reflect an instantaneous time-correlation of velocities with those in the future as well as with those in the past, and present a new method to obtain the instantaneous spectral density of KE (iKESD). This approach enables the simultaneous spectral and temporal resolution of KE with unlimited time precision. We discuss the formal and novel properties of the new iKESD approaches and how to optimize computational methods and determine parameters for practical applications. The method is specifically applied to the nonequilibrium MD simulation of vibrational relaxation of the OD stretch mode in a hydrated HOD molecule by employing a hybrid quantum mechanical/molecular mechanical (QM/MM) potential. We directly compare the computational results with the OD band population relaxation time profiles extracted from the IR pump-probe measurements for 5% HOD in water. The calculated iKESD yields the OD bond relaxation time scale ∼30% larger than the experimental value, and this decay is largely frequency-independent if the classical anharmonicity is accounted for. From the integrated iKESD over intra- and intermolecular bands, the major energy transfer pathways were found to involve the HOD bending mode in the subps range, then the internal modes of the solvent until 5 ps after excitation, and eventually the solvent intermolecular modes. Also, strong hydrogen

  7. Sub-Doppler slit jet infrared spectroscopy of astrochemically relevant cations: Symmetric (ν1) and antisymmetric (ν6) NH stretching modes in ND2H2+

    Science.gov (United States)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2018-01-01

    Sub-Doppler infrared rovibrational transitions in the symmetric (v1) and antisymmetric (v6) NH stretch modes of the isotopomerically substituted ND2H2+ ammonium cation are reported for the first time in a slit jet discharge supersonic expansion spectrometer. The partially H/D substituted cation is generated by selective isotopic exchange of ND3 with H2O to form NHD2, followed by protonation with H3+ formed in the NHD2/H2/Ne slit-jet discharge expansion environment. Rotational assignment for ND2H2+ is confirmed rigorously by four line ground state combination differences, which agree to be within the sub-Doppler precision in the slit jet (˜9 MHz). Observation of both b-type (ν1) and c-type (ν6) bands enables high precision determination of the ground and vibrationally excited state rotational constants. From an asymmetric top Watson Hamiltonian analysis, the ground state constants are found to be A″ = 4.856 75(4) cm-1, B″ = 3.968 29(4) cm-1, and C″ = 3.446 67(6) cm-1, with band origins at 3297.5440(1) and 3337.9050(1) cm-1 for the v1 and v6 modes, respectively. This work permits prediction of precision microwave/mm-wave transitions, which should be invaluable in facilitating ongoing spectroscopic searches for partially deuterated ammonium cations in interstellar clouds and star-forming regions of the interstellar medium.

  8. Short-latency stretch reflexes do not contribute to premature calf muscle activity during the stance phase of gait in spastic patients.

    Science.gov (United States)

    de Niet, Mark; Latour, Hilde; Hendricks, Henk; Geurts, Alexander C; Weerdesteyn, Vivian

    2011-11-01

    To identify whether a relationship exists between stretch and activity of the calf muscles during the stance phase of gait in patients with upper motor neuron syndrome (UMNS), while taking into account the physiologic phase shift between these entities. Survey. Ambulatory care and general community. Patients with UMNS (n=15; 9 patients with stroke, 6 patients with hereditary spastic paraparesis) with premature calf muscle activity during the stance phase of gait and healthy controls (n=13). Not applicable. Timing of optimal association (phase shift) between the lengthening velocity of the gastrocnemius muscle and its electromyographic activity as revealed by cross-correlation analyses. Although premature calf muscle activity was evident in the patient groups, the phase shift between calf muscle stretch and its activity did not correspond with the monosynaptic stretch reflex latency (40- to 80-ms time window). However, there was a main effect of group on the phase shifts (F(3,33)=3.23, P=.035). Post hoc analysis revealed that in the paretic leg of stroke patients, the electromyographic activity preceded the lengthening velocity by 9 ± 54ms, whereas in the control group, the electromyographic activity followed the pattern of the muscle-lengthening velocity with a delay of 61 ± 54ms (P=.029). Short-latency stretch reflexes do not significantly contribute to premature calf muscle activity in the stance phase of (spastic) gait. This notion questions the validity of the clinical assessment of hyperreflexia and clonus of the calf as a predictor of calf muscle spasticity during gait. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Anharmonic Bend-Stretch Coupling in Water

    NARCIS (Netherlands)

    Lindner, Jörg; Vöhringer, Peter; Pshenichnikov, Maxim S.; Cringus, Dan; Wiersma, Douwe A.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne.; Weiner, Andrew M.

    2006-01-01

    Following excitation of the H-O-H bending mode of water molecules in solution the stretching mode region is monitored over its entire width. The anharmonic coupling between the two modes results in a substantial change of the transient stretch absorption that decays with the bend depopulation time.

  10. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    International Nuclear Information System (INIS)

    Xie, Zhong-Xiang; Zhang, Yong; Zhang, Li-Fu; Fan, Dian-Yuan

    2017-01-01

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  11. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhong-Xiang [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Yong [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Li-Fu, E-mail: zhanglifu68@hotmail.com [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Dian-Yuan [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2017-05-03

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  12. Parametrization of the contribution of mono- and bidentate ligands on the symmetric C[triple bond]O stretching frequency of fac-[Re(CO)(3)](+) complexes.

    Science.gov (United States)

    Zobi, Fabio

    2009-11-16

    A ligand parameter, IR(P)(L), is introduced in order to evaluate the effect that different monodentate and bidentate ligands have on the symmetric C[triple bond]O stretching frequency of octahedral d(6) fac-[Re(CO)(3)L(3)] complexes (L = mono- or bidentate ligand). The parameter is empirically derived by assuming that the electronic effect, or contribution, that any given ligand L will add to the fac-[ReCO(3)](+) core, in terms of the total observed energy of symmetric C[triple bond]O stretching frequency (nu(CO(obs))), is additive. The IR(P)(CO) (i.e., the IR(P) of carbon monoxide) is first defined as one-sixth that of the observed C[triple bond]O frequency (nu(CO(obs))) of [Re(CO)(6)](+). All subsequent IR(P)(L) parameters of fac-[Re(CO)(3)L(3)] complexes are derived from IR(P)(L) = (1)/(3)[nu(CO(obs)) - 3IR(P)(CO)]. The symmetric C[triple bond]O stretching frequency was selected for analysis by assuming that it alone describes the "average electronic environment" in the IR spectra of the complexes. The IR(P)(L) values for over 150 ligands are listed, and the validity of the model is tested against other octahedral d(6) fac-[M(CO)(3)L(3)] complexes (M = Mn, (99)Tc, and Ru) and cis-[Re(CO)(2)L(4)](+) species and by calculations at the density functional level of theory. The predicted symmetric C[triple bond]O stretching frequency (nu(CO(cal))) is given by nu(CO(cal)) = S(R)[ sum IR(P)(L)] + I(R), where S(R) and I(R) are constants that depend upon the metal, its oxidation state, and the number of CO ligands in its primary coordination sphere. A linear relationship between IR(P) values and the well-established ligand electrochemical parameter E(L) is found. From a purely thermodynamic point of view, it is suggested that ligands with high IR(P)(L) values should weaken the M-CO bond to a greater extent than ligands with low IR(P)(L) values. The significance of the results and the limitations of the model are discussed.

  13. Collective mode contributions to the Meissner effect: Fulde-Ferrell and pair-density wave superfluids

    Science.gov (United States)

    Boyack, Rufus; Wu, Chien-Te; Anderson, Brandon M.; Levin, K.

    2017-06-01

    In this paper we demonstrate the necessity of including the generally omitted collective-mode contributions in calculations of the Meissner effect for nonuniform superconductors. We consider superconducting pairing with nonzero center-of-mass momentum, as is possibly relevant to high transition temperature cuprates, cold atoms, and color superconductors in quantum chromodynamics. For the concrete example of the Fulde-Ferrell phase we present a quantitative calculation of the superfluid density, showing not only that the collective-mode contributions are appreciable but also that they derive from the amplitude mode of the order parameter. This latter mode is generally viewed as being invisible in conventional superconductors. However, our analysis shows that it is extremely important in pair-density-wave-type superconductors, where it destroys stable superfluidity well before the mean-field order parameter vanishes.

  14. Contributing factors in the final performance of a common mode choke

    NARCIS (Netherlands)

    Roc'h, A.; Leferink, Frank Bernardus Johannes

    2015-01-01

    In order to avoid retro-designed common mode chokes in power system application, a predictive model is used to analyze the contributing factors in the final in-situ performance of the component. Designable parameters, together with environmental and installation aspects are analyzed. A hierarchic

  15. A Review Paper: Contributions from the Gravity and the Kelvin Modes for the Vertical Motion Response.

    Directory of Open Access Journals (Sweden)

    Julio Buchmann

    2009-10-01

    Full Text Available In earlier papers of a series of real data integrations of the National Center for Atmospheric Research (NCAR Community Climate Model (CCM with tropical heat anomalies display regions of pronounced subsidence and drying located several thousand kilometers westward poleward of the heating for cases of tropical Atlantic heating and tropical east Pacific heating. This highly predictable sinking response is established within the first five days of these integrations. The normal-modes of a set of nonlinear primitive equations for an atmosphere: Adiabatic, hydrostatic, incompressible, dry, without friction and viscosity are linearized about a basic state at rest and used to partition model response into gravity-inertia and Rossby modes. The emphasis of this review is given upon the contributions of the gravity and Kelvin modes for the vertical motion response.

  16. Both the elongation of attached crossbridges and residual force enhancement contribute to joint torque enhancement by the stretch-shortening cycle

    Science.gov (United States)

    Misaki, Jun; Isaka, Tadao

    2017-01-01

    This study examined the influence of the elongation of attached crossbridges and residual force enhancement on joint torque enhancement by the stretch-shortening cycle (SSC). Electrically evoked submaximal tetanic plantar flexions were adopted. Concentric contractions were evoked in the following three conditions: after 2 s isometric preactivation (ISO condition), after 1 s isometric then 1 s eccentric preactivation (ECC condition), and after 1 s eccentric then 1 s isometric preactivation (TRAN condition). Joint torque and fascicle length were measured during the concentric contraction phase. While no differences in fascicle length were observed among conditions at any time points, joint torque was significantly higher in the ECC than TRAN condition at the onset of concentric contraction. This difference would be caused by the dissipation of the elastic energy stored in the attached crossbridges induced by eccentric preactivation in TRAN condition due to 1 s transition phase. Furthermore, joint torques observed 0.3 and 0.6 s after concentric contraction were significantly larger in the ECC and TRAN conditions than in the ISO condition while no difference was observed between the ECC and TRAN conditions. Since the elastic energy stored in the attached crossbridges would have dissipated over this time frame, this result suggests that residual force enhancement induced by eccentric preactivation also contributes to joint torque enhancement by the SSC. PMID:28386453

  17. Developing a Stretching Program.

    Science.gov (United States)

    Beaulieu, J E

    1981-11-01

    In brief: Although stretching exercises can prevent muscle injuries and enhance athletic performance, they can also cause injury. The author explains the four most common types of stretching exercises and explains why he considers static stretching the safest. He also sets up a stretching routine for runners. In setting up a safe stretching program, one should (1) precede stretching exercises with a mild warm-up; (2) use static stretching; (3) stretch before and after a workout; (4) begin with mild and proceed to moderate exercises; (5) alternate exercises for muscle groups; (6) stretch gently and slowly until tightness, not pain, is felt; and (7) hold the position for 30 to 60 seconds.

  18. Stretch Sensor Device

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for determining stretch values and movement of body parts, e.g. a foot, by analysing stretch data from a stretch sensor. By analysing data from the stretch sensor it is possible to determine stretch samples which are associated with particular motion phases...

  19. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  20. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide.

    Science.gov (United States)

    Lv, Wei; Henry, Asegun

    2016-10-21

    Thermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself becomes questionable when one cannot rigorously define the phonon velocities. In this report, we used our recently developed Green-Kubo modal analysis (GKMA) method to study amorphous silicon dioxide (a-SiO 2 ). The predicted thermal conductivities exhibit excellent agreement with experiments and anharmonic effects are included in the thermal conductivity calculation for all the modes in a-SiO 2 for the first time. Previously, localized modes (locons) have been thought to have a negligible contribution to thermal conductivity, due to their highly localized nature. However, in a-SiO 2 our results indicate that locons contribute more than 10% to the total thermal conductivity from 400 K to 800 K and they are largely responsible for the increase in thermal conductivity of a-SiO 2 above room temperature. This is an effect that cannot be explained by previous methods and therefore offers new insight into the nature of phonon transport in amorphous/glassy materials.

  1. Contribution of the tendinous tissue to force enhancement during stretch-shortening cycle exercise depends on the prestretch and concentric phase intensities.

    Science.gov (United States)

    Ishikawa, Masaki; Komi, Paavo V; Finni, Taija; Kuitunen, Sami

    2006-10-01

    When the prestretch intensity and concentric work are increased in stretch-shortening cycle (SSC) exercises, the utilization of the elastic energy can increase during the concentric phase. In order to further understand this process during SSC exercises, the interaction between fascicle-tendinous tissues (TT) of the vastus lateralis (VL) muscle was examined under different prestretch and rebound intensity drop jumps. Ten male subjects participated in the study. Direct VL fascicle lengths (N = 10) and in vivo patellar tendon force (N = 1) were measured together with the electromyographic (EMG) activity of VL during the trials. With increasing drop height but the same rebound height condition, the TT stretch increased during the early braking phase with a subsequent increase in its recoil during the early push-off phase. This occurred concomitantly with decreased fascicle shortening and EMG activation. However, with the increased rebound height but the same drop height condition, the fascicles were stretched less during the late braking phase with higher EMG activation. In this situation, TT could be stretched more by the tension provided by fascicles. Consequently, the TT recoil increased during the late push-off phase. These observations confirm that there can be an intensity specific fascicle-TT interaction during SSC exercises.

  2. Portraying the unique contribution of the default mode network to internally driven mnemonic processes.

    Science.gov (United States)

    Shapira-Lichter, Irit; Oren, Noga; Jacob, Yael; Gruberger, Michal; Hendler, Talma

    2013-03-26

    Numerous neuroimaging studies have implicated default mode network (DMN) involvement in both internally driven processes and memory. Nevertheless, it is unclear whether memory operations reflect a particular case of internally driven processing or alternatively involve the DMN in a distinct manner, possibly depending on memory type. This question is critical for refining neurocognitive memory theorem in the context of other endogenic processes and elucidating the functional significance of this key network. We used functional MRI to examine DMN activity and connectivity patterns while participants overtly generated words according to nonmnemonic (phonemic) or mnemonic (semantic or episodic) cues. Overall, mnemonic word fluency was found to elicit greater DMN activity and stronger within-network functional connectivity compared with nonmnemonic fluency. Furthermore, two levels of functional organization of memory retrieval were shown. First, across both mnemonic tasks, activity was greater mainly in the posterior cingulate cortex, implying selective contribution to generic aspects of memory beyond its general involvement in endogenous processes. Second, parts of the DMN showed distinct selectivity for each of the mnemonic conditions; greater recruitment of the anterior prefrontal cortex, retroesplenial cortex, and hippocampi and elevated connectivity between anterior and posterior medial DMN nodes characterized the semantic condition, whereas increased recruitment of posterior DMN components and elevated connectivity between them characterized the episodic condition. This finding emphasizes the involvement of DMN elements in discrete aspects of memory retrieval. Altogether, our results show a specific contribution of the DMN to memory processes, corresponding to the specific type of memory retrieval.

  3. Anomalous thermal response of silicene to uniaxial stretching

    Science.gov (United States)

    Hu, Ming; Zhang, Xiaoliang; Poulikakos, Dimos

    2013-05-01

    Silicene—the silicon counterpart of graphene—has a two-dimensional structure that leads to a host of interesting physical and chemical properties of significant utility. We report here an investigation with nonequilibrium molecular dynamics simulations of thermal transport in a single-layer silicene sheet under uniaxial stretching. We discovered that, contrary to its counterpart of graphene and despite the similarity of their honeycomb lattice structure, silicene exhibits an anomalous thermal response to tensile strain: The thermal conductivity of silicene and silicene nanoribbons first increases significantly with applied tensile strain rather than decreasing and then fluctuates at an elevated plateau. By quantifying the relative contribution from different phonon polarizations, we show first that the phonon transport in silicene is dominated by the out-of-plane flexural modes, similar to graphene. We attribute subsequently the unexpected and markedly different behavior of silicene to the interplay between two competing mechanisms governing heat conduction in a stretched silicene sheet, namely, (1) uniaxial stretching modulation in the longitudinal direction significantly depressing the phonon group velocities of longitudinal and transverse modes (phonon softening) and hindering heat conduction, and (2) phonon stiffening in the flexural modes counteracting the phonon softening effect and facilitating thermal transport. The abnormal behavior of the silicene sheet is further correlated to the unique deformation characteristics of its hexagonal lattice. Our study offers perspectives of modulating the thermal properties of low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.

  4. Electrical anharmonicity and dampings contributions to Cl-H → stretching band in gaseous (CH3)2O…HCl complex: Quantum dynamic study and prediction of the temperature effects

    Science.gov (United States)

    Rekik, Najeh; Alshammari, Majid F.

    2017-06-01

    In a previous work (Rekik et al., 2017), we demonstrated the ability of a simple anharmonic model of the dipole moment function of the X-H stretching band to explain a set of spectroscopic features of hydrogen bonding formation. Within the context of this model, we have shown that the origins of the broadening of the X - H → stretching band is attributed to large terms in the expansion of the autocorrelation functions due to the electrical anharmonicity. However, the question remained as to the ability of this model to treat the more complex situation in which we take into account the relaxation mechanisms that look at the effect of the surroundings and thereby gives rise to signatures of the medium to the X - H → stretching band lineshapes. Thus, in the present study, we investigated this situation by envisaging that the direct relaxation mechanism is due to the coupling between the fluctuating local electric field and the dipole moment of the complex as rationalized by Rosh and Ratner and the indirect damping resulting from the interaction of the X - H → stretch with its environment via the H-bond bridge mode. Theoretical experiments show that mixing of all these effects results in a speard and complicated structure. Using an ensemble of physically sound parameters as input into this approach, we have captured the main features in the experimental Cl - H → band in gaseous (CH3)2O…HCl complex and shown that the direct relaxation entrains a broadening of the spectra and is capable of qualitatively capturing the main features in the experimental spectra and quantitatively capturing the characteristic time scale of the vibrational dynamics of the Cl - H → stretching band. Furthermore, due to the decent agreement obtained between the theoretical and experimental line shapes at 226 K, the evolution of the IR spectra with the varaiation of temperature is proposed. The findings gained herein underscore the utility of combining simultaneously the effects of

  5. Stretching Safely and Effectively

    Science.gov (United States)

    ... of stretching before or after hitting the trail, ballet floor or soccer field. Before you plunge into ... ballistic stretching on strength and muscular fatigue of ballet dancers and resistance-trained women. Journal of Strength ...

  6. Contributions from the Second and Third Internal Gravity Modes for the Vertical Motion Response.

    Directory of Open Access Journals (Sweden)

    Julio Buchmann

    2008-07-01

    Full Text Available In earlier papers of a series of real data integrations of the National Center for Atmospheric Research Community ClimateModel with tropical heat anomalies display regions of pronounced subsidence and drying located several thousand kilometers westwardpoleward of the heating for cases of tropical Atlantic heating and tropical east Pacifi c heating. This highly predictable sinking responseis established within the fi rst fi ve days of these integrations. The normal-modes of a set of adiabatic primitive equations linearizedabout a basic state at rest are used to partition model response into gravity-inertia and Rossby modes. The most important contributionfor the vertical motion response comes from the gravity modes added for all vertical modes. The principal emphasis is given upon thecontributions of the second and third internal vertical modes (with equivalent depths on the order of a fews hundred meters for thevertical motion response.

  7. Contribution of mono-exponential, bi-exponential and stretched exponential model-based diffusion-weighted MR imaging in the diagnosis and differentiation of uterine cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng; Yu, Xiaoduo; Chen, Yan; Ouyang, Han; Zhou, Chunwu [Chinese Academy of Medical Sciences, Department of Diagnostic Radiology, Cancer Institute and Hospital, Peking Union Medical College, Beijing (China); Wu, Bing; Zheng, Dandan [GE MR Research China, Beijing (China)

    2017-06-15

    To investigate the potential of various metrics derived from mono-exponential model (MEM), bi-exponential model (BEM) and stretched exponential model (SEM)-based diffusion-weighted imaging (DWI) in diagnosing and differentiating the pathological subtypes and grades of uterine cervical carcinoma. 71 newly diagnosed patients with cervical carcinoma (50 cases of squamous cell carcinoma [SCC] and 21 cases of adenocarcinoma [AC]) and 32 healthy volunteers received DWI with multiple b values. The apparent diffusion coefficient (ADC), pure molecular diffusion (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), water molecular diffusion heterogeneity index (alpha), and distributed diffusion coefficient (DDC) were calculated and compared between tumour and normal cervix, among different pathological subtypes and grades. All of the parameters were significantly lower in cervical carcinoma than normal cervical stroma except alpha. SCC showed lower ADC, D, f and DDC values and higher D* value than AC; D and DDC values of SCC and ADC and D values of AC were lower in the poorly differentiated group than those in the well-moderately differentiated group. Compared with MEM, diffusion parameters from BEM and SEM may offer additional information in cervical carcinoma diagnosis, predicting pathological tumour subtypes and grades, while f and D showed promising significance. (orig.)

  8. Stretched Wire Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  9. Stretching: Does It Help?

    Science.gov (United States)

    Vardiman, Phillip; Carrand, David; Gallagher, Philip M.

    2010-01-01

    Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…

  10. Dynamic stretching is effective as static stretching at increasing flexibility

    OpenAIRE

    Coons, John M.; Gould, Colleen E.; Kim, Jwa K.; Farley, Richard S.; Caputo, Jennifer L.

    2017-01-01

    This study examined the effect of dynamic and static (standard) stretching on hamstring flexibility. Twenty-five female volleyball players were randomly assigned to dynamic (n = 12) and standard (n = 13) stretching groups. The experimental group trained with repetitive dynamic stretching exercises, while the standard modality group trained with static stretching exercises. The stretching interventions were equivalent in the time at stretch and were performed three days a week for four weeks. ...

  11. arXiv Charmless B decays in modes with similar tree and penguin contributions

    CERN Document Server

    INSPIRE-00065546

    2014-01-01

    Charmless $B$ decays are dominated by contributions from the short distance amplitudes from tree level and penguin loop-level amplitudes. The Tree contribution presents a weak phase $\\gamma$. The relationship between these two amplitudes can generated a CP asymmetry depending from the relative amount among them in a particular decay. In multi-body charmless $B$ decays, these relative contribution can change along the phase space, given a non isotropic distribution of CP asymmetries in the Dalitz plot. Two recent LHCb analyses involving charmless multi-body B decays are discussed: the obsevation of CP asymmetries in the phase space of the three-body decays $B^\\pm \\to \\pi^\\pm \\pi^+ \\pi^-$ and $B^\\pm \\to \\pi^\\pm K^+ K^-$; and the angular analysis of the $B^0 \\to \\phi K^*(892)^0$ decay.

  12. Biocatalysis: Unmasked by stretching

    Science.gov (United States)

    Kharlampieva, Eugenia; Tsukruk, Vladimir V.

    2009-09-01

    The biocatalytic activity of enzyme-loaded responsive layer-by-layer films can be switched on and off by simple mechanical stretching. Soft materials could thus be used to trigger biochemical reactions under mechanical action, with potential therapeutic applications.

  13. Exclusive irradiation of cyst adenoid carcinomas: contribution of a dose complement in stereotactic mode

    International Nuclear Information System (INIS)

    Coche-Dequeant, B.; Lefebvre, J.L.; Lacornerie, T.; Lartigau, E.; Attar, M.

    2009-01-01

    The cyst adenoid carcinoma is a rare malignant tumor that reaches principally the salivary glands; It is characterized by a clinical aggressiveness, the presence of peri neural invasions, frequent local recurrences and a high rate of metastases dissemination at delayed distance. The treatment is surgery with a postoperative adjuvant radiotherapy. for the patients suffering of inoperable tumors, the exclusive radiotherapy gives bad results with tests of use of heavy particles. The place of a hypo fractionated treatment on a stereotactic mode has not been evaluated, especially in dose complement after three dimensional irradiation. The purpose was to answer the following question if the Cyberknife was useful to deliver a complement of hypo fractionated stereotactic dose for the inoperable head and neck tumors. The limited number of patients does not allow a definitive conclusion. however, this therapy option seems interesting for the inoperable tumors subject to the management of the toxicity induced by the treatment. The evaluation of the irradiation volumes remains the critical element for the feasibility of this kind of protocol. (N.C.)

  14. European Clearinghouse. Incidents related to reactivity management. Contributing factors, failure modes and corrective actions

    International Nuclear Information System (INIS)

    Bruynooghe, Christiane; Noel, Marc

    2009-01-01

    This work is part of the European Clearinghouse on Nuclear Power Plant Operational Experience Feedback (NPP-OEF) activity carried out at the Joint Research Centre/Institute for Energy (JRC/IE) with the participation of nine EU Regulatory Authorities. It investigates the 1999 Shika-1 criticality event together with other shortcomings in reactivity management reported to the IAE4 Incident Reporting System in the period 1981-2008. The aim of the work was to identify reactivity control failure modes, reactor status and corrective actions. Initiating factors and associated root causes were also analysed. Five of the 7 factors identified for all events were present in the 1999 Shika-1 event where criticality has been unexpectedly reached and maintained during 15 minutes. Most of the events resulted in changes in procedures, material or staff and management training. The analysis carried out put in evidence that in several instances appropriate communication based on operational experience feedback would have prevented incident to occur. This paper also summarises the action taken at power plants and by the regulatory bodies in different countries to avoid repetition of similar events. It identifies insights that might be useful to reduce the likelihood of operational events caused by shortcomings in reactivity management. (orig.)

  15. Preference toward future mode of delivery: how do antepartum preferences and prior delivery experience contribute?

    Science.gov (United States)

    Sparks, Teresa N; Yeaton-Massey, Amanda; Granados, Jesus M; Handler, Stephanie J; Meyer, Michelle R; Caughey, Aaron B

    2015-01-01

    Examine postpartum preferences toward future mode of delivery (MOD), considering recent MOD, antepartum preferences, and demographics. Prospective cohort study where a survey was distributed in outpatient obstetrics clinics to pregnant women over 18 years at 28 weeks gestation or later. Surveys gathered demographics, obstetric history, and preference toward vaginal delivery (VD) versus cesarean delivery (CD). Women were again surveyed at 6-8 weeks postpartum. Chi-square test compared proportions, and logistic regression controlled for potential confounders. A total of 299 women returned postpartum surveys and expressed preferences. Comparing women who experienced VD versus CD, the majority who had a VD (92.1%) would choose this again, while only 1.9% preferred CD. Among the CD group, preferences were mixed: 29.4% desired repeat CD, 34.1% preferred VD, and 36.5% were undecided (p cesarean and prior experience with CD were important factors. This highlights the impact of individual desires and experience, and underscores importance of antenatal counseling.

  16. Nonlinear optical effects and third-harmonic generation in superconductors: Cooper pairs versus Higgs mode contribution

    Science.gov (United States)

    Cea, T.; Castellani, C.; Benfatto, L.

    2016-05-01

    The recent observation of a transmitted THz pulse oscillating at three times the frequency of the incident light paves the way to a powerful protocol to access resonant excitations in a superconductor. Here we show that this nonlinear optical process is dominated by light-induced excitation of Cooper pairs, while the collective amplitude (Higgs) fluctuations of the superconducting order parameter give in general a negligible contribution. We also predict a nontrivial dependence of the signal on the direction of the light polarization with respect to the lattice symmetry, which can be tested in systems such as, e.g., cuprate superconductors.

  17. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    Science.gov (United States)

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  18. DNA binding domains and nuclear localization signal of LEDGF: contribution of two helix-turn-helix (HTH)-like domains and a stretch of 58 amino acids of the N-terminal to the trans-activation potential of LEDGF.

    Science.gov (United States)

    Singh, Dhirendra P; Kubo, E; Takamura, Y; Shinohara, T; Kumar, A; Chylack, Leo T; Fatma, N

    2006-01-20

    Lens epithelium derived growth factor (LEDGF), a nuclear protein, plays a role in regulating the transcription of stress-associated genes such as heat shock proteins by binding to consensus core DNA sequences nAGGn or nGAAn or their repeats, and in doing so helps to provide cyto-protection. However, additional information is required to identify the specific structural features of LEDGF involved in gene transcription. Here we have investigated the functional domains activating and repressing DNA-binding modules, by using a DNA binding assay and trans-activation experiments performed by analyzing proteins prepared from deletion constructs. The results disclosed the DNA-binding domain of N-terminal LEDGF mapped between amino acid residues 5 and 62, a 58 amino acid residue stretch PWWP domain which binds to stress response elements (STRE; A/TGGGGA/T). C-terminal LEDGF contains activation domains, an extensive loop-region (aa 418-530) with two helix-turn-helix (HTH)-like domains, and binds to a heat shock element (HSE; nGAAn). A trans-activation assay using Hsp27 promoter revealed that both HTH domains contribute in a cooperative manner to the trans-activation potential of LEDGF. Interestingly, removal of N-terminal LEDGF (aa 1-187) significantly enhances the gene activation potential of C-terminal LEDGF (aa 199-530); thus the N-terminal domain (aa 5-62), exhibits auto-transcriptional repression activity. It appears that this domain is involved in stabilizing the LEDGF-DNA binding complex. Collectively, our results demonstrate that LEDGF contains three DNA-binding domains, which regulate gene expression depending on cellular microenvironment and thus modify the physiology of cells to maintain cellular homeostasis.

  19. Stretching the Border

    DEFF Research Database (Denmark)

    Horstmann, Alexander

    2014-01-01

    In this paper, I hope to add a complementary perspective to James Scott’s recent work on avoidance strategies of subaltern mountain people by focusing on what I call the refugee public. The educated Karen elite uses the space of exile in the Thai borderland to reconstitute resources and to re-ent......-based organizations succeed to stretch the border by establishing a firm presence that is supported by the international humanitarian economy in the refugee camps in Northwestern Thailand....

  20. The Default Mode Network Supports Episodic Memory in Cognitively Unimpaired Elderly Individuals: Different Contributions to Immediate Recall and Delayed Recall

    Directory of Open Access Journals (Sweden)

    Lijuan Huo

    2018-01-01

    Full Text Available While the neural correlates of age-related decline in episodic memory have been the subject of much interest, the spontaneous functional architecture of the brain for various memory processes in elderly adults, such as immediate recall (IR and delayed recall (DR, remains unclear. The present study thus examined the neural correlates of age-related decline of various memory processes. A total of 66 cognitively normal older adults (aged 60–80 years participated in this study. Memory processes were measured using the Auditory Verbal Learning Test as well as resting-state brain images, which were analyzed using both regional homogeneity (ReHo and correlation-based functional connectivity (FC approaches. We found that both IR and DR were significantly correlated with the ReHo of these critical regions, all within the default mode network (DMN, including the parahippocampal gyrus, posterior cingulate cortex/precuneus, inferior parietal lobule, and medial prefrontal cortex. In addition, DR was also related to the FC between these DMN regions. These results suggest that the DMN plays different roles in memory retrieval across different retention intervals, and connections between the DMN regions contribute to memory consolidation of past events in healthy older people.

  1. Kontrola kvalitete stretch folije

    OpenAIRE

    Gržanić, Nino

    2016-01-01

    U završnom radu opisan je postupak ekstrudiranja i kontrole kvalitete stretch folije koji se koristi u firmi Bomark-Pak radi osiguravanja najbolje kvalitete. Kontrola kreče kod uvoza repromaterijala, nastavlja se kod izrade folije na stroju, te se glavni dio odvija nakon izrade gotovg proizvoda. U radu ćemo detaljno objasniti svaki pojedini korak, zašto se on vrši, te uz pomoć kojih mjernih instrumenata se izvršava.

  2. Stretch reflex regulation in healthy subjects and patients with spasticity

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Petersen, Nicolas; Crone, Clarissa

    2005-01-01

    In recent years, part of the muscle resistance in spastic patients has been explained by changes in the elastic properties of muscles. However, the adaptive spinal mechanisms responsible for the exaggeration of stretch reflex activity also contribute to muscle stiffness. The available data suggest...... of the spastic symptoms. A recent finding also shows no sign of exaggerated stretch reflexes in muscles voluntarily activated by the spastic patient in general. This is easily explained by the control of stretch reflex activity in healthy subjects. In healthy subjects, the stretch reflex activity is increased...... movements, antagonist muscles should remain silent and maximally relaxed. This is ensured by increasing transmission in several spinal inhibitory pathways. In spastic patients, this control is inadequate, and therefore stretch reflexes in antagonist muscles are easily evoked at the beginning of voluntary...

  3. Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers.

    Directory of Open Access Journals (Sweden)

    Yaotao Wang

    Full Text Available Polybutene-1 (PB-1, a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely "no cavitation" for the quenched sample with the thinnest lamellae where only shear yielding occurred, "cavitation with reorientation" for the samples stretched at lower temperatures and samples with thicker lamellae, and "cavitation without reorientation" for samples with thinner lamellae stretched at higher temperatures. The mode "cavitation with reorientation" occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of "cavitation without reorientation" appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae

  4. Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers.

    Science.gov (United States)

    Wang, Yaotao; Jiang, Zhiyong; Fu, Lianlian; Lu, Ying; Men, Yongfeng

    2014-01-01

    Polybutene-1 (PB-1), a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely "no cavitation" for the quenched sample with the thinnest lamellae where only shear yielding occurred, "cavitation with reorientation" for the samples stretched at lower temperatures and samples with thicker lamellae, and "cavitation without reorientation" for samples with thinner lamellae stretched at higher temperatures. The mode "cavitation with reorientation" occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of "cavitation without reorientation" appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae stretched at higher

  5. String Stretching, Frequency Modulation, and Banjo Clang

    OpenAIRE

    Politzer, David

    2014-01-01

    The banjo’s floating bridge, string break angle, and flexible drumhead all contribute to substantial audio range frequency modulation. From the world of electronic music synthesis, it is known that modulating higher frequency sounds with lower acoustic frequencies leads to metallic and bell-like tone. The mechanics of the banjo does just that quite naturally, modulating fundamentals and harmonics with the motion of the bridge. In technical terms, with a floating bridge, string stretching is f...

  6. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles

    Directory of Open Access Journals (Sweden)

    Abdullah Serefoglu, Ufuk Sekir, Hakan Gür, Bedrettin Akova

    2017-03-01

    Full Text Available The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a non-stretching (control, (b static stretching of the quadriceps muscles, (c static stretching of the hamstring muscles, (d dynamic stretching of the quadriceps muscles, and (e dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05 differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05 following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG

  7. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles.

    Science.gov (United States)

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-03-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities

  8. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  9. Anharmonic bend-stretch coupling in neat liquid water

    NARCIS (Netherlands)

    Lindner, Joerg; Cringus, Dan; Pshenichnikov, Maxim S.; Voehringer, Peter

    2007-01-01

    Femtosecond mid-IR spectroscopy is used to study the vibrational relaxation dynamics in neat liquid water. By exciting the bending vibration and probing the stretching mode, it is possible to reliably determine the bending and librational lifetimes of water. The anharmonic coupling between the

  10. Acute Muscle Stretching and Shoulder Position Sense

    OpenAIRE

    Björklund, Martin; Djupsjöbacka, Mats; Crenshaw, Albert G

    2006-01-01

    Context: Stretching is common among athletes as a potential method for injury prevention. Stretching-induced changes in the muscle spindle properties are a suggested mechanism, which may imply reduced proprioception after stretching; however, little is known of this association.

  11. Hydraulic fracture during epithelial stretching.

    Science.gov (United States)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells' cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  12. Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign

    Directory of Open Access Journals (Sweden)

    C. L. Ryder

    2013-01-01

    Full Text Available New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 μm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (deff from 2.3 to 19.4 μm and coarse mode volume median diameter (dvc from 5.8 to 45.3 μm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with deff > 12 μm, or dvc > 25 μm were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration.

    Single Scattering Albed (SSA values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to deff. New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when deff is greater than 2 μm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have

  13. Soleus stretch reflex during cycling

    DEFF Research Database (Denmark)

    Grey, Michael James; Pierce, C. W.; Milner, T. E.

    2001-01-01

    the crank cycle, producing ankle dorsiflexion perturbations of similar trajectory. The stretch reflex was greatest during the power phase of the crank cycle and was decreased to the level of background EMG during recovery. Matched perturbations were induced under static conditions at the same crank angle...... active cycling as has been shown with the H-reflex. This lack of depression may reflect a decreased susceptibility of the stretch reflex to inhibition, possibly originating from presynaptic mechanisms....

  14. Contributions of greenhouse gas forcing and the Southern Annular Mode to historical Southern Ocean surface temperature trends

    OpenAIRE

    Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle

    2018-01-01

    We examine the 1979-2014 Southern Ocean (SO) sea surface temperature (SST) trends simulated in an ensemble of coupled general circulation models and evaluate possible causes of the models’ inability to reproduce the observed 1979-2014 SO cooling. For each model we estimate the response of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions, we skillfully reconstruct the models’ 1979-2014 SO ...

  15. Intermittent But Not Continuous Static Stretching Improves Subsequent Vertical Jump Performance In Flexibility-Trained Athletes.

    Science.gov (United States)

    Bogdanis, Gregory C; Donti, Olyvia; Tsolakis, Charilaos; Smilios, Ilias; Bishop, David J

    2017-02-23

    This study examined changes in countermovement jump (CMJ) height after an intermittent or a continuous static stretching protocol of equal total duration. Sixteen male, elite-level gymnasts performed 90 s of intermittent (3 x 30 s with 30 s rest) or continuous stretching (90 s) of the quadriceps muscle. A single-leg stretching and jumping design was used, with the contra-lateral limb serving as a control. The same individuals performed both conditions with alternate legs in a randomized, counterbalanced order. One leg CMJ height was measured for the stretched and the control leg after warm-up, immediately after stretching, and at regular intervals for 10 min after stretching. Range of motion (ROM) of the hip and knee joints was measured before, after, and 10 min post-stretching. Compared to the control leg, intermittent stretching increased CMJ height by 8.1±2.0%, 4 min into recovery (+2.2±2.0 cm, 95%CI: 1.0-3.4 cm, p=0.001), while continuous stretching decreased CMJ height by 17.5±3.3% immediately after (-2.9±1.7 cm, 95%CI: -2.0 to -3.7 cm, p=0.001) and by 12.0±2.7% one min after stretching (-2.2±2.1 cm, 95%CI: -1.2 to -3.2 cm, p=0.001). The increases in hip (2.9 and 3.6, p=0.001. d=2.4) and knee joint ROM (5.1 and 6.1, p=0.001. d=0.85) after the intermittent and continuous stretching protocols were not different. The opposite effects of intermittent vs. continuous stretching on subsequent CMJ performance suggests that stretching mode is an important variable when examining the acute effects of static stretching on performance in flexibility-trained athletes.

  16. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles

    Science.gov (United States)

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-01-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities

  17. Relationship Between Stretch Duration And Shoulder Musculature ...

    African Journals Online (AJOL)

    To date, studies focussing on the effect of stretching on flexibility have focused almost solely on the effect of chronic stretching rather than the effects of acute stretching performed immediately prior to physical activity. The effects of different static stretches were assessed on passive shoulder range of motion (ROM).

  18. Contributions of Greenhouse Gas Forcing and the Southern Annular Mode to Historical Southern Ocean Surface Temperature Trends

    Science.gov (United States)

    Kostov, Yavor; Ferreira, David; Armour, Kyle C.; Marshall, John

    2018-01-01

    We examine the 1979-2014 Southern Ocean (SO) sea surface temperature (SST) trends simulated in an ensemble of coupled general circulation models and evaluate possible causes of the models' inability to reproduce the observed 1979-2014 SO cooling. For each model we estimate the response of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions, we skillfully reconstruct the models' 1979-2014 SO SST trends. Consistent with the seasonal signature of the Antarctic ozone hole and the seasonality of SO stratification, the summer and fall SAM exert a large impact on the simulated SO SST trends. We further identify conditions that favor multidecadal SO cooling: (1) a weak SO warming response to GHG forcing, (2) a strong multidecadal SO cooling response to a positive SAM trend, and (3) a historical SAM trend as strong as in observations.

  19. The effect of static, ballistic, and proprioceptive neuromuscular facilitation stretching on vertical jump performance.

    Science.gov (United States)

    Bradley, Paul S; Olsen, Peter D; Portas, Matthew D

    2007-02-01

    The purpose of this study was to compare the acute effects of different modes of stretching on vertical jump performance. Eighteen male university students (age, 24.3 +/- 3.2 years; height, 181.5 +/- 11.4 cm; body mass, 78.1 +/- 6.4 kg; mean +/- SD) completed 4 different conditions in a randomized order, on different days, interspersed by a minimum of 72 hours of rest. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions: (a) control, (b) 10-minute static stretching, (c) 10-minute ballistic stretching, or (d) 10-minute proprioceptive neuromuscular facilitation (PNF) stretching. The subjects performed 3 trials of static and countermovement jumps prior to stretching and poststretching at 5, 15, 30, 45, and 60 minutes. Vertical jump height decreased after static and PNF stretching (4.0% and 5.1%, p 0.05). However, jumping performance had fully recovered 15 minutes after all stretching conditions. In conclusion, vertical jump performance is diminished for 15 minutes if performed after static or PNF stretching, whereas ballistic stretching has little effect on jumping performance. Consequently, PNF or static stretching should not be performed immediately prior to an explosive athletic movement.

  20. Atomic Stretch: Optimally bounded real-time stretching and beyond

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Nielsen, Jannik Boll

    2016-01-01

    Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color-modification, co......Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color...

  1. Acute effects of unilateral static stretching on handgrip strength of the stretched and non-stretched limb.

    Science.gov (United States)

    Jelmini, Jacob D; Cornwell, Andrew; Khodiguian, Nazareth; Thayer, Jennifer; Araujo, And John

    2018-02-16

    To determine the effects of an acute bout of unilateral static stretching on handgrip strength of both the stretched and non-stretched limb. It was reasoned that if the non-stretched limb experienced a decrease in force output, further evidence for a neural mechanism to explain a post-stretch force reduction would be obtained as no mechanical adaptation would have occurred. Thirty participants performed maximum voluntary unilateral handgrip contractions of both limbs before and after stretching the finger flexors of the strength-dominant side only. Each trial was assessed for peak force, muscle activity (iEMG), and rate of force generation. Following the stretching bout, peak force and iEMG decreased by 4.4% (p = 0.001) and 6.4% (p = 0.000) respectively in the stretched limb only. However, rate of force generation was significantly impaired in both the stretched (- 17.3%; p = 0.000) and non-stretched limbs (- 10.8%; p = 0.003) 1 min post-stretch, and remained similarly depressed for both limbs 15 min later. Acute stretching negatively impacts rate of force generation more than peak force. Moreover, a reduced rate of force generation from the non-stretched limb indicates the presence of a cross-over inhibitory effect through the nervous system, which provides additional evidence for a neural mechanism.

  2. Soleus stretch reflex during cycling

    DEFF Research Database (Denmark)

    Grey, Michael James; Pierce, C. W.; Milner, T. E.

    2001-01-01

    The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions durin...

  3. On the generalised stretch function

    Czech Academy of Sciences Publication Activity Database

    Kharlamov, Alexander A.; Filip, Petr

    2012-01-01

    Roč. 21, č. 4 (2012), s. 272-278 ISSN 1022-1344 R&D Projects: GA ČR GA103/09/2066 Institutional research plan: CEZ:AV0Z20600510 Keywords : molecular length * recurrence equations * rubber * strain * stretch functions Subject RIV: BK - Fluid Dynamics Impact factor: 1.606, year: 2012

  4. Optical tweezers stretching of chromatin

    NARCIS (Netherlands)

    Pope, L.H.; Bennink, Martin L.; Greve, Jan

    2003-01-01

    Recently significant success has emerged from exciting research involving chromatin stretching using optical tweezers. These experiments, in which a single chromatin fibre is attached by one end to a micron-sized bead held in an optical trap and to a solid surface or second bead via the other end,

  5. Biaxial stretching of polyethylene, (2)

    International Nuclear Information System (INIS)

    Sakami, Hiroshi; Iida, Shozo

    1976-01-01

    The mechanism of oriented crystallization in mutually perpendicular direction to each other was investigated on the crosslinked linear polyethylene stretched successively and biaxially above melting point of raw material. To investigate the mechanism, the shrinkage stress, the degree of polarization and DSC of the film at the fixed length were measured on the crystallization process. The behavior observed on crystallization could be divided into that in the first period and that in the second period. The first period showed the domain of highly oriented crystallization of the crosslinked molecular chain, and in the second period the fold type crystals grew with highly oriented crystals in the first period as nuclear. Therefore, the formation of bi-component crystal structure is supposed for the crystallization. The biaxially oriented crystallization proceeded as follows: the uniaxial orientation to MD was observed in the first stretching in the initial stage, and then the further processing by the second stretching at a right angle caused the fold type crystallization of molecular chain oriented to TD. The film stretched fully and biaxially could be considered to have the oriented crystalline structure in which highly oriented fibril crystals and fold type crystals distribute at random. (auth.)

  6. Spectroscopy of C-H stretching overtones in dimethylacetylene, dimethylcadmium, and dimethylmercury

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares I., C.; Yamasaki, N.L.S.; Weitz, E. (Northwestern Univ., Evanston, IL (USA))

    1989-06-15

    The overtone spectra of a number of C-H stretching vibrations of dimethylacetylene, dimethylcadmium, and dimethylmercury were obtained by using intracavity dye laser photoacoustic spectroscopy. Transitions corresponding to the {Delta}{nu} = 5, 6, and 7 overtones of the C-H stretch are assigned by using the local-mode model. In addition, a number of local-mode-normal-mode combination bands have been identified. Local-mode harmonic frequencies ({omega}{sub e}) and anharmonicities ({omega}{sub e}x{sub e}) are obtained from Birge-Sponer plots. The line widths of the pure local-mode transitions are analyzed in terms of possible resonances with local-mode-normal-mode combination bands. Line widths in this series of compounds are compared to line widths in the M(CH{sub 3}){sub 4} and M(CH{sub 3}){sub 3} series.

  7. Wrinkling instability of an inhomogeneously stretched viscous sheet

    Science.gov (United States)

    Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.

    2017-07-01

    Motivated by the redrawing of hot glass into thin sheets, we investigate the shape and stability of a thin viscous sheet that is inhomogeneously stretched in an imposed nonuniform temperature field. We first determine the associated base flow by solving the long-time-scale stretching flow of a flat sheet as a function of two dimensionless parameters: the normalized stretching velocity α and a dimensionless width of the heating zone β . This allows us to determine the conditions for the onset of an out-of-plane wrinkling instability stated in terms of an eigenvalue problem for a linear partial differential equation governing the displacement of the midsurface of the sheet. We show that the sheet can become unstable in two regions that are upstream and downstream of the heating zone where the minimum in-plane stress is negative. This yields the shape and growth rates of the most unstable buckling mode in both regions for various values of the stretching velocity and heating zone width. A transition from stationary to oscillatory unstable modes is found in the upstream region with increasing β , while the downstream region is always stationary. We show that the wrinkling instability can be entirely suppressed when the surface tension is large enough relative to the magnitude of the in-plane stress. Finally, we present an operating diagram that indicates regions of the parameter space that result in a required outlet sheet thickness upon stretching while simultaneously minimizing or suppressing the out-of-plane buckling, a result that is relevant for the glass redraw method used to create ultrathin glass sheets.

  8. Time stretch and its applications

    Science.gov (United States)

    Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram

    2017-06-01

    Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.

  9. BSDB: the Biomolecule Stretching Database

    Science.gov (United States)

    Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej

    2011-03-01

    Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).

  10. Reverse mode Na+/Ca2+ exchange mediated by STIM1 contributes to Ca2+ influx in airway smooth muscle following agonist stimulation

    Directory of Open Access Journals (Sweden)

    Fox Jane

    2010-12-01

    Full Text Available Abstract Background Agonist stimulation of airway smooth muscle (ASM results in IP3 mediated Ca2+ release from the sarcoplasmic reticulum followed by the activation of store operated and receptor operated non-selective cation channels. Activation of these non-selective channels also results in a Na+ influx. This localised increase in Na+ levels can potentially switch the Na+/Ca2+ exchanger into reverse mode and so result in a further influx of Ca2+. The aim of this study was to characterise the expression and physiological function of the Na+/Ca2+ exchanger in cultured human bronchial smooth muscle cells and determine its contribution to agonist induced Ca2+ influx into these cells. Methods The expression profile of NCX (which encodes the Na+/Ca2+ exchanger homologues in cultured human bronchial smooth muscle cells was determined by reverse transcriptase PCR. The functional activity of reverse mode NCX was investigated using a combination of whole cell patch clamp, intracellular Ca2+ measurements and porcine airway contractile analyses. KB-R7943 (an antagonist for reverse mode NCX and target specific siRNA were utilised as tools to inhibit NCX function. Results NCX1 protein was detected in cultured human bronchial smooth muscle cells (HBSMC cells and NCX1.3 was the only mRNA transcript variant detected. A combination of intracellular Na+ loading and addition of extracellular Ca2+ induced an outwardly rectifying current which was augmented following stimulation with histamine. This outwardly rectifying current was inhibited by 10 μM KB-R7943 (an antagonist of reverse mode NCX1 and was reduced in cells incubated with siRNA against NCX1. Interestingly, this outwardly rectifying current was also inhibited following knockdown of STIM1, suggesting for the first time a link between store operated cation entry and NCX1 activation. In addition, 10 μM KB-R7943 inhibited agonist induced changes in cytosolic Ca2+ and induced relaxation of porcine

  11. Stretching

    Science.gov (United States)

    ... this topic for: Teens Dehydration Safety Tips: Running Knee Injuries Repetitive Stress Injuries Sports and Exercise Safety Dealing With Sports Injuries Sports Center Strains and Sprains View more Partner Message About Us Contact Us ...

  12. A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation

    Science.gov (United States)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.

    2000-01-01

    The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.

  13. To Stretch and Search for Better Ways

    Science.gov (United States)

    Moore, John W.

    2000-06-01

    Ambassadors. The response has been wonderful. Many people are willing and eager to show others what JCE has to offer and encourage them to subscribe. The program began in the latter half of 1999, and there were 37 Journal Ambassadors by year's end. Some are located as far away as South America and Europe, and requests for information packets for meetings and workshops now arrive several times a week. We thank everyone who has been involved in this program for getting it off to a great start. Our authors and reviewers actively search for better ways to teach chemistry and for better ways to communicate to other teachers what they have learned. This enriches their own classes first and then a much wider audience. Others have volunteered to help make JCE articles easier to find and more accessible on the Web. The ACS student affiliates at one college have taken on the project of assigning keywords to articles published in some of the years before 1995. We will add these to the JCE Index online, making it an even more effective means for finding articles on specified topics. There are many possibilities for collaboration with JCE. If you would like to contribute to an ongoing project or would like to initiate a new one, please let us know. We welcome anyone who would like to help us make this Journal better. It is important that students learn how to stretch and search for better ways. This will not happen unless we challenge them within a humane and supportive learning environment. We should expect more than memorization or unthinking application of algorithmic solutions to exercises. We should provide means by which those who do not succeed at first can try again and again. And we should provide an intellectual scaffold for those whose climb toward understanding is difficult. These are not easy goals to achieve, but the more we try and the more we communicate with others who are attempting similar tasks, the more likely we are to be successful. Most important of all is that

  14. Infrared laser spectroscopy of the n-propyl and i-propyl radicals: Stretch-bend Fermi coupling in the alkyl CH stretch region

    Science.gov (United States)

    Franke, Peter R.; Tabor, Daniel P.; Moradi, Christopher P.; Douberly, Gary E.; Agarwal, Jay; Schaefer, Henry F.; Sibert, Edwin L.

    2016-12-01

    The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite [CH3(CH2)3ONO] and i-butyl nitrite [(CH3)2CHCH2ONO], respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the CH stretching region. Several previously unreported bands are observed between 2800 and 3150 cm-1. The CH stretching modes observed above 3000 cm-1 are in excellent agreement with CCSD(T) anharmonic frequencies computed using second-order vibrational perturbation theory. However, between 2800 and 3000 cm-1, the spectra of n- and i-propyl radicals become congested and difficult to assign due to the presence of multiple anharmonic resonance polyads. To model the spectrally congested region, Fermi and Darling-Dennison resonances are treated explicitly using "dressed" Hamiltonians and CCSD(T) quartic force fields in the normal mode representation, and the agreement with experiment is less than satisfactory. Computations employing local mode effective Hamiltonians reveal the origin of the spectral congestion to be strong coupling between the high frequency CH stretching modes and the lower frequency CHn bending/scissoring motions. The most significant coupling is between stretches and bends localized on the same CH2/CH3 group. Spectral simulations using the local mode approach are in excellent agreement with experiment.

  15. Effect of stretching techniques on hamstring flexibility in female ...

    African Journals Online (AJOL)

    Flexibility can be achieved by a variety of stretching techniques and the benefits of stretching are known. However, controversy remains about the best type of stretching for achieving a particular goal or outcome. The four most basic stretches are static stretching, dynamic stretching, PNF hold-relax and PNF contract-relax ...

  16. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  17. Stretching of macromolecules and proteins

    International Nuclear Information System (INIS)

    Strick, T R; Dessinges, M-N; Charvin, G; Dekker, N H; Allemand, J-F; Bensimon, D; Croquette, V

    2003-01-01

    In this paper we review the biophysics revealed by stretching single biopolymers. During the last decade various techniques have emerged allowing micromanipulation of single molecules and simultaneous measurements of their elasticity. Using such techniques, it has been possible to investigate some of the interactions playing a role in biology. We shall first review the simplest case of a non-interacting polymer and then present the structural transitions in DNA, RNA and proteins that have been studied by single-molecule techniques. We shall explain how these techniques permit a new approach to the protein folding/unfolding transition

  18. Resonant interaction between hydrogen vibrational modes in AlSb:Se.

    Science.gov (United States)

    McCluskey, M D

    2009-04-03

    Vibrational modes and their interactions affect numerous physical processes in condensed-matter systems. In the present work, hydrogen vibrations in Se-doped AlSb were investigated with first-principles calculations. Vibrational frequencies were calculated for the longitudinal, transverse, wag (bending), and stretch modes of the Al-H complex. The Al-H stretch mode interacts with a combination mode involving a wag overtone and transverse fundamental. This resonant interaction yields vibrational states that are linear superpositions of the stretch mode and the combination mode. The spatial extent of such excitations is significantly larger than that of a local vibrational mode.

  19. PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION STRETCHING VERSUS STATIC STRETCHING ON SPRINTING PERFORMANCE AMONG COLLEGIATE SPRINTERS

    Directory of Open Access Journals (Sweden)

    Jayaram Maharjan

    2015-08-01

    Full Text Available Background: A warm-up is important part of preparation for sprinting. There is popularity of doing stretching as part of warm up before athletic activity. The static stretching and PNF stretching is performed by athletes but their effectiveness on sprinting performance is in state of debate. The objective is to determine the effect of static stretching and PNF stretching on sprinting performance in college sprinters and to compare the effects of PNF stretching over static stretching on sprinting performance in college sprinters. Method: A total of 100 subjects were taken for the study that fulfill the inclusion criteria and all were divided into group- A (static stretching and group- B (PNF stretching by simple random sampling method. Both the groups received 5 minutes of warm-up exercises. Pre-Post design was used, which consisted of running a 40-yard sprint immediately following 2 stretching conditions aimed at the lower limb muscles Results: In static stretching group sprint time changed from 6.55 with standard deviation of 0.93 to 6.12 with standard deviation of 1.02 (P.605. Conclusion: Hence both static stretching and PNF stretching can be performed before sprinting activity to improve the sprinting performance.

  20. Comparison between static stretching and the Pilates method on the flexibility of older women.

    Science.gov (United States)

    Oliveira, Laís Campos de; Oliveira, Raphael Gonçalves de; Pires-Oliveira, Deise Aparecida de Almeida

    2016-10-01

    Flexibility decreases with advancing age and some forms of exercise, such as static stretching and Pilates, can contribute to the improvement of this physical ability. To compare the effects of static stretching and Pilates on the flexibility of healthy older women, over the age of 60 years. Thirty-two volunteers were randomized into two groups (Static stretching or Pilates) to perform exercises for 60 min, twice a week, for three months. Evaluations to analyze the movements of the trunk (flexion and extension), hip flexion and plantar and dorsiflexion of the ankle were performed before and after the intervention, using a fleximeter. The static stretching exercises improved the trunk flexion and hip flexion movements, while the Pilates improved all evaluated movements. However, over time, the groups presented differences only for the trunk extension movement. For some body segments, Pilates may be more effective for improving flexibility in older women compared to static stretching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Deviation from fluctuation-dissipation relation for driven superdiffusion: Polymer stretching as an example

    Science.gov (United States)

    Saito, Takuya

    2017-09-01

    We discuss a deviation of the fluctuation-dissipation relation (FDR) in a driven superdiffusive system as exemplified by polymer stretching. The superdiffusion is found by monitoring momentum transfer to a tracer, which is a conjugate observable with the position. Molecular-dynamics simulation demonstrates that the FDR deviates during the nonequilibrium transient process. We then propose nonequilibrium mode analysis for superdiffusion, which is a counterpart to that for driven subdiffusion. The mode analysis yields results that are in qualitative agreement with the simulation results, suggesting that the fluctuations of the stiffness in the system from initial equilibrium to stretching account for the FDR deviation.

  2. Cooperativity among short amyloid stretches in long amyloidogenic sequences.

    Directory of Open Access Journals (Sweden)

    Lele Hu

    Full Text Available Amyloid fibrillar aggregates of polypeptides are associated with many neurodegenerative diseases. Short peptide segments in protein sequences may trigger aggregation. Identifying these stretches and examining their behavior in longer protein segments is critical for understanding these diseases and obtaining potential therapies. In this study, we combined machine learning and structure-based energy evaluation to examine and predict amyloidogenic segments. Our feature selection method discovered that windows consisting of long amino acid segments of ~30 residues, instead of the commonly used short hexapeptides, provided the highest accuracy. Weighted contributions of an amino acid at each position in a 27 residue window revealed three cooperative regions of short stretch, resemble the β-strand-turn-β-strand motif in A-βpeptide amyloid and β-solenoid structure of HET-s(218-289 prion (C. Using an in-house energy evaluation algorithm, the interaction energy between two short stretches in long segment is computed and incorporated as an additional feature. The algorithm successfully predicted and classified amyloid segments with an overall accuracy of 75%. Our study revealed that genome-wide amyloid segments are not only dependent on short high propensity stretches, but also on nearby residues.

  3. Contact angles on stretched solids

    Science.gov (United States)

    Mensink, Liz; Snoeijer, Jacco

    2017-11-01

    The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.

  4. A COMPARISION BETWEEN CROSSBODY STRETCH VERSUS SLEEPER STRETCH IN PERIARTHRITIS OF SHOULDER

    Directory of Open Access Journals (Sweden)

    Shaik Raheem Saheb

    2015-12-01

    Full Text Available Background: Recently Cross body stretch and Sleeper stretch are used to improve internal rotation Range of motion in Shoulder Pathologies. It was proposed to study the effect of cross body stretch and sleeper stretch in subjects with periarthritis of shoulder. Methods: 60 subjects with a mean age of 53 years having clinical diagnosis of Periarthritis of shoulder and full filled the inclusive criteria are taken. After the initial measurements, the subjects are randomly assigned into 2 stretching groups. Group-A performed the Sleeper stretch. Group-B performed a Cross body stretch. Both Groups performed the Stretch in Duration of 6weeks – once daily for 5 repetitions holding each stretch for 30 seconds for 5 days a week. Along with this technique conventional physiotherapy like IFT, overhead pulleys, Pendula exercises, Wall climbing exercises, mariners wheel exercises are performed. After the treatment, subjects were evaluated for their pain profile using visual analogue scale, Goniometer for measuring Range of motion. Results: For within group comparison we used Paired t-test analysis, For Between group comparison we used Independent t-test for statistical analysis. At the end of 6 weeks It was found that subjects treated with cross-body stretch showed significant improvement in terms of VAS scores and Range of motion scores (P=0.000 and patients treated with Sleeper stretch showed significant improvement in terms of VAS scores and Range of motion scores (P=0.000. When compared between Groups the VAS and Range of motion scores showed a significant improvement in Cross body stretch Group than the Sleeper stretch Group (P=0.000. Conclusion: It was concluded that both stretching techniques were found improvement in Range of motion and VAS and Cross-body Stretch showed more Significant improvement than the sleeper Stretch after 6 weeks treatment.

  5. Dynamic atomic contributions to infrared intensities of fundamental bands.

    Science.gov (United States)

    Silva, Arnaldo F; Richter, Wagner E; Bassi, Adalberto B M S; Bruns, Roy E

    2015-11-11

    Dynamic atomic intensity contributions to fundamental infrared intensities are defined as the scalar products of dipole moment derivative vectors for atomic displacements and the total dipole derivative vector of the normal mode. Intensities of functional group vibrations of the fluorochloromethanes can be estimated within 6.5 km mol(-1) by displacing only the functional group atoms rather than all the atoms in the molecules. The asymmetric CF2 stretching intensity, calculated to be 126.5 km mol(-1) higher than the symmetric one, is accounted for by an 81.7 km mol(-1) difference owing to the carbon atom displacement and 40.6 km mol(-1) for both fluorine displacements. Within the Quantum Theory of Atoms in Molecules (QTAIM) model differences in atomic polarizations are found to be the most important for explaining the difference in these carbon dynamic intensity contributions. Carbon atom displacements almost completely account for the differences in the symmetric and asymmetric CCl2 stretching intensities of dichloromethane, 103.9 of the total calculated value of 105.2 km mol(-1). Contrary to that found for the CF2 vibrations intramolecular charge transfer provoked by the carbon atom displacement almost exclusively explains this difference. The very similar intensity values of the symmetric and asymmetric CH2 stretching intensities in CH2F2 arise from nearly equal carbon and hydrogen atom contributions for these vibrations. All atomic contributions to the intensities for these vibrations in CH2Cl2 are very small. Sums of dynamic contributions of the individual intensities for all vibrational modes of the molecule are shown to be equal to mass weighted atomic effective charges that can be determined from atomic polar tensors evaluated from experimental infrared intensities and frequencies. Dynamic contributions for individual intensities can also be determined solely from experimental data.

  6. Anisotropic instability of a stretching film

    Science.gov (United States)

    Xu, Bingrui; Li, Minhao; Deng, Daosheng

    2017-11-01

    Instability of a thin liquid film, such as dewetting arising from Van der Waals force, has been well studied, and is typically characterized by formation of many droplets. Interestingly, a thin liquid film subjected to an applied stretching during a process of thermal drawing is evolved into an array of filaments, i.e., continuity is preserved along the direction of stretching while breakup occurs exclusively in the plane of cross section. Here, to understand this anisotropic instability, we build a physical model by considering both Van der Waals force and the effect of stretching. By using the linear instability analysis method and then performing a numerical calculation, we find that the growth rate of perturbations at the cross section is larger than that along the direction of stretching, resulting in the anisotropic instability of the stretching film. These results may provide theoretical guidance to achieve more diverse structures for nanotechnology.

  7. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios.

    Science.gov (United States)

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-10-18

    To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.

  8. Strategy as stretch and leverage.

    Science.gov (United States)

    Hamel, G; Prahalad, C K

    1993-01-01

    Global competition is not just product versus product or company versus company. It is mind-set versus mind-set. Driven to understand the dynamics of competition, we have learned a lot about what makes one company more successful than another. But to find the root of competitiveness--to understand why some companies create new forms of competitive advantage while others watch and follow--we must look at strategic mind-sets. For many managers, "being strategic" means pursuing opportunities that fit the company's resources. This approach is not wrong, Gary Hamel and C.K. Prahalad contend, but it obscures an approach in which "stretch" supplements fit and being strategic means creating a chasm between ambition and resources. Toyota, CNN, British Airways, Sony, and others all displaced competitors with stronger reputations and deeper pockets. Their secret? In each case, the winner had greater ambition than its well-endowed rivals. Winners also find less resource-intensive ways of achieving their ambitious goals. This is where leverage complements the strategic allocation of resources. Managers at competitive companies can get a bigger bang for their buck in five basic ways: by concentrating resources around strategic goals; by accumulating resources more efficiently; by complementing one kind of resource with another; by conserving resources whenever they can; and by recovering resources from the market-place as quickly as possible. As recent competitive battles have demonstrated, abundant resources can't guarantee continued industry leadership.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Time-Stretch Accelerated Processor for Real-time, In-service, Signal Analysis

    DEFF Research Database (Denmark)

    Lonappan, Cejo K.; Buckley, Brandon W.; Adam, Jost

    2014-01-01

    We demonstrate real-time, in-service, digital signal analysis of 10 Gbit/s data using a 1.2 Tbit/s burst-mode digital processor. The processor comprises a time-stretch front-end and a custom data acquisition and real-time signal processing back- end. Experimental demonstration of real-time, in...

  10. Stretch due to Penile Prosthesis Reservoir Migration

    Directory of Open Access Journals (Sweden)

    E. Baten

    2016-03-01

    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  11. Effect of modified hold-relax stretching and static stretching on hamstring muscle flexibility.

    Science.gov (United States)

    Ahmed, Hashim; Iqbal, Amir; Anwer, Shahnawaz; Alghadir, Ahmad

    2015-02-01

    [Purpose] The aim of present study was to compare the effectiveness of modified hold-relax stretching and static stretching in improving the hamstring muscle flexibility. [Subjects and Methods] Forty-five male subjects with hamstring tightness were included in this study. The subjects were randomly placed into three groups: the modified hold-relax stretching, static stretching and control groups. The modified hold-relax stretching group performed 7 seconds of isometric contraction and then relaxed for 5 seconds, and this was repeated five times daily for five consecutive days. The static stretching group received 10 minutes of static stretching with the help of a pulley and weight system for five consecutive days. The control group received only moist heat for 20 minutes for five consecutive days. A baseline reading of passive knee extension (PKE) was taken prior to the intervention; rest measurements were taken immediate post intervention on day 1, day 3, day 5, and after a 1 week follow-up, i.e., at the 12th day. [Results] On comparing the baseline readings of passive knee extension (PKE), there was no difference noted between the three groups. On comparing the posttest readings on day 5 between the 3 groups, a significant difference was noted. However, post hoc analysis revealed an insignificant difference between the modified hold-relax stretching and static stretching groups. There was a significant difference between the static stretching and control groups and between the modified hold-relax stretching and control groups. [Conclusion] The results of this study indicate that both the modified hold-relax stretching technique and static stretching are equally effective, as there was no significant difference in improving the hamstring muscle flexibility between the two groups.

  12. Investing in a Large Stretch Press

    Science.gov (United States)

    Choate, M.; Nealson, W.; Jay, G.; Buss, W.

    1986-01-01

    Press for forming large aluminum parts from plates provides substantial economies. Study assessed advantages and disadvantages of investing in large stretch-forming press, and also developed procurement specification for press.

  13. Excluded Volume Effects in Gene Stretching

    OpenAIRE

    Lam, Pui-Man

    2002-01-01

    We investigate the effects excluded volume on the stretching of a single DNA in solution. We find that for small force F, the extension h is not linear in F but proportion to F^{\\chi}, with \\chi=(1-\

  14. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    International Nuclear Information System (INIS)

    Deibele, C.E.

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction

  15. DNA stretching on functionalized gold surfaces.

    OpenAIRE

    Zimmermann, R M; Cox, E C

    1994-01-01

    We describe a method for anchoring bacteriophage lambda DNA by one end to gold by Au-biotin-streptavidin-biotin-DNA bonds. DNA anchored to a microfabricated Au line could be aligned and stretched in flow and electric fields. The anchor was shown to resist a force of at least 11 pN, a linkage strong enough to allow DNA molecules of chromosome size to be stretched and aligned.

  16. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    Science.gov (United States)

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P hamstring muscle strength at both the 60°/s and 180°/s test speeds (P 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249

  17. Comparison of two stretching methods and optimization of stretching protocol for the piriformis muscle.

    Science.gov (United States)

    Gulledge, Brett M; Marcellin-Little, Denis J; Levine, David; Tillman, Larry; Harrysson, Ola L A; Osborne, Jason A; Baxter, Blaise

    2014-02-01

    Piriformis syndrome is an uncommon diagnosis for a non-discogenic form of sciatica whose treatment has traditionally focused on stretching the piriformis muscle (PiM). Conventional stretches include hip flexion, adduction, and external rotation. Using three-dimensional modeling, we quantified the amount of (PiM) elongation resulting from two conventional stretches and we investigated by use of a computational model alternate stretching protocols that would optimize PiM stretching. Seven subjects underwent three CT scans: one supine, one with hip flexion, adduction, then external rotation (ADD stretch), and one with hip flexion, external rotation, then adduction (ExR stretch). Three-dimensional bone models were constructed from the CT scans. PiM elongation during these stretches, femoral neck inclination, femoral head anteversion, and trochanteric anteversion were measured. A computer program was developed to map PiM length over a range of hip joint positions and was validated against the measured scans. ExR and ADD stretches elongated the PiM similarly by approximately 12%. Femoral head and greater trochanter anteversion influenced PiM elongation. Placing the hip joints in 115° of hip flexion, 40° of external rotation and 25° of adduction or 120° of hip flexion, 50° of external rotation and 30° of adduction increased PiM elongation by 30-40% compared to conventional stretches (15.1 and 15.3% increases in PiM muscle length, respectively). ExR and ADD stretches elongate the PiM similarly and therefore may have similar clinical effectiveness. The optimized stretches led to larger increases in PiM length and may be more easily performed by some patients due to increased hip flexion. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Effects of proprioceptive neuromuscular facilitation stretching and static stretching on maximal voluntary contraction.

    Science.gov (United States)

    Miyahara, Yutetsu; Naito, Hisashi; Ogura, Yuji; Katamoto, Shizuo; Aoki, Junichiro

    2013-01-01

    This study was undertaken to investigate and compare the effects of proprioceptive neuromuscular facilitation (PNF) stretching and static stretching on maximal voluntary contraction (MVC). Thirteen male university students (age, 20 ± 1 years; height, 172.2 ± 4.6 cm; weight, 68.4 ± 6.7 kg; mean ± SD) completed 3 different conditions on 3 nonconsecutive days in randomized order: static stretching (SS), PNF stretching (PNF), and no stretching (control, CON). Each condition consisted of a 5-minute rest accompanied by one of the following activities: (a) control, (b) SS, or (c) PNF stretching. The hip flexion range of motion (ROM) was evaluated immediately before and after the activity. The MVC of knee flexion was then measured. Surface electromyography was recorded from the biceps femoris and vastus lateralis muscles during MVC tests and stretching. Although increases in ROM were significantly greater after PNF than after SS (p < 0.01), the decreases in MVC were similar between the 2 treatments. These results suggest that, although PNF stretching increases ROM more than SS, PNF stretching and SS is detrimental to isometric maximal strength.

  19. Large Contribution of Coarse Mode to Aerosol Microphysical and Optical Properties: Evidence from Ground-Based Observations of a Transpacific Dust Outbreak at a High-Elevation North American Site

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, E. [Pacific Northwest National Laboratory, Richland, Washington; Pekour, M. [Pacific Northwest National Laboratory, Richland, Washington; Flynn, C. [Pacific Northwest National Laboratory, Richland, Washington; Berg, L. K. [Pacific Northwest National Laboratory, Richland, Washington; Beranek, J. [Pacific Northwest National Laboratory, Richland, Washington; Zelenyuk, A. [Pacific Northwest National Laboratory, Richland, Washington; Zhao, C. [Pacific Northwest National Laboratory, Richland, Washington; Leung, L. R. [Pacific Northwest National Laboratory, Richland, Washington; Ma, P. L. [Pacific Northwest National Laboratory, Richland, Washington; Riihimaki, L. [Pacific Northwest National Laboratory, Richland, Washington; Fast, J. D. [Pacific Northwest National Laboratory, Richland, Washington; Barnard, J. [University of Nevada, Reno, Nevada; Hallar, A. G. [Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado; McCubbin, I. B. [Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado; Eloranta, E. W. [University of Wisconsin–Madison, Madison, Wisconsin; McComiskey, A. [National Oceanic and Atmospheric Administration, Boulder, Colorado; Rasch, P. J. [Pacific Northwest National Laboratory, Richland, Washington

    2017-05-01

    Our work is motivated by previous studies of the long-range trans-Atlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 µm. We examine coarse mode contributions from the trans-Pacific transport of Asian dust to North American aerosol microphysical and optical properties using a dataset collected at the high-elevation, mountain-top Storm Peak Laboratory (SPL, 3.22 km above sea level [ASL]) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 2.76 km ASL). Data collected during the SPL Cloud Property Validation Experiment (STORMVEX, March 2011) are complemented by quasi-global high-resolution model simulations coupled with aerosol chemistry. We identify dust event associated mostly with Asian plume (about 70% of dust mass) where the coarse mode with moderate (~4 µm) VMD is distinct and contributes substantially to aerosol microphysical (up to 70% for total volume) and optical (up to 45% for total scattering and aerosol optical depth) properties. Our results, when compared with previous Saharan dust studies, suggest a fairly invariant behavior of coarse mode dust aerosols. If confirmed in additional studies, this invariant behavior may simplify considerably model parameterizations for complex and size-dependent processes associated with dust transport and removal.

  20. Comparison of active stretching technique and static stretching technique on hamstring flexibility.

    Science.gov (United States)

    Meroni, Roberto; Cerri, Cesare Giuseppe; Lanzarini, Carlo; Barindelli, Guido; Morte, Giancesare Della; Gessaga, Viviana; Cesana, Gian Carlo; De Vito, Giovanni

    2010-01-01

    To compare a passive and an active stretching technique to determine which one would produce and maintain the greatest gain in hamstring flexibility. To determine whether a passive or an active stretching technique results in a greater increase in hamstring flexibility and to compare whether the gains are maintained. Randomized controlled trial. Institutional. Sixty-five volunteer healthy subjects completed the enrollment questionnaire, 33 completed the required 75% of the treatment after 6 weeks, and 22 were assessed 4 weeks after the training interruption. A 6-week stretching program with subjects divided into 2 groups with group 1 performing active stretching exercises and group 2 performing passive stretching exercises. Range of motion (ROM) was measured after 3 and 6 weeks of training and again 4 weeks after the cessation of training and compared with the initial measurement. After 3 weeks of training, the mean gain in group 1 (active stretching) on performing the active knee extension range of motion (AKER) test was 5.7 degrees, whereas the mean gain in group 2 (passive stretching) was 3 degrees (P = .015). After 6 weeks of training, the mean gain in group 1 was 8.7 degrees , whereas the mean gain in group 2 was 5.3 degrees (P = .006). Twenty-two subjects were reassessed 4 weeks after the cessation of the training with the maintained gain of ROM in group 1 being 6.3 degrees , whereas the maintained gain in group 2 was 0.1 degrees (P = .003). Active stretching produced the greater gain in the AKER test, and the gain was almost completely maintained 4 weeks after the end of the training, which was not seen with the passive stretching group. Active stretching was more time efficient compared with the static stretching and needed a lower compliance to produce effects on flexibility.

  1. How to determine local stretching and tension in a flow-stretched DNA molecule

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Marie, Rodolphe; Kristensen, Anders

    2016-01-01

    We determine the nonuniform stretching of and tension in amega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead...

  2. CURRENT CONCEPTS IN MUSCLE STRETCHING FOR EXERCISE AND REHABILITATION

    Science.gov (United States)

    2012-01-01

    Stretching is a common activity used by athletes, older adults, rehabilitation patients, and anyone participating in a fitness program. While the benefits of stretching are known, controversy remains about the best type of stretching for a particular goal or outcome. The purpose of this clinical commentary is to discuss the current concepts of muscle stretching interventions and summarize the evidence related to stretching as used in both exercise and rehabilitation. PMID:22319684

  3. CURRENT CONCEPTS IN MUSCLE STRETCHING FOR EXERCISE AND REHABILITATION

    OpenAIRE

    Page, Phil

    2012-01-01

    Stretching is a common activity used by athletes, older adults, rehabilitation patients, and anyone participating in a fitness program. While the benefits of stretching are known, controversy remains about the best type of stretching for a particular goal or outcome. The purpose of this clinical commentary is to discuss the current concepts of muscle stretching interventions and summarize the evidence related to stretching as used in both exercise and rehabilitation.

  4. Summary of the stretching tectonics research

    International Nuclear Information System (INIS)

    Yu Dagan

    1994-01-01

    The rise of stretching tectonics is established on the basis of recent structural geology theory, the establishment of metamorphic nucleus complex structural model on one hand plays an important promoting art to the development of stretching structure, on the other hand, it needs constant supplement and perfection in practice. Metamorphic nucleus complex is the carrier of comparatively deep geological information in vertical section of the crust and has wide distribution in the era of south China. Evidently, it can be taken as the 'key' to understanding the deep and studying the basement, Strengthening the study will play the important promoting role to the deep prospecting. The study of stretching tectonics is not only limited within the range of structure and metamorphism, but combine with the studies of sedimentation, magmatism, metamorphism and mineralization, thus form a new field of tectonic geology of self-developing system

  5. Optofluidic time-stretch microscopy: recent advances

    Science.gov (United States)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  6. Optofluidic time-stretch quantitative phase microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Bias of purine stretches in sequenced chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Soumpasis, Dikeos Mario; Brunak, Søren

    2002-01-01

    We examined more than 700 DNA sequences (full length chromosomes and plasmids) for stretches of purines (R) or pyrimidines (Y) and alternating YR stretches; such regions will likely adopt structures which are different from the canonical B-form. Since one turn of the DNA helix is roughly 10 bp, we...... measured the fraction of each genome which contains purine (or pyrimidine) tracts of lengths of 10 by or longer (hereafter referred to as 'purine tracts'), as well as stretches of alternating pyrimidines/purine ('pyr/pur tracts') of the same length. Using this criteria, a random sequence would be expected...... to contain 1.0% of purine tracts and also 1.0% of the alternating pyr/pur tracts. In the vast majority of cases, there are more purine tracts than would be expected from a random sequence, with an average of 3.5%, significantly larger than the expectation value. The fraction of the chromosomes containing pyr...

  8. Bias of purine stretches in sequenced chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Soumpasis, Dikeos Mario; Brunak, Søren

    2002-01-01

    We examined more than 700 DNA sequences (full length chromosomes and plasmids) for stretches of purines (R) or pyrimidines (Y) and alternating YR stretches; such regions will likely adopt structures which are different from the canonical B-form. Since one turn of the DNA helix is roughly 10 bp, we...... to contain 1.0% of purine tracts and also 1.0% of the alternating pyr/pur tracts. In the vast majority of cases, there are more purine tracts than would be expected from a random sequence, with an average of 3.5%, significantly larger than the expectation value. The fraction of the chromosomes containing pyr......, in eukaryotes there is an abundance of long stretches of purines or alternating purine/pyrimidine tracts, which cannot be explained in this way; these sequences are likely to play an important role in eukaryotic chromosome organisation....

  9. Anisotropic dewetting on stretched elastomeric substrates.

    Science.gov (United States)

    Qiao, L; He, L H

    2008-08-01

    We study the instability of a very thin liquid film resting on a uniformly stretched soft elastomeric substrate driven by van der Waals forces. A linear stability analysis shows that the critical fluctuation wavelength in the tensile direction is larger than those in the other directions. The magnitudes of the critical wavelengths are adjustable in the sense that they depend on the principal stretch of the substrate. For example, when the principal stretch of the substrate varies from 1.0 (unstretched) to 3.0, the range of the critical wavelength in the tensile direction increases by 7.0% while that normal to the tensile direction decreases by 8.7%. Therefore, the phenomenon may find potential applications in creating tunable topographically patterned surfaces with nano- to microscale features.

  10. Flow of nanofluid by nonlinear stretching velocity

    Science.gov (United States)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    Main objective in this article is to model and analyze the nanofluid flow induced by curved surface with nonlinear stretching velocity. Nanofluid comprises water and silver. Governing problem is solved by using homotopy analysis method (HAM). Induced magnetic field for low magnetic Reynolds number is not entertained. Development of convergent series solutions for velocity and skin friction coefficient is successfully made. Pressure in the boundary layer flow by curved stretching surface cannot be ignored. It is found that magnitude of power-law index parameter increases for pressure distibutions. Magnitude of radius of curvature reduces for pressure field while opposite trend can be observed for velocity.

  11. Lattice stretching bistability and dynamic heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Savin, A. V.; Zolotaryuk, A. V.

    2012-01-01

    A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second......-neighbor coupling. Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least...

  12. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  13. Contribution to the development of a multi-mode measurement system for dynamic neutronic measurements and processing of the related uncertainties

    International Nuclear Information System (INIS)

    Geslot, B.

    2006-11-01

    It is difficult to estimate integral reactor parameters, especially reactivity, in deeply subcritical cores. Indeed the standard neutronic methods have been designed for near critical reactivity levels and they often need a critical reference. This thesis takes part in the research on ADS (Accelerated Driven Systems), for which the multiplication coefficient would be about 0.95. The first part of the thesis deals with the development of the XMODE system. It is a flexible measurement system dedicated to experiments in neutronics. X-MODE is capable of acquiring logical signals particularly in time-stamping mode as well as analogical signals. The second part of the thesis presents a statistical study of the methods used to analyse flux transients. Indeed a lot of methods exist to analyse flux transients and some are little known. Means to estimate characteristics of reactivity estimators are provided, methods compared and recommendations made. Finally, the dynamic measurements of the TRADE program are analysed and discussed. During this program, three subcritical configurations were explored. It appears that pulsed neutron source experiments give reactivity estimations that are much more precise than those obtained from flux transients. (author)

  14. Immediate effects of quantified hamstring stretching: hold-relax proprioceptive neuromuscular facilitation versus static stretching.

    Science.gov (United States)

    Puentedura, Emilio J; Huijbregts, Peter A; Celeste, Shelley; Edwards, Dale; In, Alastair; Landers, Merrill R; Fernandez-de-Las-Penas, Cesar

    2011-08-01

    To compare the immediate effects of a hold-relax proprioceptive neuromuscular facilitation stretching (HR-PNF) versus static stretch (SS) on hamstring flexibility in healthy, asymptomatic subjects. Thirty subjects (13 female; mean age 25.7 ± 3.0, range 22-37) without excessive hamstring muscle flexibility were randomly assigned to one of two stretch groups: HR-PNF or SS. The left leg was treated as a control and did not receive any intervention. The right leg was measured for ROM pre- and post-stretch interventions, with subjects receiving randomly assigned interventions one week apart. Data were analyzed with a 3 (intervention: HR-PNF, SS, control) × 2 (time: pre and post) factorial ANOVA with repeated measures and appropriate post-hoc analyses. A significant interaction was observed between intervention and time for hamstring extensibility, F(2,58) = 25.229, p < .0005. Main effect of intervention for the tested leg was not significant, p = .782 indicating that there was no difference between the two stretch conditions. However, main effect for time was significant (p < .0005), suggesting that hamstring extensibility (for both stretching conditions) after intervention was greater than before. No significant differences were found when comparing the effectiveness of HR-PNF and SS techniques. Both stretching methods resulted in significant immediate increases in hamstring length. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Acute Effects of Static vs. Ballistic Stretching on Strength and Muscular Fatigue Between Ballet Dancers and Resistance-Trained Women.

    Science.gov (United States)

    Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V

    2016-11-01

    Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.

  16. Realistic searches on stretched exponential networks

    Indian Academy of Sciences (India)

    Vol. 71, No. 2. — journal of. August 2008 physics pp. 313–317. Realistic searches on stretched exponential networks. PARONGAMA SEN. Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road,. Kolkata 700 009, India .... [4] S Milgram, Psychology Today 1, 60 (1967). J Travers and S Milgram, ...

  17. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  18. Cloud Network Helps Stretch IT Dollars

    Science.gov (United States)

    Collins, Hilton

    2012-01-01

    No matter how many car washes or bake sales schools host to raise money, adding funds to their coffers is a recurring problem. This perpetual financial difficulty makes expansive technology purchases or changes seem like a pipe dream for school CIOs and has education technologists searching for ways to stretch money. In 2005, state K-12 school…

  19. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    on steel grade, on the rolling direction as well as on the loading rate. Stretch zones ... This interaction is demonstrated at a fracture surface as a bounded transition between initiatory crack (e.g., fatigue) and either ... The materials examined in this study are three grades of thin automotive steel sheets: XSG,. HR 45 and DP.

  20. Fractional behaviour at cyclic stretch-bending

    NARCIS (Netherlands)

    Emmens, W.C.; van den Boogaard, Antonius H.; Kazantzis, A.V.; de Hosson, J.Th.M.; Kolleck, R

    2010-01-01

    The fractional behaviour at cyclic stretch-bending has been studied by performing tensile tests at long specimens that are cyclically bent at the same time, on mild steel, dual-phase steel, stainless steel, aluminium and brass. Several types of fracture are observed, these are discussed, as are the

  1. Les contributions des associations au mode local de régulation et les inégalités entre les régions

    Directory of Open Access Journals (Sweden)

    Marie Bouchard

    2003-05-01

    Full Text Available Les auteurs s’intéressent à la contribution des organismes de lutte contre la pauvreté au système régional de régulation dans une zone métropolitaine et une zone rurale périphérique toutes deux défavorisées. L’analyse comparée de ces organismes montrent que ceux-ci présentent des capacités et des limites différenciées sur le plan socioculturel et sur le plan des mécanismes de régulation politique pour contribuer au développement régional dans une perspective de lutte à la pauvreté. Des pistes d’intervention sont proposées afin d’accroître la contribution de ces organismes au développement local.

  2. Reflex and Non-Reflex Torque Responses to Stretch of the Human Knee Extensors

    National Research Council Canada - National Science Library

    Mrachacz-Kersting, N

    2001-01-01

    .... The quadriceps muscles were stretched at various background torques, produced either voluntarily or electrically and thus the purely reflex-mediated torque could be calculated. The contribution of the reflex mediated stiffness initially low, increased with increasing background torques for the range of torques investigated.

  3. EFFECTIVENESS OF PNF STRETCHING AND CYCLIC STRETCHING OF CALF TIGHTNESS ON COLLEGE GOING GIRLS

    Directory of Open Access Journals (Sweden)

    Ashlesha Sirari

    2015-06-01

    Full Text Available Background: Flexibility helps with injury prevention, the reduction of soreness following a workout, and a general sense of well-being. There are different stretching techniques and protocols for improvements in calf extensibility and flexibility. The purpose of the study was to investigate the effectiveness of two techniques i.e. CYCLIC and PNF stretching which improves calf flexibility. This study was done to find the effectiveness of calf Cyclic and PNF stretching technique to improve calf flexibility. Methods: 30 subjects with age group 21-22 years were randomly allocated to 2 groups equally. Group 1(n=15 were given CYCLIC and group 2(n=15 were given PNF stretching technique. Plantar flexion was used to measure the calf tightness which was done before and after the treatment. Treatment was given for 7 days and on the 7th day the calf tightness was again measured. Results: The mean difference of the CYCLIC is 4.6 and mean difference of PNF is 4.7 which indicate that CYCLIC and PNF both are effective to improve calf flexibility but PNF is more effective than CYCLIC to improve calf flexibility. Conclusion: The neurophysiological basis of PNF, stating that the excitatory efficient of the neuromuscular spindle or the inhibitory afferent of the Golgi tendon organ (GTO or both are responsible for the effects. During PNF stretch and isometric contraction of stretched agonists for extended period may cause activation of its neuromuscular spindle. The increase in tension created during the isometric contraction of the pre – lengthened agonist contracts concentrically. Both the fascia & the spindle of the agonist adjust to the nearly lengthened position. These impulses travel via causing post synaptic inhibition of the motor neuron to agonist increasing the tension from the GTO. These impulses can override the impulses coming from the neuromuscular spindles arousing the muscle to reflexly resist to the change in length, thus helping in lengthening

  4. Chemical characterization of size-segregated PM from different public transport modes and implications of source specific contribution to public exposure.

    Science.gov (United States)

    Jiang, Sabrina Yanan; Gali, Nirmal Kumar; Yang, Fenhuan; Zhang, Junke; Ning, Zhi

    2017-08-01

    To investigate the chemical properties of particulate matter (PM) in different public transport microenvironments in Hong Kong, the coarse (2.5-10 μm) and fine (Railway (MTR)-Aboveground (AG), MTR Underground (UG), and Bus routes from October 2013 to April 2014. Average PM 2.5 concentrations through UG, AG, and Bus routes were 47.9, 86.8, and 43.8 μg m -3 , respectively, whereas the coarse PM concentrations were 4-5 folds less. The PM 2.5 total metal concentrations of AG route were 2.3 and 3.7 times of UG and BUS routes, respectively, compared to those in the other two routes. The most abundant metals at three stations in PM 2.5 and coarse PM were quite similar and mainly generated by frictional processes of wheels, rails, and brakes of the system as well as by the mechanical wearing of these parts. The most abundant PAH in three routes in PM 2.5 was ATRQN, followed by 2-MNA, and the sum of them contributed to 35 and 42% of total PAHs in coarse PM and PM 2.5 , respectively. Crude oils, lubricant oil, diesel emissions would be the major sources of PAHs from MTR aboveground stations. The relative abundance of the n-alkanes among different samples was similar to the PAHs and the carbon preference index (CPI) values of the whole n-alkanes range were consistently from 0.99 to 1.04 among all samples indicating the significant contribution from the vehicle exhaust and fossil fuel burning. The concentrations of hopanes and steranes were higher in PM 2.5 than in coarse PM due to diesel and coal burning. These results may provide a unique opportunity to investigate source specific contribution of the PM pollutants to the commuter exposure in public transport.

  5. Passive Stretch Versus Active Stretch on Intervertebral Movement in Non - Specific Neck Pain

    International Nuclear Information System (INIS)

    Abd El - Aziz, A.H.; Amin, D.I.; Moustafa, I.

    2016-01-01

    Neck pain is one of the most common and painful musculoskeletal conditions. Point prevalence ranges from 6% to 22% and up to 38% of the elderly population, while lifetime prevalence ranges from 14,2% to 71%. Up till now no randomized study showed the effect between controversy of active and passive stretch on intervertebral movement. The purpose: the current study was to investigate the effect of the passive and active stretch on intervertebral movement in non - specific neck pain. Material and methods: Forty five subjects from both sexes with age range between 18 and 30 years and assigned in three groups, group I (15) received active stretch, ultrasound and TENS. Group II (15) received passive stretch, ultrasound and TENS. Group III (15) received ultrasound and TENS. The radiological assessment was used to measure rotational and translational movement of intervertebral movement before and after treatment. Results: MANOVA test was used for radiological assessment before and after treatment there was significant increase in intervertebral movement in group I as p value =0.0001. Conclusion: active stretch had a effect in increasing the intervertebral movement compared to the passive stretch

  6. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    International Nuclear Information System (INIS)

    Liu, Gang; Hitomi, Hirofumi; Hosomi, Naohisa; Lei, Bai; Nakano, Daisuke; Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu; Ma, Hong; Griendling, Kathy K.; Nishiyama, Akira

    2011-01-01

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: → Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. → Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. → Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. → Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  7. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  8. How to Stretch Your Ankle After a Sprain

    Science.gov (United States)

    ... Ankle After A Sprain How to Stretch Your Ankle After A Sprain Page Content You should perform the following stretches ... Consider these home exercises when recuperating from an ankle sprain. Perform them twice per day. While seated, bring ...

  9. A multiple length scale description of the mechanism of elastomer stretching

    DEFF Research Database (Denmark)

    Neuefeind, J.; Skov, Anne Ladegaard; Daniels, J. E.

    2016-01-01

    Conventionally, the stretching of rubber is modeled exclusively by rotations of segments of the embedded polymer chains; i.e. changes in entropy. However models have not been tested on all relevant length scales due to a lack of appropriate probes. Here we present a universal X-ray based method...... within the individual monomers, but among the contributions is also an elastic strain, acting between chains, which is 3-4 orders of magnitude smaller than the macroscopic strain, and of the opposite sign, i.e. extension of polymer chains in the direction perpendicular to the stretch. This may be due...

  10. Shoulder horizontal abduction stretching effectively increases shear elastic modulus of pectoralis minor muscle.

    Science.gov (United States)

    Umehara, Jun; Nakamura, Masatoshi; Fujita, Kosuke; Kusano, Ken; Nishishita, Satoru; Araki, Kojiro; Tanaka, Hiroki; Yanase, Ko; Ichihashi, Noriaki

    2017-07-01

    Stretching maneuvers for the pectoralis minor muscle, which involve shoulder horizontal abduction or scapular retraction, are performed in clinical and sports settings because the tightness of this muscle may contribute to scapular dyskinesis. The effectiveness of stretching maneuvers for the pectoralis minor muscle is unclear in vivo. The purpose of this study was to verify the effectiveness of stretching maneuvers for the pectoralis minor muscle in vivo using ultrasonic shear wave elastography. Eighteen healthy men participated in this study. Elongation of the pectoralis minor muscle was measured for 3 stretching maneuvers (shoulder flexion, shoulder horizontal abduction, and scapular retraction) at 3 shoulder elevation angles (30°, 90°, and 150°). The shear elastic modulus, used as the index of muscle elongation, was computed using ultrasonic shear wave elastography for the 9 aforementioned stretching maneuver-angle combinations. The shear elastic modulus was highest in horizontal abduction at 150°, followed by horizontal abduction at 90°, horizontal abduction at 30°, scapular retraction at 30°, scapular retraction at 90°, scapular retraction at 150°, flexion at 150°, flexion at 90°, and flexion at 30°. The shear elastic moduli of horizontal abduction at 90° and horizontal abduction at 150° were significantly higher than those of other stretching maneuvers. There was no significant difference between horizontal abduction at 90° and horizontal abduction at 150°. This study determined that shoulder horizontal abduction at an elevation of 90° and horizontal abduction at an elevation of 150° were the most effective stretching maneuvers for the pectoralis minor muscle in vivo. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions

    Science.gov (United States)

    Compaijen, P. J.; Malyshev, V. A.; Knoester, J.

    2018-02-01

    We theoretically investigate the time-dependent transport of a localized surface plasmon excitation through a linear array of identical and equidistantly spaced metal nanoparticles. Two different signals propagating through the array are found: one traveling with the group velocity of the surface plasmon polaritons of the system and damped exponentially, and the other running with the speed of light and decaying in a power-law fashion, as x-1 and x-2 for the transversal and longitudinal polarizations, respectively. The latter resembles the Sommerfeld-Brillouin forerunner and has not been identified in previous studies. The contribution of this signal dominates the plasmon transport at large distances. In addition, even though this signal is spread in the propagation direction and has the lateral dimension larger than the wavelength, the field profile close to the chain axis does not change with distance, indicating that this part of the signal is confined to the array.

  12. Dispersion-managed semiconductor mode-locked ring laser.

    Science.gov (United States)

    Resan, Bojan; Archundia, Luis; Delfyett, Peter J; Alphonse, Gerard

    2003-08-01

    A novel breathing-mode external sigma-ring-cavity semiconductor mode-locked laser is developed. Intracavity pulse compression and stretching produce linearly chirped pulses with an asymmetric exponential temporal profile. External dispersion compensation reduces the pulse duration to 274 fs (within 10% of the bandwidth limit).

  13. Disruption of Locomotion in Response to Hindlimb Muscle Stretch at Acute and Chronic Time Points after a Spinal Cord Injury in Rats

    Science.gov (United States)

    Keller, Anastasia V.P.; Wainwright, Grace; Shum-Siu, Alice; Prince, Daniella; Hoeper, Alyssa; Martin, Emily

    2017-01-01

    Abstract After spinal cord injury (SCI) muscle contractures develop in the plegic limbs of many patients. Physical therapists commonly use stretching as an approach to avoid contractures and to maintain the extensibility of soft tissues. We found previously that a daily stretching protocol has a negative effect on locomotor recovery in rats with mild thoracic SCI. The purpose of the current study was to determine the effects of stretching on locomotor function at acute and chronic time points after moderately severe contusive SCI. Female Sprague-Dawley rats with 25 g-cm T10 contusion injuries received our standard 24-min stretching protocol starting 4 days (acutely) or 10 weeks (chronically) post-injury (5 days/week for 5 or 4 weeks, respectively). Locomotor function was assessed using the BBB (Basso, Beattie, and Bresnahan) Open Field Locomotor Scale, video-based kinematics, and gait analysis. Locomotor deficits were evident in the acute animals after only 5 days of stretching and increasing the perceived intensity of stretching at week 4 resulted in greater impairment. Stretching initiated chronically resulted in dramatic decrements in locomotor function because most animals had BBB scores of 0–3 for weeks 2, 3, and 4 of stretching. Locomotor function recovered to control levels for both groups within 2 weeks once daily stretching ceased. Histological analysis revealed no apparent signs of overt and persistent damage to muscles undergoing stretching. The current study extends our observations of the stretching phenomenon to a more clinically relevant moderately severe SCI animal model. The results are in agreement with our previous findings and further demonstrate that spinal cord locomotor circuitry is especially vulnerable to the negative effects of stretching at chronic time points. While the clinical relevance of this phenomenon remains unknown, we speculate that stretching may contribute to the lack of locomotor recovery in some patients. PMID:27196003

  14. Simulation of Anomalous Regional Climate Events with a Variable Resolution Stretched Grid GCM

    Science.gov (United States)

    Fox-Rabinovitz, Michael S.

    1999-01-01

    The stretched-grid approach provides an efficient down-scaling and consistent interactions between global and regional scales due to using one variable-resolution model for integrations. It is a workable alternative to the widely used nested-grid approach introduced over a decade ago as a pioneering step in regional climate modeling. A variable-resolution General Circulation Model (GCM) employing a stretched grid, with enhanced resolution over the US as the area of interest, is used for simulating two anomalous regional climate events, the US summer drought of 1988 and flood of 1993. The special mode of integration using a stretched-grid GCM and data assimilation system is developed that allows for imitating the nested-grid framework. The mode is useful for inter-comparison purposes and for underlining the differences between these two approaches. The 1988 and 1993 integrations are performed for the two month period starting from mid May. Regional resolutions used in most of the experiments is 60 km. The major goal and the result of the study is obtaining the efficient down-scaling over the area of interest. The monthly mean prognostic regional fields for the stretched-grid integrations are remarkably close to those of the verifying analyses. Simulated precipitation patterns are successfully verified against gauge precipitation observations. The impact of finer 40 km regional resolution is investigated for the 1993 integration and an example of recovering subregional precipitation is presented. The obtained results show that the global variable-resolution stretched-grid approach is a viable candidate for regional and subregional climate studies and applications.

  15. Transparent conducting film: Effect of mechanical stretching to ...

    Indian Academy of Sciences (India)

    Administrator

    posite was fixed to a tabletop clamp and unidirectionally stretched after cutting the paper support at two opposite sides. To hold the film under the stretched condition, both edges of stretched CNT-mat/transparent-film composite was then adhered to a PMMA substrate by epoxy glue and both the sheet resistance and the ...

  16. Effects of dynamic stretches on Isokinetic hamstring and Quadriceps ...

    African Journals Online (AJOL)

    In conclusion, dynamic stretches have positive effects on muscle strength, H/Q ratios and ROM. Therefore, dynamic stretches may increase performance and reduce the risk of injury to athletes. Keywords: Quadriceps; Hamstrings; Muscles Isokinetic; Dynamic stretches. South African Journal for Research in Sport, Physical ...

  17. Stretched cell cycle model for proliferating lymphocytes

    Science.gov (United States)

    Dowling, Mark R.; Kan, Andrey; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Wellard, Cameron J.; Markham, John F.; Hodgkin, Philip D.

    2014-01-01

    Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics. PMID:24733943

  18. Stretch reflex improves rolling stability during hopping of a decerebrate biped system.

    Science.gov (United States)

    Rosendo, Andre; Liu, Xiangxiao; Shimizu, Masahiro; Hosoda, Koh

    2015-01-19

    When humans hop, attitude recovery can be observed in both the sagittal and frontal planes. While it is agreed that the brain plays an important role in leg placement, the role of low-level feedback (the stretch reflex) on frontal plane stabilization remains unclear. Seeking to better understand the contribution of the soleus stretch reflex to rolling stability, we performed experiments on a biomimetic humanoid hopping robot. Various reflex responses to touching the floor, ranging from no response to long muscle activations, were examined, and the effect of a delay upon touching the floor was also examined. We found that the stretch reflex brought the system closer to stable, straight hopping. The presence of a delay did not affect the results; both the cases with and without a delay outperformed the case without a reflex response. The results of this study highlight the importance of low-level control in locomotion for which body stabilization does not require higher-level signals.

  19. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    The stretch zone of automotive steel sheets. L' AMBRIŠKO1,∗ and L PEŠEK2. 1Institute of Structural Engineering, Faculty of Civil Engineering,. Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic. 2Department of Materials Science, Faculty of Metallurgy,. Technical University of Košice, Letná 9, ...

  20. Efficacy of moist heat pack application over static stretching on hamstring flexibility.

    Science.gov (United States)

    Funk, D; Swank, A M; Adams, K J; Treolo, D

    2001-02-01

    Inadequate flexibility is a contributing factor to muscle injury, especially with respect to the hamstring muscle group. Simple therapeutic regimens capable of increasing hamstring flexibility may reduce the injury potential of athletes with below-average hamstring flexibility or history of injury. This study compared 30 seconds of static stretching with 20 minutes of heat application on hamstring flexibility. A secondary purpose was to determine the relationship between the subjects attitude toward each treatment and the efficacy of treatment. Thirty undergraduate student athletes who were current members of a Midwestern collegiate football team participated in a 2 (treatment: heat vs. stretching) by 2 (coun-terbalanced order: heat first vs. stretching first) repeated-measures design. Results indicated that significant benefits to increase hamstring flexibility could be gained by using moist heat packs in comparison with static stretching despite a perceived attitudinal bias in favor of stretching. These findings may have implications for orthopedic fitness as well as injury prevention for an athlete with prior hamstring injury or inadequate flexibility.

  1. Spontaneous bending of pre-stretched bilayers.

    Science.gov (United States)

    DeSimone, Antonio

    2018-01-01

    We discuss spontaneously bent configurations of pre-stretched bilayer sheets that can be obtained by tuning the pre-stretches in the two layers. The two-dimensional nonlinear plate model we use for this purpose is an adaptation of the one recently obtained for thin sheets of nematic elastomers, by means of a rigorous dimensional reduction argument based on the theory of Gamma-convergence (Agostiniani and DeSimone in Meccanica. doi:10.1007/s11012-017-0630-4, 2017, Math Mech Solids. doi:10.1177/1081286517699991, arXiv:1509.07003, 2017). We argue that pre-stretched bilayer sheets provide us with an interesting model system to study shape programming and morphing of surfaces in other, more complex systems, where spontaneous deformations are induced by swelling due to the absorption of a liquid, phase transformations, thermal or electro-magnetic stimuli. These include bio-mimetic structures inspired by biological systems from both the plant and the animal kingdoms.

  2. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  3. Stretch Moduli of Ribonucleotide Embedded Short DNAs

    Science.gov (United States)

    Chiu, Hsiang-Chih; Koh, Kyung Duk; Riedo, Elisa; Storici, Francesca

    2013-03-01

    Understanding the mechanical properties of DNA is essential to comprehending the dynamics of many cellular functions. DNA deformations are involved in many mechanisms when genetic information needs to be stored and used. In addition, recent studies have found that Ribonucleotides (rNMPs) are among the most common non-standard nucleotides present in DNA. The presences of rNMPs in DNA might cause mutation, fragility or genotoxicity of chromosome but how they influence the structure and mechanical properties of DNA remains unclear. By means of Atomic Force Microscopy (AFM) based single molecule spectroscopy, we measure the stretch moduli of double stranded DNAs (dsDNA) with 30 base pairs and 5 equally embedded rNMPs. The dsDNAs are anchored on gold substrate via thiol chemistry, while the AFM tip is used to pick up and stretch the dsDNA from its free end through biotin-streptavidin bonding. Our preliminary results indicate that the inclusion of rNMPs in dsDNA might significantly change its stretch modulus, which might be important in some biological processes.

  4. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility

    Science.gov (United States)

    Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890

  5. Convective Heat Transfer Scaling of Ignition Delay and Burning Rate with Heat Flux and Stretch Rate in the Equivalent Low Stretch Apparatus

    Science.gov (United States)

    Olson, Sandra

    2011-01-01

    To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.

  6. Regional Climate Simulation with a Variable Resolution Stretch Grid GCM: The 1998 Summer Drought

    Science.gov (United States)

    Fox-Rabinovitz, Michael; Stein, Uri; Takacs, Lawrence; Govindaraju, Ravi; Suarez, Max

    1999-01-01

    The variable resolution stretched grid(SG) GCM based on the Goddard Earth Observing System (GEOS) GCM, has been developed and tested in a regional climate simulation mode. The GEOS SG-GCM is used for simulation of the 1988 summer drought over the U.S. Midwest. Within the stretched grid, the region of interest with a uniform about 60 km resolution is a rectangle over the U.S. Outside the region, the grid intervals increase or stretch with a constant stretching factor (as a geometric progression). The results of two-month simulation for the anomalous climate event of the U.S. drought of 1988, are validated against data analysis fields and diagnostics. The event has been chosen by the Project to Inter-compare Regional Climate Simulations(PIRCS). The efficient regional down-scaling as well as the positive impact of fine regional resolution, are obtained. More specifically, the precipitation, 500 hPa, and low-level jet patterns and characteristics are well represented in the simulation. The SG-concept appeared to be a promising candidate for regional and subregional climate studies and applications.

  7. The Relevance of Stretch Intensity and Position: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Nikos eApostolopoulos

    2015-08-01

    Full Text Available Stretching exercises to increase the range of motion (ROM of joints have been used by sports coaches and medical professionals for improving performance and rehabilitation. The ability of connective and muscular tissues to change their architecture in response to stretching is important for their proper function, repair and performance. Given the dearth of relevant data in the literature, this review examined two key elements of stretching: stretch intensity and stretch position; and their significance to ROM, delayed onset muscle soreness (DOMS, and inflammation in different populations. A search of three databases, Pub-Med, Google Scholar, and Cochrane Reviews, identified 152 articles, which were subsequently categorized into four groups; athletes (n = 24, clinical (n = 29, elderly (n = 12, and general population (n = 87. The use of different populations facilitated a wider examination of the stretching components and their effects. All 152 articles incorporated information regarding duration, frequency and stretch position, whereas only 79 referred to the intensity of stretching and 22 of these 79 studies were deemed high quality. It appears that the intensity of stretching is relatively under-researched, and the importance of body position and its influence on stretch intensity, is largely unknown. In conclusion, this review has highlighted areas for future research, including stretch intensity and position and their effect on musculo-tendinous tissue, in relation to the sensation of pain, delayed onset muscle soreness, inflammation, as well as muscle health and performance

  8. Hamstring Stiffness Returns More Rapidly After Static Stretching Than Range of Motion, Stretch Tolerance, and Isometric Peak Torque.

    Science.gov (United States)

    Hatano, Genki; Suzuki, Shigeyuki; Matsuo, Shingo; Kataura, Satoshi; Yokoi, Kazuaki; Fukaya, Taizan; Fujiwara, Mitsuhiro; Asai, Yuji; Iwata, Masahiro

    2017-12-18

    Hamstring injuries are common, and lack of hamstring flexibility may predispose to injury. Static stretching increases range of motion (ROM) but also results in reduced muscle strength after stretching. The effects of stretching on the hamstring muscles and the duration of these effects remain unclear. To determine the effects of static stretching on the hamstrings and the duration of these effects. Randomized crossover study. University laboratory. Twenty-four healthy volunteers. We measured the torque-angle relationship (ROM, passive torque (PT) at the onset of pain, and passive stiffness) and isometric muscle force using an isokinetic dynamometer. After a 60-minute rest, the ROM of the dynamometer was set at maximum tolerable intensity; this position was maintained for 300 seconds while static passive torque (SPT) was measured continuously. We remeasured the torque-angle relationship and isometric muscle force after rest periods of 10, 20, and 30 minutes. Change in SPT during stretching; changes in ROM, PT at the onset of pain, passive stiffness, and isometric muscle force before stretching compared with 10, 20, and 30 minutes after stretching. SPT decreased significantly during stretching. Passive stiffness decreased significantly 10 and 20 minutes after stretching, but there was no significant pre- vs. post-stretching difference after 30 minutes. PT at the onset of pain and ROM increased significantly after stretching at all rest intervals, while isometric muscle force decreased significantly after all rest intervals. The effect of static stretching on passive stiffness of the hamstrings was not maintained as long as the changes in ROM, stretch tolerance, and isometric muscle force. Therefore, frequent stretching is necessary to improve the viscoelasticity of the muscle-tendon unit. Muscle force was decreased for 30 minutes after stretching; this should be considered prior to activities requiring maximal muscle strength.

  9. SHORT DURATIONS OF STATIC STRETCHING WHEN COMBINED WITH DYNAMIC STRETCHING DO NOT IMPAIR REPEATED SPRINTS AND AGILITY

    OpenAIRE

    Del P. Wong; Anis Chaouachi; Patrick W.C. Lau; David G. Behm

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performe...

  10. Efficacy of static stretching and proprioceptive neuromuscular facilitation stretch on hamstrings length after a single session.

    Science.gov (United States)

    O'Hora, John; Cartwright, Abigail; Wade, Clive D; Hough, Alan D; Shum, Gary L K

    2011-06-01

    A number of studies have investigated the efficacy of several repetitions of proprioceptive neuromuscular facilitation stretching (PNF) and static stretching (SS). However, there is limited research comparing the effects of a single bout of these stretching maneuvers. The aim of this study was to compare the effectiveness of a single bout of a therapist-applied 30-second SS vs. a single bout of therapist-applied 6-second hamstring (agonist) contract PNF. Forty-five healthy subjects between the ages of 21 and 35 were randomly allocated to 1 of the 2 stretching groups or a control group, in which no stretching was received. The flexibility of the hamstring was determined by a range of passive knee extension, measured using a universal goniometer, with the subject in the supine position and the hip at 90° flexion, before and after intervention. A significant increase in knee extension was found for both intervention groups after a single stretch (SS group = 7.53°, p < 0.01 and PNF group = 11.80°, p < 0.01). Both interventions resulted in a significantly greater increase in knee extension when compared to the control group (p < 0.01). The PNF group demonstrated significantly greater gains in knee extension compared to the SS group (mean difference 4.27°, p < 0.01). It can be concluded that a therapist applied SS or PNF results in a significant increase in hamstring flexibility. A hamstring (agonist) contract PNF is more effective than an SS in a single stretching session. These findings are important to physiotherapists or trainers working in clinical and sporting environments. Where in the past therapists may have spent time conducting multiple repetitions of a PNF and an SS, a single bout of either technique may be considered just as effective. A key component of the study methodology was the exclusion of a warm-up period before stretching. Therefore, the findings of efficacy of a single PNF are of particular relevance in sporting environments and busy clinical

  11. SHORT DURATIONS OF STATIC STRETCHING WHEN COMBINED WITH DYNAMIC STRETCHING DO NOT IMPAIR REPEATED SPRINTS AND AGILITY

    Directory of Open Access Journals (Sweden)

    Del P. Wong

    2011-06-01

    Full Text Available This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA and change of direction (COD. Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s. Three dynamic stretching exercises of 30 s duration were then performed (90 s total. Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p < 0.001. However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (< 90 s static stretching may not have provided sufficient stimulus to elicit performance impairments

  12. Optical stretching on chip with acoustophoretic prefocusing

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Laub Busk, L.; Bruus, Henrik

    2012-01-01

    prefocusing. This focusing mechanism aims for target particles to always ow in the correct height relative to the optical stretcher, and is induced by a piezo-electric ultrasound transducer attached underneath the chip and driven at a frequency leading to a vertical standing ultrasound wave...... in the microchannel. Trapping and manipulation is demonstrated for dielectric beads. In addition, we show trapping, manipulation and stretching of red blood cells and vesicles, whereby we extract the elastic properties of these objects. Our design points towards the construction of a low-cost, high-throughput lab-on-a-chip...

  13. Viscous flows stretching and shrinking of surfaces

    CERN Document Server

    Mehmood, Ahmer

    2017-01-01

    This authored monograph provides a detailed discussion of the boundary layer flow due to a moving plate. The topical focus lies on the 2- and 3-dimensional case, considering axially symmetric and unsteady flows. The author derives a criterion for the self-similar and non-similar flow, and the turbulent flow due to a stretching or shrinking sheet is also discussed. The target audience primarily comprises research experts in the field of boundary layer flow, but the book will also be beneficial for graduate students.

  14. Twist-stretch profiles of DNA chains

    Science.gov (United States)

    Zoli, Marco

    2017-06-01

    Helical molecules change their twist number under the effect of a mechanical load. We study the twist-stretch relation for a set of short DNA molecules modeled by a mesoscopic Hamiltonian. Finite temperature path integral techniques are applied to generate a large ensemble of possible configurations for the base pairs of the sequence. The model also accounts for the bending and twisting fluctuations between adjacent base pairs along the molecules stack. Simulating a broad range of twisting conformation, we compute the helix structural parameters by averaging over the ensemble of base pairs configurations. The method selects, for any applied force, the average twist angle which minimizes the molecule’s free energy. It is found that the chains generally over-twist under an applied stretching and the over-twisting is physically associated to the contraction of the average helix diameter, i.e. to the damping of the base pair fluctuations. Instead, assuming that the maximum amplitude of the bending fluctuations may decrease against the external load, the DNA molecule first over-twists for weak applied forces and then untwists above a characteristic force value. Our results are discussed in relation to available experimental information albeit for kilo-base long molecules.

  15. User contributions and public extension delivery modes ...

    African Journals Online (AJOL)

    The high recurrent costs faced by the public extension service constraint the number of visits farmers receive. This study examined a number of extension communication channels through which farmers received farm management services/information from the public extension agent. The idea was, first, to find out the ...

  16. Effects of stretching the scalene muscles on slow vital capacity.

    Science.gov (United States)

    Lee, Juncheol; Hwang, Sehee; Han, Seungim; Han, Dongwook

    2016-06-01

    [Purpose] The purpose of this study was to examine whether stretching of the scalene muscles would improve slow vital capacity (SVC). [Subjects and Methods] The subjects of this study were 20 healthy female students to whom the study's methods and purpose were explained and their agreement for participation was obtained. The SVC was measured using spirometry (Pony FX, COSMED Inc., Italy). The intervention used was stretching of the scalene muscles. Stretching was carried out for 15 min, 10 times at per each portion of scalene muscles: the anterior, middle, and posterior parts. [Results] Expiratory vital capacity (EVC) and tidal volume (Vt) noticeably increased after stretching. However, there were no changes in any of the SVC items in the control group. [Conclusion] This study demonstrated that stretching of the scalene muscles can effectively improve SVC. In particular, we confirmed that stretching of the scalene muscles was effective in increasing EVC and Vt, which are items of SVC.

  17. Mechanical stretch influence on lifetime of dielectric elastomer films

    Science.gov (United States)

    Iannarelli, A.; Niasar, M. Ghaffarian

    2017-04-01

    Film pre-stretching is a widely adopted solution to improve dielectric strength of the DEA systems. However, to date, long term reliability of this solution has not been investigated. In this work it is explored how the dielectric elastomer lifetime is affected by film pre-stretching. The dielectric loss of soft polydimethylsiloxane (PDMS) films is studied for different stretch ratios by measuring tanδ. Additionally, time-to-breakdown was measured at DC electric stress for different stretch ratios. For this purpose, accelerated life test (ALT) were performed. The results obtained are compared with non-pre-stretched samples. This study suggests that no additional dielectric losses are caused by film stretching up to 80% of original dimensions.

  18. Proprioceptive neuromuscular facilitation stretching : mechanisms and clinical implications.

    Science.gov (United States)

    Sharman, Melanie J; Cresswell, Andrew G; Riek, Stephan

    2006-01-01

    Proprioceptive neuromuscular facilitation (PNF) stretching techniques are commonly used in the athletic and clinical environments to enhance both active and passive range of motion (ROM) with a view to optimising motor performance and rehabilitation. PNF stretching is positioned in the literature as the most effective stretching technique when the aim is to increase ROM, particularly in respect to short-term changes in ROM. With due consideration of the heterogeneity across the applied PNF stretching research, a summary of the findings suggests that an 'active' PNF stretching technique achieves the greatest gains in ROM, e.g. utilising a shortening contraction of the opposing muscle to place the target muscle on stretch, followed by a static contraction of the target muscle. The inclusion of a shortening contraction of the opposing muscle appears to have the greatest impact on enhancing ROM. When including a static contraction of the target muscle, this needs to be held for approximately 3 seconds at no more than 20% of a maximum voluntary contraction. The greatest changes in ROM generally occur after the first repetition and in order to achieve more lasting changes in ROM, PNF stretching needs to be performed once or twice per week. The superior changes in ROM that PNF stretching often produces compared with other stretching techniques has traditionally been attributed to autogenic and/or reciprocal inhibition, although the literature does not support this hypothesis. Instead, and in the absence of a biomechanical explanation, the contemporary view proposes that PNF stretching influences the point at which stretch is perceived or tolerated. The mechanism(s) underpinning the change in stretch perception or tolerance are not known, although pain modulation has been suggested.

  19. Length heteroplasmy of the polyC-polyT-polyC stretch in the dog mtDNA control region.

    Science.gov (United States)

    Verscheure, Sophie; Backeljau, Thierry; Desmyter, Stijn

    2015-09-01

    Previously, the mitochondrial control region of 214 Belgian dogs was sequenced. Analysis of this data indicated length heteroplasmy of the polyT stretch in the polyC-polyT-polyC stretch from positions 16661 to 16674. Nine polyC-polyT-polyC haplotype combinations were observed, consisting of seven major haplotypes (highest signal intensity) combined with minor haplotypes (lower signal intensity) one T shorter than the major haplotype in all but three dogs. The longer the polyT stretch, the smaller was the difference in signal intensity between the major and minor haplotype peaks. Additional sequencing, cloning, and PCR trap experiments were performed to further study the intra-individual variation of this mitochondrial DNA (mtDNA) region. Cloning experiments demonstrated that the proportion of clones displaying the minor haplotypes also increased with the length of the polyT stretch. Clone amplification showed that in vitro polymerase errors might contribute to the length heteroplasmy of polyT stretches with at least 10 Ts. Although major and minor polyC-polyT-polyC haplotypes did not differ intra-individually within and between tissues in this study, interpretation of polyT stretch variation should be handled with care in forensic casework.

  20. Effects of proprioceptive neuromuscular facilitation stretching on stiffness and force-producing characteristics of the ankle in active women.

    Science.gov (United States)

    Rees, Sven S; Murphy, Aron J; Watsford, Mark L; McLachlan, Ken A; Coutts, Aaron J

    2007-05-01

    The purpose of this study was to examine the effect of proprioceptive neuromuscular facilitation (PNF) stretching on musculotendinous unit (MTU) stiffness of the ankle joint. Twenty active women were assessed for maximal ankle range of motion, maximal strength of planter flexors, rate of force development, and ankle MTU stiffness. Subjects were randomly allocated into an experimental (n = 10) group or control group (n = 10). The experimental group performed PNF stretching on the ankle joint 3 times per week for 4 weeks, with physiological testing performed before and after the training period. After training, the experimental group significantly increased ankle range of motion (7.8%), maximal isometric strength (26%), rate of force development (25%), and MTU stiffness (8.4%) (p < 0.001). Four weeks of PNF stretching contributed to an increase in MTU stiffness, which occurred concurrently with gains to ankle joint range of motion. The results confirm that MTU stiffness and joint range of motion measurements appear to be separate entities. The increased MTU stiffness after the training period is explained by adaptations to maximal isometric muscle contractions, which were a component of PNF stretching. Because a stiffer MTU system is linked with an improved the ability to store and release elastic energy, PNF stretching would benefit certain athletic performance due to a reduced contraction time or greater mechanical efficiency. The results of this study suggest PNF stretching is a useful modality at increasing a joint's range of motion and its strength.

  1. The Acute Effects of Static and Cyclic Stretching on Muscle Stiffness and Hardness of Medial Gastrocnemius Muscle.

    Science.gov (United States)

    Maeda, Noriaki; Urabe, Yukio; Tsutsumi, Shogo; Sakai, Shogo; Fujishita, Hironori; Kobayashi, Toshiki; Asaeda, Makoto; Hirata, Kazuhiko; Mikami, Yukio; Kimura, Hiroaki

    2017-12-01

    This study aimed to clarify the acute effects of static stretching (SS) and cyclic stretching (CS) on muscle stiffness and hardness of the medial gastrocnemius muscle (MG) by using ultrasonography, range of motion (ROM) of the ankle joint and ankle plantar flexor. Twenty healthy men participated in this study. Participants were randomly assigned to SS, CS and control conditions. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions in another day: (a) 2 minutes static stretching, (b) 2 minutes cyclic stretching, (c) control. Maximum ankle dorsiflexion range of motion (ROM max) and normalized peak torque (NPT) of ankle plantar flexor were measured in the pre- and post-stretching. To assess muscle stiffness, muscle-tendon junction (MTJ) displacement (the length changes in tendon and muscle) and MTJ angle (the angle made by the tendon of insertion and muscle fascicle) of MG were measured using ultrasonography at an ankle dorsiflexion angle of -10°, 0°, 10° and 20° before and after SS and CS for 2 minutes in the pre- and post-stretching. MG hardness was measured using ultrasound real-time tissue elastography (RTE). The results of this study indicate a significant effect of SS for ROM maximum, MTJ angle (0°, 10°, 20°) and RTE (10°, 20°) compared with CS (p muscle stiffness and hardness compared with CS. In addition, CS may contribute to the elongation of muscle tissue and increased muscle strength.

  2. Correlation between structure and conductivity in stretched Nafion

    Science.gov (United States)

    Allahyarov, Elshad; Taylor, Philip

    2008-03-01

    We have used coarse-grained simulation methods to investigate the effect of stretching-induced structure orientation on the proton conductivity of Nafion-like polyelectrolyte membranes. Recent experimental data on the morphology of ionomers describe Nafion as an aggregation of polymeric backbone chains forming elongated objects embedded in a continuous ionic medium. Uniaxial stretching of a recast Nafion film causes a preferential orientation of these objects in the direction of stretching. Our simulations of humid Nafion show that this has a strong effect on the proton conductivity, which is enhanced along the stretching direction, while the conductivity perpendicular to the stretched polymer backbone is strongly reduced. Stretching also causes the perfluorinated side chains to orient perpendicular to the stretching axis. The sulphonate multiplets shrink in diameter as the stretching is increased and show a spatially periodic ordering in their distribution. This in turn affects the distribution of contained water at low water contents. The water forms a continuous network with narrow bridges between small water clusters absorbed in head-group multiplets. We find the morphological changes in the stretched Nafion to be retained upon removal of the uniaxial stress.

  3. A multiple length scale description of the mechanism of elastomer stretching

    DEFF Research Database (Denmark)

    Neuefeind, J.; Skov, Anne Ladegaard; Daniels, J. E.

    2016-01-01

    for providing data on the structure of rubbers in the 2-50 angstrom range. First results relate to the elongation of a silicone rubber. We identify several non-entropic contributions to the free energy and describe the associated structural changes. By far the largest contribution comes from structural changes...... within the individual monomers, but among the contributions is also an elastic strain, acting between chains, which is 3-4 orders of magnitude smaller than the macroscopic strain, and of the opposite sign, i.e. extension of polymer chains in the direction perpendicular to the stretch. This may be due...

  4. Plantar flexor stretch reflex responses to whole body loading/unloading during human walking

    DEFF Research Database (Denmark)

    Grey, Michael James; van Doornik, Johannes; Sinkjær, Thomas

    2002-01-01

    perturbation during human walking. Three body load conditions were investigated: normal body load, a 30% increase in body load, and a 30% decrease in body load. Healthy subjects walked on a treadmill at approximately 3.6 km/h with the left ankle attached to a portable stretching device. Dorsiflexion......Numerous animal and human studies have shown that afferent information from the periphery contributes to the control of walking. In particular, recent studies have consistently shown that load receptor input is an important element of the locomotion control mechanism. The objective of this study...... electrodes. Stretch reflex responses were observed in the soleus and gastrocnemius muscles for all of the body load conditions; however, increasing or decreasing the body load did not affect the timing and magnitude of the responses. This study provides evidence that load receptor input does not contribute...

  5. The influence of passive stretch on the growth and protein turnover of the denervated extensor digitorum longus muscle

    Science.gov (United States)

    Goldspink, David F.

    1978-01-01

    At 7 days after cutting the sciatic nerve, the extensor digitorum longus muscle was smaller and contained less protein than its innervated control. Correlating with these changes was the finding of elevated rates of protein degradation (measured in vitro) in the denervated tissue. However, at this time, rates of protein synthesis (measured in vitro) and nucleic acid concentrations were also higher in the denervated tissue, changes more usually associated with an active muscle rather than a disused one. These anabolic trends have, at least in part, been explained by the possible greater exposure of the denervated extensor digitorum longus to passive stretch. When immobilized under a maintained influence of stretch the denervated muscle grew to a greater extent. Although this stretch-induced growth appeared to occur predominantly through a stimulation of protein synthesis, it was opposed by smaller increases in degradative rates. Nucleic acids increased at a similar rate to the increase in muscle mass when a continuous influence of stretch was imposed on the denervated tissue. In contrast, immobilization of the denervated extensor digitorum longus in a shortened unstretched state reversed most of the stretch-induced changes; that is, the muscle became even smaller, with protein synthesis decreasing to a greater extent than breakdown after the removal of passive stretch. The present investigation suggests that stretch will promote protein synthesis and hence growth of the extensor digitorum longus even in the absence of an intact nerve supply. However, some factor(s), in addition to passive stretch, must contribute to the anabolic trends in this denervated muscle. PMID:708412

  6. Gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy.

    Science.gov (United States)

    Hu, Song; Yao, Jian; Liu, Meng; Luo, Ai-Ping; Luo, Zhi-Chao; Xu, Wen-Cheng

    2016-05-16

    The ultrafast time-stretch microscopy has been proposed to enhance the temporal resolution of a microscopy system. The optical source is a key component for ultrafast time-stretch microscopy system. Herein, we reported on the gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy. By virtue of the excellent characteristics of the gain-guided soliton, the output power and the 3-dB bandwidth of the stable mode-locked soliton could be up to 3 mW and 33.7 nm with a high-quality rectangle shape, respectively. With the proposed robust optical source, the ultrafast time-stretch microscopy with the 49.6 μm resolution and a scan rate of 11 MHz was achieved without the external optical amplification. The obtained results demonstrated that the gain-guided soliton fiber laser could be used as an alternative high-quality optical source for ultrafast time-stretch microscopy and will introduce some applications in fields such as biology, chemical, and optical sensing.

  7. DNA-wrapped carbon nanotubes aligned in stretched gelatin films: Polarized resonance Raman and absorption spectroscopy study

    Science.gov (United States)

    Glamazda, A. Yu.; Plokhotnichenko, A. M.; Leontiev, V. S.; Karachevtsev, V. A.

    2017-09-01

    We present the study of DNA-wrapped single-walled carbon nanotubes (SWNTs) embedded in the stretched gelatin film by the polarized resonance Raman spectroscopy and visible-NIR optical absorption. The polarized dependent absorption spectra taken along and normal to the stretching direction demonstrate a comparatively high degree of the alignment of isolated SWNTs in the gelatin matrix. The analysis of Raman spectra of isolated SWNTs in the gelatin stretched films showed that the degree of the alignment of carbon nanotubes along the stretching direction is about 62%. The dependence of the peak position of G+-band in Raman spectra on the polarization angle θ between the polarization of the incident light and the direction of the stretching of films was revealed. This shift is explained by the different polarization dependence of the most intensive A and E1 symmetry modes within the G+-band. The performed studies of embedded DNA-wrapped nanotubes in the gelatin film show the simple method for obtaining the controlled ordered biocompatible nanotubes inside a polymer matrix. It can be used for manufacturing sizable flexible self-transparent films with integrated nanoelectrodes.

  8. Effects of contract-relax vs static stretching on stretch-induced strength loss and length-tension relationship

    DEFF Research Database (Denmark)

    Balle, S S; Magnusson, S P; McHugh, M P

    2015-01-01

    The purpose of this study was to determine the acute effects of contract-relax stretching (CRS) vs static stretching (SS) on strength loss and the length-tension relationship. We hypothesized that there would be a greater muscle length-specific effect of CRS vs SS. Isometric hamstring strength...... loss compared with SS. These results support the use of SS for stretching the hamstrings....

  9. EFFECTIVENESS OF PNF STRETCHING VERSUS STATIC STRETCHING ON PAIN AND HAMSTRING FLEXIBILITY FOLLOWING MOIST HEAT IN INDIVIDUALS WITH KNEE OSTEOARTHRITIS

    Directory of Open Access Journals (Sweden)

    Meena .V

    2016-10-01

    Full Text Available Background: Osteoarthritis (OA is a degenerative joint disease and one of the major public health problem that causesfunctional impairment and reduced quality of life. To compare the effectiveness of PNF Hold relax stretching versus Static stretching on pain and flexibility of hamstring following moist heat in individuals with knee osteoarthritis. Hamstring tightness is the major problem in knee osteoarthritis individuals. Therefore the need of study is comparing the effectiveness of PNF Hold relax stretching versus static stretching on pain and flexibility of hamstrings following moist heat in knee osteoarthritis participants. Determining the effects of PNF Hold relax stretching versus Static stretching along with moist heat on pain and hamstring flexibility by VAS and Active knee extension range of motion in knee osteoarthritis individuals. Methods: 30 subjects with symptoms of knee osteoarthritis were randomly distributed into 2 groups 15 in each group. PNF Hold relax stretching along with moist heat is compared to Static stretching along with moist heat. Pain was measured by Visual Analogue Scale (VAS and hamstring flexibility by Active knee Extension Range of Motion (AKEROM by universal goniometer. Measurements are taken pre and post intervention. Results: The results indicated PNF Hold relax stretching along with moist heat showed a statistically significant improvement in pain (p<0.05 and improvement in hamstring flexibility (p<0.05 when compared to Static stretching along with moist heat. Conclusion: Subjects with PNF Hold relax stretching along with moist heat showed significant improvement in pain reduction and improving hamstring flexibility than Static stretching along with moist heat.

  10. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects

    OpenAIRE

    O'Sullivan, Kieran; Murray, Elaine; Sainsbury, David

    2009-01-01

    Abstract Background Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. Methods A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM). 18 previously injured indi...

  11. LABOR GYMNASTICS: STRETCHING EXERCISE X FLEXIONAMENT

    Directory of Open Access Journals (Sweden)

    Jacqueline Amorin Anchieta Borges da Silva, Isabel Cristina Taranto e Fernanda Piasecki

    2006-12-01

    Full Text Available Nowadays, there are many opportunities for the society to live a healthful and long life. At the same time, never people was so sedentary and without harmony. Without a healthy body and with “an occupied mind” the human loses exactly what more it needs: the disposal to produce, to coexist and to live a good life. In this context, the present research aimed to revise some terms related to labor gymnastics, which is focused in the prevention of risks related to hours of working and in the reduction of muscular tension levels that may be originated during a day of work. Thus, the present study will make a differentiation between the use of stretching and flexionament during labor gymnastic sessions.

  12. Stretched Lens Array Photovoltaic Concentrator Technology Developed

    Science.gov (United States)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    2004-01-01

    Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.

  13. Aerothermodynamic properties of stretched flames in enclosures

    Science.gov (United States)

    Rotman, D. A.; Oppenheim, A. K.

    Flames are stretched by being pulled along their frontal surface by the flow field in which they reside. Their trajectories tend to approach particle paths, acquiring eventually the role of contact boundaries, -interfaces between the burnt and unburnt medium that may broaden solely as a consequence of diffusion. Fundamental properties of flow fields governing such flames are determined here on the basis of the zero Mach number model, providng a rational method of approach to the computational analysis of combustion fields in enclosures where, besides the aerodynamic properties flow, the thermodynamic process of compression must be taken into account. To illustrate its application, the method is used to reveal the mechanism of formation of a tulip-shape flame in a rectangular enclosure under nonturbulent flow conditions.

  14. A Variable-Resolution Stretched-Grid General Circulation Model and Data Assimilation System with Multiple Areas of Interest: Studying the Anomalous Regional Climate Events of 1998

    Science.gov (United States)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence; Govindaraju, Ravi C.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The new stretched-grid design with multiple (four) areas of interest, one at each global quadrant, is implemented into both a stretched-grid GCM (general circulation model) and a stretched-grid data assimilation system (DAS). The four areas of interest include: the U.S./Northern Mexico, the El Nino area/Central South America, India/China, and the Eastern Indian Ocean/Australia. Both the stretched-grid GCM and DAS annual (November 1997 through December 1998) integrations are performed with 50 km regional resolution. The efficient regional down-scaling to mesoscales is obtained for each of the four areas of interest while the consistent interactions between regional and global scales and the high quality of global circulation, are preserved. This is the advantage of the stretched-grid approach. The global variable resolution DAS incorporating the stretched-grid GCM has been developed and tested as an efficient tool for producing regional analyses and diagnostics with enhanced mesoscale resolution. The anomalous regional climate events of 1998 that occurred over the U.S., Mexico, South America, China, India, African Sahel, and Australia are investigated in both simulation and data assimilation modes. Tree assimilated products are also used, along with gauge precipitation data, for validating the simulation results. The obtained results show that the stretched-grid GCM and DAS are capable of producing realistic high quality simulated and assimilated products at mesoscale resolution for regional climate studies and applications.

  15. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-ß mediated fibrosis

    LENUS (Irish Health Repository)

    Watson, Chris J

    2012-07-07

    AbstractBackgroundMechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechanical stretch on human cardiac fibroblasts’ response to pro-fibrotic stimuli, such as transforming growth factor beta (TGFβ), is unknown as is the impact of stretch on B-type natriuretic peptide (BNP) and natriuretic peptide receptor A (NPRA) expression. BNP, acting via NPRA, has been shown to play a role in modulation of cardiac fibrosis.Methods and resultsThe effect of cyclical mechanical stretch on TGFβ induction of myofibroblast differentiation in primary human cardiac fibroblasts and whether differences in response to stretch were associated with changes in the natriuretic peptide system were investigated. Cyclical mechanical stretch attenuated the effectiveness of TGFβ in inducing myofibroblast differentiation. This finding was associated with a novel observation that mechanical stretch can increase BNP and NPRA expression in human cardiac fibroblasts, which could have important implications in modulating myocardial fibrosis. Exogenous BNP treatment further reduced the potency of TGFβ on mechanically stretched fibroblasts.ConclusionWe postulate that stretch induced up-regulation of the natriuretic peptide system may contribute to the observed reduction in myofibroblast differentiation.

  16. Electroforesis of Whey and Stretching Water Protein of Mozzarella Cheese Production from Factorial Experimental of Coagulation and Stretching Temperature

    Directory of Open Access Journals (Sweden)

    Purwadi Purwadi

    2012-02-01

    Full Text Available The use of lime juice as acidifier in the making of Mozzarella cheese was aimed to learn the protein profile of whey and stretching water produced with treatment of coagulation and stretching temperature. The treatment of coagulation temperature was G1 = 30oC, G2 = 35oC, G3 = 40oC, and G4 = 45oC, and the treatment of stretching temperature was M1 = 70oC, M2 = 75oC, M3 = 80oC, and M4 = 85oC. The research result showed that coagulation temperature of 30 and 35 oC gave the same protein profile of whey as well as coagulation temperature of 40 and 45oC, while coagulation temperature of 30 and 35oC with coagulation temperatur of 40 and 45oC gave different protein profile of whey. Different coagulation temperature gave different protein profile of whey and stretching water, while different stretching temperature gave the same protein profile of stretching water. Coagulation temperature of 30 and 35oC gave the same protein profile of stretching water as well as coagulation temperature of 40 and 45oC, while coagulation temperature of 30 and 35oC with temperature of 40 and 45oC gave different protein profile of stretching water. Keywords: protein profile, Mozzarella cheese, coagulation temperature, stretching temperature

  17. EFFICACY OF MODIFIED PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION STRETCHING WITH CRYOTHERAPY OVER MANUAL PASSIVE STRETCHING WITH CRYOTHERAPY ON HAMSTRING FLEXIBILITY

    Directory of Open Access Journals (Sweden)

    Shamik Bhattacharjee

    2016-04-01

    Full Text Available Background: Healthy individuals, to ease and accomplish their activities of daily living they need flexible body without any tightness in the muscles, particularly those used for a definite function. Cooling soft tissues in a lengthened position after stretching has been shown to promote more lasting increases in soft tissue length and minimize post stretch muscle soreness. There are less documented studies which compared modified proprioceptive neuromuscular facilitation (PNF stretch over passive manual stretch with cold application commonly after the interventions. Methods: Thirty high school going healthy students were divided into two groups- Group I received Passive Manual stretching (n=15 and Group II received modified PNF stretching (n=15 and both groups received cold application after the interventions for 10 minutes commonly for 5 days. ROM was taken on day 1, day 5 and day 7. Results: After day 7, Group II with Modified PNF stretching along with cold application showed a significant increase in range of motion tested with active knee extension test (AKET. Conclusion: Modified PNF stretching is considered to be the effective intervention in increasing and maintaining ROM in AKET over passive manual stretching with cold applications commonly after the interventions.

  18. Immediate Effects of Proprioceptive Neuromuscular Facilitation Stretching Programs Compared With Passive Stretching Programs for Hamstring Flexibility: A Critically Appraised Topic.

    Science.gov (United States)

    Hill, Kristian J; Robinson, Kendall P; Cuchna, Jennifer W; Hoch, Matthew C

    2017-11-01

    Clinical Scenario: Increasing hamstring flexibility through clinical stretching interventions may be an effective means to prevent hamstring injuries. However the most effective method to increase hamstring flexibility has yet to be determined. For a healthy individual, are proprioceptive neuromuscular facilitation (PNF) stretching programs more effective in immediately improving hamstring flexibility when compared with static stretching programs? Summary of Key Findings: A thorough literature search returned 195 possible studies; 5 studies met the inclusion criteria and were included. Current evidence supports the use of PNF stretching or static stretching programs for increasing hamstring flexibility. However, neither program demonstrated superior effectiveness when examining immediate increases in hamstring flexibility. Clinical Bottom Line: There were consistent findings from multiple low-quality studies that indicate there is no difference in the immediate improvements in hamstring flexibility when comparing PNF stretching programs to static stretching programs in physically active adults. Strength of Recommendation: Grade B evidence exists that PNF and static stretching programs equally increase hamstring flexibility immediately following the stretching program.

  19. Hydrogen local vibrational modes in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Matthew D. [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-06-01

    Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.

  20. Hydrogen local vibrational modes in semiconductors

    Science.gov (United States)

    McCluskey, Matthew Douglas

    Following a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient, exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen, the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the (111) direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, an anti-crossing is observed between the LVM and phonon modes.

  1. Structural study of polymers under stretch using a new X-ray TV detector

    International Nuclear Information System (INIS)

    Ohishi, Yasuo; Uemura, Akio; Amemiya, Yoshiyuki.

    1994-01-01

    Time-resolved synchrotron radiation small angle X-ray scattering experiment to investigate the structural change of polyethylene during stretching have been made by utilizing a new X-ray TV detector installed at the Photon Factory. This X-ray TV detector specially developed for real-time measurements of diffraction patterns employs an X-ray image intensifier with a Be-window of a 150 mm diameter. The TV detector has a sensitivity and a time resolution of 30 frames per second. This capability allows us to observe weak SAXS patterns in a time-resolved mode. (author)

  2. Equivalence of the final stretch and crack tip opening angle criteria for plane strain crack growth

    International Nuclear Information System (INIS)

    Smith, E.

    1981-01-01

    The equivalence of the final stretch and crack tip opening angle criteria, as applied to the Dugdale-Bilby-Cottrell-Swinden type model for Mode I plane strain crack growth, is demonstrated. This equivalence is independent of the plastic zone size, geometrical parameters, and the stress distribution within the fracture process zone, if the yield stress is sufficiently low and the crack growth resistance is sufficiently high. The results therefore provide further support for the viability of crack tip opening angle as a crack growth chracterizing parameter. 7 refs

  3. Effects of acute stretching on the maximal expression of strength ...

    African Journals Online (AJOL)

    This study compared the effects of four treatments (n = 12 each) [10 minutes of quiet sitting, without stretching (NS); two minutes warm up on an arm ergometer at 25 watts resistance (WU); 10 second-hold static stretching (each) of the shoulder, chest and arm muscle groups (ST10); and two sets of 20 second-hold static ...

  4. Chaperones in Polyglutamine Aggregation : Beyond the Q-Stretch

    NARCIS (Netherlands)

    Kuiper, E. F. E.; de Mattos, Eduardo P.; Jardim, Laura B.; Kampinga, Harm H.; Bergink, Steven

    2017-01-01

    Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to inherited neuronal dysfunction and degeneration. The expansion size in all diseases correlates with age at onset (AO) of disease and with polyQ protein aggregation, indicating that the expanded polyQ stretch is the

  5. Stretched exponential relaxation and ac universality in disordered dielectrics

    DEFF Research Database (Denmark)

    Milovanov, Alexander V.; Rypdal, Kristoffer; Juul Rasmussen, Jens

    2007-01-01

    are stretched exponential character of dielectric relaxation, power-law power spectral density, and anomalous dependence of ac conduction coefficient on frequency. We propose a self-consistent model of dielectric relaxation in which the relaxations are described by a stretched exponential decay function...

  6. Time and direction preparation of the long latency stretch reflex.

    Science.gov (United States)

    Nikaido, Yasutaka; Hatanaka, Ryota; Jono, Yasutomo; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2016-06-01

    This study investigated time and direction preparation of motor response to force load while intending to maintain the finger at the initial neutral position. Force load extending or flexing the index finger was given while healthy humans intended to maintain the index finger at the initial neutral position. Electromyographic activity was recorded from the first dorsal interosseous muscle. A precue with or without advanced information regarding the direction of the forthcoming force load was given 1000ms before force load. Trials without the precue were inserted between the precued trials. A long latency stretch reflex was elicited by force load regardless of its direction, indicating that the long latency stretch reflex is elicited not only by muscle stretch afferents, but also by direction-insensitive sensations. Time preparation of motor response to either direction of force load enhanced the long latency stretch reflex, indicating that time preparation is not mediated by afferent discharge of muscle stretch. Direction preparation enhanced the long latency stretch reflex and increased corticospinal excitability 0-20ms after force load when force load was given in the direction stretching the muscle. These enhancements must be induced by preset of the afferent pathway mediating segmental stretch reflex. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Transparent conducting film: Effect of mechanical stretching to ...

    Indian Academy of Sciences (India)

    We describe in this paper a transparent conducting film (TCF). It is a fibrous layer of multiwalled carbon nanotubes (MWNTs), labeled a dilute CNT mat, that was prepared and unidirectionally stretched to improve both the optical and electrical properties. After stretching by 80% strain, transmittance at 550 nm wavelength ...

  8. The effects of acute self myofascial release (MFR) and stretching ...

    African Journals Online (AJOL)

    Baseline measurements were taken initially and then participants were randomly divided into four groups (control [n=10, static stretching [n=10], dynamic stretching [n=10] and self MFR [n=10]). Each group performed a 60-minute intervention. During the intervention programme the various groups took part in prescribed ...

  9. Transparent conducting film: Effect of mechanical stretching to ...

    Indian Academy of Sciences (India)

    Administrator

    The number of pixels inside a rectangle counted on the Adobe Photoshop. Figure 6. Sheet resistance and transmittance at 550 nm wave- length of a dilute CNT mat before and after stretch. Five sam- ples were stretched by 40 and 110% strain respectively and average data is shown in each case. A polyurethane elastomer.

  10. Does Postexercise Static Stretching Alleviate Delayed Muscle Soreness?

    Science.gov (United States)

    Buroker, Katherine C.; Schwane, James A.

    1989-01-01

    Because many experts recommend stretching after exercise to relieve muscle soreness, 23 subjects performed a 30-minute step test to induce delayed muscle soreness. There was neither temporary relief of pain immediately after stretching nor a reduction in pain during the 3-day postexercise period. (Author/SM)

  11. Mechanical stretch influence on lifetime of dielectric elastomer films

    NARCIS (Netherlands)

    Iannarelli, A.; Ghaffarian Niasar, M.; Bar-Cohen, Yoseph

    2017-01-01

    Film pre-stretching is a widely adopted solution to improve dielectric strength of the DEA systems. However, to date, long term reliability of this solution has not been investigated. In this work it is explored how the dielectric elastomer lifetime is affected by film pre-stretching. The dielectric

  12. The effect of calf stretching box on stretching calf muscle compliance: a prospective, randomized single-blinded controlled trial.

    Science.gov (United States)

    Chadchavalpanichaya, Navaporn; Srisawasdi, Gulapar; Suwannakin, Atchara

    2010-12-01

    To study the effect of calf stretching box usage in increasing the compliance of performing calf stretching exercise as compared to the conventional exercise method. To study the effect of calf stretching box usage in decreasing the calf muscle tightness and complications as compared to the conventional exercise method. Eighty patients older than 45 years old with calf muscles tightness were enrolled in a prospective, randomized single-blinded controlled trial at the out-patient Rehabilitation medicine clinic, Siriraj Hospital, Bangkok Thailand between April and August 2009. Patients were randomized into two groups, the study group (stretching by using calf stretching box) and the control group (stretching by the conventional exercise method). Patients in both groups were asked to hold the stretch for at least 1 minute and to perform the stretching program at least two times per day, every day for two weeks. Furthermore, they were asked to record the real frequency and duration of their exercise and complications in a logbook every day. Thirty-eight patients in each group completed the study. The baseline characteristics of the patients in both groups were similar. The study group had higher frequency and longer duration of performing calf stretching exercise than the control group. They also reported more decrease of calf muscle tightness with less pain complication (shoulder pain, knee pain, low back pain, and calf muscle pain) than the control group (p calf muscle and degree of ankle range of motion between the two groups. Stretching calf muscle with calf stretching box can increase compliance, decrease calf muscle tightness and decrease complications when compared with the conventional exercise method.

  13. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects.

    Science.gov (United States)

    O'Sullivan, Kieran; Murray, Elaine; Sainsbury, David

    2009-04-16

    Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM). 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1) at baseline; (2) after warm-up; (3) after stretch (static or dynamic) and (4) after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. Across both groups, there was a significant main effect for time (p static stretching (p = 0.04) but significantly decreased after dynamic stretching (p = 0.013). The increased flexibility after warm-up and static stretching reduced significantly (p 0.05). Using ANCOVA to adjust for the non-significant (p = 0.141) baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05). Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced flexibility post-injury, but this did not reach statistical significance. Further prospective research is required to validate the hypothesis that increased flexibility improves outcomes. ACTRN12608000638336.

  14. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    Science.gov (United States)

    Gouw, Simone; de Wijer, Anton; Creugers, Nico Hj; Kalaykova, Stanimira I

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism. However, most studies of muscle-stretching exercises have mainly focused on their influence on performance (eg, range of motion, coordination, and muscle strength) of the limb or trunk muscles of healthy individuals or individuals with sports-related injuries. Very few have investigated stretching of the human masticatory muscles and none muscle-stretching exercises in the management of (sleep) bruxism. This article reviews the literature on muscle-stretching exercises and their potential role in the management of sleep bruxism or its consequences in the musculoskeletal system.

  15. Acute effect of different stretching methods on isometric muscle strength

    Directory of Open Access Journals (Sweden)

    Gabriel Vasconcellos de Lima Costa e Silva

    2014-03-01

    This study investigated the acute effect of static stretching methods (SS and proprioceptive neuromuscular facilitation (PNF on the static muscle strength (SMS. Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a hand grip without stretching; b hand grip preceded by static stretching of wrist flexors muscles; c hand grip preceded by PNF stretching of wrist flexors muscles. The Shapiro-Wilk test verified the normality of data, and a one-way ANOVA with repeated measures, followed by Tukey’s post hoc test, evaluated the differences between the groups. The significance was set at p 0.05. In conclusion, both stretching methods had caused negative effects on isometric strength, reducing its levels.

  16. Linear and nonlinear buckling analysis of a locally stretched plate

    Energy Technology Data Exchange (ETDEWEB)

    Kilardj, Madina; Ikhenzzen, Ghania [University of Sciences and Technology Houari Boumediene (U.S.T.H.B), Bab Ezzouar, Algiers (Algeria); Merssager, Tanguy; Kanit, Toufik [Laboratoire de Mecanique de Lille Universite Lille 1, Cite ScientifiqueVilleneuve d' Ascq cedex (France)

    2016-08-15

    Uniformly stretched thin plates do not buckle unless they are in special boundary conditions. However, buckling commonly occurs around discontinuities, such as cracks, cuts, narrow slits, holes, and different openings, of such plates. This study aims to show that buckling can also occur in thin plates that contain no defect or singularity when the stretching is local. This specific stability problem is analyzed with the finite element method. A brief literature review on stretched plates is presented. Linear and nonlinear buckling stress analyses are conducted for a partially stretched rectangular plate, and various load cases are considered to investigate the influence of the partial loading expanse on the critical tensile buckling load. Results are summarized in iso-stress areas, tables and graphs. Local stretching on one end of the plate induces buckling in the thin plate even without geometrical imperfection.

  17. Universal linear motor driven Leg Press Dynamometer and concept of Serial Stretch Loading

    Directory of Open Access Journals (Sweden)

    Dušan Hamar

    2015-08-01

    Full Text Available Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase or acceleration (in eccentric phase. Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.

  18. Acute effects of different stretching durations on passive torque, mobility, and isometric muscle force.

    Science.gov (United States)

    Matsuo, Shingo; Suzuki, Shigeyuki; Iwata, Masahiro; Banno, Yasuhiro; Asai, Yuji; Tsuchida, Wakako; Inoue, Takayuki

    2013-12-01

    Static stretching is widely applied in various disciplines. However, the acute effects of different durations of stretching are unclear. Therefore, this study was designed to investigate the acute effects of different stretching durations on muscle function and flexibility, and provide an insight into the optimal duration of static stretching. This randomized crossover trial included 24 healthy students (17 men and 7 women) who stretched their right hamstrings for durations of 20, 60, 180, and 300 seconds in a random order. The following outcomes were assessed using an isokinetic dynamometer as markers of lower-limb function and flexibility: static passive torque (SPT), dynamic passive torque (DPT), stiffness, straight leg raise (SLR), and isometric muscle force. Static passive torque was significantly decreased after all stretching durations (p stretching compared with that after 20-second stretching, and stiffness decreased significantly after 180- and 300-second stretching (p stretching (p stretching durations (p stretching than after 20-second stretching and higher after 300-second stretching than after 60-second stretching (p muscle force significantly decreased after all stretching durations (p stretching is associated with a decrease in SPT but an increase in SLR. Over 180 seconds of stretching was required to decrease DPT and stiffness, but isometric muscle force decreased regardless of the stretching duration. In conclusion, these results indicate that longer durations of stretching are needed to provide better flexibility.

  19. Pre-exercise stretching does not impact upon running economy.

    Science.gov (United States)

    Hayes, Philip R; Walker, Adrian

    2007-11-01

    Pre-exercise stretching has been widely reported to reduce performance in tasks requiring maximal or near-maximal force or torque. The purpose of this study was to compare the effects of 3 different pre-exercise stretching routines on running economy. Seven competitive male middle and long-distance runners (mean +/- SD) age: 32.5 +/- 7.7 years; height: 175.0 +/- 8.8 cm; mass: 67.8 +/- 8.6 kg; V(.-)O2max: 66.8 +/- 7.0 ml x kg(-1) x min(-1)) volunteered to participate in this study. Each participant completed 4 different pre-exercise conditions: (a) a control condition, (b) static stretching, (c) progressive static stretching, and (d) dynamic stretching. Each stretching routine consisted of 2 x 30-second stretches for each of 5 exercises. Dependent variables measured were sit and reach test before and after each pre-exercise routine, running economy (ml x kg(-1) x km(-1)), and steady-state oxygen uptake (ml x kg(-1) x min(-1)), which were measured during the final 3 minutes of a 10-minute run below lactate threshold. All 3 stretching routines resulted in an increase in the range of movement (p = 0.008). There was no change in either running economy (p = 0.915) or steady-state V(.-)O2 (p = 0.943). The lack of change in running economy was most likely because it was assessed after a period of submaximal running, which may have masked any effects from the stretching protocols. Previously reported reductions in performance have been attributed to reduced motor unit activation, presumably IIX. In this study, these motor units were likely not to have been recruited; this may explain the unimpaired performance. This study suggests that pre-exercise stretching has no impact upon running economy or submaximal exercise oxygen cost.

  20. From fundamental mode to the PWR type reactors blow off: physical analysis and contribution to the qualification of calculation tools; Du mode fondamental a la vidange des reacteurs a eau sous pression: analyse physique et contribution a la qualification des outils de calcul

    Energy Technology Data Exchange (ETDEWEB)

    Maghnouj, A

    1996-01-18

    The work reported in this thesis centres on the resolution of reactor physics problems posed by the use in pressurised water reactors of fuel assemblies containing mixed uranium-plutonium oxide fuel (MOX). The work is essentially dependent on the results of the EPICURE experimental programme carried out between 1988 and 1994 in the reactor EOLE at the Cadarache Research Centre of the CEA. Our contribution to the validation of the computer program APOLLO2 and of its nuclear data library CEA93 shows that this code system satisfactorily calculates the neutronic characteristics of PWR cores. The validation of the experiments has provided useful information concerning the modifications required to be made to the library CEA93, which is based on the basic library of evaluated nuclear data, JEF2. This approach should now be extended to a wider basis of reactor experimental data. The studies of methods for calculating coolant voiding coefficients has made it possible to select suitable methods based on the available deterministic methods of transport theory in 2 ad 3 dimensions. These schemes have given results in satisfactory agreement with the measurements made in EPICURE programme for both local and total coolant voiding. It would now be worth while to validate the chosen methods by comparisons with calculations made using continuous energy Monte Carlo methods. (author)

  1. Structural information from OH stretching frequencies—V. On the presence of different rotamers in substituted tertiary cyclohexanol compounds

    NARCIS (Netherlands)

    Lutz, E.T.G.; Maas, J.H. van der

    1980-01-01

    The presence of different hydroxyl rotamers in a number of saturated aequatorial and axial tertiary cyclohexanols has been studied by means of the i.r. spectra of the OH stretching band. Band resolving experiments indicate that an OH positioned over a cyclohexylring contributes appreciably to the

  2. Randomized Controlled Trial Comparing Orthosis Augmented by Either Stretching or Stretching and Strengthening for Stage II Tibialis Posterior Tendon Dysfunction.

    Science.gov (United States)

    Houck, Jeff; Neville, Christopher; Tome, Josh; Flemister, Adolph

    2015-09-01

    The value of strengthening and stretching exercises combined with orthosis treatment in a home-based program has not been evaluated. The purpose of this study was to compare the effects of augmenting orthosis treatment with either stretching or a combination of stretching and strengthening in participants with stage II tibialis posterior tendon dysfunction (TPTD). Participants included 39 patients with stage II TPTD who were recruited from a medical center and then randomly assigned to a strengthening or stretching treatment group. Excluding 3 dropouts, there were 19 participants in the strengthening group and 17 in the stretching group. The stretching treatment consisted of a prefabricated orthosis used in conjunction with stretching exercises. The strengthening treatment consisted of a prefabricated orthosis used in conjunction with the stretching and strengthening exercises. The main outcome measures were self-report (ie, Foot Function Index and Short Musculoskeletal Function Assessment) and isometric deep posterior compartment strength. Two-way analysis of variance was used to test for differences between groups at 6 and 12 weeks after starting the exercise programs. Both groups significantly improved in pain and function over the 12-week trial period. The self-report measures showed minimal differences between the treatment groups. There were no differences in isometric deep posterior compartment strength. A moderate-intensity, home-based exercise program was minimally effective in augmenting orthosis wear alone in participants with stage II TPTD. Level I, prospective randomized study. © The Author(s) 2015.

  3. Two-dimensional analysis of spurious modes in aluminum nitride film resonators.

    Science.gov (United States)

    Gong, Xun; Han, Min; Shang, Xiaoli; Xiong, Jun; Duan, Jie; Sekimoto, Hitoshi

    2007-06-01

    In this paper, a hybrid method, which combines the traditional concept of guided waves and the finite element method (FEM), is proposed to analyze the spurious modes of aluminum nitride (AIN) film with electrodes. First, the guided wave modes in the plated area are obtained by 1-D FEM. Second, a mode-match method is used to satisfy the boundary conditions. The vibration of the film resonator is a superposition of all of the guided modes. With respect to an A1N film resonator, which is a thickness-stretch mode resonator, we have identified three families of spurious modes: extension, thickness-stretch, and thickness-shear. The spectrum of spurious modes is calculated and the influence of the spurious modes is discussed.

  4. Failure Modes

    DEFF Research Database (Denmark)

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained...

  5. Reflectors Made from Membranes Stretched Between Beams

    Science.gov (United States)

    Dooley, Jennifer; Dragovan, Mark; Tolomeo, Jason

    2009-01-01

    Lightweight cylindrical reflectors of a proposed type would be made from reflective membranes stretched between pairs of identically curved and identically oriented end rails. In each such reflector, the curvature of the two beams would define the reflector shape required for the intended application. For example, the beams could be curved to define a reflector of parabolic cross section, so that light incident along the axis of symmetry perpendicular to the cylindrical axis would be focused to a line. In addition, by applying suitable forces to the ends of the beams, one could bend the beams to adjust the reflector surface figure to within a precision of the order of the wavelength of the radiation to be reflected. The figure depicts an example of beams shaped so that in the absence of applied forces, each would be flat on one side and would have a radius of curvature R on the opposite side. Alternatively, the curvature of the reflector-membrane side could be other than circular. In general, the initial curvature would be chosen to optimize the final reflector shape. Then by applying forces F between the beam ends in the positions and orientations shown in the figure, one could bend beams to adjust their shape to a closer approximation of the desired precise circular or noncircular curvature.

  6. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring viscoela......Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring...... viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...... to measure both linear and nonlinear dynamics on a single apparatus. With a software modification to the FSR motor control, we show that linear viscoelasticity can be measured via small amplitude squeeze flow (SASF). Squeeze flow is a combination of both shear and extensional flow applied by axially...

  7. STRETCH FABRICS IN LEATHER MANUFACTURING: PERFORMANCE PROPERTIES OF STRECH LEATHERS

    Directory of Open Access Journals (Sweden)

    ORK Nilay

    2016-05-01

    Full Text Available Product variability of manufactured leather goods such as garment leathers could be closely related to the wear comfort because each material forming the garments are affected the comfort properties of the products. Considering the significant demand to elastic woven stretch fabrics and the advantages provided to leather goods like allowing easy body movements, well-fitting and keeping the shape make the use of stretch fabrics focus in interest. In this study, the performance properties of stretch leathers, leathers and spandex fabrics were presented and the differences between the characteristic properties of the leathers were described. For this purpose, physical characteristics of leathers were investigated in terms of thickness, weight, drape ability, stiffness, bending stiffness, air and water vapor permeability. The drape ability, stiffness and bending stiffness properties were significantly affected by the stretch fabrics laminated on the suede side of the leathers. The drape ability, stiffness and bending values were increased due to the implementation of stretch fabrics. There was no significant difference between the air permeability values of the leathers prior and after the implementation of stretch fabrics in contrast to water vapor permeability. The results of this study showed that the aesthetic behavior of clothing materials such as drape and stiffness properties as well as water vapor permeability was mainly affected from the implementation of the stretch fabrics.

  8. Magnitude and duration of stretch modulate fibroblast remodeling.

    Science.gov (United States)

    Balestrini, Jenna L; Billiar, Kristen L

    2009-05-01

    Mechanical cues modulate fibroblast tractional forces and remodeling of extracellular matrix in healthy tissue, healing wounds, and engineered matrices. The goal of the present study is to establish dose-response relationships between stretch parameters (magnitude and duration per day) and matrix remodeling metrics (compaction, strength, extensibility, collagen content, contraction, and cellularity). Cyclic equibiaxial stretch of 2-16% was applied to fibroblast-populated fibrin gels for either 6 h or 24 h/day for 8 days. Trends in matrix remodeling metrics as a function of stretch magnitude and duration were analyzed using regression analysis. The compaction and ultimate tensile strength of the tissues increased in a dose-dependent manner with increasing stretch magnitude, yet remained unaffected by the duration in which they were cycled (6 h/day versus 24 h/day). Collagen density increased exponentially as a function of both the magnitude and duration of stretch, with samples stretched for the reduced duration per day having the highest levels of collagen accumulation. Cell number and failure tension were also dependent on both the magnitude and duration of stretch, although stretch-induced increases in these metrics were only present in the samples loaded for 6 h/day. Our results indicate that both the magnitude and the duration per day of stretch are critical parameters in modulating fibroblast remodeling of the extracellular matrix, and that these two factors regulate different aspects of this remodeling. These findings move us one step closer to fully characterizing culture conditions for tissue equivalents, developing improved wound healing treatments and understanding tissue responses to changes in mechanical environments during growth, repair, and disease states.

  9. The mode of action of 2-(thiazol-2-ylthio)-1beta-methylcarbapenems against Pseudomonas aeruginosa: the impact of outer membrane permeability and the contribution of MexAB-OprM efflux system.

    Science.gov (United States)

    Eguchi, Ken; Ueda, Yutaka; Kanazawa, Katsunori; Sunagawa, Makoto; Gotoh, Naomasa

    2007-02-01

    The mode of action of a series of 2-(4-dihydropyrrolylthiazol-2-ylthio) and 2-(4-tetrahydropyridinylthiazol-2-ylthio)-1beta-methylcarbapenem analogues against Pseudomonas aeruginosa was investigated with regard to contributions of the affinity for penicillin binding proteins (PBPs), the outer membrane permeability, and the effect of the MexAB-OprM efflux system. In this series of carbapenems, the introduction of a substituent in C-2 side chain with a change in physicochemical properties affected the antipseudomonal activity depending on the molecular weight. However, these structural modifications did not affect the affinity for pseudomonal PBPs significantly. It was confirmed that the affinity for PBPs was not an important determinant of the antipseudomonal activity of this series of carbapenems. OprD porin-deficiency did not affect antipseudomonal activity either. On the other hand, the MIC of these carbapenems against P. aeruginosa significantly decreased in the presence of outer membrane permeabilizer. This result strongly suggests that the cause of the relatively low antipseudomonal activity of these carbapanems is their low permeability through the outer membrane of P. aeruginosa. And also, in the presence of outer membrane permeabilizer, the MICs against MexAB-OprM deficient mutants remarkably decreased and were very close to the value of the IC(50) for pseudomonal PBPs. From this result, it was clear that the effect of the MexAB-OprM efflux system was also an important determinant of antipseudomonal activity of these carbapenems. In conclusion, the major determinants of the antipseudomonal activity of the 2-(thiazol-2-ylthio)-1beta-methylcarbapenems are the outer membrane permeability and the effect of the MexAB-OprM efflux system, not the affinity for pseudomonal PBPs.

  10. The effect of kinesio taping versus stretching techniques on muscle soreness, and flexibility during recovery from nordic hamstring exercise.

    Science.gov (United States)

    Ozmen, Tarik; Yagmur Gunes, Gokce; Dogan, Hanife; Ucar, Ilyas; Willems, Mark

    2017-01-01

    The purpose of this study was to examine the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching, or kinesio taping (KT) on muscle soreness and flexibility during recovery from exercise. Sixty-five females were randomly assigned to four groups: PNF stretching (n = 15), static stretching (n = 16), KT (n = 17), and control (n = 17). All participants performed nordic hamstring exercise (5 sets of 8 repetitions). In all groups, hamstring flexibility at 24 h and 48 h was not changed from baseline (p > .05). The muscle soreness was measured higher at 48 h post-exercise compared with baseline in the control group (p = .04) and at 24 h post-exercise compared with baseline in the PNF group (p  .05). The KT application and pre-exercise stretching have no contribute to flexibility at 24 h and 48 h after exercise, but may attenuate muscle soreness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Comparison of EMG during passive stretching and shortening phases of each muscle for the investigation of parkinsonian rigidity.

    Science.gov (United States)

    Kwon, Yuri; Kim, Ji-Won; Kim, Ji-Sun; Koh, Seong-Beom; Eom, Gwang-Moon; Lim, Tae-Hong

    2015-01-01

    The aim of this study was to test the hypothesis in the literature that torque resistance of parkinsonian rigidity is the difference between the independent contributions of stretched and shortened muscles. The hypothesis was tested using muscle-specific stretch-shortening (MSSS) EMG ratio in this study. Nineteen patients with idiopathic Parkinson's disease (PD) and 18 healthy subjects (the mean age comparable to that of patients) participated in this study. The EMG activity was measured in the four muscles involved in wrist joint movement, i.e. flexor carpi radialis, flexor carpi ulnaris, extensor carpi radialis and extensor carpi ulnaris. The passive flexion-extension movement with a range of ±30∘ was applied at wrist joint. Root mean squared (RMS) mean was calculated from the envelope of the EMG for each of stretching and shortening phases. MSSS EMG ratio was defined as the ratio of RMS EMG of stretching phase and RMS EMG of shortening phase of a single muscle, and it was calculated for each muscle. MSSS EMG ratios were smaller than one in all muscles. These results indicate that all wrist muscles generate greater mean EMG during shortening than during stretching. Therefore, the torque resistance of parkinsonian rigidity cannot be explained as the simple summation of independent antagonistic torque pair.

  12. AI-augmented time stretch microscopy

    Science.gov (United States)

    Mahjoubfar, Ata; Chen, Claire L.; Lin, Jiahao; Jalali, Bahram

    2017-02-01

    Cell reagents used in biomedical analysis often change behavior of the cells that they are attached to, inhibiting their native signaling. On the other hand, label-free cell analysis techniques have long been viewed as challenging either due to insufficient accuracy by limited features, or because of low throughput as a sacrifice of improved precision. We present a recently developed artificial-intelligence augmented microscope, which builds upon high-throughput time stretch quantitative phase imaging (TS-QPI) and deep learning to perform label-free cell classification with record high-accuracy. Our system captures quantitative optical phase and intensity images simultaneously by frequency multiplexing, extracts multiple biophysical features of the individual cells from these images fused, and feeds these features into a supervised machine learning model for classification. The enhanced performance of our system compared to other label-free assays is demonstrated by classification of white blood T-cells versus colon cancer cells and lipid accumulating algal strains for biofuel production, which is as much as five-fold reduction in inaccuracy. This system obtains the accuracy required in practical applications such as personalized drug development, while the cells remain intact and the throughput is not sacrificed. Here, we introduce a data acquisition scheme based on quadrature phase demodulation that enables interruptionless storage of TS-QPI cell images. Our proof of principle demonstration is capable of saving 40 TB of cell images in about four hours, i.e. pictures of every single cell in 10 mL of a sample.

  13. Acute effect of constant torque and angle stretching on range of motion, muscle passive properties, and stretch discomfort perception.

    Science.gov (United States)

    Cabido, Christian E T; Bergamini, Juliana C; Andrade, André G P; Lima, Fernando V; Menzel, Hans J; Chagas, Mauro H

    2014-04-01

    The aim of the present study was to compare the acute effects of constant torque (CT) and constant angle (CA) stretching exercises on the maximum range of motion (ROMmax), passive stiffness (PS), and ROM corresponding to the first sensation of tightness in the posterior thigh (FSTROM). Twenty-three sedentary men (age, 19-33 years) went through 1 familiarization session and afterward proceeded randomly to both CA and CT treatment stretching conditions, on separate days. An isokinetic dynamometer was used to analyze hamstring muscles during passive knee extension. The subjects performed 4 stretches of 30 seconds each with a 15-second interval between them. In the CA stretching, the subject reached a certain ROM (95% of ROMmax), and the angle was kept constant. However, in the CT stretching exercise, the volunteer reached a certain resistance torque (corresponding to 95% of ROMmax) and it was kept constant. The results showed an increase in ROMmax for both CA and CT (p stretch may be explained by greater changes in the biomechanical properties of the muscle-tendon unit and stretch tolerance, as indicated by the results of PS and FSTROM.

  14. A multireference perturbation study of the NN stretching frequency of trans-azobenzene in nπ* excitation and an implication for the photoisomerization mechanism.

    Science.gov (United States)

    Harabuchi, Yu; Ishii, Moe; Nakayama, Akira; Noro, Takeshi; Taketsugu, Tetsuya

    2013-02-14

    A multireference second-order perturbation theory is applied to calculate equilibrium structures and vibrational frequencies of trans-azobenzene in the ground and nπ* excited states, as well as the reaction pathways for rotation and inversion mechanism in the nπ* excited state. It is found that the NN stretching frequency exhibits a slight increase at the minimum energy structure in the nπ* state, which is explained by the mixing of the NN stretching mode with the CN symmetric stretching mode. We also calculate the NN stretching frequency at several selected structures along the rotation and inversion pathways in the nπ* state, and show that the frequency decreases gradually along the rotation pathway while it increases by ca. 300 cm(-1) along the inversion pathway. The frequencies and energy variations along the respective pathways indicate that the rotation pathway is more consistent with the experimental observation of the NN stretching frequency in nπ* excitation.

  15. Effects of Static Stretching and Playing Soccer on Knee Laxity

    NARCIS (Netherlands)

    Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W.; Freiwald, Juergen

    2015-01-01

    Objective: This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Design: Randomized controlled trial. Setting: University biomechanics laboratory. Participants: Thirty-one athletes were randomly assigned into

  16. EFFECT OF STATIC STRETCHING ON STRENGTH OF HAMSTRING MUSCLE

    Directory of Open Access Journals (Sweden)

    Shweta P Pachpute

    2016-04-01

    Full Text Available Background: Flexibility is an indisputable component of fitness defined as the ability to move a single joint or series of joints through an unrestricted pain free range of motion. Static stretching consists of stretching a muscle or group of muscle to its farthest point and then maintaining or holding that position. The literature supports that muscles are capable of exerting their greatest strength when they are fully lengthen. Hence this study was conducted to find the effect of static stretching on hamstring muscle. Methods: The study was experimental study design. 40 samples were selected by purposive sampling method. Flexibility of the hamstring muscle unilaterally right side (arbitrarily chosen was measured by active knee extension test of all the subjects who met the inclusion criteria of the study. After measuring the flexibility of hamstring muscle, strength was measured by 1RM for the same side (right hamstring muscle. Static Stretching Protocol was given for 5 days per week for 6 weeks to all the participants. After the 6 weeks of training, knee extension deficiency and 1RM was documented. Result: Statistical analysis using Paired t-test was done. The t-test showed that there was significant effect of static stretching on 1RM of hamstring muscle (p<0.05 & active knee extension test (p=0.000. Conclusion: Static stretching showed significant change in pre and post 1RM of hamstring muscle and active knee extension test. There was significant improvement of hamstring muscles flexibility and strength after giving static stretching in female population. So it is possible that females who are unable to participate in traditional strength training activities may be able to experience gains through static stretching.

  17. Effects of right atrial stretch on plasma renin activity.

    Science.gov (United States)

    Annat, G; Grandjean, B; Vincent, M; Jarsaillon, E; Sassard, J

    1976-04-01

    In anaesthetized dog, right atrial stretch leads in the first five minutes to a decrease in plasma renin activity, when measured in inferior vena cava just above the renal veins. Bilateral cervical vagotomy increases plasma renin activity. After vagotomy, atrial stretch no longer has any effect on plasma renin activity. The results support the hypothesis of a control of renin secretion originating from atrial volume receptors.

  18. Stretching After Heat But Not After Cold Decreases Contractures After Spinal Cord Injury in Rats.

    Science.gov (United States)

    Iwasawa, Hiroyuki; Nomura, Masato; Sakitani, Naoyoshi; Watanabe, Kosuke; Watanabe, Daichi; Moriyama, Hideki

    2016-12-01

    Contractures are a prevalent and potentially severe complication in patients with neurologic disorders. Although heat, cold, and stretching are commonly used for treatment of contractures and/or spasticity (the cause of many contractures), the sequential effects of these modalities remain unclear. Using an established rat model with spinal cord injury with knee flexion contracture, we sought to determine what combination of heat or cold before stretching is the most effective for treatment of contractures derived from spastic paralyses and investigated which treatment leads to the best (1) improvement in the loss of ROM; (2) restoration of deterioration in the muscular and articular factors responsible for contractures; and (3) amelioration of histopathologic features such as muscular fibrosis in biceps femoris and shortening of the joint capsule. Forty-two adolescent male Wistar rats were used. After spasticity developed at 2 weeks postinjury, each animal with spinal cord injury underwent the treatment protocol daily for 1 week. Knee extension ROM was measured with a goniometer by two examiners blinded to each other's scores. The muscular and articular factors contributing to contractures were calculated by measuring ROM before and after the myotomies. We quantitatively measured the muscular fibrosis and the synovial intima length, and observed the distribution of collagen of skeletal muscle. The results were confirmed by a blinded observer. The ROM of heat alone (34° ± 1°) and cold alone (34° ± 2°) rats were not different with the numbers available from that of rats with spinal cord injury (35° ± 2°) (p = 0.92 and 0.89, respectively). Stretching after heat (24° ± 1°) was more effective than stretching alone (27° ± 3°) at increasing ROM (p contractures. Although quantification of muscular fibrosis in the rats with spinal cord injury (11% ± 1%) was higher than that of controls (9% ± 0.4%) (p = 0.01), no difference was found between spinal cord

  19. The effect of warm-ups with stretching on the isokinetic moments of collegiate men.

    Science.gov (United States)

    Park, Hyoung-Kil; Jung, Min-Kyung; Park, Eunkyung; Lee, Chang-Young; Jee, Yong-Seok; Eun, Denny; Cha, Jun-Youl; Yoo, Jaehyun

    2018-02-01

    Performing warm-ups increases muscle temperature and blood flow, which contributes to improved exercise performance and reduced risk of injuries to muscles and tendons. Stretching increases the range of motion of the joints and is effective for the maintenance and enhancement of exercise performance and flexibility, as well as for injury prevention. However, stretching as a warm-up activity may temporarily decrease muscle strength, muscle power, and exercise performance. This study aimed to clarify the effect of stretching during warm-ups on muscle strength, muscle power, and muscle endurance in a nonathletic population. The subjects of this study consisted of 13 physically active male collegiate students with no medical conditions. A self-assessment questionnaire regarding how well the subjects felt about their physical abilities was administered to measure psychological readiness before and after the warm-up. Subjects performed a non-warm-up, warm-up, or warm-up regimen with stretching prior to the assessment of the isokinetic moments of knee joints. After the measurements, the respective variables were analyzed using nonparametric tests. First, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 60°/sec, which were assessed to measure muscle strength. Second, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 180°/sec, which were assessed to measure muscle power. Third, the total work of the knee joints at 240°/sec, intended to measure muscle endurance, was highest in the aerobic-stretch-warm-ups (ASW) group, but no statistically significant differences were found among the groups. Finally, the psychological readiness for physical activity according to the type of warm-up was significantly higher in ASW. Simple stretching during warm-ups appears to have no effect on variables of exercise physiology in nonathletes

  20. Efficacy of hamstring stretching programs in schoolchildren. A systematic review

    Directory of Open Access Journals (Sweden)

    Carlos-Alberto BECERRA FERNANDEZ

    2017-03-01

    Full Text Available The main purpose of the present review was to examine the scientific literature on the effects of physical education-based stretching programs on hamstring extensibility in schoolchildren aged 6-11 years. For this purpose relevant studies were searched from ten electronic databases dated up through May 2015. Of the 25 potentially relevant articles identified and retrieved for more detailed evaluation, only eight studies were included in the present review because they met the inclusion criteria. The overall results showed that incorporating hamstring stretching as a part of physical education classes produces a significant improvement in the scores of the tests: straight leg raise and classic sit-and-reach, for the experimental groups, but not for control groups. Stretching programs can be included in Physical Education classes, specifically during the warm-up and the cool down periods in order to improve hamstring extensibility. Although it seems that the stretching exercises in the warm-up period could be less effective in gaining flexibility in school children. Studies that use a stretching volume between 4 and 7 minutes per session and 2-4 training classes per week, obtain statistically significant improvements on the levels of hamstring flexibility in the experimental groups. However, after a five-week detraining period, children revert back to their initial flexibility levels. Therefore, it seems appropriate that physical education teachers should implement stretching programs to improve the students´ flexibility during the Physical Education classes.

  1. Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin.

    Science.gov (United States)

    Balestrini, Jenna Leigh; Billiar, Kristen Lawrence

    2006-01-01

    Understanding the effects of the mechanical environment on wound healing is critical for developing more effective treatments to reduce scar formation and contracture. The aim of this study was to investigate the effects of dynamic mechanical stretch on cell-mediated early wound remodeling independent of matrix alignment which obscures more subtle remodeling mechanisms. Cyclic equibiaxial stretch (16% stretch at 0.2 Hz) was applied to fibroblast-populated fibrin gel in vitro wound models for eight days. Compaction, density, tensile strength, and collagen content were quantified as functional measures of remodeling. Stretched samples were approximately ten times stronger, eight-fold more dense, and eight times thinner than statically cultured samples. These changes were accompanied by a 15% increase in net collagen but no significant differences in cell number or viability. When collagen crosslinking was inhibited in stretched samples, the extensibility increased and the strength decreased. The apparent weakening was due to a reduction in compaction rather than a decrease in ability of the tissue to withstand tensile forces. Interestingly, inhibiting collagen crosslinking had no measurable effects on the statically cultured samples. These results indicate that amplified cell-mediated compaction and even a slight addition in collagen content play substantial roles in mechanically induced wound strengthening. These findings increase our understanding of how mechanical forces guide the healing response in skin, and the methods employed in this study may also prove valuable tools for investigating stretch-induced remodeling of other planar connective tissues and for creating mechanically robust engineered tissues.

  2. Effects of Stretching Exercise on Heart Rate Variability During Pregnancy.

    Science.gov (United States)

    Logan, Jeongok G; Yeo, SeonAe

    Little evidence exists for effects of low-intensity exercises such as stretching on cardiovascular health in pregnant women. Our aim was to evaluate the effect of a 20-minute stretching exercise on heart rate variability (HRV), blood pressure (BP), and heart rate (HR) in healthy pregnant women. In 15 pregnant women with a mean (SD) age of 29.47 (4.07) years and mean (SD) gestational weeks of 26.53 (8.35), HRV, and BP were measured before and after the 20-minute stretching exercise. Compared with before the stretching exercise, standard deviation of the normal-to-normal intervals, total variability of heart rate, increased by 7.40 milliseconds (t = -2.31, P = .04) and root mean square of successive differences, a surrogate measure of parasympathetic outflow, also increased by 11.68 milliseconds (Z = -2.04, P = .04) after the stretching exercise. Diastolic BP and HR decreased by 2.13 mm Hg (t = 1.93, P = .07) and 3.31 bpm (t = 2.17, P = .05), respectively, but they did not reach statistical significance. These preliminary data suggest that 20 minutes of stretching exercise may promote cardiovascular health by attenuating the loss of parasympathetic tone associated with pregnancy.

  3. [Sciatica. From stretch rack to microdiscectomy].

    Science.gov (United States)

    Gruber, P; Böni, T

    2015-12-01

    In ancient times as well as in the Middle Ages treatment options for discogenic nerve compression syndrome were limited and usually not very specific because of low anatomical and pathophysiological knowledge. The stretch rack (scamnum Hippocratis) was particularly prominent but was widely used as a therapeutic device for very different spinal disorders. Since the beginning of the nineteenth century anatomical knowledge increased and the advances in the fields of asepsis, anesthesia and surgery resulted in an increase in surgical interventions on the spine. In 1908 the first successful lumbar discectomy was initiated and performed by the German neurologist Heinrich O. Oppenheim (1858-1919) and the surgeon Fedor Krause (1857-1937); however, neither recognized the true pathological condition of discogenic nerve compression syndrome. With the landmark report in the New England Journal of Medicine in 1934, the two American surgeons William Jason Mixter (1880-1958) and Joseph Seaton Barr (1901-1963) finally clarified the pathomechanism of lumbar disc herniation and furthermore, propagated discectomy as the standard therapy. Since then interventions on intervertebral discs rapidly increased and the treatment options for lumbar disc surgery quickly evolved. The surgical procedures changed over time and were continuously being refined. In the late 1960s the surgical microscope was introduced for spinal surgery by the work of the famous neurosurgeon Mahmut Gazi Yasargil and his colleague Wolfhard Caspar and so-called microdiscectomy was introduced. Besides open discectomy other interventional techniques were developed to overcome the side effects of surgical procedures. In 1964 the American orthopedic surgeon Lyman Smith (1912-1991) introduced chemonucleolysis, a minimally invasive technique consisting only of a cannula and the proteolytic enzyme chymopapain, which is injected into the disc compartment to dissolve the displaced disc material. In 1975 the Japanese orthopedic

  4. Evaluation of a static stretching intervention on vascular endothelial function and arterial stiffness.

    Science.gov (United States)

    Shinno, Hiromi; Kurose, Satoshi; Yamanaka, Yutaka; Higurashi, Kyoko; Fukushima, Yaeko; Tsutsumi, Hiromi; Kimura, Yutaka

    2017-06-01

    Maintenance and enhancement of vascular endothelial function contribute to the prevention of cardiovascular disease and prolong a healthy life expectancy. Given the reversible nature of vascular endothelial function, interventions to improve this function might prevent arteriosclerosis. Accordingly, we studied the effects of a 6-month static stretching intervention on vascular endothelial function (reactive hyperaemia peripheral arterial tonometry index: RH-PAT index) and arterial stiffness (brachial-ankle pulse wave velocity: baPWV) and investigated the reversibility of these effects after a 6-month detraining period following intervention completion. The study evaluated 22 healthy, non-smoking, premenopausal women aged ≥40 years. Subjects were randomly assigned to the full-intervention (n = 11; mean age: 48.6 ± 2.8 years) or a half-intervention that included a control period (n = 11; mean age: 46.9 ± 3.6 years). Body flexibility and vascular endothelial function improved significantly after 3 months of static stretching. In addition to these improvements, arterial stiffness improved significantly after a 6-month intervention. However, after a 6-month detraining period, vascular endothelial function, flexibility, and arterial stiffness all returned to preintervention conditions, demonstrating the reversibility of the obtained effects. A 3-month static stretching intervention was found to improve vascular endothelial function, and an additional 3-month intervention also improved arterial stiffness. However, these effects were reversed by detraining.

  5. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects.

    LENUS (Irish Health Repository)

    O'Sullivan, Kieran

    2009-01-01

    BACKGROUND: Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. METHODS: A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM). 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1) at baseline; (2) after warm-up; (3) after stretch (static or dynamic) and (4) after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. RESULTS: Across both groups, there was a significant main effect for time (p < 0.001). PKE ROM significantly increased with warm-up (p < 0.001). From warm-up, PKE ROM further increased with static stretching (p = 0.04) but significantly decreased after dynamic stretching (p = 0.013). The increased flexibility after warm-up and static stretching reduced significantly (p < 0.001) after 15 minutes of rest, but remained significantly greater than at baseline (p < 0.001). Between groups, there was no main effect for group (p = 0.462), with no difference in mean PKE ROM values at any individual stage of the protocol (p > 0.05). Using ANCOVA to adjust for the non-significant (p = 0.141) baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05). CONCLUSION: Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced

  6. EFFECTIVENESS OF PNF STRETCHING VERSUS STATIC STRETCHING ON PAIN AND HAMSTRING FLEXIBILITY FOLLOWING MOIST HEAT IN INDIVIDUALS WITH KNEE OSTEOARTHRITIS

    OpenAIRE

    Meena .V; Shanthi .C; Madhavi .K

    2016-01-01

    Background: Osteoarthritis (OA) is a degenerative joint disease and one of the major public health problem that causesfunctional impairment and reduced quality of life. To compare the effectiveness of PNF Hold relax stretching versus Static stretching on pain and flexibility of hamstring following moist heat in individuals with knee osteoarthritis. Hamstring tightness is the major problem in knee osteoarthritis individuals. Therefore the need of study is comparing the effectiveness of PNF Hol...

  7. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects

    Directory of Open Access Journals (Sweden)

    Murray Elaine

    2009-04-01

    Full Text Available Abstract Background Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. Methods A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM. 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1 at baseline; (2 after warm-up; (3 after stretch (static or dynamic and (4 after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. Results Across both groups, there was a significant main effect for time (p 0.05. Using ANCOVA to adjust for the non-significant (p = 0.141 baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05. Conclusion Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced flexibility post-injury, but this did not reach statistical significance. Further prospective research is required to validate the hypothesis that increased flexibility improves outcomes. Trial Registration ACTRN12608000638336

  8. Cardiovascular Responses to Skeletal Muscle Stretching: "Stretching" the Truth or a New Exercise Paradigm for Cardiovascular Medicine?

    Science.gov (United States)

    Kruse, Nicholas T; Scheuermann, Barry W

    2017-12-01

    Stretching is commonly prescribed with the intended purpose of increasing range of motion, enhancing muscular coordination, and preventing prolonged immobilization induced by aging or a sedentary lifestyle. Emerging evidence suggests that acute or long-term stretching exercise may modulate a variety of cardiovascular responses. Specifically, at the onset of stretch, the mechanical deformation of the vascular bed coupled with stimulation of group III muscle afferent fibers initiates a cascade of events resulting in both peripheral vasodilation and a heart rate-driven increase in cardiac output, blood pressure, and muscle blood flow. This potential to increase shear stress and blood flow without the use of excessive muscle energy expenditure may hold important implications for future therapeutic vascular medicine and cardiac health. However, the idea that a cardiovascular component may be involved in human skeletal muscle stretching is relatively new. Therefore, the primary intent of this review is to highlight topics related to skeletal muscle stretching and cardiovascular regulation and function. The current evidence suggests that acute stretching causes a significant macro- and microcirculatory event that alters blood flow and the relationship between oxygen availability and oxygen utilization. These acute vascular changes if performed chronically may result in improved endothelial function, improved arterial blood vessel stiffness, and/or reduced blood pressure. Although several mechanisms have been postulated, an increased nitric oxide bioavailability has been highlighted as one promising candidate for the improvement in vessel function with stretching. Collectively, the evidence provided in this review suggests that stretching acutely or long term may serve as a novel and alternative low intensity therapeutic intervention capable of improving several parameters of vascular function.

  9. Effectiveness of strengthening and stretching exercises for the postural correction of abducted scapulae: a review.

    Science.gov (United States)

    Hrysomallis, Con

    2010-02-01

    Abnormal postural alignment can be detrimental to muscle function, is aesthetically unpleasing, and might contribute to joint pain. It has been unclear as to whether stretching or strengthening exercises can correct faulty posture such as abducted scapulae. It has been postulated that short and tight scapular abductor muscles or weak and lengthened scapular retractor muscles or a combination cause an abducted scapulae posture and that exercise can correct this condition. The purpose of this review was to compile the information on factors influencing scapular position at rest, examine the effectiveness of exercise interventions in altering scapular position, and make recommendations for future research. When examining the different methods that have been used to determine the position of the scapula, attention should be paid to their respective reliability and validity. Correlational studies have failed to detect a significant association between muscle strength and scapular position but found a significant relationship between muscle length and scapular position. Prospective intervention studies have shown that stretching the anterior chest muscles on its own or in combination with strengthening the scapular retractors can alter the position of the scapula at rest in individuals with abducted scapulae. Although these results are encouraging, there is a dearth of high-quality studies and more research is required to address the limitations of the studies. None of the intervention studies measured strength or flexibility pre or post intervention, so it is unclear how effective the intervention was in changing these factors and the actual mechanism behind the change. To determine which component of the intervention is most effective and whether the results are additive, future research should include stretching only, strengthening only, and combined stretching and strengthening groups. Follow-up measurements at some period after completion of the intervention would

  10. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    Science.gov (United States)

    Bar-On, Lynn; Aertbeliën, Erwin; Molenaers, Guy; Desloovere, Kaat

    2014-01-01

    The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV) of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG) from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG) compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (pstretches was found to be the most sensitive in categorizing muscles into activation patterns (pmuscles with different patterns react

  11. Effects of Static Stretching and Playing Soccer on Knee Laxity.

    Science.gov (United States)

    Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W; Freiwald, Jürgen

    2015-11-01

    This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Randomized controlled trial. University biomechanics laboratory. Thirty-one athletes were randomly assigned into a stretching (26.9 ± 6.2 years, 1.77 ± 0.09 m, 67.9 ± 10.7 kg) and a control group (27.9 ± 7.4 years, 1.75 ± 0.08 m, 72.0 ± 14.9 kg). Thirty-one amateur soccer players in an additional soccer group (25.1 ± 5.6 years, 1.74 ± 0.10 m, 71.8 ± 14.8 kg). All participants had no history of knee injury requiring surgery and any previous knee ligament or cartilage injury. The stretching group performed 4 different static stretching exercises with a duration of 2 × 20 seconds interspersed with breaks of 10 seconds. The soccer group completed a 90-minute soccer-specific training program. The control group did not perform any physical activity for approximately 30 minutes. Anterior tibial translation was measured with the KT-1000 knee arthrometer at forces of 67 N, 89 N, and maximal manual force (Max) before and after the intervention. There was a significant increase in ATT after static stretching and playing soccer at all applied forces. Maximal manual testing revealed a mean increase of ATT after static stretching of 2.1 ± 1.6 mm (P static stretching at 67 and 89 N is significantly higher than in controls. At maximum manual testing, significant differences were evident between all groups. Static stretching and playing soccer increase ATT and may consequently influence mechanical factors of the anterior cruciate ligament. The ATT increase after static stretching was greater than after playing soccer. The observed increase in ATT after static stretching and playing soccer may be associated with changes in kinesthetic perception and sensorimotor control, activation of muscles, joint stability, overall performance, and higher injury risk.

  12. Instantaneous normal mode analysis for intermolecular and intramolecular vibrations of water from atomic point of view

    Science.gov (United States)

    Chen, Yu-Chun; Tang, Ping-Han; Wu, Ten-Ming

    2013-11-01

    By exploiting the instantaneous normal mode (INM) analysis for models of flexible molecules, we investigate intermolecular and intramolecular vibrations of water from the atomic point of view. With two flexible SPC/E models, our investigations include three aspects about their INM spectra, which are separated into the unstable, intermolecular, bending, and stretching bands. First, the O- and H-atom contributions in the four INM bands are calculated and their stable INM spectra are compared with the power spectra of the atomic velocity autocorrelation functions. The unstable and intermolecular bands of the flexible models are also compared with those of the SPC/E model of rigid molecules. Second, we formulate the inverse participation ratio (IPR) of the INMs, respectively, for the O- and H-atom and molecule. With the IPRs, the numbers of the three species participated in the INMs are estimated so that the localization characters of the INMs in each band are studied. Further, by the ratio of the IPR of the H atom to that of the O atom, we explore the number of involved OH bond per molecule participated in the INMs. Third, by classifying simulated molecules into subensembles according to the geometry of their local environments or their H-bond configurations, we examine the local-structure effects on the bending and stretching INM bands. All of our results are verified to be insensible to the definition of H-bond. Our conclusions about the intermolecular and intramolecular vibrations in water are given.

  13. Instantaneous normal mode analysis for intermolecular and intramolecular vibrations of water from atomic point of view.

    Science.gov (United States)

    Chen, Yu-Chun; Tang, Ping-Han; Wu, Ten-Ming

    2013-11-28

    By exploiting the instantaneous normal mode (INM) analysis for models of flexible molecules, we investigate intermolecular and intramolecular vibrations of water from the atomic point of view. With two flexible SPC/E models, our investigations include three aspects about their INM spectra, which are separated into the unstable, intermolecular, bending, and stretching bands. First, the O- and H-atom contributions in the four INM bands are calculated and their stable INM spectra are compared with the power spectra of the atomic velocity autocorrelation functions. The unstable and intermolecular bands of the flexible models are also compared with those of the SPC/E model of rigid molecules. Second, we formulate the inverse participation ratio (IPR) of the INMs, respectively, for the O- and H-atom and molecule. With the IPRs, the numbers of the three species participated in the INMs are estimated so that the localization characters of the INMs in each band are studied. Further, by the ratio of the IPR of the H atom to that of the O atom, we explore the number of involved OH bond per molecule participated in the INMs. Third, by classifying simulated molecules into subensembles according to the geometry of their local environments or their H-bond configurations, we examine the local-structure effects on the bending and stretching INM bands. All of our results are verified to be insensible to the definition of H-bond. Our conclusions about the intermolecular and intramolecular vibrations in water are given.

  14. Functional finishes of stretch cotton fabrics.

    Science.gov (United States)

    Ibrahim, N A; Amr, A; Eid, B M; Almetwally, A A; Mourad, M M

    2013-11-06

    Functionalized cotton cellulose/spandex woven fabrics with different structures namely plain (1/1), twill (2/2) and satin were produced. Factors affecting the imparted functional properties such as weave structure and constituents of the finishing formulations including ether or ester cross-linker and catalyst type, silicone-micro-emulsion, water/oil repellent, Ag-NP(,)s and TiO2-NP(,)s were studied. The treated fabrics were found to have easy care property together with one or more of the imparted functional properties such as soft-handle, water/oil repellence, antibacterial, UV-protection and self cleaning. The effectiveness of the imparted properties is not seriously affected even after 10 washing cycles. Surface modifications as well as the composition of certain samples were confirmed by SEM images and EDX spectra. Mode of interactions was also suggested. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Stretched-State Excitations with the

    Science.gov (United States)

    Garcia, Luis Alberto Casimiro

    Neutron time-of-fight spectra were obtained for the ^{14}C(p,n) ^{14}N, ^{18 }O(p,n)^{18}F, and ^{30}Si(p,n) ^{30}P reactions at 135 MeV with the beam-swinger system at the Indiana University Cyclotron Facility. Excitation-energy spectra and the differential cross sections for the observed excitations in these reactions were extracted over the momentum transfer range from 0 to 2.7 fm^{-1}. The primary goal of this work was to obtain the strengths and distributions for the "stretched" states. The identification of these states was based on comparisons of the theoretical differential cross sections, performed in a DWIA formalism, with the experimental cross sections. Isospin assignments were based primarily on comparisons of the measured (p,n) and (e,e^') spectroscopic strengths. Candidate (pid_ {5/2},nu{rm p}_sp {3/2}{-1}), J^ pi = 4 ^- T = 0, 1 and 2, 1 hbaromega states, were identified at E_{x} = 8.5, 13.8, 19.5, and 26.7 MeV in the ^{14}C(p,n) ^{14}N reaction, and the corresponding isovector strengths were extracted. The observed 4^--state excitation energies and the strengths are in good agreement with the analog T = 1 and 2, 4^--states observed in the (e,e^') reaction. Large -basis shell-model calculations were found to predict reasonably well the excitation energies; however, these calculations overpredict the strength by a factor of 2, for the T = 1 and 2 components. In the ^{18}O(p,n) ^{18}F reaction at 135 MeV, (pi d_{5/2},nu {rm d}_sp{5/2}{-1 }) 5^+ T = 0 0hbaromega strength was observed, concentrated in a single state, at E_{x} = 1.1 MeV, with 75% of the extreme-single-particle-model (ESPM) strength, in good agreement with a shell-model calculation. No 6^- 1hbaromega strength was observed in this reaction. Candidate (pi {rm d}_{5/2},nu p _sp{3/2}{-1}) J ^pi = 4^- T = 0, 1 and 2, 1hbaromega states, were identified at E_{x} = 3.9, 9.4, 10.2, 11.4, 12.0, 14.4, 15.3, 17.3, 18.0, 19.7, 21.4, and 23.4 MeV. The observed 4^- T = 2 state excitation energies and

  16. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.

    Science.gov (United States)

    Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.

  17. Modeling the electromagnetic cavity mode contributions to the THz emission from triangular Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} mesas

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Richard A., E-mail: klemm@physics.ucf.edu [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Delfanazari, Kaveh; Tsujimoto, Manabu; Kashiwagi, Takanari; Kitamura, Takeo; Yamamoto, Takashi; Sawamura, Masashi; Ishida, Kazuya [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); WPI-MANA, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Hattori, Toshiaki [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Kadowaki, Kazuo [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); WPI-MANA, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2013-08-15

    Highlights: ► New wave functions for the equilateral triangular patch antenna found. ► Most general wave functions for the equilateral patch antenna found. ► Accurate eigenvalues and wave functions for highly acute isosceles triangular patch antennas found. -- Abstract: In order to understand the radiation observed from the intrinsic Josephson junctions in triangular Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} mesas, we calculate the transverse magnetic (TM) electromagnetic modes for thin equilateral cavities. A new set of distinct but degenerate TM modes coexists with the known modes of Helszajn and James, but are expected to lead to distinct radiation angular distribution patterns. Although we have been unable to solve for the exact TM modes of a thin cavity of general acute isosceles triangular shape, we solved exactly the closely related problems of the TM cavity modes of two thin circumscribing “pie-shaped” wedges, which provide highly accurate approximations to very acute isosceles triangular cavities.

  18. Phase transitions in single macromolecules: Loop-stretch transition versus loop adsorption transition in end-grafted polymer chains

    Science.gov (United States)

    Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I.; Skvortsov, Alexander M.; Yan, Dadong; Schmid, Friederike

    2018-01-01

    We use Brownian dynamics simulations and analytical theory to compare two prominent types of single molecule transitions. One is the adsorption transition of a loop (a chain with two ends bound to an attractive substrate) driven by an attraction parameter ɛ and the other is the loop-stretch transition in a chain with one end attached to a repulsive substrate, driven by an external end-force F applied to the free end. Specifically, we compare the behavior of the respective order parameters of the transitions, i.e., the mean number of surface contacts in the case of the adsorption transition and the mean position of the chain end in the case of the loop-stretch transition. Close to the transition points, both the static behavior and the dynamic behavior of chains with different length N are very well described by a scaling ansatz with the scaling parameters (ɛ - ɛ*)Nϕ (adsorption transition) and (F - F*)Nν (loop-stretch transition), respectively, where ϕ is the crossover exponent of the adsorption transition and ν is the Flory exponent. We show that both the loop-stretch and the loop adsorption transitions provide an exceptional opportunity to construct explicit analytical expressions for the crossover functions which perfectly describe all simulation results on static properties in the finite-size scaling regime. Explicit crossover functions are based on the ansatz for the analytical form of the order parameter distributions at the respective transition points. In contrast to the close similarity in equilibrium static behavior, the dynamic relaxation at the two transitions shows qualitative differences, especially in the strongly ordered regimes. This is attributed to the fact that the surface contact dynamics in a strongly adsorbed chain is governed by local processes, whereas the end height relaxation of a strongly stretched chain involves the full spectrum of Rouse modes.

  19. Cyclic Stretch Alters Vascular Reactivity of Mouse Aortic Segments

    Directory of Open Access Journals (Sweden)

    Arthur Leloup

    2017-10-01

    Full Text Available Large, elastic arteries buffer the pressure wave originating in the left ventricle and are constantly exposed to higher amplitudes of cyclic stretch (10% than muscular arteries (2%. As a crucial factor for endothelial and smooth muscle cell function, cyclic stretch has, however, never been studied in ex vivo aortic segments of mice. To investigate the effects of cyclic stretch on vaso-reactivity of mouse aortic segments, we used the Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC. The aortic segments were clamped at frequencies of 6–600 bpm between two variable preloads, thereby mimicking dilation as upon left ventricular systole and recoiling as during diastole. The preloads corresponding to different transmural pressures were chosen to correspond to a low, normal or high amplitude of cyclic stretch. At different time intervals, cyclic stretch was interrupted, the segments were afterloaded and isometric contractions by α1-adrenergic stimulation with 2 μM phenylephrine in the absence and presence of 300 μM L-NAME (eNOS inhibitor and/or 35 μM diltiazem (blocker of voltage-gated Ca2+ channels were measured. As compared with static or cyclic stretch at low amplitude (<10 mN or low frequency (0.1 Hz, cyclic stretch at physiological amplitude (>10 mN and frequency (1–10 Hz caused better ex vivo conservation of basal NO release with time after mounting. The relaxation of PE-precontracted segments by addition of ACh to stimulate NO release was unaffected by cyclic stretch. In the absence of basal NO release (hence, presence of L-NAME, physiological in comparison with aberrant cyclic stretch decreased the baseline tension, attenuated the phasic contraction by phenylephrine in the absence of extracellular Ca2+ and shifted the smaller tonic contraction more from a voltage-gated Ca2+ channel-mediated to a non-selective cation channel-mediated. Data highlight the need of sufficient mechanical activation of endothelial and

  20. Measurement of skin stretch using digital image speckle correlation.

    Science.gov (United States)

    Staloff, Isabelle Afriat; Rafailovitch, Miriam

    2008-08-01

    The surface of the skin is covered by intersecting grooves and ridges which produce characteristic skin surface patterns. It has been suggested that these folds provide a reserve of tissue, allowing the skin to stretch during normal muscle movements. More so, skin is anisotropic and under constant tension. Therefore, to characterize skin displacement following stretch, a discrete, description of the in-plane skin displacement during stretch is of interest. We introduce the use of digital image speckle correlation (DISC), a non-contact technique, to map, in two dimensions, the surface deformation patterns resulting from skin stretching. We analyze skin stretch under the mechanical action of a film former applied on a defined square surface on the back of the hand. This is achieved by taking a series of images, during the drying process of the film former. The images are then analyzed with DISC to create vector diagram and projection maps, from which we can obtain spatially resolved information regarding the skin displacement. We first show that DISC can provide spatially resolved information at any time point during the drying process: areas of de-wetting, wetting were identified using projection maps; we then extracted the value of the drying time. Finally using a vector map, we show the orientation of the skin displacement during stretching and calculated the magnitude of the total stretch. We have shown previously that DISC can be used to determine skin mechanical properties and muscular activity. We show here that DISC, as a non-contact technique, can map, in two dimensions, the surface deformation patterns of a polymer solution on a substrate at any time point during the drying process. DISC analysis generates for each speckle of the sample analyzed, the orientation and magnitude of displacement of the polymer solution. DISC can map in two dimensions the deformation undergone by the substrate and skin stretch is measured in this particular case. We therefore

  1. Extracting local stretching from left ventricle angiography data

    Science.gov (United States)

    Mishra, Sanjoy K.; Goldgof, Dmitry B.

    1991-07-01

    This paper presents a new method for extracting local surface stretching from the left ventricle (LV) cineangiography data. The algorithm is based on Gaussian curvature for surface stretching recovery under more realistic conformal motion assumption. During conformal motion surface stretching can vary over the surface patch. In particular, surface stretching can be approximated using linear or quadratic (or higher order) functions. Then, coefficients of the approximating function can be calculated and surface stretching computed from changes in surface curvature at corresponding points. For example, linear approximation requires three point correspondences (between consecutive time frames) within small surface patch. The authors demonstrate the higher precision of the new approach (as compared to homothetic assumption in the authors' earlier work) on simulated and real data of the left ventricle of the human heart. The data set was provided by Dr. Alistair Young of the University of Auckland, New Zealand, and consists of the tracked locations of eleven bifurcation points of the left coronary artery and the tracked locations of 292 vessel points for one cardiac cycle (60 frames/cycle).

  2. Controlled cyclic stretch bioreactor for tissue-engineered heart valves.

    Science.gov (United States)

    Syedain, Zeeshan H; Tranquillo, Robert T

    2009-09-01

    A tissue-engineered heart valve (TEHV) represents the ultimate valve replacement, especially for juvenile patients given its growth potential. To date, most TEHV bioreactors have been developed based on pulsed flow of culture medium through the valve lumen to induce strain in the leaflets. Using a strategy for controlled cyclic stretching of tubular constructs reported previously, we developed a controlled cyclic stretch bioreactor for TEHVs that leads to improved tensile and compositional properties. The TEHV is mounted inside a latex tube, which is then cyclically pressurized with culture medium. The root and leaflets stretch commensurately with the latex, the stretching being dictated by the stiffer latex and thus controllable. Medium is also perfused through the lumen at a slow rate in a flow loop to provide nutrient delivery. Fibrin-based TEHVs prepared with human dermal fibroblasts were subjected to three weeks of cyclic stretching with incrementally increasing strain amplitude. The TEHV possessed the tensile stiffness and stiffness anisotropy of leaflets from sheep pulmonary valves and could withstand cyclic pulmonary pressures with similar distension as for a sheep pulmonary artery.

  3. Influence of chronic stretching on muscle performance: Systematic review.

    Science.gov (United States)

    Medeiros, D M; Lima, C S

    2017-08-01

    The aim of the current study was to investigate the influence of chronic stretching on muscle performance (MP) by a systematic review. The search strategy included MEDLINE, PEDro, Cochrane CENTRAL, LILACS, and manual search from inception to June 2016. Randomized and controlled clinical trials, non-randomized, and single group studies that have analyzed the influence of flexibility training (FT) (using any stretching technique) on MP were included. Differently, studies with special populations (children, elderly, and people with any dysfunction/disease), and articles that have used FT protocols shorter than three weeks or 12 sessions were excluded. The MP assessment could have been performed by functional tests (e.g. jump, sprint, stretch-shortening cycle tasks), isometric contractions, and/or isotonic contractions. Twenty-eight studies were included out of 513. Seven studies evaluated MP by stretch-shortening cycle tasks, Ten studies evaluated MP by isometric contractions, and 13 studies assessed MP by isotonic contractions. We were unable to perform a meta-analysis due to the high heterogeneity among the included studies. In an individual study level analysis, we identified that 14 studies found positive effects of chronic stretching on MP. The improvements were observed only in functional tests and isotonic contractions, isometric contractions were not affected by FT. Therefore, FT might have an influence on dynamic MP. However, more studies are necessary to confirm whether FT can positively affect MP. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Investigating the role of musical genre in human perception of music stretching resistance

    OpenAIRE

    Chen, Jun; Wang, Chaokun

    2017-01-01

    To stretch a music piece to a given length is a common demand in people's daily lives, e.g., in audio-video synchronization and animation production. However, it is not always guaranteed that the stretched music piece is acceptable for general audience since music stretching suffers from people's perceptual artefacts. Over-stretching a music piece will make it uncomfortable for human psychoacoustic hearing. The research on music stretching resistance attempts to estimate the maximum stretchab...

  5. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    Science.gov (United States)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-01-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  6. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    Science.gov (United States)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-03-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  7. Significant Contributions of the Albrecht's A Term to Nonresonant Raman Scattering Processes.

    Science.gov (United States)

    Gong, Zu-Yong; Tian, Guangjun; Duan, Sai; Luo, Yi

    2015-11-10

    The Raman intensity can be well described by the famous Albrecht's Raman theory that consists of A and B terms. It is well-known that the contribution from Albrecht's A term can be neglected without any loss of accuracy for far-off resonant Raman scattering processes. However, as demonstrated in this study, we have found that this widely accepted long-standing assumption fails drastically for totally symmetric vibration modes of molecules in general off-resonant Raman scattering. Perturbed first-principles calculations for water molecule show that strong constructive interference between the A and B terms occurs for the Raman intensity of the symmetric O-H stretching mode, which can account for ∼40% of the total intensity. Meanwhile, a minor destructive interference is found for the angle bending mode. The state-to-state mapping between Albrecht's theory and perturbation theory allows us to verify the accuracy of the widely employed perturbation method for the dynamic/resonant Raman intensities. The model calculations rationalized from water molecule with the bending mode show that the perturbation method is a good approximation only when the absolute energy difference between the first excited state and the incident light is more than five times greater than the vibrational energy in the ground state.

  8. Dynamic Contractility and Efficiency Impairments in Stretch-Shortening Cycle Are Stretch-Load-Dependent After Training-Induced Muscle Damage

    NARCIS (Netherlands)

    Vaczi, Mark; Racz, Levente; Hortobagyi, Tibor; Tihanyi, Jozsef

    Vaczi, M, Racz, L, Hortobagyi, T, and Tihanyi, J. Dynamic contractility and efficiency impairments in stretch-shortening cycle are stretch-load-dependent after training-induced muscle damage. J Strength Cond Res 27(8): 2171-2179, 2013To determine the acute task and stretch-load dependency of

  9. Tail modeling in a stretched magnetosphere. I - Methods and transformations

    Science.gov (United States)

    Stern, David P.

    1987-01-01

    A new method is developed for representing the magnetospheric field B as a distorted dipole field. Because Delta-B = 0 must be maintained, such a distortion may be viewed as a transformation of the vector potential A. The simplest form is a one-dimensional 'stretch transformation' along the x axis, concisely represented by the 'stretch function' f(x), which is also a convenient tool for representing features of the substorm cycle. One-dimensional stretch transformations are extended to spherical, cylindrical, and parabolic coordinates and then to arbitrary coordinates. It is shown that distortion transformations can be viewed as mappings of field lines from one pattern to another; the final result only requires knowledge of the field and not of the potentials. General transformations in Cartesian and arbitrary coordinates are derived, and applications to field modeling, field line motion, MHD modeling, and incompressible fluid dynamics are considered.

  10. Alignment of Disks with Lagrangian Stretching in Turbulence

    Science.gov (United States)

    Hunt, Conor; Tierney, Lydia; Kramel, Stefan; Voth, Greg

    2015-11-01

    We study Lagrangian stretching in isotropic turbulence in order to understand both the rotations of disks and the preferential alignment of vorticity with the intermediate strain rate eigenvector. Using velocity gradient tensors from a numerical simulation of homogeneous isotropic turbulence at Rλ = 180, we calculate the Cauchy-Green strain tensors whose eigenvectors provide a natural basis for studying stretching phenomenon. Previous work has shown that rods preferentially align with the vorticity as a result of both quantities independently aligning with the extensional Cauchy-Green eigenvector. In contrast, disks orient with their symmetry axis perpendicular to vorticity and preferentially align with the compressional Cauchy-Green eigenvector. We also find that the intermediate strain rate eigenvector is aligned with the extensional Cauchy-Green eigenvector. A natural consequence is that the intermediate strain rate eigenvector is aligned with the vorticity vector since conservation of angular momentum aligns vorticity with the direction it has been stretched.

  11. Stretching of red blood cells at high strain rates

    Science.gov (United States)

    Mancuso, J. E.; Ristenpart, W. D.

    2017-10-01

    Most work on the mechanical behavior of red blood cells (RBCs) in flow has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this Rapid Communication, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that both the Kelvin-Voigt and Skalak viscoelastic models capture the observed stretching dynamics, up to strain rates as high as 2000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  12. Effects of static stretching on 1-mile uphill run performance.

    Science.gov (United States)

    Lowery, Ryan P; Joy, Jordan M; Brown, Lee E; Oliveira de Souza, Eduardo; Wistocki, David R; Davis, Gregory S; Naimo, Marshall A; Zito, Gina A; Wilson, Jacob M

    2014-01-01

    It is previously demonstrated that static stretching was associated with a decrease in running economy and distance run during a 30-minute time trial in trained runners. Recently, the detrimental effects of static stretching on economy were found to be limited to the first few minutes of an endurance bout. However, economy remains to be studied for its direct effects on performance during shorter endurance events. The aim of this study was to investigate the effects of static stretching on 1-mile uphill run performance, electromyography (EMG), ground contact time (GCT), and flexibility. Ten trained male distance runners aged 24 ± 5 years with an average VO2max of 64.9 ± 6.5 mL·kg-1·min-1 were recruited. Subjects reported to the laboratory on 3 separate days interspersed by 72 hours. On day 1, anthropometrics and V[Combining Dot Above]O2max were determined on a motor-driven treadmill. On days 2 and 3, subjects performed a 5-minute treadmill warm-up and either performed a series of 6 lower-body stretches for three 30-second repetitions or sat still for 10 minutes. Time to complete a 1-mile run under stretching and nonstretching conditions took place in randomized order. For the performance run, subjects were instructed to run as fast as possible at a set incline of 5% until a distance of 1 mile was completed. Flexibility from the sit and reach test, EMG, GCT, and performance, determined by time to complete the 1-mile run, were recorded after each condition. Time to complete the run was significantly less (6:51 ± 0:28 minutes) in the nonstretching condition as compared with the stretching condition (7:04 ± 0:32 minutes). A significant condition-by-time interaction for muscle activation existed, with no change in the nonstretching condition (pre 91.3 ± 11.6 mV to post 92.2 ± 12.9 mV) but increased in the stretching condition (pre 91.0 ± 11.6 mV to post 105.3 ± 12.9 mV). A significant condition-by-time interaction for GCT was also present, with no changes in

  13. Directional Cell Migration in Response to Repeated Substratum Stretching

    Science.gov (United States)

    Okimura, Chika; Iwadate, Yoshiaki

    2017-10-01

    Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.

  14. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial.

    Science.gov (United States)

    Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso Rf

    2016-01-01

    Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. This study was a randomized and controlled trial. A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG ( P stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment.

  15. Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation

    KAUST Repository

    Hong, Seunghyuck

    2013-08-01

    In this paper, we experimentally investigate the combustion dynamics in lean premixed flames in a laboratory scale backward-facing step combustor in which flame-vortex driven dynamics are observed. A series of tests was conducted using propane/hydrogen/air mixtures for various mixture compositions at the inlet temperature ranging from 300K to 500K and at atmospheric pressure. Pressure measurements and high speed particle image velocimetry (PIV) are used to generate pressure response curves and phase-averaged vorticity and streamlines as well as the instantaneous flame front, respectively, which describe unsteady flame and flow dynamics in each operating regime. This work was motivated in part by our earlier study where we showed that the strained flame consumption speed Sc can be used to collapse the pressure response curves over a wide range of operating conditions. In previous studies, the stretch rate at which Sc was computed was determined by trial and error. In this study, flame stretch is estimated using the instantaneous flame front and velocity field from the PIV measurement. Independently, we also use computed strained flame speed and the experimental data to determine the characteristic values of stretch rate near the mode transition points at which the flame configuration changes. We show that a common value of the characteristic stretch rate exists across all the flame configurations. The consumption speed computed at the characteristic stretch rate captures the impact of different operating parameters on the combustor dynamics. These results suggest that the unsteady interactions between the turbulent flow and the flame dynamics can be encapsulated in the characteristic stretch rate, which governs the critical flame speed at the mode transitions and thereby plays an important role in determining the stability characteristics of the combustor. © 2013 The Combustion Institute.

  16. Effect of CH stretching excitation on the reaction dynamics of F + CHD{sub 3} → DF + CHD{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiayue; Zhang, Dong; Chen, Zhen; Jiang, Bo [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Blauert, Florian [Dynamics at Surfaces, Faculty of Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen (Germany); Dai, Dongxu; Wu, Guorong, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Zhang, Donghui; Yang, Xueming, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-07-28

    The vibrationally excited reaction of F + CHD{sub 3}(ν{sub 1} = 1) → DF + CHD{sub 2} at a collision energy of 9.0 kcal/mol is investigated using the crossed-beams and time-sliced velocity map imaging techniques. Detailed and quantitative information of the CH stretching excitation effects on the reactivity and dynamics of the title reaction is extracted with the help of an accurate determination of the fraction of the excited CHD{sub 3} reagent in the crossed-beam region. It is found that all vibrational states of the CHD{sub 2} products observed in the ground-state reaction, which mainly involve the excitation of the umbrella mode of the CHD{sub 2} products, are severely suppressed by the CH stretching excitation. However, there are four additional vibrational states of the CHD{sub 2} products appearing in the excited-state reaction which are not presented in the ground-state reaction. These vibrational states either have the CH stretching excitation retained or involve one quantum excitation in the CH stretching and the excitation of the umbrella mode. Including all observed vibrational states, the overall cross section of the excited-state reaction is estimated to be 66.6% of that of the ground-state one. Experimental results also show that when the energy of CH stretching excitation is released during the reaction, it is deposited almost exclusively as the rovibrational energy of the DF products, with little portion in the translational degree of freedom. For vibrational states of the CHD{sub 2} products observed in both ground- and excited-state reactions, the CH stretching excitation greatly suppresses the forward scattered products, causing a noticeable change in the product angular distributions.

  17. Short Term Effects of Neurodynamic Stretching and Static Stretching Techniques on Hamstring Muscle Flexibility in Healthy Male Subjects

    Directory of Open Access Journals (Sweden)

    Adel Rashad Ahmed

    2016-05-01

    Full Text Available Flexibility is a key component of rehabilitation and inadequate muscle extensibility remains a commonly accepted factor for musculoskeletal disorders. Studies on the most optimal technique for improving muscle flexibility are a widely debated. The aim of the study was to compare the effectiveness of neurodynamic and static stretching techniques on hamstring flexibility in healthy male subjects. This study was a randomized experimental trial; forty healthy male subjects with hamstring tightness were randomly divided into two equal groups: The neurodynamic group and the static stretching group. Treatment was given for 5 consecutive days and the outcomes were measured using Active knee Extension Test and Straight Leg Raising. There was a significant improvement in hamstring flexibility following application of both neurodynamic and static stretching but the improvement in the neurodynamic group (p<0.001 was better than that of the static group (p<0.02. Results suggest that a neurodynamic stretching could increase hamstring flexibility to a greater extent than static stretching in healthy male subjects with a tight hamstring.

  18. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    Directory of Open Access Journals (Sweden)

    Lynn Bar-On

    Full Text Available The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01. The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between

  19. Role Of Stretching Exercises In The Management Of Constipation In Spastic Cerebral Palsy.

    Science.gov (United States)

    Awan, Waqar Ahmed; Masood, Tahir

    2016-01-01

    Constipation is considered as one of the most common non-motor manifestations in cerebral palsy (CP). Along with other reasons, spasticity also contributes in developing constipation in CP, by decreasing mobility of trunk and lower extremities and abdominal viscera. Stretching exercises of upper extremities, trunk and lower extremities are routine management of spasticity in CP children. The objective of the study was to determine the role of stretching exercises in improving constipation symptoms in children with spastic cerebral palsy and to explore the association between spasticity and constipation among cerebral palsy children. Single-group Pretest-Posttest Design (Quasi Experimental Study Design). The study was conducted at Physiotherapy Department of National Institute of Rehabilitation Medicine (NIRM) Islamabad. Thirty spastic CP children - both male and female - with complaints of constipation were recruited through non-probability, convenience sampling. The mean age of the children was 7.55±1.33 years. Each child was assessed for defecation frequency (DF), constipation severity by constipation assessment scale (CAS) and level of spasticity by modified ash worth scale for spasticity (MASS) at baseline. Stretching exercises were performed for 30 seconds with five repetitions and at least once a day for six week, followed by positioning of patients in reflex inhibiting posture. Final data was collected using the same tools as done at the baseline. Paired samples t-test was used to analyse the rehabilitation-induced changes after 6 weeks. To determine association between spasticity and constipation Pearson product-moment correlation coefficient was used. The data was analysed through SPSS 20. Significant changes, compared to the baseline scores, were observed after 6 weeks of stretching exercises in MASS (2.53±0.62 Vs 1.53±0.77), DF (2.43±0.67 Vs 3.70±1.02) and CAS (7.23±1.50 Vs 5.43±1.73) with p≤0.05. The results also showed significant correlation

  20. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Science.gov (United States)

    Sloot, Lizeth H; van den Noort, Josien C; van der Krogt, Marjolein M; Bruijn, Sjoerd M; Harlaar, Jaap

    2015-01-01

    Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during

  1. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Directory of Open Access Journals (Sweden)

    Lizeth H Sloot

    Full Text Available Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms. Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally

  2. Stretching, twisting and supercoiling in short, single DNA molecules

    Science.gov (United States)

    Lam, Pui-Man; Zhen, Yi

    2018-02-01

    We had combined the Neukirch-Marko model that describes the extension, torque and supercoiling in single, stretched and twisted DNA of infinite contour length, with a form of the free energy suggested by Sinha and Samuels to describe short DNA, with contour length only a few times the persistence length. We find that the free energy of the stretched but untwisted DNA, is significantly modified from its infinitely length value and this in turn modifies significantly the torque and supercoiling. We show that this is consistent with short DNA being more flexible than infinitely long DNA. We hope our results will stimulate experimental investigation of torque and supercoiling in short DNA.

  3. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...... that stretch and volume sensitivity can be considered two independent regulatory mechanisms....

  4. Management of stretch marks (with a focus on striae rubrae

    Directory of Open Access Journals (Sweden)

    Uwe Wollina

    2017-01-01

    Full Text Available Stretch marks are one of the most common benign cutaneous lesions and encountered esthetic problems. Striae rubrae and striae albae can be differentiated on the basis of clinical appearance. Histologically, disturbances of the dermal fiber network and local expression of receptors for sexual steroids have been detected. The epidermal changes are secondary. Prevention of stretch marks using topical ointments and oils is debatable. Treatment of striae rubrae by lasers and light devices improves appearance. Microneedling and non-ablative and fractionated lasers have been used. This review provides an overview on current treatment options with a special focus on laser treatments.

  5. Regional Climate Simulation Experiments with a Variable Resolution Stretched Grid GCM

    Science.gov (United States)

    Takacs, Lawrence L.; Stein, Uri; Govindaraju, Ravi C.

    1999-01-01

    The variable resolution stretched grid (SG) version of the Goddard Earth Observing System (GEOS) GCM has been recently developed and tested in a regional climate simulation mode. The SG-approach is an alternative to the widely used nested grid approach introduced a decade ago as a pioneering step to regional climate modeling. The region of interest with a uniform about 60 km resolution used in experiments is a rectangle over the U.S. The results of one annual as well as two-month simulations for the anomalous climate event of the U.S. drought of 1988, are validated against data analysis fields and diagnostics. The efficient regional down-scaling as well as the positive impact of fine regional resolution, are obtained. The SG-concept appeared to be a promising candidate for regional and subregional climate studies and applications.

  6. Stretching to prevent or reduce muscle soreness after exercise.

    Science.gov (United States)

    Herbert, Robert D; de Noronha, Marcos; Kamper, Steven J

    2011-07-06

    Many people stretch before or after engaging in athletic activity. Usually the purpose is to reduce risk of injury, reduce soreness after exercise, or enhance athletic performance. This is an update of a Cochrane review first published in 2007. The aim of this review was to determine effects of stretching before or after exercise on the development of delayed-onset muscle soreness. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register (to 10 August 2009), the Cochrane Central Register of Controlled Trials (2010, Issue 1), MEDLINE (1966 to 8th February 2010), EMBASE (1988 to 8th February 2010), CINAHL (1982 to 23rd February 2010), SPORTDiscus (1949 to 8th February 2010), PEDro (to 15th February 2010) and reference lists of articles. Eligible studies were randomised or quasi-randomised studies of any pre-exercise or post-exercise stretching technique designed to prevent or treat delayed-onset muscle soreness (DOMS). For the studies to be included, the stretching had to be conducted soon before or soon after exercise and muscle soreness had to be assessed. Risk of bias was assessed using The Cochrane Collaboration's 'Risk of bias' tool and quality of evidence was assessed using GRADE. Estimates of effects of stretching were converted to a common 100-point scale. Outcomes were pooled in fixed-effect meta-analyses. Twelve studies were included in the review. This update incorporated two new studies. One of the new trials was a large field-based trial that included 2377 participants, 1220 of whom were allocated stretching. All other 11 studies were small, with between 10 and 30 participants receiving the stretch condition. Ten studies were laboratory-based and other two were field-based. All studies were exposed to either a moderate or high risk of bias. The quality of evidence was low to moderate.There was a high degree of consistency of results across studies. The pooled estimate showed that pre-exercise stretching reduced soreness at one

  7. Effects on hamstring muscle extensibility, muscle activity, and balance of different stretching techniques.

    Science.gov (United States)

    Lim, Kyoung-Il; Nam, Hyung-Chun; Jung, Kyoung-Sim

    2014-02-01

    [Purpose] The purpose of this study was to investigate the effects of two different stretching techniques on range of motion (ROM), muscle activation, and balance. [Subjects] For the present study, 48 adults with hamstring muscle tightness were recruited and randomly divided into three groups: a static stretching group (n=16), a PNF stretching group (n=16), a control group (n=16). [Methods] Both of the stretching techniques were applied to the hamstring once. Active knee extension angle, muscle activation during maximum voluntary isometric contraction (MVC), and static balance were measured before and after the application of each stretching technique. [Results] Both the static stretching and the PNF stretching groups showed significant increases in knee extension angle compared to the control group. However, there were no significant differences in muscle activation or balance between the groups. [Conclusion] Static stretching and PNF stretching techniques improved ROM without decrease in muscle activation, but neither of them exerted statistically significant effects on balance.

  8. Medial gastrocnemius muscle stiffness cannot explain the increased ankle joint range of motion following passive stretching in children with cerebral palsy.

    Science.gov (United States)

    Kalkman, Barbara M; Bar-On, Lynn; Cenni, Francesco; Maganaris, Constantinos N; Bass, Alfie; Holmes, Gill; Desloovere, Kaat; Barton, Gabor J; O'Brien, Thomas D

    2018-03-01

    What is the central question of this study? Can the increased range of motion seen acutely after stretching in children with cerebral palsy be explained by changes in the stiffness of the medial gastrocnemius fascicles? What is the main finding and its importance? We show, for the first time, that passive muscle and tendon properties are not changed acutely after a single bout of stretching in children with cerebral palsy and, therefore, do not contribute to the increase in range of motion. This contradicts common belief and what happens in healthy adults. Stretching is often used to increase or maintain the joint range of motion (ROM) in children with cerebral palsy (CP), but the effectiveness of these interventions is limited. Therefore, our aim was to determine the acute changes in muscle-tendon lengthening properties that contribute to increased ROM after a bout of stretching in children with CP. Eleven children with spastic CP [age 12.1 (3 SD) years, 5/6 hemiplegia/diplegia, 7/4 gross motor function classification system level I/II] participated. Each child received three sets of five × 20 s passive, manual static dorsiflexion stretches separated by 30 s rest, with 60 s rest between sets. Before and immediately after stretching, ultrasound was used to measure medial gastrocnemius fascicle lengthening continuously over the full ROM and an individual common ROM pre- to post-stretching. Simultaneously, three-dimensional motion of two marker clusters on the shank and the foot was captured to calculate ankle angle, and ankle joint torque was calculated from manually applied torques and forces on a six degrees-of-freedom load cell. After stretching, the ROM was increased [by 9.9 (12.0) deg, P = 0.005]. Over a ROM common to both pre- and post-measurements, there were no changes in fascicle lengthening or torque. The maximal ankle joint torque tolerated by the participants increased [by 2.9 (2.4) N m, P = 0.003], and at this highest passive torque the

  9. Numerical Analysis of AHSS Fracture in a Stretch-bending Test

    Science.gov (United States)

    Luo, Meng; Chen, Xiaoming; Shi, Ming F.; Shih, Hua-Chu

    2010-06-01

    Advanced High Strength Steels (AHSS) are increasingly used in the automotive industry due to their superior strength and substantial weight reduction advantage. However, their limited ductility gives rise to numerous manufacturing issues. One of them is the so-called `shear fracture' often observed on tight radii during stamping processes. Since traditional approaches, such as the Forming Limit Diagram (FLD), are unable to predict this type of fracture, efforts have been made to develop failure criteria that can predict shear fractures. In this paper, a recently developed Modified Mohr-Coulomb (MMC) ductile fracture criterion[1] is adopted to analyze the failure behavior of a Dual Phase (DP) steel sheet during stretch bending operations. The plasticity and ductile fracture of the present sheet are fully characterized by the Hill'48 orthotropic model and the MMC fracture model respectively. Finite Element models with three different element types (3D, shell and plane strain) were built for a Stretch Forming Simulator (SFS) test and numerical simulations with four different R/t ratios (die radius normalized by sheet thickness) were performed. It has been shown that the 3D and shell element models can accurately predict the failure location/mode, the upper die load-displacement responses as well as the wall stress and wrap angle at the onset of fracture for all R/t ratios. Furthermore, a series of parametric studies were conducted on the 3D element model, and the effects of tension level (clamping distance) and tooling friction on the failure modes/locations were investigated.

  10. Immediate effects of different types of stretching exercises on badminton jump smash.

    Science.gov (United States)

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2017-04-13

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop points of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F2,75= 1.19, p=0.31; static stretching: 22.1%, pstretching: 30.1%, pstretching: 17.7%, p=0.03, ES: 0.98) and velocities of jump-smashed shuttlecocks (type main effect: F2,75= 2.18, p=0.12; static stretching: 5.7%, p=0.61, ES: 0.39; dynamic stretching: 3.4%, p=0.94, ES: 0.28; resistance dynamic stretching: 6%, p=0.50, ES: 0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F2,75= 0.88, p=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  11. Stretching Local Dollars: A Small Town Guide to Matching Funds.

    Science.gov (United States)

    Brown, Hamilton

    The purpose of this guidebook is to help elected leaders of small towns and communities stretch their investments when matching funds are required to compete for a grant or to pay for development costs above the grant award itself. The federal "small cities" Community Development Block Grant (CDBG) is used as an example throughout the…

  12. Measurement of Reversed Extension Flow using the Filament Stretch Rheometer

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Skov, Anne Ladegaard; Nielsen, Jens Kromann

    2008-01-01

    ). The latter is applicable on highly extensible elastomers, whereas in LAOE measurements on liquids (including polymer melts) the LAOE flow needs to be imposed upon a constant strain rate uniaxial elongation. The used Filament Stretching Rheometer allows measurements on polymeric fluids (including polymeric...... melts) from room temperature until 200 degrees C....

  13. On zero variance Monte Carlo path-stretching schemes

    International Nuclear Information System (INIS)

    Lux, I.

    1983-01-01

    A zero variance path-stretching biasing scheme proposed for a special case by Dwivedi is derived in full generality. The procedure turns out to be the generalization of the exponential transform. It is shown that the biased game can be interpreted as an analog simulation procedure, thus saving some computational effort in comparison with the corresponding nonanalog game

  14. Mediators of Yoga and Stretching for Chronic Low Back Pain

    Directory of Open Access Journals (Sweden)

    Karen J. Sherman

    2013-01-01

    Full Text Available Although yoga is an effective treatment for chronic low back pain, little is known about the mechanisms responsible for its benefits. In a trial comparing yoga to intensive stretching and self-care, we explored whether physical (hours of back exercise/week, cognitive (fear avoidance, body awareness, and self-efficacy, affective (psychological distress, perceived stress, positive states of mind, and sleep, and physiological factors (cortisol, DHEA mediated the effects of yoga or stretching on back-related dysfunction (Roland-Morris Disability Scale (RDQ. For yoga, 36% of the effect on 12-week RDQ was mediated by increased self-efficacy, 18% by sleep disturbance, 9% by hours of back exercise, and 61% by the best combination of all possible mediators (6 mediators. For stretching, 23% of the effect was mediated by increased self-efficacy, 14% by days of back exercise, and 50% by the best combination of all possible mediators (7 mediators. In open-ended questions, ≥20% of participants noted the following treatment benefits: learning new exercises (both groups, relaxation, increased awareness, and the benefits of breathing (yoga, benefits of regular practice (stretching. Although both self-efficacy and hours of back exercise were the strongest mediators for each intervention, compared to self-care, qualitative data suggest that they may exert their benefits through partially distinct mechanisms.

  15. Entropy generation in MHD flow of a uniformly stretched vertical ...

    African Journals Online (AJOL)

    This paper reports the analytical calculation of the entropy generation due to heat and mass transfer and fluid friction in steady state of a uniformly stretched vertical permeable surface with heat and mass diffusive walls, by solving analytically the mass, momentum, species concentration and energy balance equation, using ...

  16. Effect of Mechanical Stretching of the Skin on Collagen Fibril ...

    African Journals Online (AJOL)

    Stabilization of collagen fibres during development and through growth to maturation has now become fairly documented. In vitro effect of mechanical stretching of ratsf skin on oxidative deamination of ε-NH2-groups of lysine and hydroxylysine, and functional properties of its type . collagen were studied. Experiments were ...

  17. Effects of Warm-Up Stretching Exercises on Sprint Performance

    Science.gov (United States)

    Makaruk, Hubert; Makaruk, Beata; Kedra, Stanislaw

    2008-01-01

    Study aim: To assess direct effects of warm-up consisting of static and dynamic stretching exercises on sprint results attained by students differing in sprint performance. Material and methods: A group of 24 male and 19 female physical education students, including 12 and 9 sprinters, respectively. They performed warm-ups consisting of dynamic…

  18. A Japanese Stretching Intervention Can Modify Lumbar Lordosis Curvature

    NARCIS (Netherlands)

    Kadono, Norio; Tsuchiya, Kazushi; Uematsu, Azusa; Kamoshita, Hiroshi; Kiryu, Kazunori; Hortobagyi, Tibor; Suzuki, Shuji

    Study Design: Eighteen healthy male adults were assigned to either an intervention or control group. Objectives: Isogai dynamic therapy (IDT) is one of Japanese stretching interventions and has been practiced for over 70 years. However, its scientific quantitative evidence remains unestablished. The

  19. Flow of viscous fluid along an exponentially stretching curved surface

    Directory of Open Access Journals (Sweden)

    N.F. Okechi

    Full Text Available In this paper, we present the boundary layer analysis of flow induced by rapidly stretching curved surface with exponential velocity. The governing boundary value problem is reduced into self-similar form using a new similarity transformation. The resulting equations are solved numerically using shooting and Runge-Kutta methods. The numerical results depicts that the fluid velocity as well as the skin friction coefficient increases with the surface curvature, similar trend is also observed for the pressure. The dimensionless wall shear stress defined for this problem is greater than that of a linearly stretching curved surface, but becomes comparably less for a surface stretching with a power-law velocity. In addition, the result for the plane surface is a special case of this study when the radius of curvature of the surface is sufficiently large. The numerical investigations presented in terms of the graphs are interpreted with the help of underlying physics of the fluid flow and the consequences arising from the curved geometry. Keywords: Boundary layer flow, Curved surface, Exponential stretching, Curvature

  20. Vibrations of stretched damped beams under non-ideal boundary ...

    Indian Academy of Sciences (India)

    Stretched beam vibrations; non-ideal boundary conditions; method of multiple time scales. 1. Introduction. Beams are frequently used as design models for vibration analysis. In such analysis, types of support conditions are important and have direct effect on the solutions and natural fre- quencies. Different types of supports ...

  1. Stretch Intensity vs. Inflammation: A Dose-dependent Association?

    Directory of Open Access Journals (Sweden)

    Nikos Apostolopoulos BPHE

    2015-01-01

    Full Text Available The intensity of stretching is rarely reported in scientific literature. In this study, we examined the effects of stretching intensities at 30%, 60%, and 90% of maximum range of movement (mROM on the inflammatory response of the right hamstring muscle. Methods: A randomised within-subject trial was conducted with 11 healthy recreationally active males over a three week period. Participants were strapped into an isokinetic dynamometer in the supine position, with the right knee fastened in a knee immobilizer. After randomising the ROM percentages, the hamstring muscle was moved to one of the three chosen ROM percentages for that week and held there for 5 x 60 seconds followed by a 10 second rest between repetitions. A 5ml blood sample was collected pre-, immediately post, and at 24 hours post intervention for high sensitivity C-reactive protein (hsCRP assessments. Results: Significant increases in hsCRP levels were observed between 30% mROM and 90% mROM (p=0.004 and 60% mROM and 90% mROM (p=0.034, but not between 30% and 60% (p>0.05. Conclusions: Muscle stretching at submaximal levels does not elicit a significant systemic inflammatory responses. Keywords: Stretch intensity, inflammation, hsCRP

  2. MHD flow of a uniformly stretched vertical permeable membrane in ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... Abstract. We present a magneto - hydrodynamic flow of a uniformly stretched vertical permeable surface undergoing Arrhenius heat reaction. ... It is also established that maximum velocity occurs in the body of the fluid close to the surface and not the surface.

  3. Contact of a spherical probe with a stretched rubber substrate

    Science.gov (United States)

    Frétigny, Christian; Chateauminois, Antoine

    2017-07-01

    We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green's function for incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech. Phys. Solids 56, 2957 (2008), 10.1016/j.jmps.2008.07.002], a model is derived for both adhesive and nonadhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios λx and λy of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.

  4. Effect of Mechanical Stretching of the Skin on Collagen Fibril ...

    African Journals Online (AJOL)

    Dell

    It was recently established that, deformation of connective tissue cells under the influence of mechanical stretching intensifies the synthesis of structural biopolymers, particularly those of the collagen molecules, which are capable of associating into fibrils by self assembly (Buschmann et al., 1995,. Garbuzenko et al., 1997; ...

  5. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    NARCIS (Netherlands)

    Gouw, S.; Wijer, A. de; Creugers, N.H.J.; Kalaykova, S.I.

    2017-01-01

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism.

  6. Sport stretching : Effect on passive muscle stiffness of short hamstrings

    NARCIS (Netherlands)

    Halbertsma, JPK; vanBolhuis, AI; Goeken, LNH

    Objective: To evaluate the effects of one 10-minute stretch on muscle stiffness in subjects with short hamstrings. Design: Randomized control trial. Setting: Laboratory for human movement sciences in the department of rehabilitation of a university hospital. Subjects: Sixteen students from the

  7. The health of benthic diatom assemblages in lower stretch

    Indian Academy of Sciences (India)

    This study examines the ecological state of epilithic diatom assemblages along the lower stretch of Mandakini, a glacier-fed Himalayan river. The diatoms were sampled at four stations during winter and summer, only once in each season. Valve counts were obtained from Naphrax mounts prepared from each sample.

  8. A single molecule DNA flow stretching microscope for undergraduates

    NARCIS (Netherlands)

    Williams, Kelly; Grafe, Brendan; Burke, Kathryn M.; Tanner, Nathan; van Oijen, Antoine M.; Loparo, Joseph; Price, Allen C.

    2011-01-01

    The design of a simple, safe, and inexpensive single molecule flow stretching instrument is presented. The instrument uses a low cost upright microscope coupled to a webcam for imaging single DNA molecules that are tethered in an easy to construct microfluidic flow cell. The system requires no

  9. Acute effects of active isolated stretching on vertical jump ...

    African Journals Online (AJOL)

    The purpose of the study was to determine the acute effects of active isolated stretching on muscular peak power production. Sixty healthy, physically active volunteers (aged 18-28) participated as subjects in this study. Subjects were randomly assigned to two groups; the control group and the experimental group. Subjects ...

  10. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  11. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  12. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  13. Resonance Raman studies of Co-O2 and O-O stretching vibrations in oxy-cobalt hemes.

    Science.gov (United States)

    Mackin, H C; Tsubaki, M; Yu, N T

    1983-03-01

    Strong evidence suggests that the stretching vibration of the bound oxygen can be perturbed by an accidentally degenerate porphyrin ring mode, resulting in two split frequencies. In the Co(II)(TpivPP) (pyridine) (18)O(2) complex, we demonstrate that the nu((18)O-(18)O) mode, after being shifted from its nu((16)O-(16)O) value at 1,156 cm(-1), undergoes a resonance interaction with the 1,080 cm(-1) porphyrin mode, giving rise to two lines at 1,067 and 1,089 cm(-1). In the O(2) complex of Co(II) mesoporphyrin IX-substituted sperm whale myoglobin, we observed a dramatic intensity increase at 1,132 cm(-1) upon (16)O(2) --> (18)O(2) substitution, which is due to the reappearance of the 1,132-cm(-1) porphyrin mode after the removal of resonance conditions. A decrease in O(2) binding affinity, caused by the proximal base tension, corresponds to an increase in the Co-O(2) stretching frequency. The nu(Co-O(2)) at 527 cm(-1) for the low affinity Co(II)(TpivPP)(1,2-Me(2)Im) O(2) complex is 11 cm(-1) higher than the 516-cm(-1) value for the high affinity complex (with N-MeIm replacing 1,2-Me(2)Im). However, in the corresponding iron complexes the reverse behavior is observed, i.e., the nu(Fe-O(2)) decreases for the (1,2-Me(2)Im) complex. There is a 24-cm(-1) difference in the Co-O(2) stretching frequencies between Co(II)(TpivPP)(N-MeIm)O(2) (at 516 cm(-1)) and oxy meso CoMb (at 540 cm(-1)), suggesting a protein induced distortion of the Co-O-O linkage. However, the values for nu(Fe-O(2)) are nearly identical between Fe(II)(TpivPP)(N-MeIm)O(2) (at 571 cm(-1)) and oxy Mb (at 573 cm(-1)), indicating that O(2) binds to myoglobin in the same manner as in the sterically unhindered "picket fence" complex. Evidence is presented that suggests the presence of two dioxygen stretching frequencies due to two different conformers in each of the N-MeIm and 1,2-Me(2)Im complex of oxy Co(II)(TpivPP).

  14. Resonance Raman Studies of Co—O2 and O—O Stretching Vibrations in Oxy-Cobalt Hemes

    Science.gov (United States)

    Mackin, Helen C.; Tsubaki, Motonari; Yu, Nai-Teng

    1983-01-01

    Strong evidence suggests that the stretching vibration of the bound oxygen can be perturbed by an accidentally degenerate porphyrin ring mode, resulting in two split frequencies. In the Co(II)(TpivPP) (pyridine) 18O2 complex, we demonstrate that the ν(18O—18O) mode, after being shifted from its ν(16O—16O) value at 1,156 cm-1, undergoes a resonance interaction with the 1,080 cm-1 porphyrin mode, giving rise to two lines at 1,067 and 1,089 cm-1. In the O2 complex of Co(II) mesoporphyrin IX-substituted sperm whale myoglobin, we observed a dramatic intensity increase at 1,132 cm-1 upon 16O2 → 18O2 substitution, which is due to the reappearance of the 1,132-cm-1 porphyrin mode after the removal of resonance conditions. A decrease in O2 binding affinity, caused by the proximal base tension, corresponds to an increase in the Co—O2 stretching frequency. The ν(Co—O2) at 527 cm-1 for the low affinity Co(II)(TpivPP)(1,2-Me2Im) O2 complex is 11 cm-1 higher than the 516-cm-1 value for the high affinity complex (with N-MeIm replacing 1,2-Me2Im). However, in the corresponding iron complexes the reverse behavior is observed, i.e., the ν(Fe—O2) decreases for the (1,2-Me2Im) complex. There is a 24-cm-1 difference in the Co—O2 stretching frequencies between Co(II)(TpivPP)(N-MeIm)O2 (at 516 cm-1) and oxy meso CoMb (at 540 cm-1), suggesting a protein induced distortion of the Co—O—O linkage. However, the values for ν(Fe—O2) are nearly identical between Fe(II)(TpivPP)(N-MeIm)O2 (at 571 cm-1) and oxy Mb (at 573 cm-1), indicating that O2 binds to myoglobin in the same manner as in the sterically unhindered “picket fence” complex. Evidence is presented that suggests the presence of two dioxygen stretching frequencies due to two different conformers in each of the N-MeIm and 1,2-Me2Im complex of oxy Co(II)(TpivPP). PMID:6838973

  15. Stretched versus compressed exponential kinetics in α-helix folding

    International Nuclear Information System (INIS)

    Hamm, Peter; Helbing, Jan; Bredenbeck, Jens

    2006-01-01

    In a recent paper (J. Bredenbeck, J. Helbing, J.R. Kumita, G.A. Woolley, P. Hamm, α-helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time resolved IR spectroscopy, Proc. Natl. Acad. Sci USA 102 (2005) 2379), we have investigated the folding of a photo-switchable α-helix with a kinetics that could be fit by a stretched exponential function exp(-(t/τ) β ). The stretching factor β became smaller as the temperature was lowered, a result which has been interpreted in terms of activated diffusion on a rugged energy surface. In the present paper, we discuss under which conditions diffusion problems occur with stretched exponential kinetics (β 1). We show that diffusion problems do have a strong tendency to yield stretched exponential kinetics, yet, that there are conditions (strong perturbation from equilibrium, performing the experiment in the folding direction) under which compressed exponential kinetics would be expected instead. We discuss the kinetics on free energy surfaces predicted by simple initiation-propagation models (zipper models) of α-helix folding, as well as by folding funnel models. We show that our recent experiment has been performed under condition for which models with strong downhill driving force, such as the zipper model, would predict compressed, rather than stretched exponential kinetics, in disagreement with the experimental observation. We therefore propose that the free energy surface along a reaction coordinate that governs the folding kinetics must be relatively flat and has a shape similar to a 1D golf course. We discuss how this conclusion can be unified with the thermodynamically well established zipper model by introducing an additional kinetic reaction coordinate

  16. Effect of Laser Annealing on Hot-stretching Properties of 1Cr5Mo Steel Welded Joints

    Directory of Open Access Journals (Sweden)

    GUO Wei

    2018-02-01

    Full Text Available The 1Cr5Mo heat-resistant steel welded joint was annealed with CO2 laser, the effect of temperature on hot-stretching properties of the samples before and after laser annealing was analyzed by using stretching tests. The grain changes, rupture modes and fracture morphologies before and after laser annealing were observed by SEM, and the status of residual stress on the surface of welded joints was measured by using X-ray stress analyzer. The results show that the yield strength, tensile strength and elongation rate of the samples after laser annealing at 200℃ increase by 32.5%, 22.5% and 4.6% than those of the original samples, respectively, while after laser annealing at 300℃,they only increase by 6.6%, 6.5% and 7.5%, respectively; the tensile fracture of the samples before and after laser annealing is tough fracture, but the dimple size of the samples after laser annealing is bigger than that of the original samples, with the increase of temperature,the dimple size increases further; the grain refinement and residual compressive stress generated on the surface of the samples after laser annealing are the main factors of hot-stretching properties improvement.

  17. Acute effect of different stretching methods on Illinois agility test in soccer players.

    Science.gov (United States)

    Amiri-Khorasani, Mohammadtaghi; Sahebozamani, Mansour; Tabrizi, Kourosh G; Yusof, Ashril B

    2010-10-01

    The purpose of this study was to examine the effects of static, dynamic, and the combination of static and dynamic stretching within a pre-exercise warm-up on the Illinois agility test (IAT) in soccer players. Nineteen professional soccer players (age = 22.5 ± 2.5 years, height = 1.79 ± 0.003 m, body mass = 74.8 ± 10.9 kg) were tested for agility performance using the IAT after different warm-up protocols consisting of static, dynamic, combined stretching, and no stretching. The players were subgrouped into less and more experienced players (5.12 ± 0.83 and 8.18 ± 1.16 years, respectively). There were significant decreases in agility time after no stretching, among no stretching vs. static stretching; after dynamic stretching, among static vs. dynamic stretching; and after dynamic stretching, among dynamic vs. combined stretching during warm-ups for the agility: mean ± SD data were 14.18 ± 0.66 seconds (no stretch), 14.90 ± 0.38 seconds (static), 13.95 ± 0.32 seconds (dynamic), and 14.50 ± 0.35 seconds (combined). There was significant difference between less and more experienced players after no stretching and dynamic stretching. There was significant decrease in agility time following dynamic stretching vs. static stretching in both less and more experienced players. Static stretching does not appear to be detrimental to agility performance when combined with dynamic warm-up for professional soccer players. However, dynamic stretching during the warm-up was most effective as preparation for agility performance. The data from this study suggest that more experienced players demonstrate better agility skills due to years of training and playing soccer.

  18. The effectiveness of manual stretching in the treatment of plantar heel pain: a systematic review

    Directory of Open Access Journals (Sweden)

    Parish Ben

    2011-06-01

    Full Text Available Abstract Background Plantar heel pain is a commonly occurring foot complaint. Stretching is frequently utilised as a treatment, yet a systematic review focusing only on its effectiveness has not been published. This review aimed to assess the effectiveness of stretching on pain and function in people with plantar heel pain. Methods Medline, EMBASE, CINAHL, AMED, and The Cochrane Library were searched from inception to July 2010. Studies fulfilling the inclusion criteria were independently assessed, and their quality evaluated using the modified PEDro scale. Results Six studies including 365 symptomatic participants were included. Two compared stretching with a control, one study compared stretching to an alternative intervention, one study compared stretching to both alternative and control interventions, and two compared different stretching techniques and durations. Quality rating on the modified Pedro scale varied from two to eight out of a maximum of ten points. The methodologies and interventions varied significantly between studies, making meta-analysis inappropriate. Most participants improved over the course of the studies, but when stretching was compared to alternative or control interventions, the changes only reached statistical significance in one study that used a combination of calf muscle stretches and plantar fascia stretches in their stretching programme. Another study comparing different stretching techniques, showed a statistically significant reduction in some aspects of pain in favour of plantar fascia stretching over calf stretches in the short term. Conclusions There were too few studies to assess whether stretching is effective compared to control or other interventions, for either pain or function. However, there is some evidence that plantar fascia stretching may be more effective than Achilles tendon stretching alone in the short-term. Appropriately powered randomised controlled trials, utilizing validated outcome

  19. Acute effects of constant torque and constant angle stretching on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, Andreas; Budini, Francesco; Tilp, Markus

    2017-08-01

    Static stretching induces acute structural changes of the muscle-tendon unit (MTU) that are related to the intensity or duration of stretching. It has been reported that stretching with a constant torque (CT) leads to greater joint range of motion changes than stretching with a constant angle (CA). Whether or not this difference is due to different structural changes of the MTUs of the lower leg and ankle plantar flexors is not known. Therefore, the purpose of this study was to compare the acute effects of single CA and CT stretching on various muscle and tendon mechanical properties. Seventeen young, healthy volunteers were tested on two separate days using either CT or CA stretching (4 × 30 s each). Before and after stretching, dorsiflexion range of motion (RoM), passive resistive torque (PRT), and maximum voluntary contraction (MVC) were measured with a dynamometer. Ultrasonography of the medial gastrocnemius (GM) muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate their stiffness. Maximum dorsiflexion increased while PRT, muscle-tendon stiffness, and muscle stiffness decreased following both CA and CT stretching. There was a greater increase in RoM following CT stretching compared to CA stretching. Moreover, the decline in PRT was greater during CT stretching compared to CA stretching. As expected, several functional adaptations (RoM, PRT) were different between CT and CA stretching due to the higher intensity of CT stretching. However, no structural differences in the adaptations to the stretching modalities could be detected. We suggest that the different functional adaptations between CA and CT stretching are the consequence of different adaptations in the perception of stretch and pain.

  20. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    International Nuclear Information System (INIS)

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-01-01

    Highlights: → Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. → Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca 2+ permeant SACs. → The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. → Stretch-induced ET-1 production depends on a calcium influx. → SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch ( 2+ threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  1. Determination of bisphenol A in, and its migration from, PVC stretch film used for food packaging.

    Science.gov (United States)

    López-Cervantes, J; Paseiro-Losada, P

    2003-06-01

    Bisphenol A (BPA) is used as an additive in polyvinyl chloride (PVC) products, including stretch films used for food packaging. The BPA contents were investigated of several brands of stretch film bought locally but marketed internationally or throughout Spain and which were presumably produced at different manufacturing plants. Their major components were identified by FTIR (Fourier Transform Infrared Spectrometry) and horizontal attenuated total reflectance, and the migration of BPA from these materials into the standard European Union food simulants was determined by high-performance liquid chromatography (HPLC) using both fluorescence (FL) and ultraviolet (UV) detection, the identity of the analyte being confirmed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). The two HPLC detection methods had different detection limits (30 microg x l(-1) for UV, 3 microg x l(-1) for FL), but afforded virtually identical BPA determinations for the samples tested. BPA contents ranging from 40 to 100 mg x kg(-1) were found in three of the five PVC-based films analysed, and a content of 500 mg x kg(-1) was found in a fourth; for these determinations, extraction into acetonitrile was used. In standard tests of migration into water, 3% acetic acid and olive oil over 10 days at 40 degrees C, migration from a given film was in all cases greatest into olive oil. Migration from the films with non-zero BPA contents ranged from 3 to 31 microg x dm(-2), values higher than those reported for many other food-contact materials, but lower than the European Union specific migration limit for BPA. PVC stretch film nevertheless may make a significant contribution to contamination of foodstuffs by BPA, and should be taken into account in estimating BPA intake or exposure to this substance.

  2. Acute Effect of Static Stretching Exercise on Arterial Stiffness in Healthy Young Adults.

    Science.gov (United States)

    Yamato, Yosuke; Hasegawa, Natsuki; Sato, Koji; Hamaoka, Takafumi; Ogoh, Shigehiko; Iemitsu, Motoyuki

    2016-10-01

    Habitual stretching exercise increases carotid arterial compliance, and acute stretching exercise increases arterial compliance in patients with myocardial infarction. However, it is not known whether this arterial adaptation is sustained after exercise. The aim of this study was to examine the effect of a single bout of stretching exercise on the time course of systemic, central, and peripheral arterial stiffness in healthy young subjects. Twenty-six healthy young men performed static stretching exercise involving the entire body (trunk, upper limb, and lower limb) for 40 mins. Pulse-wave velocity (PWV; an index of arterial stiffness), blood pressure, and heart rate were measured before and 0, 15, 30, and 60 mins after stretching exercise. Femoral-ankle PWV and brachial-ankle PWV were reduced relative to baseline 15 and 30 mins after acute stretching (P stretch stimulation may result in chronic high arterial compliance, although a single bout of stretch exercise acutely affects arterial compliance.

  3. Number of repetition after different rest intervals between static stretching and resistance training

    Directory of Open Access Journals (Sweden)

    H. Dias

    2017-09-01

    Conclusions: Therefore, 30-minute interval between static stretching and resistance exercises was needed to achieve greater repetition performance. Thus, static stretching for lower limbs may be avoided before a resistance training session.

  4. Color suppressed contributions to the decay modes Bd,s→Ds,dDs,d, Bd,s→Ds,dD*s,d, and Bd,s→D*s,d D*s,d

    International Nuclear Information System (INIS)

    Eeg, J.O.; Fajfer, S.; Prapotnik, A.

    2005-01-01

    The amplitudes for decays of the type B d,s →D s,d D s,d , have no factorizable contributions, while B d,s →D s,d D * s,d , and B d,s →D * s,d D * s,d have relatively small factorizable contributions through the annihilation mechanism. The dominant contributions to the decay amplitudes arise from chiral loop contributions and tree level amplitudes which can be obtained in terms of soft gluon emissions forming a gluon condensate. We predict that the branching ratios for the processes anti B 0 d →D s + D s - , anti B 0 d →D s +* D s - and anti B 0 d →D s + D s -* are all of order (2-3) x 10 -4 , while anti B 0 s →D d + D d - , anti B 0 s →D d +* D d - and anti B 0 s →D d + D d -* are of order (4-7) x 10 -3 . We obtain branching ratios for two D * 's in the final state of order two times bigger. (orig.)

  5. Acute Effects of Dynamic Stretching on Muscle Flexibility and Performance: An Analysis of the Current Literature.

    Science.gov (United States)

    Opplert, Jules; Babault, Nicolas

    2018-02-01

    Stretching has long been used in many physical activities to increase range of motion (ROM) around a joint. Stretching also has other acute effects on the neuromuscular system. For instance, significant reductions in maximal voluntary strength, muscle power or evoked contractile properties have been recorded immediately after a single bout of static stretching, raising interest in other stretching modalities. Thus, the effects of dynamic stretching on subsequent muscular performance have been questioned. This review aimed to investigate performance and physiological alterations following dynamic stretching. There is a substantial amount of evidence pointing out the positive effects on ROM and subsequent performance (force, power, sprint and jump). The larger ROM would be mainly attributable to reduced stiffness of the muscle-tendon unit, while the improved muscular performance to temperature and potentiation-related mechanisms caused by the voluntary contraction associated with dynamic stretching. Therefore, if the goal of a warm-up is to increase joint ROM and to enhance muscle force and/or power, dynamic stretching seems to be a suitable alternative to static stretching. Nevertheless, numerous studies reporting no alteration or even performance impairment have highlighted possible mitigating factors (such as stretch duration, amplitude or velocity). Accordingly, ballistic stretching, a form of dynamic stretching with greater velocities, would be less beneficial than controlled dynamic stretching. Notwithstanding, the literature shows that inconsistent description of stretch procedures has been an important deterrent to reaching a clear consensus. In this review, we highlight the need for future studies reporting homogeneous, clearly described stretching protocols, and propose a clarified stretching terminology and methodology.

  6. Active, passive and proprioceptive neuromuscular facilitation stretching are comparable in improving the knee flexion range in people with total knee replacement: a randomized controlled trial.

    Science.gov (United States)

    Chow, Tiffany P Y; Ng, Gabriel Y F

    2010-10-01

    To compare the immediate and medium-term effects of three stretching methods on the knee flexion range in people with a total knee replacement. Randomized clinical trial. Rehabilitation hospital. 117 patients were recruited and 100 (mean age: 68.43 ± 7.95 years) of them completed the study. Patients receiving total knee replacement due to knee osteoarthritis were randomly assigned into 3 groups of: active stretching (group 1, n =32), passive stretching (group 2, n =35) and proprioceptive neuromuscular facilitation stretching (group 3, n =33). The immediate change in both active and passive knee flexion range after the first treatment session and the pattern of change in these ranges throughout the 2-week study period were compared among the three groups. All groups demonstrated significant improvement in knee ranges with time. The active range of group 1 improved by 19.9°, group 2 by 25.3° and group 3 by 22.5° throughout the 2-week period, whereas the improvements in the passive range were 18.8°, 24.5° and 22.7°, respectively. For between-group comparisons, no significant difference was found in both active (P = 0.647) and passive (P = 0.501) knee range immediately after stretching. For the changes at 2 weeks, there was also no significant difference among the groups in both active (P = 0.716) and passive (P = 0.959) knee ranges. This study revealed that all three modes of stretching were associated with an increase in the knee flexion range of patients after total knee replacement, with no statistically significant differences between the changes seen.

  7. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    Science.gov (United States)

    2013-10-01

    weight. 15. SUBJECT TERMS Spinal cord injury, stretching, physical therapy , rehabilitation, locomotor recovery 16. SECURITY CLASSIFICATION OF...David S. K. Magnuson, PhD. University of Louisville. Introduction: This research focuses on the impact of stretching ( physical therapy maneuvers...lesions. Physical therapists use stretching maneuvers to maintain extensibility of soft tissues and to manage spasticity . Previous studies in our lab

  8. Can Stretching Prior to Exercise and Sports Improve Performance and Prevent Injury?

    Science.gov (United States)

    Bracko, Michael R.

    2002-01-01

    Examines data from research on stretching as it relates to enhanced performance and injury prevention so that fitness, exercise, and sports performance professionals can make informed decisions about stretching programs for clients. The paper notes that stretching is a misunderstood component of fitness and sports training. Few studies show…

  9. The effects of different volumes of dynamic stretching on 20-M ...

    African Journals Online (AJOL)

    ... each sprint) following different volumes of dynamic stretching (DSS1, DSS2 and DSS3). The results showed no significant difference for all parameters between all the all dynamic stretching volumes. Results show that any of the dynamic stretching volumes may be used as a warm up prior to the repeated sprints session.

  10. DNA analysis by single molecule stretching in nanofluidic biochips

    DEFF Research Database (Denmark)

    Abad, E.; Juarros, A.; Retolaza, A.

    2011-01-01

    Stretching single DNA molecules by confinement in nanofluidic channels has attracted a great interest during the last few years as a DNA analysis tool. We have designed and fabricated a sealed micro/nanofluidic device for DNA stretching applications, based on the use of the high throughput Nano......Imprint Lithography (NIL) technology combined with a conventional anodic bonding of the silicon base and Pyrex cover. Using this chip, we have performed single molecule imaging on a bench-top fluorescent microscope system. Lambda phage DNA was used as a model sample to characterize the chip. Single molecules of λ...... a method to determining DNA size. The results of this work prove that the developed fabrication process is a good alternative for the fabrication of single molecule DNA biochips and it allows developing a variety of innovative bio/chemical sensors based on single-molecule DNA sequencing devices....

  11. Progressive muscle relaxation, yoga stretching, and ABC relaxation theory.

    Science.gov (United States)

    Ghoncheh, Shahyad; Smith, Jonathan C

    2004-01-01

    This study compared the psychological effects of progressive muscle relaxation (PMR) and yoga stretching (hatha) exercises. Forty participants were randomly divided into two groups and taught PMR or yoga stretching exercises. Both groups practiced once a week for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, practitioners of PMR displayed higher levels of relaxation states (R-States) Physical Relaxation and Disengagement at Week 4 and higher levels of Mental Quiet and Joy as a posttraining aftereffect at Week 5. Contrary to what was hypothesized, groups did not display different levels of R-States Energized or Aware. Results suggest the value of supplementing traditional somatic conceptualizations of relaxation with the psychological approach embodied in ABC relaxation theory. Clinical and research implications are discussed. Copyright 2003 Wiley Periodicals, Inc. J Clin Psychol.

  12. FUZZY BASED CONTRAST STRETCHING FOR MEDICAL IMAGE ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    T.C. Raja Kumar

    2011-07-01

    Full Text Available Contrast Stretching is an important part in medical image processing applications. Contrast is the difference between two adjacent pixels. Fuzzy statistical values are analyzed and better results are produced in the spatial domain of the input image. The histogram mapping produces the resultant image with less impulsive noise and smooth nature. The probabilities of gray values are generated and the fuzzy set is determined from the position of the input image pixel. The result indicates the good performance of the proposed fuzzy based stretching. The inverse transform of the real values are mapped with the input image to generate the fuzzy statistics. This approach gives a flexible image enhancement for medical images in the presence of noises.

  13. Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface.

    Science.gov (United States)

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2015-01-01

    The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞). The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM). Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem.

  14. Mechanical stretch modulates cell migration in the lungs.

    Science.gov (United States)

    López-Martínez, Cecilia; Huidobro, Covadonga; Albaiceta, Guillermo M; López-Alonso, Inés

    2018-01-01

    Cell migration is a core process to preserve homeostasis. Release of chemotactic signals induces changes in cell cytoskeleton to facilitate migration. This includes the rearrangement of cytoskeleton, genomic reprogramming and the modification of the surrounding extracellular matrix (ECM) to allow the motion of cells through. In the special case of repair after acute lung injury, cells must migrate while exposed to an increased mechanical stretch caused either by an increased work of breathing or positive-pressure ventilation. Interestingly, the cell response to this increased mechanical load can modify virtually all the mechanisms involved in cell migration. In this review we explore the interplay between stretch and the machinery responsible for cell migration. A translational approach to find new therapies in acute lung injury must take into account these interactions in order to develop effective treatments that promote lung repair.

  15. Device for stretching tapes or cables intended for manipulators

    International Nuclear Information System (INIS)

    Baudoin, J.-C.; Oger, Robert.

    1975-01-01

    The invention relates to a device for stretching tapes (or cables) intended for remote handling devices. Said equipment consists of a spring system continuously applying a constant tensile stress to said tapes (or cables) in view of taking up the slack in the latter. Said spring system is fastened to a supporting bar able to be rigidly connected to a member of the remote handling device [fr

  16. Anomalies in the coil-stretch transition of flexible polymers

    Science.gov (United States)

    Ghosal, Aishani; Cherayil, Binny J.

    2018-03-01

    The flow-induced coil-stretch transition of high molecular weight polymers has generally been held to be of first order. But evidence of significant slowing down in the rate at which the polymers relax to equilibrium in the vicinity of the transition suggests that the thermodynamic character of the transition may be less clear-cut. The above slowing down effect is actually characteristic of a second-order transition, and it points to the existence of a broad spectrum of conformational states in the transition region, analogous to the existence of fluctuations of all length scales at a critical point. In this paper, using a path integral approach based on a free-draining finitely extensible chain model, we calculate various polymer properties as a function of elongational flow as a way of exploring different statistical mechanical details of the coil-stretch transition. These properties include the molecular weight dependence of the flow-extension curve of the polymer, the distribution of its steady-state end-to-end distances, and the characteristic relaxation time τR of these distances. Among other findings, our calculations indicate that the coil-stretch transition is discontinuous in the N → ∞ limit, that the effective free energy of the chain is unimodal at all values of the flow, becoming broad and flat in the immediate vicinity of the transition, and that the ratio of τR to the Rouse relaxation time increases abruptly at the transition before eventually reaching a plateau value at large flow strengths. These aspects of the coil-stretch transition place it among a larger class of unconventional nominally first-order single chain transitions that include the adsorption transition of surface-tethered polymers and the escape transition of compressed polymers.

  17. Effect of hexane treatment and uniaxial stretching on bending ...

    African Journals Online (AJOL)

    ... β31, defined as the bending piezoelectric stress constant, was calculated. After hexane treatment and uniaxial stretching of the PVDF film, the value of β31 was 5.75 mV/m and 8.00 mV/m for draw ratio of 1.5 and 2.5 was recorded. Fourier transform Infra-red (FTIR) spectrophotometry was used for structural investigations.

  18. Growth on demand: reviewing the mechanobiology of stretched skin.

    Science.gov (United States)

    Zöllner, Alexander M; Holland, Maria A; Honda, Kord S; Gosain, Arun K; Kuhl, Ellen

    2013-12-01

    Skin is a highly dynamic, autoregulated, living system that responds to mechanical stretch through a net gain in skin surface area. Tissue expansion uses the concept of controlled overstretch to grow extra skin for defect repair in situ. While the short-term mechanics of stretched skin have been studied intensely by testing explanted tissue samples ex vivo, we know very little about the long-term biomechanics and mechanobiology of living skin in vivo. Here we explore the long-term effects of mechanical stretch on the characteristics of living skin using a mathematical model for skin growth. We review the molecular mechanisms by which skin responds to mechanical loading and model their effects collectively in a single scalar-valued internal variable, the surface area growth. This allows us to adopt a continuum model for growing skin based on the multiplicative decomposition of the deformation gradient into a reversible elastic and an irreversible growth part. To demonstrate the inherent modularity of this approach, we implement growth as a user-defined constitutive subroutine into the general purpose implicit finite element program Abaqus/Standard. To illustrate the features of the model, we simulate the controlled area growth of skin in response to tissue expansion with multiple filling points in time. Our results demonstrate that the field theories of continuum mechanics can reliably predict the manipulation of thin biological membranes through mechanical overstretch. Our model could serve as a valuable tool to rationalize clinical process parameters such as expander geometry, expander size, filling volume, filling pressure, and inflation timing to minimize tissue necrosis and maximize patient comfort in plastic and reconstructive surgery. While initially developed for growing skin, our model can easily be generalized to arbitrary biological structures to explore the physiology and pathology of stretch-induced growth of other living systems such as hearts

  19. DEVELOPMENT OF DEFORMATION STRIPS WHILE STRETCHING OF CYLINDRICAL SAMPLES

    Directory of Open Access Journals (Sweden)

    Y. V. Vasilevich

    2011-01-01

    Full Text Available Deformation strips have been experimentally revealed and described while stretching of cylindrical samples by means of computer thermography. It has been established that temperature of shift strip surface grows smoothly up to the stage of crack origin in material defect. Sharp growth of surface temperature occurs when tensile stresses reach tensile strength. Change in surface temperature occurs wavy after destruction (while cooling the sample. Processes of material destruction origin and development  characterize temperature changes in deformation strips.

  20. Genetic stretching factors in masseter muscle after orthognathic surgery.

    Science.gov (United States)

    Breuel, Wiebke; Krause, Micaela; Schneider, Matthias; Harzer, Winfried

    2013-09-01

    Up to 30% of patients relapse after orthognathic operations, and one reason might be incomplete neuromuscular adaptation of the masticatory muscles. Displacement of the mandible in sagittal or vertical directions, or both, leads to stretching or compression of these muscles. The aim of this study was to analyse stretching factors in 35 patients with retrognathism or prognathism of the mandible (Classes II and III). Tissue samples were taken from both sides of the masseter muscle (anterior and posterior) both before and 6 months after operation. Developmental myosin heavy chains MYH3 and MYH8, the fast and slow MYH 1, 2, and 7, and cyclo-oxygenase (COX) 2, forkhead transcription factor (FOX)O3a, calcineurin, and nuclear factor of activated T cells (NFAT)1c (stretching and regeneration-specific), were analysed by real time polymerase chain reaction (PCR). Correlations of Class II and III with sagittal and vertical cephalometric measurements ANB and ML-NL-angle were examined, and the results showed significant differences in amounts of MYH8 (pstretching indicators FOXO3a, calcineurin, and NFAT1c only in Class II patients. This means that stretching of the masseter muscle caused by lengthening of the mandible and raising of the bite in Class II patients was more likely to lead to relapse (similar to that in patients with open bite) than in Class III patients. In conclusion, deep bite should be reduced more by incisor intrusion than by skeletal opening. The focus in these patients should be directed towards physiotherapeutic strengthening of the muscles of mastication, and more consideration should be given to change in the vertical dimension. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Statistical analysis of stretch film production process capabilities

    OpenAIRE

    Kovačić, Goran; Kondić, Živko

    2012-01-01

    The basic concept of statistical process control is based on the comparison of data collected from the process with calculated control limits and conclusions about the process based on the above. This process is recognized as a modern method for the analysis of process capabilities over different capability indexes. This paper describes the application of this method in monitoring and analysis of stretch film production process capabilities.

  2. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006 and tension development (adjusted Niederer, Hunter, Smith, 2006 model with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material. Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  3. Pulse stretching in a Q-switched ruby laser for bubble chamber holography

    International Nuclear Information System (INIS)

    Harigel, G.G.

    1985-01-01

    During the first test of a modified in-line holography scheme in BEBC, heavy laser induced boiling was observed when using Q-switched pulses (>= 20 ns, <= 3J). This boiling spoiled the conventional pictures taken some 10 ms later. There was no boiling present when the laser was fired in the non-Q-switched mode (proportional 1 ms) at the same energy, however this latter mode is unsuitable for holography, mainly due to the bubble movement and size variation during illumination. Our approach has therefore been to aim for an intermediate duration. Consequently, a pulse stretching technique for a Q-switched ruby laser oscillator was developed, which gives a fairly flat pulse of proportional 2 μs duration with proportional 4 m coherence length. The cavity was followed by four amplifiers and they produce light energies up to 10 J for the holographic recording of particle tracks in a large volume (several cubic meters). The entire equipment was then tested during a technical run with the 15-foot Bubble Chamber at Fermilab, and results obtained with various laser pulse durations are discussed. (orig./HSI)

  4. Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces

    Directory of Open Access Journals (Sweden)

    Timothy R. Olsen

    2016-11-01

    Full Text Available Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs, as part of a post-processing method for enhancing the deposition and mechanical properties of an extracellular matrix (ECM. The purpose was to accelerate the conventional tissue maturation process via novel post-processing techniques that accelerate the functional, structural, and mechanical mimicking of native tissues. The results of a forty-day study of JMCSs indicated an expression of collagen I, collagen IV, elastin, and fibronectin, which are important vascular ECM proteins. Most notably, the subsequent exposure of fused tissue sheets composed of JMCSs to magnetic forces did not hinder the production of these key proteins. Quantitative results demonstrate that cyclic longitudinal stretching of the tissue sheets mediated by these magnetic forces increased the Young’s modulus and induced collagen fiber alignment over a seven day period, when compared to statically conditioned controls. Specifically, the elastin and collagen content of these dynamically-conditioned sheets were 35- and three-fold greater, respectively, at seven days compared to the statically-conditioned controls at three days. These findings indicate the potential of using magnetic forces in tissue maturation, specifically through the cyclic longitudinal stretching of tissues.

  5. A Novel Stretch Sensor to Measure Venous Hemodynamics

    Directory of Open Access Journals (Sweden)

    Syrpailyne Wankhar

    2018-07-01

    Full Text Available Chronic venous insufficiency is a debilitating condition causing varicose veins and venous ulcers. The pathophysiology includes reflux and venous obstruction. The diagnosis is often made by clinical examination and confirmed by Venous Doppler studies. Plethysmography helps to quantitatively examine the reflux and diagnose the burden of deep venous pathology to better understand venous hemodynamics, which is not elicited by venous duplex examination alone. However, most of these tests are qualitative, expensive, and not easily available. In this paper, we demonstrate the potential use of a novel stretch sensor in the assessment of venous hemodynamics during different maneuvers by measuring the change in calf circumference. We designed the stretch sensor by using semiconductor strain gauges pasted onto a small metal bar to form a load cell. The elastic and Velcro material attached to the load cell form a belt. It converts the change in limb circumference to a proportional tension (force of distension when placed around the calf muscle. We recorded the change in limb circumference from arrays of stretch sensors by using an in-house data acquisition system. We calculated the venous volume (VV, venous filling index (VFI, ejection fraction (EF and residual venous volume (RVV on two normal subjects and on two patients to assess venous hemodynamics. The values (VV > 60 ml, VFI 60%, RVV 2ml/s, EF 35% in patients were comparable to those reported in the literature.

  6. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    Science.gov (United States)

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  7. Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females

    DEFF Research Database (Denmark)

    Caserotti, Paolo; Aagaard, Per; Simonsen, Erik Bruun

    2001-01-01

    Aging, muscle power, stretch-shortening cycle, eccentric muscle actions, concentric contractions......Aging, muscle power, stretch-shortening cycle, eccentric muscle actions, concentric contractions...

  8. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  9. A comparison of assisted and unassisted proprioceptive neuromuscular facilitation techniques and static stretching.

    Science.gov (United States)

    Maddigan, Meaghan E; Peach, Ashley A; Behm, David G

    2012-05-01

    A comparison of assisted and unassisted proprioceptive neuromuscular facilitation techniques and static stretching. J Strength Cond Res 26(5): 1238-1244, 2012-Proprioceptive neuromuscular facilitation (PNF) stretching often requires a partner. Straps are available allowing an individual to perform PNF stretching alone. It is not known if a strap provides similar improvements in the range of motion (ROM) as partner-assisted PNF or static stretching. The purpose of this study was to compare assisted and unassisted (with a strap) PNF stretching and static stretching. Hip joint ROM, reaction time (RT), and movement time (MT) were measured prestretching and poststretching. Thirteen recreationally active adults participated in this study. The participants were subjected to 5 different stretch interventions in a random order on separate days. Stretch conditions included unassisted PNF stretching using (a) isometric, (b) concentric, and (c) eccentric contractions with a stretch strap, (d) partner-assisted isometric PNF, and (e) static stretching. The RT, MT, dynamic, active, passive hip flexion angle, and angular velocity with dynamic hip flexion were measured before and after the intervention. The ROM improved (p < 0.05) 2.6, 2.7, and 5.4%, respectively, with dynamic, active static, and passive static ROM, but there was no significant difference between the stretching protocols. There was a main effect for time (p < 0.05) with all stretching conditions negatively impacting dynamic angular velocity (9.2%). Although there was no significant effect on RT, MT showed a negative main effect for time (p < 0.05) slowing 3.4%. In conclusion, it was found that all 3 forms of active stretching provided similar improvements in the ROM and poststretching performance decrements in MT and angular velocity. Thus, individuals can implement PNF stretching techniques with a partner or alone with a strap to improve ROM, but athletes should not use these techniques before important

  10. Muscle and joint responses during and after static stretching performed at different intensities.

    Science.gov (United States)

    Freitas, Sandro R; Andrade, Ricardo J; Larcoupaille, Lilian; Mil-homens, Pedro; Nordez, Antoine

    2015-06-01

    We investigated the effects of plantarflexor static stretching of different intensities on the medial gastrocnemius (GAS) shear elastic modulus, GAS fascicle length and ankle passive torque-angle responses during and after stretching. Participants performed three stretching sessions of different intensities: 40 % (R40) of maximal dorsiflexion range of motion (ROM), 60 % (R60) of ROM, and 80 % (R80) of ROM. Each stretching lasted 10 min. The GAS architecture, GAS shear elastic modulus, ankle passive torque-angle, and muscle activity were assessed before, during, and after the stretching. The absolute and relative (i.e., normalized to the static stretching start value) GAS shear elastic modulus relaxation varied across stretching intensities. The absolute passive torque relaxation varied across intensities (p stretching start value. No significant changes were observed in GAS fascicle length during the stretching (p = 0.93). After stretching, passive torque at a given angle was significantly decreased for R60 [-0.99 ± 0.59 Nm (-6.5 ± 3.8 %), p stretching and post-stretching effect in the GAS shear elastic modulus or ankle passive torque variables. No significant relation was found between the shear elastic modulus and the ankle passive torque responses during and after stretching. The effects of stretching on joint passive torque do not reflect changes in the medial gastrocnemius shear elastic modulus, and these responses to stretching depend on its intensity.

  11. Multiwavelength mode-locked cylindrical vector beam fiber laser based on mode selective coupler

    Science.gov (United States)

    Huang, Ping; Cai, Yu; Zhang, Zuxing

    2017-10-01

    We propose and demonstrate a multiwavelength mode-locked fiber laser with cylindrical vector beam generation for the first time, to the best of our knowledge. The mode-locking mechanism is nonlinear polarization rotation, and the multiwavelength operation is contributed to the in-line birefringence fiber filter with periodic multiple passbands formed by incorporating a section of polarization maintaining fiber into the laser cavity with a polarizer. Furthermore, using the mode selective coupler, which acts as mode converter from fundamental mode to higher-order mode, multiwavelength mode-locked cylindrical vector beams have been obtained, which may have potential applications in mode-division multiplexing optical fiber communication and material processing.

  12. H-mode physics

    International Nuclear Information System (INIS)

    Itoh, Sanae.

    1991-06-01

    After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)

  13. Micropatterning stretched and aligned DNA for sequence-specific nanolithography

    Science.gov (United States)

    Petit, Cecilia Anna Paulette

    Techniques for fabricating nanostructured materials can be categorized as either "top-down" or "bottom-up". Top-down techniques use lithography and contact printing to create patterned surfaces and microfluidic channels that can corral and organize nanoscale structures, such as molecules and nanorods in contrast; bottom-up techniques use self-assembly or molecular recognition to direct the organization of materials. A central goal in nanotechnology is the integration of bottom-up and top-down assembly strategies for materials development, device design; and process integration. With this goal in mind, we have developed strategies that will allow this integration by using DNA as a template for nanofabrication; two top-down approaches allow the placement of these templates, while the bottom-up technique uses the specific sequence of bases to pattern materials along each strand of DNA. Our first top-down approach, termed combing of molecules in microchannels (COMMIC), produces microscopic patterns of stretched and aligned molecules of DNA on surfaces. This process consists of passing an air-water interface over end adsorbed molecules inside microfabricated channels. The geometry of the microchannel directs the placement of the DNA molecules, while the geometry of the airwater interface directs the local orientation and curvature of the molecules. We developed another top-down strategy for creating micropatterns of stretched and aligned DNA using surface chemistry. Because DNA stretching occurs on hydrophobic surfaces, this technique uses photolithography to pattern vinyl-terminated silanes on glass When these surface-, are immersed in DNA solution, molecules adhere preferentially to the silanized areas. This approach has also proven useful in patterning protein for cell adhesion studies. Finally, we describe the use of these stretched and aligned molecules of DNA as templates for the subsequent bottom-up construction of hetero-structures through hybridization

  14. MULLIGAN MOBILIZATION VERSUS STRETCHING ON THE MANAGEMENT OF PIRIFORMIS SYNDROME A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Samahir Abuaraki Elbkheet

    2016-04-01

    Full Text Available Background: Piriformis syndrome is a commonly overlooked specific cause of low back pain. Apart from mimicking the sciatica-like symptoms, unilateral piriformis tightness can cause rotational dysfunction and pain in the lumbar region. This could lead to low back pain which is a common musculo skeletal problem and a major reason for activity limitation. Stretching the piriformis tightened muscle is a preferred choice of treatment against surgical intervention to release the muscle. Mulligan’s mobilization is based on movement with mobilization which is proven to be effective in many musculo skeletal dysfunctions including the lumbar spine. The purpose of this study is to explore and compare the two treatment methods in relieving the low back pain in clinical conditions with piriformis syndrome. Methods: In this experimental study, 40 patients with piriformis syndrome were selected and divided into two groups. One group was given only piriformis stretching for the tightened muscle and the other group given Mulligan mobilization for lumbo sacral joints. VAS and lower limb functional index were taken to compare before and after the treatment regime of 4 weeks. Results: There was no significant difference between the two groups in both pain scale and lower limb mobility and function. But there was significant improvement in pain relief and LLFI after the treatment regime in both groups compared to the pre-treatment status. Conclusion: Even as the piriformis syndrome is caused by the tightness of the muscle, the consequence in the lower back and lumbar spine mobility can be improved by a Mulligan mobilization as a single mode of intervention.

  15. Short Term Effects of Neurodynamic Stretching and Static Stretching Techniques on Hamstring Muscle Flexibility in Healthy Male Subjects

    OpenAIRE

    Adel Rashad Ahmed; Ahmed Fathy Samhan

    2016-01-01

    Flexibility is a key component of rehabilitation and inadequate muscle extensibility remains a commonly accepted factor for musculoskeletal disorders. Studies on the most optimal technique for improving muscle flexibility are a widely debated. The aim of the study was to compare the effectiveness of neurodynamic and static stretching techniques on hamstring flexibility in healthy male subjects. This study was a randomized experimental trial; forty healthy male subjects with hamstr...

  16. Effects of Dynamic and Static Stretching Within General and Activity Specific Warm-Up Protocols

    OpenAIRE

    Samson, Michael; Button, Duane C.; Chaouachi, Anis; Behm, David G.

    2012-01-01

    The purpose of the study was to determine the effects of static and dynamic stretching protocols within general and activity specific warm-ups. Nine male and ten female subjects were tested under four warm-up conditions including a 1) general aerobic warm-up with static stretching, 2) general aerobic warm-up with dynamic stretching, 3) general and specific warm-up with static stretching and 4) general and specific warm-up with dynamic stretching. Following all conditions, subjects were tested...

  17. A simple constrained uniaxial tensile apparatus for in situ investigation of film stretching processing.

    Science.gov (United States)

    Meng, Lingpu; Li, Jing; Cui, Kunpeng; Chen, Xiaowei; Lin, Yuanfei; Xu, Jiali; Li, Liangbin

    2013-11-01

    A simple constrained uniaxial tensile apparatus was designed and constructed to obtain stress-strain curve during stretching and subsequent structural evolution of polymeric films. Stretch is carried out through two motor driven clamps in the machine direction and scissor-like clamps in the transverse direction keeping the sample width constant. The force information during film stretching process is recorded by a tension sensor and structural evolution can be obtained by in situ X-ray scattering technique. All parameters related to film stretching manufacturing, such as temperature, draw ratio, and stretching speed can be set independently, making the apparatus an effective method to explore the relationship between processing parameters and structure.

  18. Time course of the effects of static stretching on cycling economy.

    Science.gov (United States)

    Wolfe, Alyson E; Brown, Lee E; Coburn, Jared W; Kersey, Robert D; Bottaro, Martim

    2011-11-01

    Stretching has been implemented as part of the warm-up before physical events and widely thought to promote increased sport performance and decreased injury risk. However, recent research has concluded that static stretching before many exercises inhibits acute power, strength, and sprinting performance. There is little research examining the time course of these effects on moderate intensity cycling. The purpose of this study was to examine the time course of static stretching on cycling economy. The subjects consisted of 5 men and 5 women highly trained endurance cyclists. The first of 3 visits was baseline testing of their cycling VO2max. The second and third visits were either stretching or no stretching before a 30-minute stationary ride at 65% of their VO2max. The stretching condition consisted of four 30-second repetitions of 5 stretches with an average total stretching time of 16 minutes. VO2 demonstrated a significant condition by time interaction with the 5-minute time point being significantly less in the nonstretching condition (32.66 ± 5.35 ml·kg(-1)·min(-1)) than stretching (34.39 ± 5.39 ml·kg(-1)·min(-1)). No other time points were different. Our results demonstrate that static stretching yielded an acute increase in submaximal VO2; therefore, coaches and highly trained endurance cyclists should exclude static stretching immediately before moderate intensity cycling because it reduces acute cycling economy.

  19. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  20. Magnitude-dependent proliferation and contractility modulation of human bladder smooth muscle cells under physiological stretch.

    Science.gov (United States)

    Luo, De-Yi; Wazir, Romel; Du, Caigan; Tian, Ye; Yue, Xuan; Wei, Tang-Qiang; Wang, Kun-Jie

    2015-11-01

    The purpose of this study was to describe and test a kind of stretch pattern which is based on modified BOSE BioDynamic system to produce optimum physiological stretch during bladder cycle. Moreover, we aimed to emphasize the effects of physiological stretch's amplitude upon proliferation and contractility of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to stretch simulating bladder cycle at the range of stretches and time according to customized software on modified BOSE BioDynamic bioreactor. Morphological changes were assessed using immunofluorescence and confocal laser scanning microscope. Cell proliferation and cell viability were determined by BrdU incorporation assay and Cell Counting Kit-8, respectively. Contractility of the cells was determined using collagen gel contraction assay. RT-PCR was used to assess phenotypic and contractility markers. HBSMCs were found to show morphologically spindle-shaped and orientation at various elongations in the modified bioreactor. Stretch-induced proliferation and viability depended on the magnitude of stretch, and stretches also regulate contractility and contraction markers in a magnitude-dependent manner. We described and tested a kind of stretch pattern which delivers physiological stretch implemented during bladder cycle. The findings also showed that mechanical stretch can promote magnitude-dependent morphological, proliferative and contractile modulation of HBSMCs in vitro.

  1. Possible Cause of Nonlinear Tension Rise in Activated Muscle Fiber during Stretching.

    Science.gov (United States)

    Kochubei, P V; Bershitsky, S Yu

    2016-11-01

    Tension in contracting muscle fiber under conditions of ramp stretching rapidly increases, but after reaching a critical stretch P c sharply decreases. To find out the cause of these changes in muscle fiber tension, we stopped stretching before and after reaching P c and left the fiber stretched for 50 msec. After rapid tension drop, the transient tension rise not accompanied by fiber stiffness increase was observed only in fibers heated to 25°C and stretched to P c . Under other experimental conditions, this growth was absent. We suppose that stretch of the fiber to P c induces transition of stereo-specifically attached myosin heads to pre-power stroke state and when the stretching is stopped, they make their step on actin and generate force. When the tension reaches P c , all stereospecifically attached myosin heads turn out to be non-stereospecifically, or weakly attached to actin, and are unable to make the force-generating step.

  2. Unsteady MHD flow of an UCM fluid over a stretching surface with higher order chemical reaction

    Directory of Open Access Journals (Sweden)

    Sudhagar Palani

    2016-03-01

    Full Text Available The objective of this paper was to illustrate the frequent and wide occurrence of unsteady two dimensional MHD flow of an UCM fluid over a stretching surface in the presence of higher order chemical reaction in a diverse range of applications, both in nature and in technology. The governing partial differential equations are converted into ordinary differential equations by using similarity transformation. The ordinary differential equations were numerically solved by using shooting technique. The effects of different governing parameters on the flow field and mass transfer are shown in graphs and tables. The governing physical parameters significantly influence the flow field and mass transfer. Also, existing results in the literature are compared with the present study as a special case. In addition to practical applications in foams, suspensions, polymer solutions and melts, the present study also contributed to the existing literature.

  3. Viscoelastic Fluid over a Stretching Sheet with Electromagnetic Effects and Nonuniform Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    Kai-Long Hsiao

    2010-01-01

    Full Text Available A magnetic hydrodynamic (MHD of an incompressible viscoelastic fluid over a stretching sheet with electric and magnetic dissipation and nonuniform heat source/sink has been studied. The buoyant effect and the electric number E1 couple with magnetic parameter M to represent the dominance of the electric and magnetic effects, and adding the specific item of nonuniform heat source/sink is presented in governing equations which are the main contribution of this study. The similarity transformation, the finite-difference method, Newton method, and Gauss elimination method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, and the important wall unknown values of f''(0 and θ'(0 have been carried out. The parameter Pr, E1, or Ec can increase the heat transfer effects, but the parameter M or A* may decrease the heat transfer effects.

  4. Effect of restorative yoga vs. stretching on diurnal cortisol dynamics and psychosocial outcomes in individuals with the metabolic syndrome: the PRYSMS randomized controlled trial.

    Science.gov (United States)

    Corey, Sarah M; Epel, Elissa; Schembri, Michael; Pawlowsky, Sarah B; Cole, Roger J; Araneta, Maria Rosario G; Barrett-Connor, Elizabeth; Kanaya, Alka M

    2014-11-01

    , and stress perception in the stretching group compared to the restorative yoga group. Group support during the interactive stretch classes may have contributed to these changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Cyclic stretch-induced stress fiber dynamics - Dependence on strain rate, Rho-kinase and MLCK

    International Nuclear Information System (INIS)

    Lee, Chin-Fu; Haase, Candice; Deguchi, Shinji; Kaunas, Roland

    2010-01-01

    Research highlights: → Cyclic stretch induces stress fiber disassembly, reassembly and fusion perpendicular to the direction of stretch. → Stress fiber disassembly and reorientation were not induced at low stretch frequency. → Stretch caused actin fiber formation parallel to stretch in distinct locations in cells treated with Rho-kinase and MLCK inhibitors. -- Abstract: Stress fiber realignment is an important adaptive response to cyclic stretch for nonmuscle cells, but the mechanism by which such reorganization occurs is not known. By analyzing stress fiber dynamics using live cell microscopy, we revealed that stress fiber reorientation perpendicular to the direction of cyclic uniaxial stretching at 1 Hz did not involve disassembly of the stress fiber distal ends located at focal adhesion sites. Instead, these distal ends were often used to assemble new stress fibers oriented progressively further away from the direction of stretch. Stress fiber disassembly and reorientation were not induced when the frequency of stretch was decreased to 0.01 Hz, however. Treatment with the Rho-kinase inhibitor (Y27632) reduced stress fibers to thin fibers located in the cell periphery which bundled together to form thick fibers oriented parallel to the direction of stretching at 1 Hz. In contrast, these thin fibers remained diffuse in cells subjected to stretch at 0.01 Hz. Cyclic stretch at 1 Hz also induced actin fiber formation parallel to the direction of stretch in cells treated with the myosin light chain kinase (MLCK) inhibitor ML-7, but these fibers were located centrally rather than peripherally. These results shed new light on the mechanism by which stress fibers reorient in response to cyclic stretch in different regions of the actin cytoskeleton.

  6. Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking

    DEFF Research Database (Denmark)

    af Klint, Richard; Mazzaro, Nazarena; Nielsen, Jens Bo

    2010-01-01

    Walking requires a constant adaptation of locomotor output from sensory afferent feedback mechanisms to ensure efficient and stable gait. We investigated the nature of the sensory afferent feedback contribution to the soleus motoneuronal drive and to the corrective stretch reflex by manipulating...... on the soleus stretch reflex was measured by presenting dorsiflexion perturbations ( approximately 5 degrees, 360-400 degrees/s) in mid and late stances. Short (SLRs) and medium latency reflexes (MLRs) were quantified in a 15 ms analysis window. The MLR decreased with decreased loading (P = 0......-related afferent feedback contributes both to the background locomotor activity and to the medium latency stretch reflex. In contrast, length-related afferent feedback may contribute to only the medium latency stretch reflex....

  7. Potential axillary nerve stretching during RSA implantation: an anatomical study.

    Science.gov (United States)

    Marion, Blandine; Leclère, Franck Marie; Casoli, Vincent; Paganini, Federico; Unglaub, Frank; Spies, Christian; Valenti, Philippe

    2014-09-01

    Clinical and subclinical neurological injury after reverse shoulder arthroplasty (RSA) may jeopardize functional outcomes due to the risk of irreversible damage to the axillary nerve. We proposed a simple anatomical study in order to assess the macroscopic effects on the axillary nerve when lowering the humerus as performed during RSA implantation. We also measured the effect on the axillary nerve of a lateralization of the humerus. Between 2011 and 2012, cadaveric dissections of 16 shoulder specimens from nine fresh human cadavers were performed in order to assess the effects on the axillary nerve after the lowering and lateralization of the humerus. We assessed the extent of stretching of the axillary nerve in four positions in the sagittal plane [lowering of the humerus: great tuberosity in contact with the acromion (position 1), in contact with the upper (position 2), middle (position 3) and lower rim of the glenoid (position 4)] and three positions in the frontal plane [lateralization of the humerus: humerus in contact with the glenoid (position 1), humerus lateralized 1 cm (position 2) and 2 cm (position 3)]. When the humerus was lowered, clear macroscopical changes appeared below the middle of the glenoid (the highest level of tension). As regards the lateralization of the humerus, macroscopic study and measurements confirm the absence of stretching of the nerve in those positions. Lowering of the humerus below the equator of the glenoid changes the course and tension of the axillary nerve and may lead to stretching and irreversible damage, compromising the function of the deltoid. Improvements in the design of the implants and modification of the positioning of the glenosphere to avoid notching and to increase mobility must take into account the anatomical changes induced by the prosthesis and its impact on the brachial plexus. Level of Evidence and study type Level IV.

  8. Elastography Study of Hamstring Behaviors during Passive Stretching

    Science.gov (United States)

    Le Sant, Guillaume; Ates, Filiz; Brasseur, Jean-Louis; Nordez, Antoine

    2015-01-01

    Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury. PMID:26418862

  9. Elastography Study of Hamstring Behaviors during Passive Stretching.

    Directory of Open Access Journals (Sweden)

    Guillaume Le Sant

    Full Text Available The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography.The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%, semimembranosus (SM, CV: 10.3%-11.2% and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%, but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%. Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh.This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury.

  10. Resistance training vs. static stretching: effects on flexibility and strength.

    Science.gov (United States)

    Morton, Sam K; Whitehead, James R; Brinkert, Ronald H; Caine, Dennis J

    2011-12-01

    Morton, SK, Whitehead, JR, Brinkert, RH, and Caine, DJ. Resistance training vs. static stretching: Effects on flexibility and strength. J Strength Cond Res 25(12): 3391-3398, 2011-The purpose of this study was to determine how full-range resistance training (RT) affected flexibility and strength compared to static stretching (SS) of the same muscle-joint complexes in untrained adults. Volunteers (n = 25) were randomized to an RT or SS training group. A group of inactive volunteers (n = 12) served as a convenience control group (CON). After pretesting hamstring extension, hip flexion and extension, shoulder extension flexibility, and peak torque of quadriceps and hamstring muscles, subjects completed 5-week SS or RT treatments in which the aim was to stretch or to strength train the same muscle-joint complexes over similar movements and ranges. Posttests of flexibility and strength were then conducted. There was no difference in hamstring flexibility, hip flexion, and hip extension improvement between RT and SS, but both were superior to CON values. There were no differences between groups on shoulder extension flexibility. The RT group was superior to the CON in knee extension peak torque, but there were no differences between groups on knee flexion peak torque. The results of this preliminary study suggest that carefully constructed full-range RT regimens can improve flexibility as well as the typical SS regimens employed in conditioning programs. Because of the potential practical significance of these results to strength and conditioning programs, further studies using true experimental designs, larger sample sizes, and longer training durations should be conducted with the aim of confirming or disproving these results.

  11. Ultrafast quantitative time-stretch imaging flow cytometry of phytoplankton

    Science.gov (United States)

    Lai, Queenie T. K.; Lau, Andy K. S.; Tang, Anson H. L.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2016-03-01

    Comprehensive quantification of phytoplankton abundance, sizes and other parameters, e.g. biomasses, has been an important, yet daunting task in aquatic sciences and biofuel research. It is primarily because of the lack of effective tool to image and thus accurately profile individual microalgae in a large population. The phytoplankton species are highly diversified and heterogeneous in terms of their sizes and the richness in morphological complexity. This fact makes time-stretch imaging, a new ultrafast real-time optical imaging technology, particularly suitable for ultralarge-scale taxonomic classification of phytoplankton together with quantitative image recognition and analysis. We here demonstrate quantitative imaging flow cytometry of single phytoplankton based on quantitative asymmetric-detection time-stretch optical microscopy (Q-ATOM) - a new time-stretch imaging modality for label-free quantitative phase imaging without interferometric implementations. Sharing the similar concept of Schlieren imaging, Q-ATOM accesses multiple phase-gradient contrasts of each single phytoplankton, from which the quantitative phase profile is computed. We employ such system to capture, at an imaging line-scan rate of 11.6 MHz, high-resolution images of two phytoplankton populations (scenedesmus and chlamydomonas) in ultrafast microfluidic flow (3 m/s). We further perform quantitative taxonomic screening analysis enabled by this technique. More importantly, the system can also generate quantitative phase images of single phytoplankton. This is especially useful for label-free quantification of biomasses (e.g. lipid droplets) of the particular species of interest - an important task adopted in biofuel applications. Combining machine learning for automated classification, Q-ATOM could be an attractive platform for continuous and real-time ultralarge-scale single-phytoplankton analysis.

  12. Computation of nuclear reactor parameters using a stretch Kalman filtering

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Poujol, A.

    1976-01-01

    A method of nonlinear stochastic filtering, the stretched Karman filter, is used for the estimation of two basic parameters involved in the control of nuclear reactor start-up. The corresponding algorithm is stored in a small Multi-8 computer and tested with data recorded for the Ulysse reactor (I.N.S.T.N.). The various practical problems involved in using the algorithm are examined: filtering initialization, influence of the model... The quality and time saving obtained in the computation make it possible for a real time operation, the computer being connected with the reactor [fr

  13. Boundary layer flow of nanofluid over an exponentially stretching surface

    Science.gov (United States)

    Nadeem, Sohail; Lee, Changhoon

    2012-01-01

    The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt.

  14. Boundary layer flow of nanofluid over an exponentially stretching surface.

    Science.gov (United States)

    Nadeem, Sohail; Lee, Changhoon

    2012-01-30

    The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt.

  15. An energetic model for macromolecules unfolding in stretching experiments

    Science.gov (United States)

    De Tommasi, D.; Millardi, N.; Puglisi, G.; Saccomandi, G.

    2013-01-01

    We propose a simple approach, based on the minimization of the total (entropic plus unfolding) energy of a two-state system, to describe the unfolding of multi-domain macromolecules (proteins, silks, polysaccharides, nanopolymers). The model is fully analytical and enlightens the role of the different energetic components regulating the unfolding evolution. As an explicit example, we compare the analytical results with a titin atomic force microscopy stretch-induced unfolding experiment showing the ability of the model to quantitatively reproduce the experimental behaviour. In the thermodynamic limit, the sawtooth force–elongation unfolding curve degenerates to a constant force unfolding plateau. PMID:24047874

  16. Physical analogs that help to better understand the modern concepts on continental stretching, hyperextension and rupturing

    Science.gov (United States)

    Zalan, Pedro

    2014-05-01

    modes envisaged by Manatschal and Peron-Pinvidic in several works published in the last ten years, dealing with the development of conjugate rifted margins (stretching, thinning, hyperextension/exhumation, oceanization/breakup), can be found in physical analogs of geological nature and of mundane phenomena, in a much smaller scale than that of a continental rupture. Rocks strained and cut by normal faults, especially the brittle sedimentary rocks, display geometries and structural domains, which in turn were formed by the particular deformation modes, very similar to those published for the Norwegian, Angolan and Southeastern Brazilian margins. A non-geological and non-conventional physical analog is the everyday breakup of a chocolate bar. Given it is stuffed by a thick ductile filling and covered by a thin, brittle chocolate layer; it is incredible how such a common phenomenon can replicate the rupture and breakup of a mega-continent. Such physical analogs can be compared to ultra-deep seismic sections and raise a cloud of incertitude on the definition of hyperextension. Instead of representing the coupling of the deformation of the upper and lower crusts into a brittle mode, rather, hyperextension could correspond to their coupling into a plastic or, at least, into a semi-brittle mode, but not into an entirely brittle mode.

  17. Transverse intrinsic localized modes in monatomic chain and in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hizhnyakov, V. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Klopov, M. [Department of Physics, Faculty of Science, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn (Estonia); Shelkan, A., E-mail: shell@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-03-06

    In this paper an analytical and numerical study of anharmonic vibrations of monatomic chain and graphene in transverse (perpendicular) with respect to the chain/plane direction is presented. Due to the lack of odd anharmonicities and presence of hard quartic anharmonicity for displacements in this direction, there may exist localized anharmonic transverse modes with the frequencies above the spectrum of the corresponding phonons. Although these frequencies are in resonance with longitudinal (chain) or in-plane (graphene) phonons, the modes can decay only due to a weak anharmonic process. Therefore the lifetime of these vibrations may be very long. E.g. in the chain, according to our theoretical and numerical calculations it may exceed 10{sup 10} periods. We call these vibrations as transverse intrinsic localized modes. - Highlights: • In a stretched monatomic chain, long-living nonlinear transverse localized modes may exist. • Transverse vibrations of a chain slowly decay due to creation of longitudinal phonons. • Lifetime of transverse vibrations of a chain may exceed billion periods of vibrations. • In stretched graphene, long-living out-of-plain localized vibrations may exist.

  18. SNV's modes of ordering

    NARCIS (Netherlands)

    Hummel, John; Duim, van der Rene

    2016-01-01

    This article adopts an aidnographic approach to examine how internal organizational modes of ordering have influenced tourism development practices of SNV Netherlands Development Organisation (SNV). Our research revealed six modes of ordering: administration, project management, enterprising,

  19. Duration of static stretching influences muscle force production in hamstring muscles.

    Science.gov (United States)

    Ogura, Yuji; Miyahara, Yutetsu; Naito, Hisashi; Katamoto, Shizuo; Aoki, Junichiro

    2007-08-01

    The purpose of the present study was to investigate whether duration of static stretching could affect the maximal voluntary contraction (MVC). Volunteer male subjects (n = 10) underwent 2 different durations of static stretching of their hamstring muscles in the dominant leg: 30 and 60 seconds. No static stretching condition was used as a control condition. Before and after each stretching trial, hamstring flexibility was measured by a sit and reach test. MVC was then measured using the maximal effort of knee flexion. The hamstring flexibility was significantly increased by 30 and 60 seconds of static stretching (control: 0.5 +/- 1.1 cm; 30 seconds: 2.1 +/- 1.8 cm; 60 seconds: 3.0 +/- 1.6 cm); however, there was no significant difference between 30 and 60 seconds of static stretching conditions. The MVC was significantly lowered with 60 seconds of static stretching compared to the control and 30 seconds of the stretching conditions (control: 287.6 +/- 24.0 N; 30 seconds: 281.8 +/- 24.2 N; 60 seconds: 262.4 +/- 36.2 N). However, there was no significant difference between control and 30 seconds of static stretching conditions. Therefore, it was concluded that the short duration (30 seconds) of static stretching did not have a negative effect on the muscle force production.

  20. Acute effects of static, dynamic, and proprioceptive neuromuscular facilitation stretching on muscle power in women.

    Science.gov (United States)

    Manoel, Mateus E; Harris-Love, Michael O; Danoff, Jerome V; Miller, Todd A

    2008-09-01

    The purpose of this study was to investigate the acute effects of 3 types of stretching-static, dynamic, and proprioceptive neuromuscular facilitation (PNF)-on peak muscle power output in women. Concentric knee extension power was measured isokinetically at 60 degrees x s(-1) and 180 degrees x s(-1) in 12 healthy and recreationally active women (mean age +/- SD, 24 +/- 3.3 years). Testing occurred before and after each of 3 different stretching protocols and a control condition in which no stretching was performed. During 4 separate laboratory visits, each subject performed 5 minutes of stationary cycling at 50 W before performing the control condition, static stretching protocol, dynamic stretching protocol, or PNF protocol. Three submaximal warm-up trials preceded 3 maximal knee extensions at each testing velocity. A 2-minute rest was allowed between testing at each velocity. The results of the statistical analysis indicated that none of the stretching protocols caused a decrease in knee extension power. Dynamic stretching produced percentage increases (8.9% at 60 degrees x s(-1) and 6.3% at 180 degrees x s(-1)) in peak knee extension power at both testing velocities that were greater than changes in power after static and PNF stretching. The findings suggest that dynamic stretching may increase acute muscular power to a greater degree than static and PNF stretching. These findings may have important implications for athletes who participate in events that rely on a high level of muscular power.

  1. Static stretching does not alter pre and post-landing muscle activation

    Directory of Open Access Journals (Sweden)

    Moss Wesley R

    2011-05-01

    Full Text Available Abstract Background Static stretching may result in various strength and power deficiencies. Prior research has not determined, however, if static stretching causes a change in muscle activation during a functional task requiring dynamic stability. The purpose of this study was to determine if static stretching has an effect on mean pre and postlanding muscle (vastus medialis VM, vastus lateralis VL, medial hamstring MH, and biceps femoris BF activity. Methods 26 healthy, physically active subjects were recruited, from which 13 completed a 14-day static stretching regimen for the quadriceps and hamstrings. Using the data from the force plate and EMG readings, a mean of EMG amplitude was calculated for 150 msec before and after landing. Each trial was normalized to an isometric reference position. Means were calculated for the VM, VL, MH, and BF from 5 trials in each session. Measures were collected pre, immediately following the 1st stretching session, and following 2 weeks of stretching. Results A 14-day static stretching regimen resulted in no significant differences in pre or postlanding mean EMG amplitude during a drop landing either acutely or over a 14-day period. Conclusions Static stretching, done acutely or over a 14-day period does not result in measurable differences of mean EMG amplitude during a drop landing. Static stretching may not impede dynamic stability of joints about which stretched muscles cross.

  2. Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength.

    Science.gov (United States)

    Bacurau, Reury Frank Pereira; Monteiro, Gizele Assis; Ugrinowitsch, Carlos; Tricoli, Valmor; Cabral, Leonardo Ferreira; Aoki, Marcelo Saldanha

    2009-01-01

    Different stretching techniques have been used during warm-up routines. However, these routines may decrease force production. The purpose of this study was to compare the acute effect of a ballistic and a static stretching protocol on lower-limb maximal strength. Fourteen physically active women (169.3 +/- 8.2 cm; 64.9 +/- 5.9 kg; 23.1 +/- 3.6 years) performed three experimental sessions: a control session (estimation of 45 degrees leg press one-repetition maximum [1RM]), a ballistic session (20 minutes of ballistic stretch and 45 degrees leg press 1RM), and a static session (20 minutes of static stretch and 45 degrees leg press 1RM). Maximal strength decreased after static stretching (213.2 +/- 36.1 to 184.6 +/- 28.9 kg), but it was unaffected by ballistic stretching (208.4 +/- 34.8 kg). In addition, static stretching exercises produce a greater acute improvement in flexibility compared with ballistic stretching exercises. Consequently, static stretching may not be recommended before athletic events or physical activities that require high levels of force. On the other hand, ballistic stretching could be more appropriate because it seems less likely to decrease maximal strength.

  3. Contribution to the development of a multi-mode measurement system for dynamic neutronic measurements and processing of the related uncertainties; Contribution au developpement d'un systeme de mesure multimode pour des mesures neutroniques dynamiques et traitement des incertitudes associees

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B

    2006-11-15

    It is difficult to estimate integral reactor parameters, especially reactivity, in deeply subcritical cores. Indeed the standard neutronic methods have been designed for near critical reactivity levels and they often need a critical reference. This thesis takes part in the research on ADS (Accelerated Driven Systems), for which the multiplication coefficient would be about 0.95. The first part of the thesis deals with the development of the XMODE system. It is a flexible measurement system dedicated to experiments in neutronics. X-MODE is capable of acquiring logical signals particularly in time-stamping mode as well as analogical signals. The second part of the thesis presents a statistical study of the methods used to analyse flux transients. Indeed a lot of methods exist to analyse flux transients and some are little known. Means to estimate characteristics of reactivity estimators are provided, methods compared and recommendations made. Finally, the dynamic measurements of the TRADE program are analysed and discussed. During this program, three subcritical configurations were explored. It appears that pulsed neutron source experiments give reactivity estimations that are much more precise than those obtained from flux transients. (author)

  4. Modes of log gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Rosseel, Jan; Townsend, Paul K.

    2011-01-01

    The physical modes of a recently proposed D-dimensional "critical gravity'', linearized about its anti-de Sitter vacuum, are investigated. All "log mode'' solutions, which we categorize as "spin-2'' or "Proca'', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized

  5. Stretched exponential relaxation processes in hydrogenated amorphous and polymorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Morigaki, Kazuo [Department of Electrical and Digital-System Engineering, Hiroshima Institute of Technology, Miyake, Saeki-ku, Hiroshima 731-5193 (Japan); Hikita, Harumi [Physics Laboratory, Meikai University, Urayasu, Chiba 279-8550 (Japan)

    2011-09-15

    Stretched exponential relaxation has been observed in various phenomena of hydrogenated amorphous silicon (a-Si:H) and hydrogenated polymorphous silicon (pm-Si:H). As an example, we take light-induced defect creation in a-Si:H and pm-Si:H, in which defect-creation process and defect-annihilation process via hydrogen movement play important roles. We have performed the Monte Carlo simulation for hydrogen movement. Hydrogen movement exhibits anomalous diffusion. In our model of light-induced defect creation in a-Si:H, a pair of two types of dangling bonds, i.e., a normal dangling bond and a hydrogen-related dangling bond, that is a dangling bond having hydrogen in the nearby site, are created under illumination, and hydrogen dissociated from the hydrogen-related dangling bond terminates a normal dangling bond via hydrogen movement. The amorphous network reflects on the dispersive parameter of the stretched exponential function in the light-induced defect creation. We discuss this issue, taking into account the difference in the amorphous network between a-Si:H and pm-Si:H (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. MHD biconvective flow of Powell Eyring nanofluid over stretched surface

    Science.gov (United States)

    Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum

    2017-06-01

    The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.

  7. Extension by faulting, stretching and magma intrusion in Ethiopia

    Science.gov (United States)

    Bastow, I. D.; Keir, D.

    2012-12-01

    The 2001-2004 Ethiopia Afar Geoscientific Lithospheric Experiment showed that high seismic wavespeed, dense, mafic crustal intrusions exist beneath many zones of Quaternary magmatism in the Main Ethiopian rift, and that crustal thinning is minimal. From these observations, a consensus quickly emerged that extension presently occurs not by ductile stretching and brittle faulting but by magma intrusion. Striking InSAR images and accompanying seismic data from the 2005 Afar diking episode provided further compelling evidence in support of the magma assisted rifting hypothesis. Patterns of mantle seismic anisotropy, constrained by a combination of body and surface-wave analysis showed that melt intrusion likely also plays an important role in accommodating extension at greater depths in the extending plate. Evidence from further north in Afar, however, where crustal thickness decreases abruptly into the Danakil Depression, is not so easily explained by the magma assisted rifting hypothesis. Subsidence of the newly forming margin towards and below sea level, and eruption of voluminous basalt flows, is likely the result of late-stage thinning of the heavily intruded, weakened plate just before the onset of seafloor spreading. Faulting, stretching and magma intrusion are thus each important, but at different times during breakup. Combining, not isolating, these mechanisms of strain in new rifting models and appreciating how plate strength varies during rifting is essential in developing a clearer understanding of the incomplete geological record that documents continental breakup over time.

  8. Tangential stretching rate (TSR) analysis of non premixed reactive flows

    KAUST Repository

    Valorani, Mauro

    2016-10-16

    We discuss how the Tangential stretching rate (TSR) analysis, originally developed and tested for spatially homogeneous systems (batch reactors), is extended to spatially non homogeneous systems. To illustrate the effectiveness of the TSR diagnostics, we study the ignition transient in a non premixed, reaction–diffusion model in the mixture fraction space, whose dependent variables are temperature and mixture composition. The reactive mixture considered is syngas/air. A detailed H2/CO mechanism with 12 species and 33 chemical reactions is employed. We will discuss two cases, one involving only kinetics as a model of front propagation purely driven by spontaneous ignition, the other as a model of deflagration wave involving kinetics/diffusion coupling. We explore different aspects of the system dynamics such as the relative role of diffusion and kinetics, the evolution of kinetic eigenvalues, and of the tangential stretching rates computed by accounting for the combined action of diffusion and kinetics as well for kinetics only. We propose criteria based on the TSR concept which allow to identify the most ignitable conditions and to discriminate between spontaneous ignition and deflagration front.

  9. Analysis of a Stretched Derivative Aircraft with Open Rotor Propulsion

    Science.gov (United States)

    Berton, Jeffrey J.; Hendricks, Eric S.; Haller, William J.; Guynn, Mark D.

    2015-01-01

    Research into advanced, high-speed civil turboprops received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of U.S. aeronautical research. But when fuel prices declined sharply there was no longer sufficient motivation to continue maturing the technology. Recent volatility in fuel prices and increasing concern for aviation's environmental impact, however, have renewed interest in unducted, open rotor propulsion and revived research by NASA and a number of engine manufacturers. Recently, NASA and General Electric have teamed to conduct several investigations into the performance and noise of an advanced, single-aisle transport with open rotor propulsion. The results of these initial studies indicate open rotor engines have the potential to provide significant reduction in fuel consumption compared to aircraft using turbofan engines with equivalent core technology. In addition, noise analysis of the concept indicates that an open rotor aircraft in the single-aisle transport class would be able to meet current noise regulations with margin. The behavior of derivative open rotor transports is of interest. Heavier, "stretched" derivative aircraft tend to be noisier than their lighter relatives. Of particular importance to the business case for the concept is how the noise margin changes relative to regulatory limits within a family of similar open rotor aircraft. The subject of this report is a performance and noise assessment of a notional, heavier, stretched derivative airplane equipped with throttle-push variants of NASA's initial open rotor engine design.

  10. Harmonics analysis of the photonic time stretch system.

    Science.gov (United States)

    Mei, Yuan; Xu, Boyu; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2016-09-10

    Photonic time stretch (PTS) has been intensively investigated in recent decades due to its potential application to ultra-wideband analog-to-digital conversion. A high-speed analog signal can be captured by an electronic analog-to-digital converter (ADC) with the help of the PTS technique, which slows down the speed of signal in the photonic domain. Unfortunately, the process of the time stretch is not linear due to the nonlinear modulation of the electro-optic intensity modulator in the PTS system, which means the undesired harmonics distortion. In this paper, we present an exact analytical model to fully characterize the harmonics generation in the PTS systems for the first time, to the best of our knowledge. We obtain concise and closed-form expressions for all harmonics of the PTS system with either a single-arm Mach-Zehnder modulator (MZM) or a push-pull MZM. The presented model can largely simplify the PTS system design and the system parameters estimation, such as system bandwidth, harmonics power, time-bandwidth product, and dynamic range. The correctness of the mathematic model is verified by the numerical and experimental results.

  11. Intermittent stretching induces fibrosis in denervated rat muscle.

    Science.gov (United States)

    Faturi, Fernanda M; Franco, Rúbia C; Gigo-Benato, Davilene; Turi, Andriette C; Silva-Couto, Marcela A; Messa, Sabrina P; Russo, Thiago L

    2016-01-01

    Stretching (St) has been used for treating denervated muscles. However, its effectiveness and safety claims require further study. Rats were divided into: (1) those with denervated (D) muscles, evaluated 7 or 15 days after sciatic nerve crush injury; (2) those with D muscles submitted to St during 7 or 15 days; and (3) those with normal muscles. Muscle fiber cross-sectional area, serial sarcomere number, sarcomere length, and connective tissue density were measured. MMP-2, MMP-9, TIMP-1, TGF-β1, and myostatin mRNAs were determined by real-time polymerase chain reaction. MMP-2 and MMP-9 activity was evaluated by zymography. Collagen I was localized using immunofluorescence. St did not prevent muscle atrophy due to denervation, but it increased fibrosis and collagen I deposition at day 15. St also upregulated MMP-9 and TGF-β1 gene expressions at day 7, and myostatin at day 15. Stretching denervated muscle does not prevent atrophy, but it increases fibrosis via temporal modulation of TGF-β1/myostatin and MMP-9 cascades. © 2015 Wiley Periodicals, Inc.

  12. Effects of G-trainer, cycle ergometry, and stretching on physiological and psychological recovery from endurance exercise.

    Science.gov (United States)

    West, Amy D; Cooke, Matthew B; LaBounty, Paul M; Byars, Allyn G; Greenwood, Mike

    2014-12-01

    The purpose of this study was to compare the effectiveness of 3 treatment modes (Anti-Gravity Treadmill [G-trainer], stationary cycling [CompuTrainer], and static stretching) on the physiological and psychological recovery after an acute bout of exhaustive exercise. In a crossover design, 12 aerobically trained men (21.3 ± 2.3 years, 72.1 ± 8.1 kg, 178.4 ± 6.3 cm, (Equation is included in full-text article.): 53.7 ± 6.3 ml·kg·min) completed a 29-km stationary cycling time trial. Immediately after the time trial, subjects completed 30 minutes of G-trainer or CompuTrainer (40% (Equation is included in full-text article.)) or static stretching exercises. A significant time effect was detected for plasma lactate (p = 0.010) and serum cortisol (p = 0.039) after exercise. No treatment or treatment by time interaction was identified for lactate or cortisol, respectively. No main effects for time, treatment, or treatment by time interaction were identified for interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). No differences were observed among treatments in skeletal muscle peak power output, mean power output, time to peak power, and rate to fatigue at 24 hours postexercise bout. Finally, no significant changes in mood status were observed after exercise and between treatment groups. When compared with stationary cycling and static stretching, exercise recovery performed on the G-trainer was unable to reduce systemic markers of stress and inflammation, blood lactate, or improve anaerobic performance and psychological mood states after an exhaustive bout of endurance exercise. Further research is warranted that includes individualized recovery modalities to create balances between the stresses of training and competition.

  13. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  14. Mode selection laser

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a semiconductor mode selection laser, particularly to a VCSEL laser (200) having mode selection properties. The mode selection capability of the laser is achieved by configuring one of the reflectors (15,51) in the resonance cavity so that a reflectivity of the reflector...... (15) varies spatially in one dimension or two dimensions. Accordingly, the reflector (15) with spatially varying reflectivity is part both of the resonance cavity and the mode selection functionality of the laser. A plurality of the lasers configured with different mode selectors, i.e. different...... spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33...

  15. Structure and properties of highly oriented polyoxymethylene produced by hot stretching

    International Nuclear Information System (INIS)

    Zhao Xiaowen; Ye Lin

    2011-01-01

    Research highlights: → Highly oriented POM was fabricated through solid hot stretching technology → Tensile strength and modulus of POM increased remarkably with draw ratio. → The crystal structure of POM changed from spherulite to mat texture by drawing. → Crystallinity and orientation factor of POM increased remarkably by drawing. → The mechanical structure model of microfibril of POM was established. - Abstract: Highly oriented self-reinforced polyoxymethylene (POM) was successfully fabricated through solid phase hot stretching technology. The tensile strength and modulus increased with draw ratio, which reached 900 MPa and 12 GPa, respectively at a high draw ratio of 900% without remarkable drop of the elongation at break. The structure and morphology of the drawn products were studied and the mechanical structure model of microfibril of POM was established. Raman spectral exhibited a low-frequency shift, which indicated two types of molecular chains with different response to the stress. During drawing, the spherulitic structure of POM was broken up and the mat texture crystals were formed. With the increase of draw ratio, the melting peak moved to high temperature and an additional shoulder peak ascribed to melting of highly chain-extended and oriented crystalline blocks was observed. X-ray diffraction showed that the crystallinity and orientation factor increased, while the grain size perpendicular to (1 0 0) crystal plane of POM decreased by drawing. The α relaxation peak corresponding to the glass transition temperature of POM (T g ) moved to high temperature with draw ratio. The section morphology of drawn POM exhibited a fibrillar structure which contributed to the significantly high tensile strength and modulus of the product.

  16. Acute Effects of the Different Intensity of Static Stretching on Flexibility and Isometric Muscle Force.

    Science.gov (United States)

    Kataura, Satoshi; Suzuki, Shigeyuki; Matsuo, Shingo; Hatano, Genki; Iwata, Masahiro; Yokoi, Kazuaki; Tsuchida, Wakako; Banno, Yasuhiro; Asai, Yuji

    2017-12-01

    Kataura, S, Suzuki, S, Matsuo, S, Hatano, G, Iwata, M, Yokoi, K, Tsuchida, W, Banno, Y, and Asai, Y. Acute effects of the different intensity of static stretching on flexibility and isometric muscle force. J Strength Cond Res 31(12): 3403-3410, 2017-In various fields, static stretching is commonly performed to improve flexibility, whereas the acute effects of different stretch intensities are unclear. Therefore, we investigated the acute effects of different stretch intensities on flexibility and muscle force. Eighteen healthy participants (9 men and 9 women) performed 180-second static stretches of the right hamstrings at 80, 100, and 120% of maximum tolerable intensity without stretching pain, in random order. The following outcomes were assessed as markers of lower limb function and flexibility: static passive torque (SPT), range of motion (ROM), passive joint (muscle-tendon) stiffness, passive torque (PT) at onset of pain, and isometric muscle force. Static passive torque was significantly decreased after all stretching intensities (p ≤ 0.05). Compared with before stretching at 100 and 120% intensities, ROM and PT were significantly increased after stretching (p ≤ 0.05), and passive stiffness (p = 0.05) and isometric muscle force (p ≤ 0.05) were significantly decreased. In addition, ROM was significantly greater after stretching at 100 and 120% than at 80%, and passive stiffness was significantly lower after 120% than after 80% (p ≤ 0.05). However, all measurements except SPT were unchanged after 80% intensity. There was a weak positive correlation between the intensities of stretching and the relative change for SPT (p ≤ 0.05), a moderate positive correlation with ROM (p ≤ 0.05), and a moderate positive correlation with passive stiffness (p ≤ 0.05). These results indicate that static stretching at greater intensity is more effective for increasing ROM and decreasing passive muscle-tendon stiffness.

  17. Stretch-induced intussuceptive and sprouting angiogenesis in the chick chorioallantoic membrane

    OpenAIRE

    Belle, Janeil; Ysasi, Alexandra; Bennett, Robert D.; Filipovic, Nenad; Imani Nejad, Mohammad; Trumper, David L.; Ackermann, Maximilian; Wagner, Willi; Tsuda, Akira; Konerding, Moritz A.; Mentzer, Steven J.

    2014-01-01

    Vascular systems grow and remodel in response to not only metabolic needs, but also mechanical influences as well. Here, we investigated the influence of tissue-level mechanical forces on the patterning and structure of the chick chorioallantoic membrane (CAM) microcirculation. A dipole stretch field was applied to the CAM using custom computer-controlled servomotors. The topography of the stretch field was mapped using finite element models. After 3 days of stretch, Sholl analysis of the CAM...

  18. STATIC VERSUS PNF STRETCHING IN HAMSTRING FLEXIBILITY-A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Venkata Naga Prahalada Karnati

    2015-06-01

    Full Text Available Background: Stretching used as a technique for injury prevention in the clinical settings, the study aimed to determine the early findings of hamstring tightness with both groups in the population, now a days the sedentary activities like prolonged sitting might cause hamstring tightness and change in path kinematics of gait intern lead to postural defects and back pain, understanding of the stretching helps clinician to make decisions for rehabilitation. Methods: Across-sectional study, counterbalanced with repeated-measures , one group with static stretch – (double hamstring stretch and hurdlers stretch for 3 times,30seconds subsequently in another group PNF contract relax(agonist contraction technique for 10 seconds position and 10 seconds stretch repeated for 3 times. Results: The results from data and statistical analysis by using t-test, SPSS obtained by using goniometer are tabulated in terms of mean, standard deviation and p-value in both groups. In experimental group flexion with PNF showed improvement 9.27±1.91(right side, 9.53±2.42(left side and static stretching showed 7.8±2.91(right side, 7.47±1.96(left side this proves that PNF has consistent improvement than static stretching. Conclusions: Static and proprioceptive neuromuscular facilitation stretching both have produced greater improvement but compared with PNF contract relax(agonist stretching showed significant change in hamstring flexibility compared with control group . The effect sizes, however corresponding to these stretching-induced changes were small, which suggests the need for practitioners to consider a risk-to-benefit ratio when incorporating static or proprioceptive neuromuscular facilitation stretching.

  19. Does acute passive stretching increase muscle length in children with cerebral palsy?

    Science.gov (United States)

    Theis, Nicola; Korff, Thomas; Kairon, Harvey; Mohagheghi, Amir A

    2013-01-01

    Children with spastic cerebral palsy experience increased muscle stiffness and reduced muscle length, which may prevent elongation of the muscle during stretch. Stretching performed either by the clinician, or children themselves is used as a treatment modality to increase/maintain joint range of motion. It is not clear whether the associated increases in muscle-tendon unit length are due to increases in muscle or tendon length. The purpose was to determine whether alterations in ankle range of motion in response to acute stretching were accompanied by increases in muscle length, and whether any effects would be dependent upon stretch technique. Eight children (6-14 y) with cerebral palsy received a passive dorsiflexion stretch for 5 × 20 s to each leg, which was applied by a physiotherapist or the children themselves. Maximum dorsiflexion angle, medial gastrocnemius muscle and fascicle lengths, and Achilles tendon length were calculated at a reference angle of 10 ° plantarflexion, and at maximum dorsiflexion in the pre- and post-stretch trials. All variables were significantly greater during pre- and post-stretch trials compared to the resting angle, and were independent of stretch technique. There was an approximate 10 ° increase in maximum dorsiflexion post-stretch, and this was accounted for by elongation of both muscle (0.8 cm) and tendon (1.0 cm). Muscle fascicle length increased significantly (0.6 cm) from pre- to post-stretch. The results provide evidence that commonly used stretching techniques can increase overall muscle, and fascicle lengths immediately post-stretch in children with cerebral palsy. © 2013.

  20. Solving Cracking Phenomenon in Premium Transparent Toilet Soap Production Using Stretched LLDPE Film Wrap

    Science.gov (United States)

    Mat Sharif, Zainon Binti; Taib, Norhasnina Binti Mohd; Yusof, Mohd Sallehuddin Bin; Rahim, Mohammad Zulafif Bin; Tobi, Abdul Latif Bin Mohd; Othman, Mohd Syafiq Bin

    2017-05-01

    Cracking phenomenon in soap production is an imminent problem. It renders the soap aesthetically unpleasing. This study attempts to find best solution to solve cracking phenomenon in premium soap production. The adopted approach is a stamping method with stretched LLDPE wrap film. The result shows that stretched LLDPE wrap film able to solve the cracking problem. The appearance of the premium transparent was improved. This paper presents the results and the SOP for stretched LLDPE film wrap for soap making industries to adopt.

  1. Knee Stretch Walking Method for Biped Robot: Using Toe and Heel Joints to Increase Walking Strides

    Science.gov (United States)

    Sato, Takahiko; Shimmyo, Shuhei; Nakazato, Miki; Mikami, Kei; Sato, Tomoya; Sakaino, Sho; Ohnishi, Kouhei

    This paper proposes a knee stretch walking method for biped robots; the method involves the use of the toes and heel joints to increase walking strides. A knee can be stretched by switching control variables. By a knee stretch walking with heel contacts to the ground and toe takeoffs from the ground, biped robots can increase their walking stride and speed. The validity of the proposed method is confirmed by simulation and experimental results.

  2. High Throughput Web Inspection System using Time-stretch Real-time Imaging

    OpenAIRE

    Kim, Chanju

    2013-01-01

    Photonic time-stretch is a novel technology that enables capturing of fast, rare and non-repetitive events. Therefore, it operates in real-time with ability to record over long period of time while having fine temporal resolution. The powerful property of photonic time-stretch has already been employed in various fields of application such as analog-to-digital conversion, spectroscopy, laser scanner and microscopy. Further expanding the scope, we fully exploit the time-stretch technology to d...

  3. Correlation of the Elastic Properties of Stretch Film on Unit Load Containment

    OpenAIRE

    Bisha, James Victor

    2012-01-01

    The purpose of this research was to correlate the applied material properties of stretch film with its elastic properties measured in a laboratory setting. There are currently no tools available for a packaging engineer to make a scientific decision on how one stretch film performs against another without applying the film. The system for stretch wrap comparison is mostly based on trial and error which can lead to a significant loss of product when testing a new film or shipping a new product...

  4. Whispering gallery mode sensors

    Science.gov (United States)

    Foreman, Matthew R.; Swaim, Jon D.; Vollmer, Frank

    2015-01-01

    We present a comprehensive overview of sensor technology exploiting optical whispering gallery mode (WGM) resonances. After a short introduction we begin by detailing the fundamental principles and theory of WGMs in optical microcavities and the transduction mechanisms frequently employed for sensing purposes. Key recent theoretical contributions to the modeling and analysis of WGM systems are highlighted. Subsequently we review the state of the art of WGM sensors by outlining efforts made to date to improve current detection limits. Proposals in this vein are numerous and range, for example, from plasmonic enhancements and active cavities to hybrid optomechanical sensors, which are already working in the shot noise limited regime. In parallel to furthering WGM sensitivity, efforts to improve the time resolution are beginning to emerge. We therefore summarize the techniques being pursued in this vein. Ultimately WGM sensors aim for real-world applications, such as measurements of force and temperature, or alternatively gas and biosensing. Each such application is thus reviewed in turn, and important achievements are discussed. Finally, we adopt a more forward-looking perspective and discuss the outlook of WGM sensors within both a physical and biological context and consider how they may yet push the detection envelope further. PMID:26973759

  5. Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke

    DEFF Research Database (Denmark)

    Mazzaro, Nazarena; Nielsen, Jørgen Feldbæk; Grey, Michael James

    2007-01-01

    attached to the foot and leg was used to apply 3 types of ankle perturbations during treadmill walking. First, fast dorsiflexion perturbations were applied to elicit stretch reflexes in the SOL muscle. The SOL short-latency stretch reflex was facilitated in the patients (1.4 +/- 0.3) compared...... by the Ashworth score. These results indicate that although the stretch reflex response is facilitated during spastic gait, the contribution of afferent feedback to the ongoing locomotor SOL activity is depressed in patients with spastic stroke....

  6. Prolonged stretching of the ankle plantarflexors elicits muscle-tendon adaptations relevant to ankle gait kinetics in children with spastic cerebral palsy.

    Science.gov (United States)

    Martín Lorenzo, Teresa; Rocon, Eduardo; Martínez Caballero, Ignacio; Ramírez Barragán, Ana; Lerma Lara, Sergio

    2017-11-01

    Tissue related ankle hyper-resistance has been reported to contribute to equinus gait in children with spastic cerebral palsy. Hence, ankle plantarflexor stretching programs have been developed in order to restore passive ankle dorsiflexion. Despite high quality evidence on the limited effects of stretching on passive joint mobility, further muscle-tendon adaptations have been reported which may impact gait performance. As such, children with spastic cerebral palsy subject to long-term manual static stretching achieved dorsiflexion gains through the reduction of muscle and fascicle strain whilst preserving tendon strain, and prolonged use of ankle-foot orthoses achieved similar dorsiflexion gains through increased tendon strain whilst preserving muscle and fascicle strain. The latter concurred with normalization of early stance plantarflexor moment yet reductions in push-off plantarflexor moment given the increase in tendon compliance. Therefore, similar limited gains in passive ankle joint mobility in response to stretching may be achieved either by preserving/restoring optimal muscle-tendon function, or at the expense of muscle-tendon function and thus contributing gait impairments. The largest increase in ankle passive joint mobility in children with SCP has been obtained through prolonged plantarflexor stretching through ankle casting combined with botulinum neurotoxin type A. However, to our knowledge, there are no published studies on muscle-tendinous adaptations to ankle casting combined with botulinum toxin type A and its effect on ankle joint gait kinetics. Therefore, we hypothesized that ankle casting elicits muscle-tendon adaptations which concur with altered ankle joint kinetics during the stance phase of gait in children with SCP. More information is needed about the relationships between muscle structure and function, and the effect of specific interventions designed to alter muscle properties and associated functional outcomes in children with

  7. Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force

    Directory of Open Access Journals (Sweden)

    Leyla Alizadeh Ebadi

    2018-03-01

    Full Text Available The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles’ isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A 5 min jogging; (B 5 min jogging followed by 15 s static stretching; (C 5 min jogging followed by 30 s static stretching; (D 5 min jogging, followed by static stretching for 45 s. Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.

  8. EFFECTS OF DYNAMIC AND STATIC STRETCHING WITHIN GENERAL AND ACTIVITY SPECIFIC WARM-UP PROTOCOLS

    Directory of Open Access Journals (Sweden)

    Michael Samson

    2012-06-01

    Full Text Available The purpose of the study was to determine the effects of static and dynamic stretching protocols within general and activity specific warm-ups. Nine male and ten female subjects were tested under four warm-up conditions including a 1 general aerobic warm-up with static stretching, 2 general aerobic warm-up with dynamic stretching, 3 general and specific warm-up with static stretching and 4 general and specific warm-up with dynamic stretching. Following all conditions, subjects were tested for movement time (kicking movement of leg over 0.5 m distance, countermovement jump height, sit and reach flexibility and 6 repetitions of 20 metre sprints. Results indicated that when a sport specific warm-up was included, there was an 0.94% improvement (p = 0.0013 in 20 meter sprint time with both the dynamic and static stretch groups. No such difference in sprint performance between dynamic and static stretch groups existed in the absence of the sport specific warm-up. The static stretch condition increased sit and reach range of motion (ROM by 2.8% more (p = 0.0083 than the dynamic condition. These results would support the use of static stretching within an activity specific warm-up to ensure maximal ROM along with an enhancement in sprint performance

  9. 600 Volt Stretched Lens Array for Solar Electric Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ENTECH, Auburn, NASA, and others have recently developed a new space photovoltaic array called the Stretched Lens Array (SLA), offering unprecedented performance...

  10. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers.

    Science.gov (United States)

    Miyamoto, N; Hirata, K; Kanehisa, H

    2017-01-01

    The purpose of this study was to examine whether the effects of hamstring stretching on the passive stiffness of each of the long head of the biceps femoris (BFl), semitendinosus (ST), and semimembranosus (SM) vary between passive knee extension and hip flexion stretching maneuvers. In 12 male subjects, before and after five sets of 90 s static stretching, passive lengthening measurements where knee or hip joint was passively rotated to the maximal range of motion (ROM) were performed. During the passive lengthening, shear modulus of each muscle was measured by ultrasound shear wave elastography. Both stretching maneuvers significantly increased maximal ROM and decreased passive torque at a given joint angle. Passive knee extension stretching maneuver significantly reduced shear modulus at a given knee joint angle in all of BFl, ST, and SM. In contrast, the stretching effect by passive hip flexion maneuver was significant only in ST and SM. The present findings indicate that the effects of hamstring stretching on individual passive muscles' stiffness vary between passive knee extension and hip flexion stretching maneuvers. In terms of reducing the muscle stiffness of BFl, stretching of the hamstring should be performed by passive knee extension rather than hip flexion. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Implementation of a controller for linear positioners applicable in optical fiber stretching

    International Nuclear Information System (INIS)

    Castrillo Piedra, Andres Rodolfo

    2014-01-01

    A low cost controller is implemented for linear positioners applicable in optic fiber stretching. The possibility of using a donated equipment is evaluated by the Escuela de Ingenieria Mecanica. The equipment is required by the non-linear photonic research laboratory (NLPR-LAB) for stretching of micro structured fiber. The process has required a slow and precise stretching, so the controllers must be precisely programmed to rotate the motors at different speeds. Donated equipment is evaluated to see if it is possible to use for fiber stretching [es

  12. ACUTE EFFECTS OF THREE DIFFERENT STRETCHING PROTOCOLS ON THE WINGATE TEST PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Bruno L. Franco

    2012-03-01

    Full Text Available The purpose of this study was to examine the acute effects of different stretching exercises on the performance of the traditional Wingate test (WT. Fifteen male participants performed five WT; one for familiarization (FT, and the remaining four after no stretching (NS, static stretching (SS, dynamic stretching (DS, and proprioceptive neuromuscular facilitation (PNF. Stretches were targeted for the hamstrings, quadriceps, and calf muscles. Peak power (PP, mean power (MP, and the time to reach PP (TP were calculated. The MP was significantly lower when comparing the DS (7.7 ± 0.9 W/kg to the PNF (7.3 ± 0.9 W/kg condition (p < 0.05. For PP, significant differences were observed between more comparisons, with PNF stretching providing the lowest result. A consistent increase of TP was observed after all stretching exercises when compared to NS. The results suggest the type of stretching, or no stretching, should be considered by those who seek higher performance and practice sports that use maximal anaerobic power.

  13. Effect of Ankle Positioning During Hamstring Stretches for Improving Straight Leg Hip Flexion Motion.

    Science.gov (United States)

    Laudner, Kevin G; Benjamin, Peter J; Selkow, Noelle M

    2016-03-01

    To compare the effects of stretching the hamstrings with the ankle in either a plantar-flexed (PF) or dorsiflexed (DF) position for improving straight leg hip flexion range of motion (ROM) over a 4-week period. Randomized, single-blinded, pretest, posttest design. Athletic training facility. Each limb of 34 asymptomatic individuals (15 males, 19 females) was randomly assigned to one of the 3 groups. Twenty-four limbs received hamstring stretches with the ankle in DF, 24 limbs received hamstring stretches with the ankle in PF, and 20 limbs received no stretch (control). Ankle position (PF, DF) during hamstring stretching. We measured pretest and posttest passive straight leg hip flexion ROM with the test ankle in a neutral position. For the intervention groups, the test limb was passively stretched with the ankle held in end range DF or PF for their respective group. Each stretch was held for 30 seconds for a total of 3 applications. Two treatment sessions were completed per week for a total of 4 weeks. The control limbs received no stretching during the 4-week period. We conducted 1-way analyses of covariance to determine significant changes in ROM between groups (P hamstrings in either PF or DF improve straight leg hip ROM compared with a control group. The results of this study should be considered by clinicians when determining the optimal stretching techniques aimed at increasing hamstring length.

  14. The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.

    Science.gov (United States)

    Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B

    2018-01-10

    While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (pstatic stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.

  15. Acute decrease in the stiffness of resting muscle belly due to static stretching.

    Science.gov (United States)

    Taniguchi, K; Shinohara, M; Nozaki, S; Katayose, M

    2015-02-01

    The purpose of the study was to examine the acute effect of static stretching exercise on the resting stiffness of gastrocnemius muscle belly. Ten healthy young adults performed standing wall stretching in dorsiflexion for 1 min at a time and repeated five times. Before and after stretching, the shear modulus was measured in medial and lateral heads of the resting gastrocnemius muscle with ultrasound shear-wave elastography. After the stretching, dorsiflexion range of motion (ROM) of the ankle joint increased (P stretching, shear modulus decreased (P stretching across muscle heads. The decrease in shear modulus returned in 20 min after stretching. In the comparison group of 10 additional subjects, the standing intervention without stretching had no influence on these measures. There was a negative correlation between dorsiflexion ROM and shear modulus in either head before and after stretching. The results demonstrate the transient decreases in the stiffness of the resting gastrocnemius muscle belly and indicate that joint flexibility is greater in individuals with lower resting stiffness of the muscle belly. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Acute effects of passive stretching of the plantarflexor muscles on neuromuscular function: the influence of age.

    Science.gov (United States)

    Ryan, Eric D; Herda, Trent J; Costa, Pablo B; Herda, Ashley A; Cramer, Joel T

    2014-01-01

    The acute effects of stretching on peak force (Fpeak), percent voluntary activation (%VA), electromyographic (EMG) amplitude, maximum range of motion (MROM), peak passive torque, the passive resistance to stretch, and the percentage of ROM at EMG onset (%EMGonset) were examined in 18 young and 19 old men. Participants performed a MROM assessment and a maximal voluntary contraction of the plantarflexors before and immediately after 20 min of passive stretching. Fpeak (-11 %), %VA (-6 %), and MG EMG amplitude (-9 %) decreased after stretching in the young, but not the old (P > 0.05). Changes in Fpeak were related to reductions in all muscle activation variables (r = 0.56-0.75), but unrelated to changes in the passive resistance to stretch (P ≥ 0.24). Both groups experienced increases in MROM and peak passive torque and decreases in the passive resistance to stretch. However, the old men experienced greater changes in MROM (P stretching for both groups (P = 0.213), but occurred earlier in the old (P = 0.06). The stretching-induced impairments in strength and activation in the young but not the old men may suggest that the neural impairments following stretching are gamma-loop-mediated. In addition, the augmented changes in MROM and passive torque and the lack of change in %EMGonset for the old men may be a result of age-related changes in muscle-tendon behavior.

  17. Rat cutaneous RA afferents activated by two-dimensional skin stretch.

    Science.gov (United States)

    Grigg, Peter; Robichaud, Daniel R

    2004-07-01

    Skin develops biaxial stresses and strains when stretched. Rapidly adapting cutaneous mechanoreceptor neurons are known to be stretch sensitive, yet in the past, they have been studied using stretch stimuli applied along only a single direction. In this study, cutaneous rapidly adapting mechanoreceptors were studied in preparations of isolated skin in which the skin was stretched dynamically using biaxial stretch stimuli and in which loads and displacements were measured along two directions. Stretch stimuli followed a pseudo-Gaussian waveform and were applied along either one or two directions simultaneously. Associations between spikes and mechanical variables were determined using multiple logistic regression. When the skin was actuated along a single direction, holding the orthogonal axis fixed, spike responses were strongly associated with mechanical variables along the actuated direction. The variables were stress and its rate of change, the rate of change of strain, and the product of stress and its rate of change, which is proportional to strain energy density. When the skin was stretched along a single direction, spikes were very poorly associated with stress variables measured along the direction orthogonal to the stretch. Afferents showed weak directional selectivity: they were slightly more responsive to the variable stress along the circumferential direction of the hindlimb. When the skin was stretched biaxially (i.e., along both directions simultaneously) with identical pseudo-Gaussian noise stimuli, neuronal responses were associated with the same variables as above, but the associations were weaker.

  18. Optimal control of stretching process of flexible solar arrays on spacecraft based on a hybrid optimization strategy

    Directory of Open Access Journals (Sweden)

    Qijia Yao

    2017-07-01

    Full Text Available The optimal control of multibody spacecraft during the stretching process of solar arrays is investigated, and a hybrid optimization strategy based on Gauss pseudospectral method (GPM and direct shooting method (DSM is presented. First, the elastic deformation of flexible solar arrays was described approximately by the assumed mode method, and a dynamic model was established by the second Lagrangian equation. Then, the nonholonomic motion planning problem is transformed into a nonlinear programming problem by using GPM. By giving fewer LG points, initial values of the state variables and control variables were obtained. A serial optimization framework was adopted to obtain the approximate optimal solution from a feasible solution. Finally, the control variables were discretized at LG points, and the precise optimal control inputs were obtained by DSM. The optimal trajectory of the system can be obtained through numerical integration. Through numerical simulation, the stretching process of solar arrays is stable with no detours, and the control inputs match the various constraints of actual conditions. The results indicate that the method is effective with good robustness. Keywords: Motion planning, Multibody spacecraft, Optimal control, Gauss pseudospectral method, Direct shooting method

  19. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  20. Contributions: SAGE

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Contributions: SAGE. Space Alternating Generalized Expectation (SAGE) Maximization algorithm provides an iterative approach to parameter estimation when direct maximization of the likelihood function may be infeasible. Complexity is less in those applications ...

  1. Various Contributions

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Various Contributions. Developed an Off –Diagonal MIMO Canceller to mitigate Upstream Crosstalk in VDSL. Developed a low complexity, Expectation Maximization based iterative Crosstalk cancellation. Developed an optimal way of computational complexity ...

  2. Effects of a stretching protocol for the pectoralis minor on muscle length, function, and scapular kinematics in individuals with and without shoulder pain.

    Science.gov (United States)

    Rosa, Dayana P; Borstad, John D; Pogetti, Lívia S; Camargo, Paula R

    Parallel-group intervention with repeated measures. Shortening of the pectoralis minor (PM) may contribute to alterations in scapular kinematics. To evaluate the effects of a stretching protocol on function, muscle length, and scapular kinematics in subjects with and without shoulder pain. A sample of 25 patients with shoulder pain and 25 healthy subjects with PM tightness performed a daily stretching protocol for 6 weeks. Outcome measures included Disabilities of the Arm, Shoulder, and Hand questionnaire, PM length, and scapular kinematics. Disabilities of the Arm, Shoulder, and Hand scores decreased (P .05) were found for PM length in both groups. Scapular anterior tilt increased (P stretching protocol significantly decreases pain and improves function in subjects with shoulder pain. The mechanism responsible for these improvements does not appear directly related to PM muscle length or scapula kinematics, suggesting that other neuromuscular mechanisms are involved. The PM stretching protocol did not change the PM length or scapular kinematics in subjects with or without shoulder pain. However, pain and function of the upper limbs improved in patients with shoulder pain. 2b. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  3. Evaluation of stretching position by measurement of strain on the ilio-femoral ligaments: an in vitro simulation using trans-lumbar cadaver specimens.

    Science.gov (United States)

    Hidaka, Egi; Aoki, Mitsuhiro; Muraki, Takayuki; Izumi, Tomoki; Fujii, Misaki; Miyamoto, Shigenori

    2009-08-01

    The ilio-femoral ligament is known to cause flexion contracture of the hip joint. Stretching positioning is intended to elongate the ilio-femoral ligaments, however, no quantitative analysis to measure the effect of stretching positions on the ligament has yet been performed. Strains on the superior and inferior ilio-femoral ligaments in 8 fresh/frozen trans-lumbar cadaveric hip joints were measured using a displacement sensor, and the range of movement of the hip joints was recorded using a 3Space Magnetic Sensor. Reference length (L(0)) for each ligament was determined to measure strain on the ligaments. Hip positions at 10 degrees adduction with maximal external rotation, 20 degrees adduction with maximal external rotation, and maximal external rotation showed larger strain for the superior ilio-femoral ligament than the value obtained from L(0), and hip positions at 20 degrees external rotation with maximal extension and maximal extension had larger strain for the inferior ilio-femoral ligament than the value obtained from L(0) (pligaments exhibited positive strain values with specific stretching positions. Selective stretching for the ilio-femoral ligaments may contribute to achieve lengthening of the ligaments to treat flexion contracture of the hip joint.

  4. Automation of a single-DNA molecule stretching device

    DEFF Research Database (Denmark)

    Sørensen, Kristian Tølbøl; Lopacinska, Joanna M.; Tommerup, Niels

    2015-01-01

    We automate the manipulation of genomic-length DNA in a nanofluidic device based on real-time analysis of fluorescence images. In our protocol, individual molecules are picked from a microchannel and stretched with pN forces using pressure driven flows. The millimeter-long DNA fragments free...... flowing in micro- and nanofluidics emit low fluorescence and change shape, thus challenging the image analysis for machine vision. We demonstrate a set of image processing steps that increase the intrinsically low signal-to-noise ratio associated with single-molecule fluorescence microscopy. Furthermore......, we demonstrate how to estimate the length of molecules by continuous real-time image stitching and how to increase the effective resolution of a pressure controller by pulse width modulation. The sequence of image-processing steps addresses the challenges of genomic-length DNA visualization; however...

  5. Machine-Stitched E-textile Stretch Sensors

    Directory of Open Access Journals (Sweden)

    Guido Gioberto

    2016-07-01

    Full Text Available Truly wearable sensing poses challenges in many areas. To be successful, wearable sensors must preserve wearer comfort while providing accurate sensor data. Further, for widespread commercial production they must also be compatible with soft goods manufacturing. Here, we present a method of fabricating stretch sensors using common apparel sewing machinery. The response of sensors made using industrial coverstitch (two varieties and overlock machines are compared, and the sensor response of a bottom-thread coverstitch is characterized in depth. Three conductive thread structures are compared in the bottom-thread coverstitch sensor. Results show a consistent and repeatable response for 4- and 5-ply threads, while 2-ply thread displayed more noise and less repeatability. Finally, this sensor is applied in a spinal goniometry application in three garment structures, and sensor performance is compared to motion capture data. The fabrication approach is promising for wearable sensing applications due to its manufacturability and comfort.

  6. Mechanical response of human female breast skin under uniaxial stretching.

    Science.gov (United States)

    Kumaraswamy, N; Khatam, Hamed; Reece, Gregory P; Fingeret, Michelle C; Markey, Mia K; Ravi-Chandar, Krishnaswamy

    2017-10-01

    Skin is a complex material covering the entire surface of the human body. Studying the mechanical properties of skin to calibrate a constitutive model is of great importance to many applications such as plastic or cosmetic surgery and treatment of skin-based diseases like decubitus ulcers. The main objective of the present study was to identify and calibrate an appropriate material constitutive model for skin and establish certain universal properties that are independent of patient-specific variability. We performed uniaxial tests performed on breast skin specimens freshly harvested during mastectomy. Two different constitutive models - one phenomenological and another microstructurally inspired - were used to interpret the mechanical responses observed in the experiments. Remarkably, we found that the model parameters that characterize dependence on previous maximum stretch (or preconditioning) exhibited specimen-independent universal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Stretching a semiflexible polymer with orientation-dependent interactions

    International Nuclear Information System (INIS)

    Zhen Yi; Vilgis, Thomas A

    2009-01-01

    The mean field variational approach is employed to study the effect of a nematic field and an external constant force field on the elasticity of a semiflexible polymer. In the stationary phase, we obtain the force–extension relationship and calculate the hairpin density of a stretched semiflexible polymer in nematic solvents. The force–extension behavior is found to be controlled by the parameters gl p and gf where g is the strength of the nematic field, l p is the bare persistence length and f is the external force. Several distinct regimes for the elastic response and the hairpin density emerge depending on the value of gl p and gf. Qualitative comparisons between our computation and other theories are presented

  8. Cyclic mechanical stretch reduces myofibroblast differentiation of primary lung fibroblasts.

    Science.gov (United States)

    Blaauboer, Marjolein E; Smit, Theo H; Hanemaaijer, Roeland; Stoop, Reinout; Everts, Vincent

    2011-01-07

    In lung fibrosis tissue architecture and function is severely hampered by myofibroblasts due to excessive deposition of extracellular matrix and tissue contraction. Myofibroblasts differentiate from fibroblasts under the influence of transforming growth factor (TGF) β(1) but this process is also controlled mechanically by cytoskeletal tension. In healthy lungs, the cytoskeleton of fibroblasts is mechanically strained during breathing. In stiffer fibrotic lung tissue, this mechanical stimulus is reduced, which may influence fibroblast-to-myofibroblast differentiation. Therefore, we investigated the effect of cyclic mechanical stretch on fibroblast-to-myofibroblast differentiation. Primary normal human lung fibroblasts were grown on BioFlex culture plates and stimulated to undergo myofibroblast differentiation by 10 ng/ml TGFβ(1). Cells were either or not subjected to cyclic mechanical stretch (sinusoidal pattern, maximum elongation 10%, 0.2 Hz) for a period of 48 h on a Flexercell apparatus. mRNA expression was analyzed by real-time PCR. Cyclic mechanical loading reduced the mRNA expression of the myofibroblast marker α-smooth muscle actin and the extracellular matrix proteins type-I, type-III, and type-V collagen, and tenascin C. These outcomes indicate that fibroblast-to-myofibroblast differentiation is reduced. Cyclic mechanical loading did not change the expression of the fibronectin ED-A splice variant, but did decrease the paracrine expression of TGFβ(1), thereby suggesting a possible regulation mechanism for the observed effects. The data suggest that cyclic loading experienced by healthy lung cells during breathing may prevent fibroblasts from differentiating towards myofibroblasts. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Pion scattering to 8- stretched states in 60Ni

    International Nuclear Information System (INIS)

    Clausen, B.L.

    1988-03-01

    Using the Energetic Pion Channel and Spectrometer at the Los Alamos Meson Physics Facility, differential cross sections for pion scattering were measured for ten previously known J/sup π/ = 8/sup /minus// stretched states in 60 Ni. A possible new pure isoscalar stretched state was also found. The data were taken near the /DELTA//sub 3,3/-resonance using 162 MeV incident pions and scattering angles of 65/degree/, 80/degree/, and 90/degree/ for π + and 65/degree/ and 80/degree/ for π/sup /minus//. The analysis of the 60 Ni data found that the use of Woods-Saxon wave functions in the theoretical calculations gave much better agreement with data than the use of the usual harmonic oscillator wave functions. The WS theory gave better predictions of: the angle at which the π/sup /minus// and π + angular distributions are maximum, the ratios of π/sup /minus// to π + cross sections for pure isovector states (which were much larger than unity), and the absolute size of the cross sections for all states (so that the normalization factor necessary to arrive at agreement of theory with data was closer to unity). The theoretical calculations used the distorted wave impulse approximation, including new methods for unbound states. The sensitivities of the calculations to input parameters were investigated. This analysis using WS wave functions was extended to five other nuclei ( 12 C, 14 C, 16 O, 28 Si, and 54 Fe) on which both pion scattering and electron scattering have been done. A significant improvement in arriving at a normalization factor close to unity was found when WS wave functions were consistently used for analyzing both pion and electron inelastic scattering data. 101 refs., 26 figs., 13 tabs

  10. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  11. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics

    KAUST Repository

    Chang, Y.-H.

    2018-02-26

    Polytetrafluoroethylene (PTFE) micro-porous membranes were prepared from PTFE fine powder through extruding, rolling, and uniaxial longitudinally stretching. In contrast to conventional planar transverse stretching, a novel 3D mold design of non-planar transverse stretching process was employed in this study to produce micro-porous structure. The morphology, membrane thickness, mean pore size, and porosity of the PTFE membrane were investigated. The results show that the non-planar transverse stretched membranes exhibit more uniform average pore diameter with thinner membrane thickness. Morphological changes induced by planar and non-planar transverse stretching for pore characteristics were investigated. The stretching conditions, stretching temperature and rate, affect the stretched membrane. Increasing temperature facilitated the uniformity of pore size and uniformity of membrane thickness. Moreover, increase in stretching rate resulted in finer pore size and thinner membrane.

  12. Effects of dynamic and static stretching within general and activity specific warm-up protocols.

    Science.gov (United States)

    Samson, Michael; Button, Duane C; Chaouachi, Anis; Behm, David G

    2012-01-01

    The purpose of the study was to determine the effects of static and dynamic stretching protocols within general and activity specific warm-ups. Nine male and ten female subjects were tested under four warm-up conditions including a 1) general aerobic warm-up with static stretching, 2) general aerobic warm-up with dynamic stretching, 3) general and specific warm-up with static stretching and 4) general and specific warm-up with dynamic stretching. Following all conditions, subjects were tested for movement time (kicking movement of leg over 0.5 m distance), countermovement jump height, sit and reach flexibility and 6 repetitions of 20 metre sprints. Results indicated that when a sport specific warm-up was included, there was an 0.94% improvement (p = 0.0013) in 20 meter sprint time with both the dynamic and static stretch groups. No such difference in sprint performance between dynamic and static stretch groups existed in the absence of the sport specific warm-up. The static stretch condition increased sit and reach range of motion (ROM) by 2.8% more (p = 0.0083) than the dynamic condition. These results would support the use of static stretching within an activity specific warm-up to ensure maximal ROM along with an enhancement in sprint performance. Key pointsActivity specific warm-up may improve sprint performance.Static stretching was more effective than dynamic stretching for increasing static range of motion.There was no effect of the warm-up protocols on countermovement jump height or movement time.

  13. Crustal Stretching Style and Lower Crust Flow of the South China Sea Northern Margin

    Science.gov (United States)

    Bai, Y.; Dong, D.; Runlin, D.

    2017-12-01

    There is a controversy about crustal stretching style of the South China Sea (SCS) northern margin mainly due to considerable uncertainty of stretching factor estimation, for example, as much as 40% of upper crust extension (Walsh et al., 1991) would be lost by seismic profiles due to poor resolution. To discover and understand crustal stretching style and lower crustal flow on the whole, we map the Moho and Conrad geometries based on gravity inversion constrained by deep seismic profiles, then according to the assumption of upper and lower crust initial thickness, upper and lower crust stretching factors are estimated. According to the comparison between upper and lower crust stretching factors, the SCS northern margin could be segmented into three parts, (1) sediment basins where upper crust is stretched more than lower crust, (2) COT regions where lower crust is stretched more than upper crust, (3) other regions where the two layers have similar stretching factors. Stretching factor map shows that lower crust flow happened in both of COT and sediment basin regions where upper crust decouples with lower crust due to high temperature. Pressure contrast by sediment loading in basins and erosion in sediment-source regions will lead to lower crust flow away from sediment sink to source. Decoupled and fractured upper crust is stretched further by sediment loading and the following compensation would result in relatively thick lower crust than upper crust. In COT regions with thin sediment coverage, low-viscosity lower crust is easier to thin in extensional environment, also the lower crust tends to flow away induced by magma upwelling. Therefore, continental crust on the margin is not stretching in a constant way but varies with the tectonic setting changes. This work is supported by National Natural Science Foundation of China (Grant No. 41506055, 41476042) and Fundamental Research Funds for the Central Universities China (No.17CX02003A).

  14. Acute effects of 15min static or contract-relax stretching modalities on plantar flexors neuromuscular properties.

    Science.gov (United States)

    Babault, Nicolas; Kouassi, Blah Y L; Desbrosses, Kevin

    2010-03-01

    The present study aimed to investigate the immediate effects of 15 min static or sub-maximal contract-relax stretching modalities on the neuromuscular properties of plantar flexor muscles. Ten male volunteers were tested before and immediately after 15 min static or contract-relax stretching programs of plantar flexor muscles (20 stretches). Static stretching consisted in 30s stretches to the point of discomfort. For the contract-relax stretching modality, subjects performed 6s sub-maximal isometric plantar flexion before 24s static stretches. Measurements included maximal voluntary isometric torque (MVT) and the corresponding electromyographic activity of soleus (SOL) and medial gastrocnemius (MG) muscles (RMS values), as well as maximal peak torque (Pt) elicited at rest by single supramaximal electrical stimulation of the tibial nerve. After 15 min stretching, significant MVT and SOL RMS decreases were obtained (-6.9+/-11.6% and -6.5+/-15.4%, respectively). No difference was obtained between stretching modalities. Pt remained unchanged after stretching. MG RMS changes were significantly different between stretching modalities (-9.4+/-18.3% and +3.5+/-11.6% after static and contract-relax stretching modalities, respectively). These findings indicated that performing 15 min static or contract-relax stretching had detrimental effects on the torque production capacity of plantar flexor muscles and should be precluded before competition. Mechanisms explaining this alteration seemed to be stretch modality dependent. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Antipastorialism : Resistant Georgic Mode

    National Research Council Canada - National Science Library

    Zimmerman, Donald

    2000-01-01

    .... Abolitionists, women, Afro-British slaves, and those who protested land enclosure developed a multivalent, resistant mode of writing, which I name 'antipastoralism', that countered orthodox, poetical...

  16. Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  17. Nonlinear drift tearing mode

    International Nuclear Information System (INIS)

    Zelenyj, L.M.; Kuznetsova, M.M.

    1989-01-01

    Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed

  18. Rubble Mound Breakwater Failure Modes

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Z., Liu

    1995-01-01

    The RMBFM-Project (Rubble Mound Breakwater Failure Modes) is sponsored by the Directorate General XII of the Commission of the European Communities under the Contract MAS-CT92- 0042, with the objective of contributing to the development of rational methods for the design of rubble mound breakwaters....... 11 institutes from the European Union participate in the project. The paper presents an overview of the project background, the research objective, the research methodology and the research results of the project. The outcome of the project is a large amount of formulae describing important failure...

  19. The effects of static stretch duration on the flexibility of hamstring ...

    African Journals Online (AJOL)

    The effects of static stretch duration on the flexibility of hamstring muscles. NA Odunaiya, TK Hamzat, OF Ajayi. Abstract. The effects of duration of a static stretching protocol (Intervention) on hamstrings tightness were evaluated. Sixty purposively sampled subjects with unilateral hamstring tightness that had no history of low ...

  20. The Effect of Lithotomy Position on Nerve Stretch: A Cadaveric Study.

    Science.gov (United States)

    Deveneau, Nicolette E; Forbis, Courtney; Lipetskaia, Lioudmilla; Kinman, Casey L; Agrawal, Anubhav; Herring, Nicole R; Francis, Sean L

    The objective of our study was to design a method to measure nerve stretch in cadaveric subjects and then use the method to assess femoral nerve stretch in the lithotomy position with varying degrees of flexion and extension. A university-based, cadaveric observational study of femoral nerve stretch was conducted. In 6 cadaveric subjects, femoral nerve near the inguinal ligament was dissected in each cadaveric subject. The nerve was marked, and digital images of the nerve were obtained in the supine position and lithotomy position in both flexion and extension. Distances were calculated using the ratio of pixels to millimeter specific for each image. The average distance for each set of images was then used to calculate the percent change from supine for each position. We were able to assess nerve stretch using photo-editing software. For extended position, all nerves showed some degree of stretch with the mean percent change in nerve length being 10.35%. For all other positions, most showed a decrease of nerve length. There was not a significant relation between degree of extension and stretch (Pearson r, P < 0.05). Hip extension between 10 and 20 degrees consistently stretches the femoral nerve greater than 5%. The potential for femoral nerve stretch and avoiding hip extension should be considered when positioning a patient in lithotomy for surgical procedures.

  1. From Static Stretching to Dynamic Exercises: Changing the Warm-Up Paradigm

    Science.gov (United States)

    Young, Shawna

    2010-01-01

    In the United States, pre-exercise static stretching seems to have become common practice and routine. However, research suggests that it is time for a paradigm shift--that pre-exercise static stretching be replaced with dynamic warm-up exercises. Research indicates that a dynamic warm-up elevates body temperature, decreases muscle and joint…

  2. Dual solutions of Casson fluid flow over a stretching or shrinking sheet

    Indian Academy of Sciences (India)

    ing parameter is negative. The effect of the Casson parameter on the skin friction, heat transfer and mass transfer rates is discussed. Keywords. Casson fluid; stretching/shrinking sheet; Soret effect; Dufour effect. 1. Introduction. Boundary layer flow and heat transfer over a stretching sheet is significant due to its many appli-.

  3. A Critical View of Static Stretching and Its Relevance in Physical Education

    Science.gov (United States)

    Parrott, James Allen; Zhu, Xihe

    2013-01-01

    Stretching before activity has been a customary part of most physical education classes (PE), with static stretching typically the preferred method due to its ease of implementation. Historical and implicit support for its continued use is due in part to the sit-and-reach test and flexibility as one of the components of health-related fitness.…

  4. Effect of proprioceptive neuromuscular facilitation stretching on the plantar flexor muscle-tendon tissue properties.

    Science.gov (United States)

    Mahieu, N N; Cools, A; De Wilde, B; Boon, M; Witvrouw, E

    2009-08-01

    Proprioceptive neuromuscular facilitation (PNF) stretching programs have been shown to be the most effective stretching technique to increase the range of motion (ROM). The objective of this study was to examine the mechanism of effect of PNF stretching on changes in the ROM. Sixty-two healthy subjects were randomized into two groups: a PNF stretching group and a control group. The PNF group performed a 6-week stretching program for the calf muscles. Before and after this period, all subjects were evaluated for dorsiflexion ROM, passive resistive torque (PRT) of the plantar flexors and stiffness of the Achilles tendon. The results of the study revealed that the dorsiflexion ROM was significantly increased in the PNF group (DeltaROMext: 5.97+/-0.671 degrees ; DeltaROMflex: 5.697+/-0.788 degrees ). The PRT of the plantar flexors and the stiffness of the Achilles tendon did not change significantly after 6 weeks of PNF stretching. These findings provide evidence that PNF stretching results in an increased ankle dorsiflexion. However, this increase in ROM could not be explained by a decrease of the PRT or by a change in stiffness of the Achilles tendon, and therefore can be explained by an increase in stretch tolerance.

  5. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers

    Directory of Open Access Journals (Sweden)

    Michael Williams

    2013-01-01

    Full Text Available Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4 with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch, and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill.

  6. 49 CFR 180.413 - Repair, modification, stretching, rebarrelling, or mounting of specification cargo tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Repair, modification, stretching, rebarrelling, or... Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS... of Cargo Tanks § 180.413 Repair, modification, stretching, rebarrelling, or mounting of specification...

  7. STRETCHING EXERCISES - EFFECT ON PASSIVE EXTENSIBILITY AND STIFFNESS IN SHORT HAMSTRINGS OF HEALTHY-SUBJECTS

    NARCIS (Netherlands)

    HALBERTSMA, JPK; GOEKEN, LNH

    Passive muscle stretch tests are common practice in physical therapy and rehabilitation medicine. However, the effects of stretching exercises are not well known. With an instrumental straight-leg-raising set-up the extensibility, stiffness, and electromyographic activity of the hamstring muscles

  8. Acute effect of different stretching methods on flexibility and jumping performance in competitive artistic gymnasts.

    Science.gov (United States)

    Dallas, G; Smirniotou, A; Tsiganos, G; Tsopani, D; Di Cagno, A; Tsolakis, Ch

    2014-12-01

    The purpose of this study was to investigate the acute effects of 3 different warm up methods of stretching (static, proprioceptive neuromuscular facilitation, and stretching exercises on a Vibration platform) on flexibility and legs power-jumping performance in competitive artistic gymnasts. Eighteen competitive artistic gymnasts were recruited to participate in this study. Subjects were exposed to each of 3 experimental stretching conditions: static stretching (SS), proprioceptive neuromuscular facilitation stretching (PNF), and stretching exercises on a Vibration platform (S+V). Flexibility assessed with sit and reach test (S & R) and jumping performance with squat jump (SJ) and counter movement jump (CMJ) and were measured before, immediately after and 15 min after the interventions. Significant differences were observed for flexibility after all stretching conditions for S+V (+1.1%), SS (+5.7%) and PNF (+6.8%) (P=0.000), which remained higher 15 min after interventions (S+V (1.1%), SS (5.3%) and PNF (5.5%), respectively (P=0.000). PNF stretching increased flexibility in competitive gymnasts, while S+V maintained jumping performance when both methods were used as part of a warm-up procedure.

  9. Improving multigrid for 3-D electro-magnetic diffusion on stretched grids

    NARCIS (Netherlands)

    Jönsthövel, T.B.; Oosterlee, C.W.; Mulder, W.A.

    2006-01-01

    We evaluated multigrid techniques for 3D diffusive electromagnetism. The Maxwell equations and Ohm's law were discretised on stretched grids, with stretching in all coordinate directions. We compared standard multigrid to alternative multigrid approaches with linewise smoothing and semi-coarsening,

  10. Comparison of 2 Dosages of Stretching Treatment in Infants with Congenital Muscular Torticollis: A Randomized Trial.

    Science.gov (United States)

    He, Lu; Yan, Xiaohua; Li, Jinling; Guan, Buyun; Ma, Liying; Chen, Ying; Mai, Jianning; Xu, Kaishou

    2017-05-01

    To compare the short-term efficacy of 2 dosages of stretching treatment on the clinical outcomes in infants with congenital muscular torticollis. This was a prospective randomized controlled study. Fifty infants with congenital muscular torticollis who were randomly assigned to 100-times stretching group and 50-times stretching group received stretching treatment for the affected sternocleidomastoid muscle. The outcomes including the head tilt, the cervical passive range of motion, and the muscle function of cervical lateral flexors determined by the muscle function scale were assessed at baseline and at 4 and 8 weeks after treatment. The sternocleidomastoid muscle growth analyzed by the thickness ratio of sternocleidomastoid muscles was measured using ultrasonography at baseline and 8 weeks after treatment. Except the ratio of muscle function scale scores, the postintervention outcomes were all significantly improved in both groups compared with baseline (P stretching group showed greater improvement compared with 50-times stretching group in head tilt and cervical passive range of motion at 4 and 8 weeks after treatment (P Stretching treatment of 2 dosages may effectively improve head tilt, cervical passive range of motion, and sternocleidomastoid muscle growth in infants with congenital muscular torticollis. The stretching treatment of 100 times per day is likely to associate with greater improvement in head tilt and cervical passive range of motion.

  11. On prediction of OH stretching frequencies in intramolecularly hydrogen bonded systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens

    2012-01-01

    OH stretching frequencies are investigated for a series of non-tautomerizing systems with intramolecular hydrogen bonds. Effective OH stretching wavenumbers are predicted by the application of empirical correlation procedures based on the results of B3LYP/6-31G(d) theoretical calculations in the ...

  12. The acute effect of static and dynamic stretching during warm-ups on anaerobic performance in trained women

    OpenAIRE

    rouhollah haghshenas; Iman taleb-beydokhti

    2014-01-01

    The purpose of this study was to investigate effects of static stretching, dynamic stretching and no stretching methods on power and speed in volleyball players. Therefore, Twenty-four volleyball players (height: 173.29 ± 7.81 m; mass: 62.12 ± 8.73 kg; age: 22.66 ± 4.02 years; experience: 3.27 ± 6.37) were tested for speed performance using the 20 meter sprint test and also for power using vertical jump test after static stretching, dynamic stretching and no stretching. The results analyzed u...

  13. Effect of static and dynamic stretching on the diurnal variations of jump performance in soccer players.

    Directory of Open Access Journals (Sweden)

    Hamdi Chtourou

    Full Text Available PURPOSE: The present study addressed the lack of data on the effect of different types of stretching on diurnal variations in vertical jump height - i.e., squat-jump (SJ and countermovement-jump (CMJ. We hypothesized that dynamic stretching could affect the diurnal variations of jump height by producing a greater increase in short-term maximal performance in the morning than the evening through increasing core temperature at this time-of-day. METHODS: Twenty male soccer players (age, 18.6±1.3 yrs; height, 174.6±3.8 cm; body-mass, 71.1±8.6 kg; mean ± SD completed the SJ and CMJ tests either after static stretching, dynamic stretching or no-stretching protocols at two times of day, 07:00 h and 17:00 h, with a minimum of 48 hours between testing sessions. One minute after warming-up for 5 minutes by light jogging and performing one of the three stretching protocols (i.e., static stretching, dynamic stretching or no-stretching for 8 minutes, each subject completed the SJ and CMJ tests. Jumping heights were recorded and analyzed using a two-way analysis of variance with repeated measures (3 [stretching]×2 [time-of-day]. RESULTS: The SJ and CMJ heights were significantly higher at 17:00 than 07:00 h (p<0.01 after the no-stretching protocol. These daily variations disappeared (i.e., the diurnal gain decreased from 4.2±2.81% (p<0.01 to 1.81±4.39% (not-significant for SJ and from 3.99±3.43% (p<0.01 to 1.51±3.83% (not-significant for CMJ after dynamic stretching due to greater increases in SJ and CMJ heights in the morning than the evening (8.4±6.36% vs. 4.4±2.64%, p<0.05 for SJ and 10.61±5.49% vs. 6.03±3.14%, p<0.05 for CMJ. However, no significant effect of static stretching on the diurnal variations of SJ and CMJ heights was observed. CONCLUSION: Dynamic stretching affects the typical diurnal variations of SJ and CMJ and helps to counteract the lower morning values in vertical jump height.

  14. Fatigue Crack Growth Characteristics of Cold Stretched STS 304 Welded Joint

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Won; Na, Seong Hyeon; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Kim, Young Kyun; Kim, Ki Dong [Korea Gas Coporation R& D Division, Daejeon (Korea, Republic of)

    2017-09-15

    STS 304 steel is used as pressure vessel material, and although it exhibits excellent mechanical characteristics at a low temperature, it is heavier than other materials. To address this issue, a method using cold-stretching techniques for STS 304 can be applied. In this study, a cold-stretching part and welded joint specimen were directly obtained from a cold-stretching pressure vessel manufactured according to ASME code. Fatigue crack propagation tests were carried out at room temperature and -170℃ using the compliance method for stress ratios of 0.1 and 0.5. The results indicate that crack growth rate of the welded joint is higher than that of the cold-stretching part within the same stress intensity factor range. The outcome of this work is expected to serve as a basis for the development of a cold-stretched STS 304 pressure vessel.

  15. Range of motion, neuromechanical and architectural daptations to plantar flexor stretch training in humans

    DEFF Research Database (Denmark)

    Blazevich, Anthony John; Cannavan, Dale; Waugh, Charlie M

    2014-01-01

    flexor stretches after 3 wk of twice-daily stretch training (4×30-s). No changes were observed in a non-exercising control group (N=9), however stretch training elicited a 19.9% increase in dorsiflexion range of motion (ROM) and 28% increase in passive joint moment at end ROM (N=12). Only a trend toward......The neuromuscular adaptations in response to muscle stretch training have not been clearly described. In the present study, changes in muscle (at fascicular and whole muscle levels) and tendon mechanics, muscle activity and spinal motoneuron excitability were examined during standardized plantar...... a decrease in passive plantar flexor moment during stretch (-9.9%, p=0.15) was observed and no changes in EMG amplitudes during or at end ROM were detected. Decreases in Hmax:Mmax (tibial nerve stimulation) were observed at plantar flexed (gastrocnemius medialis and soleus) and neutral (soleus only) joint...

  16. Direct relation of acute effects of static stretching on isokinetic torque production with initial flexibility level.

    Science.gov (United States)

    Babault, Nicolas; Bazine, Wacef; Deley, Gaëlle; Paizis, Christos; Lattier, Grégory

    2015-01-01

    To examine the acute effect of a single static-stretching session of hamstring muscles on torque production in relation with individual flexibility. Maximal voluntary concentric torque of hamstring muscles was measured before and after a static-stretching session (6 × 30 s). Torque changes were correlated with the flexibility level determined at the onset of the experimental procedure. The hamstring-stretching intervention significantly reduced maximal concentric torque in participants with low and high hamstring flexibility. Hamstring flexibility and torque decrease, determined immediately after the stretching procedure, were negatively correlated. Torque decrease measured after the static-stretching session is dependent on participant flexibility. Participants with low flexibility are much more likely to demonstrate large torque decreases poststretching.

  17. Static vs. Dynamic Acute Stretching Effect on Quadriceps Muscle Activity during Soccer Instep Kicking

    Science.gov (United States)

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2013-01-01

    The purpose of this study was to compare the effects of static and dynamic stretching on quadriceps muscle activation during maximal soccer instep kicking. The kicking motion of twelve male college soccer players (body height: 174.66 ± 5.01 cm; body mass: 72.83 ± 4.83 kg; age: 18.83 ± 0.75 years) was captured using six synchronized high-speed infra-red cameras whilst electromyography (EMG) signals from vastus medialis (VM), lateralis (VL) and rectus femoris (RF) were recorded before and after static or dynamic stretching. Analysis of variance designs showed a higher increase in knee extension angular velocity (9.65% vs. −1.45%, p stretching exercises. Based on these results, it could be suggested that dynamic stretching is probably more effective in increasing quadriceps muscle activity and knee extension angular velocity during the final swing phase of a maximal soccer instep kick than static stretching. PMID:24511339

  18. A study of viscoelasticity index for evaluating muscle hypotonicity during static stretching.

    Science.gov (United States)

    Okamura, Naomi; Tsukune, Mariko; Kobayashi, Yo; Fujie, Masakatsu G

    2014-01-01

    Static stretching is widely used as a preventative treatment for musculoskeletal disabilities by providing muscle hypotonicity, which results from changes in muscle tissue structure. However, the quantitative evaluation of hypotonicity during stretching has had limited success owing to the confounding factor of mechanical stress relaxation. To resolve this problem, we propose a new evaluation method for hypotonicity based on a viscoelastic muscle model using fractional calculus, which is known to be effective for biomaterials. We made continuous measurements of rectus skin indentation during static stretching as an indicator of reaction force in the rectus femoris muscle. The viscoelastic ratio and modulus were computed from the indentation trace. Both viscoelastic parameters decreased significantly between the early and final phases of stretching. The results suggest that our method is useful for quantitative evaluation of muscle hypotonicity during stretching.

  19. Effect of Twisting and Stretching on Magneto Resistance and Spin Filtration in CNTs

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singh

    2017-08-01

    Full Text Available Spin-dependent quantum transport properties in twisted carbon nanotube and stretched carbon nanotube are calculated using density functional theory (DFT and non-equilibrium green’s function (NEGF formulation. Twisting and stretching have no effect on spin transport in CNTs at low bias voltages. However, at high bias voltages the effects are significant. Stretching restricts any spin-up current in antiparallel configuration (APC, which results in higher magneto resistance (MR. Twisting allows spin-up current almost equivalent to the pristine CNT case, resulting in lower MR. High spin filtration is observed in PC and APC for pristine, stretched and twisted structures at all applied voltages. In APC, at low voltages spin filtration in stretched CNT is higher than in pristine and twisted ones, with pristine giving a higher spin filtration than twisted CNT.

  20. Mode decomposition evolution equations.

    Science.gov (United States)

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2012-03-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  1. Ankle-Dorsiflexion Range of Motion After Ankle Self-Stretching Using a Strap

    Science.gov (United States)

    Jeon, In-cheol; Kwon, Oh-yun; Yi, Chung-Hwi; Cynn, Heon-Seock; Hwang, Ui-jae

    2015-01-01

    Context  A variety of ankle self-stretching exercises have been recommended to improve ankle-dorsiflexion range of motion (DFROM) in individuals with limited ankle dorsiflexion. A strap can be applied to stabilize the talus and facilitate anterior glide of the distal tibia at the talocrural joint during ankle self-stretching exercises. Novel ankle self-stretching using a strap (SSS) may be a useful method of improving ankle DFROM. Objective  To compare the effects of 2 ankle-stretching techniques (static stretching versus SSS) on ankle DFROM. Design  Randomized controlled clinical trial. Setting  University research laboratory. Patients or Other Participants  Thirty-two participants with limited active dorsiflexion (<20°) while sitting (14 women and 18 men) were recruited. Main Outcome Measure(s)  The participants performed 2 ankle self-stretching techniques (static stretching and SSS) for 3 weeks. Active DFROM (ADFROM), passive DFROM (PDFROM), and the lunge angle were measured. An independent t test was used to compare the improvements in these values before and after the 2 stretching interventions. The level of statistical significance was set at α = .05. Results  Active DFROM and PDFROM were greater in both stretching groups after the 3-week interventions. However, ADFROM, PDFROM, and the lunge angle were greater in the SSS group than in the static-stretching group (P < .05). Conclusions  Ankle SSS is recommended to improve ADFROM, PDFROM, and the lunge angle in individuals with limited DFROM. PMID:26633750

  2. Acute effect of stretching one leg on regional arterial stiffness in young men.

    Science.gov (United States)

    Yamato, Yosuke; Hasegawa, Natsuki; Fujie, Shumpei; Ogoh, Shigehiko; Iemitsu, Motoyuki

    2017-06-01

    Our previous study demonstrated that a single bout of stretching exercises acutely reduced arterial stiffness. We hypothesized that this acute vascular response is due to regional mechanical stimulation of the peripheral arteries. To test this hypothesis, we examined the effect of a single bout of passive one leg stretching on arterial stiffness, comparing the stretched and the non-stretched leg in the same subject. Twenty-five healthy young men (20.9 ± 0.3 years, 172.5 ± 1.4 cm, 64.1 ± 1.2 kg) volunteered for the study. Subjects underwent a passive calf stretching on one leg (six repetitions of 30-s static stretch with a 10-s recovery). Pulse wave velocity (PWV, an index of arterial stiffness), blood pressure (BP), and heart rate (HR) were measured before and immediately, 15, and 30 min after the stretching. Femoral-ankle PWV (faPWV) in the stretched leg was significantly decreased from baseline (835.0 ± 15.9 cm/s) to immediately (802.9 ± 16.8 cm/s, P leg was not significantly altered at any time. Brachial-ankle PWV (baPWV) also showed similar responses with faPWV, but this response was not significant. Additionally, the passive stretching did not alter carotid-femoral PWV (cfPWV). These results suggest that mechanical stimulation to peripheral arteries as induced by static passive stretch may modulate arterial wall properties directly, rather than resulting in a systemic effect.

  3. Secondary structure estimation and properties analysis of stretched Asian and Caucasian hair.

    Science.gov (United States)

    Zhou, A J; Liu, H L; Du, Z Q

    2015-02-01

    In this previous work, we investigated the secondary structure changes of stretched yak hairs by deconvolution, secondary derivation, and curve fitting and determined the number of bands and their positions in order to resolve the protein spectrum of Raman spectroscopy. The secondary structure estimation and properties analysis of stretched Asian and Caucasian hair were investigated by Fourier transform infrared spectroscopy, tensile curves, and measurement of density. The hairs were stretched, dried, and baked at ratios 20%, 40%, 60%, 80% and 100%. The analysis of the amide I band indicated that the transformation from α-helix to β-pleated structure occurred during the stretching process, which could be verified from the tensile analysis. The cysteine oxide in S-O vibration area exhibited that stretching led to the breakage of the disulfide bonds. When the stretching ratio of Caucasian hair was more than a certain ratio, the fiber macromolecular structure was destroyed because Caucasian hair had finer diameter and less medulla than Asian hair. The β turn was easier to retract compared with other conformations, resulted in the content increase. The density measurements revealed that the structure of Caucasian hair was indeed more destroyed than that of Asian hair. The cuticles characterization indicated the length of scales was stretched longer and the thickness became thinner. Caucasian hair tended to collapse to form small fragments at the early stage of stretching. With the increase in stretching ratio, the scales of Caucasian hair lifted up, then flaked off and the scale interval increased accordingly. Asian hair was more easily peeled off than Caucasian hair cuticles with the increase in stretching ratio. The secondary structure of Caucasian hair was destroyed more easily than that of Asian hair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Effects of Contract-Relax, Static Stretching, and Isometric Contractions on Muscle-Tendon Mechanics.

    Science.gov (United States)

    Kay, Anthony D; Husbands-Beasley, Jade; Blazevich, Anthony J

    2015-10-01

    Loading characteristics of stretching techniques likely influence the specific mechanisms responsible for acute increases in range of motion (ROM). Therefore, the effects of a version of contract-relax (CR) proprioceptive neuromuscular facilitation stretching, static stretching (SS), and maximal isometric contraction (Iso) interventions were studied in 17 healthy human volunteers. Passive ankle moment was recorded on an isokinetic dynamometer, with EMG recording from the triceps surae, simultaneous real-time motion analysis, and ultrasound-imaging-recorded gastrocnemius medialis muscle and Achilles tendon elongation. Subjects then performed each intervention randomly on separate days before reassessment. Significant increases in dorsiflexion ROM (2.5°-5.3°; P muscle-tendon stiffness (10.1%-21.0%; P stretching (P stretching and Iso (17.7%-22.1%; P 0.05), whereas significant reductions in muscle stiffness occurred after CR stretching and SS (16.0%-20.5%; P 0.05). Increases in peak passive moment (stretch tolerance) occurred after Iso (6.8%; P stretching (10.6%; P = 0.08), and SS (5.2%; P = 0.08); no difference in changes between conditions was found (P > 0.05). Significant correlations (rs = 0.69-0.82; P muscle and tendon stiffness are distinct. Concomitant reductions in muscle and tendon stiffness after CR stretching suggest a broader adaptive response that likely explains its superior efficacy in acutely increasing ROM. Although mechanical changes appear tissue-specific between interventions, similar increases in stretch tolerance after all interventions are strongly correlated with changes in ROM.

  5. Negative effect of static stretching restored when combined with a sport specific warm-up component.

    Science.gov (United States)

    Taylor, Kristie-Lee; Sheppard, Jeremy M; Lee, Hamilton; Plummer, Norma

    2009-11-01

    There is substantial evidence that static stretching may inhibit performance in strength and power activities. However, most of this research has involved stretching routines dissimilar to those practiced by athletes. The purpose of this study was to evaluate whether the decline in performance normally associated with static stretching pervades when the static stretching is conducted prior to a sport specific warm-up. Thirteen netball players completed two experimental warm-up conditions. Day 1 warm-up involved a submaximal run followed by 15 min of static stretching and a netball specific skill warm-up. Day 2 followed the same design; however, the static stretching was replaced with a 15 min dynamic warm-up routine to allow for a direct comparison between the static stretching and dynamic warm-up effects. Participants performed a countermovement vertical jump and 20m sprint after the first warm-up intervention (static or dynamic) and also after the netball specific skill warm-up. The static stretching condition resulted in significantly worse performance than the dynamic warm-up in vertical jump height (-4.2%, 0.40 ES) and 20m sprint time (1.4%, 0.34 ES) (pwarm-up was preceded by static stretching or a dynamic warm-up routine. This suggests that the practice of a subsequent high-intensity skill based warm-up restored the differences between the two warm-up interventions. Hence, if static stretching is to be included in the warm-up period, it is recommended that a period of high-intensity sport-specific skills based activity is included prior to the on-court/field performance.

  6. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial

    Directory of Open Access Journals (Sweden)

    Wada JT

    2016-10-01

    Full Text Available Juliano T Wada,1 Erickson Borges-Santos,1 Desiderio Cano Porras,1 Denise M Paisani,1 Alberto Cukier,2 Adriana C Lunardi,1 Celso RF Carvalho1 1Department of Physical Therapy, 2Department of Cardiopneumology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil Background: Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown.Objective: The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD.Design: This study was a randomized and controlled trial.Participants: A total of 30 patients were allocated to a treatment group (TG or a control group (CG; n=15, each group.Intervention: The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks of aerobic training.Evaluations: Functional exercise capacity (6-minute walk test, thoracoabdominal kinematics (optoelectronic plethysmography, and respiratory muscle activity (surface electromyography were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%.Results: After the intervention, the TG showed improved abdominal (ABD contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01. The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001.Conclusion: Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional

  7. The acute effect of static and dynamic stretching during warm-ups on anaerobic performance in trained women

    Directory of Open Access Journals (Sweden)

    rouhollah haghshenas

    2014-09-01

    Full Text Available The purpose of this study was to investigate effects of static stretching, dynamic stretching and no stretching methods on power and speed in volleyball players. Therefore, Twenty-four volleyball players (height: 173.29 ± 7.81 m; mass: 62.12 ± 8.73 kg; age: 22.66 ± 4.02 years; experience: 3.27 ± 6.37 were tested for speed performance using the 20 meter sprint test and also for power using vertical jump test after static stretching, dynamic stretching and no stretching. The results analyzed using ANOVA showed that There was a significant increase in height jump after dynamic stretching against static stretching. But, there were no significant differences between no stretching and static stretching groups. In addition, there was a significant decrease in time 20 meter sprint after dynamic stretching against static stretching and no stretching groups. The results of this study suggest that it may be desirable for volleyball players to perform dynamic exercises before the performance of activities that require a high power output.

  8. Stretched exponential relaxation in molecular and electronic glasses

    International Nuclear Information System (INIS)

    Phillips, J.C.

    1996-01-01

    Stretched exponential relaxation, exp[-(t/τ) β ], fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where β is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0 g , a glass transition temperature. We show that for molecular relaxation β(T g ) can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, β SR =3/5 for short-range forces, and β K =3/7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz-Kac-Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips-Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S(Q, t) directly, and the traditional linear response measurements which span the range from μs to s, as collected and analysed phenomenologically by Angell, Ngai, Boehmer and others. The electronic materials discussed include a-Si:H, granular C 60 , semiconductor nanocrystallites, charge density waves in TaS 3 , spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van der Waals supercooled liquids and glasses, orientational glasses, water, fused salts, and heme proteins. In the intrinsic cases the theory of β(T g ) is often accurate to 2%, which

  9. Internal Kink Mode Dynamics in High-β NSTX Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, R.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Medley, S.S.; Park, W.; Sabbagh, S.A.; Sontag, A.; Stutman, D.; Tritz, K.; Zhu, W.

    2004-01-01

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode nonlinear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experimental data

  10. Internal kink mode dynamics in high-β NSTX plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, R.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Medley, S.S.; Park, W.; Sabbagh, S.A.; Sontag, A.; Zhu, W.; Stutman, D.; Tritz, K.

    2005-01-01

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode non-linear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experiment. (author)

  11. Applications of sliding mode control in science and engineering

    CERN Document Server

    Lien, Chang-Hua

    2017-01-01

    Gathering 20 chapters contributed by respected experts, this book reports on the latest advances in and applications of sliding mode control in science and engineering. The respective chapters address applications of sliding mode control in the broad areas of chaos theory, robotics, electrical engineering, physics, chemical engineering, memristors, mechanical engineering, environmental engineering, finance, and biology. Special emphasis has been given to papers that offer practical solutions, and which examine design and modeling involving new types of sliding mode control such as higher order sliding mode control, terminal sliding mode control, super-twisting sliding mode control, and integral sliding mode control. This book serves as a unique reference guide to sliding mode control and its recent applications for graduate students and researchers with a basic knowledge of electrical and control systems engineering.

  12. The purinergic component of human bladder smooth muscle cells’ proliferation and contraction under physiological stretch

    Energy Technology Data Exchange (ETDEWEB)

    Wazir, Romel; Luo, De-Yi; Tian, Ye; Yue, Xuan; Li, Hong; Wang, Kun-Jie, E-mail: kunjiewangatscu@163.com

    2013-07-26

    Highlights: •Stretch induces proliferation and contraction. •Optimum applied stretch in vitro is 5% and 10% equibiaxial stretching respectively. •Expression of P2X1 and P2X2 is upregulated after application of stretch. •P2X2 is possibly more susceptible to stretch related changes. •Purinoceptors functioning may explain conditions with atropine resistance. -- Abstract: Objective: To investigate whether cyclic stretch induces proliferation and contraction of human smooth muscle cells (HBSMCs), mediated by P2X purinoceptor 1 and 2 and the signal transduction mechanisms of this process. Methods: HBSMCs were seeded on silicone membrane and stretched under varying parameters; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (Frequency: 0.05 Hz, 0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz). 5-Bromo-2-deoxyuridine assay was employed for proliferative studies. Contractility of the cells was determined using collagen gel contraction assay. After optimal physiological stretch was established; P2X1 and P2X2 were analyzed by real time polymerase chain reaction and Western Blot. Specificity of purinoceptors was maintained by employing specific inhibitors; (NF023 for P2X1, and A317491for P2X2), in some experiments. Results: Optimum proliferation and contractility were observed at 5% and 10% equibiaxial stretching respectively, applied at a frequency of 0.1 Hz; At 5% stretch, proliferation increased from 0.837 ± 0.026 (control) to 1.462 ± 0.023%, p < 0.05. Mean contraction at 10% stretching increased from 31.7 ± 2.3%, (control) to 78.28 ±1.45%, p < 0.05. Expression of P2X1 and P2X2 was upregulated after application of stretch. Inhibition had effects on proliferation (1.232 ± 0.051, p < 0.05 NF023) and (1.302 ± 0.021, p < 0.05 A314791) while contractility was markedly reduced (68.24 ± 2.31, p < 0.05 NF023) and (73.2 ± 2.87, p < 0.05 A314791). These findings shows that mechanical stretch can promote magnitude-dependent proliferative and contractile modulation of HBSMCs in

  13. Vibrational Coupling Pathways in the CH Stretch Region of CH_3OH and CH_3OD as Revealed by IR and Ftmw-Ir Spectroscopies

    Science.gov (United States)

    Twagirayezu, Sylvestre; Wang, Xiaoliang; Perry, David S.; Neill, Justin L.; Muckle, Matt T.; Pate, Brooks H.; Xu, Li-Hong

    2011-06-01

    Infrared spectra of jet-cooled CH_3OD and CH_3OH in the CH stretch region are observed by coherence-converted population transfer Fourier transform microwave-infrared (CCPT-FTMW-IR) spectroscopy (E torsional species only) and by slit-jet single resonance spectroscopy (both A and E torsional species, CH_3OH only). Previously, we reported the analysis of ν_3 symmetric CH stretch region (2750-2900 Cm-1), and the present work extends the analysis to higher frequency (2900-3020 Cm-1). The overall observed spectra contain 17 interacting vibrational bands for CH_3OD and 28 for CH_3OH. The signs and magnitudes of the torsional tunneling splittings are deduced for three CH fundamentals (ν_3, ν_9, ν_2) of both molecules and are compared to a model calculation and to ab initio theory. The number and distribution of observed vibrational bands indicate that the CH stretch bright states couple first to doorway states that are binary combinations of bending modes. In the parts of the spectrum where doorway states are present, the observed density of coupled states is comparable to the total density of vibrational states in the molecule, but where there are no doorway states, only the CH stretch fundamentals are observed. A time-dependent interpretation of the present FTMW-IR spectra indicates a fast (˜ 200 fs) initial decay of the bright state followed by second, slower redistribution (˜ 1-3 ps). The qualitative agreement of the present data with the time-dependent experiments of Iwaki and Dlott provides further support for the similarity of the fastest vibrational relaxation processes in the liquid and gas phases. Twagirayezu, S.; Clasp, T. N.; Perry, D. S.; Neill, J. L.; Muckle, M. T.; Pate, B. H. J. Phys. Chem. A 2010, 114, 6818 Iwaki, L. K.; Dlott, D. D. J. Phys. Chem. A 2000, 104, 9101

  14. Quantifying stretching and rearrangement in epithelial sheet migration

    International Nuclear Information System (INIS)

    Lee, Rachel M; Nordstrom, Kerstin N; Losert, Wolfgang; Kelley, Douglas H; Ouellette, Nicholas T

    2013-01-01

    Although understanding the collective migration of cells, such as that seen in epithelial sheets, is essential for understanding diseases such as metastatic cancer, this motion is not yet as well characterized as individual cell migration. Here we adapt quantitative metrics used to characterize the flow and deformation of soft matter to contrast different types of motion within a migrating sheet of cells. Using a finite-time Lyapunov exponent (FTLE) analysis, we find that—in spite of large fluctuations—the flow field of an epithelial cell sheet is not chaotic. Stretching of a sheet of cells (i.e. positive FTLE) is localized at the leading edge of migration and increases when the cells are more highly stimulated. By decomposing the motion of the cells into affine and non-affine components using the metric D m in 2 , we quantify local plastic rearrangements and describe the motion of a group of cells in a novel way. We find an increase in plastic rearrangements with increasing cell densities, whereas inanimate systems tend to exhibit less non-affine rearrangements with increasing density. (paper)

  15. GRAVITATIONALLY UNSTABLE FLAMES: RAYLEIGH-TAYLOR STRETCHING VERSUS TURBULENT WRINKLING

    International Nuclear Information System (INIS)

    Hicks, E. P.; Rosner, R.

    2013-01-01

    In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.

  16. Theoretical evidence for bond stretch isomerism in Grubbs olefin metathesis.

    Science.gov (United States)

    Remya, Premaja R; Suresh, Cherumuttathu H

    2017-07-15

    A comprehensive density functional theory study on the dissociative and associative mechanisms of Grubbs first and second generation olefin metathesis catalysis reveals that ruthenacyclobutane intermediate (RuCB) observed in the Chauvin mechanism is not unique as it can change to a non-metathetic ruthenacyclobutane (RuCB') via the phenomenon of bond stretch isomerism (BSI). RuCB and RuCB' differ mainly in RuC α , RuC β , and C α C β bond lengths of the metallacycle. RuCB is metathesis active due to the agostic type bonding-assisted simultaneous activation of both C α C β bonds, giving hypercoordinate character to C β whereas an absence of such bonding interactions in RuCB' leads to typical CC single bond distances and metathesis inactivity. RuCB and RuCB' are connected by a transition state showing moderate activation barrier. The new mechanistic insights invoking BSI explains the non-preference of associative mechanism and the requirement of bulky ligands in the Grubbs catalyst design. The present study lifts the status of BSI from a concept of largely theoretical interest to a phenomenon of intense importance to describe an eminent catalytic reaction. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Extrinsic stretching narrowing and anterior indentation of the rectosigmoid junction

    International Nuclear Information System (INIS)

    Schulman, A.; Fataar, S.

    1979-01-01

    Thirty-five cases of extrinsic narrowing or anterior indentation of the rectosigmoid junction (RSJ) have been studied. The RSJ lies directly behind the pouch of Douglas which is a favoured site for peritoneal metastasis, abscess and endometriosis. Any space-occupying lesion of sufficient size at this site will indent the anterior aspects of the RSJ. Causes include distension or tumour of the ileum or sigmoid colon, gross ascites (when the patient is erect), and tumours below the pelvic peritonium, such as gynaecological neoplasm and internal iliac artery aneurysm. When a desmoplastic metastasis in the pouch of Douglas infiltrates the outer layers of the RSJ, the fibrosis produces an eccentric shortening on its anterior aspect, which in turn causes a pleating of the mucosa with the folds radiating towards the shortened area. This is also seen with primary pelvic carcinomas directly adherent to the rectum, endometriosis with repeated bleeding and increasing eccentric, submucosal fibrosis, and chronic abscess in the pouch of Douglas. Not all extrinsic narrowing of the RSJ are pathological. One case of anterior indentation followed operation for rectal prolapse. Ten additional cases showed narrowing due to a technical artefact air-distended colon rising into the upper abdomen to cause stretching at the RSJ. As with ascites, this narrowing due to 'high-rise sigmoid' disappeared when the patients became recumbent and the colonic air redistributed. (author)

  18. Stretch-activated cation channel from larval bullfrog skin

    DEFF Research Database (Denmark)

    Hillyard, Stanley D; Willumsen, Niels J; Marrero, Mario B

    2010-01-01

    Cell-attached patches from isolated epithelial cells from larval bullfrog skin revealed a cation channel that was activated by applying suction (-1 kPa to -4.5 kPa) to the pipette. Activation was characterized by an initial large current spike that rapidly attenuated to a stable value and showed...... was markedly reduced with N-methyl-D-glucamide (NMDG)-Cl Ringer's solution in the pipette. Neither amiloride nor ATP, which are known to stimulate an apical cation channel in Ussing chamber preparations of larval frog skin, produced channel activation nor did these compounds affect the response to suction....... Stretch activation was not affected by varying the pipette concentrations of Ca(2+) between 0 mmol l(-1) and 4 mmol l(-1) or by varying pH between 6.8 and 8.0. However, conductance was reduced with 4 mmol l(-1) Ca(2+). Western blot analysis of membrane homogenates from larval bullfrog and larval toad skin...

  19. Modulation of TRESK background K+ channel by membrane stretch.

    Directory of Open Access Journals (Sweden)

    Gerard Callejo

    Full Text Available The two-pore domain K(+ channel TRESK is expressed in dorsal root ganglion and trigeminal sensory neurons where it is a major contributor to background K(+ current. TRESK acts as a break to prevent excessive sensory neuron activation and decreases in its expression or function have been involved in neuronal hyperexcitability after injury/inflammation, migraine or altered sensory perception (tingling, cooling and pungent burning sensations. All these effects have implicated this channel in nociception and mechanotransduction. To determine the role of TRESK in sensory transduction, we studied its sensitivity to changes in membrane tension (stretch in heterologous systems, F-11 cells and trigeminal neurons. Laminar shear stress increased TRESK currents by 22-30%. An increase in membrane tension induced by cell swelling (hypotonic medium produced a reversible elevation of TRESK currents (39.9%. In contrast, cell shrinkage (hypertonic solution produced the opposite effect. Membrane crenators or cup-formers produced equivalent effects. In trigeminal sensory neurons, TRESK channels were mechanically stimulated by negative pressure, which led to a 1.51-fold increase in channel open probability. TRESK-like currents in trigeminal neurons were additively inhibited by arachidonic acid, acidic pH and hypertonic stimulation, conditions usually found after tissue inflammation. Our results show that TRESK is modulated by changes in cell membrane tension and/or cell volume. Several key players released during inflammation or tissue injury could modulate sensory neuron activation through small changes in membrane tension.

  20. Distributed sensing: multiple capacitive stretch sensors on a single channel

    Science.gov (United States)

    Tairych, Andreas; Anderson, Iain A.

    2017-04-01

    "Soft, stretchable, and unobtrusive". These are some of the attributes frequently associated with capacitive dielectric elastomer (DE) sensors for body motion capture. While the sensors themselves are soft and elastic, they require rigid peripheral components for capacitance measurement. Each sensor is connected to a separate channel on the sensing circuitry through its own set of wires. In wearable applications with large numbers of sensors, this can lead to a considerable circuit board footprint, and cumbersome wiring. The additional equipment can obstruct movement and alter user behaviour. Previous work has demonstrated how a transmission line model can be applied to localise deformation on a single DE sensor. Building on this approach, we have developed a distributed sensing method by arranging capacitive DE sensors and external resistors to form a transmission line, which is connected to a single sensing channel with only one set of wires. The sensors are made from conductive fabric electrodes, and silicone dielectrics, and the external resistors are off-the-shelf metal film resistors. Excitation voltages with different frequencies are applied to the transmission line. The lumped transmission line capacitances at these frequencies are passed on to a mathematical model that calculates individual sensor capacitance changes. The prototype developed for this study is capable of obtaining separate readings for simultaneously stretched sensors.

  1. Thin film flow along a periodically-stretched elastic beam

    Science.gov (United States)

    Boamah Mensah, Chris; Chini, Greg; Jensen, Oliver

    2017-11-01

    Motivated by an application to pulmonary alveolar micro-mechanics, a system of partial differential equations is derived that governs the motion of a thin liquid film lining both sides of an inertia-less elastic substrate. The evolution of the film mass distribution is described by invoking the usual lubrication approximation while the displacement of the substrate is determined by employing a kinematically nonlinear Euler-Bernoulli beam formulation. In the parameter regime of interest, the axial strain can be readily shown to be a linear function of arc-length specified completely by the motion of ends of the substrate. In contrast, the normal force balance on the beam yields an equation for the substrate curvature that is fully coupled to the time-dependent lubrication equation. Linear analyses of both a stationary and periodically-stretched flat substrate confirm the potential for buckling instabilities and reveal an upper bound on the dimensionless axial stiffness for which the coupled thin-film/inertial-less-beam model is well-posed. Numerical simulations of the coupled system are used to explore the nonlinear development of the buckling instabilities.

  2. Dispersion and decay of collective modes in neutron star cores

    Science.gov (United States)

    Kobyakov, D. N.; Pethick, C. J.; Reddy, S.; Schwenk, A.

    2017-08-01

    We calculate the frequencies of collective modes of neutrons, protons, and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and protons, which is not well characterized. The contribution of collective modes to the thermal conductivity is evaluated.

  3. Switch mode power supply

    International Nuclear Information System (INIS)

    Kim, Hui Jun

    1993-06-01

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  4. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  5. Study of complex modes

    International Nuclear Information System (INIS)

    Pastrnak, J.W.

    1986-01-01

    This eighteen-month study has been successful in providing the designer and analyst with qualitative guidelines on the occurrence of complex modes in the dynamics of linear structures, and also in developing computer codes for determining quantitatively which vibration modes are complex and to what degree. The presence of complex modes in a test structure has been verified. Finite element analysis of a structure with non-proportional dumping has been performed. A partial differential equation has been formed to eliminate possible modeling errors

  6. Mode III effects on interface delamination

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Hutchinson, J.W.

    2008-01-01

    For crack growth along an interface between dissimilar materials the effect of combined modes I, II and III at the crack-tip is investigated. First, in order to highlight situations where crack growth is affected by a mode III contribution, examples of material configurations are discussed where...... mode III has an effect. Subsequently, the focus is on crack growth along an interface between an elastic-plastic solid and an elastic substrate. The analyses are carried out for conditions of small-scale yielding, with the fracture process at the interface represented by a cohesive zone model. Due...... to the mismatch of elastic properties across the interface the corresponding elastic solution has an oscillating stress singularity, and this solution is applied as boundary conditions on the outer edge of the region analyzed. For several combinations of modes I, II and III crack growth resistance curves...

  7. EFFECTIVENESS OF ECCENTRIC TRAINING, DYNAMIC RANGE OF MOTION EXERCISES AND STATIC STRETCHING ON FLEXIBILITY OF HAMSTRING MUSCLE AMONG FOOTBALL PLAYERS.

    OpenAIRE

    Askar P.V; Veena Pais; Nagarajan Mohan; Shaikhji Saad; Nusaibath M Shaikhji

    2015-01-01

    Background: Hamstring stretch is an important part of treatment programs aimed at decreasing the likelihood of hamstring injury. Few studies have examine the effect of eccentric training, static stretching and dynamic range of motion(DROM) exercise in improving hamstring flexibility this study compares the effect of eccentric training and static stretching in improving hamstring flexibility. The purpose of this study was to determine the effects of Eccentric training, Static stretching and Dy...

  8. Does vibration counteract the static stretch-induced deficit on muscle force development?

    Science.gov (United States)

    Fernandes, Igor Alexandre; Kawchuk, Gregory; Bhambhani, Yagesh; Gomes, Paulo Sergio Chagas

    2013-09-01

    To determine the residual acute vibration-stretching effect on preactivation levels, short-latency stretch reflex, and performance during execution of drop jumps. Repeated measures. Eleven male recreational athletes performed a set of three 45cm drop jumps before and immediately after a 30s static stretching exercise with and without simultaneously imposed muscle vibration (45Hz, 5mm). Drop jump height, ground reaction forces and electromyographic data including Vastus Lateralis onset/levels of preactivation and short-latency stretch reflex were recorded. No changes were induced on drop jump height. However, stretching-induced decrements on ground reaction force peak and time to peak as well as an increment in contact time followed a delay in short-latency stretch reflex onset and a reduced preactivation level of Vastus Lateralis. Otherwise, when vibration was simultaneously imposed, there was no evidence of changes in high-speed force production variables or electromyographic recordings. Mechanical vibration, when applied simultaneously to static-stretching routines, appeared to be effective to counteract decreased musculotendinous unit stiffness-induced high-speed force production deficit during jumping performance. Copyright © 2012. Published by Elsevier Ltd.

  9. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.

    Science.gov (United States)

    Lei, Ying; Masjedi, Shirin; Ferdous, Zannatul

    2017-11-01

    In aortic valves, biaxial cyclic stretch is known to modulate cell differentiation, extracellular matrix (ECM) synthesis and organization. We designed a novel bioreactor that can apply independent and precise stretch along radial and circumferential directions in a tissue culture environment. While this bioreactor can be used for either native or engineered tissues, this study determined matrix remodeling and strain distribution of aortic cusps after culturing under biaxial stretch for 14 days. The contents of collagen and glycosaminoglycans were determined using standard biochemical assays and compared with fresh controls. Strain fields in static cusps were more uniform than those in stretched cusps, which indicated degradation of the ECM fibers. The glycosaminoglycan content was significantly elevated in the static control as compared to fresh or stretched cusps, but no difference was observed in collagen content among the groups. The strain profile of freshly isolated fibrosa vs. ventricularis and left, right, and noncoronary cusps were also determined by Digital Image Correlation technique. Distinct strain patterns were observed under stretch on fibrosa and ventricularis sides and among the three cusps. This work highlights the critical role of the anisotropic ECM structure for proper functions of native aortic valves and the beneficial effects of biaxial stretch for maintenance of the native ECM structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of cryotherapy and thermotherapy associated with static stretching on the flexibility of hamstring muscles

    Directory of Open Access Journals (Sweden)

    S.A. Silva

    2010-01-01

    Full Text Available The objective of the present study was to analyze the effect of cryotherapy and muscular warming on the flexibility of the hamstring muscles associated with three minutes of static stretching. Forty young male and female volunteers were randomly included in one of four groups: Group 1 – Control group, Group 2 – Three minutes of static stretching, Group 3 – Stretching preceded by warming using shortwave diathermy (20 minutes, and Group 4 – Stretching preceded by applying cryotherapy (20 minutes to the posterior thigh region. The program consisted of three series of stretching during five consecutive days and flexibility was assessed by goniometric evaluations of the extensor angle of the knee at the beginning of the protocol, at the end of the day and at the end of the protocol. The intergroup comparison was made through ANOVA post-hoc Tukey and the intragroup by paired t test, all with 5% level of significance. The three experimental groups significantly increased their range of motion in relation to the control group. However, differences were not observed among groups submitted to the different stretching programs. In conclusion, increases in flexibility were due to stretching and did not depend on previous application of hyperthermia and/or hypothermia.

  11. Fast-crawling cell types migrate to avoid the direction of periodic substratum stretching.

    Science.gov (United States)

    Okimura, Chika; Ueda, Kazuki; Sakumura, Yuichi; Iwadate, Yoshiaki

    2016-07-03

    To investigate the relationship between mechanical stimuli from substrata and related cell functions, one of the most useful techniques is the application of mechanical stimuli via periodic stretching of elastic substrata. In response to this stimulus, Dictyostelium discoideum cells migrate in a direction perpendicular to the stretching direction. The origins of directional migration, higher migration velocity in the direction perpendicular to the stretching direction or the higher probability of a switch of migration direction to perpendicular to the stretching direction, however, remain unknown. In this study, we applied periodic stretching stimuli to neutrophil-like differentiated HL-60 cells, which migrate perpendicular to the direction of stretch. Detailed analysis of the trajectories of HL-60 cells and Dictyostelium cells obtained in a previous study revealed that the higher probability of a switch of migration direction to that perpendicular to the direction of stretching was the main cause of such directional migration. This directional migration appears to be a strategy adopted by fast-crawling cells in which they do not migrate faster in the direction they want to go, but migrate to avoid a direction they do not want to go.

  12. Retinal glial (Müller ) cells: sensing and responding to tissue stretch.

    Science.gov (United States)

    Lindqvist, Niclas; Liu, Qing; Zajadacz, Joachim; Franze, Kristian; Reichenbach, Andreas

    2010-03-01

    To test whether Müller glial cells sense, and respond to, mechanical tension in the retina. A device was designed to stretch the retina at right angles to its surface, across retinal layers. Pieces of retina were mounted between two hollow tubes, and uniaxial force was applied to the tissue using a micrometer-stepping motor. Müller cells were selectively stained with the fluorescent, calcium-sensitive dye X-Rhod-1 and were monitored in real time during retinal stretch in vitro. Immunohistochemistry was used to study protein levels and activation of intracellular pathways in stretched retinas. Müller cells responded acutely with transient increases in fluorescence during stretch, indicative of increased intracellular calcium levels. All the Müller cells elongated uniformly, and there was no apparent difference between retinal layers in resistance against mechanical deformation. After stretch, Müller cells showed fast activation of extracellular signal-regulated kinase (after 15 minutes), upregulation of transcription factor c-Fos (after 1 hour), and basic fibroblast growth factor (after 3 hours). No changes in intermediate filament protein expression were observed in Müller cells up to 3 hours after stretch. A novel technique was developed for real-time monitoring of Müller cells during retinal stretch, which allowed the identification of Müller cells as a mechanoresponsive cell type. Mechanical stress triggers molecular responses in Müller cells that could prevent retinal damage.

  13. A comparison of two stretching programs for hamstring muscles: A randomized controlled assessor-blinded study.

    Science.gov (United States)

    Demoulin, Christophe; Wolfs, Sébastien; Chevalier, Madeline; Granado, Caroline; Grosdent, Stéphanie; Depas, Yannick; Roussel, Nathalie; Hage, Renaud; Vanderthommen, Marc

    2016-01-01

    Most parameters regarding hamstring flexibility training programs have been investigated; however, the joint (i.e. hip or knee) on which the stretching should preferentially be focused needs to be further explored. This randomized controlled assessor-blinded study aimed to investigate the influence of this parameter. We randomly assigned 111 asymptomatic participants with tight hamstring muscles in three groups: a control group and two groups following a different home-based 8-week (five 10-minute sessions per week) hamstring stretching program (i.e. stretching performed by flexing the hip while keeping the knee extended [SH] or by first flexing the hip with a flexed knee and then extending the knee [SK]). Range of motion (ROM) of hip flexion and knee extension were measured before and after the stretching program by means of the straight leg raising test and the passive knee extension angle test, respectively. Eighty-nine participants completed the study. A significant increase in ROM was observed at post-test. Analyses showed significant group-by-time interactions for changes regarding all outcomes. Whereas the increase in hip flexion and knee extension ROM was higher in the stretching groups than in the CG (especially for the SH group p 0.05). In conclusion, the fact that both stretching programs resulted in similar results suggests no influence of the joint at which the stretching is focused upon, as assessed by the straight leg raising and knee extension angle tests.

  14. Effects of Static Stretching Exercise on Lumbar Flexibility and Central Arterial Stiffness.

    Science.gov (United States)

    Logan, Jeongok G; Kim, Suk-Sun; Lee, Mijung; Byon, Ha Do; Yeo, SeonAe

    2018-01-23

    Previous studies have demonstrated that arterial stiffness is associated with lumbar flexibility (LF). Stretching exercise targeted to improve LF may have a beneficial effect on reducing arterial stiffness. We examined the effects of a single bout of a structured, static stretching exercise on arterial stiffness, LF, peripheral and central blood pressure (BP), and heart rate (HR) and tested the association between LF and central arterial stiffness. The study had a pretest-posttest design without a control group. Thirty healthy women followed a video demonstration of a 30-minute whole-body stretching exercise. Carotid-femoral pulse wave velocity (cf-PWV), augmentation index, LF, peripheral and central BP, and HR were measured before and after the stretching exercise. One bout of a static stretching exercise significantly reduced cf-PWV (t29 = 2.708, P = .011) and HR (t29 = 7.160, P = .000) and increased LF (t29 = 12.248, P static stretching exercise on central arterial stiffness, an independent predictor of cardiovascular morbidity. Static stretching exercise conducted in the sitting position may be used as an effective intervention to reduce cardiovascular risk after a cardiac event or for patients whose sympathetic function should not be overly activated or whose gaits are not stable.

  15. Warm-up effects from concomitant use of vibration and static stretching after cycling.

    Science.gov (United States)

    Yang, Wen-Wen; Liu, Chiang; Shiang, Tzyy-Yuang

    2017-04-01

    Static stretch is routinely used in traditional warm-up but impaired muscle performance. Combining vibration with static stretching as a feasible component may be an alternative to static stretching after submaximal aerobic exercise to improve jumping as well as flexibility. Therefore, the purpose of this study was to investigate and compare the effects of aerobic exercise, static stretching, and vibration with static stretching on flexibility and vertical jumping performance. A repeated measures experimental design was used in this study. Twelve participants randomly underwent 5 different warm-ups including cycling alone (C warm-up), static stretching alone (S warm-up), combining vibration with static stretching (VS warm-up), cycling followed by S (C+S warm-up), and cycling followed by VS (C+VS warm-up) on 5 separate days. Sit-and-reach, squat jump (SJ), and counter movement jump (CMJ) were measured for pre- and post- tests. The sit-and-reach scores after the S, VS, C+S and C+VS warm-ups were significantly enhanced (Pafter the C and C+VS warm-ups were significantly increased (Pafter the S warm-up (Pstretching after submaximal cycling exercise (C+VS warm-up) could be a feasible warm-up protocol to improve both flexibility and vertical jump performance, compared with the traditional warm-up (C+S warm-up).

  16. Effects of Plantar Flexor Muscle Static Stretching Alone and Combined With Massage on Postural Balance.

    Science.gov (United States)

    Hemmati, Ladan; Rojhani-Shirazi, Zahra; Ebrahimi, Samaneh

    2016-10-01

    To evaluate and compare the effects of stretching and combined therapy (stretching and massage) on postural balance in people aged 50 to 65 years. Twenty-three subjects participated in this nonrandomized clinical trial study. Each participant randomly received plantar flexor muscle stretching (3 cycles of 45 seconds with a 30-second recovery period between cycles) alone and in combination with deep stroking massage (an interval of at least 30 minutes separated the two interventions). The data were recorded with a force platform immediately after each condition with eyes open and closed. The center of pressure displacement and velocity along the mediolateral and anteroposterior axes were calculated under each condition. The data were analyzed with multiple-pair t-tests. The center of pressure displacement and velocity along the mediolateral axis increased after both stretching and the combined intervention. There were significant differences in both values between participants in the stretching and combined interventions (pmuscle stretching (for 45 seconds) combined with deep stroking massage may have more detrimental effects on postural balance than stretching alone because each intervention can intensify the effects of the other.

  17. The acute benefits and risks of passive stretching to the point of pain.

    Science.gov (United States)

    Muanjai, Pornpimol; Jones, David A; Mickevicius, Mantas; Satkunskiene, Danguole; Snieckus, Audrius; Skurvydas, Albertas; Kamandulis, Sigitas

    2017-06-01

    This study evaluated the acute effects of two different stretch intensities on muscle damage and extensibility. Twenty-two physically active women (age 20 ± 1.0 years) were divided into two matched groups and undertook eight sets of 30-s passive hamstring stretching. One group stretched to the point of discomfort (POD) and the other to the point of pain (POP). Hamstring passive torque, sit and reach (S&R), straight leg raise (SLR), and markers of muscle damage were measured before, immediately after stretching and 24 h later. S&R acutely increased and was still increased at 24 h with median (interquartile range) of 2.0 cm (0.5-3.75 cm) and 2.0 cm (0.25-3.0 cm) for POP and POD (p muscle tenderness occurred at 24 h in both groups and there was a very small increase in thigh circumference in both groups which persisted at 24 h in POP. Plasma CK activity was not raised at 24 h. Stretching to the point of pain had no acute advantages over stretching to the discomfort point. Both forms of stretching resulted in very mild muscle tenderness but with no evidence of muscle damage. The increased ROM was not associated with changes in passive stiffness of the muscle but most likely resulted from increased tolerance of the discomfort.

  18. Muscle-specific acute changes in passive stiffness of human triceps surae after stretching.

    Science.gov (United States)

    Hirata, Kosuke; Miyamoto-Mikami, Eri; Kanehisa, Hiroaki; Miyamoto, Naokazu

    2016-05-01

    It remains unclear whether the acute effect of stretching on passive muscle stiffness differs among the synergists. We examined the muscle stiffness responses of the medial (MG) and lateral gastrocnemii (LG), and soleus (Sol) during passive dorsiflexion before and after a static stretching by using ultrasound shear wave elastography. Before and after a 5-min static stretching by passive dorsiflexion, shear modulus of the triceps surae and the Achilles tendon (AT) during passive dorsiflexion in the knee extended position were measured in 12 healthy subjects. Before the static stretching, shear modulus was the greatest in MG and smallest in Sol. The stretching induced significant reductions in shear modulus of MG, but not in shear modulus of LG and Sol. The slack angle was observed at more plantar flexed position in the following order: AT, MG, LG, and Sol. After the stretching, the slack angles of each muscle and AT were significantly shifted to more dorsiflexed positions with a similar extent. When considering the shift in slack angle, the change in MG shear modulus became smaller. The present study indicates that passive muscle stiffness differs among the triceps surae, and that the acute effect of a static stretching is observed only in the stiff muscle. However, a large part of the reduction of passive muscle stiffness at a given joint angle could be due to an increase in the slack length.

  19. Floristics and structure of a stretch of riparian forest in Carinhanha river, Feira da Mata, Bahia

    Directory of Open Access Journals (Sweden)

    Francisco Sanches Gomes

    2014-09-01

    Full Text Available This study aimed to contribute to understanding the floristic composition and vegetation structure of a stretch of riparian forest on the banks of Carinhanha river, belonging to the São Francisco river basin, in a fragment of Cerrado sensu lato, in Feira da Mata, Bahia, Brazil. Four equidistant 50 m transects were placed, as well as twelve 10 m x 25 m plots, distributed among transects, totaling 3,000 m² (0.3 ha. All live and dead individuals with DBH ≥ 5 cm were sampled. In the floristic survey, a total of 105 species, 87 genera, and 42 families were sampled. In the phytosociological study, a total of 217 individuals distributed into 54 species, 49 genera, and 29 families were registered. The family having the greatest species richness was Fabaceae, which included 24.07% of all species sampled. The species Oxandra reticulata Maas showed the greatest importance value. The density was 723 individuals.ha-1 and the basal area was 14.52 m².ha-1. Shannon-Wiener’s diversity index (H` was 3.62. Sørensen’s index (Sø showed low similarity with to other riparian fragments. We concluded that the area under study shares species with other Cerrado physiognomies and it has species from Caatinga, something which confirms the heterogeneity of this formation.

  20. Stretch influence on pre-competitive stress on juvenile soccer players

    Directory of Open Access Journals (Sweden)

    P.V. Rogatto

    2008-01-01

    Full Text Available Soccer show a series of stress-generated situations. The streatching may contribut to decrease this stress negative effects. The pre-competitive moment is stress generator. Yhe objetive of this study was to verify the effects of strectch on pre-competitive stress in soccer players. To this, 17 juvenile soccer players were allocated into two groups: control group (CG and strecth group (SG. All participants responsed to TEF (Stress soccer test and GA stretching during 30 minutes while GC not realized any physical activity. After this, both groups responded to TEF and was inverted in the next game. The situations “sleep badly on previous night” and “Be damaged for arbitrator” was avaliated with more negative reponses while “ Himself charged to win” and “ The adversary is the favourite” was was avaliated with more positive reponses. SG showed positive avaliations increased copared to CG, decreased on nule response and decreased on -1 and -3 responses. GC showed decrease in -2 responses. Concluded that pre-competitive situation modify negatively the athletes avaliation while the strecth interfere positively in front the avaliation of stressor situations in juvenile players.